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This paper uses the invariance principle to solve the incidental parameter
problem of [Econometrica 16 (1948) 1–32]. We seek group actions that pre-
serve the structural parameter and yield a maximal invariant in the parameter
space with fixed dimension. M-estimation from the likelihood of the maximal
invariant statistic yields the maximum invariant likelihood estimator (MILE).
Consistency of MILE for cases in which the likelihood of the maximal in-
variant is the product of marginal likelihoods is straightforward. We illustrate
this result with a stationary autoregressive model with fixed effects and an
agent-specific monotonic transformation model.

Asymptotic properties of MILE, when the likelihood of the maximal in-
variant does not factorize, remain an open question. We are able to provide
consistent, asymptotically normal and efficient results of MILE when invari-
ance yields Wishart distributions. Two examples are an instrumental variable
(IV) model and a dynamic panel data model with fixed effects.

1. Introduction. The maximum likelihood estimator (MLE) is a procedure
commonly used to estimate a parameter in stochastic models. Under regularity
conditions, the MLE is not only consistent but also asymptotic optimal (e.g., [26]).
In the presence of incidental parameters, however, the MLE of structural parame-
ters may not be consistent. This failure occurs because the dimension of incidental
parameters increases with the sample size, affecting the ability of MLE to consis-
tently estimate the structural parameters. This is the so-called incidental parameter
problem after the seminal paper by [35].

This paper appeals to the invariance principle to solve the incidental parameter
problem. We propose to find a group action that preserves the model and the struc-
tural parameter. This yields a maximal invariant statistic. Its distribution depends
on the parameters only through the maximal invariant in the parameter space. Max-
imization of the invariant likelihood yields the maximum invariant likelihood es-
timator (MILE). Distinct group actions in general yield different estimators. We
seek group actions whose maximal invariant in the parameter space has fixed di-
mension regardless of the sample size.
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The use of invariance to eliminate nuisance parameters has a long history (e.g.,
[9]). However, the use of invariance to solve the incidental parameter problem is
limited to only a few models (e.g., see [29] for estimate variance components us-
ing invariance to the mean). There has also been some discussion on identifiability
by [28] for additional groups of transformations. However, asymptotic properties
of MILE are hardly addressed in the literature. The difficulty in obtaining asymp-
totic results arises because the likelihood of the maximal invariant is often not the
product of marginal likelihoods.

An important methodological question is whether the use of invariance yields
consistency and optimality in models whose number of parameters increases with
the sample size. As is customary in the literature, we illustrate these results with a
series of examples.

To establish a context, Section 3 considers two groups of transformations whose
use of invariance completely discards the incidental parameters. In both examples,
the likelihood of the maximal invariant is the product of marginal likelihoods; con-
sistency, asymptotic normality, and efficiency of MILE are straightforward. The
first example is the stationary autoregressive model with fixed effects. For a par-
ticular group action, the solution coincides with [4] conditional and [15] and [25]
integrated likelihood approaches. The second example is the monotonic transfor-
mation model. The proposed transformation is agent-specific and has infinite di-
mension. The conditional and integrated likelihood approaches do not seem to be
applicable here. The invariance principle provides an estimator that is consistent
and asymptotically normal under the assumption of normal errors.

We then proceed to the two main examples of the paper. For both examples, in-
variance arguments yield Wishart distributions. Standardization of the likelihoods
yields consistency, asymptotic normality, and optimality results for MILE. Al-
though our theoretical findings are somewhat specific to Wishart distributions, we
hope that interesting general lessons can be learned from studying those particular
likelihoods.

Section 4 considers an instrumental variable (IV) model with N observations
and K instruments. For the orthogonal group of transformations, MILE coincides
with the LIMLK estimator. The asymptotic theory for the invariant likelihood uni-
fies theoretical findings for LIMLK under both the strong instruments (SIV) and
many weak instruments (MWIV) asymptotics (e.g., [10, 22] and [31]). This frame-
work parallels standard M-estimation in problems in which the number of para-
meters does not change with the sample size. In particular, we are able to (i) show
consistency of the MLE in the IV setup even under MWIV asymptotics from the
perspective of likelihood maximization; (ii) derive the asymptotic distribution of
the MLE directly from the objective function under SIV and MWIV asymptotics;
and (iii) provide an explanation for optimality of MLE within the class of regular
invariant estimators.

Section 5 presents a simple dynamic panel data model with N individuals and T

time periods. We propose to use MILE based on the orthogonal group of transfor-
mations. This estimator is novel in the dynamic panel data literature and presents
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a number of desirable properties. It is consistent, as long as NT goes to infinity
(regardless of the relative rate of N and T ) and asymptotically normal under (i)
large N , fixed T ; and (ii) large N , large T asymptotics when the autoregressive
parameter is smaller than one. We derive an efficiency bound for large N , fixed T

asymptotics when errors are normal; our bound coincides with [17] bound when
T → ∞. MILE reaches (i) our bound when N is large and T is fixed; and (ii) [17]
bound when both N and T are large. The bias-corrected ordinary least squares
(BCOLS) estimator (e.g., [17]) only reaches the second bound. As a result, it is
shown that MILE asymptotically dominates the BCOLS estimator. Finally, [13]
use invariance to show that the correlated random effects estimator has a minimax
property. The fixed effects estimator MILE also has a minimax property for the
group of transformations considered here.

Section 6 compares MILE with existing fixed-effects estimators for the dynamic
panel data model.

Section 7 concludes. The Appendix provides proofs for our results.

2. The maximum invariant likelihood estimator. In this section, we revisit
the basic concepts of invariance (e.g., [16]) and their use to eliminate nuisance pa-
rameters. Let Pγ,η denote the distribution of the data set Y ∈ Y when the structural
parameter is γ ∈ � and the incidental parameter is η ∈ N :L(Y ) = Pγ,η ∈ P.

We seek a group G and actions A1(·, Y ) and A2(·, (γ, η)) in the sample and
parameter spaces that preserve the model P:

L(Y ) = Pγ,η ⇒ L(A1(g,Y )) = PA2(g,(γ,η)) for any Pγ,η ∈ P.

We are interested in γ . This yields the following definition.

DEFINITION 2.1. Suppose that A2 : G × � × N → � × N induces an action
A3 : G × N → N such that

A2(g, (γ, η)) = (γ,A3(g, η)).

Then the parameter γ is said to be preserved. The incidental parameter space N is
preserved if

N = {η ∈ N;η = A3(g, η̃) for some η̃ ∈ N}.
Suppose that both γ and N are preserved. We can then appeal to the invariance

principle and focus on invariant statistics φ(Y ) in which φ(A1(g,Y )) = φ(Y ) for
every Y ∈ Y and g ∈ G. Any invariant statistic can be written as a function of a
maximal invariant statistic defined below.

DEFINITION 2.2. A statistic M ≡ M(Y) is a maximal invariant in the sample
space if

M(Ỹ ) = M(Y) if and only if Ỹ = A1(g,Y ) for some g ∈ G.
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An orbit of G is an equivalence class of elements Y , where Ỹ ∼ Y (mod G), if
there exists g ∈ G such that Ỹ = A1(g,Y ). By definition, M is a maximal invariant
statistic if it is invariant and takes distinct values on different orbits of G. Every
invariant procedure can be written as a function of a maximal invariant. Hence, we
restrict our attention to the class of decision rules that depend only on the maximal
invariant statistic. An analogous definition holds for the parameter space.

DEFINITION 2.3. A parameter θ ≡ θ(γ, η) is a maximal invariant in the para-
meter space if θ(γ, η) is invariant and takes different values on different orbits of
G :Oγ,η = {A2(g, (γ, η)) ∈ � × N; for some g ∈ G}.

The distribution of a maximal invariant M depends on (γ, η) only through θ . If
A2 : G×�×N → �×N induces a group action A3 : G×N → N, then θ ≡ (γ, λ),
where λ ∈ � is the maximal invariant in the nuisance parameter space N. The
parameter set � is allowed to be the empty set.

DEFINITION 2.4. Let f (M; θ) be the p.d.f./p.m.f. of a maximal invariant sta-
tistic (we shall abbreviate f (M; θ) as the invariant likelihood). The maximum
invariant likelihood estimator (MILE) is defined as

θ̂ ≡ arg max
θ∈�

f (M; θ).

Comments. 1. Hereinafter, we assume the set � to be compact.
2. The estimator θ̂ is the same for any one-to-one transformation of M . Differ-

ent group actions A1(·, Y ) and A2(·, (γ, η)), however, yield different estimators.
Hence, a better notation for θ̂ would indicate its dependence on the choice of group
actions.

3. In general, we seek group actions A1(·, Y ) and A2(·, (γ, η)) that preserve
the model P and the structural parameter γ , and yield a maximal invariant λ in N
which has fixed dimension with the sample size.

We introduce some additional notation. The superscript ∗ indicates the true
value of a parameter (e.g., γ ∗ is the true value of the structural parameter γ ).
The subscript N denotes dependence on the sample size N (e.g., λ∗

N is the true
value of the maximal invariant λ when the sample size is N ). In addition, let 1T be
a T -dimensional vector of ones, Oj×k be a j × k matrix with entries zero, ej be a
vector with entry j equals one and other entries zero.

Hereinafter, additional notation is specific to each example.

3. Transformations within individuals. In this section, we present two ex-
amples of transformations within individuals. Instead of Pγ,η, we work with P i

γ,ηi
,

the probability of the model for agent i. This clarifies our exposition and highlights
the fact that the likelihood of each maximal invariant M = (M1, . . . ,MN) is the
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sum of marginal likelihoods. In all examples below, the maximal invariant in the
parameter space is θ = γ , with the objective function simplifying to

QN(θ) = 1

N

N∑
i=1

lnfi(mi; θ),(3.1)

where fi(mi; θ) is the marginal density of the maximal invariant Mi for each in-
dividual i. Because the MILE θ̂N maximizes QN(θ), consistency, asymptotic nor-
mality and optimality of θ̂N follow from standard results.

LEMMA 3.1. Let QN(θ) be defined as in (3.1) and take all limits as N→∞.
(a) Suppose that (i) supθ∈� |QN(θ) − Q(θ)| →p 0 for a fixed, nonstochastic

function Q(θ), and (ii) ∀ε > 0, infθ /∈B(θ∗,ε) Q(θ) > Q(θ∗). Then

θ̂N →p θ∗.

(b) Suppose that (i) θ̂N →p θ∗, (ii) θ∗ ∈ int(�), (iii) QN(θ) is twice con-
tinuously differentiable in some neighborhood of θ∗, (iv)

√
N∂QN(θ∗)/∂θ →d

N(0, I(θ∗)), and (v) supθ∈� |∂2QN(θ∗)/∂θ ∂θ ′ + I(θ)| →p 0 for some nonsto-
chastic matrix that is continuous at θ∗ where I(θ∗) is nonsingular. Then

√
N(θ̂N − θ∗) →d N(0, I(θ∗)−1).

(c) Suppose that (i) {QN(θ); θ ∈ �} is differentiable in quadratic mean
at θ∗ with nonsingular information matrix I(θ∗), and (ii)

√
N(θ̂N − θ∗) =

I(θ∗)−1
√

N∂QN(θ∗)/∂θ + oQN(θ∗)(1). Then

ln
QN(θ + h · N−1/2)

QN(θ)
= h′SN − 1

2
h′I(θ∗)h + oQN(θ∗)(1),

where SN →d N(0, I(θ∗)) under QN(θ∗), and θ̂N is the best regular invariant
estimator of θ∗.

Comment. Part (a) assumes (i) uniform convergence of QN(θ) and (ii) unique
identifiability of θ∗. Under the assumption that � is compact, [7] show that
QN(θ) →p Q(θ) uniformly, if and only if QN(θ) →p Q(θ) pointwise,and
QN(θ) − Q(θ) is stochastically equicontinuous. The nonstochastic function Q(θ)

satisfies the unique identifiability condition if θ is identified and Q(θ) is continu-
ous.

3.1. A linear stationary panel data model. As an introductory example, con-
sider a linear stationary panel data model with exogenous regressors and fixed
effects:

yit = ηi + x′
itβ + uit ,
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where yit ∈ R and xit ∈ R
K are observable variables; uit are unobservable (possi-

bly autocorrelated) errors, i = 1, . . . ,N , t = 1, . . . , T ; β ∈ R
K and σ 2 ∈ R are the

structural parameters; and ηi ∈ R are incidental parameters, i = 1, . . . ,N .
The model for yi· = [yi1, . . . , yiT ]′ ∈ R

T conditional on xi· = [xi1, . . . , xiT ]′ ∈
R

T ×K is

yi·
ind∼ N(ηi1T + xi·β,σ 2�T )

(3.2)

where �T = 1

1 − ρ2

⎡⎢⎢⎢⎣
1 ρ · · · ρT −1

ρ 1
...

. . .

ρT −1 1

⎤⎥⎥⎥⎦ .

Both the model and the structural parameter γ = (β, σ 2, ρ) are preserved by
translations g · 1T (where g is a scalar),

yi· + g · 1T
ind∼ N

(
(ηi + g)1T + xi·β,σ 2�T

)
.

PROPOSITION 3.1. Let g be elements of the real line with g1 ◦ g2 = g1 + g2.
If the actions on the sample and parameter spaces are, respectively, A1(g, yi·) =
(yi· + g · 1T ) and A2(g, (β, σ 2, ρ, ηi)) = (β, σ 2, ρ, ηi + g), then:

(a) the vector Mi = Dyi· is a maximal invariant in the sample space, where D

is a T − 1 × T differencing matrix with typical row (0, . . . ,0,1,−1,0, . . . ,0),
(b) γ is a maximal invariant in the parameter space, and

(c) Mi
ind∼ N(Dxi·β,σ 2D�T D′) with density at mi = Dyi· given by

fi(mi;β,ρ,σ 2) = (2πσ 2)−(T −1)/2|D�T D′|−1/2

× exp
{
− 1

2σ 2 (yi· − xi·β)′D′(D�T D′)−1D(yi· − xi·β)

}
.

Comment. Under regularity conditions (e.g., (i) 1
N

∑N
i=1 vec(xi·)vec(xi·)′ →p

�XX p.d., (ii) 1√
N

∑N
i=1 ui· ⊗ vec(xi·) →d N(0, σ ∗2�∗

T ⊗ �XX), where ui· =
[ui1, . . . , uiT ]′, (iii) supN≥1

1
N

∑N
i=1 E vec(xi·)vec(xi·)′ < ∞, (iv) (β,1,0) /∈ �,

∀β , and (v) θ∗ ∈ int(�)), we can use Lemma 3.1 to show that θ̂N is consistent and
asymptotically normal.

3.2. A linear transformation model. Consider a simple panel data transforma-
tion model,

ηi(yit ) = x′
itβ + uit ,

where yit ∈ R and xit ∈ R
K are observable variables; uit ∈ R are unobservable er-

rors, i = 1, . . . ,N , t = 1, . . . , T , with T > K ; ηi : R → R is an unknown, continu-
ous, strictly increasing incidental function; and β ∈ R

K is the structural parameter.
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Unlike [2], we shall parameterize the distribution of the errors, uit
i.i.d.∼ N(αi, σ

2
i ).

Because of location and scale normalizations, we shall assume without loss of

generality that uit
i.i.d.∼ N(0,1).

The model for yi· = (yi1, yi2, . . . , yiT ) ∈ R
T is then given by

P(yi· ≤ v) =
T∏

t=1

�
(
ηi(vt ) − x′

itβ
)

where v = [v1, v2, . . . , vT ]′.

Both the model and the structural parameter γ ≡ β are preserved by continuous,
strictly increasing transformations.

PROPOSITION 3.2. Let g be elements of the group of continuous, strictly in-
creasing transformations, with g1 ◦ g2 = g1(g2). If the actions on the sample and
parameter spaces are, respectively, A1(g, (yi1, yi2, . . . , yiT )) = (g(yi1), g(yi2),

. . . , g(yiT )) and A2(g, (β, ηi)) = (β, ηi(g
−1)), then:

(a) the statistic Mi = (Mi1, . . . ,MiT ) is the maximal invariant in the sample
space, where Mit is the rank of yit in the collection yi1, . . . , yiT ,

(b) the vector β is the maximal invariant in the parameter space, and
(c) Mi , i = 1, . . . ,N , are independent with marginal probability mass function

of Mi at mi given by

fi(mi1, . . . ,miT ;β) = 1

T !E
[

exp

{(
T∑

t=1

V(mit )x
′
it

)
β

}]

× exp

{
−1

2
β ′
(

T∑
t=1

xitx
′
it

)
β

}
,

where V(1), . . . , V(T ) is an ordered sample from an N(0,1) distribution.

The likelihood of the maximal invariant also yields semiparametric methods.
For example, consider the case in which T = 2. If x ′

i2β > x′
i1β , then it is likely

that yi2 > yi1. This yields the semiparametric estimator of [2]. This estimator max-
imizes

QN(β) = 1

N

N∑
i=1

{H(yi2, yi1)I (�x′
iβ > 0) + H(yi1, yi2)I (�x′

iβ < 0)},

where H is an arbitrary function increasing in the first and decreasing in the second
argument. This estimator is very appealing as it is consistent under more general
error distributions. For asymptotic normality, [2] proposes to smoothen the objec-
tive function to obtain asymptotic normality whose convergence rate can be made
arbitrarily close to N−1/2. In contrast, the MILE estimator suggested here does not
require arbitrary choices of H or smoothening.
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4. An instrumental variables model. Consider a simple simultaneous equa-
tions model with two endogenous variables, multiple instrumental variables (IVs)
and errors that are normal with known covariance matrix. The model consists of a
structural equation and a reduced-form equation:

y1 = y2β + u,

y2 = Zπ + v2,

where y1, y2 ∈ RN and Z ∈ RN×K are observed variables; u, v2 ∈ RN are unob-
served errors; and β ∈ R and π ∈ RK are unknown parameters. The matrix Z has
full column rank K ; the N ×2 matrix of errors [u :v2] is assumed to be i.i.d. across
rows with each row having a mean zero bivariate normal distribution with a non-
singular covariance matrix; π is the incidental parameter; and β is the parameter
of interest.

The two-equation reduced-form model can be written in matrix notation as

Y = Zπa′ + V,

where Y = [y1 :y2], V = [v1 :v2] and a = (β,1)′. The distribution of Y ∈ RN×2

is multivariate normal with mean matrix Zπa′, independence across rows and co-
variance matrix � for each row.

Because the multivariate normal is a member of the exponential family of
distributions, low-dimensional sufficient statistics are available for the parameter
(β,π ′)′. Andrews, Moreira and Stock [8] and Chamberlain [12] propose using
orthogonal transformations applied to the sufficient statistic (Z′Z)−1/2Z′Y . The
maximal invariant is Y ′NZY , where NZ = Z(Z′Z)−1Z′.

We shall use an invariance argument without reducing the data to a sufficient sta-
tistic. For convenience, it is useful to write the model in a canonical form. The ma-
trix Z has the polar decomposition Z = ω(ρ ′,0K×(N−K))

′, where ω is an N × N

orthogonal matrix, and ρ is the unique symmetric, positive definite square root of
Z′Z. Define R = ω′Y and let η = ρπ . Then the canonical model is

R
d=
(

ηa′
0

)
+ V, L(V ) = N(0, IN ⊗ �).

Both model and structural parameters β and � are preserved by transformations
O(K) in the first K rows of R. The next proposition obtains the maximal invariants
in the sample and parameter spaces.

PROPOSITION 4.1. Let g be elements of the orthogonal group of transforma-
tions O(K) and partition the sample space R = (R′

1,R
′
2)

′, where R1 is K × 2
and R2 is (N − K) × 2. If the actions on the sample and parameter spaces are,
respectively, A1(g,R) = ((gR1)

′,R′
2)

′ and A2(g, (β,�,η)) = (β,�,gη), then:
(a) the maximal invariant in the sample space is M = (R′

1R1,R2), and
(b) the maximal invariant in the parameter space is θN = (β,�,λN), where

λN ≡ η′η/N .
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To illustrate the approach, we assume for simplicity that � is known. Hence,
we omit � from now on [e.g., θN = (β,λN)].

The density of M is the product of the marginal densities of R′
1R1 and R2.

Since R2 is an ancillary statistic, we can focus on the marginal density of R′
1R1 ≡

Y ′NZY in the maximization of the log-likelihood. As the density of Y ′NZY is not
well-behaved as N goes to infinity, we work with the density of WN ≡ N−1Y ′NZY

instead.

THEOREM 4.1. The density of WN ≡ N−1Y ′NZY evaluated at w is

g(w;β,λN) = C1,K · NK · exp
(
−NλN

2
a′�−1a

)
|�|−K/2|w|(K−3)/2

× exp
(
−N

2
tr(�−1w)

)
(4.1)

× (N√λN · a′�−1w�−1a
)−(K−2)/2

× I(K−2)/2
(
N

√
λN · a′�−1w�−1a

)
,

where C−1
1,K = 2(K+2)/2π1/2�(K−1

2 ), Iν(·) denotes the modified Bessel function of
the first kind of order ν, and �(·) is the gamma function.

Define MILE as

θ̂N ≡ arg max
θ∈�

QN(θ),

where QN(θ) ≡ N−1 lng(WN ; θN) and θN = (β,λN).1 The next result shows that
θ̂N = θ∗

N + op(1) under general conditions.

THEOREM 4.2. (a) Under the assumption that N → ∞ with K fixed or
K/N → 0, (i) if λ∗

N is fixed at λ∗ > 0, then θ̂N →p θ∗ = (β∗, λ∗), (ii) if λ∗
N →p

λ∗ > 0, then θ̂N →p θ∗ = (β∗, λ∗) and (iii) if 0 < lim infλ∗
N ≤ lim supλ∗

N < ∞,
then θ̂N = θ∗

N + op(1).
(b) Under the assumption that N → ∞ with K/N → α > 0, (i) if λ∗

N is fixed
at λ∗ > 0, then θ̂N →p θ∗ = (β∗, λ∗), (ii) if λ∗

N →p λ∗ > 0, then θ̂N →p θ∗ =
(β∗, λ∗) and (iii) if 0 < lim infλ∗

N ≤ lim supλ∗
N < ∞, then θ̂N = θ∗

N + op(1),
where θ∗

N = (β∗, λ∗
N).

Comments. 1. Parts (a), (b)(i) yield consistency results conditional on λ∗
N ; the

remaining results of the theorem are unconditional on λ∗
N . Parts (a), (b)(ii) yield

1The objective function QN(θ) is not defined if WN is not positive definite (due to the term
ln |WN |). To avoid this technical issue, we can instead maximize only the terms of QN(θ) that
depend on θ .
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consistency results for β∗ under SIV and MWIV asymptotics when λ∗
N →p λ∗.

The assumption of λ∗
N →p λ∗ is standard in the literature, but parts (a), (b)(iii)

show that β̂N →p β∗
N without imposing convergence of λ∗

N .
2. This result also holds under nonnormal errors, as long as V (WN) → 0.

PROPOSITION 4.2. MILE of β is the limited information maximum likelihood
(LIMLK) estimator.

Proposition 4.2 together with Theorem 4.2 explain why the LIMLK estima-
tor is consistent when the number of instruments increases. The MILE estimator
maximizes a log-likelihood function that is well-behaved as it depends on a finite
number of parameters. The LIMLK estimator is consistent because it coincides
with MILE.

THEOREM 4.3. Let the score statistic and the Hessian matrix be

SN(θ) = ∂ lnQN(θ)

∂θ
and HN(θ) = ∂2 lnQN(θ)

∂θ ∂θ ′ ,

respectively, and define the matrix

Iα(θ∗) =

⎡⎢⎢⎣λ∗2 a∗′�−1a∗ · e′
1�

−1e1(α + 2λ∗a∗′�−1a∗) + α(a∗′�−1e1)
2

(α + λ∗a∗′�−1a∗)(α + 2λ∗a∗′�−1a∗)

λ∗ a∗′�−1e1 · a∗′�−1a∗

α + 2λ∗a∗′�−1a∗

λ∗ a∗′�−1e1 · a∗′�−1a∗

α + 2λ∗a∗′�−1a∗
(a∗′�−1a∗)2

2(α + 2λ∗a∗′�−1a∗)

⎤⎥⎥⎦ .

(a) Suppose that λ∗
N is fixed at λ∗ > 0 and N → ∞ with K fixed. Then

(i)
√

NSN(θ∗) →d N(0, I0(θ
∗)), (ii) HN(θ∗) →p −I0(θ

∗), and (iii)
√

N(θ̂N −
θ∗) →d N(0, I0(θ

∗)−1).

(b) Suppose that λ∗
N is fixed at λ∗ > 0 and N → ∞ with K/N → α. Then

(i)
√

NSN(θ∗) →d N(0, Iα(θ∗)), (ii) HN(θ∗) →p −Iα(θ∗) and (iii)
√

N(θ̂N −
θ∗) →d N(0, Iα(θ∗)−1).

Comment. For convenience, we provide asymptotic results only for the case in
which λ∗

N is fixed at λ∗ > 0. Small changes in the proofs also yield asymptotic
results for λ∗

N →p λ∗.
As a corollary, we find the limiting distribution of LIMLK. This result coincides

with those obtained by [10].
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COROLLARY 4.1. Define σ 2
u = b′�b. Under SIV asymptotics (or under

MWIV asymptotics with α = 0), conditional on λ∗
N = λ∗ > 0,

√
N(β̂N − β∗) →d N

(
0,

σ 2
u

λ∗
)
.(4.2)

Under MWIV asymptotics, conditional on λ∗
N = λ∗ > 0,

√
N(β̂N − β∗) →d N

(
0,

σ 2
u

λ∗2

{
λ∗ + α

1

a∗′�−1a∗
})

.(4.3)

Comments. 1. The limiting distribution given in (4.3) simplifies to the one given
in (4.2) as α → 0.

2. Instead of using the invariant likelihood to obtain a minimum distance (MD)
estimator, we could instead use only its first moment. Define

m(WN ; θN) = vech
(

R′
1R1

N

)
− vech

(
aa′ · λN + K

N
�

)
.(4.4)

If λ∗
N > 0, then the following holds (for possibly nonnormal errors):

Eθ∗
N
(m(WN ; θ)) = 0 if and only if θN = θ∗

N.(4.5)

Because the number of moment conditions does not increase under SIV or MWIV
asymptotics, we can show that the MD estimator based on (4.4) and (4.5) is con-
sistent and asymptotically normal.

Finally, we obtain the following result under SIV and MWIV asymptotics in our
setup.

THEOREM 4.4. Define the log-likelihood ratio

�N(θ∗ + h · N−1/2, θ∗) = N
(
QN(θ∗ + h · N−1/2) − QN(θ∗)

)
.

(a) Under SIV asymptotics,

�N(θ∗ + h · N−1/2, θ∗) = h′√NSN(θ∗) − 1
2h′I0(θ

∗)h + oQN(θ∗)(1),(4.6)

where
√

NSN(θ∗) →d N(0, I0(θ
∗)) under QN(θ∗).

(b) Under MWIV asymptotics,

�N(θ∗ + h · N−1/2, θ∗) = h′√NSN(θ∗) − 1
2h′Iα(θ∗)h + oQN(θ∗)(1),(4.7)

where
√

NSN(θ∗) →d N(0, Iα(θ∗)) under QN(θ∗).
Furthermore, the LIMLK estimator is asymptotically efficient within the class

of regular invariant estimators under both SIV and MWIV asymptotics.
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Comments. 1. The proof of [14] uses asymptotic results by [19] for Wishart
distributions. The standard literature on limit of experiments instead typically pro-
vides expansions around the score (e.g., [27]). Theorem 4.3 shows that the score is
asymptotically normal with variance given by the reciprocal of the inverse of the
limit of the Hessian matrix. As the remainder terms are asymptotically negligible,
(4.6) and (4.7) hold true.

2. Theorem 4.4 requires the assumption of normal errors. Anderson, Kunitomo
and Matsushita [6] exploit the fact that WN involves double sums (in terms of N

and K) to obtain optimality results for nonnormal errors.

Under MWIV asymptotics, the LIMLK estimator achieves the bound
(Iα(θ∗)−1)11. Under SIV asymptotics, the bound (I0(θ

∗)−1)11 for regular invari-
ant estimators of β is the same as the one achieved by limit of experiments applied
to the likelihood of Y . Hence, there is no loss of efficiency in focusing on the class
of invariant procedures under SIV asymptotics.

5. A nonstationary dynamic panel data model. Consider a simple dynamic
panel data model with fixed effects,

yi,t = ρyi,t−1 + ηi + uit ,

where yit ∈ R are observable variables and uit
i.i.d.∼ N(0, σ 2) are unobservable er-

rors, i = 1, . . . ,N , t = 1, . . . , T ; ηi ∈ R are incidental parameters, i = 1, . . . ,N ;
γ = (ρ, σ 2) ∈ R×R are structural parameters; and yi,0 are the initial values of the
stochastic process. We seek inference conditional on the initial values yi,0 = 0.2

In its matrix form, we have

[y·1, y·2, . . . , y·T ] = ρ[y·0, y·1, . . . , y·T −1] + η1′
T + [u·1, u·2, . . . , u·T ],(5.1)

where y·t = [y1,t , y2,t , . . . , yN,t ]′ ∈ R
N , u·t = [u1,t , u2,t , . . . , uN,t ]′ ∈ R

N , and η =
[η1, . . . , ηN ]′ ∈ R

N . Solving (5.1) recursively yields

[y·1, y·2, . . . , y·T ] = η(B1T )′ + [u·1, u·2, . . . , u·T ]B ′
(5.2)

where B =
⎡⎣ 1

...
. . .

ρT −1 · · · 1

⎤⎦ .

The inverse of B has a simple form,

B−1 ≡ D = IT − ρ · JT , where JT =
[

0′
T −1 0

IT −1 0T −1

]
and 0T −1 is a (T − 1)-dimensional column vector with zero entries.

2We can assume that yi,0 = 0 by writing the model as

(yi,t − yi,0) = ρ(yi,t−1 − yi,0) + (ηi − yi,0(1 − ρ)
)+ uit ,

for example, [25].
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If individuals i are treated equally, the coordinate system used to specify the
vectors y·t should not affect inference based on them. In consequence, it is reason-
able to restrict attention to coordinate-free functions of y·t . Indeed, we find that
orthogonal transformations preserve both the model given in (5.2) and the struc-
tural parameter γ = (ρ, σ 2).

PROPOSITION 5.1. Let g be elements of the orthogonal group of transforma-
tions O(N). If the actions on the sample and parameter spaces are, respectively,
A1(g,Y ) = gY and A2(g, (ρ, σ 2, η)) = (ρ, σ 2, gη), then:

(a) the maximal invariant in the sample space is M = Y ′Y , and
(b) the maximal invariant in the parameter space is θN = (γ, λN), where λN =

η′η/(Nσ 2).

Comment. If there is autocorrelation �T that is homogeneous across individu-
als, the maximal invariant M remains the same. The covariance matrix, however,
changes to � = σ 2B�T B ′.

For convenience, we standardize the distribution of M = Y ′Y .

THEOREM 5.1. If N ≥ T , the density of WN ≡ N−1Y ′Y at w is

g(w;ρ,σ 2, λN) = C2,N · (σ 2)−NT /2|w|(N−T −1)/2

× exp
(
− N

2σ 2 tr(DwD′)
)

exp
(
−NT

2
λN

)
(5.3)

×
(
N

√
λN

1′
T DwD′1T

σ 2

)−(N−2)/2

× I(N−2)/2

(
N

√
λN

1′
T DwD′1T

σ 2

)
· NNT /2,

where C−1
2,N = 2NT /2−(N−2)/2πT (T −1)/4∏T −1

i=1 �(N−i
2 ).

Define MILE as

θ̂N ≡ arg max
θ∈�

QN(θ),

where QN(θ) ≡ (NT )−1 lng(WN ;ρ,σ 2, λ) and θN = (ρ, σ 2, λN).3 The next re-
sult shows that θ̂N = θ∗

N + op(1) under general conditions.

3If N < T , WN is not absolutely continuous with respect to the Lebesgue measure. We will still
maximize the pseudo-likelihood to find θ̂N .
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THEOREM 5.2. (a) Under the assumption that N → ∞ with T fixed, (i) if
λ∗

N is fixed at λ∗, then θ̂N →p θ∗ = (ρ∗, σ ∗2, λ∗), (ii) if λ∗
N →p λ∗, then θ̂N →p

θ∗ = (ρ∗, σ ∗2, λ∗) and (iii) if lim supλ∗
N < ∞, then θ̂N = θ∗

N +op(1), where θ∗
N =

(ρ∗, σ ∗2, λ∗
N).

(b) Under the assumption that T → ∞ and |ρ∗| < 1, (i) if λ∗
N is fixed at λ∗,

then θ̂N →p θ∗ = (ρ∗, σ ∗2, λ∗), (ii) if λ∗
N →p λ∗, then θ̂N →p θ∗ = (ρ∗, σ ∗2, λ∗)

and (iii) if lim supλ∗
N < ∞, then θ̂N = θ∗

N + op(1), where θ∗
N = (ρ∗, σ ∗2, λ∗

N).

Comments. 1. This result also holds under nonnormal errors.
2. This theorem implies that ρ̂N →p ρ∗ under the assumption that NT → ∞

(regardless of the growing rate of N and T ).

The next result derives the limiting distribution of MILE when N → ∞.

THEOREM 5.3. Suppose that σ ∗2 > 0 and λ∗
N is fixed at λ∗ > 0, and let the

score statistic and the Hessian matrix be

SN(θ) = ∂ lnQN(θ)

∂θ
and HN(θ) = ∂2 lnQN(θ)

∂θ ∂θ ′ ,

respectively, and define the matrix

IT (θ∗) =

⎡⎢⎢⎢⎢⎢⎢⎣
h1,T + h2,T + h3,T

λ∗

2σ ∗2

1′
T F1T

T

1 + λ∗T
1 + 2λ∗T

1′
T F1T

T
λ∗

2σ ∗2

1′
T F1T

T

1

2(σ ∗2)2 + λ∗

4σ ∗2

2λ∗T
1 + 2λ∗T

1

4σ ∗2

1 + λ∗T
1 + 2λ∗T

1′
T F1T

T

1

4σ ∗2

1

4λ∗

⎤⎥⎥⎥⎥⎥⎥⎦,

where DB∗ ≡ IT + (ρ∗ − ρ)F and the three terms in the (1,1) entry of IT (θ∗)
are

h1,T = tr(FF ′)
T

+ λ∗ 1′
T F ′F1T

T
, h2,T = 2λ∗2

(1 + 2λ∗T )

(1′
T F1T )2

T

and

h3,T = − λ∗

1 + λ∗T

{
1′
T F ′F1T

T
+ λ∗ (1′

T F1T )2

T

}
.

As N → ∞ with T fixed,
(a) (i)

√
NT SN(θ) →d N(0, IT (θ∗)), (ii) HN(θ∗) →p −IT (θ∗) and (iii)√

NT (θ̂N − θ∗) →d N(0, IT (θ∗)−1), and
(b) the log-likelihood ratio is

�N

(
θ∗ + h · (NT )−1/2, θ∗)
= NT

(
QN

(
θ∗ + h · (NT )−1/2)− QN(θ∗)

)
(5.4)

= h′√NT SN(θ∗) − 1
2h′IT (θ∗)h + oQN(θ∗)(1),
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√
NT SN(θ∗) →d N(0, IT (θ∗)) under QN(θ∗). Furthermore, θ̂N is asymptoti-

cally efficient within the class of regular invariant estimators under large N , fixed
T asymptotics.

Comments. 1. It is possible to extend parts (a)(i), (iii) to nonnormal errors by
finding the appropriate asymptotic distribution of

√
NT SN(θ∗).

2. The MILE estimator ρ̂N achieves the bound (IT (θ∗)−1)11 as N → ∞,
whereas the bias-corrected OLS estimator does not.

3. Instead of using the invariant likelihood to obtain an estimator, we could in-
stead use only its first moment. Let wi = yi·y′

i·, where yi· = [yi,1, yi,2, . . . , yi,T ]′ ∈
R

T , and define

m(WN ; θN) = vech
(
WN − σ 2 vech(B{IT + λN · 1T 1′

T }B)
)
.(5.5)

Then the following holds:

Eθ∗
N
(m(WN ; θN)) = 0 if and only if θN = θ∗

N.(5.6)

In the IV model, the number of moment conditions does not increase with
N or K (see comment 2 to Corollary 4.1). In the panel data model, the number
T (T + 1)/2 of moment conditions given in (5.6) increases (too quickly) with T .
Therefore, consistency and semiparametric efficiency results (e.g., [3] and [34])
do not apply to (5.6) as T → ∞. Instead, Hahn and Kuersteiner [17] cleverly use
Hájek’s convolution theorem to obtain an efficiency bound for normal errors as
T → ∞ for the stationary case |ρ∗| < 1. The bias-corrected OLS estimator of ρ

achieves [17] bound for large N , large T asymptotics.
Our efficiency bound (IT (θ∗)−1)11 reduces to [17] bound when T → ∞. This

shows that there is no loss of efficiency in focusing on the class of invariant proce-
dures under large N , large T asymptotics.

COROLLARY 5.1. Under the assumption that |ρ∗|<1, the efficiency bound
given by the (1,1) coordinate of the inverse of I∞(θ∗)−1≡(limT →∞ IT (θ∗))−1

converges to [17] efficiency bound of (1 − ρ∗2) as T → ∞.

As a final result, the MILE estimator ρ̂N also achieves the bound (IT (θ∗)−1)11
for large N , large T asymptotics.

THEOREM 5.4. Under the assumption that N ≥ T → ∞, |ρ∗| < 1, and λ∗
N

is fixed at λ∗ > 0, (i)
√

NT SN(θ) →d N(0, I∞(θ∗)), (ii) HN(θ∗) →p −I∞(θ∗)
and (iii)

√
NT (θ̂N − θ∗) →d N(0, I∞(θ∗)−1).

6. Numerical results. This section illustrates the MILE approach for estima-
tion of the autoregressive parameter ρ in the dynamic panel data model described
in Section 5. The numerical results are presented as means and mean squared errors
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(MSEs) based on 1000 Monte Carlo simulations. These results are also available
for other fixed-effects estimators: Arellano–Bond (AB), Ahn–Schmidt (AS) and
bias-corrected OLS (BCOLS) estimators.

We consider different combinations between short and large panels: N = 5, 10,
25, 100 and T = 2, 3, 5, 10, 25, 100.

Table 1 presents the initial design from which several variations are drawn.4

This design assumes that η∗
i

i.i.d.∼ N(0,4) (random effects), uit
i.i.d.∼ N(0,1) (normal

errors) and ρ∗ = 0.5 (positive autocorrelation). The value σ ∗ is fixed at one for all
designs.

TABLE 1
Performance of estimators for the autoregressive parameter ρ (random effects,

normal errors, and ρ = 0.50)

Mean MSE

T N MILE BCOLS AB AS MILE BCOLS AB AS

2 5 0.4592 0.9651 * * 0.1552 0.4602 * *
2 10 0.4859 0.9500 * * 0.0631 0.3109 * *
2 25 0.4960 0.9523 * * 0.0246 0.2394 * *
2 100 0.4974 0.9474 * * 0.0054 0.2083 * *
3 5 0.4431 0.7695 −0.0578 0.8642 0.0631 0.1607 516.8489 0.3823
3 10 0.4789 0.7903 0.9766 0.8954 0.0280 0.1165 153.1105 0.2559
3 25 0.4908 0.8008 0.5705 0.9389 0.0115 0.1045 4.7087 0.2219
3 100 0.4979 0.8068 0.5372 0.9632 0.0024 0.0975 0.0724 0.2204
5 5 0.4626 0.6469 0.1980 0.6541 0.0231 0.0538 0.2323 0.0991
5 10 0.4802 0.6657 0.2386 0.7162 0.0116 0.0422 0.2145 0.0820
5 25 0.4935 0.6702 0.3768 0.7940 0.0044 0.0347 0.0869 0.1002
5 100 0.4991 0.6799 0.4650 0.8667 0.0010 0.0336 0.0136 0.1371

10 5 0.4731 0.5505 0.0385 0.3753 0.0122 0.0158 52.4500 0.0747
10 10 0.4861 0.5660 0.3249 0.4518 0.0049 0.0107 0.0489 0.0437
10 25 0.4937 0.5717 0.3977 0.5763 0.0021 0.0074 0.0211 0.0294
10 100 0.4993 0.5736 0.4625 0.7223 0.0005 0.0060 0.0058 0.0550
25 5 0.4871 0.5128 ** ** 0.0048 0.0055 ** **
25 10 0.4930 0.5151 ** ** 0.0025 0.0025 ** **
25 25 0.4966 0.5180 ** ** 0.0010 0.0013 ** **
25 100 0.4997 0.5184 ** ** 0.0002 0.0006 ** **

100 5 0.4941 0.5014 ** ** 0.0014 0.0013 ** **
100 10 0.4978 0.5018 ** ** 0.0007 0.0007 ** **
100 25 0.4990 0.5001 ** ** 0.0003 0.0003 ** **
100 100 0.4997 0.5015 ** ** 0.0001 0.0001 ** **

(*) The estimator is not available for T = 2.
(**) Computational cost is prohibitive for large T .

4The full set of results for ρ, σ 2, and λN using different designs are available at http://www.
columbia.edu/~mm3534/.

http://www.columbia.edu/~mm3534/
http://www.columbia.edu/~mm3534/
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MILE seems to be correctly centered around 0.5. Even in a very short panel
with N = 5 and T = 2, its bias of 0.0408 is quite small. As N and/or T increases,
its mean approaches 0.5. For example, for N = 5 and T = 25, the bias is around
0.0129; for N = 25 and T = 2, the simulation mean is around 0.0040. These nu-
merical results support the theoretical finding that MILE is consistent, as long as
NT goes to infinity (regardless of the relative rate of N and T ). The BCOLS esti-
mator seems to have smaller bias than the AB and AS estimators for small N and
large T . The AB and AS estimators have large bias with small N and T , but their
performance improves with large N and small T .

MILE also seems to have smaller MSE than the other estimators. The AS es-
timator outperforms the AB estimator in terms of MSE. The BCOLS estimator
has smaller MSE than AS. The MSE of the BCOLS estimator, however, does not
decrease if N increases but T is held constant. For T ≥ 25, its performance is
comparable to that of MILE. This provides numerical support for the theoretical
finding that both MILE and BCOLS reach our large N , large T bound.

Table 2 reports results for λ∗
N = N (nonconvergent effects), normal errors and

ρ∗ = 0.5. Table 3 presents results for random effects, uit
i.i.d.∼ (χ2(1) − 1)/

√
2

(nonnormal errors) and ρ∗ = 0.5. In both cases, MILE continues to have smaller
bias and MSE than the other estimators. This result is surprising with nonnormal
errors as the AB and AS estimators could potentially dominate MILE when N is
large and T is small.

Tables 4 and 5 differ from Table 1 only in the autoregressive parameter; re-
spectively, ρ∗ = −0.5 (negative autocorrelation) and ρ∗ = 1.0 (integrated model).
Most—but not all—conclusions drawn from Table 1 hold here. MILE continues to
outperform the AB and AS estimators in terms of mean and MSE. If ρ∗ = −0.5,
MILE and BCOLS seem to perform similarly. If ρ∗ = 1.0, MILE again performs
better than BCOLS for small values of T .

7. Conclusion. A standard method to estimate parameters is the maximum
likelihood estimator (MLE). In the presence of nuisance parameters, this approach
concentrates out the likelihood by replacing these parameters with maximum like-
lihood estimators. An alternative approach entails maximizing a likelihood that
depends only on parameters of interest. This marginal likelihood approach (e.g.,
[18] and [20]) yields an estimator for the structural parameter that is often less
biased and more accurate than MLE (e.g., [11] and [24]).

If the number of nuisance parameters increases, MLE may not even be consis-
tent. This paper proposes a marginal likelihood approach to solve the incidental
parameter problem. The use of invariance suggests which marginal likelihoods are
to be maximized. We do not necessarily seek complete elimination of the inciden-
tal parameters. The goal is to find a group of transformations that preserves the
structural parameters and yields a reduction in the incidental parameter space to a
finite dimension.
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TABLE 2
Performance of estimators for the autoregressive parameter ρ (nonconvergent effects,

normal errors, and ρ = 0.50)

Mean MSE

T N MILE BCOLS AB AS MILE BCOLS AB AS

2 5 0.4770 1.0835 * * 0.0818 0.5044 * *
2 10 0.4911 1.1389 * * 0.0196 0.4442 * *
2 25 0.4989 1.1994 * * 0.0037 0.4959 * *
2 100 0.5000 1.2352 * * 0.0002 0.5410 * *
3 5 0.4773 0.8349 0.2500 0.9455 0.0346 0.1603 384.7828 0.3733
3 10 0.4908 0.9110 0.5705 0.9203 0.0087 0.1818 0.5864 0.2215
3 25 0.4981 0.9636 0.5160 0.8997 0.0013 0.2173 0.0173 0.1719
3 100 0.4992 0.9904 0.5013 0.8231 0.0001 0.2406 0.0009 0.1049
5 5 0.4727 0.6997 0.2452 0.7159 0.0165 0.0603 0.1766 0.0873
5 10 0.4918 0.7415 0.4475 0.7635 0.0043 0.0640 0.0339 0.0795
5 25 0.4991 0.7755 0.4912 0.7902 0.0007 0.0768 0.0046 0.0861
5 100 0.4997 0.7936 0.4988 0.7854 0.0000 0.0863 0.0002 0.0816

10 5 0.4789 0.5798 −0.9436 0.4278 0.0080 0.0151 1721.7952 0.0516
10 10 0.4908 0.6104 0.4005 0.5980 0.0024 0.0148 0.0197 0.0281
10 25 0.5027 0.6326 0.4806 0.7370 0.0014 0.0180 0.0022 0.0583
10 100 0.5000 0.6452 0.4988 0.7765 0.0000 0.0211 0.0001 0.0765
25 5 0.4884 0.5157 ** ** 0.0040 0.0042 ** **
25 10 0.4949 0.5330 ** ** 0.0014 0.0027 ** **
25 25 0.4995 0.5464 ** ** 0.0003 0.0024 ** **
25 100 0.4999 0.5562 ** ** 0.0000 0.0032 ** **

100 5 0.4964 0.4994 ** ** 0.0013 0.0014 ** **
100 10 0.4987 0.5038 ** ** 0.0006 0.0005 ** **
100 25 0.4994 0.5076 ** ** 0.0002 0.0002 ** **
100 100 0.5001 0.5119 ** ** 0.0000 0.0002 ** **

(*) The estimator is not available for T = 2.
(**) Computational cost is prohibitive for large T .

We illustrate this approach with four examples: a stationary autoregressive
model with fixed effects; a monotonic transformation model; an instrumental vari-
able (IV) model; and a dynamic panel data model. In the first two examples, the
invariant likelihoods are the products of marginal likelihoods and do not depend on
the incidental parameters at all. In the last two examples, the invariant likelihoods
are Wishart and depend on the incidental parameters through one-dimensional
noncentrality parameters.

For most groups of transformations, it is not possible to discard the inciden-
tal parameters completely. Because we allow invariant likelihoods to depend on
incidental parameters, we have two considerations to make. First, finite-sample
improvements may be possible using the orthogonalization approach of [15] to the
invariant likelihood (e.g., [23]). Second, we treat the incidental parameters as an
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TABLE 3
Performance of estimators for the autoregressive parameter ρ (random effects,

nonnormal errors, and ρ = 0.50)

Mean MSE

T N MILE BCOLS AB AS MILE BCOLS AB AS

2 5 0.4520 0.9797 * * 0.1430 0.5085 * *
2 10 0.5024 0.9975 * * 0.0869 0.3687 * *
2 25 0.4993 0.9665 * * 0.0414 0.2711 * *
2 100 0.5042 0.9507 * * 0.0105 0.2175 * *
3 5 0.4666 0.7910 0.3562 0.8923 0.0687 0.1811 31.5729 0.4008
3 10 0.4803 0.8056 0.4189 0.9204 0.0343 0.1373 59.3092 0.2723
3 25 0.4951 0.8054 0.3363 0.9376 0.0143 0.1104 53.3848 0.2233
3 100 0.4992 0.8091 0.5244 0.9683 0.0030 0.0999 0.0839 0.2278
5 5 0.4712 0.6629 0.2628 0.6585 0.0268 0.0647 0.1905 0.1359
5 10 0.4821 0.6704 0.3211 0.6975 0.0150 0.0456 0.1282 0.0872
5 25 0.4928 0.6778 0.3899 0.7748 0.0045 0.0380 0.0810 0.0914
5 100 0.4967 0.6798 0.4717 0.8539 0.0011 0.0339 0.0128 0.1291

10 5 0.4722 0.5602 0.0781 0.3906 0.0110 0.0175 162.8453 0.0840
10 10 0.4893 0.5663 0.3471 0.4507 0.0047 0.0105 0.0405 0.0516
10 25 0.4946 0.5721 0.4084 0.5625 0.0020 0.0077 0.0178 0.0309
10 100 0.4984 0.5745 0.4740 0.7154 0.0005 0.0061 0.0035 0.0514
25 5 0.4819 0.5113 ** ** 0.0052 0.0046 ** **
25 10 0.4890 0.5157 ** ** 0.0024 0.0026 ** **
25 25 0.4974 0.5182 ** ** 0.0010 0.0014 ** **
25 100 0.4990 0.5187 ** ** 0.0003 0.0006 ** **

100 5 0.4949 0.4997 ** ** 0.0015 0.0014 ** **
100 10 0.4972 0.5004 ** ** 0.0007 0.0007 ** **
100 25 0.5000 0.5015 ** ** 0.0003 0.0003 ** **
100 100 0.5000 0.5016 ** ** 0.0001 0.0001 ** **

(*) The estimator is not available for T = 2.
(**) Computational cost is prohibitive for large T .

arbitrary sequence of numbers. Other authors (e.g., [21]) instead consider the in-
cidental parameters as independently and identically distributed chance variables
with distribution function. It would be interesting to understand the costs and bene-
fits of treating the incidental parameters as unknown constants or chance variables.

APPENDIX OF PROOFS

Proofs of results stated in Section 3.

PROOF OF LEMMA 3.1. Part (a) follows from Theorem 5.7 of [37]. Part (b)
follows from Theorem 3.1 of [33]. Part (c) follows from Theorem 12.2.3 of [27]
and Lemma 8.14 of [37]. �
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TABLE 4
Performance of estimators for the autoregressive parameter ρ (random effects,

normal errors, and ρ = −0.50)

Mean MSE

T N MILE BCOLS AB AS MILE BCOLS AB AS

2 5 −0.5489 −0.5689 * * 0.1706 0.2478 * *
2 10 −0.5206 −0.5622 * * 0.0694 0.1020 * *
2 25 −0.5024 −0.5485 * * 0.0269 0.0374 * *
2 100 −0.5047 −0.5476 * * 0.0058 0.0104 * *
3 5 −0.4920 −0.4907 −0.0209 −0.3722 0.0801 0.0791 20.5152 0.3044
3 10 −0.5006 −0.4994 −0.4555 −0.4485 0.0326 0.0352 4.0370 0.1651
3 25 −0.5024 −0.5087 −0.4951 −0.4990 0.0117 0.0146 0.0409 0.0578
3 100 −0.5020 −0.5063 −0.4948 −0.5368 0.0031 0.0033 0.0080 0.0129
5 5 −0.4878 −0.4728 −0.5408 −0.3755 0.0339 0.0371 0.0549 0.1201
5 10 −0.4971 −0.4871 −0.5262 −0.4113 0.0156 0.0202 0.0326 0.0713
5 25 −0.5000 −0.5007 −0.5153 −0.4608 0.0069 0.0073 0.0136 0.0310
5 100 −0.4992 −0.5021 −0.5030 −0.4860 0.0017 0.0017 0.0033 0.0069

10 5 −0.4947 −0.4779 0.6536 −0.4602 0.0157 0.0181 3313.3070 0.0343
10 10 −0.4965 −0.4944 −0.5334 −0.4563 0.0083 0.0078 0.0098 0.0211
10 25 −0.4987 −0.4951 −0.5144 −0.4541 0.0031 0.0032 0.0046 0.0122
10 100 −0.4995 −0.4984 −0.5024 −0.4552 0.0008 0.0008 0.0014 0.0041
25 5 −0.4958 −0.4921 ** ** 0.0061 0.0066 ** **
25 10 −0.4986 −0.4952 ** ** 0.0033 0.0030 ** **
25 25 −0.4988 −0.4994 ** ** 0.0013 0.0012 ** **
25 100 −0.4996 −0.4998 ** ** 0.0003 0.0003 ** **

100 5 −0.4996 −0.4986 ** ** 0.0016 0.0015 ** **
100 10 −0.5002 −0.4992 ** ** 0.0008 0.0008 ** **
100 25 −0.4997 −0.4999 ** ** 0.0003 0.0003 ** **
100 100 −0.5000 −0.4993 ** ** 0.0001 0.0001 ** **

(*) The estimator is not available for T = 2.
(**) Computational cost is prohibitive for large T .

PROOF OF PROPOSITION 3.1. For part (a), we need to show that M(yi·) =
M(ỹi·) if and only if ỹi· = yi· + g̃ · 1T for some g̃. Clearly, M(yi·) is an invariant
statistic,

M(yi· + g · 1T ) = D(yi· + g · 1T ) = Dyi· + g · D1T = Dyi· = M(yi·).

Now, suppose that M(yi·) = M(ỹi·). This implies that Dzi = 0 for zi = ỹi· − yi·,
which means that zi belongs to the space orthogonal to the row space of D. Be-
cause rank(D) = T − 1, the orthogonal space has dimension one. As this space
contains the vector 1T , it must be the case that zi = g̃ · 1T for some scalar g̃.
Therefore, ỹi· = yi· + g̃ · 1T .
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TABLE 5
Performance of estimators for the autoregressive parameter ρ (random effects,

normal errors, and ρ = 1.00)

Mean MSE

T N MILE BCOLS AB AS MILE BCOLS AB AS

2 5 0.9307 1.6990 * * 0.1316 0.7595 * *
2 10 0.9766 1.7115 * * 0.0679 0.6034 * *
2 25 1.0009 1.6943 * * 0.0274 0.5166 * *
2 100 0.9958 1.7047 * * 0.0057 0.5048 * *
3 5 0.9674 1.5029 1.0935 1.3267 0.0452 0.3211 36.9311 0.1953
3 10 1.0072 1.5032 1.0299 1.3320 0.0224 0.2776 5.5735 0.1386
3 25 0.9971 1.5156 1.0120 1.3469 0.0059 0.2733 0.0313 0.1318
3 100 0.9975 1.5216 0.9996 1.3624 0.0015 0.2740 0.0068 0.1345
5 5 0.9827 1.3241 0.9478 1.1497 0.0093 0.1190 0.0313 0.0363
5 10 0.9949 1.3341 0.9838 1.1531 0.0032 0.1165 0.0089 0.0289
5 25 0.9984 1.3403 0.9919 1.1659 0.0012 0.1174 0.0030 0.0294
5 100 0.9999 1.3442 0.9986 1.1760 0.0003 0.1189 0.0007 0.0315

10 5 0.9960 1.1774 1.2028 1.0534 0.0015 0.0330 55.2326 0.0065
10 10 0.9989 1.1838 0.9892 1.0621 0.0004 0.0343 0.0007 0.0053
10 25 0.9992 1.1839 0.9960 1.0680 0.0001 0.0340 0.0002 0.0051
10 100 1.0000 1.1854 0.9991 1.0687 0.0000 0.0344 0.0001 0.0048
25 5 0.9994 1.0765 ** ** 0.0001 0.0059 ** **
25 10 1.0000 1.0767 ** ** 0.0000 0.0059 ** **
25 25 0.9998 1.0776 ** ** 0.0000 0.0060 ** **
25 100 1.0000 1.0776 ** ** 0.0000 0.0060 ** **

100 5 1.0000 1.0197 ** ** 0.0000 0.0004 ** **
100 10 0.9999 1.0198 ** ** 0.0000 0.0004 ** **
100 25 1.0000 1.0198 ** ** 0.0000 0.0004 ** **
100 100 1.0000 1.0198 ** ** 0.0000 0.0004 ** **

(*) The estimator is not available for T = 2.
(**) Computational cost is prohibitive for large T .

Part (b) follows from the fact that the group of transformations acts transitively
on ηi . Part (c) follows from the formula of the density of a normal distribution.

�

PROOF OF PROPOSITION 3.2. For part (a), let Mit be the rank of yit in
the collection yi1, . . . , yiT . Formally, we can define Mit through yit = yi(Mit ).
We shall abbreviate the notation, for example, (g(yi1), g(yi2), . . . , g(yiT )) as
g(yi·). The maximal invariant is Mi = (Mi1, . . . ,MiT ) = M(yi·). We need to
show that M(yi·) = M(ỹi·) if and only if ỹi· = g̃(yi·). Consider the case that if
t �= t̃ , then yit �= yit̃ (this set has probability measure equal to one). Clearly, Mi

is an invariant statistic. Now, suppose that M(yi·) = M(ỹi·). This implies that
Mi1 = M̃i1, . . . ,MiT = M̃iT . Therefore, yij1 < · · · < yijT

and ỹij1 < · · · < ỹijT
.
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There is a continuous, strictly increasing transformation g̃ such that ỹit = g̃(yit ),
t = 1, . . . , T .

Part (b) follows from the fact that the group of transformations acts transitively
on ηi .

For part (c), we note that because ηi is an increasing transformation, Mit is
also the rank in the collection y∗

i1, . . . , y
∗
iT , where y∗

it = x′
itβ + uit . We note that

y∗
i1, . . . , y

∗
iT are jointly independent with marginal densities

fit (zit ;β) = 1√
2π

exp
{
−1

2
(zit − x′

itβ)2
}
.

Now, we note that

P(Mi1 = mi1, . . . ,MiT = miT )

=
∫

· · ·
∫

fi1(zi1;β) · · ·fiT (ziT ;β)dzi1 · · ·dziT ,

integrated over the set in which zit is the mit th smallest element of zi1, . . . , ziT .
We follow [27] and transform wmit

= zit to obtain

P(Mi1 = mi1, . . . ,MiT = miT ) =
∫
A

T∏
t=1

fit (wmit
;β)dw

=
∫
A

T∏
t=1

fit (wmit
;β)

f (wmit
)

f (wmit
) dw,

where f (wt) is the density of a N(0,1) distribution and A = {w ∈ R
T ; w1 < · · · <

wT }. Simple algebraic manipulations show that

P(Mi = mi)

=
∫
A

exp

{
−1

2

T∑
t=1

(wmit
− x′

itβ)2 + 1

2

T∑
t=1

w2
mit

}
T∏

t=1

f (wmit
) dw

=
∫
A

exp

{
T∑

t=1

wmit
x′
itβ − 1

2

T∑
t=1

(x′
itβ)2

}
T∏

t=1

f (wmit
) dw

= 1

T !
∫
A

exp

{(
T∑

t=1

wmit
x′
it

)
β − 1

2
β ′
(

T∑
t=1

xitx
′
it

)
β

}
T !

T∏
t=1

f (wmit
) dw,

where T !∏T
t=1 f (wt) for w1 < · · · < wT is the p.d.f. of V(1), . . . , V(T ). �

Proofs of results stated in Section 4. For convenience, we omit the subscript
in λN .
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PROOF OF PROPOSITION 4.1. For part (a), we need to show that M(R1,R2) =
M(R̃1, R̃2), if and only if (R̃1, R̃2) = (g̃R1,R2) for some g̃ ∈ O(K). Clearly,
M(yi·) is an invariant statistic,

M(gR1,R2) = (R′
1g

′gR1,R2) = (R′
1R1,R2) = M(R1,R2).

Now, suppose that M(R1,R2) = M(R̃1, R̃2). This is equivalent to R′
1R1 = R̃′

1R̃1

and R2 = R̃2. But this implies that R̃1 = g̃R1 (and, of course, R2 = R̃2).
Part (b) follows analogously. �

PROOF OF THEOREM 4.1. Following [5], the density function of Y ′NZY at q

is

f (q) = C1,K · exp
(
−Nλ

2
a′�−1a

)
|�|−K/2|q|(K−3)/2 exp

(
−1

2
tr(�−1q)

)
× (√Nλ · a′�−1q�−1a

)−(K−2)/2
I(K−2)/2

(√
Nλ · a′�−1q�−1a

)
.

The density function of WN is then

g(w;β,λN) = f (q(w)) · |q ′(w)| = f (q(w))N2·3/2,

which simplifies to (4.1). �

PROOF OF THEOREM 4.2. The log-likelihood function divided by N is

QN(θ) = −1

2
λ · a′�−1a + 1

N
ln
(
Z

−(K−2)/2
N I(K−2)/2

(
N

2
ZN

))
− K

2N
ln |�| + K − 3

2N
ln |WN | − 1

2
tr(�−1WN)(A.1)

+ 1

N
ln
(
2(K−2)/2N(K+2)/2C1,K

)
,

where ZN = 2
√

λ · a′�−1WN�−1a.
All terms in the last two lines converge under both SIV and MWIV asymptotics

(the only exception is ln |WN | under SIV asymptotics and under MWIV asymptot-
ics with α = 0). For example, the last term is

1

N
ln
(
2(K−2)/2N(K+2)/2C1,K

)= 1

N
ln
(

N(K+2)/2

�((K − 1)/2)

)
+ o(1)

under both SIV and MWIV asymptotics. Under SIV asymptotics,

1

N
ln
(

N(K+2)/2

�((K − 1)/2)

)
→ 0.

Under MWIV asymptotics, we can use Stirling’s formula to obtain

1

N
ln
(

N(K+2)/2

�((K − 1)/2)

)
→ α

2

{
1 − ln

(
α

2

)}
.
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However, the second and third lines in (A.1) do not depend on θ . As a result,
these terms can be ignored in finding the limiting behavior of θ̂N . Hence, define
the objective function

Q̂N(θ) = −1

2
λ · a′�−1a + 1

N
ln
(
Z

−(K−2)/2
N I(K−2)/2

(
N

2
ZN

))
.

The quantity ZN depends on WN . Following [32], Section 10.2,

E(WN) = K · � + M
′
M

N
= K · � + π ′Z′Zπ · a∗a∗′

N
= K

N
� + λ∗

N · a∗a∗′.

From here, we split the result into SIV or MWIV with α = 0 asymptotics, and
MWIV with α > 0.

For part (a), WN = W ∗
N + op(1), where

W ∗
N ≡ λ∗

N · a∗a∗′.

Hence, ZN = Z∗
N + op(1), where

Z∗
N ≡ 2

√
λ · λ∗

N(a′�−1a∗)2.

The same holds for nonnormal errors, as long as V (WN) → 0.
Because K is fixed and N → ∞, Q̂N(θ) = QN(θ)+op(1) (uniformly in θ ∈ �

compact), where

QN(θ) = −1

2
λ · a′�−1a + λ1/2λ

∗1/2
N a∗′�−1a.

The first-order condition (FOC) for QN(θ) is given by

∂QN(θ)

∂β
= −λ · a′�−1e1 + λ1/2λ

∗1/2
N a∗′�−1e1,

∂QN(θ)

∂λ
= −1

2
a′�−1a + 1

2
λ−1/2λ

∗1/2
N a∗′�−1a.

The value θ∗ = (β∗, λ∗
N) minimizes QN(θ), setting the FOC to zero.

For parts (a)(i), (ii), QN(θ) →p Q(θ), where

Q(θ) = −1

2
λ · a′�−1a + λ1/2λ∗1/2a∗′�−1a.

Since θ ∈ � compact and Q(θ) is continuous, θ̂N →p θ .
For part (a)(iii), we can define τ(θ, θ∗

N) ≡ QN(θ) which is continuous. For each
point θ∗

N , the function τ(θ, θ∗
N) reaches the maximum at θ = θ∗

N . Because θ ∈ �

compact and τ(·, θ∗
N) is continuous,

sup
θ∈�;‖θ−θ∗

N‖≥ε

QN(θ) − QN(θ∗
N) = max

θ∈�;‖θ−θ∗
N‖≥ε

QN(θ) − QN(θ∗
N) ≡ δ(θ∗

N) < 0.
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Because 0 < lim infλ∗
N and lim supλ∗

N < ∞, there exists a compact set �∗ such
that 0 /∈ �∗ in which θ∗

N ∈ �∗ eventually. Using continuity of δ(·),
sup

θ∗
N∈�∗

δ(θ∗
N) = max

θ∗
N∈�∗ δ(θ∗

N) = δ < 0

for large enough N . This implies θ∗
N is an identifiably unique sequence of maxi-

mizers of QN(θ),

lim sup sup
θ∈�;‖θ−θ∗

N‖≥ε

QN(θ) − QN(θ∗
N) < 0.

The result now follows from [36], Lemma 3.1.
For part (b), WN = W ∗

N + op(1) under SIV and MWIV asymptotics, where

W ∗
N = α� + λ∗

N · a∗a∗′.
Hence, ZN = Z∗

N + op(1), where Z∗
N is defined as

Z∗
N ≡ 2

√
λ · a′�−1(α� + λ∗

N · a∗a∗′)�−1a.

The same holds for nonnormal errors, as long as V (WN) → 0. For K/N → α > 0,
we use [1] to show that Q̂N(θ) = QN(θ) + op(1) (uniformly in θ ∈ � compact),
where

QN(θ) = −1

2
λ · a′�−1a + α

2

(
1 + Z∗2

N

α2

)1/2

− α

2
ln
(

1 +
(

1 + Z∗2
N

α2

)1/2)
.

The first-order condition (FOC) for QN(θ) is given by

∂QN(θ)

∂β
= −λ · a′�−1e1 + 2λ

α

α · a′�−1e1 + λ∗
N · a∗′�−1a · a∗′�−1e1

1 + (1 + Z∗2
N /α2)1/2

,

∂QN(θ)

∂λ
= −1

2
a′�−1a + 1

α

α · a′�−1a + λ∗
N · (a∗′�−1a)2

1 + (1 + Z∗2
N /α2)1/2

.

The value θ∗
N = (β∗, λ∗

N) minimizes QN(θ), setting the FOC to zero.
For parts (b)(i), (ii), QN(θ) →p Q(θ) given by

Q(θ) = −1

2
λ · a′�−1a + α

2

(
1 + Z∗2

N

α2

)1/2

− α

2
ln
(

1 +
(

1 + Z∗2
N

α2

)1/2)
,

where Z∗ ≡ 2
√

λ · a′�−1(α� + λ∗ · a∗a∗′)�−1a. Since θ ∈ � compact and Q(θ)

is continuous, θ̂N →p θ .
Part (b)(iii) follows analogously to part (a)(iii). �

PROOF OF PROPOSITION 4.2. It follows from [12] that the integrated likeli-
hood [over Haar measures for O(k)] is maximized over a by

max
a

a′�−1/2Y ′NZY�−1/2a

a′a
.
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This optimal a is the eigenvector corresponding to the largest eigenvalue of
�−1/2Y ′NZY�−1/2. The integrated likelihood coincides with the likelihood of the
maximal invariant and a is a transformation of β . As a result, MILE is equivalent
to LIMLK. �

PROOF OF THEOREM 4.3. For part (a), when K is fixed or K/N → 0,

Q̂N(θ) = −1

2
λ · a′�−1a + λ1/2(a′�−1WN�−1a)1/2 + op(N−1).(A.2)

All results below hold up to op(N−1/2) order.
The components of the score function SN(θ) are

∂QN(θ)

∂β
= −λ · a′�−1e1 + λ1/2 a′�−1WN�−1e1

(a′�−1WN�−1a)1/2 ,

∂QN(θ)

∂λ
= −a′�−1a

2
+ (a′�−1WN�−1a)1/2

2λ1/2 .

The components of the Hessian matrix HN(θ) ≡ H(WN ; θ) are

∂2QN(θ)

∂β2 = −λ · e′
1�

−1e1 + λ1/2 e′
1�

−1WN�−1e1

(a′�−1WN�−1a)1/2

− λ1/2 (a′�−1WN�−1e1)
2

(a′�−1WN�−1a)3/2 ,

∂2QN(θ)

∂β ∂λ
= −a′�−1e1 + a′�−1WN�−1e1

2λ1/2(a′�−1WN�−1a)1/2 ,

∂2QN(θ)

∂λ2 = −1

4

(a′�−1WN�−1e1)
1/2

λ3/2 .

Because WN→pW ∗, HN(θ)→p−I0(θ
∗). Furthermore, HN(θ)→pH(W ∗

N ; θ)

uniformly on θ = (β,λ) for a compact set containing θ∗, as long as λ > 0. This
completes part (a)(ii). To show part (a)(i), we write

√
NSN(θ∗) ≡ √

NS(WN ; θ∗) ≡ √
N [S(WN ; θ∗) − S(W ∗; θ∗)].

Using vec(WN) = DT vech(WN), where DT is the duplication matrix (e.g., [30]),
we write

√
NSN(θ∗) ≡ √

N [L(vech(WN); θ∗) − L(vech(W ∗); θ∗)],
where L : R3 → R2. Now,

√
N(vech(WN) − vech(W ∗)) converges to a normal

distribution by a standard CLT. As a result, using the delta method and the infor-
mation identity,

√
NSN(θ∗) converges to a normal distribution with zero mean and

variance I0(θ
∗). Part (iii) follows from [33].
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For part (b), when K/N → α > 0,

Q̂N(θ) = −1

2
λ · a′�−1a + α

2

(
1 + Z2

N

α2

)1/2

− α

2
ln
(

1 +
(

1 + Z2
N

α2

)1/2)
(A.3)

up to an op(N−1) term. All results below hold up to op(N−1/2) order.
The components of the score function SN(θ) are

∂QN(θ)

∂β
= −λ · a′�−1e1 + 2λ

α

a′�−1WN�−1e1

1 + (1 + Z2
N/α2)1/2

,

∂QN(θ)

∂λ
= −a′�−1a

2
+ 1

α

a′�−1WN�−1a

1 + (1 + Z2
N/α2)1/2

.

The components of the Hessian matrix HN(θ) are

∂2QN(θ)

∂β2 = −λ · e′
1�

−1e1 + 2λ

α

e′
1�

−1WN�−1e1

1 + (1 + Z2
N/α2)1/2

− 8λ2

α3(1 + Z2
N/α2)1/2

(a′�−1WN�−1e1)
2

(1 + (1 + Z2
N/α2)1/2)2

,

∂2QN(θ)

∂β ∂λ
= −a′�−1e1 + 2

α

a′�−1WN�−1e1

1 + (1 + Z2
N/α2)1/2

− 4λ · a′�−1WN�−1e1

α3(1 + Z2
N/α2)1/2

a′�−1WN�−1a

(1 + (1 + Z2
N/α2)1/2)2

,

∂2QN(θ)

∂λ2 = −2

α3(1 + Z2
N/α2)1/2

(a′�−1WN�−1a)2

(1 + (1 + Z2
N/α2)1/2)2

.

Parts (b)(i)–(iii) follow analogously to parts (a)(i)–(iii). �

PROOF OF COROLLARY 4.1. The determinant of Iα(θ∗) simplifies to

|Iα(θ∗)| = λ∗2(a∗′�−1a∗)2

α + 2λ∗ · a∗′�−1a∗
a∗′�−1a∗ · e′

1�
−1e1 − (a∗′�−1e1)

2

2(α + λ∗ · a∗′�−1a∗)
.

Hence, the entry (1,1) of the inverse of Iα(θ∗) equals

(Iα(θ∗)−1)11 = (a∗′�−1a∗)2

2(α + 2λ∗a∗′�−1a∗)
|Iα(θ∗)|−1

= α + λ∗ · a∗′�−1a∗

λ∗2 · a∗′�−1a∗
a∗′�−1a∗

a∗′�−1a∗ · e′
1�

−1e′
1 − (a∗′�−1e1)2

= σ 2
u

λ∗2

{
λ∗ + α

a∗′�−1a∗
}
.
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This expression coincides with the asymptotic variance of LIMLK as described
in (4.7) of [10]:

(Iα(θ∗)−1)11 = σ 2
u

λ∗2

{
λ∗ + α · e′

2�e2 − α
(b′�e2)

2

b′�b

}
. �

PROOF OF THEOREM 4.4. This result follows from standard limit of exper-
iment arguments (see [14]). Part (a) follows from expansions based on (A.2).
Part (b) follows from expansions based on (A.3). �

Proofs of results stated in Section 5. For convenience, we omit the subscript
in λN . For the next proofs, define the following four quantities:

c1 = tr(DB∗B∗′D′) + λ∗
N1′

T B∗′D′DB∗1T ,

c2 = 1′
T DB∗B∗′D′1T + λ∗

N(1′
T DB∗1T )2,

c3 = 1′
T F1T + (ρ∗ − ρ)1′

T F ′F1T + λ∗1′
T DB∗1T · 1′

T F1T ,

c4 = (ρ∗ − ρ) tr(F ′F) + λ∗{1′
T F1T + (ρ∗ − ρ)1′

T F ′F1T }.
PROOF OF PROPOSITION 5.1. We omit the proof here as it has been general-

ized by [13]. �

PROOF OF THEOREM 5.1. The density function of M at q is

f (q) = C2,N · exp
(
− η′η

2σ 2 T

)
(σ 2)−NT /2|q|(N−T −1)/2 exp

(
− 1

2σ 2 tr(DqD′)
)

×
(√

η′η
(σ 2)2 1′

T DqD′1T

)−(N−2)/2

I(N−2)/2

(√
η′η

(σ 2)2 1′
T DqD′1T

)
.

The density function of WN is then

g(w;β,λN) = f (q(w)) · |q ′(w)| = f (q(w))NT (T +1)/2,

which simplifies to (5.3). �

PROOF OF THEOREM 5.2. The log-likelihood divided by NT is

QN(θ) = −1

2
lnσ 2 − 1

2σ 2

tr(DWND′)
T

− 1

2
λ

+ 1

NT
ln
(
Z

−(N−2)/2
N I(N−2)/2

(
N

2
ZN

))
(A.4)

+ N − T − 1

2NT
ln |WN | + 1

NT
ln
(
2(N−2)/2NNT /2−(N−2)/2C2,N

)
,

where ZN = 2

√
λ

1′
T DWND′1T

σ 2 .
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The third line is well-behaved when N → ∞ with T fixed. For example, using
Stirling’s formula,

1

NT
ln
(
2(N−2)/2NNT /2−(N−2)/2C2,N

)
= 1

T
ln
(

NNT /2−(N−2)/221/2∏T −1
t=1 (N − t)(N−t−1)/(2N) exp(−(N − t)/(2N))

)
+ o(1)

= ln(2)

2T
− 1

T
ln

(
T −1∏
t=1

(
1 − t

N

)1/2

exp
(
−1

2

))
+ o(1)

= ln(2)

2T
+ T − 1

2T
+ o(1).

In addition, WN = W ∗
N + op(1), where

W ∗
N ≡ σ ∗2B∗(IT + λ∗

N1T 1′
T )B∗′ = N · � + M

′
M

N
= E(WN).

Now,

|W ∗
N | = |B∗| · |σ ∗2(IT + λ∗

N1T 1′
T )| · |B∗′| = (σ ∗2)T |IT + λ∗

N1T 1′
T |

= (σ ∗2)T (1 + λ∗
NT ).

As a result, ln(WN) = T ln(σ ∗2) + ln(1 + λ∗
NT ) + op(1).

It is unknown whether the third line in (A.4) is well-behaved with T → ∞.
However, since it does not depend on θ , it can be ignored when finding the limiting
behavior of θ̂N . Hence, define the objective function

Q̂N(θ) = −1

2
lnσ 2 − 1

2σ 2

tr(DWND′)
T

− 1

2
λ

+ 1

NT
ln
(
Z

−(N−2)/2
N I(N−2)/2

(
N

2
ZN

))
.

From here, we split the result into fixed T and large T asymptotics.
For part (a), in which N → ∞ with T fixed, ZN = Z∗

N + op(1), where

Z∗
N ≡ 2

√
λ

1′
T DW ∗

ND′1T

σ 2 .

We use [1] to show that Q̂N(θ) = QN(θ) + op(1), where

QN(θ) = −1

2
lnσ 2 − 1

2σ 2

tr(DW ∗
ND′)

T
− 1

2
λ + 1

2T
(1 + Z∗2

N )1/2

− 1

2T
ln
(
1 + (1 + Z∗2

N )1/2).
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The first-order condition (FOC) for QN(θ) is given by

∂QN(θ)

∂ρ
= σ ∗2

σ 2

(ρ∗ − ρ) tr(FF ′) + λ∗{1′
T F1T + (ρ∗ − ρ)1′

T F ′F1T }
T

− 2σ ∗2

σ 2

λ

1 + (1 + Z∗2
N )1/2

× 1′
T F1T + (ρ∗ − ρ)1′

T F ′F1T + λ∗(T + (ρ∗ − ρ)1′
T F1T )1′

T F1T

T
,

∂QN(θ)

∂σ 2 = − 1

2σ 2 + σ ∗2

2(σ 2)2

c1

T
− σ ∗2

(σ 2)2

λ∗
N

1 + (1 + Z∗2
N )1/2

c2

T
,

∂QN(θ)

∂λ
= −1

2
+ σ ∗2

σ 2

1

1 + (1 + Z∗2
N )1/2

c2

T
.

The value θ∗ = (ρ∗, σ ∗2, λ∗
N) minimizes QN(θ), setting the FOC to zero.

For parts (a)(i), (ii), QN(θ) →p Q(θ) (uniformly in � compact) given by

Q(θ) = −1

2
lnσ 2 − 1

2σ 2

tr(DW ∗D′)
T

− 1

2
λ + 1

2T
(1 + Z∗2)1/2

− 1

2T
ln
(
1 + (1 + Z∗2)1/2),

where W ∗ and Z∗ are defined as

W ∗ = σ ∗2B∗(IT + λ∗1T 1′
T )B∗′ and Z∗ = 2

√
λ

1′
T DW ∗D′1T

σ 2 .(A.5)

Since θ ∈ � compact and Q(θ) is continuous, θ̂N →p θ .
Part (a)(iii) follows analogously to Theorem 4.2(a)(iii).
For part (b), the dimension of WN changes as T → ∞. Yet, for |ρ∗| < 1,

tr(DWND′)
T

= lim
T →∞

tr(DW ∗
ND′)

T
+ op(1)

and

1′
T DWND′1T

T 2 = lim
T →∞

1′
T DW ∗

ND′1T

T 2 + op(1).

This approximation does not depend on how N grows with T . We use [1] to obtain
Q̂N(θ) = QN(θ) + op(1), where

QN(θ) = −1

2
lnσ 2 − 1

2σ 2 lim
T →∞

tr(DW ∗
ND′)

T
− 1

2
λ + 1

2
lim

T →∞
Z∗

N

T
.
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The first-order condition (FOC) for QN(θ) is given by

∂QN(θ)

∂ρ
= lim

T →∞
σ ∗2

σ 2

(ρ∗ − ρ) tr(FF ′) + λ∗{1′
T F1T + (ρ∗ − ρ)1′

T F ′F1T }
T

− lim
T →∞

(σ ∗2)1/2λ∗1/2λ1/2

(σ 2)1/2

1′
T F1T

T
,

∂QN(θ)

∂σ 2 = − 1

2σ 2 + lim
T →∞

σ ∗2

2(σ 2)2

c1

T
− lim

T →∞
(σ ∗2)1/2λ1/2λ∗1/2

2(σ 2)3/2

1′
T DB∗1T

T
,

∂QN(θ)

∂λ
= −1

2
+ lim

T →∞
(σ ∗2)1/2λ∗1/2

2(σ 2)1/2λ1/2

1′
T DB∗1T

T
.

The value θ∗ = (ρ∗, σ ∗2, λ∗
N) minimizes QN(θ), setting the FOC to zero.

For parts (b)(i), (ii), QN(θ) = Q(θ) + op(1) (uniformly in � compact), given
by

Q(θ) = −1

2
lnσ 2 − 1

2σ 2 lim
T →∞

tr(DW ∗D′)
T

− 1

2
λ + 1

2
lim

T →∞
Z∗

T
,

where W ∗ and Z∗ are defined in (A.5). Since θ ∈ � compact and Q(θ) is contin-
uous, θ̂N →p θ .

Part (b)(iii) follows analogously to Theorem 4.2(a)(iii). �

PROOF OF THEOREM 5.3. First, we prove part (a). The objective function is

Q̂N(θ) = − lnσ 2

2
− tr(DWND′)

2σ 2T
− λ

2
+ (1 + Z2

N)1/2

2T
(A.6)

− ln(1 + (1 + Z2
N)1/2)

2T

up to an op(N−1) term. All results below hold up to op(N−1/2) order.
The components of the score function SN(θ) are

∂QN(θ)

∂ρ
= 1

σ 2

tr(JT WND′)
T

− 2λ

1 + (1 + Z2
N)1/2

1′
T JT WND′1T

T
,

∂QN(θ)

∂σ 2 = − 1

2σ 2 + 1

2(σ 2)2

tr(DWND′)
T

− 1

(σ 2)2

λ

1 + (1 + Z2
N)1/2

1′
T DWND′1T

T
,

∂QN(θ)

∂λ
= −1

2
+ 1

σ 2

1

1 + (1 + Z2
N)1/2

1′
T DWND′1T

T
.
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The Hessian matrix HN(θ) →p −IT (θ), whose components are

∂2QN(θ)

∂ρ2 = σ ∗2

σ 2

2λ

1 + (1 + Z∗2
N )1/2

1′
T F ′F1T + λ(1′

T F1T )2

T

− σ ∗2

σ 2

tr(F ′F) + λ∗1′
T F ′F1T

T

−
(

σ ∗2

σ 2

)2 8λ2

(1 + (1 + Z∗2
N )1/2)2

1

(1 + Z∗2
N )1/2

(c3)
2

T
,

∂2
NQ(θ)

∂ρ ∂σ 2 = − σ ∗2

(σ 2)2

c4

T
+ σ ∗2

(σ 2)2

2λ

1 + (1 + Z∗2
N )1/2

c3

T

×
{

1 − σ ∗2

σ 2

2λc2

1 + (1 + Z∗2
N )1/2

1

(1 + Z∗2
N )1/2

}
,

∂2
NQ(θ)

∂ρ ∂λ
= −σ ∗2

σ 2

2

1 + (1 + Z∗2
N )1/2

c3

T

×
{

1 − σ ∗2

σ 2

2λc2

1 + (1 + Z∗2
N )1/2

1

(1 + Z∗2
N )1/2

}
,

∂2
NQ(θ)

∂(σ 2)2 = −(σ ∗2)2

(σ 2)4

2λ2

(1 + (1 + Z∗2
N )1/2)2

1

(1 + Z∗2
N )1/2

(c2)
2

T

+ 1

2(σ 2)2 − σ ∗2

(σ 2)3

c1

T
+ σ ∗2

(σ 2)3

2λ

1 + (1 + Z∗2
N )1/2

c2

T
,

∂2
NQ(θ)

∂σ 2 ∂λ
= − σ ∗2

(σ 2)2

1

1+(1+Z∗2
N )1/2

c2

T

{
1−σ ∗2

σ 2

2λc2

1+(1+Z∗2
N )1/2

1

(1+Z∗2
N )1/2

}
,

∂2
NQ(θ)

∂λ2 = −
(

σ ∗2

σ 2

)2 2

(1 + (1 + Z∗2
N )1/2)2

1

(1 + Z∗2
N )1/2

(c2)
2

T
.

This convergence is uniform on θ = (β,λ) for a compact set containing θ∗, as long
as λ > 0. This completes part (a)(ii). To show part (a)(i), we write

√
NT SN(θ∗) ≡ √

NT S(WN ; θ∗) ≡ √
NT [S(WN ; θ∗) − S(W ∗; θ∗)].

Using vec(WN) = DT vech(WN), where DT is the duplication matrix (e.g., [30]),
we write

√
NT SN(θ∗) ≡ √

NT [L(vech(WN); θ∗) − L(vech(W ∗); θ∗)],
where L : RT (T +1)/2 → R3. Now,

√
NT (vech(WN) − vech(W ∗)) converges to a

normal distribution by a standard CLT. As a result, using the delta method and the
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information identity,
√

NT SN(θ∗) converges to a normal distribution with zero
mean and variance IT (θ∗). Part (iii) follows from [33].

Part (b) follows from the asymptotic normality of the score (whose variance is
given by the reciprocal of the inverse of the limit of the Hessian matrix). As the
remainder terms from expansions based on (A.6) are asymptotically negligible,
(5.4) holds true. �

PROOF OF COROLLARY 5.1. As a preliminary result, we need to find the
limits of T −1 tr(FF ′), T −11′

T F1T and T −11′
T F ′F1T , as T → ∞. For the first

term,

1

T
tr(FF ′) = 1

T

T −2∑
j=0

j∑
i=0

ρ∗2i = T − 1

T

T −1∑
i=0

ρ∗2i − 1

T

T −1∑
i=0

iρ∗2i → 1

1 − ρ∗2 ,

because
∑T −1

i=0 i(ρ∗2)i is a convergent series. This is true because a sufficient con-
dition for a series

∑T
i=0 ai to converge is that lim T

√|aT | < 1 as T → ∞. Tak-

ing ai = i(ρ∗2)i , lim T
√|aT | = lim T

√
|T (ρ∗2)T | = ρ∗2 lim T

√
T = ρ∗2 < 1. Analo-

gously,

1

T
1′
T F1T = 1

T

T −2∑
j=0

j∑
i=0

ρ∗i = T − 1

T

T −1∑
i=0

ρ∗i − 1

T

T −1∑
i=0

iρ∗i → 1

1 − ρ∗ ,

because
∑T −1

i=0 iρ∗i also converges. Finally, by the Cauchy–Schwarz inequality,(
1

T
1′
T F1T

)2

≤ 1

T
1′
T F ′F1T = 1

T

T −2∑
j=0

( j∑
i=0

ρ∗i

)2

≤ T − 1

T

(
1

1 − ρ∗
)2

.

Taking limits, we obtain

1

(1 − ρ∗)2 ≤ lim inf
1

T
1′
T F ′F1T ≤ lim sup

1

T
1′
T F ′F1T ≤ 1

(1 − ρ∗)2 .

Hence, the limit of T −11′
T F ′F1T exists and equals (1 − ρ∗)−2.

Therefore, the limiting information matrix I∞(θ∗) simplifies to

I∞(θ∗) =

⎡⎢⎢⎢⎢⎢⎢⎣

1

1 − ρ∗2 + λ∗

(1 − ρ∗)2

λ∗

2σ ∗2(1 − ρ∗)
1

2(1 − ρ∗)
λ∗

2σ ∗2(1 − ρ∗)
2 + λ∗

4(σ ∗2)2

1

4σ ∗2

1

2(1 − ρ∗)
1

4σ ∗2

1

4λ∗

⎤⎥⎥⎥⎥⎥⎥⎦ .

The entry (1,1) of the inverse of I∞(θ∗) is

(I∞(θ∗)−1)11 = 1 − ρ∗2. �
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PROOF OF THEOREM 5.4. When T → ∞, the objective function is

Q̂N(θ) = −1

2
lnσ 2 − 1

2σ 2

tr(DWND′)
T

− 1

2
λ − 1

2T
ZN

up to an op(N−1) term. All results below hold up to op(N−1/2) order.
The components of the score function SN(θ) are

∂QN(θ)

∂ρ
= 1

σ 2

tr(JT WND′)
T

− λ1/2

(σ 2)1/2

1′
T JT WND′1T

T (1′
T DWND′1T )1/2 ,

∂QN(θ)

∂σ 2 = − 1

2σ 2 + 1

2(σ 2)2

tr(DWND′)
T

− λ1/2

2(σ 2)3/2

(1′
T DWND′1T )1/2

T
,

∂QN(θ)

∂λ
= −1

2
+ 1

2(σ 2)1/2λ1/2

(1′
T DWND′1T )1/2

T
.

If |ρ∗| is bounded away from one, as T → ∞,

tr(JT WND′)
T

→p lim
tr(JT W ∗

ND′)
T

,

1′
T JT WND′1T

T 2 →p lim
1′
T JT W ∗

ND′1T

T 2 ,

tr(DWND′)
T

→p lim
tr(DW ∗

ND′)
T

and
1′
T DWND′1T

T 2 →p lim
1′
T DW ∗

ND′1T

T 2 .

As a result, the Hessian matrix −HN(θ) →p I∞(θ), whose components are limits
of

−∂2QN(θ)

∂ρ2 = σ ∗2

σ 2

tr(F ′F) + λ∗1′
T F ′F1T

T
,

−∂2QN(θ)

∂ρ ∂σ 2 = σ ∗2

(σ 2)2

c4

T
− λ1/2λ∗1/2(σ ∗2)1/2

2(σ 2)3/2

1′
T F1T

T
,

−∂2QN(θ)

∂ρ ∂λ
= (σ ∗2)1/2λ∗1/2

2(σ 2)1/2λ3/2

1′
T F1T

T
,

−∂2QN(θ)

∂(σ 2)2 = σ ∗2

(σ 2)3

c1

T
− 3

4

(σ ∗2)1/2λ1/2λ∗1/2

(σ 2)5/2

1′
T DB∗1T

T
− 1

2(σ 2)2 ,

−∂2QN(θ)

∂σ 2 ∂λ
= (σ ∗2)1/2λ∗1/2

4(σ 2)3/2λ1/2

1′
T DB∗1T

T
and

−∂2QN(θ)

∂λ2 = (σ ∗2)1/2λ∗1/2

4(σ 2)1/2λ3/2

1′
T DB∗1T

T
.
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This convergence is uniform on θ = (β,λ) for a compact set containing θ∗, as long
as |ρ∗| is bounded away from one. This completes part (ii). To show part (i), define

WN =
( tr(JT WND∗′)

T

1′
T JT WND∗′1T

T 2

tr(D∗W ′
ND∗′)

T

1′
T D∗W ′

ND∗′1T

T 2

)′
and

W∗
N =

( tr(JT W ∗
ND∗′)

T

1′
T JT W ∗

ND∗′1T

T 2

tr(D∗W ∗
ND∗′)

T

1′
T D∗W ∗

ND∗′1T

T 2

)′
and write

√
NT SN(θ∗) ≡ √

NT [L(WN ; θ∗) − L(W∗
N ; θ∗)],

where L : R4 → R3. Now,
√

NT (WN − W∗
N) converges to a normal distribution

by a standard CLT and the Cramér–Wold device. Using the delta method and the
information identity,

√
NT SN(θ∗) converges to a normal distribution with zero

mean and variance I∞(θ∗), as long as N ≥ T . Part (iii) follows from [33]. �
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