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1 Introduction

The positive analysis of conflict and its potential sources has attracted the attention of

game theorists for decades, in an increasingly fertile interaction with international relations

scholars.1 Yet the normative analysis about which institutions or mechanisms we should

use to reduce the possibility of conflict has not benefited from many interactions across

the two disciplines so far. In particular, the powerful tools of mechanism design developed

in economic theory have not yet been extensively applied to conflict resolution or to the

minimization of the probability of future wars.2 By studying optimal mechanisms, we can

draw important lessons about which institution designers should consider most effective

in different situations, and this seems eminently relevant if we want to think of flexible

institutions to help for the reduction or elimination of costly conflicts. Our interest lies

more particularly with mediation. This institution, under the conditions set up in this

paper, is by construction one of the optimal mechanisms. Further, mediation has played an

increasingly important role in international crisis resolution. According to the International

Crisis Behavior (ICB) project, the most comprehensive empirical effort to date, 30% of

international crises for the entire period 1918–2001 were mediated, and the fraction rises

to 46% for the period 1990–2001 (see Wilkenfeld et al., 2005).

In this paper, we select one of the most studied sources of conflict, namely the pres-

ence of asymmetric information, and we examine what institutional mechanisms are most

effective in minimizing the probability of war.3 In particular, when the source of potential

conflicts is information asymmetries, it is natural to assume that agents could benefit by

communicating. So, we first investigate when and how unmediated cheap talk between the

1See Jackson and Morelli (2009) for an updated survey of such a positive analysis.
2As examples of the discussion in international relations on the importance of institutional design for

conflict or international cooperation, see e.g. Koremenos et al (2001). For a discussion on the lacking
applications of mechanism design to conflict, see e.g. Fey and Ramsay (2009).

3Blainey (1988) famously argued that wars begin when states disagree about their relative power and
end when they agree again (see also, Brito and Intriligator, 1985, and Fearon, 1995). Wars may arise
because of asymmetric information about military strength, but also about the value of outside options or
about the contestants’ political resolve, i.e. about the capability of the leaders and the peoples to sustain
war. For example, it is known that Saddam Hussein grossly under-estimated the US administration political
resolve, when invading Kuwait in 1990.
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disputants can reduce the ex ante probability of war, relative to the benchmark without

communication.4 We then turn to the main topic of this paper, mediation: When, and

how, is it the case that communication through a mediator can strictly improve the ex ante

probability of peace with respect to unmediated communication?5 We conclude by evalu-

ating the benefits of enforcement power in mediation. That is, we ask: How do arbitration

and mediation differ in their capabilities to prevent conflict?

We assume that the mediator has no private information and is unbiased.6 Further,

the mediator is assumed fully committed to minimize the probability of war. Hence, our

mediator must be willing to commit to deadlines and to break off talks when they come to

a standstill, instead of seeking an agreement in all circumstances (see Watkins, 1998). Such

commitments, in fact, facilitate information disclosure by the contestants, and ultimately

improve the chances of peaceful conflict resolution.7 Finally, we study mediators who

have no independent budget for transfers or subsidies, and cannot impose peace to the

contestants. To be sure, third-party states that mediate conflict, such as the United States,

are neither unbiased nor powerless, but single states account for less than a third of the

mediators in mediated conflicts (Wilkenfeld, 2005), so that we view our assumption not only

as a useful theoretical benchmark, but also as a reasonable approximation for numerous

instances of mediated crises.

Unlike most of the mechanism design literature, throughout most of the paper, we as-

sume that the mediator’s proposals must be self-enforcing.8 Indeed, countries are sovereign,

4On the great relevance of allowing for pre-play communication in situations where bargaining break-
down is due to asymmetric information, see e.g. Baliga and Sjöström (2004).

5Our notion of equilibrium, with and without a mediator, is related to the concepts introduced in the
seminal contributions by Forges (1985) and Myerson (1986).

6As some scholars claim, “mediator impartiality is crucial for disputants’ confidence in the mediator,
which, in turn, is a necessary condition for his gaining acceptability, which, in turn, is essential for mediation
success to come about” (see e.g. Young, 1967, and the scholars mentioned in Kleiboer, 1996). On the other
hand, when a mediator possesses independent information that needs to be credibly transmitted, some
degree of bias may be optimal (see Kydd, 2003, and Rauchos, 2006).

7In the final discussion, we provide some anecdotal evidence supporting our assumption of full mediator’s
commitment, which is obviously also one of our normative prescriptions.

8Among the few papers studying self-enforcing mechanisms in mechanism design, see Matthews and
Postlewaite (1989), Banks and Calvert (1992), Cramton and Palfrey (1995), Forges (1999), Compte and
Jehiel (2008), and Goltsman et al. (2009).
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and enforcement of contracts or agreements is often impossible.9 In the terminology of

Fisher (1995), our main focus is on “pure mediation,” that is, on mediation only involving

information gathering and settlement proposal making, rather than “power mediation,”

which instead also involves mediator’s power to reward, punish or enforce. The assumption

that the mediator’s proposals are self-enforcing is formalized by requiring that, whenever

a mediator recommends a peaceful settlement of the crisis, both parties must find the

proposed settlement better for them than starting conflict (with its expected associated

payoff lottery and costs) given what they learn from the mediator’s recommendation itself.

Since war can be started unilaterally, this ex post individual rationality constraint is in-

dispensable. But in order to describe the difference between arbitration and mediation, in

the final section, we relax ex post individual rationality and introduce standard ex interim

individual rationality constraints.

To achieve her objective, the mediators studied in this paper can facilitate communi-

cation, formulate proposals, and manipulate the information transmitted (see Touval and

Zartman, 1985, for a discussion of these three roles; and Wall and Lynn, 1993, for an

exhaustive discussion of all observed mediation techniques). Because we consider unmedi-

ated cheap talk as a benchmark, our mediators can only improve the chances of peace by

controlling the flow of information between the parties.10 In practice, this corresponds to

the mediator’s role in “collecting and judiciously communicating select confidential mate-

rial” (Raiffa, 1982, 108–109). Obviously, the role for mediation that we identify cannot

be performed by holding joint, face-to-face sessions with both parties, but requires private

and separate caucuses, a practice that is often followed by mediators. In international

relations, the practice of shuttle diplomacy has become popular since Henry Kissinger’s ef-

9Viewed another way, countries cannot commit not to initiate war if such an attack is a profitable devia-
tion from an agreement. In this sense, even if the bargaining problem comes from asymmetric information,
we also have a natural form of commitment problem built in. See Powell (2006) for a recent comprehensive
discussion of the relative importance of asymmetric information and commitment problems in creating
bargaining breakdown.

10In the real world, mediators also often prevent conflict by facilitating communication or coordinating
discussions among parties unwilling to communicate without a mediator. Such instances of mediation
correspond to what we formally call unmediated communication. Our paper confirms the value of mediators
as communication facilitators, by showing that communication often reduces the chance of conflict.
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forts in the Middle East in the early 1970s and the Camp David negotiations mediated by

Jimmy Carter, in which a third party conveys information back and forth between parties,

providing suggestions for moving the conflict toward resolution (see, for example, Kydd,

2006).

Having clarified our methodological choices and our general motivation, let us now

describe the basic features of our model and then offer a preview of our findings.

We consider the canonical conflict situation, in which two agents fight for a fixed amount

of contestable resources. The exogenous cake to be either divided peacefully or contested

in a costly conflict is a standard metaphor for many types of wars, for example related to

territorial disputes or to the present and future sharing of the rents from the extraction

of natural resources. Indeed, Bercovitch et al (1991) show that mediation is useful mostly

when the disputes are about resources, territory, or in any case divisible issues. Custody,

partnership dissolution, labor management struggles, and all kinds of litigations and legal

disputes could be considered equally relevant applications of the model, but we keep the

international conflict example as the main one in the text.

A player cannot observe the opponent’s strength, resolve, or outside options. In partic-

ular, we assume that each player is strong (hawk) with some probability and weak (dove)

with complementary probability. If the two players happen to be of the same type, war is

a fair lottery. When they are not of equal strength, the stronger wins with higher prob-

ability. To complete this standard setting, we assume that all war lotteries are equally

costly.11 War takes place in our game of conflict unless both players opt for peace, i.e.

war can be initiated unilaterally, and we assume that the players war declaration choice

is simultaneous. The equilibrium that maximizes the ex ante chances of peace serves as a

benchmark to assess the value of communication and mediation.

This simple setting has been the work-horse for models of war due to imperfect infor-

mation, and it is also the setting common to the very few papers in the literature with

11It might be interesting to allow for different costs for symmetric and asymmetric wars, but the addi-
tional notational and computational costs appear a heavy price to pay.
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an explicit mechanism design agenda. Specifically, Bester and Wärneryd (2006) study the

case in which the mediator can enforce settlements, after collecting players’ reports. Like

us, Fey and Ramsay (2009) consider self-enforcing mechanisms. Unlike us, they do not

characterize the optimal self-enforcing mechanism. They show that war can be avoided

altogether in the optimal mechanism if and only if the type distribution is independent

across players and the players’ payoffs depend only on their types, unlike in our game.

We first study unmediated communication, and then determine when and how media-

tion improves upon it. Among others, communication enables players to coordinate their

play, and this particular role can be abstracted away by assuming a public randomization

device. More importantly, communication enables the players to convey their private infor-

mation, if they wish. Specifically, we study the following communication protocol. First,

players send a cheap-talk message to each other; second, for any pair of observed messages,

they coordinate either on war or on a peaceful cake division, depending on the realization

of a public randomization device. In equilibrium, it must be the case that players do not

want to unilaterally declare war whenever they are supposed to coordinate on a peaceful

cake division. When war cannot be avoided in the basic conflict game, the optimal sepa-

rating communication equilibrium is shown to improve on no-communication. Specifically,

it allows players to reveal their type, and establish type-dependent cake divisions to avoid

conflict. However, war cannot be fully avoided.12

We then consider mediated communication. First, the mediator collects the players’

messages privately. Then, she chooses message-dependent cake-division proposals, and

correlates the players’ war declaration choices optimally. Peace recommendations must be

ex post individually rational. It is clear that the mediator’s optimal solution cannot be

worse than the best equilibrium without the mediator. In fact, the mediator could always,

trivially, make the messages she receives public, thereby mimicking the optimal unmedi-

12In a small parameter region, in which the cost of war is high, the players can improve on the sep-
arating equilibrium, by playing a mixed strategy equilibrium in the cheap talk game. Of course, mixed
strategy equilibria are strictly dominated by mediation, as mixed strategies induce randomizations inde-
pendent across players, instead of the optimally correlated randomizations chosen by the mediator (see,
e.g. Aumann, 1974).
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ated communication equilibrium. Thus, the usefulness of mediation can be measured by

looking at what regions of the parameters allow the mediator to induce a strict welfare

improvement.13 Our main results are as follows.

- When does a mediator help? A mediator helps in two distinct sets of circumstances.

First, when the intensity (or cost) of conflict is high. Second, when the intensity

of conflict is low, but the uncertainty regarding the disputants’ strength is high.

Interestingly, the intensity of conflict and asymmetric information are considered

among the most important variables that affect when mediation is most successful

(see e.g. Bercovitch and Houston, 2000, and Bercovitch et al., 1991). Our findings

resonate with well-documented stylized facts in the empirical literature on negotiation

(Bercovich and Jackson 2001, Wall and Lynn, 1993), that show that parties are less

likely to reach an agreement without a mediator when the intensity of conflict is high

than when it is low. Rauchhaus (2006) provides quantitative analysis showing that

mediation is especially effective when it targets asymmetric information.

- How does the mediator help? In terms of mediator strategy or tactic, the model al-

lows us to focus only on communication facilitation, settlement proposal formulation,

separation of players, manipulation of their messages or obfuscation of parties’ posi-

tions. In the first case in which she is effective, i.e. when conflict intensity is high,

the mediator can improve upon unmediated communication by offering unequal splits

even when she observes both players reporting to be doves. This is equivalent to an

obfuscation strategy by which the mediator does not reveal with probability one to

a self-declared dove that she is facing a dove. With this strategy, the mediator re-

duces the incentive for hawks to hide strength and then wage war if revealed that

the opponent is weak. In the second case, when the intensity is low but uncertainty

13The model by Banks and Calvert (1992) can be related to our construction. They also compare the
solution of self-enforcing mediation, to what can be achieved without a mediator in an underlying two-
by-two game. But their underlying game is very different from our game of conflict: They consider a
coordination game with incomplete information. This makes their results difficult to relate to our results
on mediation and conflict.
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is high, the mediator’s strategy involves proposing equal split settlements even when

she receives different messages. Equivalently, the mediator does not always reveal

to a self-declared hawk that she is facing a dove, and hence reduces the incentives

for doves to exaggerate strength in order to achieve a favorable settlement when it is

revealed that the opponent is weak. In both cases, the mediator’s proposed settle-

ments do not precisely reveal each player’s report to her counterpart. Although it

is widely believed that a successful mediator should establish credible reports to the

conflicting parties, we find that a mediator that reports precisely all the information

transmitted would not act optimally. Specifically (and realistically), the mediator’s

optimal obfuscation strategy consists in not revealing with probability one that the

opponent is weak, when this is the case.

- Does enforcement power help? We finally conclude the analysis by showing that

an arbitrator who can enforce outcomes is no more effective in preventing conflict

than a mediator who can only propose self-enforcing agreements. This result stands

in stark contrast with well-known results in other environments (see, e.g., Cramton

and Palfrey, 1995, Compte and Jehiel, 2008, or Goltsman et al., 2009). Our results

confirms the view that a mediator does not necessarily need enforcement power: “A

mediated settlement that arises as a consequence of the use of leverage may not last

very long because the agreement is based on compliance with the mediator and not on

internalization of the agreement-changed attitudes and perceptions” (Kelman, 1958).

The paper is organized as follows. Section 2 introduces our basic model of conflict. Sec-

tion 3 studies unmediated communication. Section 4 characterizes optimal mediation, and

establishes when and how mediation strictly improves upon unmediated communication.

Section 5 compares mediation and arbitration. The final section offers some concluding

comments. In particular, it discusses interim mechanism selection, mediator’s commitment

and contestants’ renegotiation. All proofs are in appendices.
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2 The Game of Conflict

Consider a bilateral conflict problem, in which two parties want as much as possible of

a given cake.14 As is standard, we normalize the value of such an exogenous cake to 1. If

the two parties cannot agree to any peaceful sharing and choose conflict, we assume that

the destructive war would shrink the actual net value of the cake to θ < 1.

War is modeled as a costly lottery, without the possibility of stalemate.15 The prob-

ability of winning for each player depends on players’ types: each player can be of type

H or L, privately and independently drawn from the same distribution, with probability

q and (1 − q), respectively. This private characteristic can be thought of as related to re-

solve, military strength, leaders’ stubbornness, outside options, etc. When the two fighting

players are of the same type, they have the same probability of winning, whereas when one

player is stronger than the other one, she wins with probability p > 1/2. Hence a type H

player who fights against an L type expects pθ from such a conflict. In the paper we will

often refer to type H as a “hawk” and to a L type as a “dove” (with no reference to the

hawk-dove game).16

War can be initiated unilaterally, while “it takes two to tango,” i.e., a peaceful agreement

must be preferred by both players to war in order to work. More precisely, we can think

that for any proposed split (x, 1 − x), (x ∈ [0, 1]), there is a “war declaration game.” In

such a game, the two players simultaneously announce “peace” or “war,” and if they both

announce peace the settlement is accepted otherwise war takes place. We assume that

when the two players choose to accept a peaceful split there are ways to implement such a

split.17 There always exists an equilibrium in which both players declare war in this game,

14Depending on the context, of course, the interpretation of what the cake means ranges from territory
or exploitation of natural resources to any measure of social surplus in a country or partnership.

15Allowing for the possibility of stalemate makes the problem inherently dynamic. A dynamic extension
of our mediation model is definitely interesting, but beyond the scope of the present paper.

16To simplify the analysis, and keep the problem’s dimensionality in check, we adopt a fully symmetric
model. We believe that our results will hold approximately, for models that are close to symmetric.

17If the cake is a resource that can be depleted in a short period and does not have spillovers on relative
strength, then there is no commitment problem. If the cake sharing is instead to be interpreted as a durable
agreement for example on the exploitation of a future stream of resources or gains from trade, then the
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regardless of the split. In what follows, we focus on the equilibrium that maximizes the ex

ante probability of peace, which will be denoted by V , the value.

If pθ < 1/2, conflict can always be averted with the anonymous split (1/2, 1/2); we shall

therefore assume henceforth that pθ > 1/2.

The model has three parameters: θ, p, and q. Yet all results depend on only two

statistics:18

λ ≡ q

1− q
and γ ≡ pθ − 1/2

1/2− θ/2
.

λ is the hawk/dove odds ratio, and γ represents the ratio of benefits over cost of war for

a hawk: the numerator is the gain for waging war against a dove instead of accepting the

equal split, and the denominator is the loss for waging war against a hawk rather than

accepting equal split. Given that γ is increasing in θ, we will also interpret situations with

low γ as situations of high intensity or cost of conflict.

As a benchmark, we now calculate the splits (x, 1− x) and equilibria in the consequent

war-declaration game that maximize the ex ante probability of peace. First, note that

for qθ/2 + (1− q) pθ ≥ 1/2, or λ ≥ γ, both doves and hawks choose peace in the peace-

maximizing equilibrium of the game with x = 1/2. When λ < γ, the probability of peace

V is maximized by setting x so that all doves play peace, together with the hawk type

of one of the two players. This is achieved by setting x ≥ (1− q) pθ + qθ/2 and 1 − x ≥

(1− q) θ/2+q (1− p) θ, which is possible if and only if (1− q) pθ+q (1− p) θ+θ/2 ≤ 1, i.e.,

λ ≥ (γ − 1) / (γ + 3), which is always satisfied when γ ≤ 1. When this condition fails, the

probability of peace is maximized by setting x = 1/2 so that doves play peace, and hawks

declare war. In sum, the optimal probability of peace absent communication or mediation

is:

V =


(1− q)2 = 1

(λ+1)2
if λ < γ−1

γ+3
,

1− q = 1
λ+1

if γ−1
γ+3

≤ λ < γ,

1 if λ ≥ γ.

commitment problem is non trivial. In this case the agreement could be about periodic tributes to be made
in perpetuity, and there are ways to implement the agreement with sufficient use of dynamic incentives.
See for example Schwartz and Sonin (2008).

18This feature will allow us to give graphical illustrations of most results.
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as is displayed on Figure 1.
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Figure 1: Probability of peace without communication

3 Communication Without Mediation

Communication Game We now consider the value of unmediated communication

in our basic game of conflict. We augment our game to include communication prior to

the war declaration game. Specifically, we consider the following communication protocol.

After privately learning her type, each player i sends a message mi ∈ {l, h}. The two

messages are sent simultaneously. After observing each other’s message, the players play

a war-declaration game in which the split x may depend on the messages m = (m1,m2) .

Their strategy in the war declaration game may depend also on the realization of a public

randomization device. With probability p, the randomization device coordinates the players

on both playing peace in the war declaration game, and with complementary probability,

war takes place. The peace probability p may depend on the public message m.

Of course, in equilibrium, the players must be willing to follow the recommendation

of the public randomization device in the war declaration game with splits x (m) and

obey the (possibly mixed) communication actions. We will determine the equilibrium with

the smallest ex ante probability of war. That is, we calculate the optimal values of the

split x(·) and the probabilities p(·) subject to the constraints that players are willing to
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use the equilibrium communication actions, and to follow the recommendations of the

randomization device.

Before proceeding with the analysis, we briefly comment on the characteristics of our

communication protocol. Relative to the benchmark without communication, we have

introduced one round of binary cheap talk, and a public randomization device coordinating

the play in the final war-declaration game. Following Aumann and Hart (2003), such a

public randomization device can be replicated by an additional round of communication

(using so-called jointly controlled lotteries). Hence our game can be reformulated as a two-

round communication game without any extraneous randomization device. For the sake of

tractability, we do not consider the possibility of further rounds of cheap talk.19

The restriction to binary messages is natural given the binary type space. As long as

attention is restricted to pure-strategy equilibria, this restriction is without loss of gener-

ality, but given the lack of commitment, it is possible that more messages might help in

mixed-strategy equilibria (though numerical simulations suggest it does not). On the other

hand, the restriction to a fixed split x (m), for every m, rather than the consideration of a

lottery over splits, is without loss of generality.20 Finally, we point out that, as described

above, the game form encapsulates one shortcut. We have assumed that, with probability

1− p(m), war takes place without the contestants being called to play the war declaration

19This might help, however. Aumann and Hart (2003) provide examples of games in which longer, indeed
unbounded, communication protocols improve upon finite round communication.

20Note first that if some splits in a lottery induce war on the equilibrium path, i.e., after both players
choose the equilibrium strategy at the communication stage, then such splits can be replaced with no
loss by a war recommendation. After this change, we can replace without loss any lottery over peaceful
recommendations with its certainty equivalent: A deterministic recommendation equal to the expected
recommendation of the lottery, assigned with probability equal to the lottery’s aggregate probability of
peaceful recommendation. In fact, at the war declaration stage, the requirement that the players accept
such a deterministic average split is less stringent than the requirement that they accept all splits in the
support of the lottery. Further, lotteries over peaceful splits affect each player’s equilibrium payoff at the
communication stage only through their expectations. Finally, the payoff of a player who deviates at the
communication stage turns out to be convex in the recommended split. Hence, the deviation payoff is
lower when replacing a lottery with its certainty equivalent, thus making the equilibrium requirement less
stringent. The reason for the convexity of the deviation payoff is that, off the equilibrium path, the player
optimally chooses whether to declare war or accept the split conditionally on the split realized with the
lottery. Hence, the expected value of the lottery off the equilibrium path is the maximum between the
realized split and the war payoff, a convex function.
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game. Because war can be started unilaterally, both players declaring war is always an

equilibrium of the war declaration game.21

Pure-strategy Equilibria. We momentarily ignore mixed strategies by the players

at the message stage. Those will be considered in the next subsection. Evidently, there

is always a pooling equilibrium in which both types choose the same reporting strategy,

whose outcomes coincide with the equilibrium of the war-declaration game without com-

munication. We now consider separating equilibrium, i.e., equilibrium in which each player

truthfully reveals her type.

Let us consider here only equilibria with splits x (m) and probabilities p (m) that are

symmetric across players. Such symmetry restriction entails that x(h, h) = x(l, l) = 1/2,

and that we only need to find another split value, i.e., b ≡ x(h, l) = 1 − x(l, h), given

that the message space contains only two elements. We shall later see that this restriction

is without loss of generality, because the separating equilibrium which minimizes the ex

ante probability of peace is calculated by solving a linear program.22 To shorten notation

further, we let pL ≡ p(l, l), pH ≡ p(h, h) and pM ≡ p(h, l) = p(l, h).

Armed with these definitions, the optimal separating equilibrium is characterized by

the following program. Maximize the peace probability

min
b,pL,pM ,pH

(1− q)2(1− pL) + 2q(1− q)(1− pM) + q2(1− pH)

subject to the following ex post individual rationality (IR) constraints and ex interim incen-

tive compatibility constraints (IC∗
L, IC∗

H).
23 First, reporting truthfully must be optimal.

21While for some splits x, such an equilibrium may be weakly dominated, we could expand the war
declaration game by including a small first-strike advantage, and make the war equilibrium always strict.

22We will see that each player’s constraints are linear in the maximization arguments. Thus, the con-
straint set is convex. Hence, suppose that an asymmetric mechanism maximizes the probability of peace.
Because the set-up is symmetric across players, the anti-symmetric mechanism, obtained by interchanging
the players’ identities, is also optimal. But then, the constraint set being convex, it contains also the
symmetric mechanism obtained by mixing the above optimal mechanisms. As the objective function is
linear in the maximization argument, such symmetric mixed mechanism is also optimal.

23The “star” superscript refers to the fact that, when a player contemplates deviating at the message
stage, she also anticipates and takes into account that she might prefer to declare war ex post, even when
players are supposed to coordinate on peace. This explains the maxima on the right-hand side of the two
constraints.
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For the dove, this constraint (IC∗
L) states that

(1− q) ((1− pL)θ/2 + pL/2) + q ((1− pM)(1− p)θ + pM(1− b)) ≥

(1− q) ((1− pM)θ/2 + pM max{b, θ/2}) + q ((1− pH)(1− p)θ + pH max{1/2, (1− p)θ}) .

The left-hand side is the dove’s equilibrium payoff. With probability 1 − q, the opponent

is also a dove, in which case the equal split 1/2 occurs with probability pL and the payoff

from war, θ/2, is collected with probability (1− pL) . With probability q, the opponent is

hawk. With probability pM , this leads to the split 1 − b, and with probability 1 − pM to

the payoff from war (1− p) θ. The right-hand side is the expected payoff from exaggerating

strength. When the opponent is dove, the split b is recommended with probability pM . In

principle, the player may deviate from the recommendation, and collect the war payoff θ/2,

hence the payoff is max {b, θ/2} . Further, war is recommended with probability 1 − pM .

When the opponent is hawk, the split 1/2 is recommended with probability pH , and war

with probability 1− pH . Similarly, for the hawk, the constraint (IC∗
H)

(1− q) ((1− pM)pθ + pMb) + q ((1− pH)θ/2 + pH/2) ≥

(1− q) ((1− pL)pθ + pLmax{1/2, pθ}) + q ((1− pM)θ/2 + pM max{1− b, θ/2}) ,

must hold, where the left-hand side is the equilibrium payoff and the right-hand side is the

expected payoff from “hiding strength.”24

Second, players must find it optimal to accept the split. Given that, in a separating

equilibrium, messages reveal types, this requires that

b ≥ pθ, 1− b ≥ (1− p)θ.

That is, a hawk facing a self-proclaimed dove must get a share b that makes war unprofitable

against a dove. Similarly, the dove’s share against a hawk cannot be so low that it is better

24Although the constraints (IC∗
L) and (IC∗

H) are not linear because of the maxima and of the products
pMb, they can be turned into linear constraints as follows. First, one replaces each constraint with four
constraints in which the left-hand sides equal the left-hand side of the original constraint with one of the
four pairs of the arguments of the two maxima, in lieu of the maxima. Second, one changes the variable b
with pB = pMb and the constraint 1/2 ≤ b ≤ 1 with pB ≤ pM ≤ 2pB .
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for her to go to war. The constraint that a player would accept an equal split when the

opponent’s type is the same as her own, 1/2 > θ/2, is always satisfied.

Solving this program yields the following characterization. We here omit the precise

equilibrium formula, presented in the Appendix, as it is quite burdensome.

Proposition 1 There is a unique best separating equilibrium in the communication game

without mediation. This equilibrium displays the following characteristics, for λ < γ:

• The ex ante probability of peace is strictly greater than in the absence of communica-

tion.

• Dove dyads do not fight: pL = 1.

• Hawk dyads fight with positive probability, pH < 1, and the dove’s incentive compati-

bility constraint IC∗
L binds.

• If γ ≥ 1 and/or λ ≥ (1+γ)−1, then the hawk’s incentive compatibility constraint IC∗
H

does not bind and b = pθ; and further:

– if λ < γ/2, then hawk dyads fight with probability one, pH = 0, and asymmetric

dyads fight with positive probability, pM ∈ (0, 1) ;

– if λ ≥ γ/2 (which covers also the case λ ≥ (1+γ)−1), then hawk dyads fight with

positive probability, pH ∈ (0, 1) , and asymmetric dyads do not fight, pM = 0.

• If γ < 1 and λ < (1 + γ)−1, then IC∗
H binds and b > pθ; and further pH = 0 and

pM ∈ (0, 1) for λ < γ/(1 + γ), whereas pH ∈ (0, 1) and pM = 1 otherwise.

We now elaborate on the characterization described above.

First, the separating equilibrium always improves upon the war declaration game with-

out communication. While intuitive, this result is far from obvious: While at least one
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equilibrium of the communication game must be at least as good as the optimal war dec-

laration game equilibrium, it is not an obvious implication that the separating equilibrium

would strictly improve upon all equilibria without communication. Second, war is never

optimal when both players report low strength: pL = 1; intuitively, there is no need to

punish self-reported doves by means of war, as they receive lower splits on average than if

reporting to be hawks.

Third, the truth-telling constraint for the low type, IC∗
L, is always binding. Given that

the incentive to exaggerate strength is always present and must be discouraged, there needs

to be positive probability of war following a high report. The most potent channel through

which the low type’s incentive to exaggerate strength can be kept in check is by assigning

a positive probability of war whenever there are two self-proclaimed high types. When λ

is low (few high types) it is indeed optimal to set pH = 0 and pM > 0, whereas for higher

values of λ, pH < 1 and pM = 1. Threatening war with a hawk is more effective to deter

a dove from exaggerating strength than threatening war with a dove. Further, when λ is

sufficiently high, the likelihood of a hawk is sufficiently high that prescribing war against

a dove is not needed to deter a dove to exaggerate strength. But when λ is low, deterring

misreporting by a dove requires having a positive probability of war when exactly one of

the players claims to be a hawk, in addition to having war for sure when both claim to be.

Fourth, when the truth-telling constraint for the high type, IC∗
H , is not binding, then

b = pθ; and when both truth-telling constraints are binding, then the ex post IR constraint

b ≥ pθ does not bind. Hence, b is either pinned down by the ex post IR constraint b ≥ pθ, or

by the joint ex interim truth-telling constraints. Intuitively, both (IC∗
H) and the constraint

b ≥ pθ need b sufficiently large to be satisfied. On the other hand, keeping in check the

(binding) constraint (IC∗
L) requires keeping b as low as possible. Hence b will be such that

either IC∗
H binds, or b = pθ.

The other properties of the characterization of Proposition 1 are best described by

distinguishing the cases γ ≥ 1 and γ < 1.
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Suppose first that γ ≥ 1, so that the benefits from war are sufficiently high. Then

the ex post IR constraint always binds, and hence b = pθ; and the ex interim high-type

truth-telling IC∗
H constraint never binds. This is because the hawk hiding strength always

prefers to wage war (both against hawks and doves). When b = pθ, the condition γ ≥ 1

is equivalent to 1 − b ≤ θ/2. As a result, the hawk obtains the payoff pθ against doves,

regardless of her message, whereas against hawks she obtains θ/2 if hiding strength, and

either θ/2 (after a war recommendation) or 1/2 (after settlement) when truthfully reporting.

Second, suppose that γ < 1. For λ ≤ 1/(1 + γ), the high-type truth-telling constraint

IC∗
H binds, and b > pθ. To see why, suppose by contradiction that b = pθ. For γ < 1,

this would imply that 1− b > θ/2. Consider a hawk pretending to be a dove. If she meets

a dove, she can secure the payoff pθ by waging war. This is also the payoff for revealing

hawk and meeting a dove: She obtains pθ through war or through the split b = pθ. If she

meets a hawk, she gets 1 − b with probability pM and θ/2 with probability 1 − pM . By

claiming to be a hawk, she gets 1/2 with probability pH and θ/2 with probability 1− pH .

But we know that pM is larger than pH , and because 1− b > θ/2, this gives an incentive to

pretend to be a dove (hiding strength) to secure peace more often than by revealing that

she is a hawk, which contradicts IC∗
H . To make sure that both truth-telling constraints

are satisfied, we must have b > pθ, so as to reduce the payoff from hiding strength. This

reduces both the payoff from settling against a hawk when hiding strength and the payoff

from settling against a dove when revealing to be hawk.

Next, note that pH increases in λ, as in the case of γ ≥ 1. Because the incentive to hide

strength decreases as pH increases relative to pM , we can reduce b as λ increases. When λ

reaches the threshold 1/(1+γ), the offer b required for the high type truth-telling constraint

to bind is exactly pθ. Further increasing λ cannot induce a further decrease in b, because

the ex post IR constraint b ≥ pθ becomes binding. So in the region where λ ∈ [1/(1+γ), γ],

the IC∗
H constraint does not bind and b = pθ.

Figure 2 shows the probability of peace in the best separating equilibrium. For γ ≥ 1,
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it is U-shaped in λ for λ ≤ γ/2, and decreasing in λ when λ is between γ/2 and γ. To

understand the forces leading to the U-shaped effect of λ in the lower region, note first

that an increase in λ shifts probability mass from the LL dyad to the LH dyad and from

the LH dyad to the HH dyad (the overall effect on the likelihood of the LH dyad is that

it increases in λ if and only if λ < 1). Because 1 = pL ≥ pM > pH , these shifts make the

probability of peace initially decrease in λ. However, pM strictly increases in λ for λ ≤ γ/2,

and eventually this makes the probability of peace increase in λ. Interestingly, despite

the fact that pH strictly increases in λ, for λ > γ/2, it still does not grow fast enough to

compensate for the shift in probability mass towards the dyads with the higher probability

of war. As a result, the probability of peace decreases in λ when λ is between γ/2 and γ.

Figure 2: Probability of peace in the separating equilibrium

Mixed-strategy Equilibria. This subsection considers mixed strategy equilibria.

Mixing can help, though its role in the unmediated communication game is relatively lim-

ited (compare Figure 2 and right panel of Figure 3). The following result states that, while

there is no mixed-strategy equilibrium in which the hawk randomizes between sending the

high and low report, there exists a mixed-strategy equilibrium in which the dove random-

izes.25 Furthermore, in some parameter region, depicted in the right panel of Figure 3, such

a mixed strategy equilibrium yields a higher ex ante peace probability than the separating

25In this subsection, and this subsection only, attention is restricted to symmetric equilibria. That is,
we did not establish whether asymmetric mixed-strategy equilibria may yield a higher welfare.
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equilibrium. The specific definition of the region in which mixing improves upon the sepa-

rating equilibrium is rather cumbersome, as is the explicit description of the mixed-strategy

equilibrium, and so it is relegated to the Appendix. But it is interesting to note that mixing

may improve only in a small subset of the parameter region in which both ex interim IC*

constraints bind: mixing by the dove may relax the incentive of the hawk to hide strength.

We summarize our findings as follows.

Proposition 2 Allowing for mixed strategies in the unmediated communication game, the

best equilibrium is such that the hawk always sends message h and the dove sends l with

probability σ, where σ < 1 in the parameter region shown in the right panel of Figure 3.

Figure 3: Welfare in the best (pure or mixed) equilibrium, and region where mixing occurs

4 Mediation

In the previous section, we have characterized the optimal equilibrium in the case in

which players send public messages. In this section, we consider an active mediator who

collects the players’ private messages and makes optimal recommendations.

We modify the game form to account for such a mediator. In the first stage, messages

are no longer public. They are separately reported to a mediator, who then proposes the

split and randomly correlates the play in the consequent war declaration game. More
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precisely, the version of the revelation principle proved in Myerson (1982) guarantees that

the following game form entails no loss of generality:

- After being informed of her type, each player i privately sends a report mi ∈ {l, h}

to the mediator.

- Given reports m = (m1,m2), the mediator recommends a split (b, 1 − b) according

to some cumulative distribution function F (b|m), where we denote by 1 − F (1|m)

the probability with which the mediator recommends war.26 Unlike the reports, the

mediator’s recommendation is public.

- War takes place if recommended. Otherwise, the contestants play the war declaration

game with the recommended split.

Again by the revelation principle, we may restrict attention to distributions F such that

truthful type revelation and obedience to the mediator’s recommendation are part of the

equilibrium. As before, this imposes both ex interim incentive compatibility constraints and

ex post individual rationality constraints, which we now describe. To simplify notation, we

restrict attention to mechanisms that are symmetric across players, where F (·|m1,m2) =

1 − F (·|m2,m1) for all (m1,m2), and to discrete distributions F. We shall later see that

these restrictions entail no loss of generality.

Let Pr[m−i, b,mi] denote the equilibrium joint probability that the players send mes-

sages (mi,m−i) and that the mediator offers (b, 1 − b), and set Pr[b,mi] ≡ Pr[h, b,mi] +

Pr[l, b,mi]. When player i is a hawk, she reports mi = h in equilibrium, and ex post

individual rationality requires that

bPr[b, h] ≥ Pr[l, b, h]pθ + Pr[h, b, h]θ/2, for all b ∈ [0, 1] , (1)

which ensures that, if recommended the split b, i.e., for all b such that Pr[b, h] > 0, the

hawk prefers accepting the split to starting a war. Similarly, when i is a dove, ex post

26The term “war recommendation” is part of the game theoretic jargon we use to describe the formal
model. It should not be taken literally. In the real world, mediators do not literally recommend war, but
they may walk away from the table, and this usually results in conflict escalation by the contestants.
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individual rationality dictates that

bPr[b, l] ≥ Pr[h, b, l](1− p)θ + Pr[l, b, l]θ/2, for all b ∈ [0, 1] . (2)

Ex interim incentive compatibility requires that, when player i is a hawk, she truthfully

reports mi = h. The associated constraint (IC∗
H) dictates that

q(1− F (1|hh))θ/2 + (1− q)(1− F (1|hl))pθ +
∫ 1

0

bdF (b|h) ≥ q(1− F (1|lh))θ/2 +

(1− q)(1− F (1|ll))pθ +
∫ 1

0

max{b,Pr[l|b, l]pθ + Pr[h|b, l]θ/2}dF (b|l), (3)

where Pr[m−i|b,mi] = Pr[m−i, b,mi]/Pr[b,mi] whenever Pr[b,mi] > 0, and F (·|mi) ≡

qF (·|mi, h) + (1 − q)F (·|mi, l), for mi and m−i taking values l and h. Note that, as in

the optimal separating equilibrium program, player i might behave opportunistically after

deviating, as reflected by the maxima on the right-hand side.

Similarly, to ensure truth-telling by player i when a dove, the following constraint (IC∗
L)

must be satisfied:

q(1− F (1|lh))(1− p)θ + (1− q)(1− F (1|ll))θ/2 +
∫ 1

0

(1− b)dF (b|l) ≥ q(1− F (1|hh))(1− p)θ +

(1− q)(1− F (1|lh))θ/2 +
∫ 1

0

max{1− b,Pr[l|b, h]θ/2 + Pr[h|b, h](1− p)θ}dF (b|h). (4)

In the best equilibrium, the mediator seeks to minimize the probability of war, i.e.,

(1− q)2(1− F (1|hh)) + 2q(1− q)(1− F (1|lh)) + q2(1− F (1|ll)).

Because recommendations need to be self-enforcing, there is a priori no reason to restrict

the mediator in the number of splits to which he assigns positive probability. In fact, rec-

ommendations convey information about the most likely opponents’ revealed types, and it

might be in the mediator’s best interest to scramble such information by means of multiple

recommendations. Nevertheless, Proposition 3 below shows that relatively simple mech-

anisms reach the maximal probability of peace among all possible mechanisms, including

asymmetric ones. These simple mechanisms can be described as follows. Given reports

(h, h), the mediator recommends the peaceful split (1/2, 1/2) with probability qH , and

20



war with probability 1 − qH . Given reports (h, l), the mediator recommends the peaceful

split (1/2, 1/2) with probability qM , the split (b, 1− b) with probability pM , and war with

probability 1− pM − qM , for some b ≥ 1/2. Given reports (l, l), the mediator recommends

the peaceful split (1/2, 1/2) with probability qL, the splits (b, 1 − b) and (1 − b, b) with

probability pL each, and war with probability 1− 2pL − qL.

Again, we relegate the explicit formulas of the solution to the Appendix, and restrict

ourselves here to the description of its main features.

Proposition 3 A solution to the mediator’s problem is such that, for all λ < γ:

• Doves do not fight: qL + 2pL = 1.

• The low-type incentive compatibility constraint IC∗
L binds, whereas the high-type in-

centive compatibility constraint IC∗
H does not, and b = pθ.

• For γ ≥ 1 and λ > γ/2, hawk dyads fight with positive probability, qH ∈ (0, 1), mixed

dyads do not fight (pM + 2qM = 1), and mediation strictly improves upon cheap talk.

• For γ ≥ 1 and λ ≤ γ/2, the solution exactly reproduces the separating equilibrium

of the cheap talk game (specifically, qL = 1, qM = 0, pM ∈ (0, 1) and qH = 0), and

mediation yields the same welfare as cheap talk.

• For γ < 1, the probability pL of unequal splits among dove dyads is bounded above

zero, and mediation strictly improves upon cheap talk.

We now comment on the solution and we make some comparisons with the optimal

separating equilibrium characterized in Proposition 1.

Suppose that γ > 1. If λ > γ/2, then qM > 0: the mediator sometimes recommends

the equal split (1/2, 1/2) when one player reports to be a hawk, and the other claims to

be a dove. In this way, the ex post IR constraint of the high type who is recommended

the equal split becomes binding. We remark that this ex post constraint was slack in the
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unmediated equilibrium. By making a slack constraint binding, the mediator increases the

probability of peace. Indeed, the mediator lowers the gain from pretending to be a hawk,

by making exaggerating strength less profitable against doves. When λ ≤ γ/2 instead,

qH = qM = 0 and the mediator does not improve upon unmediated communication. In this

case, in fact, in both the mediated and the best (unmediated) separating equilibrium, war

needs to occur with probability one in dyads of hawks, to avoid that doves misreport their

type. But then the above-mentioned slack constraint is not relevant for either program,

and the mediator cannot improve upon unmediated communication.

In contrast with the case of γ ≥ 1, the mediator always yields a strict welfare im-

provement when γ < 1. When λ > 1/(1 + γ), so that b = pθ in the perfectly separating

equilibrium, it is also the case that λ > γ/2 (note that 1/ (1 + γ) > γ/2), and hence the

mediator helps for the same reasons as when γ ≥ 1. When λ < 1/ (1 + γ), the mediator

makes sure that the IC∗
H constraint is satisfied with b = pθ. In fact, the mediator offers

1 − b with positive probability when both players report to be doves. By doing so, the

mediator makes sure that a hawk hiding strength will wage war when proposed 1− b. This

eliminates the incentive to hide strength in order to seek peace against hawks that we

observed in the unmediated equilibrium. Hence, the expected payoff of hiding strength is

lower, and the IC∗
H constraint is satisfied with b = pθ. Note that the ex post individual

rationality constraint b ≥ pθ was slack in the unmediated equilibrium. By making this ra-

tionality constraint binding, the mediator can improve the objective function, i.e. increase

the probability of peace.

Figure 4 shows the probability of peace in the mediated game compared to the proba-

bility of peace induced by the best separating equilibrium.

We can now precisely answer the first set of questions presented in the introduction:

• When does mediation improve on unmediated communication?
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Figure 4: Probability of peace in the mediated vs. unmediated case, and region where
mediation dominates

– When the intensity and/or cost of conflict is high (low γ), mediation always

brings about strict welfare improvements with respect to unmediated cheap-

talk.

– When conflict is not expected to be very costly or intense (high γ), mediation

provides an improvement in welfare if and only if the proportion of hawks is

intermediate, i.e., for high expected power asymmetry.

• How does mediation improve on unmediated communication?

– When the proportion of hawks is intermediate (high expected power asymmetry),

the mediator lowers the reward for a dove from mimicking a hawk, by not always

giving the lion’s share to a declared hawk facing a dove (or, equivalently by not

always revealing to a self-reported hawk that she is facing a dove). This lowers

the incentive to exaggerate strength and achieves a favorable peace settlement

with a dove.

– Instead, when the probability of facing a hawk is low and conflict is expected

to be costly, the mediator’s strategy is to offer with some probability unequal

split to two parties reporting low type (or, equivalently the mediator does not
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always reveal to a dove that she is facing a dove). This lowers the incentive to

hide strength and seek peace with a hawk.

Mediation also improves upon the best mixed-strategy equilibrium (whenever the latter

is non-degenerate, which requires, among others, γ < 1, i.e., a high cost of conflict). How

this can be the case should not be surprising for the reader familiar with the literature on

correlated equilibrium (see, e.g. Aumann, 1974). By randomizing over recommendations,

the mediator can reproduce any distribution induced by mixing. In unmediated commu-

nication, however, because players must mix independently of each other, they cannot

generate the optimal correlated distribution chosen by the mediator. The mixing by the

dove may improve welfare upon the pure-strategy equilibrium, but at the cost of inducing

war with positive probability within dove dyads. This does not occur with a mediator, who

induces war only when at least one of the players is a hawk.

To conclude, note one sharp difference between mediated and unmediated communi-

cation: the ex ante probability of peace is decreasing in λ, for λ ∈ [γ/2, γ), without

mediation, whereas in the same range the ex ante probability of peace is increasing in λ

with mediation. This difference could have an important impact on an important debate

in international relations, namely the debate on “deterrence:” the higher is λ (or q), the

more “deterred” a country should be from initiating a war, due to a higher likelihood of

facing a hawk. Hence, a possible interpretation of this difference is that an international

system with a level of deterrence higher than another is “good” for peace if every bilateral

crisis is dealt with using mediators, whereas it is “bad” if direct communication is the most

common way in which countries try to avoid wars.

5 The Role of Enforcement

Even though the cause of war is asymmetric information, the analysis of the optimal

mediation problem involves a significant enforcement problem. Countries are sovereign, and
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enforcement of contracts or agreements is often impossible. Because war can be started

unilaterally, we have incorporated ex post IR and ex interim IC* constraints in the for-

mulation of the optimal mediation program. In our model, the residual ex ante chance

of war that results in the optimal mediation solution, can be thought as being due to a

combination of asymmetric information and enforcement problems.

So far, mediation has reduced to optimal information elicitation from, and transmission

to, the conflicting parties. One might also wonder whether the mediator could further

reduce the ex ante probability of war if she was an arbitrator, i.e. if she were endowed

with enforcement power. For this, it is enough to compare our findings with those of

Bester and Wärneryd (2006). Rather than imposing ex post IR constraints and ex interim

IC* constraints, they impose ex interim IR and IC constraints. Conflicting parties must

be willing to participate in the mediation process, and to reveal their information to the

mediator. But mediator’s recommendations are enforceable by external actors, such as the

international community. Hence, they abstract away from enforcement, and their model is

more suitable to describe arbitration than the pure mediation that considered here.

Formally, invoking the version of the revelation principle proved by Myerson (1979),

the Bester-Wärneryd problem can be summarized as follows. The parties truthfully report

their types L,H to the arbitrator. The arbitrator recommends peaceful settlement with

probability p (m) after report m. Because recommendations are enforced by an external

agency, they can restrict attention to a single peaceful recommendation x (m) , for each

report pair m.27 Symmetry is without loss of generality because the arbitrator’s program

is linear, and entails that the settlement is (1/2, 1/2) if the players report the same type,

that the split is (b, 1− b) if the reports are (h, l), and (1− b, b) if they are (l, h), for some

b ∈ [1/2, 1] . Let pL = p (l, l) , pM = p (l, h) = p (h, l) and pH = p (h, h). The arbitrator

27In fact, both participation and revelation decisions are taken before knowing the arbitrator’s recom-
mendation, and hence the players’ payoffs depend only on the expected recommendation, and not on the
realized one. Hence, as in footnote 20, any lottery over peaceful recommendations can be replaced without
loss with its certainty equivalent.
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chooses b, pL, pM and pH so as to solve the program

min
b,pL,pM ,pH

(1− q)2 (1− pL) + 2q (1− q) (1− pM) + q2 (1− pH)

subject to ex interim individual rationality (for the hawk and dove, respectively)

(1− q) (pMb+ (1− pM) pθ) + q (pH/2 + (1− pH) θ/2) ≥ (1− q) pθ + qθ/2,

(1− q) (pL/2 + (1− pL) θ/2) + q (pM (1− b) + (1− pM) (1− p) θ) ≥ (1− q) θ/2 + q (1− p) θ,

and to the ex interim incentive compatibility constraints (for the hawk and dove, respec-

tively)

(1− q) ((1− pM)pθ + pMb) + q ((1− pH)θ/2 + pH/2) ≥

(1− q) ((1− pL)pθ + pL/2) + q ((1− pM)θ/2 + pM(1− b)) ,

(1− q) ((1− pL)θ/2 + pL/2) + q ((1− pM)(1− p)θ + pM(1− b)) ≥

(1− q) ((1− pM)θ/2 + pMb) + q ((1− pH)(1− p)θ + pH/2) .

In general, the solution of the program with an arbitrator (with enforcement power) pro-

vides an upper bound to the solution of the program with a mediator (without enforcement

power), as described in Section 4. Surprisingly, the solution of the latter program yields

the same welfare as the solution of the former program.28 Specifically, for λ ≤ γ/2, the

mechanisms with and without enforcement coincide. When λ > γ/2, the simplest optimal

mechanism with enforcement is such that b < pθ, which is not self-enforcing. But the opti-

mal mechanism without enforcement obfuscates the players’ reports, and this obfuscation

succeeds in fully circumventing the enforcement problem.

Proposition 4 An arbitrator who can enforce recommendation is exactly as effective in

promoting peace as a mediator who can only propose self-enforcing agreements.

28This result facilitates the proof of Proposition 3. It is enough to establish that the simple mechanism
characterized there, and described in closed form in the Appendix, satisfies the more stringent constraints
of the mediator’s program. Because this mechanism achieves the same welfare as the solution to the
arbitration problem, it must be optimal, a fortiori, in the mediator’s program.
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The intuition is as follows. First, note that the dove’s IC constraint and hawk’s ex

interim IR constraint are the only ones binding in the solution of the mediator’s program

with enforcement power. Conversely, the only binding constraints in the mediator’s pro-

gram with self-enforcing recommendations are the dove’s IC* constraint and the two ex

post hawk’s IR constraints. Recall that, in our solution, the hawk is always indifferent

between war and peace if recommended a settlement. Further, the dove’s IC* constraint in

the mediator’s problem with self-enforcing recommendations is identical to the dove’s IC

constraint in the arbitrator’s program, because a dove never wages war after exaggerating

strength in the solution of mediator’s problem with self-enforcing recommendation.

Further, the hawk’s ex interim IR constraint integrates the two binding hawk’s ex

post IR constraints in the arbitrator’s problem. While requiring a constraint to hold in

expectation is generally a weaker requirement than having the two constraints, it turns out

that the induced welfare is the same. This is easiest to see when λ ≤ γ/2, as in this case the

only settlement ever granted to a hawk is b, when the opponent is dove. For any mechanism

with this property, the ex interim IR and the ex post IR constraints trivially coincide. Let

us now consider the case λ > γ/2. In this case, the optimal truthful arbitration mechanism

prescribes a settlement b < pθ that is not ex post IR for a hawk meeting a dove, as well as

prescribing a settlement with slack, equal to 1/2, to same type dyads. The mediator cannot

reproduce this mechanism. But it circumvents the problem with the obfuscation strategy

whereby the hawk is made exactly indifferent between war and peace when recommended

either the split 1/2 or the split b = pθ. Hence, it optimally rebalances the ex post IR

constraints so as to achieve the same welfare as the arbitrator.

We can now answer the last question that we posed in the introduction.

• Does enforcement power help? How do mediation and arbitration differ in terms of

conflict resolution?

– In our war-declaration game, there is no difference in terms of optimal ex ante

probability of peace between the two institutions.
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– Either the two optimal mechanism coincide, for λ low relative to γ, or the medi-

ator’s optimal obfuscation strategy circumvents her lack of enforcement power.

6 Concluding Remarks

This paper brings mechanism design to the study of conflict resolution in international

relations. We have determined when and how unmediated communication and mediation

reduce the ex ante probability of conflict, in a simple game where conflict is due to asym-

metric information. From the analysis of this paper we draw a number of lessons.

First of all, we have shown when mediation improves upon unmediated communication.

Mediation is particularly useful when the intensity of conflict and/or cost of war is high

(low θ); when power asymmetry has little impact on the probability of winning; and even

when neither θ nor p is low, mediation can still be strictly better than direct communication

when the ex ante chance of power asymmetry is high (intermediate q). A world with higher

level of deterrence (higher λ in that intermediate range) turns out to be better for peace

only if mediation is used. While most of our analysis has considered mediators without

enforcement powers, it turns out that an arbitrator who can enforce outcomes is exactly as

effective as a mediator who can only propose self-enforcing agreements.

Second, we have shown how mediation improves upon unmediated communication. This

is achieved by not reporting to a player with probability one that her opponent is weak.

Specifically, when the ex ante chance of power asymmetry is high, the mediator is mostly

effective in her ability to keep in check the temptation to exaggerate strength by a dove.

The mediator lowers the reward from mimicking a hawk by not always giving the lion’s

share to a hawk facing a dove. This reduces the probability of war between hawks, and

hence the ex ante probability of war. When the expected intensity or cost of conflict are

high, regardless of the expected degree of uncertainty, the mediator reduces the temptation

to hide strength by a strong player. The mediator’s strategy is to lower the reward from

mimicking a dove by giving sometimes an unequal split to two parties reporting being a
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low type. This allows to lower the split proposed to avoid war between a hawk and a dove.

In turn, this allows to reduce the probability of war of the hawk-dove dyad.

This is obviously a very limited theory of mediation. We have mentioned some of the

limitations of our mediator in the introduction. Let us emphasize some that might lead

to fruitful future research, while delineating circumstances in international relations under

which none of such issues is likely to be a major concern.

Our analysis takes as given how the process starts, and how it ends. Because we

consider the games with and without a mediator separately, our analysis did not address

the incentives of each disputant to seek the assistance of a mediator in the first place, given

that such a call for mediation is likely to convey information. Another related issue that

we have not explored here involves the ex ante incentives of players to engage in strategic

militarization (see, for example, Meirowitz and Sartori, 2008). We have also taken our

mediator as having commitment power, and while we do not assume that disputants have

commitment power, we have ignored their incentives to re-negotiate.

In order for mediation to occur, both disputants must consent to the involvement of a

mediator as a third party. Individual interests, rather than “shared values” are the main

driving force behind acceptance of mediation (Princen, 1992). Whether or not a party

gains from accepting mediation depends on how such a decision will be perceived by the

other party, and what such a party can guarantee in the absence of a mediator. These

features of the problem naturally lead to multiplicity of equilibria. Suppose in fact that we

were to augment our mediation game to include a stage in which, immediately after being

informed of their types, the contestants simultaneously and independently choose whether

to accept the mediator or resort to unmediated cheap talk. Further assume that mediation

will take place if and only if both players agree. This game admits both equilibria in which

mediation always takes place and some in which it never occurs.

As an example of the latter, consider an equilibrium in which all players’ types reject

the mediator, and such that if a player deviates and asks for mediation, the opponent
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will maintain her prior beliefs about her opponent. In this case, both players are always

indifferent between accepting mediation or not, as this is irrelevant given the opponent’s

equilibrium veto. For this reason, the postulated off-path beliefs can be viewed as reason-

able. An equilibrium in which the optimal mediation that we characterized takes place

is the one in which both players agree to mediation, and if either deviates, players main-

tain their prior beliefs, babble in the communication stage, and declare war. This off-path

behavior can be described as each player threatening the other “not to listen and declare

war, unless a mediator is called in.”Such a harsh punishment may not always be realis-

tic, but, by construction, it delivers the highest possible welfare in the game. Deviations

are deterred, because the outcome of rejecting the mediator is equivalent to triggering war,

and deterrence is equivalent to an ex interim individual rationality condition that is weaker

than the ex post individual rationality conditions we already imposed to solve our program.

To conclude on the matter of the choice of the mechanism by informed parties, note

that scholars often put forward other motives for desiring mediation. Bercovitch (1992,

1997), for instance, argues that disputants might view mediation as an expression of their

commitment to peaceful conflict resolution, and seek it out of a desire to improve their

relationships with each other. Ultimately, whether and how the acceptance of a mediator

affects perceptions and incentives is an empirical question. Using the ICB data, Wilkenfeld

et al. (2005) argue that symmetric crises are more likely to be mediated than asymmetric

ones, suggesting that mediation initiative might fail when power disparity is extreme. Note,

however, that our model only considers (ex ante) symmetric crises, and there seems to be

no empirical evidence that would correlate the occurrence (as opposed to the success) of

mediation with the level of uncertainty.

Turning to the question of strategic militarization, we believe that our model can provide

a simple benchmark to explore the ex ante incentives for countries to arm when different

conflict resolution institutions prevail, and in particular when focusing on the optimal one

(the mediator we study in this paper). Specifically, our results may be related with the

results by a recent paper by Meirowitz and Ramsay (2009). Suppose in fact that, prior
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to enter a crisis, the two players must costly and secretly invest in their military might.

Meirowitz and Ramsay (2009) characterize the equilibrium investment strategies in relation

to any general crisis-resolution mechanism, and hence any bargaining or communication

protocol, that satisfy ex interim IC constraints (Theorem 2). Because we show that in

our simple game, optimal arbitration and optimal mediation coincide, and both can be

characterized via ex interim IC and IR constraints, it would be interesting to assess the

implications of their results in the contest of the optimal crisis-resolution mechanisms that

we characterize in this paper.

Turning to the issue of commitment by the mediator, we interpret the outcome of war

as a failure of the disputants to agree with the conditions set by the mediator. Our analysis

suggests that the mediator’s success relies on its ability to employ so-called action-forcing

events. The importance of using such events is stressed by Watkins (1998). Mediators are

well aware of the importance of being able to break off talks with no intention of resuming

them. For the technique to be effective, a deadline must be credible. According to Avi Gil,

one of the key architects of the Oslo peace process, “A deadline is a great but risky tool.

Great because without a deadline it’s difficult to end negotiations. [The parties] tend to

play more and more, because they have time. Risky because if you do not meet the deadline,

either the process breaks down, or deadlines lose their meaning” (Watkins, 1998). Among

the many cases in which this technique was used, see for instance Curran and Sebenius

(2003)’s account of how a deadline was employed by former Senator George Mitchell in the

Northern Ireland negotiations. Committing to such deadlines might be somewhat easier for

professional mediators whose reputation is at stake, but they have been also used both by

unofficial and official individuals, including Pope John Paul II and former U.S. President

Jimmy Carter.29 Meanwhile, institutions like the United Nations increasingly sets time

limits to their involvement upfront (see, for instance, the U.N. General Assembly report,

2000).

29See Bebchik (2002) on how Clinton and Ross attempted to impress upon Arafat the urgency of accepting
the proposal being offered for a final settlement, calling it a “damn good deal” that would not be within
his grasp indefinitely.
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Nevertheless, it is a fact that, no matter their moral authority, mediators may sometimes

struggle to walk away when the deadline expires (as Pope John Paul II found out in the

Beagle Channel dispute, for instance). This fact suggests the formulation and solution of

a model of mediation that introduces limited mediator’s commitment, a seemingly fairly

involved theoretical task. One of the main issues is the identification of a game form

and mechanism space that do not entail loss of generality. It is known, in fact, that the

revelation principle may fail in the presence of limited commitment (see, for example, Bester

and Strausz, 2000).

Finally, while we have required recommendations to be self-enforcing, there is a sense

in which they need not be renegotiation-proof, as they might be Pareto-dominated for

the players. For instance, when there is common belief that both players are hawks, they

would be better off settling for an equal split rather than going to war, although doing so is

part of the solution. Yet renegotiation-proofness does not seem to be a first and foremost

concern of real world mediators. It is not overly realistic to think that, after the mediator

quits, contestants who struggled to find an agreement in the presence of the mediator,

will autonomously sit down at the negotiation table again, in search for a Pareto improving

agreement. Indeed, while the literature on the causes of conflict underlines that contestants

may not be able to individually commit to peaceful conflict resolutions, it may well be the

case that they can jointly or even individually commit to belligerent resolutions, when such

commitments are ex ante valuable. Audience costs, for instance, are recognized to provide

an important channel that makes war threats credible (see, for instance, Tomz, 2007).

Nevertheless, renegotiation-proofness is an important issue that deserves a careful anal-

ysis. A technical difficulty lies in the fact that there is no widely accepted notion of

renegotiation-proofness for games with incomplete information. The definitions that apply

to our game usually yield non-existence, given the restriction imposed by ex post individual

rationality and incentive compatibility. Forges (1990), for instance, defines an equilibrium

to be renegotiation-proof if it is the case that, for every further (exogenous) proposal that

players can simultaneously accept or reject after the mediator’s recommendation, players
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would not unanimously prefer the exogenous proposal. Unfortunately, it can be shown that

this requirement is impossible to satisfy in our problem.30 Coming up with a satisfactory

definition appears like an important issue for future research. Note, however, that any such

definition would exacerbate the incentives for the mediator to obfuscate the information

that he owns, so as to prevent the possibility that players that are supposed to go to war

commonly believe that some specific, peaceful split is better for both of them.

30At the renegotiation stage, on the equilibrium path, the war-declaration stage can be viewed as a static
Bayesian game. Let qi denote the probability that i is a dove at this stage. If q1 < 1 and q2 < 1, then
doves reach this stage with positive probability, and in that event, both players would prefer the exogenous
proposal “peace and an equal split” to the recommendation of war. Hence there must be peace in such
a subform. If q1 = 1 but q2 < 1, then player 2’s dove and player 1 would agree on the proposal “peace
and split pθ;” and if q1 = q2 = 1, they would agree on the proposal “peace and equal split.” Hence, the
only candidate for a renegotiation-proof equilibrium involves the mediator always suggesting peace, which
cannot satisfy incentive compatibility and ex post rationality.
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NOT FOR PUBLICATION: Mediation and Peace

Material Submitted for a Web-Appendix

Appendix A - Unmediated Communication

Proof of Proposition 1 All the statements in the proposition, but the comparison with

no-communication, follow from the following characterization lemma:

Lemma 1 The best separating equilibrium is characterized as follows.

1. Suppose that γ ≤ 1.

(a) When λ < γ/(1 + γ), both ex interim IC* constraints bind,

b > pθ, pH = 0, pM =
1

(1 + γ)(1− λ)
, and V =

1 + γ + λ(1− γ)

(1 + γ)(1− λ)(1 + λ)2
.

(b) When λ ∈ [γ/(1 + γ),min{1/(1 + γ), γ}], both IC* constraints bind,

b > pθ, pM = 1, pH = 1− γ

(1 + γ)λ
, and V = 1− γλ

(1 + γ)(1 + λ)2
.

(c) When λ ∈ [1/(1 + γ), γ), only the IC∗
L constraint binds,

b = pθ, pM = 1, pH =
2λ− γ

λ(2 + γ)
, and V =

2(1 + λ) + γ

2 + γ + λ(2 + γ)
.

2. Suppose that γ > 1.

(a) When λ < γ/2, only the IC∗
L constraint binds,

b = pθ, pH = 0, pM =
1

1 + γ − 2λ
, and V =

1 + γ

(1 + γ − 2λ)(1 + λ)2
.

(b) When λ ∈ [γ/2, γ), only the IC∗
L constraint binds,

b = pθ, pM = 1, pH =
2λ− γ

λ(γ + 2)
, and V = 1− γλ

(2 + γ)(1 + λ)
.
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The proof of lemma 1 proceeds in two parts.

Part 1 (γ ≥ 1).

We set up the following relaxed problem:

min
b,pL,pM ,pH

(1− q)2(1− pL) + 2q(1− q)(1− pM) + q2(1− pH)

subject to the high-type ex post IR constraints:

b ≥ pθ

to the probability constraints:

pL ≤ 1, pM ≤ 1, 0 ≤ pH

and ex ante low-type IC* constraint:

(1− q)

(
(1− pL)

θ

2
+ pL

1

2

)
+ q ((1− pM)(1− p)θ + pM(1− b)) ≥

(1− q)

(
(1− pM)

θ

2
+ pMb

)
+ q

(
(1− pH)(1− p)θ + pH

1

2

)
Step 1. We want to show that pL = 1. We first note that setting pL = 1 maximizes the

LHS of the relaxed low-type IC* constraint and does not affect the RHS. It is immediate

to see that the high-type ex post constraint is not affected either.

Step 2. We want to show that the relaxed low-type IC* constraint binds. Suppose it does

not. It is possible to increase pH thus decreasing the objective function without violating

the constraint (note that there is no constraint that pH < 1 in the relaxed problem).

Step 3. We want to show that the high-type ex post constraint binds. Suppose it does

not. Then b > pθ, and it is possible to reduce b without violating the ex post constraint.

But this makes the low-type relaxed IC* constraint slack, because −b appears in the LHS

and b in the RHS. Because step 2 concluded that the low-type relaxed IC* constraint cannot

be slack in the solution, we have proved that the ex post constraint cannot be slack.

Step 4. We want to show that for λ ≤ γ/2: pH = 0, pM = 1
1+γ−2λ

in the relaxed

program. The low-type relaxed IC* constraint and ex post constraint define the function

pM =
(1− λpH(γ + 2))

(γ − 2λ+ 1)
, (5)

substituting this function into the objective function

W = 2(1− q)(1− pM) + q(1− pH)
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duly simplified in light of step 1, we obtain the following expression:

W = pH
(2λ+ γ + 3)λ

(γ − 2λ+ 1) (λ+ 1)
+

2γ − 3λ+ λγ − 2λ2

(γ − 2λ+ 1) (λ+ 1)
,

where we note that, because γ ≥ 2λ, the coefficient of pH is positive and the whole expres-

sion is positive. Hence, minimization of W requires minimization pH . Setting pH = 0 and

solving for pM in (5) yields

pM =
1

1 + γ − 2λ
.

Because λ ≤ γ/2, it follows that pM ≤ 1, as required. We note that the probability of war

equals:

C =
(2γ − 3λ+ λγ − 2λ2)λ

(γ − 2λ+ 1) (λ+ 1)2
.

Step 5. We want to show that for λ ≥ γ/2, pM = 1, pH = 2λ−γ
λ(γ+2)

in the relaxed problem.

In light of the previous step, the solution pH = 0 yields pM > 1 and is not admissible when

λ > γ/2. Because pM decrease in pH in (5), the solution requires setting pM = 1 and, from

(5), pH = 2λ−γ
λ(γ+2)

. When λ ≥ γ/2, pH ≥ 0 and hence the solution is admissible. We note

that the probability of war equals:

C =
γλ

(γ + 2) (λ+ 1)
.

Step 6. We want to show that the solution constructed satisfies all the program con-

straints. The low-type ex post constraint 1− b ≥ (1−p)θ is trivially satisfied, when b = pθ.

Because b > θ/2 and 1/2 > (1 − p)θ, the low-type ex ante IC* constraint coincides with

the low-type ex ante relaxed IC* constraint. The condition 1 − b = 1 − pθ ≤ θ/2 yields

2 − 2pθ ≤ θ, i.e. 1 − θ ≤ 2pθ − 1, i.e. γ = 2pθ−1
1−θ

≥ 1. Hence, for γ ≥ 1, we conclude that

1− b ≤ θ/2. So, after simplification, the ex ante high-type IC* constraint becomes:

(1− q) pθ + q

(
(1− pH)

θ

2
+ pH

1

2

)
= (1− q) ((1− pM)pθ + pMb) + q

(
(1− pH)

θ

2
+ pH

1

2

)
≥

(1− q) ((1− pL)pθ + pLpθ) + q

(
(1− pM)

θ

2
+ pM

θ

2

)
= (1− q) pθ + qθ/2,

which is satisfied (with slack when λ ≥ γ/2). The probability constraints are obviously

satisfied.

Part 2 (γ < 1). We allow for two cases:

3



Case 1. I will temporarily consider the following relaxed problem:

min
b,pL,pM ,pH

(1− q)2(1− pL) + 2q(1− q)(1− pM) + q2(1− pH)

subject to the low-type and high-type relaxed IC* constraints:

(1− q)

(
(1− pL)

θ

2
+ pL

1

2

)
+ q ((1− pM)(1− p)θ + pM(1− b)) ≥

(1− q)

(
(1− pM)

θ

2
+ pMb

)
+ q

(
(1− pH)(1− p)θ + pH

1

2

)

(1− q) ((1− pM)pθ + pMb) + q

(
(1− pH)

θ

2
+ pH

1

2

)
≥

(1− q)pθ + q

(
(1− pM)

θ

2
+ pM(1− b)

)
.

which embed the assumption (to be verified ex post) that 1−b ≥ θ/2, and to the probability

constraints:

pL ≤ 1, pM ≤ 1, 0 ≤ pH

Step 1. As in the previous case, we conclude that pL = 1.

Step 2. We want to show that the low-type relaxed IC* constraint binds. Indeed, if it

does not, we can increase pH without violating neither relaxed IC* constraints (note that

the LHS of the high-type relaxed IC* constraint increases in pH).

Step 3. We want to show that the high-type relaxed IC* constraint binds. Suppose not.

We can then reduce b because the LHS of the high-type relaxed IC* constraint increases

in b and the RHS decreases in b. This makes the low-type relaxed IC* constraint slack,

without changing pM and pH . But in light of step 2, this cannot minimize the objective

function. Hence, the high-type relaxed IC* constraint must bind.

Step 4. We want to show that for λ < γ/(1 + γ), pH = 0 and pM = 1
(1+γ)(1−λ)

solve

the relaxed problem. The binding relaxed ex ante IC* constraints define the function:

[pM , b] (pH), after substituting λ for q and γ for p, we obtain:

b =
2λ+ γ − θλ− θγ − 2λpH + θλpH − 3λγpH + 2θλγpH − λ2pH − λγ2pH − λ2γpH + θλγ2pH + 1

2 (1− λpH − λγpH) (λ+ 1)

pM =
(1− λpH(1 + γ))

(γ + 1) (1− λ)
. (6)

Substituting pM into the objective function

W = 2(1− q)(1− pM) + q(1− pH)

4



duly simplified in light of step 1, we obtain:

W = pH
λ

1− λ
+

2γ − λ− λγ − λ2 − λ2γ

(γ + 1) (λ+ 1) (1− λ)
,

because the coefficient of pH is positive, this quantity is minimized by setting pH = 0.

Then, solving for pM and b when pH = 0 we obtain:

b = − 1

2λ+ 2
(−2λ− γ + θλ+ θγ − 1)

pM =
1

(γ + 1) (1− λ)

we know that 1 ≥ γ ≥ λ, so pM ≥ 0, but the condition pM ≤ 1 yields 1
(γ+1)(1−λ)

− 1 ≤ 0,

i.e. λ ≤ γ
γ+1

, as stated. We note that the probability of war equals:

C =
(λ− 2γ + λγ + λ2 + λ2γ)λ

(γ + 1) (λ+ 1) (λ− 1)
.

Step 5. We want to show that for λ < γ/(1 + γ), pH = 0 and pM = 1
(1+γ)(1−λ)

solve the

original problem. Again, the low-type ex ante IC* constraint coincides with the relaxed

low-type ex ante IC* constraint. We need to show that the ex post constraint b ≥ pθ is

satisfied. In fact, simplification yields:

b− pθ =
1

2
(λ+ 1)−1 (1− γ) (1− θ)λ > 0.

Finally we show that the high-type IC* constraint coincides with the (binding) relaxed

high-type IC* constraint, i.e. that 1 − b ≥ θ/2. Note in fact, that this implies that the

ex post constraint 1 − b ≥ (1− p) θ is satisfied, because θ/2 > (1− p) θ. Indeed, after

simplification, we obtain:

1− b− θ/2 =
1

2
(λ+ 1)−1 (1− γ) (1− θ)λ ≥ 0.

Step 6. We want to show that for λ ∈ [γ/(1 + γ),min{1/(1 + γ), γ}], pM = 1, pH =

1 − γ
(1+γ)λ

solves the relaxed problem. When λ > γ/(1 + γ), setting pH = 0 violates the

constraint pM = 1. Further, the expression (6) reveals that pM decreases in pH . Hence

minimization of pH , which induces minimization of W , requires setting pM = 1. Solving for

b and pH , we obtain:

b = −(−λ− 3γ + 2θγ − λγ − γ2 + θγ2 − 1)

2λ+ 2γ + 2λγ + 2

pH =
λ− γ + λγ

(γ + 1)λ
= 1− γ

(1 + γ)λ
.
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The condition that pH ≥ 0 requires that λ ≥ γ
γ+1

as stated.

Step 7. We want to show that for λ ∈ [γ/(1 + γ),min{1/(1 + γ), γ}], pM = 1, pH =

1− γ
(1+γ)λ

solves the original problem. Again, the low-type ex ante IC* constraint coincides

with the relaxed low-type ex ante IC* constraint. We need to show that the ex post

constraint b ≥ pθ is satisfied. In fact, simplification yields:

b− pθ =
1

2
(γ + 1)−1 (λ+ 1)−1 (λ+ λγ − 1) (θ − 1) γ

and this quantity is positive if and only if λ ≤ 1
γ+1

. Finally we show that the high-type ex

ante IC* constraint coincides with the (binding) relaxed high-type ex ante IC* constraint,

i.e. that 1 − b ≥ θ/2. Note in fact, that this implies that the ex post constraint 1 − b ≥
(1− p) θ is satisfied, because θ/2 > (1− p) θ. Indeed, after simplification, we obtain:

1− b− θ/2 =
1

2
(γ + 1)−1 (λ+ 1)−1 (1− θ)

(
λ− γ + λγ − γ2 + 1

)
and λ−γ+λγ−γ2+1 ≥ 0 if and only if λ ≥ 1

γ+1
(γ + γ2 − 1) but because 1

γ+1
(γ + γ2 − 1) <

γ
γ+1

, this condition is less stringent than λ ≥ γ
γ+1

.

Case 2. We want to show that for λ ∈ [1/(1 + γ), γ), pM = 1, pH = 2λ−γ
λ(2+γ)

solve the

original problem. Consider now the same relaxed problem that we considered in the proof

for the case of γ ≥ 1. We know from the analysis for the case γ ≥ 1, that this relaxed

problem is solved by pH = 0, pM = 1
1+γ−2λ

, b = pθ for λ < γ/2 and by pM = 1, pH =
2λ−γ
λ(γ+2)

, b = pθ for λ ∈ [γ/2, γ). We now note that

1

γ + 1
− γ/2 =

1

2
(γ + 1)−1 (1− γ) (γ + 2)

and this quantity is positive when γ ≤ 1. Hence the possibility that λ < γ/2 is ruled

out: On the domain 1/(1 + γ) ≤ λ ≤ γ ≤ 1, the solution to the relaxed problem is

pM = 1, pH = 2λ−γ
λ(γ+2)

, with b = pθ. We now need to show that this is also the solution

of the original problem. Again, the low-type ex ante IC* constraint coincides with the

relaxed low-type ex ante IC* constraint. Consider the ex ante high-type IC* constraint.

The condition 1 − b = 1 − pθ ≥ θ/2 yields γ = 2pθ−1
1−θ

≤ 1. Hence, for γ ≤ 1, we conclude

that 1− b ≥ θ/2, and hence that 1− b ≥ (1− p) θ. So the ex ante high-type IC* constraint

becomes:

(1−q) ((1− pM)pθ + pMpθ)+q

(
(1− pH)

θ

2
+ pH

1

2

)
−(1−q)pθ−q

(
(1− pM)

θ

2
+ pM(1− pθ)

)
≥ 0

and indeed, after simplification, the LHS equals:

1

2
(γ + 2)−1 (λ+ 1)−1 (λ+ λγ − 1) (1− θ) γ,

6



a positive quantity as long as λ+λγ−1, i.e., λ > 1
γ+1

, which is exactly the condition under

which we operate.

This concludes the proof of the characterization lemma. One can then verify by inspec-

tion that the above full characterization determines all the characteristics highlighted in

Proposition 1, but the comparison with no communication, which we now determine.

For γ > 1, λ < γ/2 and λ < γ−1
γ+3

, the separating equilibrium optimal value 1+γ
(1+γ−2λ)(1+λ)2

is evidently larger than the optimal no-communication value 1
(1+λ)2

.

Suppose that γ > 1, λ < γ/2, and λ > γ−1
γ+3

. The separating equilibrium optimal value

and the no-communication values are, respectively, 1+γ
(1+γ−2λ)(1+λ)2

and 1
λ+1

. The difference

is:
1 + γ

(1 + γ − 2λ)(1 + λ)2
− 1

λ+ 1
=

(2λ+ 1− γ)λ

(γ − 2λ+ 1) (λ+ 1)2
,

and this quantity is positive if and only if λ < γ−1
2
, which is always true for γ > 1 and

λ > γ−1
γ+3

, as γ−1
2

< γ−1
γ+3

requires that γ < 1.

Suppose that γ > 1 and λ > γ/2, and λ > γ−1
γ+3

. The separating equilibrium optimal

value is 1− γλ
(2+γ)(1+λ)

. Taking the difference with the no-communication value,

1− γλ

(2 + γ)(1 + λ)
− 1

λ+ 1
= 2

λ

(γ + 2) (λ+ 1)
> 0.

Suppose that γ < 1 and λ < γ/(1 + γ). The separating equilibrium optimal value is
1+γ+λ(1−γ)

(1+γ)(1−λ)(1+λ)2
. Hence,

1 + γ + λ(1− γ)

(1 + γ)(1− λ)(1 + λ)2
− 1

λ+ 1
=

(λ− γ + λγ + 1)λ

(γ + 1) (λ+ 1)2 (1− λ)
,

because λ < γ < 1, the above is positive if λ− γ + λγ + 1 > 0, i.e. λ > γ−1
γ+1

which always

holds.

Suppose that γ < 1 and λ < γ/(1 + γ). The separating equilibrium optimal value is

1− γλ
(1+γ)(1+λ)2

. Hence,

1− γλ

(1 + γ)(1 + λ)2
− 1

λ+ 1
=

(λ+ λγ + 1)λ

(γ + 1) (λ+ 1)2
> 0

Suppose that γ < 1 and λ ∈ [1/(1+γ), γ), so that the separating equilibrium optimal value

is 2(1+λ)+γ
2+γ+λ(2+γ)

and

2(1 + λ) + γ

2 + γ + λ(2 + γ)
− 1

λ+ 1
= 2 (γ + 2)−1 (λ+ 1)−1 λ > 0.

This concludes the proof of Proposition 1.

Proof of Proposition 2. The Proposition follows from this Lemma.
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Lemma 2 Allowing players to play mixed strategies in the unmediated communication

game, the optimal equilibrium is such that the hawk always sends message h and the dove

sends message l with probability σ, where σ < 1 if and only if γ < 1 and

γ

1 + γ
> λ > max

{
−1− γ (5 + 6γ) +

√
(1 + 3γ) (1 + γ (11 + 8γ (3 + 2γ)))

2 (1 + γ) (1 + 3γ)
,

−1− γ (8 + 3γ) +
√

1 + γ (16 + γ (54 + γ (48 + 25γ)))

2 (γ2 − 1)

}
.

For λ < 2γ2/ (1 + 3γ) ,

pM =
2γ − λ+ γλ

2(1 + γ)(γ − λ)
, pH = 0, σ = 1 +

λ

2
(1− 1/γ), b = (1 + γ(1− θ))/2

and V =
λ(γ2(4 + 3λ)− λ− 2γλ(3 + 2λ))

4γ(γ − λ)(1 + λ)2
.

For λ > 2γ2/ (1 + 3γ) ,

pM = 1, pH = 0, b = pθ, σ =
(1 + γ)(1 + λ)

(1 + 2γ)
, and V =

γ2

(1 + 2γ)2
.

Proof. We proceed in three parts.

Part 1. (The low type mixes).

The choice variables are b, σ, pL, pM , and pH . We have 19 constraints, i.e. one IC for

the low type which is binding, four IC for the high type to get rid of the maximum in the

constraint, two ex post constraints for high type, four ex post constraints for low type, and

eight probability constraints. First we rearrange the IC constraint for low type and express

b in terms of the other variables. Substituting b into objective function and constraints,

we get rid of b and IC constraint for low type. After simplifying the constraints, we are

left with the following constraints, referred to as constraints Ci, i = 1, . . . , 9. (We omit the

constraints that all probabilities must be in [0, 1].)

1. ICH1 : (1 + γ)pM(1 + λ− 2σ)− (1 + γ)pH(1 + λ− σ) + pLσ;

2. ICH2 : −pH + pM + (pH+pL−2pM )σ
1+λ

;

3. ICH3 : (1 + λ)(−γ + λ)pH + (−1 + γ − 2λ)σ(pH − pM) + (pH + pL − 2pM)σ2;

4. ICH4 : (1+λ)(−γ+λ)pH +((−1+ γ− 2λ)pH + γ(pL +λpL − pM)+ pM +2λpM)σ+

(pH + pL − 2pM)σ2;

5. EXH1 : pM + pLσ + pH(−1− (2 + γ)λ+ σ)− pM(γ − 2λ+ 2σ);
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6. EXH2 : λ+ γ(−1 + σ);

7. EXL1 : pH(1+λ−σ)(1+(2+γ)λ−σ)+σ(pM(2+(3+γ)λ−2σ)+pL(−1−λ+σ));

8. EXL3 : pM(2 + (3 + γ)λ− 2σ) + pLσ + pH(−1− (2 + γ)λ+ σ);

9. EXL4 : 1− (1+γ)λ
−1−λ+σ

.

• case 1: C5 binds

This section covers the case that only C5 binds. We do not assume C5 binds ex ante.

We set up the following relaxed problem:

min
pL,pM ,pH ,σ

1− ((
σ

1 + λ
)2pL + 2

σ

1 + λ

1 + λ− σ

1 + λ
pM + (

1 + λ− σ

1 + λ
)2pH)

subject to the following constraints:

1. pL ≤ 1,

2. 0 ≤ pM ≤ 1,

3. pH ≥ 0,

4. 0 ≤ σ ≤ 1,

5. C5 ≥ 0 ⇔ pLσ ≥ (1 + (2 + γ)λ− σ)pH + (γ − 2λ+ 2σ − 1)pM .

– Case 1.1: Parameter Region is 1/2<λ ≤ 1
2
(−1 +

√
5) and 1−λ

λ
< γ < 2λ, or

λ > 1
2
(−1 +

√
5) and λ < γ < 2λ.

1. We want to show that pL = 1. Suppose pL < 1. We can set pL = 1 and

increase pH to make sure C5 is satisfied. By doing so, no constraint will be

violated and the objective function is strictly decreased.

2. We want to show that C5 binds. Suppose it does not. We can increase pH

without violating other constraints and decrease the objective function.

3. Suppose (γ−2λ+2σ−1) > 0. Then MCpM
MCpH

= 2σ+(γ−2λ−1)
1+λ−σ+(1+γ)λ

< 2σ
1+λ−σ

= MUpM
MUpH

,

since (γ − 2λ − 1) < 0 and (1 + γ)λ > 0. Therefore, we want pM to be as

large as possible and pH to be as small as possible, i.e. pM = 1 or pH = 0.

If σ ≤ γ − 2λ+ 2σ − 1, pH = 0 and pM = σ
γ−2λ+2σ−1

.

If σ ≥ γ − 2λ+ 2σ − 1, pM = 1 and pH = 1−σ+2λ−γ
1−σ+2λ+γλ

.

4. Suppose (γ − 2λ + 2σ − 1) ≤ 0. We have pLσ + (−γ + 2λ − 2σ + 1)pM ≥
(1 + (2 + γ)λ− γ)pH . Then pL = 1, pM = 1 and pH = 1−σ+2λ−γ

1−σ+2λ+γλ
.

5. To sum up, we conclude that:
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(a) If 0 ≤ σ ≤ 1 + 2λ − γ, then pL = 1, pM = 1, pH = 1−σ+2λ−γ
1−σ+2λ+γλ

, and

V = γ(1+λ−σ)2

(1+λ)(1+(2+γ)λ−σ)
.

(b) If 1 ≥ σ ≥ 1 + 2λ − γ, then pL = 1, pH = 0, pM = σ
γ−2λ+2σ−1

, and

V = − (1+λ−σ)((−1+γ−2λ)(1+λ)+(1+γ)σ)
(1+λ)2(1−γ+2λ−2σ)

.

Under the parameter region we specify above, we know that 1+2λ−γ ≥ 1.

Since σ ≤ 1, only case (a) is possible. And V is minimized when σ = 1.

6. The solution to the relaxed problem is pL = 1, pM = 1, pH = 2λ−γ
2λ+γλ

, σ = 1,

and V = γλ
2+γ+2λ+γλ

. Substituting these into the original problem, we can

show that all the constraints are satisfied. Therefore, this is also the solution

to the original problem.

– Case 1.2: Parameter Region is 0<λ ≤ 1
2
and γ > 1, or λ > 1

2
and γ > 2λ.

1. We want to show that pL = 1. Suppose not. We can increase pL and pH

and decrease the objective function without violating the other constraints.

2. It is easy to show that C5 binds. Suppose not. We can increase pH and

decrease the objective function without violating the other constraints.

3. Suppose (γ − 2λ+ 2σ − 1) > 0.

If MCpM
MCpH

= 2σ+(γ−2λ−1)
1+λ−σ+(1+γ)λ

≤ 2σ
1+λ−σ

= MUpM
MUpH

, then we want pM to be as large

as possible and pH to be as small as possible, i.e. pM = 1 or pH = 0. If

σ ≤ γ − 2λ+ 2σ − 1, pH = 0 and pM = σ
γ−2λ+2σ−1

. If σ ≥ γ − 2λ+ 2σ − 1,

pM = 1 and pH = 1−σ+2λ−γ
1−σ+2λ+γλ

.

If MCpM
MCpH

= 2σ+(γ−2λ−1)
1+λ−σ+(1+γ)λ

> 2σ
1+λ−σ

= MUpM
MUpH

, we want pM to be as small as

possible and pH to be as large as possible, i.e. pM = 0 and pH = σ
1+(2+γ)λ−σ

.

4. Suppose (γ − 2λ + 2σ − 1) ≤ 0. We have pLσ + (−γ + 2λ − 2σ + 1)pM ≥
(1 + (2 + γ)λ− γ)pH . Then pL = 1, pM = 1 and pH = 1−σ+2λ−γ

1−σ+2λ+γλ
.

5. To sum up, we conclude that:

(a) If 0 ≤ σ ≤ 1+2λ−γ
2

, we have pL = 1, pM = 1, pH = 1−σ+2λ−γ
1−σ+2λ+γλ

, and

V = γ(1+λ−σ)2

(1+λ)(1+(2+γ)λ−σ)
.

(b) If (−1+γ−2λ)(1+λ)
−1+γ+2γλ

> σ ≥ 1+2λ−γ
2

, pL = 1, pM = 0, pH = σ
1+(2+γ)λ−σ

.

And V = (1+λ−σ)(1−σ+λ(3+2λ+γ(1+λ+σ)))
(1+λ)2(1+(2+γ)λ−σ)

.

(c) If max(1+2λ−γ
2

, (−1+γ−2λ)(1+λ)
−1+γ+2γλ

) ≤ σ ≤ 1 + 2λ − γ, then pL = 1, pM = 1,

pH = 1−σ+2λ−γ
1−σ+2λ+γλ

, and V = γ(1+λ−σ)2

(1+λ)(1+(2+γ)λ−σ)
.

(d) If max(1 + 2λ − γ, (−1+γ−2λ)(1+λ)
−1+γ+2γλ

) ≤ σ ≤ 1, pL = 1, pH = 0, pM =
σ

γ−2λ+2σ−1
, and V = − (1+λ−σ)((−1+γ−2λ)(1+λ)+(1+γ)σ)

(1+λ)2(1−γ+2λ−2σ)
.

6. Under the parameter region we specify above, all the cases specified above

are possible. After comparing all the minimized values, we find that case

(d) achieves the minimized V when σ = 1.
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7. The solution to the relaxed problem is pL = 1, pM = 1
1+γ−2λ

, pH = 0, σ = 1,

and V = λ(γ(2+λ)−λ(3+2λ))
(1+γ−2λ)(1+λ)2

. Substituting these into the original problem, we

can show that all the constraints are satisfied. Therefore, this is also the

solution to the original problem.

• case 2: C1 binds

This section covers the case that C1 binds and C5 might bind. We do not assume C1

binds ex ante.

We set up the following relaxed problem:

min
pL,pM ,pH ,σ

1− ((
σ

1 + λ
)2pL + 2

σ

1 + λ

1 + λ− σ

1 + λ
pM + (

1 + λ− σ

1 + λ
)2pH)

subject to the following constraints:

1. pL ≤ 1,

2. 0 ≤ pM ≤ 1,

3. pH ≥ 0,

4. 0 ≤ σ ≤ 1,

5. C1 ≥ 0 ⇔ pLσ ≥ (1 + γ)(1 + λ− σ)pH + (1 + γ)(−1− λ+ 2σ)pM .

6. C5 ≥ 0 ⇔ pLσ ≥ (1 + (2 + γ)λ− σ)pH + (γ − 2λ+ 2σ − 1)pM .

– Case 2.1:

Parameter Region is 0<λ ≤ 1
2
and λ < γ ≤ λ

1−λ
, or 1/2<λ ≤ 1

2
(−1 +

√
5) and

λ < γ < 1−λ
λ
.

1. We want to show that pL = 1. Suppose not. We can increase pL and pH

and decrease the objective function without violating other constraints.

2. It’s easy to show that either C1 or C5 binds. Suppose both are not bind-

ing. We can increase pH without violating other constraints. Here, we first

consider the case where C1 binds.

3. Suppose 2σ−λ−1 ≥ 0. Then MCpM
MCpH

= 2σ−λ−1
1+λ−σ

< 2σ
1+λ−σ

= MUpM
MUpH

. Therefore,

pM = 1 or pH = 0. If σ ≥ (1 + γ)(−1 − λ + 2σ), we have pM = 1 and

pH = σ+(1+γ)(1+λ−2σ)
(1+γ)(1+λ−σ)

≥ 0. If σ ≤ (1 + γ)(−1 − λ + 2σ), we have pH = 0,

pM = σ
(1+γ)(−1−λ+2σ)

≤ 1.

4. Suppose 2σ−λ− 1 < 0, we have pL = 1, pM = 1, and pH = σ+(1+γ)(1+λ−2σ)
(1+γ)(1+λ−σ)

.

5. To sum up ,we can show that:

(a) If 0 ≤ σ ≤ (1+γ)(1+λ)
1+2γ

, then pL = 1, pM = 1 and pH = σ+(1+γ)(1+λ−2σ)
(1+γ)(1+λ−σ)

.
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(b) If 1 ≥ σ ≥ (1+γ)(1+λ)
1+2γ

, then pL = 1, pH = 0, and pM = σ
(1+γ)(−1−λ+2σ)

.

6. Since in the parameter region specified above (1+γ)(1+λ)
1+2γ

≥ 1, we know that

only case (a) is possible. Hence, pL = 1, pM = 1, pH = σ+(1+γ)(1+λ−2σ)
(1+γ)(1+λ−σ)

,

and V = γ(1+λ−σ)σ
(1+γ)(1+λ)2

. Notice that V is a quadratic function of σ which is

maximized at σ = 1+λ
2
.

7. Substituting pL, pM , and pL into C5, we have the following constraint on σ:

γ(−1− 2λ+
λ(1 + λ)

1 + λ− σ
+

σ

1 + γ
) ≥ 0,

which is equivalent to

σ1 ≤ σ ≤ σ2,

where

σ1 =
1

2
(2 + γ + 3λ+ 2γλ−

√
2γλ(3 + 4λ) + λ(4 + 5λ) + (γ + 2γλ)2),

σ2 =
1

2
(2 + γ + 3λ+ 2γλ+

√
2γλ(3 + 4λ) + λ(4 + 5λ) + (γ + 2γλ)2).

Since 1+λ
2

< σ1 ≤ 1 < σ2, we know that V is minimized at σ = 1.

8. Next we consider the case that C5 is binding. Using the same method, we

get the minimized value which is larger than the V specified above. Hence,

the solution to the relaxed problem is pL = 1, pM = 1, pH = 1− γ
λ+γλ

, σ = 1,

and V = γλ
(1+γ)(1+λ)2

. Substituting the solution to the original problem, we

show that all the constraints are satisfied. Hence, this is also the solution

to the original problem.

– Case 2.2: Parameter Region is 0<λ ≤ 1
2
and λ

1−λ
≤ γ ≤ 1.

1. pL=1. Suppose not. We can increase pL and pH without violating other

constraints.

2. It is easy to show that either C1 or C5 binds. Suppose both are not bind-

ing. We can increase pH without violating other constraints. Here, we first

consider the case where C1 binds.

3. Suppose 2σ − λ − 1 ≥ 0, MCpM
MCpH

= 2σ−λ−1
1+λ−σ

< 2σ
1+λ−σ

= MUpM
MUpH

. Therefore,

pM = 1 or pH = 0. If σ ≥ (1 + γ)(−1 − λ + 2σ), we have pM = 1 and

pH = σ+(1+γ)(1+λ−2σ)
(1+γ)(1+λ−σ)

≥ 0. If σ ≤ (1 + γ)(−1 − λ + 2σ), we have pH = 0,

pM = σ
(1+γ)(−1−λ+2σ)

≤ 1

4. Suppose 2σ−λ− 1 < 0, we have pL = 1, pM = 1, and pH = σ+(1+γ)(1+λ−2σ)
(1+γ)(1+λ−σ)

.

5. To sum up ,we can show that:

(a) If 0 ≤ σ ≤ (1+γ)(1+λ)
1+2γ

, then pL = 1, pM = 1 and pH = σ+(1+γ)(1+λ−2σ)
(1+γ)(1+λ−σ)

.
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(b) If 1 ≥ σ ≥ (1+γ)(1+λ)
1+2γ

, then pL = 1, pH = 0, and pM = σ
(1+γ)(−1−λ+2σ)

.

6. Since in the parameter region specified above (1+γ)(1+λ)
1+2γ

≤ 1, we know that

both case (a) and (b) are possible.

(a) If 0 ≤ σ ≤ (1+γ)(1+λ)
1+2γ

, pL = 1, pM = 1, pH = σ+(1+γ)(1+λ−2σ)
(1+γ)(1+λ−σ)

, and

V = γ(1+λ−σ)σ
(1+γ)(1+λ)2

.

Substituting pL, pM , and pL into C5, we have the following constraint:

γ(−1− 2λ+
λ(1 + λ)

1 + λ− σ
+

σ

1 + γ
) ≥ 0,

which is equivalent to

σ1 ≤ σ ≤ σ2,

where

σ1 =
1

2
(2 + γ + 3λ+ 2γλ−

√
2γλ(3 + 4λ) + λ(4 + 5λ) + (γ + 2γλ)2),

σ2 =
1

2
(2 + γ + 3λ+ 2γλ+

√
2γλ(3 + 4λ) + λ(4 + 5λ) + (γ + 2γλ)2).

Taking into account all constraints on σ, we have the following problem:

min
σ

V =
γ(1 + λ− σ)σ

(1 + γ)(1 + λ)2

such that

0 ≤ σ ≤ (1 + γ)(1 + λ)

1 + 2γ
= σ3,

σ1 ≤ σ ≤ σ2.

We can show that if γ < 1
4
(3λ−

√
8λ+ 9λ2), or γ > 1

4
(3λ+

√
8λ+ 9λ2),

then σ3 < σ1 and the feasible region of σ is empty. If 1
4
(3λ−

√
8λ+ 9λ2) ≤

γ ≤ 1
4
(3λ +

√
8λ+ 9λ2), then 1+λ

2
< σ1 ≤ σ ≤ σ3 ≤ 1. Since

V is a quadratic function of σ, it is obvious that V is minimized at

σ = σ3 =
(1+γ)(1+λ)

1+2γ
, and V = γ2

(1+2γ)2
.

Here we rearrange the parameter region. We show that if 0 ≤ γ ≤ 1

and 2γ2

1+3γ
≤ λ ≤ γ

1+γ
, then pL = 1, pM = 1, pH = 0, σ = (1+γ)(1+λ)

1+2γ
, and

V = γ2

(1+2γ)2
.

(b) If 1 ≥ σ ≥ (1+γ)(1+λ)
1+2γ

, we have pL = 1, pH = 0, pM = σ
(1+γ)(−1−λ+2σ)

, and

V =
(1 + λ− σ)((1 + λ)(1 + λ− σ) + γ(1 + λ− 2σ)(1 + λ+ σ))

(1 + γ)(1 + λ)2(1 + λ− 2σ)
.

Substituting pL, pM , and pL into C5, we have the following constraint:

(−λ+ γ(2 + λ− 2σ))σ

(1 + γ)(1 + λ− 2σ)
≤ 0,
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which is equivalent to

0 ≤ σ ≤ 1 + λ

2
or

1

2
(2 + λ− λ

γ
) ≤ σ.

Taking into account all constraints on σ, we have the following reduced

problem:

min
σ

V =
(1 + λ− σ)((1 + λ)(1 + λ− σ) + γ(1 + λ− 2σ)(1 + λ+ σ))

(1 + γ)(1 + λ)2(1 + λ− 2σ)

such that

1 ≥ σ ≥ (1 + γ)(1 + λ)

1 + 2γ
,

0 ≤ σ ≤ 1 + λ

2
or

1

2
(2 + λ− λ

γ
) ≤ σ.

If 0 ≤ λ ≤ 2γ2

1+3γ
, then 1 ≥ σ ≥ 1

2
(2 + λ − λ

γ
). If γ

1+γ
≥ λ > 2γ2

1+3γ
, then

1 ≥ σ ≥ (1+γ)(1+λ)
1+2γ

. Since the curve of V is inverse U-shaped, we know

that the minimal can be achieved at σ = 1, σ = 1
2
(2 + λ − λ

γ
), or σ =

(1+γ)(1+λ)
1+2γ

. When σ = 1, V1 =
λ(λ+λ2+γ(−1+λ+λ2))
(1+γ)(−1+λ)(1+λ)2

. When σ = 1
2
(2+λ− λ

γ
),

V2 =
λ(λ+2γλ(3+2λ)−γ2(4+3λ))

4γ(1+λ)2(−γ+λ)
. When σ = (1+γ)(1+λ)

1+2γ
, V3 =

γ2

(1+2γ)2
.

To sum up, we have following three cases:

i. V1 is chosen when 0 < γ < γ∗ and 0 ≤ λ ≤ −1−2γ
2(1+γ)

+ 1
2

√
1+11γ+24γ2+16γ3

(1+γ)2(1+3γ)

or γ∗ < γ < 1 and 0 ≤ λ ≤ −1−8γ−3γ2

2(−1+γ2)
− 1

2

√
1+16γ+54γ2+48γ3+25γ4

(−1+γ2)2
.

ii. V2 is chosen when γ∗ < γ < 1 and −1−8γ−3γ2

2(−1+γ2)
−1

2

√
1+16γ+54γ2+48γ3+25γ4

(−1+γ2)2
<

λ < 2γ2

1+3γ
.

iii. V3 is chosen when 0 < γ < γ∗ and −1−2γ
2(1+γ)

+ 1
2

√
1+11γ+24γ2+16γ3

(1+γ)2(1+3γ)
< λ <

γ
1+γ

, or γ∗ < γ < 1 and γ
1+γ

≥ λ > 2γ2

1+3γ
.

Since the solution given in case (b) is superior to that in case (a), the above

solution is the final solution.

7. Next we consider the case that C5 is binding. Using the same method, we

get the minimized value which is not smaller than the value for V specified

above. Substituting the solution to the original problem, we show that all

the constraints are satisfied. Hence, this is also the solution to the original

problem.

Part 2 (The high type mixes). Suppose that the high type mix between the high message

(with probability ρ) and the low message. The low type only sends the low message. Let

14



ζ := q(1−ρ)
1−qρ

be the posterior of facing a high type after the low message. Let π := 1− qρ be

the probability of low message. The optimal equilibrium is found by solving the following

program.

min
b,pL,pM ,pH ,σ

π2 (1− pL) + 2π(1− π) (1− pM) + (1− π)2 (1− pH)

subject the ex ante IC* constraint for the for the low type:

π((1− pL) (ζ(1− p)θ + (1− ζ)θ/2) + pL
1

2
) + (1− π)((1− pM) (1− p)θ + pM(1− b))

≥ π((1− pM) (ζ(1− p)θ + (1− ζ)
θ

2
) + pM max{b, (ζ(1− p)θ + (1− ζ)

θ

2
)})

+(1− π)((1− pH) (1− p)θ + pH max{1
2
, (1− p)θ})

to the indifference condition for the high type

π((1− pM) (ζ
θ

2
+ (1− ζ)pθ) + pMb) + (1− π)((1− pH)

θ

2
+ pH

1

2
) =

π((1− pL) (ζ
θ

2
+ (1− ζ)pθ) + pL

1

2
) + (1− π) ((1− pM)

θ

2
+ pM(1− b))

to the high-type ex post constraints:

b ≥ ζθ/2 + (1− ζ)pθ, 1/2 ≥ θ/2, 1/2 ≥ ζ
θ

2
+ (1− ζ)pθ, 1− b ≥ θ

2

to the low-type ex post constraints:

1− b ≥ (1− p) θ, 1/2 ≥ ζ (1− p) θ + (1− ζ) θ/2

and to the probability constraints:

0 ≤ pL ≤ 1, 0 ≤ pM ≤ 1, 0 ≤ pH ≤ 1, 0 ≤ σ ≤ 1.

But is immediate to note that the constraint set is empty. Indeed, the third high-type ex

post constraint is equivalent to:

−1

2
(1− θ)

γ − λ(1− ρ)

1 + λ(1− ρ)
≥ 0,

which cannot be the case for γ > λ.

Part 3 (Both types mix). Suppose that the low type mixes between the low message (with

probability σ) and the high message. The high type mixes between the high message (with

probability ρ) and the low message. Let χ := qρ
1−π

be the posterior of facing a high type

after the high message. Let π := (1− q)σ + q(1− ρ) be the probability of a low message.
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Let ζ := q(1−ρ)
π

be the posterior of facing a high type after the low message. The optimal

equilibrium solves the following program:

min
b,pL,pM ,pH ,σ

π2 (1− pL) + 2π(1− π) (1− pM) + (1− π)2 (1− pH)

subject the ex ante IC* constraint for the for the low type:

π((1− pL) (ζ(1− p)θ + (1− ζ)θ/2) + pL
1

2
) + (1− π)((1− pM) (χ(1− p)θ + (1− χ)

θ

2
) + pM(1− b))

= π((1− pM) (ζ(1− p)θ + (1− ζ)θ/2) + pMb) + (1− π)((1− pH) (χ(1− p)θ + (1− χ)
θ

2
) + pH

1

2
)

to the indifference condition for the high type

π((1− pM) (ζ
θ

2
+ (1− ζ)pθ) + pMb) + (1− π)((1− pH) (χ

θ

2
+ (1− χ)pθ) + pH

1

2
) =

π((1− pL) (ζ
θ

2
+ (1− ζ)pθ) + pL

1

2
) + (1− π) ((1− pM) (χ

θ

2
+ (1− χ)pθ) + pM(1− b))

to the high-type ex post constraints:

b ≥ ζθ/2+ (1− ζ)pθ, 1/2 ≥ χθ/2+ (1−χ)pθ,
1

2
≥ ζ

θ

2
+ (1− ζ)pθ, 1− b ≥ χ

θ

2
+ (1−χ)pθ

to the low-type ex post constraints:

1− b ≥ χ (1− p) θ + (1− χ) θ/2, 1/2 ≥ ζ (1− p) θ + (1− ζ) θ/2, b ≥ ζ(1− p)θ + (1− ζ)
θ

2
1

2
≥ χ(1− p)θ + (1− χ)

θ

2

and to the probability constraints:

0 ≤ pL ≤ 1, 0 ≤ pM ≤ 1, 0 ≤ pH ≤ 1, 0 ≤ σ ≤ 1, 0 ≤ ρ ≤ 1.

But is immediate to note that the constraint set is empty. Indeed, second and fourth

high-type ex post constraints are equivalent to:

X :=
1

2
(1− θ)

(ρ+ σ)λ− γ

ρλ+ 1− σ
≥ 0, Z :=

1

2
(1− θ)

ρλ− λ+ σγ

ρλ− λ− σ
≥ 0.

Evidently, X ≥ 0 requires λ ≥ γ
ρ+σ

, which, in light of γ > λ, requires ρ+ σ > 1. Consider

Z, note that it increases in λ. When λ takes its upper value γ,

Z =
1

2
(1− θ)

(1− σ − ρ) γ

σ + γ(1− ρ)

which is positive if and only if σ + ρ ≤ 1. This concludes that whenever γ > λ , either

X < 0 or Z < 0 or both.
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Appendix B – Mediation

For reasons of clarity, the proof of Proposition 3 is postponed to after the proof of

Proposition 4

Proof of Proposition 4. The proof follows from this Lemma.

Lemma 3 The solution of the mediator’s program with enforcement power is such that:

For λ ≤ γ/2,

pM =
1

γ − 2λ+ 1
, pH = 0, and V =

(γ + 1)

(γ − 2λ+ 1) (λ+ 1)2
;

For λ ≥ γ/2,

pM = 1, pH =
2λ− γ

(γ − λ+ 1)λ
, and V =

γ + 1

(γ − λ+ 1) (λ+ 1)
.

Proof. We first solve the following relaxed program:

min
b,pL,pM ,pH

(1− q)2 (1− pL) + 2q (1− q) (1− pM) + q2 (1− pH)

subject to high-type ex interim individual rationality:

(1− q) (pMb+ (1− pM) pθ) + q

(
pH

1

2
+ (1− pH)

θ

2

)
≥ (1− q) pθ + q

θ

2
,

to low-type ex interim incentive compatibility:

(1− q)

(
(1− pL)

θ

2
+ pL

1

2

)
+ q ((1− pM)(1− p)θ + pM(1− b)) ≥

(1− q)

(
(1− pM)

θ

2
+ pMb

)
+ q

(
(1− pH)(1− p)θ + pH

1

2

)
,

and to

pL ≤ 1, pM ≤ 1 and pH ≥ 0.

First, note that pL = 1 in the solution because pL appears in the constraints only in

the right-hand side of the low-type ex interim incentive compatibility constraint, which is

increasing in pL. Second, note that the low-type ex interim incentive compatibility must

be binding in the relaxed program’s solution, or else one could increase pH thus reducing

the value of the objective function, without violating the high-typeex interim individual

rationality constraint. Third, note that the high-type ex interim individual rationality

constraint must be binding in the relaxed program’s solution, or else one could decrease b

and make the low-type ex interim incentive compatibility slack.
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Solving for b and pH as a function of pM in the system defined by the low-type ex

interim incentive compatibility and high-type ex interim individual rationality constraints,

and plugging back the resulting expressions in the objective function, we obtain

C = −pM
γ + 1

(λ+ 1) (γ + 1− λ)
+K,

where K is an inconsequential constant. Hence, the probability of conflict is minimized by

setting pM = 1 whenever possible. Substituting pM = 1, in the expression for pH earlier

derived, we obtain pH = 2λ−γ
(γ−λ+1)λ

, which is strictly positive for λ ≥ γ/2 and always smaller

than one.

Solving for b and pM as a function of pH in the system defined by the low-type ex

interim incentive compatibility and high-type ex interim individual rationality constraints,

and plugging back the resulting expressions in the objective function, we obtain

C =
(γ + 1)λ

(γ − 2λ+ 1) (λ+ 1)
pH +K,

where K is another inconsequential constant. The coefficient of pH is positive for λ ≤ γ/2,

hence the probability of conflict is minimized by setting pH = 0, which entails pM = 1
γ−2λ+1

,

a quantity positive and smaller than one when λ ≤ γ/2.

The proof of Lemma 3 and hence of Proposition 4 is concluded by showing that this

solution does not violate the high-type ex interim incentive compatibility and low-type ex

interim individual rationality constraints in the complete program.

Indeed, for λ ≥ γ/2, we verify that the slacks of these constraints are, respectively

1

2
(γ − λ+ 1)−1 (1− θ) (γ − λ) (γ + 1) > 0,

and
1

2
(γ − λ+ 1)−1 (γ + 1) (1− θ) > 0.

Similarly, for λ ≤ γ/2, the slacks are

1

2
(γ − 2λ+ 1)−1 (λ+ 1)−1 (1− θ) (γ − λ) (γ + 1) > 0,

and
1

2
(γ + 1− 2λ)−1 (λ+ 1)−1 (γ + 1) (1− θ) > 0.

Proof of Proposition 3. The characterization follows from this Lemma.

Lemma 4 A solution to the mediator’s problem is such that:

• For λ ≤ γ/2,

qL + 2pL = 1, qH = qM = 0, b = pθ, pM =
1

1 + γ − 2λ
.
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Further,

pL ≤ 2λ

(γ − 2λ+ 1) (γ − 1)
, if γ ≥ 1, pL ≥ (1− γ)λ

2γ2

(λ− γ) (γ + 2)

(λ− γ − 1)
if γ < 1;

The ex ante peace probability is

V =
γ + 1

(1 + γ − 2λ)(1 + λ)2
.

• For λ ≥ γ/2,

qL + 2pL = 1, pM + qM = 1, b = pθ, qH =
2λ− γ

λ(γ + 1− λ)
, qM =

2λ− γ

γ(γ + 1− λ)
,

and qL ≥ λ(2λ−γ)
γ2(γ−λ+1)

. Further, for γ ≥ 1,

pL ≤ 2
(γ − λ) (γ + 2)λ

(γ − λ+ 1) γ (γ − 1)
if γ ≥ 1, pL ≥ (1− γ)λ

2γ2

(λ− γ) (γ + 2)

(λ− γ − 1)
if γ < 1;

The ex ante peace probability is

V =
γ + 1

(γ − λ+ 1) (λ+ 1)
.

Proof. Consider the general mechanisms subject to the ex post IR and ex interim IC*

constraints (1)-(4). It is straightforward to observe that the ex post IR constraints con-

straints are stronger than the following (high-type and low-type, respectively) ex interim

IR constraints ∫ 1

0

bdF (b|h) ≥ Pr[l, h]pθ + Pr[h, h]θ/2,∫ 1

0

bdF (b|l) ≥ Pr[h, l](1− p)θ + Pr[l, l]θ/2, for all b ∈ [0, 1]

and that the ex interim IC* constraint are stronger than the ex interim IC constraint

obtained by substituting the maxima with their first argument (the interim payoff induced

by accepting peace recommendations later in the game).

By the revelation principle by Myerson (1979), the optimal ex ante probability of peace

within the class of mechanisms which satisfy these ex interim IC and IR constraints cannot

be larger than the ex ante probability of peace identified in Lemma 3 in Appendix D.

Because the ex interim IC and IR constraints are weaker than the ex interim IC* and ex

post IR constraints, it follows that any mechanism subject to the constraints (1)–(4) cannot

yield a higher ex ante probability of peace than the one identified in Lemma 3.

Hence, to prove the result, it is enough to show that the formulas for the choice

variables (b, pL, qL, pM , qM , qH) satisfy the constraints (1)-(4) and achieve the same ex
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ante probability of peace as in Lemma 3. Specialize to the mechanisms described by

(b, pL, qL, pM , qM , qH), the ex post IR constraints take the following form, for the high type:

bpM ≥ pMpθ, (qqH + (1− q)qM) · 1/2 ≥ qqHθ/2 + (1− q)qMpθ,

and for the low type:

pLb ≥ pLθ/2, (qpM + (1− q)pL)(1− b) ≥ qpM(1− p)θ + (1− q)pLθ/2,

(qqM + (1− q)qL) · 1/2 ≥ qqM(1− p)θ + (1− q)qLθ/2,

whereas the high-type ex interim IC* constraint is

q(qH/2 + (1− qH)θ/2) + (1− q)(pMb+ qM/2 + (1− pM − qM)pθ) ≥
max{(qpM + (1− q)pL)(1− b), qpMθ/2 + (1− q)pLpθ}+max{(1− q)pLb, (1− q)pLpθ}
+max{(qqM + (1− q)qL) · 1/2, qqMθ/2 + (1− q)qLpθ}
+q(1− pM − qM)θ/2 + (1− q)(1− 2pL − qL)pθ,

and the low-type ex interim IC* constraint is

q(pM(1− b) + qM/2 + (1− pM − qM)(1− p)θ)

+(1− q)(pLb+ pL(1− b) + qL/2 + (1− 2pL − qL)
θ

2
) ≥

max{(1− q)pMb, (1− q)pM
θ

2
}+max{(qqH + (1− q)qM) · 1/2, qqH(1− p)θ + (1− q)qM

θ

2
}

+q(1− qH)(1− p)θ + q(1− pM − qM)θ/2,

It is straightforward to verify that the values provided in Lemma 4 are such that the ex

ante IC* constraint in which the low type does not wage war after misreporting is binding.

Also, plugging in our two sets of values for the choice variables gives the same welfare as

in Proposition 3. We are left with showing that all other constraints are satisfied. We

distinguish the two cases.

Step 1. Suppose that λ < γ/2, so that qM = qH = 0. After simplification, the low-type

IC* constraint becomes

q(pM(1− pθ) + (1− pM)(1− p)θ) + (1− q) · 1/2 ≥
(1− q)pMpθ + q(1− p)θ + q(1− pM)θ/2,

which is binding for pM = 1
1+γ−2λ

. Consider the high-type IC* constraint

qθ/2 + (1− q)(pMb+ (1− pM)pθ) ≥ max{(qpM + (1− q)pL)(1− b), qpMθ/2 + (1− q)pLpθ}
+max{(1− q)pLb, (1− q)pLpθ}+max{(1− q)qL · 1/2, (1− q)qLpθ}+ q(1− pM)θ/2,
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Note that

(qpM + (1− q)pL) (1− b) ≤ qpMθ/2 + (1− q)pLpθ,

as long as either γ > 1 or pL ≥ (1−γ)λ
2γ

pM = (1−γ)λ
2γ2

(λ−γ)(γ+2)
(λ−γ−1)

for γ < 1, that

(1− q) pLb = (1− q) pLpθ

and that

(1− q)qL · 1/2 ≤ (1− q)qLpθ.

Then we substitute in the high-type IC* constraint (duly simplified):

qθ/2 + (1− q)(pMb+ (1− pM)pθ) ≥ qθ/2 + (1− q) pθ,

which is clearly satisfied because b = pθ.

Similarly, we find that the two high-type ex post constraints

pMb ≥ pMpθ, and (qqH + (1− q)qM) · 1/2 ≥ qqHθ/2 + (1− q)qMpθ

are satisfied — the second one because both sides equal zero.

We need to show that the low-type ex post constraints are satisfied. Indeed:

pLpθ > pLθ/2, (1− q)qL · 1/2 > (1− q)qLθ/2,

whereas

(qpM + (1− q)pL) (1− pθ) ≥ qpM(1− p)θ + (1− q)pLθ/2,

as long as pL (γ − 1) = pL
(θ+2pθ−2)

(1−θ)
≤ 2 q

(1−q)
pM = 2λpM . So that if γ ≥ 1, pL ≤ 2λ

(γ−2λ+1)(γ−1)

and if γ < 1, pL ≥ 0 ≥ 2λ
(γ−2λ+1)(γ−1)

.

Finally the probability constraints are satisfied. In fact, 0 ≤ pM ≤ 1 requires only that

1 ≤ 1 + γ − 2λ, i.e., that λ ≤ γ/2.

Step 2. Suppose that λ ≥ γ/2. Consider the low-type constraint, first. After simplifying

maxima, as the low type always accepts the split if exaggerating strength, the low-type IC*

constraint is satisfied as an equality when plugging in the expressions pM + qM = 1, b = pθ,

qH = 2λ−γ
λ(γ+1−λ)

, qM = 2λ−γ
γ(γ+1−λ)

.

Then we consider the high-type IC* constraint. We proceed in two steps. We first

determine the off-path behavior of the high type and show that

(qpM + (1− q)pL) · (1− b) ≤ qpMθ/2 + (1− q)pLpθ

as long as either γ > 1 or pL ≥ (1−γ)λ
2γ

p+M = (1−γ)λ
2γ2

(λ−γ)(γ+2)
(λ−γ−1)

for γ < 1, that

(1− q)pLb = (1− q)pLpθ
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and that

(qqM + (1− q)qL) 1/2 ≤ qqMθ/2 + (1− q)qLpθ

as long as qL ≥ 1−θ
2pθ−1

q
1−q

qM , i.e. qL ≥ λ
γ
qM = λ(2λ−γ)

γ2(γ−λ+1)
.

Then we verify that the consequentially simplified high-type IC* constraint is satisfied

with equality, when substituting in the expressions pM + qM = 1, b = pθ, qH = 2λ−γ
λ(γ+1−λ)

,

qM = 2λ−γ
γ(γ+1−λ)

.

We then verify that the two high-type ex post constraints

pMb ≥ pMpθ, and (qqH + (1− q)qM) · 1/2 ≥ qqHθ/2 + (1− q)qMpθ

are satisfied with equality when substituting in the expressions for b = pθ, qH = 2λ−γ
λ(γ+1−λ)

,

qM = 2λ−γ
γ(γ+1−λ)

.

Finally, show that the low-type ex post constraints are satisfied. In fact

pLpθ > pLθ/2, and (qqM + (1− q)qL) · 1/2 > qqM(1− p)θ + (1− q)qLθ/2,

whereas

(qpM + (1− q)pL) (1− pθ) ≥ qpM(1− p)θ + (1− q)pLθ/2,

as long as pL (γ − 1) = pL
(θ+2pθ−2)

(1−θ)
≤ 2 q

(1−q)
pM = 2λpM . So that if γ ≥ 1, pL ≤

2 (γ−λ)(γ+2)λ
(γ−λ+1)γ(γ−1)

and if γ < 1, pL ≥ 0 ≥ 2 (γ−λ)(γ+2)λ
(γ−λ+1)γ(γ−1)

.

Finally the probability constraints are satisfied. In fact, because γ + 1 − λ > 0, 2λ −
γ − λ(γ + 1− λ) = (λ+ 1) (λ− γ) < 0, and 2λ− γ − γ(γ + 1− λ) = (γ + 2) (λ− γ) , the

conditions 0 ≤ qH ≤ 1 and 0 ≤ qM ≤ 1 require only that 2λ− γ ≥ 0.

Having proved that the claimed solution satisfies all constraints, the proof of Lemma 4,

and hence Proposition 3 is now concluded.
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