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Abstract

There are a number of domains where agents must collec-
tively form a network in the face of the following trade-off:
each agent receives benefits from the direct links it forms to
others, but these links expose it to the risk of being hit by
a cascading failure that might spread over multi-step paths.
Financial contagion, epidemic disease, and the exposure of
covert organizations to discovery are all settings in which
such issues have been articulated.

Here we formulate the problem in terms of strategic net-
work formation, and provide asymptotically tight bounds on
the welfare of both optimal and stable networks. We find
that socially optimal networks are, in a precise sense, sit-
uated just beyond a phase transition in the behavior of the
cascading failures, and that stable graphs lie slightly further
beyond this phase transition, at a point where most of the
available welfare has been lost. Our analysis enables us to
explore such issues as the trade-offs between clustered and
anonymous market structures, and it exposes a fundamental
sense in which very small amounts of “over-linking” in net-
works with contagious risk can have strong consequences for
the welfare of the participants.

1 Introduction

There are many situations in which self-interested agents
form links with one another, producing an underlying net-
work structure. A growing body of work on strategic net-
work formation [21] has sought to analyze the structure of
networks that develop through such types of interaction: what
characteristic properties do they have, and are they approxi-
mately as efficient as networks created through central plan-
ning and coordination? A common theme running through
this literature is the view that links are costly to form, and
this cost must be traded off against the benefits of indirect
access to other parts of the network through multi-step paths,
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as measured by distances [12, 13, 18], component sizes [7],
or point-to-point connectivity [6].

In a wide range of settings where network formation oc-
curs, however, this trade-off is inverted. Instead of costly
links that confer indirect benefits, the agents receive benefits
via their direct links, but through these links they risk expo-
sure to negative payoffs from a broader set of nodes reach-
able on multi-step paths. A canonical example is the problem
of financial contagion [2, 3, 11, 16]. In a highly simplified
formulation of this problem, two parties A and B engaging
in a transaction must balance the benefits arising from the
intended successful outcome of their transaction against the
underlying counterparty risk: the possibility that the other
side will fail to complete the transaction. This risk can now
spread across the links formed by multiple transactions: if
A defaults on its agreement with B, this may mean that B
lacks the resources needed to complete a concurrent transac-
tion with C, and so B too defaults. In this way the failure of
A has spread via B to affect a transaction involving C, and
perhaps further. The fear of such cascading failures, and the
behavior of financial institutions in response to this perceived
increase in counterparty risk, played an important role in the
financial crisis of Fall 2008.

Financial contagion, however, is just one setting in which
strategic agents balance the benefits of linking against con-
cerns about contagious risk. Other basic examples include
the following.

• During a disease epidemic within a human population,
high-risk groups will alter their interaction patterns to
reduce the risk of contagion, including focusing more
on “in-group” members who belong to similar social
circles. In the setting of HIV/AIDS, for example, this
has been studied in the context of sexual contacts [19]
and needle-sharing among intravenous drug users [8].

• In any type of distributed file-sharing application, the
spread of malware from one host to another creates a
very similar form of contagious risk, which can be in-
corporated into decisions about which hosts to down-
load content from.

• In a different setting, participants in a clandestine orga-
nization benefit from the links they form to other mem-
bers for purposes of coordination and mutual assistance,
but by forming such links they expose themselves to a
form of contagious risk: if certain members are com-
promised by an adversary, they may in turn reveal the



identities and whereabouts of others to whom they are
linked, and this process could potentially spread for mul-
tiple steps through the organizational network [15].

Formulating a Model

In all these different settings, the precise formulation of the
payoffs to the participants will depend on details of the do-
main — for example, precisely how does a node benefit from
the presence of a link, and precisely how does the risk of
negative payoff propagate from one node to another? One
of the advantages that general models of strategic network
formation have offered is the ability to draw qualitative in-
sights about the effects of self-interested behavior on net-
work structure across a range of scenarios, using stylized
formulations that capture the basic trade-offs without delv-
ing into the idiosyncracies of any one domain.

A natural modeling strategy for studying strategic net-
work formation is to define a non-cooperative game whose
outcomes are graphs. The precise networks that will emerge
will depend on the precise details of the game. An enumera-
tion of the possibilities is huge, and the likelihood of finding
tractable formulations seems low. Network theorists, follow-
ing [18], have finessed this problem by identifying properties
of networks that we could expect to be satisfied by all equi-
librium networks of games of conceivable interest.

In this paper, we develop a general model in this spirit to
capture the underlying trade-off between the benefit of link
formation and the problem of contagious risk, using simple
definitions for the payoffs arising from these underlying pro-
cesses. The model is formulated as follows. To begin with,
we have a set V of n players, and players can choose to form
bilateral relationships with one another, resulting in an undi-
rected graph G = (V,E). A player receives a payoff of
a > 0 from each relationship it takes part in. We will gen-
erally assume there is an upper bound ∆ on the number of
links any one node is able to form.

Now, once the network is formed, a random process cre-
ates cascading failures as follows. First nodes fail indepen-
dently with probability q, and then failed nodes have a prob-
ability of p of causing their neighbors to fail as well, with
the failure potentially continuing to spread from these newly
failed nodes. In more detail:

• First, each player randomly experiences a failure, inde-
pendently with probability q > 0. We will refer to these
as the root failures in the graph.

• Next, we declare each edge of G to be live indepen-
dently with probability p and blocked with probability
1 − p. We think of the live edges as those that trans-
mit failure, and the blocked edges as those that do not
transmit failure. Any node that can reach a root failure
using a path consisting entirely of live edges is declared
to fail also.

If a player fails, it loses any benefit from the links it forms,
and instead its payoff is defined to be (−b) < 0.

Thus, if di denotes the degree of node i in G, and φi
denote the probability that it fails (taken over the random
choices of root failures and live edges), then we can write i’s
expected payoff as

πi = adi(1− φi)− bφi = adi − (adi + b)φi.

As noted above, our formulation of the payoffs is in-
tended to capture the basic trade-off in a simple way. Links
confer benefits that scale linearly in the degree, and failures
spread through direct probabilistic contagion across edges.
One can imagine more complex models for both of these as-
pects of the payoff, with more complex notions of the way in
which a node’s links increase its payoff, and more complex
mechanisms for the spread of failures. These are interest-
ing directions for further analysis. Here we will see that the
present model already exhibits rich behavior, and suggests
avenues for pursuing such generalizations.

Optimality and Stability. For most of the discussion, we
will measure the “quality” of a graph via its minimum welfare
(henceforth abbreviated min-welfare), which is the minimum
payoff of any node in the graph. Unless otherwise specified,
a socially optimal graph is one that maximizes this quantity.

In addition to socially optimal graphs, we will also con-
sider graphs that arise under a solution concept representing
strategic behavior by the nodes. We say that a graph is stable
if (i) no node can strictly increase its payoff by deleting all its
incident links (hence removing itself from the network), and
(ii) there is no pair of nodes (i, j) such that (i, j) is not an
edge of G, but both i and j would have higher payoffs, with
at least one of them strictly higher, if (i, j) were added to G.
This notion of stability is in the spirit of solution concepts for
the formation of undirected graphs, capturing the notion that
it takes two nodes to agree on the formation of a link, but any
node can unilaterally withdraw from its links. Our definition
of stability is a relaxation of the notion of pairwise Nash sta-
bility [17], which modifies (i) to allow a node to drop any
subset of its incident links. Thus, any pairwise Nash stable
graph is also stable under our definition, and so when we
show upper bounds on the welfare of all stable graphs, it ap-
plies to all pairwise Nash stable graphs as well.

When we consider the structures of socially optimal and
stable graphs, much of the interesting behavior emerges in a
natural range of the parameters a, b, p, and q motivated by
the following considerations. Suppose we had just two nodes
i and j, and suppose that i is deciding whether to link to j. If
it forms the link, it receives a benefit of a but there is a prob-
ability of pq that j will fail and that this failure will spread to
a. We want i to be willing to form the link to j under these
conditions, and so we assume a > bqp. Otherwise no links
will form. On the other hand, suppose that i knew that j were
going to fail, so that the only thing protecting i from failure
is the transmission probability p. Under these conditions we
do not want i to form the link to j, so we assume a < bp.
Otherwise there will be no strategic component to the anal-
ysis. Analogously, suppose that i knew that any failure at j



would definitely spread to i, so that the only thing protecting
i from failure is the chance 1− q that j does not fail. Under
these conditions we also do not want i to form the link to j,
so we assume a < bq.

In our analysis, we will focus on the range of parameters
in which these bounds hold by arbitrarily large constant fac-
tors. That is, we will consider the case in which p and q are
small, and for some sufficiently large constant d, the quan-
tity a exceeds bqp by at least a factor of d, and min(bp, bq)
in turn exceeds a by at least a factor of d. So with δ = 1/d,
we have δ−1bqp < a < δmin(bp, bq); we will refer to δ as
the key separation parameter in our model. Finally, we will
consider the case in which the number of nodes n is arbi-
trarily large compared to these other quantities (and/or their
reciprocals).

Our Results

Our main results provide asymptotically tight characteriza-
tions of the welfare obtained by both socially optimal and
stable graphs, as well as structural insights into the proper-
ties of such graphs. In a sense to be made precise below,
we find roughly that social optimality occurs just beyond the
edge of a phase transition that controls how failures prop-
agate, while stable graphs lie slightly further still past this
phase transition, at a point where most of the welfare has
already been wiped out. This narrow region where optimal-
ity occurs, and the inability of strategic agents to stay within
this region, is one of the key qualitative behaviors to emerge
from our model.

Social Optimality. For social optimality, our first main re-
sult is that there is a small ε > 0, going to 0 with our sepa-
ration parameter δ, such that no graph can have min-welfare
greater than (1 + ε)a/p. We show this by establishing that
once each node forms more than 1/p links, the live edges —
those that transmit failure — form a large connected com-
ponent with high probability; this causes the probability of
node failure to rise abruptly and to corresponding reduce
the welfare. This phenomenon is an analogue of the giant-
component phase transition in the traditional random graph
model G(n, p) [10], but since we are dealing with the random
choice of live edges in an arbitrary underlying graph defined
by the agents, we need to study the random subgraphs of
this arbitrary graph; and hence we must adapt the arguments
about the emergence of giant components to this setting.

This analysis establishes node degrees of 1/p as an im-
portant critical point in the behavior of the nodes’ payoffs: at
a degree of 1/p, a node is receiving a benefit of a/p, and in
order to raise all the nodes’ payoffs further, we must push the
graph into a region where the propagation of failures via live
edges increases dramatically. It is therefore useful to look
more carefully at the structure of graphs and their resulting
payoffs right at the edge of this region. Accordingly, we say
that a family of graphs, with n going to infinity, has super-
critical payoffs if their min-welfares exceed a/p by a mul-
tiplicative constant (necessarily depending on the separation

parameter δ) that is strictly greater than 1 — in other words,
if they have min-welfare at least (1 + f(δ))a/p. Otherwise,
we will say that they have sub-critical payoffs. It then be-
comes an interesting question to consider whether there exist
families of graphs achieving super-critical payoffs, and what
can be said about their structure.

Clustered vs. Anonymous Markets. We construct a fam-
ily of graphs with super-critical payoffs, by having the agents
form a union of disjoint cliques, where each clique has a
size chosen to be very slightly above 1/p. The analysis of
such graphs in fact highlights an interesting qualitative con-
trast between two kinds of network structures in which the
agents can be organized: (i) a union of disjoint cliques each
of size k + 1, or (ii) a random graph formed by linking each
node to k other nodes selected uniformly at random. View-
ing this contrast in terms of an underlying motivation via
economic contagion, we see that the two network structures
correspond to two very different kinds of market formations:
(i) is a clustered market where people engage in mutual deal-
ing within their own community, and thereby insulate them-
selves from trouble originating in other communities, while
(ii) is an anonymous market where agents can only specify
the number of counterparties they would like to deal with,
but cannot specify who these counterparties will be.

What our analysis shows is that while it is possible for
clustered markets to yield super-critical payoffs, anonymous
market structures can only produce sub-critical payoffs. In
other words, if we connect each agent to k other random
agents, then once k reaches (1 + γ)/p for any positive con-
stant γ (and n sufficiently large), the node payoffs become
sub-optimal. This yields potential insights into the different
contagion dynamics of the two kinds of structures — when
the market institution enables people to separate themselves
into protected communities, then it becomes feasible to form
a number of links that pushes past the crucial phase transi-
tion; but when interactions happen anonymously, it is neces-
sary to stay safely on the low side of the phase transition.

Stable Graphs. We then consider the class of stable graphs,
and here our main result is that there is a small ε > 0 (again
going to 0 with the separation parameter δ) such that no sta-
ble graph can have min-welfare greater than εa/p. It is inter-
esting that this gap between welfare at social optimality and
at stability arises because of relatively subtle structural dif-
ferences between the two kinds of graphs; socially optimal
graphs are poised at the edge of a dangerous precipice in pa-
rameter space, and intuitively, we can think of stable graphs
as exhibiting a small amount of additional linking that send
them over this precipice.

Our analysis provides a useful way of thinking about how
this additional linking occurs. When a node evaluates form-
ing an extra link, its own change in payoff comes from the
benefit of this new link offset by the increased risk of fail-
ure. However, while only the two endpoints of the new link
can experience the benefits of the link, a potentially much



larger set of nodes can experience a payoff decrease due to
greater risk. This creates a negative externality by which
nodes do not account for the full amount of risk they generate
in forming links, and since we are in a region of parameter
space where small structural changes can yield large payoff
changes, this externality is sufficient to eliminate most of the
payoff to nodes.

Finally, as part of our analysis, we also provide a proof
that stable graphs exist, and in fact that one can build stable
graphs from unions of disjoint cliques. This construction re-
quires some amount of care, since the stability condition re-
quires that we produce cliques large enough that nodes will
not want to form links into other cliques, but not so large that
nodes will want to drop out of their own cliques. Arguing
that there exists a clique size achieving both of these condi-
tions involves maintaining control of the payoff functions in
the vicinity of the phase transition.

Further Related Work

There have been several papers that deal with problems where
one optimizes parameters of a network under the risk of node
failure, but these other models have been quite different from
ours both in the general questions they consider and in the
specifics of their formulations.

Caballero and Simsek consider a model of financial con-
tagion in which the failure of nodes in a network can lead
other nodes to engage in a cascade of “fire sales,” in which
the price of assets plummets [11]. However, in addition to
the fact that their cascade mechanism is quite different, they
study only the case in which the network structure is simple
and given: the nodes are assumed to be connected in a cycle.
Goyal and Vigier consider “attack-defense” games on net-
works, in which a designer must choose a network structure,
and then an attacker tries to disrupt it by destroying nodes
[14]. Their work assumes that failure spreads deterministi-
cally between nodes, and hence leads to very different con-
siderations. Gutfraind [15], motivated by the organization of
terrorist cells, considers the question of how to centrally de-
sign a network that can optimize a distance-based function
in the presence of probabilistic contagion; in his work, the
objective function is again very different from ours, and the
design of such networks is explored through simulation. Fi-
nally, the line of research beginning with Albert, Jeong, and
Barabási on the attack-tolerance of random graphs [1] fo-
cuses on the increase in average node distances when an ad-
versary deletes nodes from an underlying graph, and it leads
to different types of questions as well.

2 An Upper Bound on the Optimal Min-Welfare

We begin by establishing an upper bound on the min-welfare
of any graph. We use the parametrization of the model de-
scribed in the introduction; recall that we will be making the
following assumption (motivated there): for a small constant

δ > 0, we have

δ−1bqp < a < δmin(bp, bq).

For ease of future reference, we will call this Assumption
P(δ). Recall also that we are assuming an upper bound of ∆
on the maximum number of edges any one node can form.
As discussed above, much of the interesting behavior in this
model turns out to take place in graphs where the average
degree is close to 1/p. As a result, we will assume that ∆
is larger than 1/p, but not so large that any single node can
dominate the structure of the graph. In particular, we will
assume that ∆ = c∗/p for a constant c∗ > 1.

Our basic plan for the upper bound is as follows. If the

min-welfare in a graph G exceeds
(1 + ε)a

p
, then in partic-

ular it implies that all node degrees are at least
(1 + ε)
p

. We

declare each edge to be live independently with probability
p > 0, and then study the extent to which nodes are able to
reach one another along live-edge paths — that is, paths con-
sisting entirely of live edges. If there is a node that can reach
many others with reasonable probability, this node experi-
ences a large probability of failure, and hence has a sharply
reduced payoff, which will ultimately contradict our assump-
tion that G has large min-welfare.

Now, how do we show that some node has a reasonably
high chance of reaching many others on live-edge paths?
There is a connection to the basic random graph model G(n, p),
in which an edge is inserted between each pair among n
nodes independently with probability p. We can think of
G(n, p) equivalently as the model in which one starts with
an n-node clique and, declares each edge to be live indepen-
dently with probability p, and then considers the live-edge
subgraph. The challenge in our case is that our graphs G are
not necessarily cliques, or even close to being cliques, and
relatively little is known about adapting results from G(n, p)
to the case of arbitrary underlying base graphs [4]. Fortu-
nately, however, we are able to prove a result that is strong
enough for our purposes, adapting techniques for analyzing
connected components in G(n, p) to the setting of live-edge
subgraphs of arbitrary underlying graphs.

We begin with this part of the analysis, as follows.

(2.1) For all ε > 0 there exist constants α, β > 0 such
that the following holds. Let H be a graph in which each

node has degree at least r ≥ 1 + ε

p
. Construct a random

subgraph of H by declaring each edge to be “live” with
probability p. Then for every node i ∈ V , the number of
nodes reachable from i on live-edge paths is at least αr with
probability at least β.

Proof. Let i be any node in H . We now describe a method
for exploring the live edges outward from i, based on Karp’s
analysis of random subgraphs of the bidirected complete graph
[20] and Alon and Spencer’s analysis of infinite branching



processes [5]. We first take all the nodes (if any) that i can
reach via live edges and put them in a queue. We then re-
peatedly delete a node j from the queue and add to the queue
all the nodes (if any) that j can reach via live edges, other
than the ones already “discovered” (added to the queue) in
previous iterations. Notice, crucially, that the outcome of the
random live/blocked decision for each edge (j, j′) is only
examined once in this process, when one of nodes j or j′

first comes to the front of the queue. Thus, we can assume
that the live/blocked status of (j, j′) is first determined at that
moment.

For a small constant α > 0, we say that this process
succeeds if at least αr nodes are added to the queue before
the queue ever becomes empty. If the process succeeds with
probability at least β, for a constant β > 0, then our result
follows.

Let Qt be the number of nodes in the queue at the end of
iteration t, where we define Q0 = 1 to indicate that i starts
in the queue. We have

Qt = Qt−1 − 1 +Xt,

where the ”-1” is because we delete a node jt from the queue
in iteration t (with j1 = i), and Xt is a random variable
equal to the number of not-yet-discovered nodes that jt can
reach via live edges. (This is where it is useful to assume that
the live/blocked status of edges from jt to not-yet-discovered
nodes is only determined when jt reaches the front of the
queue.) Unrolling this recurrence, we have

Qt =

(
t∑

u=1

Xu

)
− t.

We are interested in showing that the probability of Qt > 0
for all t from 1 until at least αr nodes have been discovered
(added to the queue); in this case, the search for nodes using
live-edge paths continues successfully for a sufficient num-
ber of steps, as required.

The expectation ofXt, prior to the point at which at least
αr nodes have been discovered, can be determined as fol-
lows. The node jt has degree at least r in H , and at most
αr nodes have been discovered by the process thus far, so
there are at least (1 − α)r edges emanating from jt lead-
ing to not-yet-discovered nodes. We choose α small enough

that (1 − α)r ≥ 1 + ε/2
p

; since each of these edges is live

with probability p, we have E [Xt] ≥ 1 + ε/2. Thus, until
αr nodes have been discovered, we can think of the queue
length as a random walk on the integers with positive drift;
as a result, there is a positive probability that the walk never
returns to 0, which is the result we want.

We can briefly verify this in more detail for our partic-
ular case as follows. Let St =

∑t
u=1Xu; by the Chernoff

Bound, we have

Pr [St ≤ t] < Pr [St ≤ (1− ε/4)E [St]] < e−
1
2

ε2
16 t.

Now, the sum
∑∞
t=1 e

− 1
2

ε2
16 t converges; we choose t0 large

enough that
∑∞
t=t0

e−
1
2

ε2
16 t < 1. For p sufficiently small,

there is a positive probability that X1, the number of nodes
i can reach directly via live edges, is at least t0. It then fol-
lows that St > t for all t < t0. Finally, for all t we have
Pr [St ≤ t | X1 ≥ t0] ≤ Pr [St ≤ t] < e−

1
2

ε2
16 t; summing

over t we obtain
∑∞
t=0 Pr [St ≤ t | X1 ≥ t0] < 1.

Next, we simply want to argue that if a node can reach
many other nodes via live-edge paths with reasonably large
probability, then it has a large probability of failing and hence
a negative payoff. To do this, we first state a simple lemma
about the union of many independent events (see the proof
in the appendix), and then we use this to draw the resulting
conclusion for a node’s payoff.

(2.2) Consider a collection of independent events E1, . . . , En,
each of probability p > 0. Then the probability of their union
is at least min( 1

3 ,
2
3np).

Now, for a node i, let the set of nodes it can reach on live-
edge paths in G be called its live component, and let ri(G)
be a random variable denoting the size of i’s live component.

(2.3) For all γ0, γ1 > 0 there exist α, δ > 0 such that
when p, q ≤ α and Assumption P(δ) holds, we have the
following. If G is a graph with a node i for which ri(G) ≥
γ1

p
with probability at least γ0, then the payoff of node i

satisfies πi(G) < −bq. (We note that the right-hand side is
the payoff i would receive if it had no links).

Proof. If i can reach at least γ1p
−1 nodes on live-edge

paths, then by (2.2) , the probability that it fails is at least
min( 1

3 ,
2
3γ1p

−1q). Removing the conditioning on this event,
the probability it fails is at least φi ≥ min( 1

3γ0,
2
3γ0γ1p

−1q).
We also have di ≤ ∆ = c∗p−1.

If φi ≥ 1
3γ0, then

πi ≤ adi − bφi ≤ ac∗p−1 − 1
3
bγ0

≤ δbc∗ − 1
3
bγ0 = b(δc∗ − 1

3
γ0)

where the last line is less than −bq for δ sufficiently small
and q < 1

3γ0.
If φi ≥ 2

3γ0γ1p
−1q, then defining γ2 = 2

3γ0γ1, we have

πi ≤ adi − bφi
≤ ac∗p−1 − γ2bqp

−1

= ac∗p−1 − (γ2p
−1 − 1)bq − bq

< δc∗b− (γ2p
−1 − 1)bq − bq.

This last line is less than−bq provided that 1+δc∗−γ2p
−1 <

0, which holds provided that p is sufficiently small relative
to δ.



Finally, combining (2.1) with (2.3), we get an immedi-
ate consequence for the payoffs when all nodes have large
degrees. The upper bound on min-welfare follows directly
from this.

(2.4) For all ε > 0, there exist α, δ > 0 such that when
p, q ≤ α and Assumption P(δ) holds, we have the following.

If each node has degree at least
(1 + ε)
p

, then for each node

i we have πi < −bq.

Proof. For each node i ∈ V , (2.1) implies that we have
ri(G) ≥ γ1

p
with probability at least γ0, It then follows from

(2.3) that πi < −bq.

(2.5) For all ε > 0, there exist α, δ > 0 such that when
p, q ≤ α and Assumption P(δ) holds, no graph can have

min-welfare greater than
(1 + ε)a

p
.

Proof. Choose α, δ > 0 as in (2.4), and suppose by way of
contradiction that there is a graph with min-welfare greater

than
(1 + ε)a

p
. It follows that every node i has degree greater

than
1 + ε

p
. But then by (2.4) we have πi < −bq, contra-

dicting the assumption that the min-welfare is greater than
(1 + ε)a

p
.

3 Super-Critical Payoffs and Anonymous Markets

We now show that the upper bound in Section 2 can essen-
tially be achieved, in an asymptotic sense, and also consider
some of the structural implications of this fact.

To begin with, it is instructive to think about the analy-
sis in Section 2 in terms of the random graph G(k, r).1 One
of the central facts about G(k, r) is that in a small window
around probability r = 1/k, the expected size of the largest
connected component jumps from a constant value to a con-
stant fraction of k. This is the basic phase transition for
G(k, r), and (2.1) in Section 2 is a reflection of this phase
transition for an arbitrary underlying graph.

In order for a graph to achieve super-critical payoffs —

those of the form
(1 + ε)a

p
for some ε > 0 — it must lie on

the side of the phase transition where the live components are
likely to be large, proportional to 1/p. For this to be possible,
it must cross the phase transition by little enough that these
large components do not eliminate the payoff of the nodes.
We now show how to do this, constructing a family of graphs
built from disjoint cliques that achieve min-welfare of the

form
(1 + ε)a

p
.

1Since n and p are basic parameters in our model, we adopt the different
variable names k and r in discussing G(k, r). Also, in keeping with stan-
dard terminology, we will often refer informally to G(k, r) as “a random
graph,” as though it is a single graph rather than a distribution over graphs.

Some Basic Facts about G(k, r). We begin by carefully
stating some quantitative results about the phase transition
in G(k, r) in a form that will be useful for the analysis. The
proof of the first claim is given in the appendix.

(3.1) Let Ci denote the component containing node i in
G(k, r). If we fix some other node j and look at the event

j ∈ Ci, then we have Pr [j ∈ Ci] =
1
k
·E [|Ci|]−

1
k
.

Thus, looking at the probability a node belongs to i’s com-
ponent is equivalent to looking at the expected size of i’s
component.

The following pair of standard results describe the con-
trasting behavior of component sizes on opposite sides of
r = 1/k.

(3.2) Fix x < 1, and consider the component of a given
node i in G(k, r), where kr = x. Then for k sufficiently
large, we have the following:

(i) The probability that i’s component exceeds size c de-
creases exponentially in c.

(ii) Consequently, the expected size of i’s component is bounded
by a constant c = c(x), independent of k, and the
maximum size of any component in the graph is thus
O(log k).

(3.3) There is an increasing function θ : [1,∞] → [0, 1]
that is continuously differentiable on (1,∞) and continu-
ously differentiable from the right at x = 1, with θ(1) = 0
and θ′(1) a positive real number, such that the following
holds. Fix x > 1 and ε > 0, and consider G(k, r), where
kr = x. Then for k = k(x, ε) sufficiently large, we have the
following:

(i) With probability 1 − exp(−k), there is a component of
size between (1− ε)θ(x)k and (1 + ε)θ(x)k.

(ii) Conditioned on not belonging to the giant component in
(i), the probability that a node i belongs to a component
of size greater than c decreases exponentially in c.

(iii) Consequently, the expected size of i’s component is be-
tween (1 − ε)2θ(x)2k and (1 + ε)2θ(x)2k + c for a
constant c = c(x).

Point (iii) follows from (i) and (ii) by considering that with
probability (1 ± ε)θ(x), node i belongs to a component of
size (1 ± ε)θ(x)k, and with the remaining probability i be-
longs to a component of expected size at most c.



A Family of Graphs with Super-Critical Payoffs. For
parameters k and s, let Fs (k) denote the disjoint union of

s cliques of size k. We will show that Fs

(
1 + γ

p

)
, for ar-

bitrary s ≥ 1 and a small constant γ > 0, achieves super-
critical node payoffs.

For our construction, we will focus on the special case
p = q. A nice feature of this special case is that we can rep-
resent the spread of failures in Fs (k) in the following equiv-
alent way. We imagine a single “failure node” i∗ associated
with each clique, and attached to each real node in the clique,
resulting in a clique on k + 1 nodes. There is a transmission
probability p on the edges from i∗ to each node in its clique,
as there is on all other edges. In this view, a node i fails if
it is in the same live-edge component as i∗; in other words,
the probability i fails is the probability it belongs to the same
component as a given fixed node i∗ in G(k + 1, r). By (3.1)
we know this is

1
k + 1

·E [|Ci|]−
1

k + 1
,

where Ci denotes the live-edge component of i.
With p = q, we define σ to be the ratio a/bp = a/bq; by

assumption P(δ), we have σ < δ, and we assume as usual
that δ and p are sufficiently small. We let the number of
nodes k in each clique be (1 + γ)/p for a small value γ > 0
that we determine below.

First, (3.3)(iii) implies that the probability φi that i fails
satisfies

(1− ε0)θ(1 + γ)2 ≤ φi ≤ (1 + ε0)θ(1 + γ)2

for a constant ε0 that goes to 0 with p. Thus, the payoff to a
node i is

πi ≥
a(1 + γ)

p
−
(
b+

a(1 + γ)
p

)
(1 + ε0)θ(1 + γ)2

=
a(1 + γ)

p
− b(1 + σ(1 + γ))(1 + ε0)θ(1 + γ)2

≥ a(1 + γ)
p

− 2bθ(1 + γ)2

=
σbp(1 + γ)

p
− 2bθ(1 + γ)2

= b(σ(1 + γ)− 2θ(1 + γ)2).

Now, let
h0(x) = σx− 2θ(x)2,

so that
πi ≥ bh0(1 + γ).

We have
h′0(x) = σ − 4θ(x)θ′(x).

Since θ(1) = 0 and θ′(1) is a positive real number, we have
h′0(1) = σ, and hence the function h0(x) is strictly increas-
ing over the interval x ∈ [1, w0] for a constant w0 depending

on σ. Since h0(1) = σ, we have h0(w0) = σ(1 + σ0) for a
constant σ0 > 0 depending on σ.

Returning to the lower bound on πi, we choose γ = w0−
1, and so

πi ≥ bh0(w0) =
a

σp
· σ(1 + σ0) =

a(1 + σ0)
p

.

Consequently, the payoff to each node exceeds
a

p
by a mul-

tiplicative factor greater than 1 that depends on σ.

Comparison to an Anonymous Structure. The construc-
tion above achieves super-critical payoffs by allowing nodes
to cluster into communities of an appropriate size, and thus
to insulate themselves from failures originating in other com-
munities. Drawing on a market motivation, it is interesting to
ask whether super-critical payoffs can be achieved through
structures that are based instead on anonymous interaction,
where nodes can specify the number of partners they want
to connect to, but have no control over who these partners
are — the partners are chosen uniformly at random from the
population. As we now show, in fact, anonymous interaction
structures are not able to yield super-critical payoffs.

To define these anonymous structures precisely, we use
the configuration model for random graphs [9, 10, 22]. Each
of the n nodes is assigned k “half-edges”; these half-edges
are then matched up uniformly at random into pairs, with
each matching pair of half-edges forming an edge in the re-
sulting random graph. Note that the pairing may cause two
edges to go between the same pair of nodes, or for a node to
form an edge that loops to itself; we remove these parallel
edges and self-loops to obtain the final graph. Failures then
propagate in this graph according to our model, spreading
from root failures along live-edge paths.

With high probability, the local neighborhood of a node
in this random graph will have a particularly simple struc-
ture, as follows. For node i, define B(i, `) to be the ball of
radius ` centered at i, i.e. the induced subgraph of G on the
set of all nodes reachable from i in ` or fewer hops. For fixed
integers k, ` and any node i, the probability that B(i, `) is a
tree of depth ` and degree k (i.e. one whose internal nodes
all have degree k and whose leaves are all at distance ` from
the root) tends to 1 as n→∞.

For our analysis, we will therefore connect the propa-
gation of failures in the configuration model to a related,
simpler model based on an infinite k-regular tree. In par-
ticular, let B(k, r) denote the distribution over trees obtained
by starting with an infinite k-regular tree and including each
edge in the random tree with probability r. We now have a
pair of results analogous to (3.2) and (3.3).

(3.4) Let x < 1, and consider a tree generated fromB(k, r)
where kr = x.

(i) The probability that the tree’s size exceeds size c de-
creases exponentially in c.



(ii) The expected size of the tree is bounded by a constant
c = c(x).

(3.5) There is an increasing function τ : [1,∞] → [0, 1]
that is continuously differentiable on (1,∞) and continu-
ously differentiable from the right at x = 1, with τ(1) = 0
and τ ′(1) a positive real number, such that the following
holds. Consider a tree generated from B(k, r), and let ψr(k)
be the probability that it has an infinite node set.

(i) If kr > 1, then ψr(k) > τ(kr).

(ii) For all integers c0, c1 > 1 and k ≥ c0c1/r, we have

ψr(k) ≥ 1− (1− ψr (c0/r))
c1 > 1− (1− τ(c0))c1 .

(iii) Conditioned on not having an infinite node set, the prob-
ability that the tree’s size exceeds c decreases exponen-
tially in c. Its expected size is thus bounded by a con-
stant c = c(x).

(3.5)(iii) is a standard result; (i) and (ii) are formulated in
ways that are adaped to our present purposes, and we give
proofs of them in the appendix.

We now want to show that when each node forms k links
in the anonymous structure, for any k =

1 + β

p
, the node

payoffs can be at most a/p as n → ∞. Clearly this is true
for β ≤ 0, so we consider the case of an arbitrary β > 0.

When the random graph G is sampled using the config-
uration model, for any node i the probability that the ball
B(i, `) is a tree of degree k and depth ` is 1−o(1) as n→∞.
Applying 3.5(i), the probability that i belongs to a live path
of length ` is at least τ(1+β)−o(1); for n sufficiently large,
this probability is at least τ(1 + β/2). In the event that i be-
longs to a live path of length `, it fails with probability at
least 1− (1− q)`. By taking ` large enough, we may assume
that τ(1 + β/2)(1− (1− q)`) ≥ τ(1 + β/3) and thus node
i fails with probability at least τ(1 + β/3).

Thus, if n is sufficiently large then we have

πi ≤
(
a(1 + β)

p

)(
1− τ

(
1 +

β

3

))
− bτ

(
1 +

β

3

)
= bσ(1 + β)

(
1− τ

(
1 +

β

3

))
− bτ

(
1 +

β

3

)
.

Let

h1(x) = σ(1 + 3x) (1− τ (1 + x))− τ (1 + x) ,

so that πi ≤ bh1(β/3). By (3.5)(ii), we know that for y ≥ 4,
we have

τ(y) ≥ 1− (1− τ(2))by/2c ≥ 1− (1− τ(2))y/4.

We can thus choose w1 ≥ 4 such that

τ(y) ≥ 1− 1
1 + y

for all y ≥ w1. If 1 + x ≥ w1, we have

h1(x) ≤ σ(1 + 3x)
(

1
2 + x

)
− 1 + x

2 + x
< 0,

provided σ <
1
3

. Now, if σ ≤ 1
3

supy∈[1,w1] τ
′(y), then we

have the following for all x ∈ [0, w1 − 1]:

h′1(x) = 3σ(1− τ(1 + x))− (σ + 3σx+ 1)τ ′(1 + x)
≤ 3σ − τ ′(1 + x) ≤ 0.

Thus, for all x ∈ [0, w1 − 1], we have h1(x) ≤ h1(0) = σ.
Since we also have h1(x) < 0 for x ≥ w1−1, it follows that
h1(x) ≤ σ for all x ≥ 0.

Thus, for any β > 0, we have πi ≤ bσ =
a

p
when each

node forms k =
1 + β

p
links. Since πi ≤

a

p
when nodes

form at most k ≤ 1
p

links, it follows that for any constant c,

if nodes form
c

p
links then πi ≤

a

p
provided n is sufficiently

large as a function of c.

Clustered vs. Anonymous Markets. It is instructive to
consider why a union of disjoint cliques was able to achieve
qualitatively higher payoffs than an anonymous interaction
pattern. In particular, the nodes in the cliques we constructed
are linking at a degree beyond the phase transition point,
whereas attempting to do this in the anonymous structure has
negative effects on the payoff.

A quantitative way to think about the contrast is to ob-
serve that in the union of cliques, the failure probability of a
node iwas approximately controlled by a conjunction of two
events: i belonging to the giant component of the clique, and
the “failure node” i∗ also belonging to the giant component
of the clique. As a result, the failure probability involves
a term of the form θ(x)2, and this has a derivative of 0 at
x = 1 — hence, it is safe to increase x a bit past 1 without
blowing up the failure probability. On the other hand, in the
anonymous structure, once i belongs to the giant component,
it fails with overwhelming probability; thus, i’s failure prob-
ability involves a term of the form τ(x), which has a strictly
positive derivative at x = 1, and this makes it unprofitable
to increase x even arbitrarily little past 1. This is the funda-
mental difference between the behavior of the two kinds of
structures in the region just past the phase transition.

4 An Upper Bound on the Min-Welfare of Any
Stable Network

We now show that any stable graph must have small min-
welfare. (We defer the proof that stable graphs exist to the
next section.) To upper-bound the min-welfare, we proceed
as follows. First we show, in (4.1), that if two nodes i and j
are not connected by an edge, and neither is at the maximum
degree ∆, then at least one of them must have a large failure



probability — this is what dissuades the other from forming
the link.

It follows that in a stable network, all low-degree nodes
of low failure probability must form a clique, since any un-
linked pair of them would have an incentive to connect. If
the number of nodes n is sufficiently large, we can then find
a node i that is far from this clique. Hence node i, and every
node within a large number of steps of i, must have large de-
grees; we can thus apply an analogue of (2.1) to show i has a
large failure probability, and this will conclude the proof.

(4.1) Suppose Assumption P(δ) holds. Let G be a stable
graph, and let i and j be two nodes of G such that (i, j) is
not an edge of G, and the degrees of i and j are each strictly

less than ∆. Then we have max(φi, φj) ≥
(1− δ)a

(1 + δc∗)bp
.

Proof. Since the degrees of i and j are each strictly less than
∆, at least one of i or j does not have a strictly higher payoff
if the edge (i, j) is included; let us assume it is node i. Thus,
if G′ denotes the graph G with the edge (i, j) included, then
we have πi(G′) ≤ πi(G).

We imagine evaluating failure in G′ by first making all
random root failure decisions and all random live/blocked
decisions inG, then determining which additional nodes fail,
and finally deciding whether the edge (i, j) is live or blocked
and determining further failures. Let Φi(G) be the event that
i fails in G before (i, j) is examined, and let Fij(G) be the
event that (i, j) is live and j fails in G. Then Φi(G′) =
Φi(G) ∪ Fij(G), so

Pr [Φ(G′)] ≤ Pr [Φi(G)] + Pr [Fij(G)] .

Since Pr [Fij(G)] = pφj , we have

φi(G′)− φi(G) ≤ pφj(G).

Now,

πi(G′) = a(di + 1)− (adi + a+ b)φi(G′),

so the fact that πi(G′) ≤ πi(G) implies that

a(di + 1)− (adi + a+ b)φi(G′) ≤ adi − (adi + b)φi(G)

and hence

a ≤ (adi + a+ b)(φi(G′)− φi(G)) + aφi(G)
≤ (adi + a+ b)pφj(G) + aφi(G)
≤ (1 + δc∗)bpφj(G) + δbpφi(G),

where the last line follows from the fact that a < δbp and
di + 1 ≤ c∗p−1.

Now, if φi(G) ≥ a

bp
, we are done. Otherwise, we have

a ≤ (1 + δc∗)bpφj(G) + δa,

so
(1− δ)a ≤ (1 + δc∗)bpφj(G),

and hence

φj(G) ≥ (1− δ)a
(1 + δc∗)bp

.

Following our informal plan above, we note that a stable
graph might have some low-degree nodes, so we require the
following direct adaptation of (2.1), which applies to nodes
that are far from all low-degree nodes.

(4.2) For all ε > 0 there exist constants α, β > 0 such that
the following holds. LetH be a graph, and letA be the set of

nodes of degree less than
1 + ε

p
. Let i be a node of distance

greater than
1
p

from A. Construct a random subgraph of H

by declaring each edge to be “live” with probability p. Then
the number of nodes reachable from i on live-edge paths is
at least αp−1 with probability at least β.

Proof. Consider the node-discovery process described in
the proof of (2.1), starting from the node i, and recall that we
declare it to succeed if it adds at least

α

p
nodes to the queue

before it ever becomes empty, for the small constant α < 1
used there. The event that the process succeeds depends only
on the live/blocked decisions for nodes within distance

α

p
of

i, and all such nodes have degrees at least
1 + ε

p
; hence, for

this whole time we can apply the argument used in (2.1).

Finally, we conclude the proof strategy outlined at the
beginning of the section, resulting in our upper bound.

(4.3) Let n > ∆∆+2. For all ε > 0 there exist α, δ > 0
such that when p, q ≤ α and Assumption P(δ) holds, no
stable graph can have min-welfare greater than

εa

p
.

Proof. Suppose by way of contradiction that G = (V,E) is
a stable graph in which πi ≥

εa

p
for all i ∈ V .

Let A ⊆ V denote the set of all nodes i of G for which

di < ∆ and φi <
(1− δ)a

(1 + δc∗)bp
. Since any node in A is able

to form an additional edge, (4.1) implies that there must be
an edge between each pair of nodes in A — in other words,
A induces a clique in G.

Let B ⊆ V denote the set of all nodes in G of de-
gree equal to ∆. For any i ∈ V − (A ∪ B), we have

φi ≥
(1− δ)a

(1 + δc∗)bp
. Since πi ≥

εa

p
by assumption, we have

εa

p
≤ adi − bφi ≤ adi −

(1− δ)a
(1 + δc∗)p

and hence

di ≥
ε

p
+

1− δ
(1 + δc∗)p

.



For δ sufficiently small, the right-hand side of this inequal-

ity is at least
1 + ε1

p
for a constant ε1 > 0 Choosing ε2 =

min(ε1, c
∗ − 1), it follows that all nodes i ∈ V − A have

degree at least
1 + ε2

p
.

Now, for any j ∈ A, there are at most 1+∆+∆2 + · · ·+
∆∆+1 < ∆∆+2 < n nodes within distance ∆ + 1 of j, and
hence within distance ∆ of some node in A. Hence there is
some node i ∈ V at distance greater than ∆ > p−1 from A.
For this node i, (4.2) implies that ri ≥

γ1

p
with probability

at least γ0, for constants γ0, γ1 > 0. By (2.3), it follows that
πi < −bq, contradicting the assumption that the min-welfare
of G is greater than

εa

p
.

5 The Existence of Stable Networks

Finally, we show that there exist arbitrarily large stable net-
works. As with our constructions in Section 3, we will con-
sider graphs that consist of disjoint cliques — graphsFs (k + 1)

with k =
1 + γ

p
for an appropriately chosen γ > 0.

The challenge is to find a k where the union of cliques
is stable, and this requires some care for the following rea-
son. Stability requires that no unlinked pair of nodes wants
to form an edge — this can be achieved by making k suffi-
ciently large that creating a link between two cliques brings
about too large an increase in failure probability to the nodes
forming the link. Unfortunately, making k large also raises
the failure probability of each node i based simply on its cur-
rent set of edges — so we must not raise k so high that a node
i wants to drop all its existing links. The crux of the problem
is thus the following: is there a k that is large enough to dis-
courage the formation of cross-clique links, but not so large
that nodes will drop their current links? The main part of our
analysis will be to show that such a k exists.

As in Section 3, we will consider the case in which p =
q; defining σ to be the ratio a/bp = a/bq, we have σ < δ,
and we assume δ and p are sufficiently small. Due to space
limitations, we prove the stability result in the appendix.

(5.1) Given a, b, p, q as above, there exists γ > 0 such that

with k =
1 + γ

p
, the union of cliques Fs (k + 1) is stable.

A Stable Graph with Unequal Clique Sizes. We observe
that starting with a set of disjoint cliques Fs (k + 1), we
can create a different stable graph by adding one additional
clique Γ of size ` < k+1 on a disjoint set of nodes. The size
` can be chosen in any way such that the payoffs of nodes in
the clique Γ each exceed −bq. In this way, nodes in Γ will
not want to drop their incident edges. Moreover, there is still
no edge that can form so as to improve the payoffs of both its
endpoints, since any edge involving a node i in Γ must have
its other end at a node j in one of the cliques of size k + 1,
in which case the argument for (5.1) shows that i would not
want to form the link.

In particular, this means that we can take ` to be a clique
yielding the maximum possible node payoff over all clique
sizes, as in Section 3; this shows how certain nodes in a sta-
ble graph can have higher payoffs than others.
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6 Appendix

Proof of (2.2). If p ≥ 1
3 then the result follows immediately.

Otherwise, if np ≤ 2
3 , then we have

Pr

 n⋃
j=1

Ej

 ≥
n∑
j=1

Pr [Ej ]−
∑
j,j′

Pr [Ej ∩ Ej′ ]

= np−
(
n

2

)
p2

≥ np− 1
2

(np)2

= np(1− 1
2
np)

≥ 2
3
np.

Otherwise, we can choose a subset S of k ≤ n of the events
such that 2

3 < kp ≤ 1. We have

Pr

⋃
j∈S
Ej

 ≥
∑
j∈S

Pr [Ej ]−
∑
j,j′∈S

Pr [Ej ∩ Ej′ ]

= kp−
(
k

2

)
p2

≥ kp− 1
2

(kp)2

= kp(1− 1
2
kp)

≥ 2
3
· 1

2
=

1
3
.

Proof of (3.1).

Pr [j ∈ Ci] =
k∑
s=1

Pr [|Ci| = s] · Pr [j ∈ Ci | |Ci| = s]

=
k∑
s=1

s− 1
k

Pr [|Ci| = s]

=
1
k

k∑
s=1

(s− 1)Pr [|Ci| = s]

=
1
k
·E [|Ci|]−

1
k

Proof of (3.5). First we prove (i). The probability that the
tree is infinite is the unique solution to z = 1− (1− pz)k in
the interval (0, 1). Define τ to be the unique solution to τ =
1 − e−xτ in the interval (0, 1). Writing f0(v) = (1 − pv)k

and f1(v) = e−xv , we have

f0(v) = (1− pv)k = (1− pv)x/p < e−xv = f1(v).

Thus, the curve y = 1− f0(v) lies above the curve y = 1−
f1(v) on the interval (0, 1), and so y = 1 − f0(v) intersects
the line y = v to the right of where y = 1− f1(v) intersects
it. It follows that z > τ , and hence we can take τ = τ(x) as
our function.

To prove (ii), consider k′ =
c0c1
r

subtrees of the root
in the complete k-ary tree (before edges are randomly in-
cluded), and group them into c1 blocks of

c0
r

subtrees each.
For any block, if we consider just the root and the subtrees in
a single block, the probability that the resulting random tree
is infinite is at least ψr(c0/r) (since the root has this degree
in the restricted tree, and the nodes in the subtrees have de-
gree k ≥ c0/r). The tree is infinite if it is infinite in any of
the blocks, and so the probability it is infinite is at least

1− (1− ψr (c0/r))
c1 > 1− (1− τ(c0))c1

where the latter inequality follows directly from (i).

Proof of (5.1) . For the analysis of the construction, we
will work with the function θ(x) defined in (3.3) , as well
as the related function λ(x) = x(1 − θ(x)2). Observe that
λ(1) = 1, since θ(1) = 0. Taking derivatives, we have

λ′(x) = (1− θ(x)2)− 2xθ(x)θ′(x),

and hence λ′(1) = 1. Thus we have

(6.1) For some constantw > 1, the function λ(x) is strictly
increasing on the closed interval [1, w].

As in Section 3, we analyze the failure process by attach-
ing a single “failure node” i∗ to each clique. The probability
φi that node i fails is the probability that i belongs to the
same live-edge component as i∗ in the (k + 2)-node clique
where i∗ is added to i’s clique. The payoff to node i is

πi = ak − (ak + b)φi.

If i drops all its edges, it receives a payoff of −bq < 0. If
i forms an edge to a node j in another clique, it receives an
added benefit of a, and incurs an increased expected loss of
at least

(ak + b)pφi(1− φi).

There are four terms here; the second and third represent
the chance that j’s failure (which is φj = φi by symmetry)
spreads to i, and the fourth term represents the fact that this
only matters if i had not already failed in its own clique. In
more detail: the payoff to node i before the addition of this
edge is ak − (ak + b)φi, and afterward it is

a(k + 1)− (ak + a+ b)(φi + pφi − pφ2
i ),

so the change in payoff is less than a− (ak+ b)pφi(1−φi).
Now, what is φi? By (3.1) and (3.3), we have

(1− ε1)2θ(p(k+ 2))2 ≤ φi ≤ (1 + ε1)2θ(p(k+ 2))2 + c1p



for a constant ε1 that goes to zero as p does. By choosing a
slightly larger ε2, and using the fact that θ(·) has a bounded
first derivative, we have

(1− ε2)θ(1 + γ)2 ≤ φi ≤ (1 + ε2)θ(1 + γ)2,

with ε2 going to zero as p does.
In the expression φi(1 − φi), provided the upper bound

(1 + ε2)θ(1 + γ)2 ≤ 1
2 , we have

φi(1− φi) ≥ (1− ε2)θ(1 + γ)2(1− (1− ε2)θ(1 + γ)2)
≥ (1− ε2)θ(1 + γ)2(1− θ(1 + γ)2).

Since a = σbp and k = (1+γ)/p, if we write σ1 = σ(1+γ),
then we have ak = σ(1 + γ)b = σ1b. Now we have

(ak + b)pkφi(1− φi)
= b(1 + σ1)(1 + γ)φi(1− φi)
≥ b(1 + σ1)(1 + γ)(1− ε2)θ(1 + γ)2(1− θ(1 + γ)2)
= b(1 + σ1)(1− ε2)λ(1 + γ)θ(1 + γ)2

∆= f1(γ),

where the last line is taken as the definition of f1(γ). Ob-
serve that f1(0) = 0, and by (6.1), there is an x1 < 1 such
that the function f1(x) is strictly increasing for x in a closed
interval [0, x1].

We also have

(ak + b)φi ≤ b(1 + σ1)(1 + ε2)θ(1 + γ)2

∆= f0(γ),

where once again the last line is taken as the definition of
f0(γ). We see that f0(x) is also strictly increasing in [0, x1]
(and beyond this interval as well).

Now, since λ(1) = 1 and λ(·) is monotone increasing
on [0, x1], for any small enough ε2 > 0, there is a unique
x0 < x1 such that

λ(1 + x0) =
1 + ε2

1− ε2
.

Moreover, f1(x) > f0(x) for all x ∈ (x0, x1], and the value
of x0 goes to 0 as ε2 goes to 0. Also, we observe that for
γ ∈ (x0, x1], we have

f1(γ) > f0(γ) ≥ bθ(1 + γ)2.

Now, we choose σ small enough that 2σ < θ(1 + x1)2.
We then choose ε2 small enough (by choosing p small enough)
so that f1(x0) = f0(x0) < bσ. Finally, let g(γ) = ak =
(1 + γ)bσ. Since bσ < g(γ) < 2bσ for all γ ∈ (x0, x1],
it follows that f0(x0) < g(x0) but g(x1) < f1(x1). There-
fore, since f0(·) and f1(·) are continuous functions, there
exist γ∗, γ∗∗ ∈ (x0, x1] for which g(γ∗) = f1(γ∗) and
g(γ∗∗) ≥ f0(γ∗∗), with γ∗ < γ∗∗.

We choose any γ ∈ [γ∗, γ∗∗] as the value of γ we use
to define k. With this value of k, the payoff i receives from
keeping all its edges is

πi = ak − (ak + b)φi ≥ g(γ)− f0(γ) ≥ 0,

and hence i prefers to keep its edges rather than deleting all
of them. The change in payoff i receives from linking to a
node j in a different clique is less than

k−1 (ak − (ak + b)pkφi(1− φi))
≤ k−1

(
ak − b(1 + σ1)(1− ε2)λ(1 + γ)θ(1 + γ)2

)
= k−1 (g(γ)− f1(γ))
≤ 0,

and hence iwill not form this link. Thus, the graphFs (k + 1)
is stable.


