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Abstract

We consider an environment where ex-ante homogenous potential buyers of an in-
divisible good have liquidity constraints: they cannot pay more than their ‘budget’
regardless of their valuation. A buyer’s valuation for the good as well as her budget
are her private information. We derive the symmetric constrained-efficient and revenue
maximizing auctions for this setting. We show how to implement these via a standard
auction (all pay) with a modified winning rule: the highest bidder need not win the
good outright. Stated differently, the optimal allocation rule has ‘pooling’ in the mid-
dle, despite the usual regularity conditions. Subsidizing bidders with low budgets is
undesirable in terms of both revenue and social welfare. From a technical standpoint,
the paper contributes to auction design with multidimensional private information by
working directly with lower dimensional reduced form allocation rules, abstracting from
the higher dimensional ex-post allocation rule.
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1 Introduction

Modeling buyers as budget or liquidity constrained allows one to relax a standard assumption

in the auction literature that conflates a buyer’s willingness to pay with her ability to pay.

The assumption is untenable in a variety of situations. For instance, in government auctions

(privatization, license sales etc.), the sale price may well exceed a buyers’ liquid assets, and

she may need to rely on an imperfect (i.e. costly) capital market to raise funds. These

frictions limit her ability to pay, but not her valuation (how much she would pay if she had

the money). Indeed, these financial constraints are more palpable to bidders than valuations,

which are relatively amorphous.

Here we assume that in addition to private valuations, buyers have privately known ‘hard’

budget constraints: no buyer can pay more than her budget regardless of her valuation.1 We

do not model the source of these constraints. The reader is referred to the discussion in Che

and Gale [6] for possible explanations.

This paper considers the sale of a single indivisible good to ex-ante homogenous buyers

whose valuations and budgets are their private information. We provide an analysis of both

the expected revenue maximizing and constrained efficient symmetric auctions. Our analysis

is for the case where the solution concept is Bayes-Nash. Individual rationality is imposed

in an interim sense. In other words, we only require the auction to offer each buyer a non-

negative expected surplus. We then show how our analysis can be applied when the auction

is required to be dominant strategy implementable or ex-post individually rational.

1.1 An Incorrect First Intuition

It is natural to ask why budgets cannot be accommodated in a straightforward way i.e.

consider each agent’s type as being the minimum of their valuation v and budget b, and run

the appropriate optimal auction. We claim such a mechanism will be strictly suboptimal

in terms of revenue. This is because it will (i) pool ‘too many’ types and, (ii) discourage

competition. It is easiest to see this via an example.

Suppose two buyers who both have a commonly known budget of 1. Both have valuations

that are i.i.d. draws from a uniform distribution over [0, 2]. The resulting distribution over

the ‘modified types’ min(v, b) is F (v) = v/2 for v less than 1, F (1) = 1. The optimal auction

when types are thusly distributed does not allot to buyers with value less than 1, and the

resulting expected revenue is 0.75. The implied allocation rule can be implemented as an

all-pay auction- buyers with ‘modified type’ 1 all make their expected payment of 0.75, lower

types pay nothing. In this candidate ‘optimal’ auction, no type ever pays their budget. This

suggests that the proposed auction may be sub-optimal, i.e. there is money left on the table.

1The literature also considers the case of ‘soft’ budget constraints, where bidders may be able to get
additional funds from the market at some cost.
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What went wrong? Consider the types with values 1 and, say, 1.01. Our intuition from

standard mechanism design suggests that the incentive rents that will accrue to the types

could result in the expected payment of both being less than the budget constraint of 1.

Therefore it is possible that they could be separated. However, by treating buyers with

value v as having value min(v, b), the mechanism forces these two types to be pooled. In

general, this is ‘too much’ pooling: the optimal mechanism will pool a subset of the types

that have value larger than their budget.

1.2 Discussion of Results

In this section we describe the main qualitative features of the revenue maximizing auction

subject to budget constraints.2 We describe both the optimal allocation rule and an imple-

mentation. We contrast it with the optimal auction when buyers have no budget constraints

(Myerson [13]), and when all buyers have the same commonly known budget (Laffont and

Robert [10]). Our discussion is for the case where the distribution of buyer values satisfies

the monotone hazard rate condition (in particular, uniform). When this condition is not

satisfied, additional pooling of types may be required, as originally shown by Myerson.

No Budget Constraints When buyers are not budget constrained, the type of an

agent is just her valuation, and Myerson [13] applies. In this case we know that at each

realized profile of types, the optimal allocation rule allots to the highest valuation above

an appropriately chosen reserve v. The reserve is the lowest valuation with a non-negative

‘virtual valuation.’ Assuming 2 bidders and valuations to be uniform in [0, 1], the resulting

interim allocation probabilities are as graphed in Figure 1(a).

The optimal auction can be implemented as any standard auction (first price, second

price, or all pay) with the appropriate reserve.

Common Knowledge Common Budgets Suppose all buyers have the same (common

knowledge) budget constraint b. The type of an agent is still just her valuation. Laffont and

Robert showed that the revenue maximizing auction will ‘pool’ some types at the top. All

types above some v̄ will be treated as if they had valuation exactly v̄: the budget constraint

binds for precisely these types. They argued that the optimal allocation rule would allot the

good to the highest valuation subject to this ‘pooling,’ and subject to it being higher than

an appropriately chosen reserve v. This reserve would be lower than the optimal reserve

when there were no budget constraints. The resulting interim allocation probabilities are as

graphed in Figure 1(b).

The optimal auction is implemented as an all pay auction with appropriately chosen

reserve. In equilibrium, buyers with value v̄ and above bid exactly b and therefore get

2The constrained efficient auction is similar but has no reserve price.
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(a) No Budget Constraints (b) Common Budget Constraint, Decreasing Density

(c) Common Budget Constraint (d) Private Budgets

Figure 1: Optimal Interim Allocation Probability a(v) plotted against v.

pooled.

Under just the standard monotone hazard rate assumption, however, this mechanism

need not be optimal. An additional condition that is sufficient for optimality is that the

density function of the valuations is (weakly) decreasing.3 If this condition is violated, our

analysis shows that there may be additional pooling in the middle as displayed in Figure

1(c).4 In this case, the optimal auction cannot be implemented as a ‘standard’ mechanism.

Private Budgets Finally, suppose bidders have one of 2 budgets H > L, with equal

probability and independent of their value. The type of a bidder is 2 dimensional- valuation

and budget. There will be two cutoffs for pooling at the top: v̄H > v̄L. All high budget

bidders with valuation at least v̄H will be pooled (and pay H) and all low budget bidders

3This was overlooked in the original papers by Laffont and Robert, and Maskin.
4Formally, we require that v− 1−F (v)

f(v) + η
f(v) be increasing in v. η is endogenously determined. As a result

we can only provide sufficient conditions in terms of the primitives of the model.
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with valuation at least v̄L will be pooled (and pay L). A bidder with valuation v < v̄L will

get the same allocation whether he is of a high budget or low budget type.

Our key finding is the additional distortion the optimal allocation rule produces for high

budget bidders with valuation only slightly larger than v̄L. High budget bidders whose

valuations are in the range [v̄L, v̄L + ∆] for an appropriately chosen ∆ will be pooled with

lower budget bidders with valuation in [v̄L, 1]. The resulting interim allocation probabilities

are graphed in Figure 1(d). The case of k > 2 possible budgets will involve k − 1 such

intervals in which the outcome is distorted, and k cutoffs where the k budget constraints

bind.

The auction can be implemented as an all pay auction with a modified winning rule:

the highest bid need not win the good outright. As before there will be (an appropriately

chosen) reserve price. Further the auction will treat all bids between [L,L + δ) as L: i.e.

if there are multiple bids in this range, the winner is selected randomly. In the resulting

equilibrium, all buyers with a high budget and a valuation in [v̄L, v̄L + ∆] will bid L and

be pooled low budget bidders with valuation larger than v̄L. As in the common knowledge

budget case, buyers with low budget and valuation larger than v̄L bid L and get pooled.

Similarly, buyers with a high budget and valuation larger than v̄H bid H and get pooled.

If either of the maintained assumptions of monotone hazard rate and decreasing density on

the distribution of valuations is violated, additional pooling may be required.

1.2.1 Subsidies

Budget constraints depress revenues because low budget bidders cannot put competitive

pressure on high budget bidders. Therefore, it is natural to inquire into instruments to

foster competition. In other settings where some bidders are disadvantaged relative to others,

subsidies have been suggested.5

A subsidy is not the only instrument for encouraging competition. For this reason an

analysis of the optimal auction is useful: it may suggest other instruments that are more

effective. We find that the optimal mechanism rules out subsidies that are type dependent.

In particular, we show that loosening the budget constraints with a lump-sum transfer does

not improve revenue. Rather, as we described above, the optimal mechanism favors bidders

with small budgets with a higher probability of winning, by distorting the winning rule away

from the standard ‘highest bidder wins’.

5In the FCC spectrum auctions, Ayres and Cramton [1] argued that subsidizing women and minority
bidders actually increased revenues since it induced other bidders to bid more aggressively. Their argument
was based on the assumption that minority bidders would typically assign lower valuations to the asset than
large bidders. In a procurement context, Rothkopf et al [15] find that subsidizing inefficient competitors can
be desirable. Zheng [16] studies a stylized setting where bidders are subject to a ‘soft’ budget constraint
and shows that if the auctioneer in this setting has access to cheaper funds, he may wish to subsidize some
bidders.
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This no-subsidy result applies also to the case when buyers have heterogenous, commonly

known budgets. Even in this case the optimal mechanism will not involve (and cannot be

interpreted as) a lump-sum transfer to the constrained buyer. The method of analysis thus

yields another insight regarding the design of auctions in such settings. Where prior work

suggested there may be gains to subsidizing low budget bidders, our analysis shows that the

auctioneer would decline to subsidize bidders in the optimal auction. Thus, arguments in

favor of subsidies depend on the analysis of specific (i.e. sub-optimal) auction mechanisms.

1.2.2 Technical Contribution

In terms of techniques, this paper is a contribution to the literature on mechanism design

when agents’ types are multidimensional. Some of the difficulties associated with multidi-

mensional types do not arise here because the extra dimension of private information does

not influence valuations. As a result, the expected revenue is still a linear function of the

allocation rule.6

A difficulty here is that budget constraints render the associated incentive compatibility

constraints non-differentiable. Therefore, standard first-order techniques have no bite in

this setting, and characterizing incentive compatible allocation rules is hard. We skirt this

difficulty by considering a model of discrete types, i.e there are only a finite (if large) number

of possible valuations and budgets.7 This makes the problem of optimal design amenable to

the use of tools from linear programming. We characterize the optimal mechanism in the

continuum of types case by considering successively finer discrete type spaces.

Another contribution is in working directly with the reduced form, i.e. agents’ interim

allocation probabilities- their probability of getting the good conditional on their own type

and taking expectations over everyone else’s type. Compared to the standard profile-by-

profile allocation rule, this allows us to reduce dimensionality, thus making the problem more

tractable. Border [3] provides necessary and sufficient conditions for an interim allocation

rule to be feasible.8 The conditions are a system of linear inequalities that must be satisfied,

and these turn out to be ‘easy’ to work with. Further, one can recover the optimal ex-

post allocation rule from the optimal interim allocation rule. Intuitively, this is because the

optimal allocation must be a corner point of the feasible region in a linear program. The

ex-post allocation rules implementing these corner points are uniquely identified.

6By contrast, for example in Rochet and Choné [14], which IC constraints bind is not known a priori, and
therefore payments of different types as a function of the allocation rule is hard to analytically determine.

7Readers with long memories will recall that the ‘original’ optimal auction paper by Harris and Raviv [9]
also assumed discrete types.

8I.e. for there to exist a feasible profile-by-profile allocation rule resulting in exactly those interim allo-
cation probabilities.

6



1.3 Related Literature

Revenue Ranking ‘Standard’ Auctions Theoretical investigations of auctions with

budget constraints have mainly been confined to analyzing ‘standard’ auction formats when

bidders are financially constrained. Che and Gale [6], for example, consider the revenue

ranking of first price, second price and all pay auctions under financial constraints. Benoit

and Krishna [2] look into the effects of budget constraints in multi-good auctions, and they

compare sequential to simultaneous auctions. Brusco and Lopomo [5] study strategic demand

reduction in simultaneous ascending auctions and show that inefficiencies can emerge even

if the probability of bidders having budget constraints is arbitrarily small. This summary is

by no means complete and for illustrative purposes only.

Optimal Design Research focused on optimal design is more limited. Laffont and Robert

[10] as well as Maskin[12] offer an incomplete analysis of the case when valuations are private

information but budgets are common knowledge and identical. Malakhov and Vohra [11]

consider the case when one bidder has a known budget constraint and the other does not.

Che and Gale [7] compute the revenue maximizing pricing scheme when there is a single

buyer whose budget constraint and valuation are both his private information.9 Borgs et

al [4] study a multi-unit auction and design an auction that maximizes worst case revenue

when the number of bidders is large. Nisan et al [8] show in a closely related setting that

no dominant strategy incentive compatible auction can be Pareto-efficient when bidders are

budget constrained.

1.4 Organization of this paper

In Section 2 we describe the model. In Section 3 we examine the special case when all

bidders have the same common knowledge budget constraint. This helps build intuition for

the more involved private information case. In Section 4 we examine the case when bidders’

budgets are private information. In Section 4.6 we discuss the (im)-possibility of profitably

subsidizing bidders.

2 A Discrete Formulation

2.1 The Environment

There are N risk neutral buyers interested in a single indivisible good.

9Their definition of a financial constraint is akin to the soft constraints described earlier.
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Space of Types Each buyer has a private valuation for the good v in V =

{ε, 2ε, . . . ,mε}.10 For notational convenience we take ε = 1. Further, each buyer has a

privately known budget constraint b in B = {b1, b2, . . . , bk}, wlog b1 < b2 < . . . < bk. The

type of a buyer is a 2-tuple consisting of his valuation and his budget t = (v, b); and the

space of types is T = V ×B.

Buyers’ types are i.i.d. draws from a commonly known distribution π over T . We assume

that the valuation and budget components of a bidder’s type are independent, and that

all budgets are equally likely. The valuation component is distributed with CDF F (·) and

density f(·). Therefore:

P
(
t = (v, b)

)
= π(t) =

1

k
f(v). (1)

It will be clear from the analysis that the assumption of equally likely budgets is purely

for notational convenience. The assumption of independence is harder to relax- we provide

further discussion after the proof of our main result.

Buyer Preferences An agent of type t = (v, b) who is given the good with probability

a and asked to make a payment p derives utility:

u(a, p|(v, b)) =

{
va− p if p ≤ b,

−∞ if p > b.

In other words an agent has a standard quasi-linear utility up to his budget constraint, but

cannot pay more than his budget constraint under any circumstances.

2.2 Seller’s Problem

By the Revelation Principle, we confine ourselves without loss of generality to direct revela-

tion mechanisms. The seller must specify an allocation rule and a payment rule. The former

determines how the good is to be allocated as a function of the profile of reported types and

the latter the payments each agent must make as a function of the reported types. Denote

the implied interim expected allocation and payment for a bidder of type t as a(t) and p(t)

respectively.

To ensure participation of all agents we require interim individual rationality:

∀ t ∈ T, t = (v, b) : va(t)− p(t) ≥ 0. (2)

10The assumption that valuations are equally spaced is for economy of notation only.
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The budget constraint and individual rationality require that no type’s ex-post payments

exceed their budget. For now we impose only an expected budget constraint. We discuss

why this is without loss of generality in the next paragraph.

∀ t ∈ T, t = (v, b) : p(t) ≤ b. (3)

We require that Bayesian incentive compatibility hold. Due to the budget constraint, the

incentive constraints will only require that a type t = (v, b) has no incentive to misreport as

types t′ such that p(t′) ≤ b. We can write this as:

∀ t, t′ ∈ T, t = (v, b) : va(t)− p(t) ≥ χ{p(t′)≤b} (va(t′)− p(t′)) , (4)

where χ is the characteristic function. Note that the presence of this characteristic function

renders the incentive compatibility constraints non-differentiable, and thus standard first

order conditions do not apply.

All our constraints are written in terms of expected payments. Three comments are due:

1. Since our solution concept is Bayes-Nash, we impose only interim individual rationality

and incentive compatibility constraints. We discuss strengthening these in Section 5.1.

2. One may worry that by writing the budget constraint (3) only on interim rather than

the more natural ex-post payments, we are relaxing the problem. However, if expected

payments do not exceed the budget, then there exists a profile-by-profile payment rule

such that these payments never exceed the budget ex-post : the ‘all-pay’ payment rule

where type t pays p(t) regardless of other agents’ reports.

3. By contrast, in writing the IC constraints (4) in terms of expected rather than ex-post

payments, the problem may be over-constrained. If we were to work with ex-post

payments, the IC constraints where a buyer over-reports his budget can be relaxed.

Why? Because if a buyer reported his budget as b, he could be required to ‘prove’

it by making a payment of b with some vanishing probability ε. A buyer with true

budget b′ < b would therefore be unwilling to risk over-reporting. Nevertheless, in our

solution, these constraints do not bind.

As a result, working directly with expected payments is justified.

Feasible Interim Allocation Rules A key prior result we use in this paper is from

Border [3]. Border provides a set of linear inequalities which characterize the space of feasible

interim allocation probabilities given the distribution over types and the number of buyers.

In other words, they characterize which interim allocation probabilities can be achieved

by some feasible profile-by-profile allocation rule. These inequalities simplify our problem
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significantly, since we now search over the (lower dimensional) space of interim allocation

probabilities, rather than concerning ourselves with the allocation rule profile by profile. The

Border inequalities state that a set of interim allocation probabilities {a(t)}t∈T is feasible if

and only if the a(t)’s satisfies:

∀ t ∈ T : a(t) ≥ 0, (5)

∀T ′ ⊆ T : N
∑
t∈T ′

π(t)a(t) ≤ 1−

(∑
t6∈T ′

π(t)

)N

. (6)

The left hand side of (6) is the expected probability the good is allocated to an agent with a

type in T ′, which must be less than the probability that at least one agent has a type in T ′.

Equivalent Optimization Program Therefore, the problem of finding the revenue

maximizing auction can be written as:

max
a,p

∑
t

π(t)p(t) (RevOpt)

s.t.: (2− 6).

Similarly, the problem of finding the constrained efficient auction can be written as:

max
a,p

∑
t

π(t)va(t) (ConsEff)

s.t.: (2− 6).

2.3 Overview of Linear Programming Approach

To orient the reader, we give an overview of the approach taken. By working with a discrete

type space, we will reformulate the problem as a linear program of the following form:

Z = max
x

mx

s.t. Cx ≤ d

Ax ≤ b

x ≥ 0
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The first set of constraints, Cx ≤ d, corresponding to (2 - 4), are ‘complicated.’ The second

set, Ax ≤ b, correspond to the feasibility constraints (6). This set is ‘easy’ in the sense

that A is an upper triangular matrix. An upper triangular matrix in a linear program is

easy because the corresponding dual constraints will also have a triangular component. A

triangular system of equations is easy to solve by Gaussian elimination. As a result the

solution of this linear program is easy to characterize by complementary slackness. Stated

alternately,

Z(λ) = max
x

mx+ λ(d− Cx)

s.t. Ax ≤ b

x ≥ 0

For each λ ≥ 0, Z(λ) is easy to compute because A is upper triangular. By the duality

theorem of linear programming,

Z = min
λ≥0

Z(λ).

Thus our task reduces to identifying the non-negative λ that minimizes Z(λ). Now, Z(λ)

is a piecewise linear function of λ with a finite number of breakpoints. We find an indirect

way to enumerate the breakpoints without explicitly listing them. In this way we compute

the value Z.

In the auction context, the coefficients of x in the objective function, i.e. (m−λC), have

an interpretation as ‘virtual values.’

3 The Common Knowledge Budget Case

In this section, we analyze the case where all bidders have the same, commonly known budget.

This helps us build intuition and familiarity with the proof methods used subsequently to

analyze the general case. We examine the case of revenue maximization.

Since all bidders have the same budget constraint b, a bidder’s type is just her valuation.

Further, we can drop the characteristic function in the IC constraints since, by individual

rationality, all types must have a payment of at most b. Given these simplifications, the
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problem of maximizing revenue, (RevOpt), becomes:

max
a,p

∑
f(v)p(v) (RevOptCK)

s.t. ∀ v : p(v) ≤ b

∀ v, v′ : va(v)− p(v) ≥ va(v′)− p(v′)
∀ v : va(v)− p(v) ≥ 0

∀V ′ ⊆ V : N
∑
v∈V ′

f(v)a(v) ≤ 1−

(∑
v 6∈V ′

f(v)

)N

∀ v : a(v) ≥ 0

First, add a ‘dummy’ type 0 to the space of types, and define a(0) = p(0) = 0. We can

subsume the IR constraint, by requiring IC over the extended type space V ′ = V
⋃
{0}.

Standard arguments imply that an allocation rule a(·) can be part of an incentive compat-

ible mechanism if and only if a(v) is non-decreasing in v. Further, the payment rule that

maximizes revenue associated with this allocation rule is:

p(v) = va(v)−
v−1∑

1

a(v′). (7)

Note the absence of a constant. We have set this to zero, ruling out subsidies in the

form of lump-sum transfers. In effect we compute the optimal subsidy-free mechanism.11 In

Section 4.6 we show that any lump-sum transfer will necessarily reduce expected revenue.

Substituting (7) back into (RevOptCK), we can rewrite it as:

max
a

∑
f(v)ϕ(v)a(v) (REVOPTCK2)

∀ v : va(v)−
v−1∑
v′=1

a(v′) ≤ b (8a)

∀V ′ ⊆ V : N
∑
v∈V ′

f(v)a(v) ≤ 1−

(∑
v 6∈V ′

f(v)

)N

(8b)

∀ v : a(v)− a(v + 1) ≤ 0

∀ v : a(v) ≥ 0

Here ϕ(v) = v − 1−F (v)
f(v)

is type v’s ‘virtual valuation,’ as in Myerson [13].

Monotonicity of the allocation rule makes many of the constraints in (8b) redundant:

11Note that incentive compatibility rules out type dependent subsidies.
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Proposition 1 (Border). Let a : T → [0, 1] be the interim probability of allocation for a

type space T . For each α ∈ [0, 1], set

Eα = {t : a(t) ≥ α}.

Then a is feasible if and only if for each Eα:

N
∑
t∈Eα

a(t)f(t) ≤ 1−

(∑
T−Eα

f(t)

)N

. (9)

This makes the problem easier by decreasing the number of constraints we need consider.

The original Border constraints would require constraints corresponding to all subsets of

types. By Proposition 1, the number of constraints is at most the number types. Since IC

constraints normally imply some sort of monotonicity of the allocation rule, the sets Eα are

easy to characterize, and therefore these constraints are easy to use. For instance, in this

setting:

Corollary 1. If a(·) is increasing in v, it is feasible if and only if :

∀ v ∈ V : N
m∑
v

f(v′)a(v′) ≤ 1− FN(v − 1). (10)

For notational convenience define cv = 1−FN (v−1)
N

for each v.

From (7), it should be easy to see:

a(v + 1) > a(v) =⇒ p(v + 1) > p(v),

a(v + 1) = a(v) =⇒ p(v + 1) = p(v).

Therefore, if the budget constraint (8a) binds for some valuation v̄, it must bind for all

valuations v ≥ v̄. If the budget constraint does not bind in the optimal solution, the solution

must be the same as Myerson’s. Thus for simplicity, we assume the budget constraint binds

in the optimal solution. We summarize this in the following observation.

Observation 1. If a∗ is an optimal solution to (RevOptCK), the budget constraint must

bind for some types {v̄, v̄ + 1, . . . ,m}. Further, all these types are pooled, i.e. for all v ≥ v,

a∗(v) = a∗(v̄).

Therefore the optimal solution must pool some types at the top. Looking ahead, we

will find that that the ‘adjusted’ virtual valuation of a type v is ϕ(v) + η
f(v)

, where ϕ(v) is

the Myersonian virtual valuation, and η is the dual variable corresponding to the budget

constraint. The latter term, η
f(v)

, adjusts for the budget constraint. Increasing allocations to
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lower types reduces the payment of the high types, and hence ‘relaxes’ the budget constraint.

As in Myerson, we require that the adjusted virtual valuation ϕ(v) + η
f(v)

be increasing in v.

A sufficient condition for this is that f(v) is weakly decreasing and satisfies the monotone

hazard rate condition. By analogy with Myerson, the lowest type that will be allotted is

the lowest type (v) whose adjusted virtual valuation is non-negative. Finally, the optimal

allocation rule will be efficient between types v and v−1. We summarize this in the following

proposition, a formal proof follows.

Proposition 2. Suppose f(v) is weakly decreasing, and the virtual valuation ϕ(v) is in-

creasing in v. Then the solution of (RevOptCK) can be described as follows: there will exist

two cutoffs v̄ and v. No valuation less than v will be allotted. All types v̄ and above will be

pooled, and the budget constraint will bind for exactly those types. The allocation rule will

be efficient between types v and v̄ − 1. Finally, v is the lowest type such that

ϕ(v) +
η

f(v)
≥ 0,

η =
(1− F (v̄ − 1))(1− F (v̄ − 2))

v̄f(v̄ − 1) + (1− F (v̄ − 1))
.

If f(v) is not weakly decreasing in v or does not satisfy increasing virtual values, the optimal

solution may require pooling in the middle.

We can describe the analogous optimal mechanism if types are drawn from a continuum

by considering successively finer discretizations (see Appendix B).

Proposition* (Continuous Types, Laffont and Robert). Suppose f(v) is weakly decreasing

and the virtual valuation ϕ(v) is increasing in v. The revenue maximizing mechanism can

be described as follows: there will be two cutoffs v̄ and v. Valuations less than v will not

be allotted.Types v̄ and above will be pooled, and the budget constraint will bind for exactly

those types. The allocation rule will be efficient in the interval [v, v̄]. Finally, v is the lowest

type such that:

ϕ(v) +
η

f(v)
≥ 0

η =
(1− F (v̄))2

v̄f(v̄) + (1− F (v̄))
.

If f(v) is not weakly decreasing in v or does not satisfy increasing virtual values, the optimal

solution may require pooling in the middle.

Implementation First consider what one can call the regular case- i.e. f satisfies both

the monotone hazard rate and weakly decreasing density conditions. In this case, the im-

plementation will be as described by Laffont and Robert: the auction will be implemented
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as an all pay auction, with an appropriately chosen reserve price. The reserve price p will

be the payment of type v in the auction described above. If f is not regular- i.e. it violates

either the monotone hazard rate or decreasing density conditions, then additional pooling

may be required. In particular the all-pay auction described above may not be optimal. The

pooling identified by the optimal auction must then be implemented by further modifying

the winning rule in the all-pay auction.

Proof of Proposition 2

The proof is broken into four main steps for expositional reasons. First, we use Observation

1 to rewrite the seller’s problem. Next, we flip to the dual, and work with the constraints of

the dual. We then construct a dual feasible solution that complements the proposed primal

optimal, proving optimality.

Step 1: Rewriting the Primal

Suppose the lowest type for which the budget constraint binds in the optimal solution a∗

is v̄. Substituting into (REVOPTCK2); and dropping the redundant Border constraints by

Lemma 1, we conclude that a∗ must be a solution to the program below. The symbols in

parentheses on the right of the constraints refer to the corresponding dual variables.

max
a

( v̄−1∑
1

f(v)ϕ(v)a(v)

)
+ (1− F (v̄ − 1))v̄a(v̄)

s.t. −
v̄−1∑

1

a(v′) + v̄a(v̄) = b (η)

∀ v ≤ v̄ :
v̄−1∑
v

f(v′)a(v′) + (1− F (v̄ − 1))a(v̄) ≤ cv (βv)

∀ v : a(v)− a(v + 1) ≤ 0 (µv)

∀ v : a(v) ≥ 0
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Step 2: Taking the Dual

The dual is shown below, the primal variable associated with each dual constraint displayed

in parentheses next to the constraint.

min
η,β,µ

bη +
v̄∑
1

cvβv

s.t. v̄η + (1− F (v̄ − 1))
v̄∑
1

βv − µv̄−1 ≥ (1− F (v̄ − 1))v̄ (a(v̄))

∀ v ≤ (v̄ − 1) : −η + f(v)
v∑
1

βv′ + µv − µv−1 ≥ f(v)ϕ(v) (a(v))

∀ v : βv, µv ≥ 0

Let v be the lowest valuation for which a∗(v) > 0. By complementary slackness we have:

v̄η + (1− F (v̄ − 1))
v̄∑
1

βv − µv̄−1 = (1− F (v̄ − 1))v̄,

v ≤ v ≤ (v̄ − 1) : −η + f(v)
v∑
1

βv′ + µv − µv−1 = f(v)ϕ(v).

Rewriting, we get:

v̄∑
1

βv −
µv̄−1

1− F (v̄ − 1)
= v̄ − vη

1− F (v̄ − 1)
,

v ≤ v ≤ (v̄ − 1) :
v∑
1

βv′ +
µv
f(v)

− µv−1

f(v)
= ϕ(v) +

η

f(v)
.

Step 3: Constructing a Dual Feasible Solution

The proof proceeds by constructing dual variables that complement the primal solution

described in the statement of the proposition.

Since a∗(v) = 0 for v < v and f(v) > 0 for all v, the corresponding Border constraints

(8b) do not bind at optimality. Therefore βv = 0 for all v < v. Further 0 = a∗(v−1) < a∗(v)

by definition of v, and so, by complementary slackness, µv−1 = 0. Similarly, since v̄ is the

lowest type for which the budget constraint binds, a∗(v̄) > a∗(v̄−1), implying that µv̄−1 = 0.

Subtracting the dual constraints corresponding to types v̄ and v̄ − 1 and using the fact
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that µv−1 = 0, we have:12

βv̄ +
µv̄−2

f(v̄ − 1)
= v̄ − v̄ η

1− F (v̄ − 1)
− ϕ(v̄ − 1)− η

f(v̄ − 1)
. (11a)

Subtracting the dual constraints corresponding to v and v − 1, where v + 1 ≤ v ≤ v̄ − 1, we

have:

βv +
µv
f(v)

− µv−1

f(v)
− µv−1

f(v − 1)
+

µv−2

f(v − 1)
= ϕ(v)− ϕ(v − 1) + η

(
1

f(v)
− 1

f(v − 1)

)
. (11b)

Finally, the dual constraint corresponding to type v reduces to:

βv +
µv
f(v)

= ϕ(v) +
η

f(v)
. (11c)

It suffices to identify a non-negative solution to the system (11a-11c) such that βv = 0 for

all v < v and µv−1 = 0. Consider the following solution, with all other dual variables set to

0:

v + 1 ≤ v ≤ v̄ − 1 : βv = ϕ(v)− ϕ(v − 1) + η

(
1

f(v)
− 1

f(v − 1)

)
,

η =
(1− F (v̄ − 1))(1− F (v̄ − 2))

v̄f(v̄ − 1) + (1− F (v̄ − 1))
.

Step 4: Verification

Direct computation verifies that the given solution satisfies (11a-11c). In fact it is the unique

solution to (11a-11c) with all µ’s equal to zero. All variables are non-negative. In particular,

βv for v + 1 ≤ v ≤ v̄ − 1 is positive. Since f(·) satisfies the increasing virtual value and

decreasing density conditions, for any v,

ϕ(v)− ϕ(v − 1) + η

(
1

f(v)
− 1

f(v − 1)

)
> 0.

The dual constraint for a(v − 1) reduces to:

0 ≥ ϕ(v − 1) +
η

f(v − 1)
,

verifying that types below v have a non-positive adjusted virtual value ϕ(v) + η
f(v)

.

Furthermore, it complements the primal solution described in the statement of the propo-

sition. This concludes the case where our regularity condition on the distribution of types

12This step is where the upper triangular constraint matrix is helpful.
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(monotone hazard rate, decreasing density) are met.

Now suppose our sufficient condition is violated, i.e. ϕ(v)−ϕ(v−1)+η
(

1
f(v)
− 1

f(v−1)

)
< 0

for some v. The dual solution proposed above will be infeasible since βv < 0. More generally,

there can be no dual solution that satisfies (11a-11c) with all µv = 0. Hence, there must

be at least one v between v and v̄ − 1 such that µv > 0. This implies, by complementary

slackness, that the corresponding primal constraint, a(v)− a(v+ 1) ≤ 0 binds at optimality,

implying pooling. Further the corresponding µ’s are therefore non-zero, and are the ‘ironing’

multipliers a la Myerson.

If such further pooling or ironing is required, one can further restrict the set of optimal

dual solutions. A proof follows from observation of the ‘hierarchical allocation rules’ of

Border [3].

Lemma 1 (Border). In any solution to the primal problem (REVOPTCK2), at most one of

the Border constraint (8b) corresponding to type v, and the monotonicity constraint corre-

sponding to type v − 1 can bind. Further, by complementary slackness:

∀ v : βvµv−1 = 0 (12)

The solution to the system of equations (11a-11c), (12) constitutes the optimal dual

solution. It is easily seen that this solution is unique- therefore even in the case where

ironing is required, there is a unique solution.

We are also in a position to describe the constrained efficient auction for this setting.

The proof is very similar to that of Proposition 2 (objective function has v instead of ϕ(v)),

and is therefore omitted.

Proposition 3 (Constrained Efficient Auction). Suppose f(v) is weakly decreasing in v.

Then the constrained efficient auction in this setting can be described as follows: there will

exist a cutoff v̄. All types v̄ and above will receive the same interim allocation probability, and

the budget constraint will bind for exactly those types. The allocation rule will be efficient for

types below v̄ − 1. If the sufficient conditions are not met, the optimal solution may require

pooling in the middle.

In other words, if the distribution of types has decreasing density, the constrained efficient

mechanism is an all-pay auction (with no reserve).
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4 The General Case

Recall the original program (RevOpt):

max
a,p

k∑
j=1

m∑
v=1

1

k
f(v)p(v, bj)

∀ (v, b) ∈ T : va(v, b)− p(v, b) ≥ 0

∀ (v, b) ∈ T : p(v, b) ≤ b

∀ (v, b), (v′, b′) ∈ T : va(v, b)− p(v, b) ≥ χ{p(v′,b′)≤b} (va(v′, b′)− p(v′, b′))

∀T ′ ⊆ T : N
∑
t∈T ′

π(t)a(t) ≤ 1−

(∑
t6∈T ′

π(t)

)N

∀ t ∈ T : a(t) ≥ 0

The incentive compatibility constraints can be separated into 3 categories:

1. Misreport value: va(v, b)− p(v, b) ≥ va(v′, b)− p(v′, b). (13a)

2. Misreport budget: va(v, b)− p(v, b) ≥ χ{p(v,b′)≤b} (va(v, b′)− p(v, b′)) . (13b)

3. Misreport both: va(v, b)− p(v, b) ≥ χ{p(v′,b′)≤b} ((va(v′, b′)− p(v′, b′)) . (13c)

Standard arguments imply that the IC constraints corresponding to a misreport of value,

(13a), can be satisfied by some pricing rule if and only if, for any b, v ≥ v′ implies that

a(v, b) ≥ a(v′, b). Incentive compatibility and individual rationality imply

p(v, b) ≤ va(v, b)−
v−1∑

1

a(v′, b).

The difficulty stems from the IC constraints relating to misreport of budget, (13b) and (13c).

In particular, we need (further) constraints on the allocation rule such that there exists an

incentive compatible pricing rule.

4.1 Identifying Incentive Compatible Allocation Rules

We now identify conditions on interim allocation rules such that each type’s payment is the

maximum possible, i.e.

p(v, b) = va(v, b)−
v−1∑

1

a(v′, b). (14)

The following observation is analogous to Observation 1 in the common knowledge budget
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case. It simply says that fixing a budget b, if the allocation rule is such that the budget

constraint binds for a type v, then it binds for all types v′ larger than v, and all those types

are pooled.

Observation 2. For any budget b, an allocation rule a is incentive compatible only if:

∀ v′ ≥ v : p(v, b) = b =⇒ a(v′, b) = a(v, b).

Recall that fixing budget, a buyer’s expected payment is increasing in his value. The next

lemma compares types with the same value v, but different budgets b′ > b. It shows that as

long as buyer (v, b′) has an expected payment less than b, it receives the same allocation as

(v, b).

Lemma 2. Fix an allocation rule a such that a is incentive compatible and individually

rational with pricing rule (14). Fix two budgets b′ > b. Let vb be the largest v such that

p(vb, b
′) ≤ b. Then,

∀ v ≤ vb : a(v, b′) = a(v, b).

Further, a(vb + 1, b′) > a(m, b).

A word on our choice of notation is in order here:

• vi is the highest valuation with budget greater than bi that pays at most bi.

• vi is the lowest valuation with budget bi for whom the budget constraint binds.

We do not require that vi ≤ vi (nor will this generally be true). The reason for this slightly

unintuitive notation is that vi corresponds to pooling cutoffs, hence the upper-bar, while, vi
can be thought of as a ‘reserve.’

We summarize this in the following definition:

Definition 1. Given an allocation rule a that is incentive compatible and individually ra-

tional with pricing rule (14), define cutoffs:

∀ i ≤ k : v̄i = arg min{v : p(v, bi) = bi},
∀ i ≤ k − 1 : vi = arg max{v : p(v, bi+1) ≤ bi}.

Note that vi < v̄i+1. Further, define :

V = {v̄1, v̄2, . . . , v̄k},
V = {v1, v2, . . . vk−1}.
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Figure 2: An IC allocation rule

Observation 2 and Lemma 2 imply:

Observation 3. An allocation rule a : T → [0, 1] is consistent with cutoffs V̄ =

{v̄1, v̄2, . . . , v̄k} and V = {v1, v2, . . . vk−1}, where vi ≤ v̄i+1 for all i, and pricing rule (14),

incentive compatible and individually rational if and only if:

∀ v, b : a(v, b) ≤ a(v + 1, b) (15a)

∀ i : a(v̄i − 1, bi) < a(v̄i, bi) (15b)

∀ i : p(v̄i, bi) = bi (15c)

∀ i, v ≥ v̄i : a(v, bi) = a(v̄i, bi) (15d)

∀ i, v ≤ vi : a(v, bi) = a(v, bi+1) (15e)

∀ i : p(vi + 1, bi + 1) > bi (15f)

∀ i : a(vi + 1, bi + 1) > a(m, bi) (15g)

Figure 2 depicts an incentive compatible allocation rule for a type space with 10 possible

valuations and 4 possible budgets. The blobs represent types that are pooled. The numbering

reflects decreasing allocations: i.e. the blob numbered 1 has the highest interim probability

of getting the good, 2 has the second highest and so on.

Given a collection of cut-offs we describe how to find an allocation rule consistent with

those cutoffs that maximizes revenue. By Observation 3 we can drop the individual ratio-

nality, budget, and incentive compatibility constraints in (RevOpt) and substitute instead
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(15a-15g). Therefore, we have:

max
a

k∑
i=1

m∑
v=1

f(v)

k
ϕ(v)a(v, bi) (REVOPT)

s.t. (15a− 15g), (5), (6).

To ensure a well defined program the strict inequalities in (15b) and (15g) have to be

relaxed to a weak inequality. If for a given set of cutoffs, the optimal solution to (REVOPT)

binds at inequality (15b) or (15g), we know that the set of cutoffs being considered cannot

be feasible. Hence we can restrict attention to cut-offs where (the weak version of) the

inequalities do not bind at optimality.

Therefore, having fixed the cutoffs V , V , by (15a) and (15g), most of the Border con-

straints are rendered redundant by Proposition 1. In particular consider type (v, bi); v ≤ v̄i.

Then, by Observation 3, E(v,bi), the set of all types t such that a(t) ≥ a(v, bi) is:

E(v,bi) =
k⋃

j=i+1

{(v′, bj) : v′ ≥ min(v, vi + 1, . . . , vj−1 + 1)}
⋃
{(v′, bi) : v′ ≥ v}.

It follows from Proposition 1 that the relevant Border constraints to be considered are:

∀ i, v ≤ v̄i : N
∑

t∈E(v,bi)

a(t)f(t) ≤ 1−

 ∑
T−E(v,bi)

f(t)

N

. (16)

4.2 Potentially Optimal Allocation Rules

The next lemma further restricts the configurations of cutoffs in a revenue maximizing rule.

Fix a budget b. Recall that vb is the maximum value v such that type (v, b′), for any budget

b′ larger than b, pays at most b. The lemma says that vb + 1 is at least as large as the the

lowest value v such that type (v, b)’s budget constraint binds.

Lemma 3. Let a∗ solve (REVOPT). Then the cutoffs V , V as defined in Definition 1 must

satisfy:

∀ i ≤ k − 1 : vi ≥ v̄i − 1. (17)

Lemma 3 is a statement that the cutoffs are ordered in the intuitive sense. The budget

constraint corresponding to budget bi can bind in an optimal solution only if the budget

constraints corresponding to each bj < bi bind. Therefore, in any optimal solution, there

must be a largest budget bi such that the budget constraints corresponding to b ≤ bi bind,
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Figure 3: A Potentially Optimal IC Rule

and the budget constraints corresponding to b > bi are slack. For notational simplicity we

assume that in the optimal solution, all budget constraints bind.

With this added restriction on cutoffs; the set of incentive compatible and individually

rational rules are summarized in Observation 4. Since vi ≥ v̄i − 1, (15f) and (15g) are

satisfied automatically, and

vi ≡ arg min{v : a(v + 1, bi+1) > a(v̄i, bi)}.

Observation 4. An allocation rule a : T → [0, 1], consistent with the cutoffs V̄ = {v̄1 ≤
v̄2 ≤ . . . ≤ v̄k} and pricing rule (14) is incentive compatible and individually rational if and

only if there exist, x : V → [0, 1] and y : V̄ → [0, 1] such that:

∀ i ≤ k, v ≥ v̄i : a(v, bi) = y(v̄i), (18a)

∀ i ≤ k, v̄i−1 + 1 ≤ v ≤ v̄i − 1, j ≥ i : a(v, bj) = x(v), (18b)

∀ i ≤ k : v̄iy(v̄i)−
v̄i−1∑

1

x(v) = bi, (18c)

∀ v : x(v) ≤ x(v + 1), (18d)

∀ i ≤ k : x(v̄i − 1) < y(v̄i), (18e)

∀ i < k : y(v̄i) ≤ x(v̄i). (18f)

Figure 3 displays an allocation rule whose cutoffs satisfy Lemma 3. As before, the blobs

represent types that are pooled. The numbering reflects decreasing allocations: i.e. the blob

numbered 1 has the highest interim probability of getting the good, 2 has the second highest
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and so on.

4.3 Characterizing the Optimal

We are now in a position to describe the expected revenue maximizing mechanism.

Proposition 4. Suppose f(v) is weakly decreasing, and the virtual value ϕ(v) is increasing

in v. Then, there is an optimal solution a∗(v, b) to (RevOpt) that can be described as follows:

there will exist cutoffs v̄1 ≤ v1 ≤ v̄2 ≤ . . . vk−1 ≤ v̄k and v0. No valuation less than v0 will

be allotted. The allocation rule will satisfy (18a-18f). The allocation will be efficient between

each vi and v̄i+1. Types (v, b) with b > bi and v̄i ≤ v ≤ vi will be pooled with types (v, bi)

whose budget constraints bind, i.e. v ≥ vi.

If the sufficient conditions are not met, the optimal solution may require additional pooling

in the middle.

Proposition* (Continuous Valuations). Suppose f(v) is weakly decreasing in v, and 1−F (v)
f(v)

is increasing in v. Then, there is an optimal solution a∗(v, b) to (RevOpt) that can be

described as follows: there will exist cutoffs v̄1 ≤ v1 ≤ v̄2 ≤ . . . vk−1 ≤ v̄k and v0. No

valuation less than v0 will be allotted. There will exist functions x : V → [0, 1] and y : V →
[0, 1] such that the allocation rule satisfies:

∀ i ≤ k, v ≥ v̄i : a(v, bi) = y(v̄i),

∀ i ≤ k, vi−1 ≤ v < v̄i, j ≥ i : a(v, bj) = x(v),

∀ i ≤ k : v̄iy(v̄i)−
∫ v̄i

0

x(v) = bi,

∀ v : x(v) ↑ in v,

∀ i ≤ k : lim
v↑v̄i

x(v̄i) < y(v̄i),

∀ i < k : y(v̄i) ≤ lim
v↓vi

x(v).

The allocation will be efficient between each vi and v̄i+1. Further, for all b > bi and v̄i ≤ v ≤
vi, a

∗(v, b) = y(v̄i). If the sufficient conditions are not met, the optimal solution may require

additional pooling in the middle.

4.4 Implementation

The above propositions describe the optimal mechanism directly in terms of reduced form.

To help understand it, we describe the implementation of the optimal auction. Consider the

‘regular’ case, i.e. f satisfies the monotone hazard rate and decreasing density conditions.

The implementation is akin to an all-pay auction.
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Continuous Types Case For simplicity let us first consider the continuous case. There

will be a reserve price r. Further for each budget bi < bk,there will be a 4i > 0.13 If there

are multiple bids in the interval [bi, bi +4i), and no bid exceeding bi +4i, the auctioneer

will award the good randomly to one of these bidders(rather than to the highest bid). In all

other cases, the good will be awarded to the highest bidder.In equilibrium there will be no

bids in the interval (bi, bi +4i).

Due to the extra pooling being implemented, there will be 2 sorts of bidders who bid bi
in equilibrium:

1. Types with budget bi and valuation larger than a cutoff valuation v̄i- these are the type

for whom the budget constraint binds.

2. Types with a budget larger than bi, and valuation in the interval [v̄i, vi): these types

would prefer to bid bi and risk being pooled, rather than bid bi +4i and win the good

outright if at all.

Discrete Types Case If types are discrete, the implementation is slightly convoluted.

There will be a reserve price r, and a (finite) set of valid bids larger than r. As in a standard

all-pay auction, the highest bid will win, ties are broken randomly, and all bidders pay their

bid. The set of valid bids is exactly the set of p(v, b)’s, (v, b) ∈ T , identified in the statement

of Proposition 4.

To see how this corresponds to the description of the proposition, it is instructive to

consider the bids submitted by various types in equilibrium. The reserve price r is such that

no-type with a valuation less than v0 would find it profitable to submit a bid other than 0

in equilibrium. The type (v̄i, bi) is the lowest valuation with budget bi to bid her budget.

Critically, the lowest valid bid larger than bi is such that types with valuations v̄i through

vi − 1 and budgets larger than bi prefer to bid bi (and potentially be pooled with other

bidders), rather than bid higher and win the good outright. All other valid bids, i.e. bids

that are not equal to any of the budgets b1 through bk, are separating. In other words, for

any other valid bid, there is exactly one valuation that makes that bid in equilibrium.

In the event that f violates either the monotone hazard rate or decreasing density con-

dition, the optimal auction may require further pooling (over and above the pooling already

required by the regular case). These extra pooling intervals can be identified by explicitly

constructing feasible solutions to the program (REVOPT) and its dual which complement

each other, and also satisfy the constraints identified in Lemma 1.

13These can be computed by solving the continuous versions of the appropriate equations in the proof of
Proposition 4.
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4.5 Proof of Proposition 4

The proof of Proposition 4 might appear convoluted, but indeed it follows the same basic

strategy as the (hopefully, more palatable) proof of Proposition 2. First, the set of feasible

IC, IR allocation rules (as identified in Observation 4) is used to further ‘massage’ the sellers

problem into something more amenable for analysis. Once that is done, the dual is computed.

The allocation rule identified is shown to be optimal by constructing a feasible dual solution

that complements it. The proof is broken into major steps on these lines to orient the reader.

Step 1: Reformulating the Seller’s Problem

Substituting (18a) and (18b) into (16), the Border constraints to be considered are:

∀ i ≤ k, v̄i−1 ≤ v ≤ v̄i − 1 :

v̄i−1∑
v′=v

k−i+1
k
f(v′)x(v′) +

k∑
j=i+1

v̄j−1∑
v̄j−1

k−j+1
k
f(v′)x(v′) +

k∑
j=i

(1−F (v̄j−1))

k
y(v̄j) ≤ cv, (19a)

∀ i ≤ k :

k∑
j=i+1

(1−F (v̄j−1))

k
y(v̄j) +

k∑
j=i+1

v̄j−1∑
v̄j−1

k−j+1
k
f(v)x(v) ≤

1−(1− k−i
k

(1−F (v̄i−1)))N

N
. (19b)

where the c’s are the right hand side of the appropriate Border inequality (16), i.e.

v̄i−1 ≤ v ≤ v̄i − 1 : Ncv = 1−
(
1− k−i

k
(1− F (v − 1))

)N
.

Making the appropriate substitutions, (REVOPT) becomes:

max
x,y≥0

k∑
j=1

v̄j−1∑
v̄j−1

k − j + 1

k
f(v)ϕ(v)x(v) +

∑k
i=1 v̄i(1− F (v̄i − 1))y(v̄i)

k
(REVOPT2)

s.t. (18c− 18f, 19a, 19b).

Step 2: Constructing the Dual

Let ηi be the dual variable associated with the budget constraint (18c). Since we assume

constraint (18e) does not bind at optimality, the corresponding dual variable will be 0, and

therefore is dropped. Let µv be the dual variable associated with the monotonicity constraint

(18d), and µ̄v̄i the dual variable associated with the constraint (18f). Denote by βv the dual

variable associated with (19a), and β̄v̄i , the dual variable associated with (19b). The dual
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program is:

min
η,µ,β

k∑
i=1

biηi +

v̄k∑
v=1

cvβv +
k∑
i=1

c̄v̄i β̄v̄i

∀ i ≤ k, (v̄i−1 + 1) ≤ v ≤ (v̄i − 1) :

−
k∑
j=i

ηj + k−i+1
k

f(v)

(
v∑
1

βv +
i−1∑
j=1

β̄v̄j

)
+ µv−µv−1 ≥ k−i+1

k
f(v)ϕ(v), (20a)

∀ i ≤ k : −
k∑

j=i+1

ηj + k−i
k
f(v)

(
v̄i∑
1

βv +
i∑

j=1

β̄v̄j

)
+ µv̄i−µ̄v̄i ≥ k−i

k
f(v̄i)ϕ(v̄i), (20b)

∀ i ≤ k : v̄iηi + (1−F (v̄i−1))
k

(
v̄i−1∑

1

βv +
i∑

j=1

β̄v̄j

)
+ µ̄v̄i ≥

(1−F (v̄i−1))
k

v̄i, (20c)

η, β, µ ≥ 0.

Here, (20a) is the dual inequality corresponding to primal variable x(v) where (v̄i−1 + 1) ≤
v ≤ (v̄i − 1) , (20b) the dual inequality corresponding to x(v̄i) and (20c) the dual inequality

corresponding to y(v̄i).

Step 3: Analyzing the Dual

Fix an optimal primal solution(x∗, y∗) and let v be the lowest valuation which gets allotted

in that solution. Therefore any type (v, b) where v ≥ v gets allotted. It is easy to see that

v ≤ v̄1. Complementary slackness implies that the inequalities (20a) bind for all v ≥ v, as

do (20b, 20c) for all i. Rewriting (20a-20c) as in the common knowledge case:(
v∑
1

βv +
i−1∑
j=1

β̄v̄j

)
+

(µv − µv−1)
(k−i+1)

k
f(v)

= ϕ(v) +

∑k
j=i ηj

(k−i+1)
k

f(v)
, (21a)(

v̄i∑
1

βv +
i∑

j=1

β̄v̄j

)
+

(µv̄i − µ̄v̄i)
(k−i)
k
f(v̄i)

= ϕ(v̄i) +

∑k
j=i+1 ηj

(k−i)
k
f(v̄i)

, (21b)(
v̄i−1∑

1

βv +
i∑

j=1

β̄v̄j

)
+

µ̄v̄i
(1−F (v̄i−1))

k

= v̄i −
v̄iηi

(1−F (v̄i−1))
k

. (21c)
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Subtracting the equation (21a) corresponding to v − 1 from the equation corresponding to

v for v̄i−1 + 2 ≤ v ≤ v̄i − 1, we have:

βv +
(µv−µv−1)
(k−i+1)

k
f(v)

− (µv−1−µv−2)
(k−i+1)

k
f(v−1)

= ϕ(v)−ϕ(v−1) +

∑k
j=i ηj

k−i+1
k

(
1

f(v)
− 1

f(v−1)
). (22a)

Subtracting the equation (21b) corresponding to v̄i from equation (21a) corresponding to

v̄i + 1, we have:

βv̄i+1 +
(µv̄i+1 − µv̄i)

(k−i+1)
k

f(v̄i + 1)
− (µv̄i−µ̄v̄i)

(k−i)
k
f(v̄i)

= ϕ(v̄i + 1)−ϕ(v̄i) +

∑k
j=i ηj
k−i
k

(
1

f(v̄i + 1)
− 1

f(v̄i)

)
.

Similarly, subtracting the equation (21c) corresponding to v̄i from (21b) corresponding to v̄i
we have:

βv̄i +
(µv̄i − µ̄v̄i)
(k−i)
k
f(v̄i)

− µ̄v̄i
(1−F (v̄i−1))

k

= ϕ(v̄i)− v̄i +

∑k
j=i+1 ηj

(k−i)
k
f(v̄i)

+
v̄iηi

(1−F (v̄i−1))
k

(22b)

Finally, subtracting (21a) corresponding to v̄i − 1 from (21c) corresponding to v̄i, we have:

β̄v̄i +
µ̄v̄i

(1−F (v̄i−1))
k

− µv̄i−2

(k−i)
k
f(v̄i−1)

= v̄i−ϕ(v̄i−1)− v̄iηi
(1−F (v̄i−1))

k

−
∑k

j=i ηj
(k−i+1)

k
f(v̄i−1)

(22c)

If the optimal solution a∗ is strictly monotone, the inequalities (18d-18f) do not bind. Com-

plementary slackness implies all the µ’s are 0. As in the common knowledge budget case we

set β̄v̄i = 0 for all i since this will satisfy complementary slackness. Therefore, from (22c),

we have that:

ηk =
1

k

(1− F (v̄k − 1))(1− F (v̄k − 2))

v̄kf(v̄k − 1) + (1− F (v̄k − 1))
,

ηi =
1

k

(1− F (v̄i − 1))(1− F (v̄i − 2))

(k − i+ 1)v̄if(v̄i − 1) + (1− F (v̄i − 1))
−

(1− F (v̄i − 1))
∑k

i+1 ηj

(k − i+ 1)v̄if(v̄i − 1) + (1− F (v̄i − 1))

It is easily verified that the η’s as specified are non-negative and therefore dual feasible.

Further, one can show that i ≤ j =⇒ ηi ≥ ηj, in other words, as one would suspect, smaller

budgets have larger shadow prices. Substituting into (22a) we have, ∀ v : v̄i−1 < v < v̄i,

βv = ϕ(v)− ϕ(v − 1) +

∑k
j=i ηj

k−i+1
k

(
1

f(v)
− 1

f(v − 1)

)
.
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Note that βv for all v such that v̄i−1 < v < v̄i will be positive if f is weakly decreasing.

Finally, substituting the η’s into (22b), we have:

βv̄i = ϕ(v̄i)− ϕ(v̄i − 1) +

∑k
i+1 ηj

(k−i)
k
f(v̄i)

−
∑k

i ηj
(k−i+1)

k
f(v̄i − 1)

.

Step 4: Non Monotonicity in Adjusted Virtual Values

The adjusted virtual value of a type with valuation v̄i and budget strictly larger than bi is

ϕ(v̄i) +

∑k
i+1 ηj

(k−i)
k
f(v̄i)

.

This may be smaller than the adjusted virtual valuation of a type with value vi − 1 and

budget bi or larger,

ϕ(v̄i − 1) +

∑k
i ηj

(k−i+1)
k

f(v̄i − 1)
,

even if f is weakly decreasing and satisfies the monotone hazard rate.

Intuitively, this happens because allocating to types with valuation v̄i−1 and budget ≥ bi
also ‘relaxes’ the budget constraints corresponding to budget bi and larger. Allocating to

types with value v̄i and budget > bi only relaxes the budget constraints for budgets strictly

larger bi. Therefore, the adjusted virtual valuation may be non monotone at this point. As

a result, the βv̄i shown above can be negative, and thus infeasible. Additional pooling will

be required.

As described in the proposition, for each budget bi there will be an additional cutoff vi.

Types (v, b) where v̄i ≤ v ≤ vi and b > bi will be pooled with the types (v, bi), v ≥ v̄i (i.e. the

types for whom the budget constraint binds). The allocation rule will be efficient between

vi and v̄i+1.

Step 5: Constructing the Complementary Dual Solution

Since a∗(v, b) = 0 for all v < v0, the corresponding Border constraints must be slack, and

therefore βv = 0 for all v < v0. Since x∗(vi + 1) > y∗(v̄i), µv = 0.

The βv for vi + 2 ≤ v ≤ v̄i+1 − 1 is as specified in (22a), with the corresponding µ’s

set to 0. By Lemma 1, βv for v̄i ≤ v ≤ vi is 0 since, by the statement of the proposition,

a∗(v, b) = y(v̄i) for all b > bi. The relevant µ’s can be calculated from the relevant equations.

Instead of computing these µ’s, we can instead suppose that the types which have been

ironed, {(v, bi) for v ≥ v̄i}
⋃
{(v, bj) for j > i, v̄i ≤ v ≤ vi}, all correspond to one ‘artificial’
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type, ti. The probability of ti is

π(ti) =
(k − i)
k

(F (vi)− F (v̄i − 1)) +
1

k
(1− F (v̄i − 1)).

Further, its adjusted virtual valuation is:

ϕ(ti) = v̄i −
(k − i)(vi − v̄i + 1)(1− F (vi))

kπ(ti)
+

(vi − v̄i + 1)
∑k

j=i+1 ηj

π(ti)
− v̄iηi
π(ti)

Since the budget constraint for budget bi binds at v̄i, analogous to the proof of Proposition

2, β̄v̄i is 0, and therefore we can solve for ηi from:

ϕ(ti)− ϕ(v̄i − 1)−
k
∑k

j=i ηj

(k − i+ 1)f(v̄i − 1)
= 0. (23)

Note that the adjusted virtual valuation of v̄i − 1 can be written as:

ϕ(v̄i − 1) +
k
∑k

j=i+1 ηj

(k − i+ 1)f(v̄i − 1)
+

kηi
(k − i+ 1)f(v̄i − 1)

.

To see that the ηi that solves (23) is positive, we need to show that:

ϕ(v̄i − 1) +
k
∑k

j=i+1 ηj

(k − i+ 1)f(v̄i − 1)
< v̄i −

(k − i)(1− F (vi))

kπ(ti)
+

(vi − v̄i + 1)
∑k

j=i+1 ηj

π(ti)
(24)

The right hand side of this inequality equals

1

π(ti)

(
v̄i

(1− F (v̄i − 1))

k
+

vi∑
v=v̄i

(
(k−i)
k
f(v)ϕ(v) +

k∑
j=i+1

λj

))
.

However,

ϕ(v̄i − 1) +
k
∑k

j=i+1 ηj

(k − i+ 1)f(v̄i − 1)
< v̄i,

since
∑k

j=i+1 ηj is appropriately small (see Proposition 6). Further, for v̄i ≤ v ≤ vi,

ϕ(v̄i − 1) +
k
∑k

j=i+1 ηj

(k − i+ 1)f(v̄i − 1)
< ϕ(v) +

k
∑k

j=i+1 ηj

(k − i)f(v)
,

follows from the monotone hazard rate and decreasing density conditions. (24) follows since

its right hand side is a weighted average of the right hand side of the latter two inequalities.

30



Further, we have that:

βvi+1 = ϕ(vi + 1) +
k
∑k

j=i+1 ηj

(k − i)f(vi + 1)
− ϕ(ti). (25)

To ensure that βvi+1 ≥ 0 it suffices by inequality (23) that cutoffs v̄i and vi satisfy:

ϕ(vi + 1) +
k
∑k

j=i+1 ηj

(k − i)f(vi + 1)
≥ ϕ(v̄i − 1) +

k
∑k

i ηj
(k − i+ 1)f(v̄i − 1)

.

Finally, note that v0 will be the lowest valuation such that ϕ(v) +
∑k

1 ηj
f(v)

≥ 0; and

βv0 = ϕ(v) +

∑k
1 ηj

f(v)
.

The partial solution identified above, with all other dual variables set to 0, is an optimal

dual solution. Since βv > 0 for all vi + 1 ≤ v ≤ v̄i+1 − 1, by complementary slackness, the

corresponding Border constraints (8b) bind. This concludes the case where our regularity

condition on the distribution of types (monotone hazard rate, decreasing density) are met.

If the monotone hazard rate or decreasing density assumptions are not satisfied then the

dual solution identified may be infeasible, and therefore additional pooling will be required

due to Lemma 1.

We can also describe the constrained efficient auction for this setting. The proof is

similar, and omitted. Intuitively, the mechanism is similar in structure to the case of revenue

maximization. The key difference is that there is no reserve price.

Proposition 5 (Constrained Efficient Auction). Suppose f(v) is decreasing in v. Then the

solution of (ConsEff) can be described as follows: there will exist cutoffs v̄1 ≤ v1 ≤ v̄2 ≤
. . . vk−1 ≤ v̄k and v0 = 0. The allocation rule will satisfy (18a-18f).The allocation will be

efficient between each vi and v̄i+1. Further, for all b > bi and v̄i ≤ v ≤ vi, a(v, b) = y(v̄i). If

the sufficient conditions are not met, the optimal solution may require additional pooling in

the middle.

4.6 Subsidies

Since budget constrained bidders are unable to effectively compete in the auction, this will

depress auction revenues. To get around this problem, prior work has examined various

kinds of subsidies (lump sum transfer, discounts) and their effect in a particular auction

setting.

In our setting, there is only one possible (incentive compatible) means of subsidy- a lump

sum transfer from the auctioneer to the agents. This is because, given an allocation rule,
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incentive compatibility determines prices up to a constant:

p(v, b) = va(v, b)−
v−1∑

1

a(v′, b) + c.

Let us consider a subsidy via lump sum payment of some amount ε. This costs the

auctioneer ε per agent. The effect of this subsidy is to relax the budget constraints by ε.

Therefore the gain in revenue is (at most) ε
∑

i ηi.
14 We show below that

∑
i ηi ≤ 1 , and thus

ε
∑

i ηi ≤ ε. As a result, if the auctioneer were running the optimal auction, he should not

offer subsidies. This result remains true even when bidders’ budgets are common knowledge.

Proposition 6. For all i,

k∑
i

ηj ≤ (k−i+1)
k

(1− F (v̄i − 1)). (26)

How then does the optimal auction encourage competition? Recall that for each i, types

{(v, bi) for v ≥ v̄i}
⋃
{(v, bj) for j > i, v̄i ≤ v ≤ vi} are pooled. The pooling serves to allot

the good to disadvantaged bidder types (v, bi), v ≥ v̄i even in profiles where there are bidders

with higher valuations and budgets present. Intuitively, favoring bidders in this way is better

than lump-sum transfers because there are more degrees of freedom: a lump-sum transfer

must be given to a bidder regardless of his type in order to maintain incentive compatibility.

5 Discussion

5.1 Strengthening Interim IC and IR

The optimal auction we identify is implemented as an all-pay auction with a modified winning

rule. All-pay auctions are generally considered ‘unappealing.’ In our opinion, this is a critique

of the interim individual rationality constraint. One can impose ex-post IR, rather than

interim IR. The optimal auction with this more stringent constraint can be characterized

using similar techniques to ours. The resulting implementation will be a first price auction

with a modified winning rule.This is because any ex-post IR and interim IC mechanism can

be supported by an ex-post payment rule that requires the bidder to pay some fixed price

p (contingent on his report) if he wins, and 0 if he loses. The resulting expected revenue

from imposing ex-post individual rationality will be strictly less than if we required interim

individual rationality.

In a similar vein one can ask what the optimal auction is if one desires dominant strategy

implementability rather than Bayes-Nash (interim IC). An analogous argument shows that

14Recall that ηi is the shadow price of the budget constraint.
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the optimal auction can be implemented as a second price auction, with a similarly modified

winning rule. The resulting expected revenue will be lower still.

5.2 Relaxing Independence

The assumption that a buyer’s valuation is independent of his budget may worry some

readers. It can be shown that the full power of independence is not needed. All we need is

that

b > b′ =⇒ ϕ(v, b) ≤ ϕ(v, b). (27)

Here ϕ(v, b) is the virtual valuation of value v when the distribution over values is the

distribution conditional on value being b. Assume that the distribution of values conditional

on any budget satisfies the monotone hazard rate condition. Then (27) implies that the

distribution of values conditional on a higher budget b first order stochastically dominates

the distribution of values conditional on a lower budget b′, which we would claim is the

economically interesting case.

If the correlation between values and budgets goes in the opposite direction, then the

proof of Lemma 3 fails. The optimal allocation rule may look like the sort identified in

Figure 2. High budget constraints may bind, while low budget constraints are slack. A clean

characterization appears to be out of reach for that case.
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A Counterexamples

A.1 Laffont and Robert’s Solution

In this section, we examine the classical formulation, with a continuum of types. We show

by counterexample that the Laffont and Robert solution is not optimal for all distributions

that meet the monotone hazard rate condition– if the decreasing density assumption fails,

additional pooling is required. We can now use the intuition gleaned from Section 3 to

identify a flaw in the L-R solution in the event that densities are not decreasing. Pick a

v′ ∈ (v, v); and ‘iron’ some small interval of types [v′, v′ + ε]. The new allotment rule is

therefore:

a′(v) =


1−FN (v)
N(1−F (v))

v ≥ v
FN (v′+ε)−FN (v′)
N(F (v′+ε)−F (v′))

v ∈ [v′, v′ + ε]

FN−1(v) v ∈ [v, v′)
⋃

(v′ + ε, v]

0 o.w.

(28)
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By Lemma 4 (see Appendix A.3), if f(v) is increasing in the interval; then

gε ≡ ε
FN(v′ + ε)− FN(v′)

N(F (v′ + ε)− F (v′))
−
∫ v′+ε

v′
FN−1(v)dv > 0.

Let us assume that f(v) is increasing in the range [0, 1]. As a result, the budget constraint

is now slack. We can now potentially improve on the revenue by ‘un-pooling’ v2 to v2 + δ.

First, δ solves the implicit equation:

δ
FN(v + ε)− FN(v)

N(F (v + ε)− F (v))
−
∫ v+δ

v

FN−1(v)dv = gε. (29)

The change in revenue from ironing types [v′, v′ + ε] is:

∆(v3, ε) ≡
∫ v′+ε

v′
ϕ(v)f(v)

[
FN(v′ + ε)− FN(v′)

N(F (v′ + ε)− F (v′))
− FN−1(v)

]
dv.

Similarly, the change in revenue from ‘un-pooling’ [v, v + δ] is:

∆(v, ε) ≡ −
∫ v+δ

v

ϕ(v)f(v)

[
FN(v + δ)− FN(v)

N(F (v + δ)− F (v))
− FN−1(v)

]
dv.

Therefore the total change in revenue is:

∆ = ∆(v′, ε) + ∆(v, ε).

Since ϕ(·) and f(·) are both increasing; ∆(v, ε) ≥ 0 ≥ ∆(v′, ε). Potentially, ∆ ≥ 0 for

some suitable parameter choices. In other words, our perturbation of the L-R solution can

increase expected revenue, therefore the L-R solution is not optimal. We flesh out a numerical

example below.

A.1.1 An Example

Suppose 2 bidders, i.e. N = 2. Both have valuations in the interval [0, 1] which are drawn

i.i.d. with density f(v) = 2v; F (v) = v2. Both have a common budget constraint b = 0.5.

The ‘virtual value’ of a bidder of valuation v, ϕ(v) = 3v2−1
2v

, which is increasing on the interval

[0, 1]. If there was no budget constraint, the optimal auction would be a second price auction

with reserve price v0 = 1√
3
, i.e. ϕ(v0) = 0.
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Recall that the L-R solution would require us to compute v and v to solve:

v

2
+
v3

6
+
v3

3
= 0.5,

3v2 +
(1− v2)2

1 + v2 = 1.

Solving, we get v = 0.5415 and v = .7523. Therefore; v < v0 < v. For the perturbation we

outlined above, select v′ = 1√
3
(= v0); and ε = 10−4. Our functional forms lend themselves to

easy analytic calculation– some calculation yields:

gε =
ε3

6

δ = ε

∆(v′, ε) = −(3v′2 + 1)ε3

6
− v′ε4

2
+ ε5

∆(v, ε) = +
(3v2 + 1)ε3

6
+
vε4

2
− ε5

Substituting we see that net change in revenue

∆ ≈ (v2 − v′2)ε3

2
> 0.

A.2 Maskin

The counterexample also works for the case of constrained efficiency. Once again, suppose

2 bidders, i.e. N = 2. Both have valuations in the interval [0, 1] which are drawn i.i.d. with

density f(v) = 2v; F (v) = v2. Both have a common budget constraint b = 0.5. The Maskin

solution would require us to pick a cutoff v̄ to solve:

v̄

2
+
v̄3

6
= 0.5,

i.e. v̄ = 0.8177. Let us now pick ε � 1, and iron [0, ε]. It can be shown that the budget

constraint for type v̄ is relaxed by ε3

6
. Therefore we can now have the efficient allocation for

types [v̄, v̄ + ε) and still satisfy the budget constraint. Further, one can show the expected

loss of efficiency from ironing the interval [0, ε] is O(ε5), while the gain in efficiency from

unpooling the types [v̄, v̄ + ε) is roughly 1
3
v2ε3.
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A.3 Ironing

Let f(.) be the density function for some distribution on <, and let F (.) be the associated

cumulative distibution function.

Lemma 4. If f(.) is (strictly) increasing on some interval [v1, v2], then for any N > 1, we

have:

(v2 − v1)
FN(v2)− FN(v1)

N(F (v2)− F (v1))
>

∫ v2

v1

FN−1(v)dv

Proof. Rewriting, we have to show that∫ v2
v1
f(v)F n−1(v)dv∫ v2
v1
f(v)dv

>

∫ v2
v1
F n−1(v)dv∫ v2
v1
dv

This is true if and only if∫ v2

v1

dv

∫ v2

v1

f(v)F n−1(v)dv >

∫ v2

v1

F n−1(v)dv

∫ v2

v1

f(v)dv

Note that both sides are equal (to zero) at v2 = v1. Therefore we have the desired inequality if

the derivative w.r.t v2 of the left hand side is greater than the right hand side. Differentiating

both sides w.r.t. v2 and rearranging we have that this is true if and only if:

FN−1(v2)

(
f(v2)(v2 − v1)−

∫ v2

v1

f(v)dv

)
+

∫ v2

v1

(f(v)− f(v2))FN−1(v)dv > 0

The inequality now follows by observing that f(v) is increasing in v, therefore∫ v2

v1

(f(v)− f(v2))FN−1(v)dv > FN−1(v2)

∫ v2

v1

(f(v)− f(v2))dv

B Proofs from Section 3

B.1 Optimal Auction with Continuous Types

Suppose bidders all have a common knowledge budget b. Their valuations belong to the

interval [0, V ], and are drawn i.i.d. from a distribution with density f and cumulative

distribution F . Further, assume that f satisfies the decreasing density and increasing hazard

rate conditions.

Suppose we now discretize this space- we assume that all bidder valuations belong to the

set {ε, 2ε, . . . ,mε}, where mε = V . The ‘density’ of any type, kε is f ε(kε) =
∫ kε

(k−1)ε
f(v)dv.

The cumulative distribution F ε is defined analogously. Note that f ε will satisfy both the

decreasing density and monotone hazard rate conditions.
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Our solution in this discrete type space can be summarized thus: there will exist two

cutoffs v and v̄. No valuation less than v will be allotted. Types v̄ and above will be pooled,

and the budget constraint will bind for those types. The allocation rule will be efficient

between v and v̄ − 1. Therefore the optimal allocation rule a(v) satisfies: 15

v̄a(v)− ε
k̄−1∑
j=1

a(jε) = b, k̄ε = v̄,

and v is the lowest type such that:

v − ε1− F
ε(v)

f ε(v)
+
εη

f ε
≥ 0,

where

η =
(1− F (v̄ − ε))(1− F (v̄ − 2ε))

v̄ f(v̄−ε)
ε

+ (1− F (v̄ − ε))
.

Note that as ε→ 0:

p(v)→ va(v)−
∫ v

0

a(v′)dv′

η → (1− F (v̄))2

v̄f(v̄)− (1− F (v̄))
.

As a result as ε ↓ 0, the solution identified in Proposition 2 converges to the solution

identified in Laffont and Robert.

C Proofs from Section 4

C.1 Proof of Lemma 2

By assumption, p(v, b′) ≤ b for any v ≤ vb. By individual rationality, p(v, b) ≤ b for

any v. Therefore the incentive compatibility constraints (13b) corresponding to type (v, b)

misreporting as (v, b′) and type (v, b′) misreporting as (v, b) for any v ≤ vb imply that:

∀ v ≤ vb : va(v, b)− p(v, b) = va(v, b′)− p(v, b′)

=⇒ ∀ v ≤ vb :
v−1∑

1

a(v′, b) =
v−1∑

1

a(v′, b′)

=⇒ ∀ v ≤ (vb − 1) : a(v, b) = a(v, b′).

15To see this, note that the payment rule will be p(v) = va(v)− ε
∑
v′<v a(v′), and virtual valuations etc.

must be updated accordingly.
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To see that a(vb, b) = a(vb, b
′), first consider the IC constraint corresponding to type (vb +

1, b) misreporting as type (vb, b
′). By assumption p(vb, b

′) ≤ b, therefore we can drop the

characteristic function and write the IC constraint as:

(vb + 1)a(vb + 1, b)− p(vb + 1, b) ≥ (vb + 1)a(vb, b
′)− p(vb, b′)

=⇒
vb∑
1

a(v, b) ≥
vb∑
1

a(v, b′)

=⇒ a(vb, b) ≥ a(vb, b
′).

The last inequality follows since
∑vb−1

1 a(v, b) =
∑vb−1

1 a(v, b′). Similarly one can show that

a(vb, b) ≤ a(vb, b
′).

Finally, we need to show that a(vb + 1, b′) > a(m, b). By assumption,

p(vb + 1, b′) > b ≥ p(m, b)

=⇒ (vb + 1)a(vb + 1, b′)−
vb∑
1

a(v, b′) > ma(m, b′)−
m−1∑

1

a(v, b)

=⇒ (vb + 1)a(vb + 1, b′) > ma(m, b′)−
m−1∑
vb+1

a(v, b)

=⇒ > (vb + 1)a(m, b).

The last inequality follows since for any v, a(v + 1, b) ≥ a(v, b).

C.2 Proof of Lemma 3

First an expositional note. This proof borrows notation and methodology from the proof

of Proposition 4. We recommend the reader first read that proof before verifying this one.

If one likes, one may think of Proposition 4 as characterizing the optimal auction assuming

that cutoffs are ordered as (17), and this Lemma following to show that the assumption is

without loss.

Consider a candidate optimal allocation rule a not satisfying (17). We will show how

to construct another feasible allocation rule a′ which achieves a strictly higher revenue via

perturbation. It will be clear that feasibility of this perturbation depends on (17) not being

satisfied.

To this end, let j ≡ max{i : vi < vi − 1}. Therefore vi ≥ vi − 1 for all i > j. It follows

that a(v, b), for v > vj and b > bj, satisfies the constraints on properly ordered cutoffs

summarized in Observation 4, i.e. the constraint system (18).

By Observation 3, (15g), we know that a(vj+1, b) > a(vj, bj) for b > bj. Our perturbation

proceeds as follows:
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1. Reduce the allocation of a(vj + 1, b≥j+1) by ε.

2. Increase the allocation a(≥ vj, bj) by δ, where δ is such that the allocation rule is still

feasible, δ =
(k−j)f(vj+1)

1−F (vj−1)
ε.

Step 1: Confirming the Perturbation is Revenue Increasing

The ‘adjusted’ virtual value of the types (vj + 1, b≥j+1) is

ξ(vj + 1) = ϕ(vj + 1) +

∑k
i=j+1 ηi

k−j
k
f(vj + 1)

.

The adjusted virtual value of the types (≥ vj, bj) is

ξ(vj) = ξ(vj − 1) = ϕ(vj − 1) +
ηj

1
k
f(vj − 1)

.

If we can show that ξ(vj + 1) < ξ(vj), the perturbation is indeed revenue increasing.

Step 2: Restoring Feasibility in a Revenue Neutral Way

Our perturbation will violate the budget constraints of all types (≥ vi, bi) for i ≥ j. However,

restoring budget feasibility in a revenue neutral way is easy. Recall that for each budget

bi > bj, the adjusted virtual value of (≥ vi, bi) is equal to the adjusted virtual value of

(vi−1,≥ bi). Further, the adjusted virtual value of (≥ vj, bj) equals the adjusted virtual value

of (vj − 1, bj). Budget feasibility can be restored by appropriately reducing the allocation of

(≥ vi, bi) and increasing the allocation of (vi− 1,≥ bi) for each i > j, and similarly reducing

the allocation of (≥ vj, bj) and increasing the allocation of (vj − 1, bj).

C.3 Private Information Budgets

Suppose valuations are from some interval [0, V ], while budgets are one of a finite number

b1, . . . bk. Valuations and budgets are independently determined, and each bidder’s valuation

is an i.i.d. draw from some distribution F with density f , and the budget is drawn i.i.d.

according to a uniform distribution. Further suppose f satisfies the decreasing density and

increasing hazard rate conditions.
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The problem of maximizing the revenue in the continuous case can be written as:

max
a,p

k∑
i=1

1

k

∫ V

0

p(v, bi)f(v)dv (Cont Rev Opt)

s.t. Incentive Compatibility

Individual Rationality

p(v, bi) ≤ bi

a feasible

Standard arguments imply that Incentive compatibility and individual rationality pin

down the pricing rule to the standard rent extraction formula, i.e. :

p(v, b) = va(v, b)−
∫ v

0

a(x, b)dx (30)

Therefore, substituting (30) into Cont Rev Opt, we can eliminate the variables p, leading

to:

max
a∈C

k∑
i=1

1

k

∫ V

0

ϕ(v)a(v, bi)f(v)dv. (Cont Rev Opt2)

Once again, we can discretize this space- we assume that all bidder valuations belong to

the set {ε, 2ε, . . . ,mε}, wheremε = V . The ‘density’ of any type, kε is f ε(jε) =
∫ jε

(j−1)ε
f(v)dv.

The cumulative distribution F ε is defined analogously. Note that f ε will satisfy both the

decreasing density and monotone hazard rate conditions if f does.

This discretization can be thought of as an extra constraint, i.e. that each type v ∈
[(k−1)ε, kε) must be pooled for all k = 1, 2, . . .m. Let us denote the feasible region with this

extra constraint as Cε. Consider the revenue maximizing mechanism for this discretization(as

identified in Proposition 4), let us denote it (aε, pε). Note that aε solves:

max
a∈Cε

k∑
i=1

1

k

∫ V

0

ϕ(v)a(v, bi)f(v)dv,

and pε is then defined by (30).

Note that Cε ⊆ C, and that both are compact subsets of the L1 space defined by the

measure f . Further, the operator T (a) =
∑k

i=1
1
k

∫ V
0
ϕ(v)a(v, bi)f(v)dv is a bounded linear

operator from the L1-space of allocation rules to <. Therefore T achieves its maximum on

each set Cε and C.
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Since Cε ↑ C pointwise, it must be that:

lim
ε→0

max
a∈Cε

k∑
i=1

1

k

∫ V

0

ϕ(v)a(v, bi)f(v)dv

= max
a∈C

k∑
i=1

1

k

∫ V

0

ϕ(v)a(v, bi)f(v)dv

Finally, recalling that T (a) is a bounded linear operator: 16

limε→0a
ε ∈ {arg max

a∈C

k∑
i=1

1

k

∫ V

0

ϕ(v)a(v, bi)f(v)dv}.

The result follows by noting that the the sequence cutoffs identified in Proposition 4 for

each discretized ε will converge.

C.4 Subsidies

First, we provide a technical result needed in the proof of Proposition 6

Lemma 5. The function

φ(π) =
(1− F (v − 2))π + vf(v − 1)(k−i+1

k
(1− F (v − 1))− π)

k−i+1
k

vf(v − 1) + π

is decreasing in π.

Proof. We are done if we can show that φ′(π) ≤ 0. Writing φ(π) = N(π)
D(π)

with N(·), D(·)
appropriately defined,

φ′(π) =
N ′(π)D(π)−D′(π)N(π)

D2(π)
.

Therefore we are done if we can show that N ′(π)D(π)−D′(π)N(π) < 0. Note that

D′(π) = 1,

N ′(π) = (1− F (v − 2))− vf(v − 1).

16Technically we should also formally show that the sequence {aε} has a pointwise limit, but this follows
by inspection of the aε’s characterized by Proposition 4.
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Therefore

N ′(π)D(π)−D′(π)N(π)

=((1− F (v − 2))− vf(v − 1))

(
k−i+1
k

vf(v − 1) + π

)
−
(

(1− F (v − 2))π + vf(v − 1)

(
k−i+1
k

(1− F (v − 1))− π
))

=((1− F (v − 2))− vf(v − 1))

(
k−i+1
k

vf(v − 1)

)
− k−i+1

k
vf(v − 1)(1− F (v − 1))

=(−(v − 1)f(v − 1))
(
k−i+1
k

vf(v − 1)
)

≤0.

Proof of Proposition 6. We prove by induction on i. For i = k, we know that

ηk =
1

k

(1− F (v̄k − 1))(1− F (v̄k − 2))

v̄kf(v̄k − 1) + (1− F (v̄k − 1))

=
(1− F (v̄k − 1))

k

(1− F (v̄k − 2))

(v̄k − 1)f(v̄k − 1) + (1− F (v̄k − 2))

≤ (1− F (v̄k − 1))

k
.

For the induction hypothesis, assume that

k∑
i+1

ηj ≤ (k−i)
k

(1− F (v̄i+1 − 1)).

Therefore we are left to show (26).

Recall from the proof of Proposition 4 that at optimality, ηi, the dual variable corre-

sponding to the budget constraint corresponding to bi, solves

ϕ(ti)− ϕ(v̄i − 1)−
k
∑k

j=i ηj

(k − i+ 1)f(v̄i − 1)
= 0,

where

ϕ(ti) = v̄i −
(vi − v̄i + 1)

π(ti)

(
k − i
k

(1− F (vi))−
k∑
i+1

ηj

)
− v̄i
π(ti)

ηi,

and,

π(ti) =
1

k
(1− F (v̄i − 1)) +

k − 1

k
(F (vi)− F (v̄i − 1)).
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By the induction hypothesis,

ϕ(ti) ≤ v̄i −
v̄i
π(ti)

ηi,

and therefore

v̄i − ϕ(v̄i − 1) ≥ v̄i
π(ti)

ηi +
k
∑k

j=i ηj

(k − i+ 1)f(v̄i − 1)

=⇒ 1− F (v̄i − 2)

f(v̄i − 1)
≥ v̄i
π(ti)

ηi +
k
∑k

j=i ηj

(k − i+ 1)f(v̄i − 1)
.

Rearranging terms, we have

k − i+ 1

k

(1− F (v̄i − 2))π(ti) + v̄if(v̄i − 1)
∑k

i+1 ηj
k−i+1
k

v̄if(v̄i − 1) + π(ti)
≥

k∑
i

ηj. (31)

Once again, by the induction hypothesis,

k∑
i+1

ηj ≤ k−i
k

(1− F (vi)) = k−i+1
k

(
1− F (v̄i − 1)

)
− π(ti). (32)

Substituting (32) into (31),

k∑
i

ηj ≤
(
k − i+ 1

k

) (1− F (v̄i − 2))π(ti) + v̄if(v̄i − 1)

(
k−i+1
k

(
1− F (v̄i − 1)

)
− π(ti)

)
k−i+1
k

v̄if(v̄i − 1) + π(ti)

≡ φ(v̄i, π(ti)).

Lemma 5 shows that φ(·) is decreasing in its second argument. Given v̄i, the lowest

possible value for π(ti) is 1
k
(1− F (v̄i − 1)), at which the left hand side of the bound will be

maximized. Therefore, substituting π(ti) = 1
k
(1− F (v̄i − 1)),

k∑
i

ηj ≤
(
k − i+ 1

k

)
(1− F (v̄i − 2))(1− F (v̄i − 1)) + (k − i)v̄if(v̄i − 1)(1− F (v̄i − 1))

(k − i+ 1)v̄if(v̄i − 1) + (1− F (v̄i − 1))

≤
(
k − i+ 1

k

)
(1− F (v̄i − 1))
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