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Abstract

We distinguish two di¤erent selections of rationalizable outcomes: the strong se-

lection (in Rubinstein (1989) and Carlsson and Van Damme (1993)) and the weak

selection (in Weinstein and Yildiz (2007)). In contrast to Weinstein and Yildiz�s result

that every rationalizable action can be weakly selected, we show strong selection is

generically impossible for types with multiple rationalizable actions. Furthermore, we

fully characterize the actions which can be strongly selected for all �nite types.
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1 Introduction

One major challenge faced by game theory is the prevalence of multiple equilibria which

substantially limits prediction power. A large literature pursues the idea of re�ning pre-

dictions by perturbing players�higher-order beliefs. This literature starts with two seminal

papers. First, Rubinstein (1989) studies a 2 � 2 coordination game with two strict Nash
equilibria. Rubinstein observes that only the Pareto-dominated equilibrium remains ratio-

nalizable when the game is mutually known up to any arbitrarily high but �nite level. In

a similar vein, Carlsson and Van Damme (1993) consider another 2 � 2 coordination game
with two strict Nash equilibria. They show that by introducing a vanishingly small noisy

signal (which amounts to a perturbation of higher-order beliefs), only the risk-dominant

equilibrium survives.

In a recent paper, Weinstein and Yildiz (2007) (hereafter, WY) prove the following

striking result. In a �xed �nite game with no common knowledge restriction on payo¤s, for

any rationalizable action a of any (Harsanyi) type t, we can slightly perturb the higher-order

beliefs of t to make a new type t0 for which a is the unique rationalizable action. This result

suggests that the idea of selecting an equilibrium using perturbations of higher-order beliefs

is problematic; as WY say:

In this paper, we generalize both uniqueness and noise dependence results in

a strong way: (i) we can make any game dominance-solvable by introducing a

suitable form of small incomplete information, but (ii) by varying the form of

incomplete information, we can select any rationalizable strategy in the original

game, weakening the selection argument (Weinstein and Yildiz, 2007, p.389).

In this paper, we revisit this issue by pointing out a subtle di¤erence between the

notion of selection highlighted in Carlsson and Van Damme (1993) and Rubinstein (1989)

and that studied in WY. To see the di¤erence, consider a rationalizable action a of a type t

which has multiple rationalizable actions, and a sequence of types ftng whose beliefs (weak�-
)approximate those of t up to any �nite order, i.e., tn converges to t in the product topology

(see Section 4 for a formal de�nition).1 When n is large, tn can be viewed as a small

1Product topology natually generalize the approximations in Rubinstein (1989) and Carlsson and
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perturbation of t. We distinguish two kinds of selections : an action a is strong selected for t

if for some " > 0, a is the only "�rationalizable action for any tn, whereas a is weakly selected
for t if a the only (0�)rationalizable action for any tn.2 Consequently, a strong selection

must be a weak selection, while a weak selection may not be a strong selection. To see this,

consider the following single-agent decision problem.

Example 1. There are two actions fa; bg, two payo¤ parameters f�0; �ag and one agent.
The agent�s payo¤ depend on both the payo¤ parameter and the action chosen, which is

illustrated as follows.

action payo¤

a 0

b 0

� = �0

action payo¤

a 0

b �1
� = �a

In this single-agent decision problem, a type is identi�ed with the agent�s belief over the

payo¤ parameters � 2 f�0; �ag, and hence convergence of beliefs in product topology is
reduced to convergence in distribution. Consider the following types.

tn [�] �

8<: 1� 1
n
, if � = �0,

1
n
, if � = �a,

8n = 1; 2; :::;1.

Clearly, ftng converges to t1, and a is the unique best reply and hence uniquely rationalizable
for every tn. That is, a is weakly selected for t. However, a cannot be strongly selected for

t: for any " > 0, b is also an "�best reply and hence "�rationalizable for tn with su¢ ciently
large n.

Rubinstein�s e-mail game and the global game are classical examples to illustrate im-

pacts of higher-order beliefs on strategic behaviors. To summarize strategic behaviors en-

coded in types, Dekel, Fudenberg, and Morris (2006) de�ne the strategic topology for types:

types are close in strategic topology if and only if they have similar rationalizable actions.

Intuitively, ftng converges to t1 in the strategic topology means

Van Damme (1993). See Weinstein and Yildiz (2007) for more discussion.
2See Section 3 for formal de�nitions of "�rationalizable actions and 0�rationalizable actions. These

de�nitions are adopted from Dekel, Fudenberg, and Morris (2006, 2007) and are the correleated incomplete-

information counterparts of the Berheim-Pearce de�nition for complete-information games.
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8" > 0, every rationalizable action a of t1 is "� rationalizable for all but �nite tn.

Dekel, Fudenberg, and Morris (2006) show that strategic convergence implies product con-

vergence, but the converse is not true. Namely, we may have tn converges to t1 in product

topology, but tn does not converge to t1 in the strategic topology � Ely and Peski (2010)

and Chen and Xiong (2011) call such a phenomenon strategic discontinuity. Therefore, Ru-

binstein�s e-mail game and the global game are classical examples of strategic discontinuity.

The major di¤erence between the two selection notions described above is that strong

selection captures the idea of strategic discontinuity, but weak selection does not. To see

this, consider a type t with two rationalizable actions a and b. If a can be strongly selected

along a sequence of types ftng, then b is rationalizable for t but b is not "�rationalizable
for some " > 0 and any tn, i.e., strong selection implies strategic discontinuity. However,

weak selection does not imply strategic discontinuity. For instance, in Example 1, though a

is weakly selected for t and a is uniquely rationalizable for every tn, both actions a and b are

"�rationalizable for all but �nite tn for any " > 0, i.e., no strategic discontinuity occurs.

Taking exactly the same setup as Weinstein and Yildiz (2007), this paper adopts strong

selection instead of weak selection. We try to pin down the exact e¤ect due to di¤erent se-

lection notions adopted. To achieved this goal, we restrict our attention to the space of

types with multiple rationalizable actions, because these are the types which need equilib-

rium (or rationalizability) selection. WY show that every type in this space admits a weak

selection. In sharp contrast to WY�s result, our �rst main result (Theorem 2) shows that

strong selection is generically impossible.

We prove Theorem 2 by considering the following set of types.

B1 �

8<: type t has multiple

rationalizable actions
:

t believes all of her opponents

have unique rationalizable actions

9=; (1)

The set B1 is generic in the sense that within the space of types with multiple rationalizable

actions, B1 is a dense set and it can be written as a countable intersection of open sets in the

product topology. Facing types with unique rationalizable actions, every type in B1 has a

unique conjecture about their opponents�rationalizable actions. Hence, solving rationalizable
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actions for these types can be recasted as solving optimal actions in a single-person decision

(as in Example 1). Consequently, these types do not admit any strong selection.

Our second main result (Theorem 4) fully characterizes actions which can be strongly

selected. To see the idea, consider a complete-information type. Proposition 1 in WY shows

that an action can be weakly selected if and only if it is rationalizable. It well known that

rationalizability can be formulated using the best-reply sets. Formally, let Ri be a set of

actions of player i and we say �j2NRj is a best-reply set i¤

every aj 2 Rj is a best reply to some belief ��j 2 4 (R�j) .

Then, an action ai is rationalizable for player i if and only if ai 2 Ri for some best reply sets
�j2NRj.

First, using similar argument as WY, we �nd a su¢ cient condition for strong selection.

let R�i be a set of actions of player i and we say �j2NR�j is a strict best-reply set i¤

every ai 2 R�i is a strict best reply to some belief ��i 2 4
�
R��i

�
.

We say an action ai is strictly rationalizable if ai 2 R�i for some strict best-reply set �j2NR�j .
Then, we show ai can be strongly selected if it is strictly rationalizable (Proposition 1).

However, strict rationalizability is not necessary for strong selection. � This is shown

by Exmple 3 in Section 2. To get a full characterization, we propose a notion for collections

of subsets of actions, called the strict best�reply collection (De�nition 6). Analogous to WY,

we will prove that an action ai is strongly selected for player i if and only if faig 2 Ri for

some strict best-reply collection �j2NRj (Theorem 4). This full characterization of strong

selection can be extended to a larger class of types, including all �nite types, which is studied

in Appendix 4.

The rest of the paper proceeds as follows. Section 2 provides two examples to illustrate

our main ideas. Section 3 provides formal notations and de�nitions. Section 4 presents our

two main results. Section 5 concludes. All technical proofs are relegated to the Appendix.
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2 Examples

In this section, we provide two examples (Example 2 and 3) to illustrate our main idea.

Example 2 is a variant of Example 3 in WY and it demonstrates the denseness of B1

(de�ned in (1)). Example 3 shows that strict rationalizability is su¢ cient but not necessary

for strong selection. In Section 4.2.2, we will revisit Example 3 and show that the notion of

strict best-reply collection fully characterizes strong selection.

Example 2. There are two players. Each player can choose one of the two actions, "Attack"

and "No Attack." Their payo¤s depend on an unknown parameter � 2
�
�2
5
; 2
5
; 6
5

	
as shown

in the following matrix:

Attack No Attack

Attack �; � � � 1; 0
No Attack 0; � � 1 0; 0

Let tCK
�
2
5

�
denote the type which have common knowledge of � = 2

5
, i.e.,

tCK
�
2

5

���
� =

2

5
; tCK

�
2

5

���
= 1:

Observe that both actions are rationalizable for tCK
�
2
5

�
. Now, we construct a sequence of

types in B1 which converge to tCK
�
2
5

�
in product topology. That is, for any positive integer

k, we will �nd a type t0 (2 B1) which is arbitrarily close to tCK
�
2
5

�
in k-th order beliefs.

First, consider the belief �2 of player 1 de�ned as follows.

�2 [a2] �

8<: 2
5
, if a2 = No Attack;
3
5
, if a2 = Attack.

Given the belief �2, player 1�s type tCK
�
2
5

�
is indi¤erent between taking "No Attack" and

"Attack". Second, by Theorem 1 in WY, there are types tNAk�1 and t
A
k�1 which are arbitrarily

close to tCK (2=5) in (k � 1)-th order beliefs and have "No Attack" and "Attack" as their
unique rationalizable actions respectively. Third, consider the following type t0 for player 1.

t0 [(�; t2)] =

8<: 2
5
, if (�; t2) =

�
2
5
; tNAk�1

�
;

3
5
, if (�; t2) =

�
3
5
; tAk�1

�
.

6



Clearly, t0 is arbitrarily close to tCK
�
2
5

�
in k-th order beliefs. Furthermore, both "No Attack"

and "Attack" are rationalizable for t0, while he believes all of her opponents have unique

rationalizable actions. That is, t0 2 B1.

Example 3. Consider a two-player game.

c d e

a 1; 1 0; 0 0; 0

b 0; 0 1; 1 1; 1

� = �0

c d e

a 0; 1 0; 0 0; 0

b 0; 1 0; 0 0; 0

� = �c

c d e

a 0; 0 0; 1 0; 0

b 0; 0 0; 1 0; 0

� = �d

For � = �0; �c; �d, let tCK (�) denote the type which has common knowledge of �. Then, both

action a and action b are rationalizable for player 1�s type tCK (�0).

First, action a is strictly rationalizable in the complete-information game � = �0 and

a can be strongly selected for tCK (�0) as follows.

De�ne the following sequence of types ftng,

t0 � tCK (�c) ; t1 [(�0; t0)] = 1; t2 [(�0; t1)] = 1; :::; tn [(�0; tn�1)] = 1; :::

where t2n�1 is player 1�s type and t2n is player 2�s type. Then, actions a and c are the unique
1
2
�rationalizable actions for type t2n�1 and t2n respectively. Furthermore, ft2n�1g converges
to tCK (�0) as n!1. Therefore, a is strongly selected for tCK (�0).

Second, it is easy to check action b is not strictly rationalizable for player 1 in the

complete-information game � = �0. However, we now show b can be strongly selected for

player 1�s type tCK (�0). De�ne a sequence of types fsng as follows,

s0 � tCK (�d) ; s1 [(�0; s0)] = 1; s2 [(�0; s1)] = 1:::; sn [(�0; sn�1)] = 1; :::

where s2n�1 is player 1�s type and s2n is player 2�s type. Then, for any n > 0, type s2n�1

has a unique 1
2
�rationalizable action b and type s2n has two 1

2
�rationalizable actions d and

e. Furthermore, s2n�1 converges to tCK (�0) as n!1. Therefore, b is strongly selected for
tCK (�0).
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3 De�nitions

Fix a �nite set of players N = f1; 2; :::; ng and a �nite set of payo¤-relevant parameters
�. Each player i has a �nite action space Ai and utility function ui : � � A ! R (where
A � �j2NAj). Following WY, we impose the following richness assumption.

Assumption 1 The game satis�es the Richness assumption that for each i and each ai,

there exists �ai 2 � such that ui (�ai ; ai; a�i) > ui (�ai ; a0i; a�i), 8a0i 6= ai, 8a�i.

Throughout the note, for any metric space Y with metric dY , let �(Y ) denote the

space of all probability measures on the Borel �-algebra of Y endowed with the weak�-

topology. Every product space is endowed with the product topology and every subspace

is endowed with the relative topology. Every �nite or countable set is endowed with the

discrete topology and jEj denotes the cardinality of a �nite set E. For any � 2 �(X � Y ),
we let margX� denote the marginal distribution of � on X. For any � 2 �(Y ), let supp�
denote the support of �, i.e., the minimal closed set with ��measure 1.

By a model, we mean a pair (T; �), where T = T1 � T2 � � � � � Tn is a compact
metric space. Each ti 2 Ti is called a type of player i and is associated with a belief

�ti 2 �(�� T�i). Assume that ti 7! �ti is a continuous mapping. A �nite model is a model

such that jT j <1. A type is �nite if it comes from a �nite model.

Given any type ti in a model (�� T; �), we can compute the �rst-order belief of ti
(i.e., his belief on �) by setting t1i =marg��ti. We then compute the second-order belief of

ti (i.e., his belief about
�
�; t1�i

�
) by setting

t2i (F ) = �ti
��
(�; t�i) :

�
�; t1�i

�
2 F

	�
for each measurable F � � � �(�)n�1. We can compute the entire hierarchy of beliefs�
t1i ; t

2
i ; :::; t

k
i ; :::

�
by proceeding in this way and write hi (ti) =

�
t1i ; t

2
i ; :::; t

k
i ; :::

�
for the resulting

hierarchy.

We endow � with the discrete metric. Let Y 0 = � and Y k+1 = Y k � �
�
Y k
�n�1

for

every k � 0. We will work with the universal type space T �i constructed in Mertens and
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Zamir (1985) which is a subset of �1k=0�
�
Y k
�
. Mertens and Zamir show that for any type

ti in any model, there is some si 2 T �i such that si and ti have the same hierarchy of beliefs
(i.e., hi (ti) = si), and moreover, T �i (endowed with the product topology) is a compact

metric space homeomorphic to �
�
�� T ��i

�
(endowed with the weak� topology). Denote the

homeomorphism by ��i . Then, (T
�; ��) is itself a model where ��ti � �

�
i (ti) for every ti 2 T �i .

For a sequence of types fti;mg and a type ti, we write ti;m ! ti when fti;mg converges to ti in
the product topology. That is, ti;m ! ti i¤ for every k � 1, tki;m ! tki in the weak

�-topology.

Following WY, we adopt the solution concept of interim correlated rationalizability

(ICR) proposed in Dekel, Fudenberg, and Morris (2006, 2007) and restrict attention to

the universal type space.3 For any � 2 �(�� T�i � A�i), we will abuse the notation by
writing � (�; a�i) for marg��A�i� and use BRi (�; ") to denote the set of "�best replies to
marg��A�i�. That is,

BRi (�; ") =

8<:ai 2 Ai : X
�;a�i

[ui (�; ai; a�i)� ui (�; a0i; a�i)]� (�; a�i) � �", 8a0i 2 Ai

9=; (2)

Given a model (T; �) and " � 0, the "�ICR of a type ti, denoted by S1i [ti; "], is de�ned
as follows.

S0i [ti; "] = Ai and for k 2 N,

Ski [ti; "] =

8>><>>:ai 2 Ai :
ai 2 BRi (�; ") for some � 2 �(�� T�i � A�i) s.t.

marg��T�i� = �ti and

�
��
(�; t�i; a�i) 2 �� T�i � A�i : a�i 2 Sk�1�i [t�i; "]

	�
= 1.

9>>=>>;
S1i [ti; "] =

1\
k=0

Ski [ti; "] .

We write S1 [t; "] = �j2NS
1
j [tj; "] and S

1
�i [t�i; "] = �j 6=iS

1
j [tj; "]. We say that � 2

�(�� T�i � A�i) is valid for type ti if marg��T�i� = �ti and �
�
a�i 2 S1�i [t�i; 0]

�
= 1.

Dekel, Fudenberg, and Morris (2006, 2007) show that an action ai 2 S1i [ti; 0] i¤ ai 2
BRi (�; 0) for some � valid for ti. For notational simplicity, we will write S1i [ti] for S

1
i [ti; 0],

and similarly, all notations without a reference to " should be understood as having an im-

plicit reference to 0.
3This is without loss of generality because Dekel, Fudenberg, and Morris (2006, 2007) show that the

("�)ICR actions of a type are fully determined by its belief hierarhy and also because the universal type

space contains all belief hierarchies.
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WY partition the universal type space into two parts: the set of types with multiple

rationalizable actions, denoted byMi, and the set of types with unique rationalizable actions,

denoted by T �i nMi. That is,

Mi = fti 2 T �i : jS1i [ti]j > 1g and T �i nMi = fti 2 T �i : jS1i [ti]j = 1g .

We focus on Mi because we need to re�ne our prediction only when a type has multiple

rationalizable actions.

The following are our key de�nitions:

De�nition 1 For ti 2 Mi and ai 2 S1i [ti], we say ai can be weakly selected for ti, if there
exists some ti;m ! ti such that faig = S1i [ti;m] for all m. If some ai can be weakly selected
for ti, we say ti admits a weak selection.

De�nition 2 For ti 2Mi and ai 2 S1i [ti], we say ai can be strongly selected for ti, if there
exists some " > 0 and some ti;m ! ti such that faig = S1i [ti;m; "] for all m. If some ai can
be strongly selected for ti, we say ti admits a strong selection.

Finally, we consider the following topological notion of genericity.

De�nition 3 In a topological space X, a set F (� X) is a residual set if it contains a
countable intersection of open and dense set. A set E (� X) is a meager set if it is the
complement of a residual set.

We view a residual set as a generic set and view a meager set as a non-generic set.

4 Main Results

4.1 Weak Selection versus Strong Selection

In this subsection, we explore the di¤erence between weak selection and strong selection.

We will restrict our attention to Mi, because we need to re�ne our prediction only when a

type has multiple rationalizable actions.
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To ease comparison, we state WY�s result as follows. Let Mw
i denote the set of types

which have multiple rationalizable actions and admit a weak selection.

Theorem 1 (Weinstein and Yildiz (2007)) Mw
i =Mi.

Let M s
i denote the set of types which have multiple rationalizable actions and admit a

strong selection. Our �rst main result is the following.

Theorem 2 M s
i is a meager set in Mi.

To prove Theorem 2, we showMinM s
i is a dense set which can be written as a countable

intersection of open sets. We need the following notations:

Bi;1 �
�
ti 2Mi : �

�
ti

�
��

�
T ��inM�i

��
= 1

	
;

Bi;n �
�
ti 2Mi : �

�
ti

�
��

�
T ��inM�i

��
> 1� 1

n

�
, 8n 2 N.

Theorem 2 is then a direct consequence of the following three lemmas.

Lemma 1 Bi;n is open in Mi.

Lemma 2 Bi;1 is dense in Mi.

Lemma 3 Bi;1 �MinM s
i .

Proof of Theorem 2. Clearly, Bi;1 � Bi;n and \1n=1Bi;n = Bi;1. Hence, by Lemma 1 and
2, Bi;n is open and dense in Mi. Consequently, Bi;1 is a residual set in Mi. Therefore, M s

i

is a meager set in Mi by Lemma 3.�

4.2 A Full Characterization of Strong Selection

In this section, we will characterize strong selection. For expositional ease, we will restrict

our attention to complete-information types. First, following WY�s argument, we �nd a
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su¢ cient condition for strong selection. Then, in Theorem 4, we fully characterize strong

selection. In Appendix, we extend our fully characterization to a large class of types which

includes all �nite types.4

4.2.1 A su¢ cient condition

First, we restate WY�s characterization as follows.

De�nition 4 In a complete information game (Ai; ui)i2N , a set �i2NRi with Ri � Ai for

all i 2 N is a best-reply set if for any ai 2 Ri, there exists ��i 2 �(R�i) such thatX
a�i2R�i

��i (a�i) [ ui (ai; a�i)� ui (a0i; a�i)] � 0 for any a0i 2 Ai.

Theorem 3 (WY Proposition 1) An action a can be weakly selected for player i�s type

tCK (�0) i¤ there exists a best-reply set �j2NRj in game �0 such that a 2 Ri.

Similar to a best-reply set, we de�ne the strict best-reply set as follows.

De�nition 5 In a complete information game (Ai; ui)i2N , a nonempty set �i2NRi with
Ri � Ai for all i 2 N is a strict best-reply set if there exists 
 > 0 such that for any ai 2 Ri,
there exists ��i 2 �(R�i) andX

a�i2R�i

��i (a�i) [ ui (ai; a�i)� ui (a0i; a�i)] � 
 for any a0i 6= ai.

The following proposition provides a su¢ cient condition for strong selection.

Proposition 1 An action a can be strongly selected for player i�s type tCK (�0) if there exists

a strict best-reply set �i2NRi with Ri � Ai for all i 2 N in game �0 such that a 2 Ri.

The proof of Proposition 1 is almost the same as the proof of Proposition 1 in WY.

Also, the intuition is illustrated in Example 3. Hence, we relegate the proof to Appendix 1.

4The full characterization for any type remains an open question to us.

12



4.2.2 A necessary and su¢ cient condition

As illustrated in Example 3, the strict best-reply property is not enough to fully characterize

strong selection. The notion proposed below su¢ ces.

De�nition 6 In a complete information game (Ai; ui)i2N , �i2N
�
R1i ; R

2
i ; :::; R

Li
i

	
with non-

empty Rli � Ai for each i 2 N and l 2 f1; 2; :::; Lig is called a strict best-reply collection if
there exists 
 > 0 such that for any i 2 N , any l 2 f1; 2; :::; Lig and any ai 2 Rli, there exists
��i 2 �

�
R1�i; R

2
�i; :::; R

L�i
�i

�
such that

ai 2 Rli () (3)

there exists � l
0

�i 2 �
�
Rl

0
�i
�
for each l0 2 f1; 2; :::; L�ig such that

LiX
l0=1

��i
�
Rl

0
�i
�264 X

a�i2Rl
0
�i

� l
0

�i (a�i) [ ui (ai; a�i)� ui (a0i; a�i)]

375 � �
,8a0i 2 Ai.

The following is our second main result.

Theorem 4 An action a can be strongly selected for player i�s type tCK (�0) i¤ there exists

a strict best-reply collection �i2N
�
R1i ; R

2
i ; :::; R

Li
i

	
in game �0 such that fag = Rl

�
i for some

l�.

The proof of Theorem 4 is quite notationally and technically involved, and it is relegated

to Appendices 3. We provide the intuition here.

Consider a game �0, in which �i2N
�
R1i ; R

2
i ; :::; R

Li
i

	
is a best-reply collection such that

fag = Rl�i . We will show action a can be strongly selected for type tCK (�0). Speci�cally, for
i 2 N and l 2 f1; 2; :::; Lig, each action set Rli represents a type su¢ ciently close to tCK (�0)
in the (k � 1)-th order beliefs. Denote this type by tR

l
i

k�1. Since �i2N
�
R1i ; R

2
i ; :::; R

Li
i

	
is a

best-reply collection, each Rli corresponds to a belief �
Rli
�i 2 �

�
R1�i; R

2
�i; :::; R

L�i
�i

�
which can

be used to de�ne types su¢ ciently close to tCK (�0) in the k-th order beliefs as follows.

t
Rli
k : t

Rli
k

��
�0; t

Rl
0
�i

k�1

��
= �

Rli
�i

�
t
Rl
0
�i

k�1

�
for l0 = 1; 2; :::; L�i.

13



Then, type tR
l
i

k is su¢ ciently close to tCK (�0) in the k-th order beliefs. Further, (3) requires

S1i

h
t
Rli
k ; 


i
= Rli. Finally, since fag 2

�
R1i ; R

2
i ; :::; R

Li
i

	
, we can follow steps above to

construct a sequence of types
n
t
fag
k

o
which converges to tCK (�0) in product topology and

S1i

h
t
fag
k ; 


i
= fag for every k, i.e., a is strongly selected for type tCK (�0).

Example 3 (continued). Recall that

c d e

a 1; 1 0; 0 0; 0

b 0; 0 1; 1 1; 1

� = �0

We verify that both ffagg � ffcgg and ffbgg � ffd; egg are strict best-reply collections
in the complete-information game � = �0. Consider ffbgg � ffd; egg and the case with
ffagg � ffcgg is similar. To see this, we choose

�1 [ffbgg] = �2 [ffd; egg] = �1;fbg [fbg] = �2;fd;eg [fdg] = 1.

Then, (3) is satis�ed.

5 Concluding Remarks

Ely and Peski (2010) de�ne regular types as types around which convergence in the product

topology guarantees convergence of rationalizable behavior in any �nite game. Formally, a

type t is regular i¤ for any �nite game, any sequence of types ftng with tn ! t, and any

" > 0, every rationalizable action of t is "�rationalizable for any tn with su¢ ciently large n.
Therefore, in a �xed �nite game (such as the one WY and we consider here), regular types

do not admit any strong selection. Ely and Peski (2010) show that regular types are generic

in the universal type space in the sense they contain a residual set in the product topology.

This result does not imply our genericity result because in a �xed game, it is possible that

regular types are all in the open and dense set of types with unique rationalizable actions.
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A Appendix

A.1 Lemma 1 and 3

The proofs of Lemma 1 and 3 need the following result.

Lemma 4 For any i, if ti;m ! ti, then

lim inf
m!1

��ti;m (G) � �
�
ti
(G) for any open set G � �� T ��i; (4)

lim sup
m!1

��ti;m (F ) � �
�
ti
(F ) for any closed set F � �� T ��i. (5)

Proof. Recall that ��i be the homeomorphism between T �i and �
�
�� T ��i

�
, where T �i is

endowed with the product topology and �
�
�� T ��i

�
is endowed with the weak�-topology.

Since ti;m ! ti, we have ��ti;m ! ��ti in weak
� topology. Then, (4) and (5) follow from the

de�nition of weak�-topology (see (Dudley, 2002, 11.1.1. Theorem)).�

A.1.1 Proof of Lemma 1

Lemma 1. Bi;n is open in Mi.

Proof. Recall

Bi;n �
�
ti 2Mi : �

�
ti

�
��

�
T ��inM�i

��
> 1� 1

n

�
.

By Proposition 2 in WY, T ��inM�i is open. Suppose Bi;n is not open in Mi. That is,

there is some ti 2 Bi;n and some sequence fti;mg with ti;m ! ti such that ti;m 2 Mi and

��ti;m
�
��

�
T ��inM�i

��
� 1� 1

n
for all m. Hence,

lim inf
m!1

��ti;m
�
��

�
T ��inM�i

��
� 1� 1

n
< ��ti

�
��

�
T ��inM�i

��
. (6)

where the last inequality follows because ti 2 Bi;n. Then, (6) contradicts to (4) in Lemma
4.�
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A.1.2 Proof of Lemma 2

Lemma 2. Bi;1 is dense in Mi.

Proof. Recall that T �i is a compact metric space. In this proof, we denote by di the metric

on T �i . We now divide the proof into three steps.

Step 1 For any �nite type ti 2 Mi, there is some � 2 �
�
�� T ��i � A�i

�
valid for ti such

that BRi (�) has more than one actions.

Since ti is a �nite type, T�i =
�
t�i 2 T ��i : ��ti [t�i] > 0

	
is a �nite set. Since ti 2

Mi, there are at least two distinct actions a0i and a
00
i in S

1
i [ti]. Thus, there are �

0; �00 2
�(�� T�i � A�i) which are valid for ti such that a0i 2 BRi (�0) and a00i 2 BRi (�00). Step 1
holds if either BRi (�0) or BRi (�00) has more than one actions. Now suppose that BRi (�0)

and BRi (�00) both have only one actions. De�ne

� � f� 2 �(�� T�i � A�i) : � is valid for tig ;

Pai � f�2 � : faig = BRi (�)g .

Observe that � is convex, and hence also a connected set in Rj��T�i�A�ij endowed with
the Euclidean topology. Then, for every ai 2 Ai, Pai is an (Euclidean-)open set in � and
Pai \ Pbi = ? if ai 6= bi. Moreover, Pa0i 6= ? and Pa00i 6= ? because �0 2 Pa0i and �

00 2 Pa00i .
Since � is connected, we have [ai2AiPai $ �. Thus, there is some ��2 � such that �� =2 Pai
for all ai 2 Ai. Since BRi (��) 6= ?, BRi (��) has more than one actions.�

Step 2 For any �nite type ti 2 Mi, any " > 0 and any k � 1, there is a sequence of �nite
types type fti;mg such that ti;m 2 Bi;1 for all m and ti;m ! ti.

Fix " > 0 and k � 1. Since ti is a �nite type, T�i =
�
t�i 2 T ��i : ��ti [t�i] > 0

	
is a �nite

set. By step 1, there is some � 2 �(�� T�i � A�i) valid for ti such that BRi (�) has at
least two actions. De�ne

� = min fd�i (t�i; s�i) : t�i; s�i 2 T�i and t�i 6= s�ig

16



where � > 0 because T�i is a �nite set.

By Proposition 1 in Weinstein and Yildiz (2007), for each t�i 2 T�i and a�i 2 S1�i [t�i],
there is some type et�i [t�i; a�i] 2 T ��i such that

S1�i
�et�i [a�i; t�i]� = fa�ig ; (7)

d�i
�
t�i;et�i [t�i; a�i]� < min f�; 1=mg . (8)

De�ne ��ti;m as follows.

��ti;m (�; t�i) =

8<: � (�; a�i) , if t�i = et�i [t�i; a�i] for some t�i 2 T�i and a�i 2 S1�i [t�i] ;
0, otherwise.

Then, ��ti;m 2 �(�� T
�
i ) uniquely determines a type ti;m in T

�
i because T

�
i is homeo-

morphic to �
�
�� T ��i

�
. Clearly, ��ti;m

�
T ��inM�i

�
= 1 by (7). Then, because (8) holds for

all t�i 2 T�i, ��ti;m ! ��ti and hence ti;m ! ti as m! 0.

We now show that ti;m has multiple rationalizable actions. By our construction, any

�m 2 �(�� T�i � A�i) valid for ti;m satis�es the following.

�m (�; a�i) = � (�; a�i) :

Hence, by (2), BRi (�m) = BRi (�). Since jBRi (�)j > 1, we have jBRi (�m)j > 1. Therefore,
ti;m has multiple rationalizable actions, i.e., ti;m 2 Bi;1.

Step 3 Bi;1 is dense in Mi.

Take any ti 2 Mi and any " > 0. First, by (Dekel, Fudenberg, and Morris, 2006,

Lemmas 13 and 14 and Theorem 1), there is some �nite type t0i 2 T �i such that S1i [ti] =
S1i [t

0
i] and di (ti; t

0
i) < "=2. Then, for any " > 0, by step 2, there is some t

00
i 2 Bi;1 such that

di (t
0
i; t

00
i ) < "=2. Hence, di (ti; t

00
i ) < ". Therefore, Bi;1 is dense in Mi.�

A.2 Proof of Lemma 3

Lemma 3. Bi;1 �MinM s
i .
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Proof. Pick any ti 2 Bi;1 and we will show ti 2MinM s
i . Since Bi;1 �Mi by the de�nition

of Bi;1, it remains to prove ti =2M s
i . To see this, �x a sequence of types fti;mg with ti;m ! ti,

" > 0, and ai 2 S1i [ti]. We will prove that ai 2 S1i [ti;m; "] for all su¢ ciently large m. Then,
since this is true for any ai 2 S1i [ti], any " > 0, and any sequence of types fti;mg with
ti;m ! ti, we have ti =2M s

i .

For a�i 2 A�i, de�ne

U
a�i
�i :=

�
t�i 2 T ��i : S1�i [t�i] = fa�ig

	
.

Moreover, for every � 2 �, f�g � Ua�i�i is open by Proposition 2 of WY. Observe that

f��M�ig [
�
f�g � Ua�i�i : � 2 �; a�i 2 A�i

	
is a partition of �� T ��i.

Claim 1

lim
m!1

��ti;m [��Mi] = �
�
ti
[��Mi] = 0: (9)

lim
m!1

��ti;m
�
f�g � Ua�i�i

�
= ��ti

�
f�g � Ua�i�i

�
. (10)

By Proposition 4 of Dekel, Fudenberg, and Morris (2007), ai 2 S1i [ti] implies that
there is some ��i : �� T ��i ! �(A�i) such that5

supp��i (�; t�i) � S1�i [t�i] ;8 (�; t�i) ; (11)Z
��T ��i

X
a�i2A�i

[ui (�; ai; a�i)� ui (�; a0i; a�i)]��i (�; t�i) [a�i]��ti [(�; t�i)] � 0. (12)

Since ti 2 Bi;1, ��ti [��Mi] = 0. Moreover, since f��M�ig[
�
f�g � Ua�i�i : � 2 �; a�i 2 A�i

	
is a partition of �� T ��i, (11) implies thatZ

��T ��i

X
a�i2A�i

[ui (�; ai; a�i)� ui (�; a0i; a�i)]��i (�; t�i) [a�i]��ti [(�; t�i)]

=
X

(�;a�i)2��A�i

[ui (�; ai; a�i)� ui (�; a0i; a�i)]��ti
�
f�g � Ua�i�i

�
(13)

5See, for example, footnote 16 in Chen, Di Tillio, Faingold, and Xiong (2010) for an explanation why we

can make supp��i (�; t�i) � S1�i [t�i] for all (�; t�i) instead of for ��ti�almost all (�; t�i).
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Let K = maxi;a;� jui (�; a)j. Then,Z
��T ��i

X
a�i2A�i

[ui (�; ai; a�i)� ui (�; a0i; a�i)]��i (�; t�i) [a�i]��ti;m [(�; t�i)]

�
X

(�;a�i)2��A�i

[ui (�; ai; a�i)� ui (�; a0i; a�i)]��ti;m
�
f�g � Ua�i�i

�
� 2K��ti;m [��Mi]

Since ��ti;m [��Mi]! 0 as m!1 by (9) in Claim 1, it follows that

lim
m!1

Z
��T ��i

X
a�i2A�i

[ui (�; ai; a�i)� ui (�; a0i; a�i)]��i (�; t�i) [a�i]��ti;m [(�; t�i)]

� lim
m!1

X
(�;a�i)2��A�i

[ui (�; ai; a�i)� ui (�; a0i; a�i)]��ti;m
�
f�g � Ua�i�i

�
=

X
(�;a�i)2��A�i

[ui (�; ai; a�i)� ui (�; a0i; a�i)]��i
�
f�g � Ua�i�i

�
� 0 (14)

where the equality follows from (10) in Claim 1 and the last inequality follows from (12) and

(13). By (14), for su¢ ciently large m, ai 2 BRi (�m; ") where �m 2 �
�
�� T ��i � A�i

�
is

de�ned for any (�; a�i) 2 �� A�i and any measurable set E � T ��i as

�m [(�; a�i)� E] =
Z
E

��i (�; t�i) [a�i] d�
�
ti;m
(�; t�i) .

Note that �m is valid for ti;m by (11). Hence, ai 2 S1i [ti;m; "] for su¢ ciently large m.�

A.2.1 Proof of Claim 1

Claim 1.

lim
m!1

��ti;m [��Mi] = ��ti [��Mi] = 0: (15)

lim
m!1

��ti;m
�
f�g � Ua�i�i

�
= ��ti

�
f�g � Ua�i�i

�
: (16)

Proof. First, we prove (15). By the de�nition of Bi;1, ti 2 Bi;1 implies

��ti [��Mi] = 0. (17)

By Proposition 2 in WY, ��Mi is closed in �� T ��i. Hence,

0 � lim inf
m!1

��ti;m [��Mi] � lim sup
m!1

��ti;m [��Mi] � ��ti [��Mi] = 0.
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where the last inequality follows from Lemma 4. Hence, (15) holds.

Second, we prove (16). Since f�g � Ua�i�i is open in �� T ��i, by Lemma 4,

lim inf
m!1

��ti;m
�
f�g � Ua�i�i

�
� ��ti

�
f�g � Ua�i�i

�
. (18)

Moreover, (��Mi)[
�
f�g � Ua�i�i

�
is closed, because f�0g�Ua

0
�i
�i is open for any �

0 2 � and
a0�i 2 A�i and

(��Mi) [
�
f�g � Ua�i�i

�
=
�
�� T ��i

�
n

24 [
�0 6=�;a0�i 6=a�i

�
f�0g � Ua

0
�i
�i

�35 .
Then,

lim sup
m!1

��ti;m
�
f�g � Ua�i�i

�
� lim sup

m!1
��ti;m

�
(��Mi) [

�
f�g � Ua�i�i

��
� ��ti

�
(��Mi) [

�
f�g � Ua�i�i

��
= ��ti [��Mi] + �

�
ti

�
f�g � Ua�i�i

�
= ��ti

�
f�g � Ua�i�i

�
, (19)

where the second inequality follows from (5) in Lemma 4 and the fact that (��Mi) [�
f�g � Ua�i�i

�
is closed; the last equality follows from (17). Finally, (18) and (19) imply

(16).�
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