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Many everyday decisions are made without full examination of all available
options, and as a result, the best available option may be missed. We develop a
search-theoretic choice experiment to study the impact of incomplete consider-
ation on the quality of choices. We find that many decisions can be understood
using the satisficing model of Simon [1955]: most subjects search sequentially,
stopping when a “satisficing” level of reservation utility is realized. We find
that reservation utilities and search order respond systematically to changes in
the decision making environment.
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Many everyday decisions are made without full examination of all available options, and as a
result, the best available option may be missed. However, little is known about how such incom-
plete consideration affects choice behavior. We develop a search-theoretic choice experiment that
provides new insights into how information gathering interacts with decision making.

Our central finding is that many decisions can be understood using the satisficing model of
Simon [1955]. Simon posited a process of item-by-item search, and the existence of a “satis-
ficing” level of utility, attainment of which would induce the decision maker to curtail further
search. Our experiments cover various settings that differin the number of options available and
in the complexity of these objects, and in all cases, we find broad support for Simon’s hypothesis.
Most subjects search sequentially, and stop search when an environmentally-determined level of
reservation utility has been realized.

One factor that has held back research on how incomplete search impacts choice is that there
are no observable implications of a general model in which the set of objects that a subject
considers may be smaller than the choice set as understood byan external observer.1 To identify
such restrictions, we develop a new experimental techniquethat incentivizes subjects to reveal
not only their final choices, but also how their provisional choices change with contemplation
time.2 This “choice process” data provides a test bed for simple models of sequential search (see
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1The satisficing model itself only has testable implicationsfor choice data if it is assumed that the search order never
changes. See Manzini and Mariotti [2007] and Masatlioglu and Nakajima [2009] for examples of other decision theoretic
models in which the decision maker’s consideration set is smaller than the externally observable choice set. See also
Eliaz and Spiegler [Forthcoming]. Rubinstein and Salant [2006] present a model of choice from lists, in which a decision
maker searches through the available options in a particular order. Ok [2002] considers the case of a decision maker who
is unable to compare all the available alternatives in the choice set. These models make specific assumptions about the
nature of search to gain empirical traction.

2Compared to other novel data used to understand informationsearch, such as those based on eye tracking or Mouse-
lab (Payne, Bettman and Johnson [1993], Gabaix et al. [2006], Reutskaja et al. [Forthcoming]), choice process data is
more closely tied to standard choice data and revealed preference methodology.
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Campbell [1978] and Caplin and Dean [Forthcoming]).
A second barrier to research in this area is that there is no general way to define, let alone mea-

sure, the quality of decisions.3 To overcome this conceptual problem, subjects in our experiment
select among monetary prizes presented as sequences of addition and subtraction operations.4

These calculations take time and effort to perform, making the choice problem nontrivial. As a
result, we find that subjects regularly fail to find the best option when choosing from sets of such
alternatives.

We use choice process data to test the satisficing model. We find that its two identifying
features are supported by our data. First, subjects typically switch from lower to higher value
objects, in line with information being absorbed on an item-by-item basis, as in sequential search
theory. Second, for each of our experimental treatments, weidentify fixed reservation values
such that most subjects curtail search early if, and only if,they identify an option of higher value
than the reservation level. Taken together, these two findings characterize the satisficing model.
The estimated levels of reservation utility increase with set size and with object complexity.

Choice process data provides insight into search order. We find that some subjects search from
the top of the screen to the bottom, while others do not. Thesesearch modes impact choice
quality: those who search down from the top do poorly if good objects are at the bottom of the
screen.

Our method for eliciting choice process data impacts the incentive to search, since there is an
increasing chance that later choices will not be actualized. In order to explore the impact of these
incentives, we develop a simple model of optimal search withpsychic costs that is rich enough
to cover this case in addition to standard choice data. We findthat, while a fixed reservation level
is optimal in the standard case, a declining reservation level is optimal for the choice process
environment. Moreover, the reservation level in a choice process environment is always below
the fixed optimal level in the equivalent standard choice environment.

We test the predictions of the optimizing model by comparingbehavior in the choice process
experiment with that in a standard choice environment. We exploit the fact that subjects were able
to, and indeed chose to, change options prior to finalizing decisions even in our standard choice
experiments, creating a sequence of choices that we can interpret as choice process data. We find
that standard choice data is indeed well described by the fixed reservation model. However, we
find no evidence of a declining reservation level in the choice process environment. This sug-
gests that our subjects may be satisficing for the reasons that Simon [1955] originally proposed,
as a rule of thumb that performs adequately across a broad range of environments, rather than
finely honing their search strategy to each choice environment they face. We find some evidence
that reservation levels in choice process settings are below those in equivalent standard choice
settings.

While our findings are in line with simple theories of sequential search, we consider (and re-
ject) an alternative model in which subjects search the entire choice set, but make calculation
errors that lead to choice mistakes. We estimate a random utility model in which the size of the
utility error depends on the size and complexity of the choice set. Fitting the model requires seem-
ingly large perceptual errors, yet simulations based on thefitted model significantly overestimate
subject performance in large and complex choice sets. Moreover, the estimated calculation er-
rors are incompatible with the fact that subjects almost always switch from lower to higher value
alternatives, in line with the principle of sequential search.

The paper is arranged into six sections. In section I we introduce our experimental protocols.
In section II we describe the pattern of choice mistakes exhibited by our subjects. In section III
we test the satisficing model, and show how reservation rulesvary across environments. Order

3See Bernheim and Rangel [2008], Gul and Pesendorfer [2008] and Koszegi and Rabin [2008] for methodological
viewpoints on the classification of particular decisions as“poor” or “mistaken.”

4Caplin and Dean [Forthcoming] characterize theoretical connections between choice process data, sequential search,
and reservation stopping rules with arbitrary objects of choice.
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effects on choice are addressed in section IV. Section V investigates the connection between
standard choice experiments and choice process experiments. Section VI contains our estimates
of the model based entirely on calculation errors rather than sequential search.

I. Experimental Design

We conducted experiments of four types. Experiment 1 measures choice quality in our exper-
imental task in a standard choice experiment. Experiment 2 uses the choice process design to
examine provisional choices within the same environment. Experiment 3 uses the choice process
experiment to explore search order. Experiment 4 imposes a time limit on subjects in an otherwise
standard choice task, allowing us to understand the source of differences in behavior between ex-
periments 1 and 2. All experiments were conducted at the Center for Experimental Social Science
laboratory at New York University, using subjects recruited from the undergraduate population.

A. Experiment 1: Standard Choice

Our goal in this paper is to study whether a model of information search can explain why
people sometimes fail to choose the best available option. Hence we work with objects of choice
for which such failures are easy to identify: dollar amountsexpressed as addition and subtraction
operations. We conducted six treatments that differ in terms of complexity (3 or 7 addition and
subtraction operations for each object) and the total number of available alternatives (10, 20 or
40). Figure 1 shows a 10 option choice set with objects of complexity 3.5

FIGURE 1. A TYPICAL CHOICE ROUND

Each round began with the topmost option on the screen selected, which had a value of $0 and
was worse than any other option. While only the final choice was payoff relevant, subjects could
select whichever option they wanted at any time by clicking on the option or on the radio button
next to it.6 The currently selected option was displayed at the top of thescreen. Once subjects
had finalized their selection, they could proceed by clicking on the submit button at the bottom
of the screen. Subjects faced no time constraint in their choices.

The value of each alternative was drawn from an exponential distribution with λ = 0.25,
truncated at $35 (a graph of the distribution was shown in theexperimental instructions – see
online supplemental material).7 The individual terms in the algebraic expression representing the
alternative were generated stochastically in a manner thatensured that neither the first nor the
maximal term in the expression were correlated with total value.

Subjects for experiment 1 took part in a single experimentalsession consisting of 2 practice
rounds and between 27 and 36 regular rounds, drawn from all 6 treatments. At the end of the
session, two regular rounds were drawn at random, and the subject received the value of the final
selected object in each round, in addition to a $10 show up fee. Each session took about an hour,
for which subjects earned an average of $32. In total we observed 22 undergraduate students
making 657 choices.

5Given that the subjects (New York University students) madenegligible mistakes when purely numerical options
were presented, we wrote out the arithmetic expressions in word form rather than in symbolic form.

6Changes that were made over the pre-decision period were recorded and are analyzed in section V.
7For each of the three choice set sizes we generated 12 sets of values, which were used to generate the choice objects

for both the low and the high complexity treatments.
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B. Experiment 2: Choice Process

Choice process data tracks not only final choice, but also howsubjects’ provisional choices
evolve with contemplation time. It is closely related to standard choice data, in that all obser-
vations represent choices, albeit indexed by time. We see this data as complementary to other
attempts to use novel data to understand information search, such as those based on eye tracking
or Mouselab (Payne, Bettman and Johnson [1993], Gabaix et al. [2006], Reutskaja et al. [Forth-
coming]). While choice process data misses out on such potentially relevant clues to search be-
havior as eye movements, it captures the moment at which search changes a subject’s assessment
of the best option thus far encountered.

Our experimental design for eliciting choice process data has two key features. First, sub-
jects are allowed to select any alternative in the choice setat any time, changing their selected
alternative whenever they wish. Second, actualized choiceis recorded at a random point in time
unknown to the experimental subject. Only at the end of each round does the subject find out
the time that was actualized, and what their selection had been at that time. This incentivizes
subjects always to select the option that they perceive as best. We therefore treat their sequence
of selections as recording their preferred option at each moment in time.8

The instructions that were given to subjects in the choice process experiment are available in
the online supplemental material. They were informed that the actualized time would be drawn
from a beta distribution with parametersα = 2 andβ = 5, truncated at 120 seconds.9 The
interface for selecting and switching among objects was identical to that of experiment 1. A
subject who finished in less than 120 seconds could press a submit button, which completed the
round as if they had kept the same selection for the remainingtime. Typically, a subject took part
in a session consisting of 2 practice rounds and 40 regular rounds. Two recorded choices were
actualized for payment, which was added to a $10 show up fee.

Experiment 2 included six treatments that matched the treatments in experiment 1: choice sets
contained 10, 20 or 40 alternatives, with the complexity of each alternative being either 3 or 7
operations. Moreover, exactly the same choice object values were used in the choice process and
standard choice experiments. For the 6 treatments of experiment 2, we collected data on 1066
choice sets from 76 subjects.

C. Experiment 3: Varying Complexity

Experiment 3 was designed to explore how screen position andobject complexity impacts
search order. All choice sets were of size 20, and the objectsin each set ranged in complexity
from one to nine operations. Subjects were instructed that object complexity, screen position and
object value were independent of one another. Incentives were as in experiment 2, the choice
process experiment. Experiment 3 was run on 21 subjects for atotal of 206 observed choice sets.

D. Experiment 4: Time Constraint

While the choice process experiments included time limits,the standard choice experiment
did not. In order to explore whether this time limit was responsible for differences in behavior
between the two settings, we re-ran the standard choice experiment with a two minute time con-
straint, as in the choice process experiment. If subjects failed to press the submit button within
120 seconds they received $0 for that round. For this experiment, a total of 29 subjects chose
from 407 observed choice sets.

8In support of this interpretation, 58 of 76 subjects in a postexperiment survey responded directly that they always
had their most preferred option selected, while others gavemore indirect responses that suggest similar behavior (e.g.
having undertaken a recalculation before selecting a seemingly superior alternative).

9A graph of this distribution was shown in the experimental instructions. The front-weighting in the beta distribution
provides an incentive for subjects to begin recording theirmost preferred options at an early stage.
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II. Choice Performance

A. Standard Choice Task

Table 1 reports the results of experiment 1, the standard choice experiment. The top section
reports the “failure rate” – the proportion of rounds in which the subject did not choose the option
with the highest dollar value. The second section reports the average absolute loss – the difference
in dollar value between the chosen item and the highest valueitem in the choice set.

Averaging across all treatments, subjects fail to select the best option almost 38 percent of the
time, and leave $3.12, or 17 percent of the maximum amount on the table in each round.10 Both of
these performance measures worsen with the size and the complexity of the choice set, reaching
a failure rate of 65 percent, and an average loss of $7.12 in the size 40, complexity 7 treatment.
Regression analysis shows that the difference in losses between treatments is significant.11

B. Choice Process Task

Given that our analysis of the search-based determinants ofchoice quality is based primarily
on the choice process data of experiment 2, it is important toexplore how the level and pattern
of final choices compares across experiments 1 and 2. To ensure that subjects in experiment
2 had indeed finalized their choices, we retain only rounds inwhich they explicitly press the
submit button before the allotted 120 seconds. This removes94 rounds, or 8.8 percent of our
total observations. Table 1 compares failure rates and average absolute losses by treatment for
choice process and standard choice tasks.

In both the choice process experiment and the standard choice experiment, subjects fail to find
the best option more frequently and lose more money in largerand more complicated choice
sets. However, in almost all treatments, the quality of finalchoice is worse in the choice process
task than the standard choice task. We explore this difference in section V, where we relate it
to the different incentives in the two experiments. There isless incentive to continue search in
the choice process task, given that the probability of additional effort raising the payoff falls over
time.

III. Sequential Search and Satisficing

We use the choice process data from experiment 2 to test whether a simple sequential search
model with a reservation level of utility can explain the failure of people to select the best avail-
able option. We test both whether subjects appear to understand the value of each searched object
in full before moving on to the next (as in the classic search models of Stigler [1961] and Mc-
Call [1970]), and whether they appear to search until an object is found that is above a fixed
reservation utility level. The power of our tests depends onobserving subjects switching from
one alternative to another. Fortunately, in 67 percent of rounds we observe at least one occasion
on which the subject switches between options after the initial change away from $0. The mean
number of such switches is 1.4.

10There is no evidence for any effect of learning or fatigue on choice performance. The order in which choice rounds
were presented was reversed for half the subjects, and the order of presentation did not have a significant effect on
performance. In part, this may be because our experimental design is structured to remove learning effects. The decision
making context, including the distribution of prizes, is known to the decision maker at the start of each experimental
round.

11Absolute loss was regressed on dummies for choice set size, complexity and interactions, with standard errors
calculated controlling for clustering at the subject level. Losses were significantly higher at the 5 percent level for size 40
compared to size 10 choice sets, and for the interaction of size 40 and complexity 7 compared to size 10 and complexity
3 choice sets.
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TABLE 1—PERFORMANCE IN CHOICE PROCESS TASK(EXPERIMENT2) VS. STANDARD CHOICE TASK(EXPERIMENT

1)

Failure rate (percent)
Complexity

Set size Set size 3 7
10 Choice process 11.38 46.53

Standard choice 6.78 23.61
20 Choice process 26.03 58.72

Standard choice 21.97 56.06
40 Choice process 37.95 80.86

Standard choice 28.79 65.38
Absolute loss (dollars)

Complexity
Set size Set size 3 7

10 Choice process 0.42 3.69
Standard choice 0.41 1.69

20 Choice process 1.62 4.51
Standard choice 1.10 4.00

40 Choice process 2.26 8.30
Standard choice 2.30 7.12
Number of observations

Complexity
Set size 3 7

10 Choice process 123 101
Standard choice 59 72

20 Choice process 219 172
Standard choice 132 132

40 Choice process 195 162
Standard choice 132 130

A. Sequential Search

Caplin and Dean [Forthcoming] provide a method of identifying whether or not choice process
data is consistent with sequential (but possibly incomplete) search. Assuming that utility is
monotonically increasing in money, a necessary and sufficient condition for choice process data
to be in line with sequential search is that successive recorded values in the choice process must
be increasing. We refer to this as Condition 1:

Condition 1 If option y is selected at timet and optionx is selected at times > t , it must be the
case that the value ofx is no less than the value ofy.12

In order to test whether our subjects are close to satisfyingCondition 1, we use a measure of
consistency proposed by Houtman and Maks [1985]. The Houtman-Maks (HM) index is based
on calculating the largest fraction of observations that are consistent with Condition 1.13

Figure 2 shows the distribution of HM indices for all 76 subjects. Over 40 percent of our
subjects have an HM index above 0.95, while almost 70 percenthave an HM index above 0.9

12Note that the choice process methodology only identifies a subset of searched objects: anything that is chosen at
some point we assume must have been searched, but there may also be objects that are searched but never chosen, which
we cannot identify. Combining our technology with a method of identifying what a subject has searched (for example
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FIGURE 2. DISTRIBUTION OF HM INDICES FOR ACTUAL AND RANDOM DATA (EXPERIMENT 2)

– meaning that over 90 percent of their switches are consistent with Condition 1, and therefore
consistent with sequential search. Figure 2 also shows the distribution of HM indices for 76,000
simulated subjects with the same number of switches as our subjects but who choose at random
– a measure of the power of our test (see Bronars [1987]). Clearly, the two distributions are very
different, as confirmed by a Kolmogorov–Smirnov test (p < 0.0001).

This analysis suggests that, for the population as a whole, sequential search does a good job of
describing search behavior. We can also ask whether the behavior of a particular subject is well
described by the sequential search model. To identify such sequential searchers, we compare
each subject’s HM index with the HM indices of 1,000 simulations of random data with exactly
the same number of observations in each round as that subject. For the remainder of the paper
we focus on the 68 out of 76 subjects who have an HM index above the 95th percentile of their
randomly generated distribution.14

FIGURE 3. PROPORTION OF FINAL CHOICES WHERE THE BEST OPTION WAS FOUND AND LARGEST PROPORTION OF

SELECTIONS TO HIGHER VALUE(EXPERIMENT 2)

One feature of the sequential search model is that it revivesthe concept of revealed preference
in a world of incomplete information. Panel A of figure 3 showshow close our subjects are to
satisfying the standard rationality assumption in each of our treatments, by showing the propor-
tion of rounds in which the best alternative is chosen. PanelB shows how close our subjects are
to satisfying rationality for sequential search in each treatment by calculating the HM index with
respect to Condition 1. The level of mistakes as measured by the standard definition of revealed
preference is far higher than by the sequential search measure. Note also that while there is strong
evidence of increasing mistakes in larger and more complex choice sets according to the standard
measure, such effects are minimal according to the sequential search measure. Using the latter,
there is no effect of set size on mistakes, and only a small effect from complexity.

B. Satisficing and Reservation Utility

The essential advantage that choice process data provides in testing the satisficing model is
that it allows us to observe occasions in which subjects continue to search having uncovered

Mouselab or eye tracking) would therefore be of interest.
13Specifically, we identify the smallest number of observations that need to be removed for the resulting data to be

consistent with condition 1. The HM index is the number of remaining observations, normalized by dividing through by
the total number of observations.

14An alternative measure of the failure of Condition 1 would beto calculate the minimum total change in payoff
needed in order to adjust the data to satisfy Condition 1. Forexample, if an object worth 12 was selected first and then
one worth 4, we would have to make a reduction of 8 to bring the data in line with Condition 1. On the other hand, if a
subject selected 5 and then 4, only a reduction of 1 would be needed.

The correlation between these two measures is very high in our sample: the Spearman’s rank correlation is 0.96.
However, our subjects perform worse relative to the random benchmark according to this measure than according to the
standard HM index. Using the new measure, 62 out of 76 subjects can be categorized as sequential search types using the
95th percentile of random choice simulations. This suggests that, when our subjects mistakenly switch to worse objects,
they sometimes make large errors in terms of dollar value.
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unsatisfactory objects. This allows us to directly test thereservation stopping rule and estimate
reservation values for our different treatments.

The first indication that our subjects exhibit satisficing behavior is shown in figure 4. This
shows how the value of the selected object changes with orderof selection for each of our six
treatments. Each graph has one isolated point and three segmented lines. The isolated point shows
the average object value for those who stop at the first objectchosen.15 The first segmented line
shows the average value of each selection from rounds in which one switch was made. The next
segmented line shows the average value of each selection in rounds where 2 switches were made,
and the final segmented line for rounds in which 3 switches were made.

FIGURE 4. AVERAGE VALUE BY SELECTION (EXPERIMENT 2)

Figure 4 is strongly suggestive of satisficing behavior. First, as we would expect from the
preceding section, aggregate behavior is in line with sequential search: in all but one case, the av-
erage value of selections is increasing. Second, we can find reservation values for each treatment
such that aggregate behavior is in line with satisficing according to these reservations. The hori-
zontal lines drawn on each graph show candidate reservationlevels, estimated using a technique
we describe below. In every case, the aggregate data show search continuing for values below
the reservation level and stopping for values above the reservation level, just as Simon’s theory
predicts.

ESTIMATING RESERVATION LEVELS

In order to estimate reservation utilities for each treatment, we assume that all individuals in
a given choice environment have the same reservation valuev and experience variabilityε in
this value each time they decide whether or not to continue search. Further, we assume this sto-
chasticity enters additively and is drawn independently and identically from the standard normal
distribution.16 Lettingv be the value of the item that has just been evaluated, the decision maker
(DM) stops search if and only ifv ≥ v + ε, whereε ∼ N (0,1). To cast this as a binary choice
model, letk be a decision node,vk be the value of the object uncovered andεk the error. Note
that the probability of stopping search is�(vk − v), where� is the cumulative density function
of the standard normal distribution, so we can estimatev̄ using maximum likelihood.

To employ this procedure using our data, we need to identify when search has stopped, and
when it has continued. The latter is simple: search continues if a subject switches to another

15Following the initial switch away from the zero value option.
16There are at least two ways to interpret the additive error term in this model. The first is that subjects calculate each

option perfectly but only have a rough idea of their reservation value. The second is that subjects have a clear idea of
their reservation value, but see the value of each option with some error.

The existing literature regarding stochastic choice models is summarized in Blavatsky and Pogrebna [2010]. Models
can broadly be categorized into two types. The first are “tremble” models of the type used in Harless and Camerer [1994].
For any given decision, there is a constant probability thatthe subject will make a mistake. All types of mistake are then
equally probable. The second type assumes that the value of each option is observed with some stochastic error. Different
models of this type assume different error structures, but all assume that small errors are more likely than large ones.

Our estimation technique uses a model from the second category: the Fechner Model of Heteroscedastric Random
Errors, which assumes that the reservation value is observed with an additive, normally distributed error term. In our
setting, we find the tremble class of models implausible – neither intuition nor the data supports the idea that small errors
are as likely as large ones.

It terms of the precise distribution of the error term, we tested other common alternatives: logistic and extreme value
errors. The results under these alternative assumptions were essentially the same.
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alternative after the current selection. Identifying stopped search is slightly more complicated.
If we observe that a subject does not make any more selectionsafter the current one, then there
are three possibilities. First, they might have continued to search, but run out of time before they
found a better object. Second, they might have continued to search, but already have selected the
best option. Third, they might have stopped searching. We therefore consider a subject to have
stopped searching at a decision node only if they made no further selections, pressed the submit
button, and the object they had selected was not the highest value object in the choice set.

RESULTS: ESTIMATED RESERVATION LEVELS

Because we assume that all individuals have the same distribution of reservation values in a
given environment, we pool together all selections within each treatment for the 68 participants
whose choice data is best modeled with sequential search. Table 2 shows the estimated reserva-
tion levels for each treatment, with standard errors in parentheses.

TABLE 2—ESTIMATED RESERVATION LEVELS(EXPERIMENT 2)

Complexity
Set size 3 7

10 Sequential search types 9.54 (0.20) 6.36 (0.13)
Reservation-based search types 10.31 (0.23) 6.39 (0.13)

20 Sequential search types 11.18 (0.12) 9.95 (0.10)
Reservation-based search types 11.59 (0.13) 10.15 (0.10)

40 Sequential search types 15.54 (0.11) 10.84 (0.10)
Reservation-based search types 15.86 (0.12) 11.07 (0.10)

Note: Standard errors in parenthesis

Table 2 reveals two robust patterns in the estimated reservation levels. First, reservation levels
decrease with complexity: using a likelihood-ratio test, estimated reservation levels are signifi-
cantly lower for high complexity treatments than for low complexity treatments at all set sizes
(p < 0.001). Second, reservation levels increase monotonically with set size (significantly dif-
ferent across set sizes for both complexity levels withp < 0.001).

One question that this estimation strategy does not answer is how well the reservation utility
model explains our experimental data. In order to shed lighton this question, we calculate the
equivalent of the HM index for this model with the estimated reservation levels of table 2. For
each treatment, we calculate the fraction of observations which obey the reservation strategy (i.e.
subjects continue to search when they hold values below the reservation level and stop when they
have values above the reservation level).

TABLE 3—AGGREGATEHM INDICES FOR RESERVATION-BASED SEARCH(EXPERIMENT 2)

Complexity
Set size 3 7

10 0.90 0.81
20 0.87 0.78
40 0.82 0.78

The results, aggregated across all subjects, are shown in table 3. The estimated model describes
about 86 percent of observations for treatments with simpleobjects and about 78 percent for com-
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plicated objects. Both of these percentages are significantly higher than the random benchmark
of 50 percent (where people arbitrarily stop or continue at each decision node) at the 1 percent
level.

There is significant heterogeneity across individuals withrespect to how well they follow a
fixed reservation stopping rule. While the majority of subjects have HM indices above 75 percent,
some have extremely low scores and are clearly poorly described by a reservation utility model
with the given estimated reservation levels. In order to ensure these individuals are not affecting
our estimates in table 2, we repeat the estimation of reservation strategies without those subjects
who have an HM index below 50 percent (an additional 6 subjects). These results are in table 2
under the rows for “Reservation-based search types.” The estimated reservation levels are similar
to those for the whole sample.

C. Reservation Utility or Reservation Time?

A natural question is whether our data is consistent with other stopping rules. One obvious
candidate is a stopping rule based on a reservation time, in which subjects search for a fixed time
and select the best option found subject to this time constraint. In order to assess this possibility,
we redraw in figure 5 the graphs of figure 4, but show the averagetime of each switch, rather than
the average value on the vertical axis.

FIGURE 5. AVERAGE TIME BY SWITCH (EXPERIMENT 2)

Figure 5 provides no support for the reservation time stopping rule. Unlike in figure 4, there
is generally no “reservation time” such that subjects continue to search for times below this level
and stop for times above that level (the horizontal lines on each graph show a reservation stop-
ping time estimated using the procedure describes in section III.B). Instead, those who identified
a high value object with their first selection stopped quickly, while those who made the most
switches took significantly longer. This is precisely as thereservation utility model would sug-
gest, and runs counter to the predictions of the reservationtime model.

IV. Search Order and Choice

In this section we show that choice process data provides insight into the order of search, and
that this information can help predict when subjects will dobadly in particular choice sets.

The first finding is that subjects in experiment 2 tend to search from the top to the bottom of
the screen. When we regress the order in which an object is selected on its position on screen,
we find that the average screen position is significantly higher (i.e. further down the screen) for
later selections.17 This relationship is more pronounced for choice sets with simple, rather than
complex objects.18

To assess whether subjects search from top to bottom (TB), wecalculate the fraction of ob-
servations that are consistent with this search order – in other words, the fraction of observations
for which objects selected later appear further down the screen. A subject is categorized as being
a TB searcher if this HM index for their search order is in the 95th percentile of a benchmark

17Regressing selection number on the screen position of the selection gives a coefficient of 0.028, significant at the 1
percent level (allowing for clustering at the subject level).

18For complexity 3 choice sets, regressing selection number on the screen position of the selection gives a coefficient
of 0.036, significant at the 1 percent level, while for complexity 7 sets the coefficient is 0.018, not significant at the 10
percent level.
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distribution constructed using random search orders. Withthis criterion, 53 percent of subjects
in experiment 2 are well described by TB search.

While the search order HM index is determined independentlyof a subject’s performance, we
find that TB searchers do worse when the best object appears further down the screen. When
we regress whether a subject found the best option onto the screen location of the best option,
the coefficient is negative (-0.03) and significant at the 1 percent level for TB searchers, but is
smaller in magnitude (-0.01) and insignificant at the 10 percent level for those not classified as
TB searchers.

For subjects that are strict TB searchers, sequential search has particularly strong implications.
Thus far, we have assumed that we only know an object has been searched if it has been chosen
at some point. However, if a strict TB searcher at some point selects the object at a certain screen
position, then they must have searched all objects in screenpositions above it. For example, if
the object in position 10 is selected, then the objects in positions 1 to 9 must have been searched
through as well. In this case, the test for sequential searchis whether or not, at any given time, the
value of the currently chosen object is higher than all the objects that fall earlier in the assumed
search order.

In the low complexity choice environment, we find that subjects classified as TB searchers
behave in line with this strict form of sequential search in about 92 percent of cases. They also
do significantly better in this test than subjects that we do not classify as TB.19 However, even
those we categorize as TB searchers violate this condition in about 42 percent of cases for more
complicated choice sets. This suggests that, in more complicated choice sets, even subjects who
generally search from top to bottom may not fully examine allof the objects along the way.

In addition to TB search, experiment 3 enables us to explore whether or not object complexity
impacts search order. We find not only that subjects in general search the screen from top to
bottom, but also from simple to complex objects.20 We define a subject in this experiment to
be a “Simple-Complex” (SC) searcher if they have a corresponding HM index above the 95th
percentile of random search orders. Eight subjects are categorized as both TB and SC searchers,
six as just TB searchers, three as just SC searchers. Only three subjects could be categorized as
neither.

V. Choice Process and Standard Choice Data

The choice process experiment has incentives that are different from those operating in a stan-
dard choice environment. To understand the impact that these incentives have on decisions, we
characterize optimal stopping strategies in a sequential search model that covers both the standard
experiment and the choice process experiment. We also explore behavioral differences between
experiments. In this respect we take advantage of the fact that, in experiment 1, subjects were able
to, and indeed did, select options prior to hitting the submit button and finalizing their choices.21

We can use these intermediate clicks to test our search models in the standard choice environment
of experiment 1, just as we did in experiment 2.

A. Condition 1 in Experiment 1

We use the intermediate choice data from experiment 1 to explore evidence for Condition 1,
the sequential search condition, in the standard choice environment. These tests indicate that if

19Controlling for selection number and position on screen, the coefficient on being a Top-Bottom searcher is negative
and significant (p = 0.005) in a regression where success or failure of top down sequential search is the dependent
variable.

20Regressing selection number on the screen position and complexity of the object selected gives coefficients of 0.037
and 0.136 respectively, both significant at the 1 percent level (allowing for clustering at the subject level).

21While there was no direct financial incentive for changing the selection in experiment 1, there may be a psychological
incentive if object selection aids memory.
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anything, data from the standard choice environment are more in line with sequential search than
choice process data. Indeed, there are even fewer violations of Condition 1 in experiment 1 (8
percent of rounds with a violation) than there were in experiment 2 (10 percent of rounds with a
violation). Once again there was little effect of either complexity or choice set size on conformity
with Condition 1.

B. A Model of Optimal Search

Given that Condition 1 applies generally in both experiments 1 and 2, we develop an optimizing
model of sequential search that covers both experimental designs. The search cost is specified
in utility terms, as in Gabaix et al. [2006]. The DM is an expected utility (EU) maximizer with
a utility functionu : X → R on the choice setX. We endow the searcher with information on
one available option at timet = 0, a period in which no choice is to be made. We normalize
u : X → R so that the endowed prize has an EU of zero. At each subsequenttime 1≤ t ≤ T ,
the DM faces the option of selecting one of the options already searched, or examining an extra
option and paying a psychological search costκ > 0 (in EU units). The agent’s search strategy
from any nonempty finite subsetA ⊂ X is based only on the sizeM of the set of available objects
in A, not the identities of these objects. Each available prize is assumed ex ante to have a utility
level that is independently drawn from some distributionF(z), as in our experiment. There is no
discounting.

To break the otherwise rigid connection between time and thenumber of objects searched, we
introduce parameterq ∈ (0,1) as the probability that searching an object in hand for one period
will result in its identity being known. If this does not happen, the same geometric probability
applies in the following periods. Once search stops, the agent must choose one of the identified
objects.22

To match the choice process experimental design, we allow for the possibility that search after
time t ≥ 1 will have no impact on the actual selection. We let the non-increasing functionJ(t)
identify the probability that the search from timet on will actually impact choice. In the standard
choice environment,J(t) is constant at 1, while in the choice process environmentJ(0) = 1,
J(t)− J(t + 1) > 0 for 1≤ t ≤ T − 1 andJ(T + 1) = 0 (whereT = 120 seconds).

Our characterization of the optimal search strategy is straight forward, and the proof is avail-
able in the online appendix.

THEOREM 1: For any time t,1 ≤ t ≤ T , define the reservation utility level uR(t) as the unique
solution to the equation,

(1)

∞∫

uR(t)

[z− x] dF(z) =
κ

q J(t)
.

It is uniquely optimal to stop search and select the best prior object searched of utilitȳut−1 if
ūt−1 > uR(t), to continue search if̄ut−1 < uR(t), with both strategies optimal if̄ut−1 = uR(t).

In the standard choice environment,J(t) = 1 for all t . Theorem 1 implies that the optimal
strategy is a fixed reservation levelūR defined as the solution to the following equation:

(2)

∞∫

ūR

(z− ūR)dF(z) =
κ

q
.

22This method of modeling makes the process of uncovering an option equivalent to the process of “locating” it as
feasible. The strategy is more intricate if we allow unexplored options to be selected.



VOL. VOL NO. ISSUE SEARCH AND SATISFICING 13

This reservation level is decreasing in the cost of searchκ , but is invariant to both the size of the
choice set and the number of options that remain unsearched.

In the choice process environment,J(t) is decreasing. Theorem 1 therefore implies that the
optimal strategy is defined by a declining reservation levelthat depends only onJ(t), not the size
of the choice set or the number of remaining alternatives. For any timet > 0, the reservation
level in the choice process environment will be below the level in the equivalent standard choice
environment. This result is intuitive: for anyt > 0, the probability of further search affecting the
outcome is higher in the standard choice environment than the choice process environment.

C. Stopping Rules in Experiments 1 and 2

The theoretical model suggests that, if anything, standardchoice data should be better ex-
plained by the satisficing model than the choice process data. We begin by repeating the analysis
of section III to determine whether this is the case. We find that the standard choice experiments
are indeed well explained by a fixed reservation rule. Figure6 recreates the analysis of figure 4,
and suggests that a reservation stopping rule broadly describes the aggregate data. Table 4 shows
that the estimated reservation levels for the standard choice data exhibit the same comparative
statics as do those for the choice process data.23 Table 5 shows that the estimated HM indices for
these reservation levels in the standard choice data are roughly similar for lower complexity and
smaller for higher complexity.24 This suggests that there is little qualitative distinctionbetween
behavior in the standard choice and choice process environments.

FIGURE 6. AVERAGE VALUE BY SWITCH (EXPERIMENT 1)

TABLE 4—ESTIMATED RESERVATION LEVELS(EXPERIMENT 1 AND EXPERIMENT 2)

Complexity
Set size 3 7

10 Choice process 10.17 (0.22) 6.34 (0.13)
Standard choice 10.05 (0.50) 8.41 (0.20)

20 Choice process 11.22 (0.11) 8.92 (0.09)
Standard choice 11.73 (0.16) 8.39 (0.12)

40 Choice process 15.15 (0.10) 10.07 (0.09)
Standard choice 16.38 (0.13) 10.39 (0.12)

Note: Standard errors in parenthesis

The optimal stopping model suggests that there should be twodifferences between the stan-
dard choice data and the choice process data. First, reservation levels should be lower in the
choice process environment than in the standard choice environment. Table 4 suggests that this
is broadly so for the sample pursuing reservation strategies (HM index above 0.5). As table 4

23For the analysis of table 4 we drop subjects who never switch in any round and who are not classified as using a
reservation strategy.

24For none of the treatments is the difference between experiments 1 and 2 in terms of compliance with the reservation
utility model significant at the 5 percent level.
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TABLE 5—AGGREGATEHM INDICES FOR RESERVATION-BASED SEARCH(EXPERIMENT 1)

Complexity
Set size 3 7

10 0.94 0.74
20 0.83 0.74
40 0.77 0.73

shows, the reservation utility is lower in experiment 1 thanin experiment 2 in four of six treat-
ments. This difference is significant in only two cases, and in both cases experiment 1 has the
lower reservation level. Lower reservation levels could also explain why subjects in the choice
process experiment finished searching more quickly than those in the standard choice environ-
ment.

While differing incentives could explain why final choice performance is worse in the choice
process environment than in the standard choice environment, another possibility is more mun-
dane – experiment 2 had a time limit while experiment 1 did not. Experiment 4 allows us to
determine which of these is the case, as it replicates the pure choice environment of experiment
1, but with a 2 minute time limit. The results suggest that thetime limit is responsible for some,
but not all of the difference. The average failure rate across all treatments is 33.7 percent for
the standard choice experiment, 39.5 percent in the standard choice with time limit experiment,
and 43.6 percent in the choice process experiment.25 The difference in incentives does appear to
impact performance in experiment 2 relative to that in experiment 1, over and above the effect of
the time limit.

The theoretical model shows that, while a fixed reservation strategy is optimal in the standard
choice data case, a declining reservation strategy is optimal in the choice process environment.
We use a revealed preference approach to test for the possibility of a declining reservation level.
The revealed preference implication of a declining reservation level is straightforward. If a sub-
ject stops searching and chooses an objectx at time t , but continues searching having found
objecty at times > t, it must be the case thatx is preferred toy. This is because the value ofx
must be above the reservation value at timet , which is in turn above the reservation level at time
s. Moreover, the value ofy must be below the reservation level at times as search is continuing.
Thusx must be preferred toy. In contrast, the revealed preference implication of a fixedreser-
vation level is thatx is preferred toy if search stops withx at some timet but continues with
y at some times, regardless of the relationship between t and s. Note that the fixed reservation
model is a special case of the declining reservation model.

Armed with these observations, we can ask whether the declining reservation model helps to
explain more of the choice process data than the fixed reservation model, by asking how many
times the relevant revealed preference condition is violated. We classify data as violating a par-
ticular revealed preference condition if optionx is revealed preferred to optiony, but the value of
y is greater than the value ofx. It turns out that the declining reservation model does not offer a
better description of choice process data. While the declining reservation model by definition has
fewer violations in absolute terms, theproportionof observations that violate revealed preference
is higher – 24 percent for the fixed reservation model versus 32 percent for the declining reserva-
tion. Thus, our revealed preference approach finds little evidence that our subjects are responding
to the choice process environment by implementing a declining reservation strategy.

25To calculate the average across all treatments, we calculate the average loss for each treatment and average across
these.



VOL. VOL NO. ISSUE SEARCH AND SATISFICING 15

D. Comparing Behavior across Treatments

Assuming that search costs are higher for more complex objects, our model of optimal search
implies that reservation utility should be lower in the higher complexity environment. It implies
also that optimal reservation levels are independent of thesize of the choice set. The compara-
tive statics properties of our experimentally estimated stopping rules do not align perfectly with
those of the optimal stopping rule. While subjects reduce their reservation level in response to
higher search costs, they also tend toincreasetheir reservation level as the size of the choice set
increases.

One possible reason for this discrepancy is that subjects may be searching “too much” in
larger choice sets relative to smaller ones. This may relateto findings from the psychology and
experimental economics literature that show that people may prefer smaller choice sets (Iyengar
and Lepper [2000], Seuanez-Salgado [2006]).26 It is also possible that satisficing is followed as
a rule of thumb, as Simon [1955] suggested. In the more everyday context with unknown object
values, subjects may search more in larger sets in order to refine their understanding of what
is available. They may then import this behavior into the experimental lab, despite being fully
informed about the distribution of object values.

VI. A Pure Random Error Model

Our explanation for subjects’ failure to pick the objectively best option is based on incomplete
sequential search. However, another possibility is that these failures result from calculation errors
– subjects search the entire choice set but make errors when evaluating each option. In order to
test this alternative explanation, we consider a simple model of complete search with calculation
errors. We put a simple structure on the error process – subjects are modeled as if they see the true
value of each object with an error that is drawn independently from an extreme value distribution.
The mode of this distribution is 0, and the scale factor on theerror term is allowed to vary with
complexity level and set size. With these assumptions, we can estimate the scale factor for each
treatment using logistic regression. Specifically, we find the scale factor that best predicts the
actual choice in each choice set.27 We allow for scale factors to differ between treatments.

Table 6 shows the estimated standard deviations from the calculation error model. This pro-
vides the first piece of evidence to suggest that the calculation error model is implausible. In large
and complicated choice sets, the standard deviation neededto fit the data becomes very large –
for example, in the size 40, complexity 3 treatment, the range between minus one and plus one
standard deviation is around $7, while the mean value of our choice objects is just $4.

Despite these large standard deviations, the calculation error model significantly underpredicts
both the frequency and magnitude of our subjects’ losses, asshown in table 7.28 The prediction of
subject performance under the estimated calculation errormodel was based on 1,000 simulations
of each observed choice set, in which a draw from the estimated distribution was added to the
value of each option and the object of highest total value wasidentified as being chosen.

A final problem with the calculation error model is that it should lead to far more violations
of sequential search than we in fact observe. Were subjects to be making calculation errors of

26One factor that potentially links these two findings is the concept of regret. Zeelenberg and Pieters [2007] show
that decision makers experience more regret in larger choice sets and suggest that this can lead them to search for more
information.

27For example, if a value of 10 was chosen by a subject from{7,10,12}, then our estimation strategy would find the
scale factor that gives the highest probability to choosing10, given that all options are seen with their own error. With
this approach, enough error must be applied so that the noisysignal of 10 appears larger than the noisy signal of 12, but
not so much error that the noisy signal of 7 appears larger than the noisy signal of 10.

28Alternatively, we could have estimated the scale factor to best match the number of mistakes or magnitude of mis-
takes found in the data, but this would ignore the actual choices that subjects made, which may contain other unpredicted
patterns.
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TABLE 6—ESTIMATED STANDARD DEVIATIONS (IN DOLLARS) FOR THE CALCULATION ERROR MODEL(EXPERI-
MENT 1 AND EXPERIMENT 2)

Complexity
Set size Set size 3 7

10 Choice process 1.91 5.32
Standard choice 1.90 3.34

20 Choice process 2.85 5.23
Standard choice 2.48 4.75

40 Choice process 3.54 7.25
Standard choice 3.57 6.50

TABLE 7—PERFORMANCE OF ACTUAL CHOICES AND SIMULATED CHOICES USING THE CALCULATION ERROR

MODEL (EXPERIMENT 2)

Failure rate (percent)
Complexity

Set size Set size 3 7
10 Actual choices 11.38 46.53

Simulated choices 8.35 32.47
20 Actual choices 26.03 58.72

Simulated choices 20.13 37.81
40 Actual choices 37.95 80.86

Simulated choices 25.26 44.39
Absolute loss (dollars)

Complexity
Set size Set size 3 7

10 Actual choices 0.42 3.69
Simulated choices 0.19 1.86

20 Actual choices 1.62 4.51
Simulated choices 0.62 1.78

40 Actual choices 2.26 8.30
Simulated choices 0.75 2.48

the magnitude required to explain final choices, we would expect to see them switch to worse
objects more often than they do. We demonstrate this in figure7. For this figure, the prediction
of subject performance under the estimated calculation error model is based on simulations of
choice process data assuming that values are observed with treatment-specific error.29 Note that

29Simulated data was generated as follows. For each sequence of choice process data observed in experiment 2, we
simulated 1,000 sequences of the same length. For each sequence, a draw from the value distribution (rounded to the
nearest integer) was treated as the initial selection. The sum of this value and a draw from the treatment-specific error
distribution was then compared to the sum of a second draw from the value distribution and a draw from the treatment-
specific error distribution. If the latter sum was higher than the initial sum, then we assumed a switch occurred, and the
value of the second draw from the value distribution was carried forward as the current selection. Otherwise we assumed
that no switch occurred, and so the initial selection remained the current selection. Another draw from the value and error
distributions was then made, and compared to the current selection plus error. This process was then repeated until the
number of simulated switches was equal to the length of actual switches in sequence taken from experiment 2. We then
calculated the ratio of correct switches (where the true value of the new selection was higher than the true value of the
current selection) to the total number of switches.
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FIGURE 7. COMPARISON OF THE PROPORTION OF SWITCHES TO LARGER VALUE FOR ACTUAL DATA AND SIMU -
LATED DATA FROM CALCULATION ERROR MODEL (EXPERIMENT 2)

the predicted success rates for the calculation error modellie below the lower bounds of the 95
percent confidence interval bars for all treatments.

VII. Concluding Remarks

We introduce a choice-based experiment that bridges the gapbetween revealed preference the-
ory and the theory of search. We use it to classify search behaviors in various decision making
contexts. Our central finding concerns the prevalence of satisficing behavior. Models of sequen-
tial search based on achievement of context dependent reservation utility closely describe our
experimental data, suggesting the value of the search theoretic lens in systematizing our under-
standing of boundedly rational behavior.
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Figure 1: A typical choice round 

 
 
 
Figure 2: Distribution of HM indices for actual and random data (experiment 2) 
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Figure 3: Proportion of final choices where the best option was found and largest proportion of selections 
to higher value (experiment 2) 
Panel A: Best option found 
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Panel B: Higher value selected 
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Figure 4: Average value by selection (experiment 2) 
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Figure 5: Average time by switch (experiment 2) 
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Figure 6: Average value by switch (experiment 1) 
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Figure 7: Comparison of the proportion of switches to larger value for actual data and 
simulated data from calculation error model (experiment 2) 
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Abstract

With complete information, choice of one option over another conveys preference. Yet when

search is incomplete, this is not necessarily the case. It may instead reflect unawareness that

a superior alternative was available. To separate these phenomena, we consider non-standard

data on the evolution of provisional choices with contemplation time. We characterize precisely

when the resulting data could have been generated by a general form of sequential search. We

characterize also search that terminates based on a reservation utility stopping rule. We outline

an experimental design that captures provisional choices in the pre-decision period.

Key Words: Revealed preference, search, incomplete information, revealed preference,

framing effects, status quo bias, bounded rationality, stochastic choice, decision time

1 Introduction

In principle, incomplete information can explain apparent deviations from utility maximizing be-

havior: decision makers (DMs) may choose an inferior over a superior alternative if they are not

aware that the superior one is available. Yet traditional decision theory focuses exclusively on situ-

ations in which choice of one option over another reflects an underlying preference. This “revealed

preference” approach breaks down when information is incomplete.
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In contrast with decision theory, search theory is premised on incomplete information [Stigler

1961]. Given the tension between the principle of revealed preference in standard decision theory

and search theory, it is understandable that there are few linkages between them.

We develop a unified theoretical and experimental framework to help bridge the gap between

search theory and the principle of revealed preference by characterizing models of choice which

incorporate the process of information search. We first consider a model of “alternative-based”

search (ABS), in which the DM searches sequentially through the available options, comparing

searched options in full according to a fixed utility function. We consider also “reservation-based”

search (RBS), a refinement of ABS under which the DM searches until an object is identified with

utility above a fixed reservation level.

While ABS and RBS represent important classes of search behavior, neither provides testable

restrictions for standard choice data. Without additional ad hoc assumptions, any pattern of final

choice is rationalizable with either model. We therefore consider a richer data set, which we call

“choice process” data, with which to test the models. These data convey not only the final option

that the DM selects, but also how their choice changes during the period of contemplation prior to

making the final selection.1 By so enriching the data we are able to characterize whether or not

incomplete information and search can explain apparent violations of utility maximization.

The key to the axiomatic characterization of the ABS and RBS models is understanding what

type of behavior implies a revealed preference in the context of each model. In neither case does

final choice of one object over another necessarily indicate preference as the decision maker may be

unaware of the unchosen object. However, in both cases, a DM who changes their choice from one

object to another is interpreted as preferring the later-chosen object. The necessary and sufficient

condition for the ABS model to hold is that this information must be “consistent”, in the sense

of being acyclic. Under the RBS model, there may be additional revealed preference information

in the final choice itself, as in a set comprising objects all of which are below reservation utility,

search must be complete.

The ABS and RBS models both treat search order as unobservable. This makes it natural to

develop stochastic variants, given that search order is not a priori fixed and that there is no reason to

believe that search from a given set will always take place in the same order. The stochastic versions

1This data has previously been considered by Campbell [1978]
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of ABS and RBS are developed in section 4. While stochasticity adds to the technical intricacy

of the model, there is no conceptual difference between the deterministic and the stochastic cases:

the stochastic results are precise analogs of their deterministic counterparts.

The process of information search provides one particular channel by which choice can be

affected by seemingly unimportant features of the environment, such as the positioning of objects

on the screen, or in a shop. This in turn could lead to behavioral phenomena such as framing

effects, status quo bias and stochastic choice. Our models imply that, when driven by search, these

phenomena will have distinctive patterns. For example, if stochastic choice is driven by RBS and

random search order, choice is random amongst choice sets consisting of above-reservation items,

but deterministic in sets containing only below-reservation items. Characterizations in this spirit

of framing effects, status quo bias and stochastic choice are in section 5. To be clear, our approach

to these phenomena does not well describe several of the most well-studied cases.

The unified approach to theory and experiment that we take in this paper rests on two key

premises.

1. PREMISE 1: ABS and RBS represent broad styles of search that may be undertaken in a

wide variety of different decision making environments.

2. PREMISE 2: It is conceptually and experimentally feasible to collect data on the evolution

of “intended” choice with contemplation time.2

With regard to the first premise, we study ABS and RBS because we see them as broad search

modes that are of particular interest. We think that ABS-style search is a natural way to model

search behavior in many environments — particularly when there is a cost of switching attention

from one alternative to another, or if items can only be understood in their entirety. It is also

the canonical model of search within economics: search is alternative-based in most labor market

models, as well as Stigler [1961]’s model of price search, and Simon [1955]’s boundedly rational

model of search. In addition to its central role in the theoretical canon, there is also experimental

evidence suggesting that ABS may be a good description of search in some environments (e.g.

2There is a gap between the theoretically ideal data and the data our experiments generate. The model assumes

that we can identify not just one, but all best options at each point in time. In contrast, the experiment consider

only a single choice at each point in time. A similar gap is encountered in tests of standard rationality axioms.
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Reutskaja et al. [2008] and Payne, Bettman and Johnson [1988, 1993]). Similarly, we see RBS as

a natural first model of search termination. It is the stopping rule suggested by Simon [1955] in

his work on satisficing, and it also bears an interesting relationship with optimal search in certain

environments.3

With regard to the second premise, in section 6 we outline an experimental design that data

on the evolution of provisional choices with contemplation time. Subjects are presented with a

collection of objects from which they must choose. They can select an option at any time by

clicking on it, and change their selection as many times as they like. The key to the experimental

design is that the subject’s choice is not recorded at the point at which they press the finish button,

but at a randomly selected time unknown to the subject. This ensures that it is in the interest

of the subject to always keep selected their currently preferred option. As detailed in section 6,

Caplin, Dean, and Martin [2009] conduct a proof-of-principle experiment in which both ABS and

RBS are broadly supported.

While important, ABS and RBS are not universally applicable. There are other modes of

search available, such as those in which objects are compared on an attribute-by-attribute basis.

Hence ABS may be more prevalent in environments in which there are high costs to switching

among searched objects (for example, if the items of search were in different physical locations), or

where alternatives are best understood holistically (for example a written description of a financial

contract). In contrast, if it is easy to compare different alternatives on the same dimension, we

might expect ABS to be a poor description of behavior. ABS also appears less intuitively compelling

in when objects are easy to identify, yet difficult to compare. In such less favorable contexts, our

tests provide formal tools for understanding how the environment impacts search style, which in

turn may impact the nature and extent of incomplete information.

We see our approach as complementary to other attempts to use novel data to understand

information search based on eye tracking or Mouselab [e.g. Payne, Bettman and Johnson, 1993;

Gabaix et al., 2006, Reutskaja et al. 2008]. These approaches make aspects of the search process

observable, yet do not connect these intermediate acts of search with their implications for choice.

3While we do not explicitly derive ABS or RBS as resulting from optimal search it is true that a reservation based

stopping rule is optimal within the class of ABS search behavior for a DM who has fixed costs of search, and is not

learning about their environment. Moreover, the optimal reservation level does not depend on the size of the choice

set the DM is choosing from, just the cost of search and perceived distribution of object values.
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In comparison, choice process data misses out on potentially relevant visual and other cues on

search behavior, but captures the moment at which the search that has been undertaken changes

the DM’s assessment of the best option thus far encountered.4 The connection of eye tracking and

Mouselab data with standard theories of choice has yet to be characterized.

In the theoretical literature, Salant and Rubinstein [2006] also focus on data enrichment. They

study choices made from sets presented in “list” order. In their main result, they assume that the

order of the list is known to an outside observer, effectively making the order of search observable.

In this setting, they characterize a choice procedure by which the list order is only used to break

ties in the case of indifference. The tie can be broken either by choosing the first or last of the

optimal objects in the list. By contrast, we treat search order as unobservable, and assume that

people may not fully examine the available set.

Ours is not the first or only effort to bridge the gap between decision theory and search theory.

An alternative approach is to identify restrictions on more standard choice data deriving from

particular search procedures. Masatlioglu and Nakajima [2009] characterize choices that result

when the search path that is adopted depends only on an initial (externally observable) reference

point. Ergin [2003], Manzini and Marrioti [2007], and Ergin and Sarver [2009] also characterize the

implications for standard choice of various decision making procedures that produce incomplete

information. Masatlioglu, Nakajima and Ozbay [2009] identify objects that a decision maker is

actively considering by assuming that the removal of unconsidered objects cannot affect choice. We

believe that these various approaches are all worth pursuing, and that the intensification of interest

among decision theorists in incomplete consideration of options is overdue.5

4More broadly, prior experimental work on search and choice has made use of data that is less readily related to

choice: the time taken in arriving at a decision [Busermeyer and Townsend, 1992; Rustichini, 2008]; direct observation

of the order of information search using Mouselab [Payne, Bettman and Johnson, 1993; Ho, Camerer, and Weigelt,

1998; Johnson et al., 2002; Gabaix et al., 2006]; eye movements [Wang, Spezio and Camerer, 2006]; and verbal

responses [Ericsson and Simon, 1984].
5 In addition to playing an essential role in search theory, the fact that decision makers effectively choose among a

small subset of potentially available options is familiar in the marketing literature. One of the central challenges in

marketing is how to get an option to be actively considered, rather than being rejected sight unseen. The literature

on “consideration sets” reflects this focus on product awareness as a necessary prelude to product choice (e.g. Alba

and Chattopadhyay [1985] and Roberts and Lattin [1991]). Eliaz and Speigler [2010] study the behavior of a firm

that can use costly marketing devices to manipulate the consideration set of a consumer.
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2 Alternative Based Search: The Deterministic Case

2.1 The Choice Process

In order to characterize our models of search, we use an enriched data set we call choice process

data. Rather than recording only the alternative that is finally chosen by the DM, choice process

data tracks how choice evolves with contemplation time. As such, choice process data comes in

the form of sequences of observed choices. Let X be a nonempty finite set of elements representing

possible alternatives, with X denoting non-empty subsets of X. Let Z be the set of all infinite

sequences from X with generic element Z = {Zt}∞1 with Zt ∈ X/∅ all t ≥ 1. For A ∈ X , define

ZA ⊂ Z to comprise all such sequences selected from A,

ZA = {Z∈ Z|Zt ⊂ A all t ≥ 1} .

Definition 1 A (deterministic) choice process (X,C) comprises a finite set X and a function,

C : X → Z such that C(A) ∈ ZA ∀ A ∈ X .

Given A ∈ X , choice process data assigns not just final choices (a subset of A), but a sequence

of such choices, representing the DM’s choices after considering the problem for different lengths

of time. We let CA denote C(A) and CA(t) ∈ A denote the t-th element in the sequence CA, with

CA(t) referring to the objects chosen after contemplating A for t periods. Choice process data

represents a relatively small departure from standard choice data, in the sense that all observations

represent choices, albeit constrained by time.

2.2 ABS

Our first model captures the process of sequential search with recall, in which the DM evaluates

an ever-expanding set of objects, choosing at all times the best object thus far identified. We say

choice process data has an alternative-based search (ABS) representation if there exists a utility

function and a non-decreasing search correspondence for each choice set such that what is chosen

at any time is utility-maximizing in the corresponding searched set. To define this, we introduce

ZND ⊂ Z, the non-decreasing sequences of sets in Z,

ZND = {Z∈ Z|Zt ⊂ Zt+1 all t ≥ 1} .
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Definition 2 Choice process (X,C) has an ABS representation (u, S) if there exists a utility

function u : X → R and a search correspondence S : X → ZND, with SA ∈ ZA all A ∈ X , such

that,

CA(t) = arg max
x∈SA(t)

u(x).

The ABS model describes a DM who always chooses the best objects that they have searched.

As time passes, objects are either searched, and so in SA(t), or not searched. All objects that are

searched are compared in full according to a fixed utility function. Since the DM is assumed to recall

all past searches, SA(t) is non-decreasing and the choice made by the DM weakly improves over

time. It is this assumption that gives the concept of ABS empirical traction. Note that the ABS

model makes no assumptions concerning how or why a decision maker decides to stop searching -

there is no restriction on how the function S behaves in the limit. There is also no restriction on

the first object searched, since it may be the only object identified.

Given that final choice of x over y is unrevealing with incomplete search, the ABS characteri-

zation relies on an enriched notion of revealed preference. To understand the required enrichment,

it is useful to consider behavioral patterns that contradict ABS. To describe these patterns we use

the notation C(A) = B1;B2; ...;Bn! with Bi ⊂ A to indicate that the sets B1, ..., Bn are chosen

sequentially from A, with Bn being the final choice. We can readily identify four patterns of choice

process data that contradict ABS.6

• Cα ({x, y}) = x; y;x!

• Cβ ({x, y}) = x; {x, y}; y!

• Cγ ({x, y}) = y;x!; Cγ({x, y, z}) = x; y!

• Cδ ({x, y}) = y;x!; Cδ ({y, z}) = z; y!; Cδ ({x, z}) = x; z!

Cα contains a preference reversal: the DM first switches to y from x. As y has been chosen

by the DM, it must be in the searched set when they choose x, implying that x is preferred to y.

However, the DM then switches back to y, indicating that y is preferred to x. Cβ involves y first

being revealed indifferent to x, as x and y are chosen at the same time. Yet later y is revealed to be

strictly preferred to x as x is dropped from the choice set. In Cγ the direction in which preference
6We drop the braces around singleton sets: x; y;x! conveys selection of choice sets {x}, {y}, and {x}.

7



is revealed as between y and x changes between the two element and three element choice set.

Cδ involves an indirect cycle, with separate two element sets revealing x as preferred to y, y as

preferred to z, and z as preferred to x.

As these examples suggest, the appropriate notion of strict revealed preference in the case of

ABS is based on the notion of alternatives being replaced in the choice sequence over time. A DM

who switches from choosing y to choosing x at some later time is interpreted by the ABS model

as preferring x to y. As search is non-decreasing, the DM must be aware of y when they choose

x. Thus the choice of x over y indicates revealed preference. Similarly, if we ever see x and y

being chosen at the same time, it must be that the DM is indifferent between the two alternatives.

We capture the revealed preference information implied by the ABS model in the following binary

relations.

Definition 3 Given choice process (X,C), the symmetric binary relation ∼ on X is defined by

x ∼ y if there exists A ∈ X such that {x, y} ⊂ CA(t) some t ≥ 1. The binary relation ÂC on X is

defined by x ÂC y if there exists A ∈ X and s, t ≥ 1 such that y ∈ CA(s), x ∈ CA(s + t) but y /∈

CA(s+ t).

For a choice process to have an ABS representation it is necessary and sufficient for the revealed

preference information captured in ÂC and ∼ to be consistent with an underlying utility ordering.

Our characterization of ABS therefore makes use of Lemma 1, a standard result which captures

the conditions under which an incomplete binary relation can be thought of as reflecting some

underlying complete pre-order.7 Essentially, we require the revealed preference information to be

acyclic.

Lemma 1 Let P and I be binary relations on a finite set X, with I symmetric, and define PI on

X as P ∪ I. There exists a function v : X → R that respects P and I:

xPy =⇒ v(x) > v(y);

xIy =⇒ v(x) = v(y);

if and only if P and I satisfy OWC (only weak cycles): given x1, x2, x3, .., xn ∈ X with x =

x1PIx2PIx3..PIxn = x1, there is no k with xkPxk+1.

7Note that Lemma 1 is a direct corollary of Theorem 2.6 in Bossert and Suzumura [2009].
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Armed with this result, we establish in theorem 1 that the key to existence of an ABS repre-

sentation is for ÂC and ∼ to satisfy OWC.8 This OWC condition is closely related to the standard

strong axiom of revealed preference. It is readily testable, and various metrics have been developed

to measure how close a data set is to satisfying such conditions (see Dean and Martin [2009] for a

review). Corollary 1, which is essentially immediate, characterizes equivalent representations of a

choice process for which ÂC and ∼ satisfy OWC.

Theorem 1 Choice process (X,C) has an ABS representation if and only if ÂC and ∼ satisfy

OWC.

Proof. By lemma 1, the result is equivalent to establishing that (X,C) admits an ABS represen-

tation if and only if there exists a function v : X → R that respects ÂC and ∼ in the sense of the

lemma. Certainly, if an ABS representation (u, S) exists, x ∼ y implies u(x) = u(y) since both

achieve the same maximum, while if x ÂC y, then u(x) > u(y) follows from y ∈ CA(s) ⊂ SA(s) ⊂

SA(s+t) with t ≥ 1 in which u(x) is maximal, while u(y) is not. Conversely, if a function v : X → R

exists that respects ÂC and ∼ on X, we can define the expanding correspondence S∗ : X ×N→ X

by,

S∗A(t) = ∪s≤tCA(s).

To show that (v, S∗) form an ABS representation of (X,C), we show that CA(t) comprises all

elements maximal in S∗A(t) according to v : X → R. Note that if x ∈ CA(t), then x ÂC y or

x ∼ y all y ∈ S∗A(t), whereupon v(x) ≥ v(y) follows from the fact that v respects ÂC and ∼

on X. Conversely, suppose that we can find x ∈ S∗A(t) satisfying v(x) ≥ v(y) all y ∈ S∗A(t) but

with x /∈ CA(t). In this case, all y ∈ CA(t) satisfy y ÂC x, implying that v(y) > v(x), which

contradiction completes the proof.

8While their paper has a different set up, there is a natural relation between our OWC condition and the dominating

anchor axiom in Masatlioglu and Nakajima [2009]. Under a natural translation between the two settings, OWC implies

the dominating anchor axiom but not vice versa. Masatlioglu and Nakajima [2009] consider extended choice problems

that map choice sets and a reference point to final choice. The dominating anchor axiom states that, for any set S,

there exists a “best” option x such that, if x is the reference point and some element from S is chosen from set T ,

that element must be x itself. Our axiom implies this if we assume that the starting point is always searched. Under

this condition, a violation of the dominating axiom would also lead to a violation of our OWC condition (as every

item in the set S would have been revealed inferior to some other element in S). However, the dominating anchor

axiom does not imply our OWC condition, as it has nothing to say about intermediate (i.e. non-final) choices.
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Corollary 1 Utility function v : X → R and search correspondence S : X → ZND form an ABS

representation of (X,C) if

1. v respects ÂC and ∼;

2. ∪s≤tCA(s) ⊆ SA(t) ⊆ CA(t) ∪ {x ∈ X|v(x) < v(y), y ∈ CA(t)} for all A ∈ X , t ∈ N.

Note from corollary 1 that there are strong limits to what can be said about search order. It

characterizes representations as involving a utility function v that respects ÂC and ∼ on X, a

search correspondence S that must include at least all objects which have been chosen from all

sets A at times s ≤ t, and that may also contain any additional elements that have utility strictly

below that associated with chosen objects according to v. Hence all that can be definitely asserted

is that items rejected along the path were searched. Items that are never chosen may or may not

have been searched. This implies that the more switches there are between objects in the choice

process data, the more restricted is the search order.9

Given that a utility function v : X → R can form the basis for an ABS representation, note

that any strictly increasing transform of v will still form an ABS representation in combination

with precisely the same set of search correspondences. However, we can also change the function

v in non-monotonic ways that do not contradict the information in ÂC and ∼. For example, if

X = {a, b, c}, and ÂC contains only {(a, b), (c, b)}, while ∼ is empty, the consistent utility functions

do not restrict the ranking of a against b, so that non-monotonic changes to the utility function

may still form part of an ABS representation. However, corollary 1 states, the upper bound on

what may be contained in SA(t) is determined by the set of objects that have utility lower than

those being chosen from A at time t. Thus, non-monotonic changes in the utility function may

change the set of permissible search functions.

9A reasonable prior, e.g. that search is in list order (Salant and Rubinstein [2008]), may enrich the inferences

one can make from choice process data. This theory of search order would be supported if chosen options were only

replaced by items higher in the list. Support would be even stronger if the selected options were the successive

maxima in list order.
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3 Reservation Based Search: The Deterministic Case

Since the ABS model says nothing about the stopping rule for search, we augment it with a simple

“reservation utility” stopping rule in which search continues until an object is found which has

utility above some fixed reservation level, whereupon it immediately ceases.10 We believe that

RBS is an interesting model in its own right, as many of the search models currently used within

economic fall into this category. These include search models in labor economics and industrial

organization, as well as the satisficing procedure first introduced by Simon [1955].

The key to the empirical content of RBS is that one can make inferences as to objects that must

have been searched even if they are never chosen. Specifically, in any set in which the final choice

has below reservation utility, it must be the case that all objects in the set are searched. Hence

final choices may contain revealed preference information.

Intuitively, an RBS representation is an ABS representation (u, S) in which a reservation level

of utility ρ exists, and in which the above- and below-reservation sets Xρ
u = {x ∈ X|u(x) ≥ ρ}

and X\Xρ
u play critical roles. Specifically, search stops if and only if an above-reservation item is

discovered, so that search is complete if there are no above-reservation items in available. In order

to capture this notion formally, we define CL
A = limt→∞CA(t), as the final choice the DM makes

from a set A ∈ X as well as limit search sets SL
A ≡ limt→∞ SA(t) ∈ X . Note that, for finite X, the

existence of an ABS representation guarantees that such limits are well defined.

Definition 4 Choice process (X,C) has a reservation-based search (RBS) representation (u, S, ρ)

if (u, S) form an ABS representation and ρ ∈ R is such that, given A ∈ X ,

R1 If A ∩Xρ
u = ∅, then SL

A = A.

R2 If A ∩Xρ
u 6= ∅, then:

(a) there exists t ≥ 1 such that SA(t) ∩Xρ
u 6= ∅;

(b) SA(t) ∩Xρ
u 6= ∅ =⇒ SA(t) = SA(t+ s) all s ≥ 0.

10One can readily allow for reservation rules that condition on immediately observable features of the choice set,

such as its cardinality. Tyson [2007] considers the implications for final choice of a reservation level that decreases as

choice sets get larger. However, Tyson assumes that the observable data is the set of all above reservation objects in

a particular set.
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Condition R1 demands that any set containing no objects above reservation utility is fully

searched. Condition R2(a) demands that search must at some point uncover an element of the

above-reservation set if present in the feasible set. Condition R2(b) states that search stops as soon

as reservation utility is achieved.

It should be noted that the RBS model only refines the behavioral implications of the ABS

model by demanding both R1 and R2. With R1 alone, the RBS model imposes no additional

behavioral restrictions, as any data that admits an ABS representation would also satisfy R1 if we

set the reservation utility ρ such that Xρ
u = X. Similarly, data that allows an ABS representation

can also trivially satisfy R2 alone by setting ρ such that Xρ
u = ∅.

As with the ABS model, the key to characterizing the RBS model is to understand the corre-

sponding notion of revealed preference. As RBS is a refinement of ABS, it must be the case that

behavior that implies a revealed preference under ABS also does so under RBS. However, the RBS

model implies that some revealed preference information may also come from final choice, with sets

that contain only below-reservation utility objects being completely searched.

The following cases that satisfy ABS but not RBS illustrate behaviors that must be ruled out:

• Cα({x, y}) = x; y!; Cα({x, z}) = x!; Cα({y, z}) = z!

• Cβ({x, y}) = x; y!; Cβ({x, y, z}) = x!

In the first case, the fact that x was replaced by y in {x, y} reveals the latter to be preferred

and the former to be below reservation utility. Hence the fact that x was chosen from {x, z} reveals

z to have been searched and rejected as worse than x, making its choice from {y, z} contradictory.

In the second, the fact that x is followed by y in the choice process from {x, y} reveals y to be

preferred to x, and x to have utility below the reservation level (otherwise search must stop as

soon as x is found). The limit choice of x from {x, y, z} therefore indicates that there must be no

objects of above-reservation utility in the set. However, this in turn implies that the set must be

fully searched in the limit, which is contradicted by the fact that we know y is preferred to x and

yet x is chosen.

These examples indicate the additional revealed preference information inherent in the RBS

model. Under an RBS representation, when a unique final choice is made from two objects x, y ∈ X
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either of which has below reservation utility, then we can conclude that the chosen object is strictly

preferred. To see this, suppose that y has below reservation utility. In this case if it is chosen over

x it must be that x was searched and rejected. Conversely, suppose that x is chosen over y. In this

case either x is above reservation, in which case it is strictly preferred to y, or it is below reservation,

in which case we know that the entire set has been searched, again revealing x superior.

In order to use this insight to characterize when an RBS representation exists, we define a class

of binary relations ÂL
D on X for any set D ∈ X . These binary relations capture the revealed

preference information that would derive from final choice with D as the set of below-reservation

utility objects. These binary relations ÂL
D on X are then united with the information from ÂC to

produce the new binary relation ÂR
D which captures the revealed preference information from the

RBS model under the assumption that D is the below reservation set.

Definition 5 Given a choice process model (X,C) and set D ∈ X , the binary relation ÂL
Don X is

defined by x ÂL
D y if {x, y} ∩D 6= ∅, and there exists A ∈ X with x, y ∈ A, x ∈ CL

A, yet y /∈ CL
A.

The binary relation ÂR
D is defined as ÂL

D ∪ ÂC, and %R
D is defined as ÂR

D ∪ ∼.

To identify conditions for an RBS representation we focus on identifying objects that must be

below-reservation utility in any possible representation. As a first step, we know that an object

must have utility below the reservation level if we see a DM continue to search even after they have

found that object. We call such an object non-terminal.

Definition 6 Given choice process (X,C) define the non-terminal set XN ⊂ X

XN = {x ∈ X|∃A ∈ X s.t. x ∈ CA(t) and CA(t) 6= CA(t+ s) some s, t ≥ 1 }

Using this concept, Proposition 1 characterizes the below-reservation sets that admit an RBS

representation. The result establishes that below reservation sets must satisfy three properties.

First, they must contain all non-terminal elements. Second, they must be closed under %R
D: if x

is below-reservation, and is revealed at least as good as y, then y must also be below reservation.

Third, ÂR
D and ∼ must satisfy condition OWC. We prove the proposition in appendix 1.

Proposition 1 A choice process model (X,C) admits an RBS representation with below reserva-

tion set D if and only if:
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1. XN ⊂ D.

2. If x ∈ D and x %R
D y, then y ∈ D.

3. ÂR
D and ∼ satisfy OWC.

A necessary and sufficient condition for an RBS representation is therefore that there is some

set D that satisfies these conditions. Note that if the third condition is satisfied for some set D,

it will be satisfied for any D∗ ⊂ D: if D∗ ⊂ D, then ÂR
D contains ÂR

D∗ , so that if ÂR
D (along with

∼) satisfies OWC, then so will ÂR
D∗ . Thus the relevant necessary and sufficient condition is that

the revealed preference information generated by the smallest below-reservation set that satisfies 1

and 2 satisfies OWC.

To identify such a set, we introduce the indirectly non terminal set. This is the set of object in

X that are either directly revealed as non-terminal, or are revealed as inferior to a non-terminal

object.

Definition 7 Given choice process (X,C) define the indirectly non-terminal set XIN ⊂ X as,

XIN = XN ∪ {x ∈ X|∃A ∈ X , y ∈ XN with x, y ∈ A and y ∈ CL
A}.

It is clear that any below-reservation set must contain XIN : if y ∈ XN and y is chosen from

A, then the entire set must have been searched, revealing unchosen elements to be worse than y.

However, it is also true that, if ÂR
XIN and ∼ satisfy OWC, then XIN satisfies conditions 1 and

2. Thus, a choice process data admits of an RBS representation if and only ÂR
XIN and ∼ satisfy

OWC. Given its importance, we suppress the XIN subscript for preference relations defined using

this below-reservation set (i.e. ÂR=ÂR
XIN ). We prove theorem 2 in appendix 1.

Theorem 2 A choice process (X,C) has an RBS representation if and only if ÂR and ∼ satisfy

OWC.

The following corollary characterizes the set of equivalent RBS representations. First, one iden-

tifies all possible below reservation sets through proposition 1. Given such a set, which must include

XIN , one checks that the utility function respects the resulting revealed preference information.

Finally, the search correspondence is constructed as it was in the ABS model in the period before

search stops, with no further search allowed once an above reservation element is identified.
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Corollary 2 A utility function v : X → R, reservation level ρ, and S : X → ZND form an RBS

representation of a choice process if and only if

1. D = {x ∈ X|v(x) < ρ} satisfies the properties of proposition 1.

2. v respects ÂR
D and ∼ .

3. ∪s≤tCA(s) ⊆ SA(t) ⊆ CA(t) ∪ {x ∈ X|v(x) < v(y), y ∈ CA(t)} for all A ∈ X , t ∈ N.

4. SA(t) ∩Xρ
u 6= ∅ =⇒ SA(t) = SA(t+ s) all s ≥ 0.

4 The Stochastic Model

The ABS and RBS models both treat search order as unobservable, and characterize the extent

to which it is recoverable from choice process data. This makes it natural to develop stochastic

variants, since there is no reason to believe that search from a given set will always take place in

the same order. We therefore generalize the deterministic models of section 2 and 3 to allow for

stochasticity. This allows us to develop stochastic versions of the RBS and ABS models, in which

choice is generated from the maximization of a fixed utility function against a stochastic search

sequence.

4.1 ABS

We introduce a probability space on Z, the class of infinite sequences from X . The probability

model is built upon standard foundations using cylinder sets.

Definition 8 Given T ≥ 1 and Y ⊂ X T , define the cylinder set H (Y, T ) by,

H (Y, T ) = {Z ∈ Z| (Z1, ...ZT ) ∈ Y} .

Define the algebra G = ∪∞T=1
©
H (Y, T ) |Y ⊂ X T

ª
∈ 2Z , define F =σ(G) as the σ-algebra generated

by G, and define P as all probability measures on (Z,F), with generic element P ∈ P.

We define the stochastic choice process as a mapping from sets A ∈ X to probability distribu-

tions over ZA ⊂ Z.
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Definition 9 A stochastic choice process (X, C̃) comprises a finite set X and a function C̃ :

X → P such that C̃A ≡ C̃(A) has support ZA ⊂ Z.

As for the deterministic case, a stochastic choice process has an ABS representation if it can be

viewed as resulting from maximization of a utility function in the context of some process of search,

with the searched set never shrinking. However we allow the search process to be stochastic. We

will use S̃ : X → PND to denote a stochastic search function, where: PND ⊂ P identify probability

measures on (Z,F) with support ZND, the non-decreasing elements of Z. Given A ∈ X and

F ∈ F , let C̃A(F ) , S̃A(F ) respectively denote the measure assigned to F by C̃(A), S̃(A).11

Definition 10 Stochastic choice process (X, C̃) has a stochastic ABS representation (u, S̃) if

there exists u : X → R and S̃ : X → PND such that C̃ is the stochastic choice process derived by

optimizing u against S̃,

C̄A(F ) = S̃A

µ½
Z ∈ Z|

½
arg max

x∈Zt
u(x)

¾∞
t=1

∈ F

¾¶
, all A ∈ X , F ∈ F .

The theorem that characterizes the stochastic ABS representation is essentially identical to that

in the deterministic case. It simplifies notation to define join and replacement sets Jxy, Rxy ⊂ Z

for x, y ∈ X, where Jxy is the set of choice processes in which x and y are chosen at the same time,

while Rxy are those in which y is replaced by x.

Jxy = {Z ∈ Z| {x, y} ⊂ Zt some t ≥ 1} ;

Rxy = {Z ∈ Z|y ∈ Zs, x ∈ Zs+t, y /∈ Zs+t some s, t ≥ 1} ;

Measurability of Jxy, Rxy ⊂ Z is established in appendix 2.

For purposes of establishing the stochastic ABS representation, we define x to be revealed

strictly preferred to y if Rxy has strictly positive measure, and x to be revealed indifferent to y if

the set Jxy has strictly positive measure.

Definition 11 Given stochastic choice process (X, C̃), the binary relation ∼C̃ on X is defined by

x ∼C̃ y if there exists A ∈ X with x, y ∈ A and C̃A(J
xy) > 0. The binary relation ÂC̃on X is

defined by x ÂC y if there exists A ∈ X with x, y ∈ A and C̃A(R
xy) > 0.

11That the set of Z ∈ Z with arg maxx∈Zt u(x)
∞
t=1 ∈ F is measurable is demonstrated in appendix 2.
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As before, the condition for the characterization is that this revealed preference information is

consistent with a fixed underlying utility function.

Theorem 3 Stochastic choice process (X, C̃) has a stochastic ABS representation (u, S̃) if and

only if ÂC̃ and ∼C̃ satisfy OWC.

4.2 RBS

As in the deterministic case, the definition of a stochastic RBS representation requires the analysis

of limit behavior. Given B ∈ X , we define LB to be the F-measurable subset of Z with limit B,

LB =
n
Z ∈ Z| lim

t→∞
Zt = B

o
.

In appendix 2 it is shown that a stochastic choice process model (X, C̃) with stochastic ABS

representation (u, S̃) necessarily assigns full measure to the set in which limits exist,

C̃A

©
∪B∈XLB

ª
= 1.

Hence, given a stochastic choice process model (X, C̃) with stochastic ABS representation (u, S̃)

and A ∈ X , we can define limit choice and search probability measures C̃L
A, S̃

L
A on X endowed with

the discrete sigma-algebra,

C̃L
A(B) = C̃A(L

B) and S̃L
A(B) = S̃A(L

B) any B ∈ X .

As in the deterministic case, the definition of stochastic RBS involves a utility function u :

X → R and a level of reservation utility ρ which together identify above reservation set Xρ
u ≡

{x ∈ X|u(x) ≥ ρ}. Given Z ∈ Z, a key random variable in the stochastic RBS representation

is the first time that reservation utility is hit. To simplify notation in the stochastic version of

RBS, we let Hρ
u : Z −→ N ∪∞ denote this first hitting time associated with utility function u and

reservation utility level ρ,

Hρ
u(Z) =

⎧⎨⎩ inft≥1 {Zt ∩Xρ
u} 6= ∅, if {Zt ∩Xρ

u} 6= ∅ some t;

∞ otherwise.

That hitting times are F-measurable functions is standard.

We use the notion of hitting times to define the stochastic version of the RBS model.
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Definition 12 Stochastic choice process (X, C̃) has a stochastic RBS representation (u, S̃, ρ) if

(u, S̃) form a stochastic ABS representation and ρ ∈ R is such that, given A ∈ X ,

RS1 If A ∩Xρ
u = ∅, then S̃L

A(A) = 1

RS2 If A ∩Xρ
u 6= ∅, then:

(a) S̃A {Z ∈ Z|Hρ
u(Z) is finite} = 1;

(b) S̃A

n
Z ∈ Z|S̃L

A = S̃A (H
ρ
u(Z))

o
= 1.

As with ABS, the stochastic RBS characterization is the precise analog of the deterministic

version, and relies on the identification of directly and indirectly non-terminal sets. We define

∆y ⊂ Z to be the set of sequences in which y ∈ X appears at some point, but the sequence changes

thereafter. Measurability is established in appendix 2.

Definition 13 Given stochastic choice process (X, C̃), define the non-terminal set X̃N ⊂ X as,

X̃N =
n
x ∈ X|∃A ∈ X with x ∈ A and C̃A(∆

x) > 0
o
.

Define the indirectly non-terminal set X̃IN as X̃Nand elements rejected with positive probability

in favor of an element of XN ,

X̃IN = X̃N ∪ {x ∈ X||∃A ∈ X , y ∈ X̃N with x, y ∈ A and C̃L
A({y}) > 0}.

The definition of revealed preference in the stochastic RBS model can now proceed in line with

the deterministic case.

Definition 14 Given stochastic choice process (X̃, C), the binary relation ÂL̃ on X is defined

by x ÂL̃ y if {x ∪ y} ∩ X̃IN 6= ∅, and there exists A ∈ X with x, y ∈ A with C̃L
A {x} > 0 and

C̃A(J
xy) = 0. Binary relation ÂR̃ is defined as ÂL̃ ∪ ÂC̃.

Using this definition, the standard application of Lemma 1 characterizes existence of an RBS

representation.

Theorem 4 Stochastic choice process (X, C̃) has a stochastic RBS representation (u, S̃, ρ) if and

only if ÂR̃ and ∼C̃ satisfy OWC.

18



4.3 Sketch of Proofs

The proofs of theorem 3 and of theorem 4 are detailed in appendix 3. We limit ourselves in this

discussion to presenting structural elements. Both proofs work by reducing the stochastic case to

its deterministic counterpart. The key step involves showing that nothing is lost by “compressing”

choice process data by removing time periods in which choice does not change.

Definition 15 Stochastic choice process (X, C̃) is compressed if C̃A(ZCOM ) = 1 for all A ∈ X ,

where,

ZCOM ≡ {Z ∈ Z|Zt = Zt+1 =⇒ Zt = Zt+s all s ≥ 1}.

In the first step of the reduction, a given stochastic choice process (X, C̃) is associated with a

unique compressed choice process by removing all periods of constancy (see appendix 3 for details).

The process of compression reduces to equivalence an infinite number of choice processes differing

only in the delay between switches.

The first observation that makes compression of value is the invariance of key properties under

compression and its inverse, decompression. It is immediate that the orderings ÂR̃, ÂC̃and ∼C̃ are

preserved under both operations. It is equally immediate that ABS and RBS survive both under

compression and decompression, since one uses exactly the same utility function and reservation

utility in the representation of the original process and its transformation, using compression only to

change the search correspondence by removing repetition in the case of compression, and inverting

suitably in the process of decompression.

The second observation that makes compression of value is that any compressed process that

satisfies ABS is “finite”, in that only a finite number of sequences have strictly positive probability.

Conversely, any compressed stochastic choice process for which ÂC̃ and ∼C̃ satisfy OWC is finite.

While the formal definitions and proof are in appendix 3, the intuition is simple. Both ABS and

OWC imply that a compressed stochastic choice process must stop changing within a number of

periods that matches the cardinality of the power set of X .

The bottom line of this reduction process is that the proofs in of theorems 3 and 4, detailed

in the appendix, are provided only for finite models, with the extension to the general case being

immediate. The critical observation in establishing the finite case is that any finite stochastic
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choice processes (X, C̃) can be identified with an appropriately defined convex combinations of

deterministic choice processes.

5 RBS and Non-Standard Behavior

The stochastic RBS model allows for two channels by which seemingly unimportant changes in

the decision making environment might lead to changes in the choices people make. First, they

may impact the probability distribution over paths of search. Second, they may impact the level

of reservation utility. These changes can, in turn, lead to framing effects, status quo bias and

stochastic choice of a specific form that we now characterize.

5.1 Framing Effects

To model framing effects, let Γ comprise abstract elements γ ∈ Γ that we refer to as frames. For

example, these frames may represent different ways in which objects are physically displayed to

the DM. Let Φ : Γ→ C̄ be a mapping from frames to the class C̄ of stochastic choice processes on

(Z,F), with Φ(γ) the process associated with γ ∈ Γ. We seek to characterize data sets in which all

choice processes regardless of frame can be derived from a common underlying utility function but

with frame-specific search orders and reservation utilities. Such a characterization is experimentally

useful, since it indicates conditions under which one can derive information on preferences in a low

search cost (hence high reservation utility) environment that will apply equally in a higher search

cost (hence lower reservation utility) frame in which choice process data yields less direct evidence

on preferences. It turns out that we need to apply OWC to a binary relation that appropriately

unifies revealed preference information across frames. In the statement, S̄ denotes the set of all

stochastic search processes on (Z,F).

Definition 16 Define x ÂR̃(Γ) y if x ÂR̃ y according to some stochastic choice process Φ(γ) for

some γ ∈ Γ . Similarly define x ∼C̃(Γ) y if x ∼R̄ y according to some stochastic choice process Φ(γ)

for some γ ∈ Γ.

Theorem 5 Given finite set X, frames Γ, and Φ : Γ→ C̄, there exists a utility function u : X → R,

a family of reservation utilities ρ : Γ→ R, and family of stochastic search processes Θ : Γ→ S̄ such
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that (u,Θ(γ), ρ(γ)) forms a stochastic RBS representation of Φ(γ) ∀ γ ∈ Γ if and only if ÂR̃(Γ)

and ∼C̃(Γ) satisfy OWC.

5.2 Status Quo Bias

One particular class of framing effect that can be explored using the RBS model is status quo bias

- the increased likelihood of selecting a particular object simply because it is the status quo, or

currently selected option [Samuelson and Zeckhauser, 1988]. We can model such behavior as a

framing model in which each status quo gives rise to its own frame. In order to capture status

quo bias, we posit that the status quo object is always the first object searched in any choice

environment.

Under this assumption, the stochastic RBS model makes particular predictions about how status

quo will affect choice. For above-reservation utility objects, status quo bias will be complete: when

such objects are the status quo then they will always be chosen, as the DM is immediately aware

of their existence and will indulge in no further search. However, if the status quo object is below

reservation utility then it will not be chosen unless it is the highest utility object in the choice set,

in which case it will be chosen regardless of the status quo, as the stochastic RBS model implies

that search will be complete in such cases. Thus, the RBS model implies a form of status quo bias

that has two extremes: either an object will always be chosen when it is the status quo, or the

status quo will have no effect.

5.3 Stochastic Choice

It is clear that the stochastic RBS model can give rise to stochastic choice in the form of a probability

distribution over final choices. Even with a fixed utility function, final choice will be random if

the order of search is random and search is incomplete. However this distribution will be of a

particular form: choice may be stochastic among above reservation objects, while objects with

below reservation utility are never chosen. In the simplest possible case with all search orders

being equally probable, final choice is deterministic and consistent for choice sets made up only

of below-reservation items, whereas for choice sets containing above-reservation items, there is an

equal chance of choosing any such item. Observed stochasticity in choice will therefore increase as

reservation utility falls.
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6 Eliciting Choice Process Data in the Laboratory

For the above results to advance our understanding of incomplete search and choice one must be

able to experimentally identify the path of provisional choices over the pre-decision period. We

sketch the approach that Caplin, Dean and Martin [2009] (CDM) use to generate just this data,

and describe results for a highly stylized experiment.

Subjects in the experiment were presented with various subsets of a larger choice set, from each

of which they had to make a choice. They were given a fixed time window within which to choose

from among each fixed set of available alternatives. They were allowed to select any alternative

at any point in a fixed time window.12 They were informed that they could change the selected

alternative whenever they wished. Rather than being based on final choice alone, actualized choice

was recorded at a random point in the given time window that was only revealed at the end of

the experiment. This incentivized subjects to always have selected their current best option in the

choice set. It is for this reason that we interpret the sequence of selections as comprising provisional

choices.13

Our first experiment using this interface was deliberately stark, missing the conflicting priorities

that may typify more intricate decisions. The objects of choice were kept as simple as possible,

and subject to clear and universal preferences: all options were deterministic dollar amounts. To

render the problem non-trivial, the dollar amount for each option was represented as a sequence of

addition and subtraction operations. The simplicity of the setting enabled us to explore the ABS

and RBS models in an uncluttered and “friendly” experimental context.

Each experimental round began with the topmost, and worst, option of $0 selected.14 Subjects

could at any time select any of the alternatives on the screen, with the currently selected object

12As with tests of standard choice theory, this experiment uncovers only one most preferred element rather than all

such elements. This opens some daylight between the theoretical definition of choice process data and the experimental

data.
13 In support of this interpretation, 58 of 76 subjects in a post-experiment survey responded directly that they always

had their most preferred option selected, while others gave more indirect responses that suggest similar behavior (e.g.

having undertaken a re-calculation before selecting a seemingly superior alternative).
14The subjects knew that the $0 option was the worst in the choice set. They therefore had the incentive to

immediately change their selection, which is consistent with the ABS model with this being the only object searched.

The model is restrictive only when a switch is made, at which point it implies that the object switched to is of higher

value.
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being displayed at the top of the screen. In each round there was a time constraint, with subjects

having up to 120 seconds to complete the choice task (though this constraint was only binding

in about 5% of rounds). A subject who finished in less than 120 seconds could press a submit

button, which completed the round as if they had kept the same selection for the remaining time.

Treatments were run varying in the number of alternatives available and in the complexity of each

alternative.

As one might have expected, the experiment provided support for ABS-style search. Subjects

made several selections in the course of a round and generally switched from lower value to higher

value objects over time. In the context of the experiment this is equivalent to finding positive

support for the ABS model of search. A more striking finding was that behavior was well approxi-

mated by the RBS model. While behavior did change as the number of available options and their

level of complexity was varied, it did so within the RBS framework. The results suggest that choice

process data is of more than theoretical interest.

7 Concluding Remarks

Incomplete information may explain many apparent deviations from utility maximizing behavior.

Standard choice data does not allow one to pin down when such deviations are caused by changing

preferences, and when they result from incomplete information. We develop clean procedures for

accomplishing this separation by expanding beyond standard choice data to include data on the

evolution of choice with time. We characterize standard alternative-based and reservation-based

procedures that are ubiquitous in search theory. Experimental investigation of choice process data

is ongoing.

8 Appendix 1: RBS

Proof of Proposition 1 To prove sufficiency, we note from lemma 1 that (3) implies existence of

u : X → R that respects ÂR
D and ∼ on X. Define

ρ =
maxx∈D u(x) + minx∈X\D u(x)

2
.
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Note from (2) that CL {x, y} = y whenever y ∈ X\D and x ∈ D, implying y ÂR
D x and

u(y) > u(x) and hence that X/D = Xρ
u. Mimicking the proof of theorem 1, one can then

define a search correspondence such that (u, S) that together form an ABS representation.

SA(t) =

⎧⎨⎩ ∪s≤tCA(s) for t < T (A);

∪s≤T (A)CA(s) ∪ L(A) for t ≥ T (A);

where T (A) ≡ min{t ≥ 1|CA(t) = CL
A}) is the time at which choice first achieves its limit and

L(A) comprises all elements of A with utility strictly below maxx∈CL
A
u(x). We now show that

all requirements for (u, S) and ρ together to form an RBS representation with reservation set

X\D are met:

• R1: When A ∩Xρ
u = ∅, and so A ⊂ D, we know that x ∈ CL

A, y /∈ CL
A =⇒ x ÂL

D y, so that

u(x) > u(y). Hence CL
A = argmax{x∈A} u(x) with SL

A = A by construction.

• R2(a): If A ∩Xρ
u 6= ∅ and so A ∩X\D 6= ∅, then CL

A ∩D = ∅ since x ∈ CL
A ∩D, y /∈ CL

A =⇒

u(x) > u(y) contradicting the fact that utility is strictly higher on X\D than on D. Hence

there exists t ≥ 1 such that CA(t) ∩Xρ
u 6= ∅.

• R2(b): If CA(t)∩Xρ
u 6= ∅, then CA(t)∩XN = ∅ by (1), implying directly that CA(t+s) = CA(t)

all s ≥ 1, by construction, it is therefore the case that SA(t+s) = SA(t) all s ≥ 1 as required.

That condition (1) of the proposition is necessary for an RBS representation follows directly from

property R2(b) of RBS definition, which implies that XN ⊂ D is required for D to be a reservation

set. Given lemma 1, to prove that (3) is necessary it suffices to show that u represents ÂR
D and ∼

in any RBS representation (u, S, ρ), where D = X\Xρ
u and X

ρ
u is the corresponding reservation set.

The fact that u represents ÂC and ∼ is direct since (u, S) form an ABS representation of (X,C).

To see that ÂL
D is respected, suppose to the contrary that x ÂL

D y but u(y) ≥ u(x). Note in this case

that x ∈ D, since y ∈ D =⇒ x ∈ D and {x ∪ y} ∩D 6= ∅ by definition of x ÂL
D y. But then by R1,

x ∈ CL
A =⇒ CL

A = argmaxx∈A u(x) hence u(y) < u(x) since y /∈ CL
A. This contradiction establishes

that u indeed represents ÂR
D and ∼ . With this we know that condition (2) of the proposition is

necessary, since x ∈ D =⇒ u(x) < ρ whereupon x %R
D y implies u(y) < ρ, hence y ∈ D, completing

the proof.

Proof of Theorem 2 To prove sufficiency, we show that the conditions of the proposition are

satisfied in this case for D = XIN . For (1) and (3) this is direct. Hence it suffices to establish
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that if x ∈ XIN and x %R y, then y ∈ XIN . By definition x ∈ XIN implies that we can

find z ∈ XN with z ºL x. Now, if CL
{y,z} = y, we have that x %R y ÂR z ºL x violating

OWC. Thus it must be the case that z ºL y, implying by definition that y ∈ XIN , as

required. To show that ÂR and ∼ satisfying OLC is necessary for (X,C) to have any RBS

representation (u, S, ρ), it suffices by lemma 1 to show that such u : X → R must respect ÂR

and ∼. This follows directly for ÂC and ∼ since (u, S) form an ABS representation of (X,C).

To confirm that u : X → R respects ÂL, consider A ∈ X with x, y ∈ A, x ∈ CL
A, y /∈ CL

A, and

x or y ∈ XIN . There are two cases.

• If u(x) < ρ, then x ∈ CL
A =⇒ A ∩Xρ

u = ∅ by R2(a) hence SL
A = A by R1, hence u(y) < u(x)

all y ∈ A with y /∈ CL
A.

• If u(x) ≥ ρ, then x /∈ XIN follows directly from condition 2(b) of the RBS definition, so that

y ∈ XIN ⊂ X\Xρ
u, and u(y) < ρ ≤ u(x).

9 Appendix 2: Measurability

We show that various sets are contained in the σ−algebra F .

• ZCOM and ZND: Given T ≥ 1, define NDT as all subsets of X T that are non-diminishing,

Zt ⊂ Zt+1 all 1 ≤ t ≤ T , and NRT as all subsets of X T in which there is no immediate

repetition, Zt 6= Zt+1 any 1 ≤ t ≤ T − 1, and note that,

ZND = ∩∞T=1
©
Z ∈ Z| (Z1, .., ZT ) ∈ NDT

ª
∈ F ;

ZCOM = ∪∞t=1
©
∩∞s=1

©
Z ∈ Z| (Z1, .., Zt) ∈ NRt, Zt = Zt+s

ªª
∈ F .

• That{Z ∈ Z| {arg maxx∈Zt u(x)}∞t=1 ∈ F} ∈ F for any F ∈ F , note that it can be expressed

as follows as a countable collection of cylinder sets,

∩∞T=1
½
Z ∈ Z|∃ Y ∈ F s.t. arg max

x∈Zt
u(x) = Yt ∀ t ∈ {1, ..., T}

¾
.

• For any x, y ∈ X, the sets Jxy, Rxy, and ∆x. Given A ∈ X , define WA as all supersets of A

and WC
A ⊂ X as its complement. Define the cylinder sets WA(t),WC

A (t) ∈ G by,

WA(t) ≡ {Z ∈ Z|Zt ∈WA};

WC
A (t) ≡ {Z ∈ Z|Zt ∈WC

A }.
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• Note that:

Jxy = ∪tW{x,y}(t) ∈ F ;

Rxy = ∪∞t=1
n
W{y}(t) ∩

n
∪∞s=1

n
WC
{y}(t+ s) ∩W{y}(t+ s)

ooo
∈ F ;

∆x = ∪∞t=1
n
∪B∈W{x} {∪

∞
s=1 {Z ∈ Z|Zt = B,Zt+s 6= B}}

o
∈ F .

• ZNCY = {Z ∈ Z|Zt+1 6= Zt =⇒ Zt+s 6= Zt any s ≥ 1}: (see appendix 3). First, index all

sets in X , A1, , Am, .., AM , with M the cardinality of X . Define Π(M) to be all permutations

of the first m ≤M integers. Given πm ∈ Π(M), define the countable set Υ(πm) to comprise

all strictly increasing sets of m natural numbers,

Υ(πm) = {Tm = {Tm
1 , Tm

2 , .., Tm
m )|Tm

1 = 1, Tm
i ∈ N and Tm

i < Tm
i+1 all i ≥ 1}.

That ZNCY ∈ F follows since it is a countable union of cylinder sets,

∪πm∈Π(M)∪Tm∈Υ(πm)
©
Z ∈ Z|Zt = Aπmi

for Tm
i ≤ t < Tm

i+1, 1 ≤ i ≤ m− 1; Zt = Aπmm for t ≥ Tm
m

ª
.

• E(Y ) : (see appendix 3). Given K non-negative integers sk define S0 = 0 and partial sums

Sk =
kX

j=1

sj enabling the following short definition:

E(Y ) = ∩∞K=1
©
∪∞sK=1....

©
∪∞s1=1 {Z ∈ Z|Zτ = Zk for Sk−1 + 1 ≤ τ ≤ Sk and 1 ≤ k ≤ K}

ªª
∈ F .

Proposition 2 If (X, C̃) permits of a stochastic ABS representation (u, S̃), then for any A ∈ X ,

C̃A

©
∪B∈XLB

ª
= 1.

Proof. Since (X, C̃) has an ABS representation (u, S̃), we know that S̃A(ZND) = 1. Note that since

X is finite, limit elements exist for all Z ∈ ZND, establishing that S̃A
©
∪B∈XLB

ª
= 1. Now note

that if Z ∈ ∪B∈XLB, then {arg maxx∈Zt u(x)}∞t=1 ∈ ∪B∈XLB, as, Z ∈ ∪B∈XLB implies that there

must be some t such that Zt = Zt+s ∀ s ≥ 0, thus it must be the case that arg maxx∈Zt u(x) = arg

maxx∈Zt u(x) ∀ s ≥ 0. Hence,

C̃A

©
∪B∈XLB

ª
= S̄

½
Z ∈ Z|

½
arg max

x∈Zt
u(x)

¾∞
t=1

∈ ∪B∈XLB

¾
≥ S̄

©
∪B∈XLB

ª
= 1.
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10 Appendix 3: Theorems 3 and 4

We first formally define compression, from which it follows immediately that it is sufficient to prove

theorems 3 and 4 for compressed stochastic choice processes. We then show that compressed sto-

chastic choice processes of interest are finite, further simplifying the requirements to establishing 3

and 4 for finite stochastic choice processes. Next, we show that finite stochastic choice processes can

be represented as weighted averages of deterministic processes. We close out by proving theorems

3 and 4 for the finite case, which proof is general in light of the earlier results.

10.1 Compression

Definition 17 Given Z ∈ Z, define the set of times at which Z changes in sequential fashion

starting with τ1(Z) = 1 as follows;

τ j+1(Z) =

⎧⎨⎩ mins≥1{Zτj(Z)+s 6= Zτj(Z)} if ∃s ≥ 1 s.t Zτj(Z)+s 6= Zτj(Z);

∞ if Zτj(Z)+s = Zτj(Z) all s ≥ 1.

Let J(Z) ∈ N ∪∞ be the number of distinct points of change, and define the compression of any

element Z ∈ Z, D(Z) ∈ ZCOM , by removing all time indices in which there is repetition and

repeating the limit element if there is any repetition,

D(Z) =

⎧⎨⎩ (Zτ1(Z), ..., Zτj(Z), ..ZτJ(Z)(Z), ...ZτJ(Z)(Z), ..ZτJ(Z)(Z)) if J(Z) is finite;

(Zτ1(Z), ..., Zτj(Z), ..) if J(Z) =∞.

Given Y ∈ ZCOM , define the equivalence classes of compressed elements of E(Y ) ⊂ Z ((the proof

that E(Y ) ∈ F is in appendix 2),

E(Y ) = {Z ∈ Z|D(Z) = Y }.

Given a measure P ∈ P, we define its compression DP ∈ P by shifting probabilities onto the

compressed representative of each equivalence class,

DP (Y ) =

⎧⎨⎩ P (E(Y )) for Y ∈ ZCOM ;

0 for Y = Z\ZCOM .
.

10.2 Compression and Finiteness

Proposition 3 A compressed SCP that has an ABS representation or for which ÂC̃ and ∼C̃ satisfy

OWC is finite, in that there exists a finite set G ∈ F such that C̃A(G) = 1 all A ∈ X .
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Proof. To show that compression and ABS imply that the SCP is finite, let M = |X | and let

Z(M) ∈ F be sequences that are unchanging after period M :

Z(M) = {Z ∈ Z|Zt = Zs ∀ t, s > M}.

It is intuitive that a compressed choice sequence with an ABS representation satisfies C̄A (Z(M)) =

1 ∀ A ∈ X . To confirm, consider the union of all cylinder sets with Zt 6= Zs some t, s > M . If any

element Z in this set is to be in ZCOM , it must be the case that, for some r, w < s, Zr = Zw and

r 6= w ± 1. Consider now the cylinder sets defined by,

{Z ∈ Z|Zt 6= Zs, Zr = Zw }.

Now take any k such that r < k < w. and consider the cylinder set

{Z ∈ Z|Zt 6= Zs, Zk 6= Zr = Zw }.

These cylinder sets must have measure zero in any choice process that has an ABS representation,

as the set of search sequences such that

arg max
x∈SA(k)

u(x) 6= arg max
x∈SA(r)

u(x) = arg max
x∈SA(w)

u(x),

is measure zero (as any such sequence would be non-increasing). As Z\Z(M) can be obtained by

the repeated countable union across {Z ∈ Z|Zt 6= Zs, Zr = Zw }, we know that if a choice process

is compressed and has an ABS representation C̃A(Z\Z(M)) = 0 ∀ A ∈ X , and so C̄A (Z(M)) = 1.

This in turn proves that (X, C̃) is finite.

To prove that a compressed SCP that satisfies for whichÂC̃ and ∼C̃ satisfy OWC is finite,

note that this implies that the associated choice process must apply full measure to ZNCY , those

elements of Z in which there are no cycles (the proof that ZNCY is measurable is in appendix 2),

ZNCY = {Z ∈ Z|Zt+1 6= Zt =⇒ Zt+s 6= Zt any s ≥ 1} ∈ F .

To see why %C̃ satisfying OWC implies that C̃A(ZNCY ) = 1 for any set A ∈ X, assume to

the contrary that there is a set of strictly positive measure according to some A ∈ X such that

Zt+1 6= Zt , yet Zt+s = Zt for some s ≥ 1. There are two possibilities. One is that there is an

element y ∈ Zt+1 with y /∈ Zt: in this case consider any x ∈ Zt+1, and note that C̃A(R
xy) > 0

due to exit of element y and entry of element x from period t + 1 to period t + s, while also one

of the statements C̃A(R
yx) > 0 or C̃A(J

yx) > 0 in consideration of the entry of y in period t + 1.
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In the former case, the contradiction to %C̃ satisfying OWC is that x ÂC̃ y and y ÂC̃ x, while in

the latter case the contradiction is that x ÂC̃ y and y ∼C̃ x. Alternatively, it could be that there is

some y ∈ Zt and y 6∈ Zt+1. A similar argument shows that this violates %C̃ satisfying OWC . This

establishes the required finiteness, since elements of ZCOM ∩ZNCY are unchanging after a number

of periods no larger than the cardinality of X , completing the proof.

10.3 Structure of The Finite Case

Proposition 4 A stochastic choice process (X, C̃) is finite if and only if it is the convex combina-

tion of a finite number of deterministic choice processes, in that there exist some J deterministic

choice processes
©
(X,Cj)

ªJ
j=1

and weight vector λ ∈ RJ
++ satisfying

JX
j=1

λj = 1, and such that

C̃ =
JX

j=1

λjC
j: i.e for all F ∈ F and A ∈ X ,

C̃A(F ) =
JX

j=1

λjC
j
A(F ) =

JX
j=1

λj1{Cj
A∈F} .

Proof. It is immediate that the convex combination of deterministic choice processes
©
(X,Cj)

ªJ
j=1

is finite, since C̃A{Z ∈ Z| ∃ j ∈ {1, .., J} s.t. Z = Cj} = 1 all A ∈ X . To prove that any finite

process (X, C̃) can be decomposed as the proposition asserts, use integers 1 ≤ k ≤ K to index

elements Zk of the finite set G with the property that C̃A(G) = 1 ∀ A ∈ X : we call these the basic

choice processes. Since C̃A(Zk) ≥ 0 and
KX
k=1

C̃A(Zk) = 1 we can use indicator functions to record

the probability of any set F ∈ F as a convex combination of these basic processes as follows,

C̃A(F ) =
KX
k=1

C̃A(Zk)1{Zk∈F ).

We now show that we can use these weights to construct a finite set of choice processes that are

able simultaneously to capture such probability information across sets F ∈ F and A ∈ X .

First, gather together in the finite set J all values taken on by the cumulative distributions

taken in order according to k across all A ∈ X ,

J =

(
x ∈ (0, 1]|x =

kX
i=1

C̃A(Zi) for some A ∈ X , k ∈ {1, ..K}
)
.
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We index members of the set J by 1 ≤ j ≤ J in increasing order, so that xj < xj+1, with xJ = 1.

We now define a family of functions fA : J → G that, for each A ∈ X , record which basic choice

process is related to each cumulative probability level,

fA(xj) = C̃A(Zk) if and only if xj ∈
Ã
k−1X
i=1

C̃A(Zi),
kX
i=1

C̃A(Zi)

#
.

We use these objects to construct the finite set of choice processes of interest using the following

iteration. The probability assigned to the first deterministic choice process C1 is x1 and the actual

specification involves using the set specific weights as follow,

C1A = fA(x1).

If J > 1, we iterate the construction, using at step j weight xj − xj−1 > 0 and specifying choice

process Cj
A to satisfy,

Cj
A = fA(

jX
i=1

xi).

The above construction identifies a finite set of deterministic choice process Cj , 1 ≤ j ≤ J and

weights λj = xj − xj−1 ≥ 0 and summing to 1. We now such that, for all A ∈ X and F ∈ F ,

C̃A(F ) =
JX

j=1

λjC
j
A(F ) =

JX
j=1

λj1{Cj
A∈F}.

We consider first the sets Zk ∈ F , noting that,

JX
j=1

λj1{Cj
A=Zk} =

JX
j=1

λj1{fA( j
i=1 λi)=Zk},

and that fA
³Pj

i=1 λi

´
= Zk if and only if

Pj
i=1 λi ∈

³Pk−1
i=1 C̃A(Zi),

Pk
i=1 C̃A(Zi)

i
. Hence we can

identify j, l such
Pj

i=1 λi =
Pk−1

i=1 C̃A(Zi) and
Pl

i=1 λi =
Pk

i=1 C̃A(Zi), so that by construction we

get,
JX

j=1

λj1{Cj
A=Zk} =

kX
i=1

C̃A(Zi)−
k−1X
i=1

C̃A(Zi) = C̃A(Zk).

That the same is true for any F ∈ F follows directly, since,

C̃A(F ) =
KX
i=1

C̃A(Zk)1{Zk∈F} =
KX
i=1

⎛⎝ JX
j=1

λj1{Cj
A=Zk}

⎞⎠ 1{Zk∈F} = JX
j=1

λj1{Cj
A∈F}.
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10.4 Proof of Theorem 3

Proof. Application of the compression and decompression relations establishes that the finite case

is all that needs to be considered. To prove that if ∼C̃ and ÂC̃ satisfy OWC ABS follows, we

apply lemma 1 directly to show that %C̃ satisfying OWC implies existence of ũ : X → R that

respects the binary relations ∼C̃ and ÂC̃ . Moreover, in light of the last proposition, (X, C̃) is the

weighted average of deterministic choice processes, C̃ =
JX
j=1

λjC
j , which have the property that

their corresponding relations ∼j and Âj are all respected by the same ũ : X −→ R, since ∼C̃ and

ÂC̃ represent the union of these deterministic relations:

C̃A(J
xy) > 0 if and only if x ∼j y, some 1 ≤ j ≤ J ;

C̃A(F
xy) > 0 if and only if x Âj y, some 1 ≤ j ≤ J .

Re-application of lemma 1 to each of the deterministic choice processes
©
(X,Cj)

ªJ
j=1

implies that

∼j and Âj satisfy OWC for all j, and moreover that the utility function ũ : X → R forms

part of some ABS representation of them, further ensuring the existence of deterministic search

processes Sj such that (ũ, Sj) form ABS representations of (X,Cj) for all 1 ≤ j ≤ J . Defining the

corresponding weighted average search process S̃ ≡
JX

j=1

λjS
j and vS

j

A =
n
argmax

x∈SjA(t)
u(x)

o∞
t=1
,

one can immediately confirm that (ũ, S̃) form a stochastic ABS representation of (X, C̃), since

given F ∈ F and A ∈ X ,

C̃A(F ) =
JX

j=1

λj1{Cj
A∈F} =

JX
j=1

λj1 vS
j

A ∈F .

But as S̃A
n
Z ∈ Z|Z = Sj

A for no j ∈ {1, .., J}
o
, we know that,

S̃A

µ½
Z ∈ Z|

½
arg max

x∈Zt
u(x)

¾∞
t=1

∈ F

¾¶
=

jX
j=1

S̃A(S̃
j
A)1 vS

j
A ∈F

=
JX

j=1

λj1 vS
j

A ∈F .

The last equality follows from the fact that, ∀ j ∈ {1, ..J}, S̃A(S̃J
A) = λj .

To prove that ABS implies that ∼C̃ and ÂC̃ satisfy OWC, note that if (ũ, S̃) form an ABS

representation of (X, C̃), Lemma 1 then implies that ũ respects the orderings ∼C̃ and ÂC̃ on X,
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which therefore satisfy OWC.

10.5 Proof of Theorem 4

As for ABS, the proof need be given only for the finite case in light of the compression and

decompression operations. This finite proof follows from the a generalized version of the RBS

characterization precisely as the deterministic result followed from proposition 1. To prove the

relevant result we need to generalize the ordering %R̃ of section 4.

Definition 18 Given a stochastic choice process (X̃, C) and set D ∈ X , the binary relation ÂL̃
Don

X is defined by x ÂL̃
D y if {x ∪ y} ∩D 6= ∅, and there exists A ∈ X with x, y ∈ A with C̃L

A {x} > 0

and C̃L
A {y} = 0. The binary relation ÂR̃ is defined as ÂL̃

D ∪ ÂC̃.

Proposition 5 A finite stochastic choice process model (X, C̃) has a stochastic RBS representation

(u, S̃, ρ) with below-reservation set D ⊂ X if and only if :

1. X̃N ⊂ D.

2. If x ∈ D and x %R̄
D y, then y ∈ D.

3. Given x1, x2, x3, .., xn ∈ X with x = x1 %R̄
D x2 %R̄

D .. %R̄
D xn = x, there is no k with

xk ÂR̄
D xk+1.

Proof. The proof that conditions (1) - (3) of the proposition are sufficient is constructive, and

similar to that in the deterministic case. As there, we define a utility function u : X → R that

respects ÂR̃
D and ∼ on X, define reservation utility ρ as the average between the maximum on

the set D and the minimum on the set X\D, and demonstrate again that X\D is the reservation

set associated with the utility function u : X → R and reservation utility level ρ by noting that

u(x) > u(y) whenever x ∈ X\D and y ∈ D. To see this, note that x ∈ X\D and y ∈ D implies by

condition (2) above that CL
{x,y}({x}) = 1, whereupon x ÂR̃

D y, so that u(x) > u(y) by construction.

We now consider all deterministic processes Cj in the decomposition of the finite stochastic

choice process map C̃ that we know by the last proposition to be available. Define XN
j as the non-

terminal set associated with deterministic choice process (X,Cj), and define also the corresponding
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binary relations ∼j , ÂCj
, ÂLj

D , ÂRj

D , %Cj
, %Lj

D , and %Rj

D . We show now that any set D ⊂ X with

properties 1-3 above for the stochastic choice process (X, C̃) necessarily satisfies corresponding

deterministic properties 1-3 established in theorem 2 to be necessary and sufficient for D to be a

reservation set in some RBS representation of each (X,Cj). With respect to the first such property,

note directly from the definition that any non-terminal element in (X,Cj) is necessarily so in the

stochastic models, so that XN
j ⊂ X̃N , hence XN

j ⊂ D as required. The second and third properties

follow directly from the fact that, for any j ∈ {1, ..., J}, x ÂRj

D y ⇒ x ÂR̄
D y and x ∼j y ⇒ x ∼ y. To

see this, note first that x ÂRj

D y implies that either x ÂCj
y or x ÂLj

D y. The former case indicates

that for some A ∈ X , C̃A(R
xy) ≥ λj > 0, and so x ÂCj

y, while the latter implies that, for some

A ∈ X and B ⊂ A, x ∈ B, y /∈ B and C̃L
A(B) ≥ λj > 0, so x ÂL

D y. In each case, x ÂR̄
D y. A similar

argument shows that x ∼j y implies for some A ∈ X , C̃A(J
xy) ≥ λj > 0 and so x ∼ y. This result

shows that any violation of conditions 2 and 3 at the level of the deterministic choice process j

would lead to a violation of the equivalent condition at the level of the stochastic choice function.

Given that the assumptions of theorem 2 are satisfied, we conclude not only that there exists

an RBS representation of each (X,Cj) with reservation set D, but also that the utility function

u : X → R and reservation utility level ρ can be utilized in constructing such a representation,

given that these are precisely the objects that are constructed in the course of the deterministic

proof. Hence, for each j, there exists a search correspondence Sj such that (u, Sj , ρ) represents an

RBS representation of (X,Cj). We show now that (u, S̃, ρ) comprises an RBS representation of

(X, C̃), where S̃ is the corresponding convex combination of the deterministic search processes Sj ,

S̃ =
JX

j=1

λjS
j

That (u, S̃) for a stochastic ABS representation follows as in the proof of the ABS represen-

tation theorem. That X\D = {x ∈ X|u(x) ≥ ρ} holds by construction. Moreover given A ∈ X ,

we know that if A ∩ (X\D) = φ, then A is searched fully in all search correspondences Sj , en-

suring that S̃L
A(A) = 1. On the other hand, if A ∩ XR ∩ (X\D) 6= φ, then we know that in

the limit, search reaches into the reservation set in all search correspondences Sj , ensuring that

S̃A
©
Z ∈ Z|HR(Z) is finite

ª
= 1. Finally, since each element in the reservation set has the property

that search ceases at once with probability one when such an element is encountered in each Sj ,

we know that S̃A
n
Z ∈ Z|S̃L

A = S̃A
¡
HR(Z)

¢o
= 1, completing the proof that (u, S̃, ρ) comprises

an RBS representation of (X, C̃).
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The proof that conditions 1-3 above are necessary for a finite stochastic choice process (X, C̄)

to have an RBS representation (u, S̃, ρ) is essentially identical to that in the deterministic case. We

let D be the below reservation set generated by that representation, and establish that the three

conditions of the proposition hold.

Proof of Theorem 5 Application of Lemma 1 translates the theorem to the statement that there

exists u : X → R, ρ : Γ → R, and Θ : Γ → S̄ such that (u,Θ(γ), ρ(γ)) forms a stochastic

RBS representation of Φ(γ) ∀ γ ∈ Γ if and only if there exists v : X → R that respects

ÂR̃(Γ) and ∼C̃(Γ). To see that existence of such a function v : X → R is necessary, note from

theorem 4 that the given function u : X → R such that (u,Θ(γ), ρ(γ)) forms a stochastic

RBS representation of Φ(γ) for all γ ∈ Γ respects ÂR̃(γ) and ∼C̃(γ) all γ ∈ Γ and hence

respects ÂR̃(Γ) and ∼C̃(Γ) . Conversely, given v : X → R that respects ÂR̃(Γ) and ∼C̃(Γ),

by definition it respects ÂR̃(γ) and ∼C̃(γ) all γ ∈ Γ, whereupon theorem 4 implies that there

exists an RBS representation of Φ(γ) for all γ ∈ Γ. In fact the proof of theorem 4 reveals

that the given function v : X → R that respects ÂR̃(γ) and ∼C̃(γ) can form the basis for an

ABS representation with appropriately defined ρ : Γ→ R and Θ : Γ→ S̄, with (v,Θ(γ), ρ(γ))

therefore forming the required stochastic RBS representation of Φ(γ) ∀ γ ∈ Γ.
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