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Abstract

We investigate identī ability issues in DSGE models and their consequences for
parameter estimation and model evaluation when the objective function measures
the distance between estimated and model impulse responses. We show that ob-
servational equivalence, partial and weak identi¯cation problems are widespread,
that they lead to biased estimates, unreliable t-statistics and may induce investiga-
tors to select false models. We examine whether di®erent ob jective functions a®ect
identi¯cation and study how small samples interact with parameters and shock
identi¯cation. We provide diagnostics and tests to detect identi¯cation failures
and apply them to a state-of-the-art model.
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1 Introduction

The 1990's have seen a remarkable development in the speci¯cation of DSGE models.

The literature has added considerable realism to the constructions popular in the 1980's

and a number of shocks and frictions have been introduced into ¯rst generation RBC

models driven by technological disturbances. Steps forward have also been made in

comparing the models' approximation to the data: while 10 years ago it was standard

to calibrate the parameters of a model and informally evaluate the quality of its ¯t,

now maximum likelihood or Bayesian estimation of the structural parameters is com-

mon both in academic and policy circles (see e.g. Smets and Wouters (2003), Ireland
(2004), Canova (2004), Rubio and Rabanal (2005), Gali and Rabanal (2005)) and new

techniques have been introduced for evaluation purposes (see Del Negro et. al. (2005)).

Given the complexities involved in estimating state-of-the-art DSGE models and

the di±culties in designing criteria which are informative about their discrepancy to

the data, a strand of the literature has considered less demanding limited information

methods and focused on whether the model matches the data only along certain di-

mensions. In particular, following Rotemberg and Woodford (1997) and others, it has

become common to estimate structural parameters by quantitatively matching condi-

tional dynamics in response to certain structural shocks (Canova (2002) proposes an

alternative limited information approach where only a qualitative matching of responses

is sought). One crucial but often neglected condition needed for any methodology to
deliver sensible estimates and meaningful inference is the one of identi¯ability: the ob-

jective function must have a unique zero and should display "enough" curvature in all

relevant dimensions. Since impulse responses depend nonlinearly on the structural pa-

rameters, it is unknown if these identi¯ability conditions are met and far from straight-

forward to check for them in practice. Two reasons make the problem hard. First,

since stationary solutions are typically found with numerical methods, the mapping

from structural parameters to impulse responses is not analytically available. Second,

since the objective function can be evaluated only at a ¯nite number of points, it is

di±cult to infer its properties in high dimensional parameter spaces.

This paper investigates identi¯ability issues in DSGE models and their consequences

for parameter estimation and model evaluation. Furthermore, it provides diagnostics
to detect identi¯cation problems when the objective function measures the distance

between (structural) sample and model impulse responses. Since the ¯eld is vast and
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largely unexplored, our analysis focuses on a selected number of important issues.

Section 2 discusses the generics of identi¯cation, highlights the problems existing

in models which are nonlinear in the parameters and gives de¯nitions for several prac-

tically relevant situations. Section 3 provides a few examples of simple structures

generating three commonly encountered problems: observational equivalence; under-
identi¯cation; weak and partial identi¯cation of the parameters. We examine three

general issues. First, we study what features of the economic environment are respon-

sible for the problems. Second, we examine the consequences of altering the weights

responses receive in the objective function and the number of variables considered in

the analysis. Third, we evaluate whether and in what way changing the objective func-

tion a®ects identi¯cation. We show that observational equivalence, weak and partial

identi¯cation all lead to objective functions with large °at surfaces in the economically

reasonable portion of the parameter space; that identi¯cation problems depend on the

objective function used - full information methods have at times an hedge over partial

information ones - and that Bayesian methods, if properly used, can help to detect

identi¯cation problems but, if improperly used, may cover them up. We demonstrate
that °at objective functions lead to serious biases and that ¯xing some of the trou-

blesome parameters at arbitrary values may create distortions in the distribution of

parameter estimates, unless the chosen value happens to be the correct one.

Section 4 investigates the interaction between parameters' identi¯ability, shock iden-

ti¯cation and small samples. We argue in the context of a commonly used three equa-

tion New-Keynesian model that many of the structural parameters are only weakly or

partially identi¯able when impulse responses are used. We show that small samples and

incorrect shock identi¯cation pile up to induce major distortions in parameter estimates

when coupled with identi¯cation problems and conclude that parameter identi¯cation,

in practice, has to do with the structure of the model, the objective function, the sample

size and several other auxiliary model speci¯cation assumptions.
Section 5 examines what happens when the model is unknown and an investigator

uses the dynamic implications of a small number of shocks to ¯nd estimates of the

parameters. We are interested, in particular, in examining cases in which, because of

near-observational equivalence of alternative economic structures, an investigator may

end up estimating as signi¯cant features which do not appear in the data generating

process. In the context of a state-of-the-art model with real and nominal frictions, we

demonstrate that many of the additional features generating endogenous persistence
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are only very weakly identi¯ed. We show that the objective function is °at in the

parameters characterizing nominal price and wage rigidities and that investigators using

responses to monetary and/or technology shocks could be mistakenly induced to select

the wrong model with high degree of con¯dence.

Section 6 presents simple diagnostics to detect identi¯cation problems and uses
them to highlight why problems in the model used in section 5 emerge. Finally, section

7 summarizes the results and provides suggestions for empirical practice.

2 A few de¯nitions

Identi¯cation problems has been extensively studied in theory; the literature on this

issue goes back at least to Koopmans (1950), and more recent contributions include

Rothenberg (1971), Pesaran (1981), and Hsiao (1983). While the theoretical concepts

are relatively straightforward, it is uncommon to see these issues explicitly considered

in empirical analyses.

To set ideas, identi¯cation has to do with the ability to draw inference about the pa-

rameters of a theoretical model from an observed sample. There are several reasons that

may prevent researchers to perform such an exercise. First, if the population objective

function does not have a unique maximum, the mapping between structural parameters

and reduced form statistics is not unique. Hence, di®erent structural models having

potentially di®erent economic interpretations may be indistinguishable from the point
of view of the chosen objective function. Such a statement does not imply that the

two models are indistinguishable under all objective functions nor that it is impossible

to ¯nd implications which are di®erent. We call this issue observational equivalence

problem. Second, the population objective function may be independent of certain

structural parameters - a structural parameter may disappear from the log-linearized

solution of the model. In this case the objective function will be constant for all values

of that parameter in a selected range. We call this issue under-identi¯cation problem.

A special case of this phenomenon emerges when two structural parameters enter the

objective function only proportionally, making them separately unrecoverable. This

phenomenon, well known in traditional systems of simultaneous linear equations, is

called here partial identi¯cation problem. Third, even though all parameters enter the
objective function independently and the population objective function is globally con-

cave, its curvature may be "insu±cient". This problem could be speci¯c to a neighbor
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of the zero or concern the entire parameter space. We call this phenomenon weak iden-

ti¯cation problem. One interesting special case arises when the objective function is

asymmetric in the neighborhood of the zero and its curvature de¯cient only in a portion

of the parameter space. Fourth, and this applies to objective functions which consider

only a subset of the implications (e.g. a limited number of shocks or a subset of the
responses to all shocks), di®erent responses (shocks) may carry di®erent information

about the parameters. Hence, a parameter could be identi¯able if all information is

employed, but remains under-identi¯able if one shock or one particular set of responses

is used. We call this limited information identi¯cation problem. Finally, partial, weak

and limited information identi¯cation problems can be exacerbated if only a sample

version of the population objective function is available.

We formalize the above concepts as follows. Suppose we want to minimize g(y; T; m;µ),

with respect to a k £ 1 vector of structural parameters µ 2 £, where y is a vec-

tor of data, T the sample size, m a DSGE model and g(y;T;m; µ) = (ird(y; T) ¡
irm(m;µ))W (T )(ird(y;T )¡irm(m;µ))0, where ird(y;T ) is a vector of data-based struc-

tural responses, ird(m; µ) is a vector model-based responses, and W(T) is a weighting
matrix, function of the sample size T . Identi¯cation has to do with the shape and the

curvature of g(y; T; m;µ).

Two models m1 and m2, with parameter vectors µ and », are observationally equiv-

alent given y, if g(y;T;m1; µ¤) = g(y; T;m2; »¤) = 0, some µ¤; »¤. In other words,
@g(y;T;m1;µ)

@µ jµ¤ = @g(y;T;m2;»)
@» j»¤ = 0 and both @

2g(y;T;m1 ;µ)
@µ@µ0 jµ¤ and @

2g(y;T;m2;»)
@»@»0 j»¤ are pos-

itive de¯nite.

Let m1 = m2, µ = [µ1; µ2] and partition £ = [£1; £2]. µ1 is locally under-

identi¯ed if g(y;T; m; µ1; µ2) = g(y; T; m;µ2) 8µ1 2 £1 ½ £1. On the other hand

g(y;T;m;µ) = g(y; T; m; µ1f(µ2));8µ1 2 £1 ½ £1; µ2 2 £2 ½ £2, for some continuous

and di®erentiable f , then µ is locally partially identi¯ed. Under-identi¯cation and par-

tial identi¯cation imply that @g(y;T;m;µ)@µ jµ = 0 and that @
2g(y;T;m;µ)
@µ@µ0 jµ is rank de¯cient.

Global under and partial identi¯cation occur when £1 = £1.

A parameter vector µ is locally weakly identi¯able if there exist a unique µ¤ such

that g(y; T; m;µ¤) = 0 but g(y; T; m;µ) < ²; 8µ 2 £y ½ £ and globally weakly identi¯ed

if this occur for all µ 2 £. Weak identi¯cation implies that @g(y;T;m;µ)@µ jµ¤ = 0, that
@2g(y;T;m;µ)
@µ@µ0 jµ¤ is positive de¯nite but that ¹1; : : : ;¹k¡n are small, where ¹i; i = 1; : : : ; k

are the increasingly ordered eigenvalues of @
2g(y;T;m;µ)
@µ@µ0 jµ¤ .

Asymmetric weak identi¯cation results if Hr = @2rg(y;T;mµ)
@rµµ0

jµ¤, the Hessian computed
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using the right derivatives, di®ers from Hl =
@2l g(y;T;m;µ)
@lµµ0

jµ¤, the Hessian computed using

the left derivatives of the function g, and one of the two has some ¹i which is small.

Finally, limited information identi¯cation de¯nitions are obtained when the weight-

ing matrix W (T) can be factored as W (T ) = SW(T), where S is a selection matrix

with ones and zeros.

If the objective function to be minimized is (minus) the likelihood function of the

data, L(y; µ), identi¯cation is related to the shape and the rank of the information

matrix: =(µ), whose (i; j)-th element is =(µ)ij = E( @
2 log(L(y;µ))
@µi@µj ). As it is well known,

µ is locally identi¯able if and only if the rank of =(µ) is constant and equal to k in

a neighborhood of µ¤ (Rothenberg, 1971). Since the information matrix measures the
"curvature" of the likelihood function, curvature de¯ciencies around µ¤, make some

rows or columns of =(µ) (close to) zero or proportional to each other.

Under-identi¯cation and weak identi¯cation have been recognized to be serious

problems. Choi and Phillips (1992), Stock and Wright (2000) have shown the conse-

quences these two phenomena have on the asymptotic properties of parameter estimates

in IV and GMM setups. Stock and Wright (2000) also develop an asymptotic theory

which is robust to identi¯cation problems. Since our function g resembles the objective

function used in this literature, one may wonder whether identi¯cation problems can

be sidestepped using their approach. Unfortunately their theory is inapplicable in our

case because W (T) is never chosen to be the continuously updating weighting matrix of

Hansen et al. (1996). Nevertheless, the intuition obtained in IV and GMM frameworks
carries over, to a large extent, to our case.

Before discussing the practical consequences of identi¯cation problems for estima-

tion and inference, we provide a few examples intended to show (a) the pervasiveness of

identi¯cation problems in DSGE models, (b) the consequences of using a limited infor-

mation approaches to conduct inference, (c) the advantages/disadvantages of employing

di®erent objective functions.

3 Identi¯cation problems in practice

3.1 Observational equivalence: two structural models have the same
impulse responses.

The example we consider illustrates one of problems often encountered in practice: the

inability of impulse responses to distinguish two di®erent economic structures. Suppose

7



a time series xt is generated from xt = 1
¸2+¸1Etxt+1 + 1̧ 2̧

¸1+¸2xt¡1 + vt, where ¸2 ¸ 1 ¸
¸1 ¸ 0. It is well known that the unique stable rational expectations solution is

xt = ¸1xt¡1 + ¸2+¸1
2̧

vt. Therefore, given vt = 1, the responses of xt+j ; j = 0; 1; : : : are

[¸2+¸1
2̧

; ¸1 2̧+ 1̧
¸2 ;¸21 ¸2+¸12̧

; :::], and using at least two horizons, one can estimate ¸1 and

¸2. It is easy to construct a di®erent process whose stable rational expectation solution
has the same impulse response. Consider, for example, yt = ¸1yt¡1 + wt, 0 · ¸1 < 1.

Clearly the process is stable and, as long as ¾w = 2̧+¸1
¸2

¾v , the responses of xt and yt
to shocks will be indistinguishable.

What makes the two processes equivalent in terms of impulse responses? Clearly,

the unstable root ¸2 enters the solution only contemporaneously. Since the variance of

the shocks is not estimable from normalized impulse responses (any value simply implies

a proportional increase in all the elements of the impulse response function), we can

arbitrarily select it in the second case so as to capture the e®ects of the unstable root.

Since an investigator has one degree of freedom, she can make two processes share

both contemporaneous and lagged dynamics. In general, since many re¯nements of

currently used DSGE models add some backward looking component to a standard
forward looking one, the range of applicability of this result is quite large (see also

Lubik and Schorfheide (2004) and An and Schorfheide (2005) for similar examples).

This example can be extended a larger class of processes, driven by pure expec-

tational errors. Suppose yt = 1
1̧
Etyt+1, where yt+1 = Etyt+1 + wt and wt is an iid

shock with zero mean and variance ¾2
w. The stable solution is again yt = ¸1yt¡1 + wt.

Hence, if ¾w = ¸2+¸1
2̧

¾v, a process with (deterministic) forward looking dynamics and

expectational errors is observationally equivalent to a process with forward and back-

ward looking dynamics driven by an iid fundamental error. Such an equivalence is the

basis for Beyer and Farmer's (2004) claim that the data cannot distinguish whether

a Phillips curve is backward looking or forward looking and it is the cornerstone of

Pesaran's (1981) critique of tests of rational vs. adaptive expectations models.
Several other examples of observationally equivalent structures have appeared in the

literature. For example, Kim (2003) shows that models with adjustment costs to capital

are observationally equivalent to models which assume a nonlinear transformation curve

between consumption and investment, at least as far as Euler equations are concerned;

Ma (2002) shows that a standard forward looking Phillips curve is consistent with

two structural models having di®erent ¯rms' pricing behavior; Altig et al. (2004)

construct a model with ¯rm speci¯c capital which produces the same in°ation dynamics
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of a model without ¯rm speci¯c capital; while Ellison (2005) shows that two Phillips

curve relationships based on di®erent microeconomic and behavioral assumptions can

be made observationally equivalent from the point of view of responses to policy shocks

if the policy function is appropriately chosen. In general, observational equivalence is

problematic when the zeros occur in correspondence of di®erent vectors of economically
reasonable parameters. In this case, information external to the models needs to be

brought in to disentangle various structural representations.

3.2 Under-identi¯cation: some structural parameters disappear from
impulse responses.

Cases of models where structural parameters fail to appear in the impulse response

functions are also numerous. Consider the following three equations model:

yt = a1Etyt+1 + a2(it ¡ Et¼t+1) + v1t (1)

¼t = a3Et¼t+1 +a4yt + v2t (2)

it = a5Et¼t+1 + v3t (3)

where yt is the output gap, ¼t the in°ation rate, it the nominal interest rate and the

¯rst equation is the log-linearized Euler condition, the second a forward looking Phillips

curve and the third characterizes monetary policy. Since this model features no states,

the solution for the three variables is a linear in the three shocks vjt and given by:

2
4

yt
¼t
it

3
5 =

2
4

1 0 a2
a4 1 a2a4
0 0 1

3
5

2
4

v1t
v2t
v3t

3
5

Three useful points can be made. First, the parameters a1; a3; a5 disappear from

the solution. Interestingly, they are those characterizing the forward looking dynamics

of the model. Second, di®erent shocks carry di®erent information for the parameters:

responses to v1t allow us to recover only a4; responses to v3t may be used to back out

both a4 and a2 while responses to v2t have no information for the two parameters. Sim-

ilarly, responses of di®erent variables carry di®erent information about the structural

parameters. Third, di®erent objective functions may have di®erent information about

the parameters. In this simple example, a1; a3; a5 remain underidenti¯ed even when the
likelihood of the model is used; however, the latter has information about the variances

of the shocks, information that normalized responses do not have.
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From this discussion it is clear that even when the number of nonzero dynamic

coe±cients exceeds the number of structural parameters, a condition which is necessary

for identi¯cation in models which are linear in the parameters, problems may remain.

This is reminiscent of the irrelevant instruments problem present in IV setups.

3.3 Weak and partial identi¯cation

There is a sense in which the situations considered in the two previous examples are

pathological. The objective function is, in fact, ill-behaved in both cases: it either

displays multiple zeros or it is constant in some dimension. In practice, there are

less extreme but equally interesting situations where the population objective function
(locally) has a unique zero, its Hessian is (locally) positive de¯nite but parameters are

only weakly or partially identi¯ed. To show that both features are relatively common

we use a standard RBC structure. We work with the simplest version of the model

since we can study whether and how structural parameters a®ect the impulse responses

and better highlight both the problems and the reasons for their occurrence.

The social planner maximizes E0
P1
t=0¯t c

1¡Á
t
1¡Á and the resource constraint is ct +

kt+1 = k´t¡1zt+(1¡±)kt, where ct is consumption and Á is the risk aversion coe±cient,

zt is a ¯rst order autoregressive process of with persistence ½, steady state value zss and

variance ¾2
e, kt is the current capital stock, ´ is the share of capital in production and ±

the depreciation rate of capital. The parameters of the model are µ = [¯;Á; ±;´;½;zss].

Using the method of undetermined coe±cients and letting output be yt = k´t¡1zt, the

solution for wt = [zt; kt; ct; yt; rt], in log-deviations from the steady state, is of the form
Awt = Bwt¡1 +Cet where:

A =

2
66664

1 0 0 0 0
¡vkz 0 0 0 0
¡vcz 0 0 0 0
¡vyz 0 0 0 0
¡vrz 0 0 0 1

3
77775

B =

2
66664

½ 0 0 0 0
0 vkk 0 0 0
0 vck 0 0 0
0 vyk 0 0 0
0 vrk 0 0 1

3
77775

C =

2
66664

1
0
0
0
0

3
77775

vkk = 1
2° ¡

q
(12°)2 ¡ ¯¡1; vkz = (1¡¯(1¡±))½¡Á(1¡½)ysscss

(1¡¯(1¡±))(1¡´)+Ávck+Á(1¡½)ksscss
; vck = (¯¡1 ¡vkk) k

ss

css ;

vcz = yss
css ¡ kss

css vvk, ° = (1¡¯(1¡±))(1¡´)(1¡¯+¯±(1¡´))
Á´¯+¯¡1+1 and the superscript ss indicates

steady states values. We choose standard values for the parameters ( ¯ = 0:985; Á =

2:0; ½ = 0:95; ´ = 0:36; ± = 0:025; zss = 1) and use the model to generate data.

To show the features of the objective function obtained matching impulse responses,
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we compute the distance between the true impulse responses and the impulse responses

obtained varying one or two parameters at a time in an economically reasonable neigh-

borhood of the selected values.

The ¯rst row of Figure 1 presents (the negative of) two of these three-dimensional

surfaces and the corresponding contour plots. While there is a unique minimum in
correspondence of the true parameter vector, the objective function is quite °at either

locally around the minimum or globally over the entire parameter range. For example,

the persistence parameter ½ is very weakly identi¯ed in the interval [0.8,1.0]. Inter-

estingly, the distance function displays a ridge of approximately similar height in the

depreciation rate ± and the discount factor ¯, running from (± = 0:005;¯ = 0:975) up to

(± = 0:03;¯ = 0:99), indicating that the two parameters are only partially identi¯able.

In the latter case, the one percent contour includes the whole range of economically

interesting values of ± and ¯. Although to save space, we do not show this, the share

of capital in the production function ´ is also only very weakly identi¯able in the range

[0.3,0.6] and another ridge appears when we plot the objective function against the

steady state value of the technology shock zss and the depreciation rate ±.
Given our solution, we can check which of the coe±cients in the matrices A and B

is responsible for this state of a®airs. It turns out that vkk and vkz are the coe±cients

responsible for the problems. In fact, the (numerical) local derivative of vkz with respect

to ½ equals 0.08 and those of vkk and vkz with respect to ´ are, respectively, -0.10 and

0.09. In other words, the objective function is °at in ½ and ´ because the dynamics

of the capital stocks are only weakly in°uenced by these two parameters. Since the

law of motion of the capital stock determines the dynamics of the other variables, the

responses of other variables carry little information about the structural parameters.

The local derivatives of vkk and vkz with respect to ¯ and ± are also small, have similar

magnitude but opposite sign. Hence, the dynamics of the capital stock are roughly

insensitive to proportional changes in these two parameters.
The distance surface plotted in the ¯rst row of ¯gure 1 uses the responses of the

vector wt. Since it is unusual to consider the entire vector of responses produced

by the model, we have recalculated the surfaces when only responses to consumption

and output are used to construct the distance function. Clearly, one expects some

loss of information relative to the baseline case; the question is how large the loss is.

The second row of Figure 1, which reports these surfaces, shows that the curvature of

the objective function is smaller at any point in the range but that the shape hardly
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changes. Therefore, there are no obvious distortions, only a uniform loss of curvature.

Since there is only one shock and since output and consumption inherit the dynamics

of the capital stock and of the technology shocks, excluding these two variables does

not distort the information. It should be obvious that when there is more than one

shock or more than one state variable, results could dramatically change.
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When responses are estimated, weak identi¯cation problems may arise because re-

sponses at long horizons are noisy and may carry little information about the structural

parameters. Such a phenomenon is analogous to the weak instrument problem in GMM
frameworks where instruments "too lagged" in the past are more likely to satisfy the

exogeneity assumption but may also be weakly correlated with the objects of interest

(see e.g. Stock, Wright and Yogo (2002)). So far we used 20 horizons of each of the four

variables and since we were working with population responses, we set W (T ) = I. To

see how identi¯ability depends on the choice of horizons and, at the same time, mimic

typical situations encountered in applied work where long horizon responses have large

standard errors, we computed the surfaces using a weighting matrix with 1
h2 on the

diagonal, h = 1;2; : : : ; 20 for each variable and zero everywhere else. As it is clear

from the third row of ¯gure 1, this choice considerably worsens identi¯cation prob-

lems: plateaus exist in all dimensions and the objective function is now °atter for a

much larger range of values of the parameters. Hence, the larger the number of cross
equations restrictions used is, the smaller identi¯cation problems are likely to be.

One may wonder if matching the coe±cients of the D matrix in the VAR(1) rep-

resentation of the model: wt = Dwt¡1 + vt, where D = A¡1B and vt = A¡1Cet,

as suggested by Smith (1993), would make any di®erence for identi¯cation purposes.

Intuitively, concentrating on VAR coe±cients could be bene¯cial because shocks' identi-

¯cation is entirely sidestepped. On the other hand, choosing parameters to match only

the coe±cients of the D matrix could worsen the outcome since information present in

vt is neglected. While it is a priori di±cult to determine which e®ect dominates, the

fourth row of Figure 1 indicates that the loss of information due to the use of a smaller

number of restrictions dominates.

For empirical purposes, it is important to know whether identi¯cation problems are
speci¯c to one particular objective function or intrinsic to the model. If the former is

true, carefully choosing the objective function may avoid headaches. In the latter case,

some reparametrization of the original model is needed. To distinguish between these

two alternative we have examined the shape of the likelihood of the model, assuming

a normally distributed technology shock, in the same bivariate dimensions previously

considered. Under correct model speci¯cation, the "degree of identi¯cation" delivered

by the likelihood function is a natural upper bound. If the likelihood function displays

identi¯cation problems, we cannot hope to do better by using limited information
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approaches. Having a well-behaved likelihood is thus a necessary, but not su±cient

condition for proper estimation. Weak identi¯cation problems seem to be less acute

when the likelihood function is used. For example, ½ is pinned down with much higher

precision (see top panel in ¯gure 2). Also the likelihood shows some °at area but

contour plots are much better behaved.
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Figure 2: Likelihood and Posterior Surfaces and Contours

Since it is now common to estimate DSGE models with Bayesian methods, few

words contrasting identi¯cation problems in classical and Bayesian frameworks are in

order. Posterior distributions are proportional to the likelihood times the prior. If

the space of parameters is variation free, that is, there is no implicit constraint on

combinations of parameters, the data carries important information if the prior and
posterior have di®erent features. When this is not the case, there is a simple diagnostic

for detecting lack of identi¯cation, a diagnostic unavailable in the (classical) setup we
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consider in this paper. In fact, if prior information becomes more and more di®use,

the posterior of parameters with doubtful identi¯cation features will also become more

and more di®use. Hence, using a sequence of prior distributions with larger and larger

variances one may detect potential problems.

When the parameter space is not variation free, because stabilityor non-explosiveness
conditions or economically motivated non-negativity constraints are imposed, the prior

of non-identi¯ed parameters may be marginally updated even if the likelihood has no

information (see Poirier (1998)). In this case, ¯nding that prior and posterior di®er

does not guarantee that the data is informative. Only by using a sequence of prior

distributions with increasing spreads, one can detect potential identi¯cation problems.

Unfortunately, this simple diagnostic is hardly ever used and often prior distribu-

tions are not even reported. This is dangerous. A tightly speci¯ed prior can in fact

produce a well behaved posterior distribution, even if the likelihood function has little

information, giving the illusion of having collected useful evidence, e.g., about impor-

tant policy parameters. We show this fact in the second row of ¯gure 2: here a tight

prior on ± eliminates the partial identi¯cation problem previously encountered. Hence,
uncritical use of Bayesian methods, including employing prior distributions which do

not truly re°ect the existing location uncertainty, may hide identi¯cation problems

instead of highlighting them.

In conclusion, one could probably be better endowed to answer interesting economic

questions if she carefully selects the objective function used. However, even in the most

favorable conditions, identi¯cation problems are likely to remain if the model is not

speci¯cally parametrized with an eye to estimation.

What are the practical consequences of having objective functions with large °at

areas and ridges? First, the choice of minimization algorithm matters: with a poor one,

it is unlikely that ¯nal estimates of weakly identi¯ed parameters will move much from

initial conditions 1. Second, di®erent values of ¯ and ± could be selected, depending
on the initial conditions. Third, as we will see in the next section, since estimates of

weakly identi¯ed parameters are likely to be inconsistent and their asymptotic distri-

bution non-normal, the practice of reporting point estimates of the model's parameters

with standard errors computed under the usual asymptotic assumptions, may be unin-

formative about the goodness of parameter estimates or the properties of the model.
1For example, the Matlab routine FMINUNC is totally unable to explore surfaces with these featuers

while the Matlab routine LSQNONLIN seems to be doing a much better job.
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How do one solve partial identi¯cation problems? The standard practice of ¯xing ¯

works here since for any value of ¯, the distance function has reasonable curvature in

the ± dimension (and viceversa). However, such an approach may also induce serious

biases, unless the chosen ¯ happens to be the right one. We show this graphically in

Figure 3, where we report contours plots conditional on correctly assuming ¯ = 0:985
and on incorrectly assuming ¯ = 0:995.

It is clear that when ¯ is incorrectly chosen, the location of the objective function

shifts away from the maximum so that the estimated distribution of the parameters may

fail to include the true value. Hence, even minor errors in setting one of the partially

identi¯ed parameters may lead routines to search for optimal values in wrong portions

of the parameters space and give the wrong impression that estimation is successful, as

standard errors and the optimized objective function may be small.
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Figure 3: Contour Plots
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4 Identi¯cation and estimation

Next, we examine what identi¯cation problems imply for estimation and inference.

Throughout this section we assume that the investigator knows the correct model and,

for most of it, assume that no misspeci¯cation occurs when computing impulse re-

sponses. In the ¯rst part we endow the researcher with the population responses; in

the second we measure in what way small samples complicate the inferential task.

To make our points transparent, we employ a well known New-Keynesian model.

We choose such a speci¯cation because several authors, including Ma (2002), Beyer and

Farmer (2004) and Nason and Smith (2005), have argued that it is liable to some of
the problems we have discussed so far. The log-linearized version of the model consists

of the following three equations:

yt =
h

1 +h
yt¡1 +

1
1 + h

Etyt+1 +
1
Á

(it ¡ Et¼t+1) + v1t (4)

¼t =
!

1 +!¯
¼t¡1 +

¯
1 + !¯

¼t+1 +
(Á + º)(1 ¡ ³¯)(1 ¡ ³)

(1 +!¯)³
yt+ v2t (5)

it = ¸rit¡1 +(1 ¡ ¸r)(¸¼¼t¡1 +¸yyt¡1) + v3t (6)

where h is the degree of habit persistence, º is the inverse elasticity of labor supply, Á is

the relative risk aversion coe±cient, ¯ is the discount factor, ! the degree of indexation

of prices, ³ the degree of price stickiness, while ¸r;¸¼; ¸y are policy parameters. As

it is standard, the ¯rst two shocks follow autoregressive processes of order one with

AR parameters ½1; ½2, while v3t is an iid shock. The variances of the three shocks are

denoted by ¾2
i ; i = 1;2;3. While other equations can be added to alleviate potential

problems, this structure is su±cient to highlight the distortions one is likely to face in

the presence of identi¯cation problems.

The model has 14 parameters: µ1 = (¾2
1;¾

2
2; ¾

2
3) are under-identi¯ed from scaled

impulse response, while µ2 = (¯; Á; º; ³;¸r;¸¼; ¸y; ½1; ½2;h; !) are the structural pa-
rameters which are the focus of our attention.

The framework we use allows us to construct a number of objective functions -

several limited information ones, obtained considering the responses to only one type

of shock and a full information one - and therefore assess the importance of limited

information identi¯cation problems in the context of a concrete example. We take the

true parameters to be ¯ = 0:985; Á = 2:0; º = 3:0; ³ = 0:68; ¸r = 0:2; ¸¼ = 1:55;¸y =

1:1; ½1 = 0:65; ½2 = 0:65; ! = 0:25;h = 0:85, which are standard in calibration exercises

and quite close to Rubio and Rabanal's (2005) estimates.
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Figure 4: Shape of di®erent objective functions

To start with we plot in ¯gure 4 the shape of the objective function in each of the

elements of µ2. We compute the distance function using responses to v1t (column 1),

to v2t (column 2), to v3t (column 3) and to all the shocks (column 4), varying one

parameter at the time within an economically reasonable range around the selected
values. To be clear: ¯gure 4 shows the curvature of the objective function one dimension
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at the time, conditional on the other n ¡ 1 values being ¯xed at their "true" values.

Many interesting features are present in the ¯gure. First, the ¯rst three objective

functions are °at in several dimensions (see e.g. ¸¼ ;¸y; !; h). Second, di®erent shocks

have di®erent information about certain parameters (see e.g. ³; ¸r). Interestingly, the

function measuring the distance in response to monetary shocks is very °at in all the
dimensions except Á;³ . Therefore, responses to monetary shocks are unlikely to be

informative about many of the structural parameters. Third, the objective functions

are asymmetric in certain dimensions. For example, when cost push shocks are consid-

ered, the distance function is asymmetric in the risk aversion parameter Á, the inverse

elasticity of labor supply º and the price stickiness ³. Fourth, there are parameters

which are under-identi¯ed by certain shocks: as intuition suggests, the persistence of,

say, the cost push shock, can not be identi¯ed considering responses to other shocks.

Finally, even when responses to all shocks are used, the objective function is still °at

and asymmetric in several dimensions. Hence, weak and partial identi¯cation problems

remain, even when all the available information is used.
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Figure 6: Distance function and contour plots

Since the shapes presented in ¯gure 4 may depend on the choice of the true pa-

rameter vector, ¯gure 5 plots the concentration statistics Cµ0 (i) =
R
j 6=i
g(µ)¡g(µ0)dµ

(µ¡µ0)dµ ; i =

1; : : : ;11, when we vary µ0 over a reasonable range. Such a statistics synthetically

measures the global curvature of the objective function over a selected range of values

for the parameters (see Stock, Wight and Yogo (2002)). We present results obtained

when we match all impulse responses since, as ¯gure 4 shows, identi¯cation can not be

improved upon by matching responses to single shocks. For each µ0 reported on the

horizontal axis, we construct the statistics varying µ 2 [0:5µ0; 1:5µ0] using a grid with
100 values in each of the 11 dimensions. To interpret the ¯gure, note if the objective

function had a slope of 1, changing the value of µ0 would not change Cµ0. Furthermore,
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an objective function with a slope of 1 would produce a concentration statistics equal

to 1 throughout the range for µ0. Hence, values for Cµ0 exceeding 100 indicate "good"

curvature in the objective function. Figure 5 con¯rms that º;¸y; Á; h are weakly iden-

ti¯ed no matter what the true value of the parameter is, while for ³; ½2 identi¯cation

appears to depend on the true parameter value.
Since ¯gures 4 and 5 consider one dimension at the time, they may miss ridges in the

objective function: that is, they may miss the presence of observationally equivalent

structures, indexed by the size of two parameters. Figure 6 shows that ridges are

present: both responses to cost push and to monetary shocks carry little information

about the correct combination of ¸y and ¸¼ or º and ³.

In sum, this prototype model displays an array of potential identi¯cation problems.

In the next subsections, we investigate what happens to parameter estimates and to

statistical and economic inference in this situation.

4.1 Asymptotic properties

For the sake of presentation, we will focus on estimates obtained matching responses to

monetary policy shocks. Since the results obtained matching other shocks or all shocks

are similar, our focus does not reduce the generality of the conclusions we draw. Figure

7 reports the density of estimates obtained starting the minimization routine 500 times

from di®erent initial conditions uniformly drawn within the ranges considered on the

horizontal axis. Superimposed with a vertical bar in each box is the true parameter

value. Histograms are obtained eliminating all cases where (i) convergence failed; (ii)
the estimated parameters produce imaginary or (iii) indeterminate solutions. It is

worth mentioning that the histograms in Figure 7 do not capture sampling uncertainty

associated with the estimation of structural parameters, as the econometrician is here

endowed with the population responses. Instead, with this ¯gure we intend to display

the multivariate mapping from impulse responses to structural parameters. If the

distance function had no ridges, °at regions or local minima, this mapping would be

univocal: from any starting point one would reach the true value and the histograms

would be degenerate.
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Figure 7: Distribution of estimates

There are few interesting features we would like to comment upon. First, a number

of biases are evident. For example, there is a tendency to overestimate ¯; the mode of

the distribution of estimates of ¸¼ is located at 1.06, well below the true value of 1.55,

and the one of ¸y is located at 1.8, well above the true value 1.1. Interestingly, for

some parameters (notably » and the three ¸s) it is possible to rule out portions of the

parameter space, but it is not possible to pin down precisely the true parameter value.

For other, e.g. º, no parts of the parameter space can be completely excluded. Hence,

even disregarding sampling uncertainty, major estimation biases may be induced in
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parameters with problematic identi¯cation features.
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Figure 8: Impulse responses

Would it be possible to detect these estimation failures, for example, looking at the

minimized value of the objective function or to the resulting impulse responses? The

answer is negative. The objective function is small for all the parameter combinations

generating ¯gure 7, and as shown in ¯gure 8, population and implied responses to

monetary shocks are indistinguishable. Interestingly, responses to IS and cost push

shocks are also very similar to the true ones. Hence, parameter vectors with potentially

di®erent economic interpretations are indistinguishable when normalized responses are

used to construct objective functions 2.
2Linde (2005) has shown that maximum likelihood estimation of the parameters of a model like

ours is feasible and succesful. However, his parameters are not truely structural and identi¯cation
problems are absent. In general, there is no reason to expect maximum likelihood estiamtors to be
better endowed to deal with ridges in the parameter space than minimum distance estimators.
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For forecasting purposes these di®erences are probably unimportant: as long as the

¯t and the forecasting performance is the same, the true nature of the DGP does not

matter. However, it is unwise to attach any economic interpretation to the estimates,

draw conclusions about how the economy works, conduct policy analyses using the esti-

mated vector and, more importantly, this is true even in the ideal situation considered
in this subsection.

4.2 Weak identi¯cation and small samples

The distortions we have noted could be magni¯ed when only estimates of impulse

responses obtained with samples of small or medium sizes are available. Furthermore,
it is conceivable to have situations where the objective function is well behaved but

identi¯cation problems emerge just because of small samples. In this subsection we

are interested in (a) quantifying the importance of these problems when samples of

the size typically used in macroeconomics are employed to compute responses and (b)

further highlight some of the properties of estimates of parameters with problematic

identi¯cation features. We focus again attention on responses to policy shocks, since the

particular structure we have imposed implies that reduced form interest rate innovations

are the true monetary policy shocks. For the majority of this subsection we still assume

that the investigator knows the model and correctly identi¯es the monetary shock.

Later we examine what happens when shock identi¯cation fails. Using the log-linearized

solution, we simulate 200 time-series for interest rates, the output gap and in°ation

for T = 120;200; 1000, run an unrestricted VAR(2)3 on the simulated data, compute
impulse responses and bootstrapped con¯dence bands. We use the con¯dence bands

to build the weighting matrix: weights are inversely proportional to the uncertainty in

the estimates. Consistent with the theoretical model, we identify the monetary policy

shock as the ¯rst element of a Choleski decomposition of the covariance matrix where

the interest rate is ordered ¯rst in the VAR.

Stock and Wright (2000) have shown that identi¯cation problems in GMM frame-

works produce inconsistent estimate of weakly or under-identi¯ed parameters, that the

joint distribution of weakly (or under-identi¯ed) and properly identi¯ed parameters

is non-standard; and that standard t-statistics are, in general, invalid. While their

conclusions do not necessarily apply to our framework, one should intuitively expect
3We checked that the VAR(2) is able to correctly estimate the true impulse responses with the

correct identi¯cation when T = 5000.
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similar patterns to emerge when the objective function measures the distance of im-

pulse responses. In particular, one should expect (i) erratic properties of estimates of

weakly (or under-identi¯ed) parameters as T increases; (ii) standard errors which are

large and do not change with the sample size; and (iii) t-tests which are uninformative

about the properties of estimates.

Table 1: NK model. Matching monetary policy shocks
True values Population T = 120 T = 200 T=1000 T=1000 wrong

¯ .985 .987 (.003) .98 (.007) .98 (.006) .98 (.007) .999 (.008)

Á 2 2 (.003) 1.49 (2.878) 1.504 (1.906) 1.757 (.823) 10 (.420)

º 3 4.082 (1.653) 4.184 (1.963) 4.269 (1.763) 4.517 (1.634) 1.421 (2.33)

³ .68 .702 (.038) .644 (.156) .641 (.112) .621 (.071) .998(.072)

¸r .2 .247 (.026) .552 (.272) .481 (.266) .352 (.253) .417 (.099)

¸¼ 1.55 1.013 (.337) 1.058 (1.527) 1.107 (1.309) 1.345 (1.186) 3.607 (1.281)

¸y 1.1 1.683 (.333) 4.304 (2.111) 2.924 (2.126) 1.498 (2.088) 2.59 (1.442)

½1 .65 .5 (.212) .5 (.209) .5 (.212) .5 (.167) .5 (.188)

½2 .65 .5 (.207) .5 (.208) .5 (.213) .5 (.188) .5 (.193)

! .25 .246 (.006) 1 (.360) 1 (.35) 1 (.306) 0 (.384)

h .85 .844 (.006) 1 (.379) 1 (.321) 1 (.233) 0 (.166)

Table 1 presents a summary of our estimation results. We report true parame-

ters, median estimates and standard errors obtained using population responses and

responses estimated with di®erent T. Standard errors are computed across replications.

Few features are worth commenting upon. First, large biases are evident in the esti-

mates of the weakly identi¯ed parameters (º; ¸¼; ¸y), the under-identi¯ed parameters

(½1; ½2) and their standard errors are large. Second, parameter estimates of the identi-

¯ed parameters do not necessarily converge to the population ones as T increases (see,

for example, Á). This is consistent with the idea that the bias present in weakly and

under-identi¯ed parameters spills to the other parameters and remain signi¯cant even

in large samples. Third, parameter estimates and standard errors of weakly identi¯ed
and under-identi¯ed parameters are independent of the sample size. Fourth, and even

with 250 years of quarterly data major biases in, e.g., the two policy parameters, re-

main. Finally, and concentrating on T = 200, estimates suggest an economic behavior

which is substantially di®erent from the one characterizing the DGP. For example, it

appears that agents have preferences where the stock of habit plays an extreme role;

price indexation is complete and the Central Bank reaction to the output gap is much

stronger than the one to in°ation. Once again, armed just with impulse responses, an

investigation has little possibility to detect such interpretation problems.
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While not very favorable, the results of table 1 are a bit on the optimistic side.

Biases can be ampli¯ed if, in addition to small samples, the identi¯cation of monetary

shocks is subject to errors. To give a glimpse of how shock and parameter identi¯cation

interact, we report in the last column of table 2 estimates obtained when T = 1000

and monetary shocks are identi¯ed as the third element of a Choleski decomposition;
that is, wrongly assuming that interest rates contemporaneously responds to the output

gap and in°ation. Biases are of course evident. More interestingly, standard errors of

the estimates tend to be smaller indicating major shifts in the entire distribution of

estimates. Since signi¯cance of estimates is typically an appreciable feature in applied

work, it is possible that an investigator would prefer the (biased) estimates presented in

the last column of table 1 to the "insigni¯cant" estimates obtained in the case monetary

shocks are correctly chosen.

In conclusion, small samples exacerbate the consequences of identi¯cation problems

for estimation and inference. Weak identi¯cation combined with small samples typi-

cally lead to very biased estimates of certain structural parameters, to inappropriate

inference when conventional asymptotic theory is used to judge the signi¯cance of the
parameters and, possibly, to wrong economic interpretations. Furthermore, the practice

of showing that model's responses computed using the estimated parameters lie within

the con¯dence bands of responses estimated from the data may be uninformative, as

the objective function is close to zero at a variety of di®erent parameter values.

5 Misspeci¯cation and observational equivalence.

When the investigator knows the model, ridges in the objective function may appear

so that combinations of parameters with di®erent economic interpretation are almost

equally likely. When the true model is unknown, one can not a-priori exclude that

di®erent structures with alternative economic interpretations are almost equally likely.

Since the literature has built-in frictions in standard DSGE models to enhance its ¯t

without caring too much about their identi¯ability, we want to investigate whether

models with di®erent frictions may be indistinguishable when responses to a limited

number of shocks are considered and whether it is possible to obtain signi¯cant esti-

mates of parameters that are in fact absent from the DGP.
To study this issue we consider a model which is much richer than those employed

so far, includes real and nominal frictions, and has been shown to capture reasonably
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well important features both the US economy (see Christiano, et al. (2005), Dedola and

Neri (2004)) and the EU economy (see Smets and Wouters (2003)). The log linearized

model consists of the following 11 equations:

0 = ¡kt+1 + (1 ¡ ±)kt + ±xt

0 = ¡ut + Ãrt

0 =
´±
¹r

xt + (1 ¡ ´±
¹r

)ct ¡ ´kt ¡ (1 ¡ ´ )Nt ¡ ´ut ¡ ezt

0 = ¡Rt + ¸rRt¡1 + (1 ¡ ¸r)(¸¼¼t + ¸yyt) + ert

0 = ¡yt + ´kt + (1 ¡ ´ )Nt + ´ut + ezt

0 = ¡Nt + kt ¡ wt + (1 + Ã)rt

0 = Et[
h

1 + h
ct+1 ¡ ct +

h
1 + h

ct¡1 ¡ 1 ¡ h
(1 + h)Á

(Rt ¡ ¼t+1)]

0 = Et[
¯

1 + ¯
xt+1 ¡ xt +

1
1 + ¯

xt¡1 +
Â¡1

1 + ¯
qt +

¯
1 + ¯

ext+1 ¡ 1
1 + ¯

ext]

0 = Et[¼t+1 ¡ Rt ¡ qt + ¯(1 ¡ ±)qt+1 + ¯¹rrt+1]

0 = Et[
¯

1 + ¯°p
¼t+1 ¡ ¼t +

°p

1 + ¯°p
¼t¡1 + Tp(´rt + (1 ¡ ´)wt ¡ ezt + ept)]

0 = Et[
¯

1 + ¯
wt+1 ¡ wt +

1
1 + ¯

wt¡1 +
¯

1 + ¯
¼t+1 ¡

1 + ¯°w

1 + ¯
¼t +

°w

1 + ¯°w
¼t¡1 ¡ Tw (wt ¡ ºNt ¡ '

1 ¡ h
(ct ¡ hct¡1) ¡ ewt)]

The ¯rst equation describes capital accumulation, ± is the depreciation rate, and xt
is current investment; the second equation links capacity utilization ut to the real rate rt
and Ã is a parameter; the third equation is the resource constraint linking consumption

ct and investment expenditures to output, where ¹r is the steady state interest rate

and ezt is a technological disturbance; the fourth equation represents the monetary

policy rule and ert is a monetary policy disturbance; the ¯fth equation represents

the production function, where ´ is the capital share; the sixth equation is a labor

demand equation, where Nt is hours worked and wt the real wage rate; the seventh

equation is an Euler equation for consumption, where h captures habit persistence, Á

is the risk aversion coe±cient and ¼t the current in°ation rate; the eight equation is
an Euler equation for investment, where qt is Tobin's q, ¯ is the discount factor, Â¡1

the elasticity of investment with respect to Tobin's q and ext an investment shock; the

ninth equation describes the dynamics of the Tobin's q; the last two equations represent

the wage setting and the price setting equations: °p(°w) is a price (wage) indexation

parameter, ³p(³w) a price (wage) stickiness parameter, º is the inverse elasticity of
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labor supply, ept(ewt) are shocks to the pricing relationships, and Tp ´ (1¡¯³p)(1¡³p)
(1+¯°p)³p

and Tw ´ (1¡¯³w)(1¡³w)
(1+¯)(1+(1+²w)º²

¡1
w )³w

, where ²w is a wage markup. The vector of parameters

includes the structural ones: µ1 = (¯;Á;º; h; ±;´;Â;Ã;°p; °w; ³p; ³w; ²w;¸r;¸¼; ¸y) and

the auxiliary ones µ2 = (½z; ½x; ¾z ;¾r; ¾p;¾w; ¾x), where ½z; ½x represent the persistence

of the technology and investment shocks and ¾i; i = 1; : : : 5 the standard deviation of

the disturbances. As usual ¾i's are not identi¯ed from the normalized responses and

the persistence parameters are identi¯ed only when own shocks are considered.
To ¯rst show the identi¯cation problems a researcher faces in matching the responses

of such a model we construct population responses using the posterior mean estimates

for the US economy obtained by Dedola and Neri (see table 2) and examine the shape

of the distance function in the neighborhood of this vector, one parameter at a time.

Table 2. Parameter values

µ1 :

¯ = 0:991 Á = 3:014 º = 2:145 h = 0:448
± = 0:0182 ´ = 0:209 Â = 6:300 Ã = 0:564
°p = 0:862 °w = 0:221 ³p = 0:887 ³w = 0:620
²w = 1:2 ¸r = 0:779 ¹¼ = 1:016 ¸¼ = 1:454

¸y = 0:234

; µ2 :

½z = 0:997 ¾p = 0:221
½x = 0:522 ¾w = 0:253
¾z = 0:0064 ¾x = 0:557
¾r = 0:0026

Figure 9, which plots the distance function when we consider monetary and tech-

nology shocks jointly, shows that the problems previously noted are present to a much

larger degree here. For example, the local derivative of the objective function with

respect to many of the parameters is very °at (the scale of the graphs is 10e-7), some-

what asymmetric and this is true for a even larger range of values for the parameters.

Moreover, there is a multidimensional ridge in the price stickiness (³p), price indexation

(°p), wage stickiness (³w) and wage indexation (°w) parameters (see ¯gure 10). That

is, there are several combinations of these parameters which produce an objective func-

tion which is close to zero. Note that, at least in these dimensions, the use of responses
to technology shocks does not help: identi¯cation of these parameters is as problematic

considering or disregarding TFP or investment speci¯c disturbances.
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Figure 9. Objective function: monetary and technology shocks

Armed with this evidence, we consider a few alternative models where either stick-

iness or indexation in wage or prices is eliminated from the true DGP and estimate

the parameters of the fully °edged model. Table 3 reports our estimation results when

population responses are used and di®erent speci¯cation considered. For each spec-

i¯cation there are four rows: they report results obtained starting the minimization
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routine at di®erent points4. In cases 1 to 5 and 7 only responses to monetary shocks

are used; in case 6 responses to monetary and technology shocks are employed. Esti-

mates appear without standard errors since, as in Neely, Roy and Whiteman (2001), it

is impossible to invert the Hessian at the selected estimates as its determinant is zero

at machine precision, indicating not only weak but also under-identi¯cation of two or
more parameters.
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Figure 10: Distance surfaces and Contour Plots

4For each parameter µi, we select an economically reasonable interval [a b] and assume a uniform
distribution on it. The starting values are selected as: a+ j ¤ stderr(µj ) or b ¡ j ¤ stderr(µj), where
j = 1;2:
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Table 3. Estimation results
³p °p ³w °w Obj.Fun.

Baseline 0.887 0.862 0.62 0.221
x0 = lb + 1std 0.8944 0.8251 0.615 0 1.8235E-07

x0 = lb + 2std 0.8924 0.7768 0.6095 0.1005 3.75E-07

x0 = ub - 1std 0.882 0.7957 0.6062 0.1316 2.43E-07

x0 = ub - 2std 0.9044 0.7701 0.6301 0 8.72E-07

Case 1 0 0.862 0.62 0.221
x0 = lb + 1std 0.1304 0.0038 0.6401 0.245 2.7278E-08

x0 = lb + 2std 0.1015 0.0853 0.6065 0.1791 4.84E-08

x0 = ub - 1std 0.0701 0.1304 0.6128 0.1979 4.72E-08

x0 = ub - 2std 0.0922 0.0749 0.618 0.215 3.05E-08

Case 2 0 0 0.62 0.221
x0 = lb + 1std 0.1396 0.0072 0.6392 0.2436 3.1902E-08

x0 = lb + 2std 0.0838 0.1193 0.6044 0.1683 4.38E-08

x0 = ub - 1std 0.0539 0.1773 0.6006 0.1575 5.51E-08

x0 = ub - 2std 0.0789 0.0971 0.6114 0.1835 2.61E-08

Case 3 0 0.862 0.62 0
x0 = lb + 1std 0.0248 0 0.6273 0.029 7.437E-09

x0 = lb + 2std 0.4649 0 0.7443 0.4668 2.10E-06

x0 = ub - 1std 0.0652 0.0004 0.6147 0.0447 7.13E-08

x0 = ub - 2std 0.6463 0.2673 0.8222 0.3811 5.56E-06

Case 4 0.887 0 0.62 0.8
x0 = lb + 1std 0.9264 0.3701 0.637 0.4919 3.5156E-07

x0 = lb + 2std 0.9076 0.2268 0.6415 0.154 3.51E-07

x0 = ub - 1std 0.9014 0.3945 0.6477 0 6.12E-07

x0 = ub - 2std 0.9263 0.3133 0.6294 0.4252 4.13E-07

Case 5 0.887 0 0 0.221
x0 = lb + 1std 0.9186 0.3536 0.0023 0 4.7877E-07

x0 = lb + 2std 0.8994 0.234 0 0 3.06E-07

x0 = ub - 1std 0.905 0.3494 0.0021 0 4.14E-07

x0 = ub - 2std 0.9343 0.5409 0.0042 0 9.64E-07

Case 6 0.887 0 0 0.221
x0 = lb + 1std 0.877 0.0123 0.0229 0 2.4547E-06

x0 = lb + 2std 0.8919 0.0411 0.0003 0 4.26E-07

x0 = ub - 1std 0.907 0.2056 0.001 0.0001 6.58E-07

x0 = ub - 2std 0.8839 0.0499 0.0189 0 2.46E-06

Case 7 0.887 0 0 0.221
x0 = lb + 1std 0.9056 0.2747 0.0154 0.25 1.60E-06

x0 = lb + 2std 0.9052 0.2805 0 0.25 2.41E-07

x0 = ub - 1std 0.9061 0.3669 0.0003 0.25 4.26E-07

x0 = ub - 2std 0.8985 0.194 0.001 0.25 2.07E-07
lb is the economic lower bound and ub is the economic upper bound.
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Several interesting features are present in Table 3. First, in the baseline case, price

and wage indexations are estimated to be smaller than the true ones. Hence, even

when the model is correct, the ridge in (°p; °w) dimensions makes it hard to unbiasedly

select these parameters, even though the economic bias is minor. Second, responses

to monetary shocks can not distinguish models featuring price indexation from models
missing this feature (compare cases 1 and 2); it possible to confuse a model with no

price stickiness and no wage indexation with a model where these two features exist

but no price indexation is present (see case 3); models with no price indexation and

high wage indexation are observationally equivalent to models where both features are

present and roughly of the same size (see case 4). Finally, a model where prices are

sticky and wages are partially indexed can not be distinguished from a model which

features substantial price indexation but no wage stickiness or wage indexation (case

5). Third, in all the cases, the minimized objective function is within the tolerance

limit. Also in this case, taking the estimates producing the in¯mum of the objective

function fails to solve the problem since the ridge in (°p; °w) is extremely °at. This fact

can be clearly appreciated in ¯gure 11, where we report responses to monetary shocks
obtained in case 5 with true and estimated parameters: any investigators looking at

this graph would have no doubt that she has nailed down the correct model! Can these

problems can be reduced if responses to a larger number of shocks are considered? Case

6 reports estimates of the parameters obtained jointly using responses to monetary and

technology shocks, and little improvements obtain.

It is important to stress the results we present are obtained in the ideal conditions

in which the population responses are available. Clearly, the observationally equivalent

problem could be made considerably worse if the weighting matrix is altered, the num-

ber of responses for each variables or the number of variables consider reduced, and

only sample responses are available.

Could we reduce the observational equivalence problem using external information
to ¯x some of the parameters? Such a strategy is unlikely to work here, since the

ridge producing partial identi¯cation is multidimensional. Hence, we need to ¯x three

of the four troublesome parameters and at the right value. The last row of Table 3

(case 7) reports estimates obtained for the model of case 5 when °w is ¯xed to 0.25.

The observational equivalence problem has not disappeared: ¯xing one dimension of

indeterminacy (and ¯xing it about right) does not help in estimating °p.
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Figure 11: Impulse responses, Case 5

In models like this where partial, weak and observational equivalence problems are

present, one needs to bring a lot of information external to the dynamics of the model,

as for example it is done in Christiano et. al. (2005), to be able to interpret estimates.

It then becomes crucial where this external information comes from and whether it is

reliable or not.

6 Detecting identi¯cation problems

One way to respond to the results we have presented is to argue that the models

we considered are not even close to the true DGP of the real world. Therefore, our

exercises are irrelevant and the models should not be used to ¯t the data or to conduct

policy analysis. We think this conclusion is unwarranted, ¯rst because there are few
operational alternatives to the models we have examined and, second, because these

setups are likely to face similar problems unless the complexities due to optimizing

agents, budget constraints and market clearing conditions are removed from the setup.

Rather than denying their existence, we ¯nd it more useful to think about ways to

detect potential problems and to understand what are the features of the model econ-
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omy that could lead to them. The graphical analysis we have used could be routinely

and costlessly implemented and lots of information gathered this way. However, such

an analysis can be strengthened using formal methods. As seen in section 2, three

conditions need to be satis̄ ed for proper identi¯cation. First, the objective function

must have a unique zero. Second, the Hessian at the zero must be positive de¯nite and
possesses full rank. Third, its curvature must be "su±cient". Since under, partial and

weak identi¯cation all induce Hessians which are rank de¯cient or fail to have su±cient

curvature, we concentrate on this latter property.

How do one check for the rank of the Hessian? Cragg and Donald (1997) have

provided a procedure to do this. Let h = vech(H) and let d(L) = (h¡ p)0(h¡p), where

p = vech(P ) and P is a matrix of rank L. Under regularity conditions, when an estimate

ĥ is available, Td(L) ! Â2, where the degrees of freedom are (K¡L)(K¡L¡1)=2¡K ,

K(K +1)=2 is the number of free elements of H and for L < L0, the true rank, Td(L)

is divergent, while for L ¸ L0, Td(L) · Td(L0).

Alternatively, Anderson (1984, p.475) has shown that estimates of the eigenvalues

of a matrix when properly scaled have an asymptotic standard normal distribution.
Therefore, the null hypothesis of full rank can be tested against the alternative of

rank de¯ciency examining whether the smallest of the eigenvalues of the Hessian is

zero. Since the magnitude of the eigenvalues may depend on the unit of measurements,

Anderson also suggests to test the null that the sum of the smallest k0 eigenvalues to

the average of all k eigenvalues is large. This ratio is also asymptotically normally

distributed with zero mean and unit variance when properly scaled, and it is useful

since the alternative accounts for the possibility that none of the ¯rst k0 eigenvalues is

zero but that all of them are small (generating weak identi¯cation problems).

We apply this last test to the Hessian of the objective function of the model of

section 5 at the values estimated in case 5. The Hessian is calculated using the outer

product of the gradient produced by the minimization routine. The test con¯rms the
presence of signi¯cant rank de¯ciencies. In fact, thirteen of the eighteen roots of the

Hessian are small: the sum of the ¯rst 12 roots is only 1.0 percent of the average root,

the sum of the ¯rst 13 roots is 1.8 percent of the average root and the ¯rst root is

calculated to be smaller than 1:0e¡10. Therefore, at least 12 of the parameters of the

model can not be identi¯ed from the responses to monetary shocks. The situation

slightly improves when we use both monetary and technology shocks (case 6), but not

by much: the sum of the ¯rst 12 roots is 2.1 percent of the average root. Staring at
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¯gure 9, it is easy to verify that the parameters associated with the 12 small eigenvalues

are (½z; ¯;Á;º; h; ±;´;°p; °w; ²w; ¸¼ ;¸y). Interestingly, several of these parameters were

also those creating identi¯cation problems in the smaller version of the model considered

in section 4. Therefore, adding variables (and responses) does not necessarily improves

the identi¯ability of e.g., h; ¯;¸y; ¸¼ ; º; it is di±cult to distinguish backward from
forward looking dynamics both in prices and wages; and there is very little information

to select production, capacity and depreciation parameters. The data appears to be

informative only for the parameters for which we had information in the smaller model,

(i.e. the risk aversion coe±cient Á, the price stickiness ³p), for the inverse elasticity of

investments with respect to Tobin0s q Â, and, partially, for the wage stickiness ³w. Once

again, the fact that the low of motion of the states of the model is roughly insensitive

to variations of these structural parameters in a neighborhood of the estimated values

is responsible for the lack of curvature 5.

7 Conclusions and suggestions for empirical practice

Liu (1960) and, twenty years later, Sims (1980) have argued that traditional models of

simultaneous equations were hopelessly under-identi¯ed and that identi¯cation of an

economic structure was often achieved not because there was su±cient information but

because researchers wanted it to be so - limiting the number of variables in an equation

or eschewing a numbers of equations from the model.
Since then models have dramatically evolved, precise microfundations were added,

general equilibrium features taken into account, and economic measures of ¯t designed.

Still, it appears that a large class of popular log-linearized DSGE structures is close

to being under-identi¯ed; observational equivalence is widespread; and reasonable esti-

mates are obtained not because the data is informative but because of a-priori restric-

tions, which make the likelihood of the data (or a portion of it) informative. In these

situations, structural parameter estimation amounts to sophisticated calibration and

this makes model evaluation and economic inference hard. In fact, lack of information

makes models untestable: no experiment will ever be to contradict prior restrictions

and, viceversa, prior restrictions appear always to be satis¯ed in the data.
5Anderson's test depends on the true values of the structural parameters. Since it is di±cult to

produce consistent estimates when identi¯cation problems are present, one may want to repeat the test
at a number of points and take, e.g., the supremum of the sum of the ¯rst k0 eigenvalues relative to the
average eigenvalue. By usual arguments (see Wright (2003)), the test computed this way is conservative
in the sense that the null hypothesis will be rejected less often than the nominal size.
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A study of identi¯cation issues like ours, beside ringing a warning bell, is useful in

practice only to the extent it gives applied researchers a strategy to detect problems

and means to either avoid them in estimation and inference or to develop theoretical

speci¯cations which overcome the lack of identi¯ability of the structural parameters.

Providing such a set of tools is complicated since the relationship between parameters
and impulse responses (or the likelihood function) is highly non-linear; the mapping is

unknown and only an approximation is available; problems are multidimensional and

simple diagnostics are unsuitable to understand the sources of identi¯cation failure.

This paper provides some hints on how to approach such an issue. We summarize

our suggestions as a list of non-exhaustive steps which we recommend applied inves-

tigators to check before attempting structural estimation. First, plotting the shape of

objective function, a few dimensions at the time, may provide useful indications for the

presence of potential identi¯cation problems and point out parameters responsible for

them. Second, testing the rank of the Hessian (or the magnitude of its smaller eigen-

values) provides formal statistical evidence for the visual tendencies that plots may

deliver. Since such tests are unlikely to be able to distinguish which particular problem
is present, they should be used as general speci¯cation diagnostic for the presence of

information de¯ciencies. Furthermore, since these tests are simple to compute and, in

principle, applicable to any point in the parameter space, exploration of the properties

of the Hessian at or around e.g., standard calibrated parameters, should logically pre-

cede model estimation. Third, simpli¯ed versions of the model may give some economic

intuition for why identi¯cation problems emerge - as we have seen in the case of a sim-

ple RBC model - as could the use of several limited information objective functions -

as we have done with the simple New-Keynesian model. Working with small versions

of large models or with portions of their dynamic implications is the only constructive

way to understand source of identi¯cation failures and help with model respeci¯cation.

Fourth, and practically speaking, the smaller is the number of cross equation and cross
horizon restrictions used in estimation, the larger is the chance that identi¯cation prob-

lems will be present. This suggests to use as many implications of the model as possible

- both in terms of variables, number responses and number of structural shocks - de

facto eliminating the hedge that limited information approaches have over likelihood

methods, both of classical or Bayesian °avours. Fifth, lacking prior information on the

structural parameters, one could attempt to obtain estimates via S-sets, as suggested

by Stock and Wright (2000), rather than minimize the distance between impulse re-
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sponses. Such an approach is appealing because estimates are consistent and robust

to identi¯cation problems. Finally, scienti¯c honesty demands that the speci¯cation of

the model is based on prior knowledge of the phenomenon, not on the desire to identify

the characteristics a researcher happens to be interested in. Nevertheless, resisting the

temptation to arbitrarily induce identi¯ability is the only way to make DSGE models
veri¯able and knowledge about them accumulate on solid ground.
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