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Abstract

This paper provides a general framework that enables many existing inference methods for

predictive accuracy to be used in applications that involve forecasts of latent target variables.

Such applications include the forecasting of volatility, correlation, beta, quadratic variation,

jump variation, and other functionals of an underlying continuous-time process. We provide

primitive conditions under which a “negligibility” result holds, and thus the asymptotic size

of standard predictive accuracy tests, implemented using high-frequency proxies for the latent

variable, is controlled. An extensive simulation study verifies that the asymptotic results apply

in a range of empirically relevant applications, and an empirical application to correlation

forecasting is presented.
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1 Introduction

A central problem in times series analysis is the forecasting of economic variables, and in financial

applications the variables to be forecast are often risk measures, such as volatility, beta, correlation,

or jump variation. Since the seminal work of Engle (1982), numerous models have been proposed

to forecast risk measures, and these forecasts are of fundamental importance in financial decisions.

The problem of evaluating the performance of these forecasts is complicated by the fact that many

risk measures, although well-defined in models, are not directly observable. A large literature has

evolved presenting methods for inference for forecast accuracy, however existing work typically

relies on the observability of the forecast target; see Diebold and Mariano (1995), West (1996),

White (2000), Giacomini and White (2006), McCracken (2007), Romano and Wolf (2005), and

Hansen, Lunde, and Nason (2011), as well as West (2006) for a review. The goal of the current

paper is to extend the applicability of the aforementioned methods to settings with an unobservable

forecast target variable.

Our proposal is to implement the standard forecast evaluation methods, such as those men-

tioned above, with the unobservable target variable replaced by a proxy computed using high-

frequency (intraday) data. Competing forecasts are evaluated with respect to the proxy by using

existing inference methods proposed in the above papers. Prima facie, such inference is not of

direct economic interest, in that a good forecast for the proxy may not be a good forecast of the

latent target variable. The gap, formally speaking, arises from the fact that hypotheses concerning

the proxy are not the same as those concerning the true target variable. We fill this gap by pro-

viding high-level conditions that lead to a “negligibility” result, which shows that the asymptotic

level and power properties of the existing inference methods are valid not only under the “proxy

hypotheses,” but also under the “true hypotheses.” The theoretical results are supported by an

extensive and realistically calibrated Monte Carlo study.

The high-level assumptions underlying our theory broadly involve two conditions. The first

condition imposes an abstract structure on the inference methods with an observable target vari-

able, which enables us to cover many predictive accuracy methods proposed in the literature as

special cases, including almost all of the papers cited above. The second condition concerns the

approximation accuracy of the proxy relative to the latent target variable, and we provide primitive

conditions for general classes of high-frequency based estimators of volatility and jump functionals,

which cover almost all existing estimators as special cases, such as realized (co)variation, truncated

(co)variation, bipower variation, realized correlation, realized beta, jump power variation, realized

semivariance, realized Laplace transform, realized skewness and kurtosis.

The main contribution of the current paper is methodological: we provide a simple but general

framework for studying the problem of testing for predictive ability with a latent target variable.
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Our results provide ex-post justification for existing empirical results on forecast evaluation using

high-frequency proxies, and can readily be applied to promote further studies on a wide spectrum

of risk measures and high-frequency proxies using a variety of evaluation methods. In obtaining

our main result we make two other contributions. The first is primarily pedagogical: we present

a simple unifying framework for considering much of the extant literature on forecast evaluation,

including Diebold and Mariano (1995), West (1996), McCracken (2000), White (2000), Giacomini

and White (2006), and McCracken (2007), which also reveals avenues for further extension to

the framework proposed here. The second auxiliary contribution is technical: in the process of

verifying our high-level assumptions on proxy accuracy, we provide results on the rate of conver-

gence for a comprehensive collection of high-frequency based estimators for general multivariate Itô

semimartingale models. Such results may be used in other applications involving high-frequency

proxies, such as the estimation and specification problems considered by Corradi and Distaso

(2006), Corradi, Distaso, and Swanson (2009, 2011) and Todorov and Tauchen (2012b).

We illustrate our approach in an application involving competing forecasts of the conditional

correlation between stock returns. We consider four forecasting methods, starting with the popular

“dynamic conditional correlation” (DCC) model of Engle (2002). We then extend this model to

include an asymmetric term, as in Cappiello, Engle, and Sheppard (2006), which allows correlations

to rise more following joint negative shocks than other shocks, and to include the lagged realized

correlation matrix, which enables the model to exploit higher frequency data, in the spirit of

Noureldin, Shephard, and Sheppard (2012). We find evidence, across a range of correlation proxies,

that including high frequency information in the forecast model leads to out-of-sample gains in

accuracy, while the inclusion of an asymmetric term does not lead to such gains.

The existing literature includes some work on forecast evaluation for latent target variables

using proxy variables. In their seminal work, Andersen and Bollerslev (1998) advocate using the

realized variance as a proxy for evaluating volatility forecast models; also see Andersen, Bollerslev,

Diebold, and Labys (2003), Andersen, Bollerslev, and Meddahi (2005) and Andersen, Bollerslev,

Christoffersen, and Diebold (2006). A theoretical justification for this approach was proposed by

Hansen and Lunde (2006) and Patton (2011), based on the availability of conditionally unbiased

proxies. Their unbiasedness condition must hold in finite samples, which is generally hard to verify

except for specially designed examples. In contrast, our framework uses an asymptotic argument

and is applicable for most known high-frequency based estimators, as shown in Section 3.

The current paper is also related to the large and growing literature on high-frequency econo-

metrics (see Jacod and Protter (2012)). In the process of verifying our high-level assumptions

on the approximation accuracy of the proxies, we provide rates of convergence for general classes

of high-frequency based estimators. These results are related to, but different from, the fill-in

asymptotic result used by Jacod and Protter (2012), among others. Indeed, we consider a large-T
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asymptotic setting with the mesh of the possibly irregular sampling grids of high-frequency data

going to zero in “later” sample periods. We refer to our asymptotic setting as “eventually fill-in

asymptotics.” Moreover, we also consider (oft-neglected) situations in which the asymptotic distri-

bution of the high frequency estimator is unavailable, such as realized skewness, bipower variation

and semivariance in the presence of jumps, and truncation-based estimators in cases with “active

jumps.” Further technical discussion of the literature is presented in Section 3.6.

The paper is organized as follows. Section 2 presents the main theory. Section 3 verifies high-

level assumptions on the proxy under primitive conditions. Section 4 provides extensions of some

popular forecast evaluation methods that do not fit directly into our baseline framework. Monte

Carlo results and an empirical application are in Sections 5 and 6, respectively. All proofs are in

the Supplemental Material to this paper, which also contains some additional simulation results.

Notation

All limits below are for T →∞. We use
P−→ to denote convergence in probability and

d−→ to

denote convergence in distribution. All vectors are column vectors. For any matrix A, we denote

its transpose by Aᵀ and its (i, j) component by Aij . The (i, j) component of a matrix-valued

stochastic process At is denoted by Aij,t. We write (a, b) in place of (aᵀ, bᵀ)ᵀ. The jth component

of a vector x is denoted by xj . For x, y ∈ Rq, q ≥ 1, we write x ≤ y if and only if xj ≤ yj for any

j ∈ {1, . . . , q}. For a generic variable X taking values in a finite-dimensional space, we use κX to

denote its dimensionality; the letter κ is reserved for such use. The time index t is interpreted in

continuous time. For simplicity, we refer to the time unit as a “day” while it can also be a week, a

month, etc.; the words “daily”, “intraday”, “intradaily” should be interpreted accordingly. We use

‖·‖ to denote the Euclidean norm of a vector, where a matrix is identified as its vectorized version.

For each p ≥ 1, ‖·‖p denotes the Lp norm. We use ◦ to denote the Hadamard product between two

identically sized matrices, which is computed simply by element-by-element multiplication. The

notation ⊗ stands for the Kronecker product. For two sequences of strictly positive real numbers

at and bt, t ≥ 1, we write at � bt if and only if the sequences at/bt and bt/at are both bounded.

2 The main theory

This section presents the main theoretical results of the paper based on high level conditions. In

Section 2.1 we link existing tests of predictive ability into a unified framework, and in Section 2.2

we consider the extension of these tests to handle latent target variables and present the main

theorem (Theorem 2.1). Primitive conditions for the main theorem are presented in the next

section.
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2.1 Testing predictive accuracy with an observable target

We start with the basic problem with an observable forecast target. Let Yt be the time series to

be forecast, taking values in Y ⊆ RκY . At time t, the forecaster uses data Dt ≡ {Ds : 1 ≤ s ≤ t}
to form a forecast of Yt+τ , where the horizon τ ≥ 1 is fixed throughout the paper. We consider

k̄ competing sequences of forecasts of Yt+τ , collected by Ft+τ = (F1,t+τ , . . . , Fk̄,t+τ ). In practice,

Ft+τ is often constructed from forecast models involving some parameter β which is typically finite-

dimensional but may be infinite-dimensional if nonparametric techniques are involved. We write

Ft+τ (β) to emphasize such dependence, and refer to the function Ft+τ (·) as the forecast model.

Let β̂t be an estimator of β using (possibly a subset of) the dataset Dt and β∗ be its “population”

analogue.1

We sometimes need to distinguish two types of forecasts: the actual forecast Ft+τ = Ft+τ (β̂t)

and the population forecast Ft+τ (β∗). This distinction is useful when a researcher is interested

in using the actual forecast Ft+τ to make inference concerning Ft+τ (β∗), that is, an inference

concerning the forecast model (see, e.g., West (1996)). If, on the other hand, the researcher is

interested in assessing the performance of the actual forecasts in Ft+τ , she can set β∗ to be empty

and treat the actual forecast as an observable sequence (see, e.g., Diebold and Mariano (1995)

and Giacomini and White (2006)). Therefore, an inference framework concerning Ft+τ (β∗) can

also be used to make inference for the actual forecasts; we hence adopt this general setting in our

framework.2

Given the target Yt+τ , the performance of the competing forecasts in Ft+τ is measured by

ft+τ ≡ f(Yt+τ , Ft+τ (β̂t)), where f (·) is a known measurable Rκf -valued function. Typically, f(·)
is the loss differential between competing forecasts. We also denote f∗t+τ ≡ f(Yt+τ , Ft+τ (β∗)) and

set

f̄T ≡ P−1
T∑
t=R

ft+τ , f̄∗T ≡ P−1
T∑
t=R

f∗t+τ , (2.1)

where T is the size of the full sample, P = T − R + 1 is the size of the prediction sample and R

is the size of the estimation sample.3 In the sequel, we always assume P � T as T →∞ without

further mention, while R may be fixed or goes to ∞, depending on the application.

Our baseline theory concerns two classical testing problems for forecast evaluation: testing

for equal predictive ability (one-sided or two-sided) and testing for superior predictive ability.

1If the forecast model is correctly specified, β∗ is the true parameter of the model. In general, β∗ is considered

as the pseudo-true parameter.
2The “generality” here should only be interpreted in a notational, instead of an econometric, sense, as the

econometric scope of Diebold and Mariano (1995) and Giacomini and White (2006) is very different from that of

West (1996). See Giacomini and White (2006) and Diebold (2012) for more discussion.
3The notations PT and RT may be used in place of P and R. We follow the literature and suppress the dependence

on T . The estimation and prediction samples are often called the in-sample and (pseudo-) out-of-sample periods.
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Formally, we consider the following hypotheses: for some user-specified constant χ ∈ Rκf ,

Proxy Equal

Predictive Ability

(PEPA)


H0 : E

[
f∗t+τ

]
= χ for all t ≥ 1,

vs. H1a : lim infT→∞ E[f̄∗j,T ] > χj for some j ∈ {1, . . . , κf} ,

or H2a : lim infT→∞ ‖E[f̄∗T ]− χ‖ > 0,

(2.2)

Proxy Superior

Predictive Ability

(PSPA)

{
H0 : E[f∗t+τ ] ≤ χ for all t ≥ 1,

vs. Ha : lim infT→∞ E[f̄∗j,T ] > χj for some j ∈ {1, . . . , κf} ,
(2.3)

where H1a (resp. H2a) in (2.2) is the one-sided (resp. two-sided) alternative. In practice, χ is

often set to be zero.4 In Section 2.2 below, Yt+τ plays the role of a proxy for the latent true

forecast target, which explains the qualifier “proxy” in the labels of the hypotheses above. These

hypotheses allow for data heterogeneity and are cast in the same fashion as in Giacomini and White

(2006). Under (mean) stationarity, these hypotheses coincide with those considered by Diebold

and Mariano (1995), West (1996) and White (2000), among others. We note that, by setting the

function f(·) properly, the hypotheses in (2.2) can also be used to test for forecast encompassing

and forecast unbiasedness.5

We consider a test statistic of the form

ϕT ≡ ϕ(aT (f̄T − χ), a′TST ) (2.4)

for some measurable function ϕ : Rκf × S 7→ R, where aT → ∞ and a′T are known deterministic

sequences, and ST is a sequence of S-valued estimators that is mainly used for studentization.6 In

almost all cases, aT = P 1/2 and a′T ≡ 1; recall that P increases with T . An exception is given by

Example 2.4 below. In many applications, ST plays the role of an estimator of some asymptotic

variance, which may or may not be consistent (see Example 2.2 below); S is then the space of

positive definite matrices. Further concrete examples are given below.

Let α ∈ (0, 1) be the significance level of a test. We consider a (nonrandomized) test of the

form φT = 1{ϕT > zT,1−α}, that is, we reject the null hypothesis when the test statistic ϕT is

greater than some critical value zT,1−α. We now introduce some high-level assumptions on the test

statistic and the critical value for conducting tests based on PEPA and PSPA.

Assumption A1: (aT (f̄T −E[f̄∗T ]), a′TST )
d−→ (ξ, S) for some deterministic sequence aT →∞

and a′T , and random variables (ξ, S). Here, (aT , a
′
T ) may be chosen differently under the null and

the alternative hypotheses, but ϕT is invariant to such choice.

4Allowing χ to be nonzero incurs no additional cost in our deriviations. This flexibility is useful in the design of

Monte Carlo experiment that examines the finite-sample performance of the asymptotic theory below. See Section

5 for details.
5See p. 109 in West (2006).
6The space S changes across applications, but is always implicitly assumed to be a Polish space.
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Assumption A1 covers many existing methods as special cases. We discuss a list of examples

below for concreteness.

Example 2.1: Giacomini and White (2006) consider tests for equal predictive ability between

two sequences of actual forecasts, or “forecast methods” in their terminology, assuming R fixed.

In this case, f(Yt, (F1,t, F2,t)) = L(Yt, F1,t) − L(Yt, F2,t) for some loss function L(·, ·). Moreover,

one can set β∗ to be empty and treat each actual forecast as an observed sequence; in particular,

ft+τ = f∗t+τ and f̄T = f̄∗T . Using a CLT for heterogeneous weakly dependent data, one can

take aT = P 1/2 and verify aT (f̄T − E[f̄T ])
d−→ ξ, where ξ is centered Gaussian with its long-

run variance denoted by Σ. We then set S = Σ and a′T ≡ 1, and let ST be a HAC estimator

of S (Newey and West (1987), Andrews (1991)). Assumption A1 then follows from Slutsky’s

lemma. Diebold and Mariano (1995) intentionally treat the actual forecasts as primitives without

introducing the forecast model (and hence β∗); their setting is also covered by Assumption A1 by

the same reasoning.

Example 2.2: Consider the same setting as in Example 2.1, but let ST be an inconsistent

long-run variance estimator of Σ as considered by, for example, Kiefer and Vogelsang (2005). Using

their theory, we verify (P 1/2(f̄T − E[f̄T ]), ST )
d−→ (ξ, S), where S is a (nondegenerate) random

matrix and the joint distribution of ξ and S is known, up to the unknown parameter Σ, but is

nonstandard.

Example 2.3: West (1996) considers inference on nonnested forecast models in a setting with

R→∞. West’s Theorem 4.1 shows that P 1/2(f̄T−E[f̄∗T ])
d−→ ξ, where ξ is centered Gaussian with

its variance-covariance matrix denoted here by S, which captures both the sampling variability of

the forecast error and the discrepancy between β̂t and β∗. We can set ST to be the consistent

estimator of S as proposed in West’s comment 6 to Theorem 4.1. Assumption A1 is then verified

by using Slutsky’s lemma for aT = P 1/2and a′T ≡ 1. West’s theory relies on the differentiability

of the function f(·) with respect to β and concerns β̂t in the recursive scheme. Similar results

allowing for a nondifferentiable f(·) function can be found in McCracken (2000); Assumption A1

can be verified similarly in this more general setting.

Example 2.4: McCracken (2007) considers inference on nested forecast models allowing for

recursive, rolling and fixed estimation schemes, all with R → ∞. The evaluation measure ft+τ is

the difference between the quadratic losses of the nesting and the nested models. For his OOS-t

test, McCracken proposes using a normalizing factor Ω̂T = P−1
∑T

t=R(ft+τ− f̄T )2 and consider the

test statistic ϕT ≡ ϕ(P f̄T , P Ω̂T ), where ϕ(u, s) = u/
√
s. Implicitly in his proof of Theorem 3.1, it

is shown that under the null hypothesis of equal predictive ability, (P (f̄T−E[f̄∗T ]), P Ω̂T )
d−→ (ξ, S),

where the joint distribution of (ξ, S) is nonstandard and is specified as a function of a multivariate

Brownian motion. Assumption A1 is verified with aT = P , a′T ≡ P and ST = Ω̂T . The nonstandard
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rate arises as a result of the degeneracy between correctly specified nesting models. Under the

alternative hypothesis, it can be shown that Assumption A1 holds for aT = P 1/2 and a′T ≡ 1, as

in West (1996). Clearly, the OOS-t test statistic is invariant to the change of (aT , a
′
T ), that is,

ϕT = ϕ(P 1/2f̄T , Ω̂T ) holds. Assumption A1 can also be verified for various (partial) extensions of

McCracken (2007); see, for example, Inoue and Kilian (2004), Clark and McCracken (2005) and

Hansen and Timmermann (2012).

Example 2.5: White (2000) considers a setting similar to West (1996), with an emphasis on

considering a large number of competing forecasts, but uses a test statistic without studentization.

Assumption A1 is verified similarly as in Example 2.3, but with ST and S being empty.

Assumption A2: ϕ (·, ·) is continuous almost everywhere under the law of (ξ, S).

Assumption A2 is satisfied by all standard test statistics in this literature: for simple pair-wise

forecast comparisons, the test statistic usually takes the form of t-statistic, that is, ϕt-stat(ξ, S) =

ξ/
√
S. For joint tests it may take the form of a Wald-type statistic, ϕWald(ξ, S) = ξᵀS−1ξ,

or a maximum over individual (possibly studentized) test statistics ϕMax(ξ, S) = maxi ξi or

ϕStuMax(ξ, S) = maxi ξi/
√
Si.

Assumption A2 imposes continuity on ϕ (·, ·) in order to facilitate the use of the continuous

mapping theorem for studying the asymptotics of the test statistic ϕT . More specifically, under

the null hypothesis of PEPA, which is also the null least favorable to the alternative in PSPA

(White (2000), Hansen (2005)), Assumption A1 implies that (aT (f̄T − χ), a′TST )
d−→ (ξ, S). By

the continuous mapping theorem, Assumption A2 then implies that the asymptotic distribution of

ϕT under this null is ϕ(ξ, S). The critical value of a test at nominal level α is given by the 1− α
quantile of ϕ(ξ, S), on which we impose the following condition.

Assumption A3: The distribution function of ϕ (ξ, S) is continuous at its 1 − α quantile

z1−α. Moreover, the sequence zT,1−α of critical values satisfies zT,1−α
P−→ z1−α.

The first condition in Assumption A3 is very mild. Assumption A3 is mainly concerned with

the availability of the consistent estimator of the 1− α quantile z1−α. Examples are given below.

Example 2.6: In many cases, the limit distribution of ϕT under the null of PEPA is standard

normal or chi-square with some known number of degrees of freedom. Examples include tests

considered by Diebold and Mariano (1995), West (1996) and Giacomini and White (2006). In

the setting of Example 2.2 or 2.4, ϕT is a t-statistic or Wald-type statistic, with an asymptotic

distribution that is nonstandard but pivotal, with quantiles tabulated in the original papers.7

7One caveat is that the asymptotic pivotalness of the OOS-t and OOS-F statistics in McCracken (2007) are valid

under the somewhat restrictive condition that the forecast error forms a conditionally homoskedastic martingale

difference sequence. In the presence of conditional heteroskedasticity or serial correlation in the forecast errors, the
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Assumption A3 for these examples can be verified by simply taking zT,1−α as the known quantile

of the limit distribution.

Example 2.7: White (2000) considers tests for superior predictive ability. Under the null

least favorable to the alternative, White’s test statistic is not asymptotically pivotal, as it depends

on the unknown variance of the limit variable ξ. White suggests computing the critical value via

either simulation or the stationary bootstrap (Politis and Romano (1994)), corresponding respec-

tively to his “Monte Carlo reality check” and “bootstrap reality check” methods. In particular,

under stationarity, White shows that the bootstrap critical value consistently estimates z1−α.8

Hansen (2005) considers test statistics with studentization and shows the validity of a refined

bootstrap critical value, under stationarity. The validity of the stationary bootstrap holds in more

general settings allowing for moderate heterogeneity (Gonçalves and White (2002), Gonçalves and

de Jong (2003)). We hence conjecture that the bootstrap results of White (2000) and Hansen

(2005) can be extended to a setting with moderate heterogeneity, although a formal discussion is

beyond the scope of the current paper. In these cases, the simulation- or bootstrap-based critical

value can be used as zT,1−α in order to verify Assumption A3.

Finally, we need two alternative sets of assumptions on the test function ϕ (·, ·) for one-sided

and two-sided tests, respectively.

Assumption B1: For any s ∈ S, we have (a) ϕ(u, s) ≤ ϕ(u′, s) whenever u ≤ u′, where

u, u′ ∈ Rκf ; (b) ϕ(u, s̃)→∞ whenever uj →∞ for some 1 ≤ j ≤ κf and s̃→ s.

Assumption B2: For any s ∈ S, ϕ(u, s̃)→∞ whenever ‖u‖ → ∞ and s̃→ s.

Assumption B1(a) imposes monotonicity on the test statistic as a function of the evaluation

measure, and is used for size control in the PSPA setting. Assumption B1(b) concerns the consis-

tency of the test against the one-sided alternative and is easily verified for commonly used one-sided

test statistics, such as ϕt-stat, ϕMax and ϕStuMax described in the comment following Assumption

A2. Assumption B2 serves a similar purpose for two-sided tests, and is also easily verifiable.

We close this subsection by summarizing the level and power properties of the test φT .

Proposition 2.1: The following statements hold under Assumptions A1–A3. (a) Under the

PEPA setting (2.2), EφT → α under H0. If Assumption B1(b) (resp. B2) holds in addition, we

null distribution generally depends on a nuisance parameter (Clark and McCracken (2005)). Nevertheless, the critical

values can be consistently estimated via a bootstrap (Clark and McCracken (2005)) or plug-in method (Hansen and

Timmermann (2012)).
8White (2000) shows the validity of the bootstrap critical value in a setting where the sampling error in β̂t is

asymptotically irrelevant (West (1996), West (2006)). Corradi and Swanson (2007) propose a bootstrap critical value

in the general setting of West (1996), without imposing asymptotic irrelavance.

9



have EφT → 1 under H1a (resp. H2a). (b) Under the PSPA setting (2.3) and Assumption B1, we

have lim supT→∞ EφT ≤ α under H0 and EφT → 1 under Ha.

2.2 Testing predictive accuracy with an unobservable target

We now deviate from the classical setting in Section 2.1. We suppose that the observable series

Yt+τ is not the forecast target of interest, but only a proxy for the true latent target series Y †t+τ .

The classical methods for comparing predictive accuracy based on the proxy are statistically valid

for the PEPA and PSPA hypotheses. However, these hypotheses are not of immediate economic

relevance, because economic agents are, by assumption in this subsection, interested in forecasting

the true target Y †t+τ , rather than its proxy.9 Formally, we are interested in testing the following

“true” hypotheses: for f †t+τ ≡ f(Y †t+τ , Ft+τ (β∗)),

Equal

Predictive Ability

(EPA)


H0 : E[f †t+τ ] = χ for all t ≥ 1,

vs. H1a : lim infT→∞ E[f̄ †j,T ] > χj for some j ∈ {1, . . . , κf} ,

or H2a : lim infT→∞ ‖E[f̄ †T ]− χ‖ > 0,

(2.5)

Superior

Predictive Ability

(SPA)

{
H0 : E[f †t+τ ] ≤ χ for all t ≥ 1,

vs. Ha : lim infT→∞ E[f̄ †j,T ] > χj for some j ∈ {1, . . . , κf} .
(2.6)

For concreteness, we list some basic but practically important examples describing the true

target and the proxy.

Example 2.8 (Integrated Variance): Let Xt be the continuous-time logarithmic price pro-

cess of an asset, which is assumed to be an Itô semimartingale with the form Xt = X0 +
∫ t

0 bsds+∫ t
0 σsdWs +Jt, where bs is the stochastic drift, σs is the stochastic volatility, W is a Brownian mo-

tion and J is a pure-jump process. The integrated variance on day t is given by IVt =
∫ t
t−1 σ

2
sds.

If intraday observations on Xt are observable at sampling interval ∆, a popular proxy for IVt

is the realized variance estimator RVt =
∑[1/∆]

i=1 (∆t,iX)2, where for each t and i, we denote

∆t,iX = X(t−1)+i∆ −X(t−1)+(i−1)∆; see Andersen and Bollerslev (1998) and Andersen, Bollerslev,

Diebold, and Labys (2003). In general, one can use jump-robust estimators such as the bipower

variation BVt = π[1/∆]
2([1/∆]−1)

∑[1/∆]−1
i=1 |∆t,iX||∆t,i+1X| (Barndorff-Nielsen and Shephard (2004b))

or the truncated realized variance estimator TVt =
∑[1/∆]

i=1 (∆t,iX)21 {|∆t,iX| ≤ ᾱ∆$} (Mancini

9A key motivation of our analysis is that while a high-frequency estimator of the latent variable is used by the

forecaster for evaluation (and potentially estimation), the estimator is not the variable of interest. If the estimator

is taken as the target variable, then no issues about the latency of the target variable arise, and existing predictive

ability tests may be applied without modification. It is only in cases where the variable of interest is unobservable

that further work is required to justify the use of an estimator of the latent target variable in predictive ability tests.
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(2001)) as proxies for IVt, where ᾱ > 0 and $ ∈ (0, 1/2) are tuning parameters that specify the

truncation threshold. In this case, the target to be forecast is Y †t+τ = IVt+τ and the proxy Yt+τ

may be RVt+τ , BVt+τ or TVt+τ .

Example 2.9 (Beta): Consider the same setting as in Example 2.8. Let Mt be the logarithmic

price process of the market portfolio, which is also assumed to be an Itô semimartingale. In

applications on hedging and portfolio management, it is of great interest to forecast the beta of

the price process Xt with respect to the market portfolio. In a general continuous-time setting

with price jumps, the beta of Xt can be defined as [X,M ]t /[M,M ]t, where [·, ·]t denotes the

quadratic covariation of two semimartingales over the time interval [t− 1, t]; see Barndorff-Nielsen

and Shephard (2004a). Here, Y †t is the beta on day t, which can be estimated by its realized

counterpart Yt = ̂[X,M ]t/
̂[M,M ]t, where ̂[X,M ]t =

∑[1/∆]
i=0 (∆t,iX)(∆t,iM) and ̂[M,M ]t is the

realized variance of M over day t.

Our goal is to provide conditions under which the test φT introduced in Section 2.1 has the

same asymptotic level and power properties under the true hypotheses, EPA and SPA, as it does

under the proxy hypotheses, PEPA and PSPA. We achieve this by invoking Assumption C1, below,

which we call an approximation-of-hypothesis condition.

Assumption C1: aT (E[f∗T ]− E[f †T ])→ 0, where aT is given in Assumption A1.

Assumption C1 is clearly high-level. We provide more primitive conditions later in this sub-

section and devote Section 3 to providing concrete examples involving various estimators formed

using high-frequency data. This presentation allows us to separate the main intuition behind

the negligibility result, which is formalized by Theorem 2.1 below, from the somewhat technical

calculations for high-frequency data.

Theorem 2.1: The statements of Proposition 2.1 hold with PEPA (resp. PSPA) replaced by

EPA (resp. SPA), provided that Assumption C1 holds in addition.

Comments. (i) The negligibility result is achieved through the approximation of hypotheses,

instead of the approximation of statistics. The latter approach may be carried out by showing

that the approximation errors between f̄T , ST , zT,1−α and their “true” counterparts, i.e. statistics

defined in the same way but with the proxy replaced by the true target variable, to be asymp-

totically negligible. An approximation-of-statistics approach would demand more structure on the

auxiliary estimator ST and the critical value estimator zT,1−α. As illustrated in the examples in

Section 2.1, ST and zT,1−α may be constructed in very distinct ways even across the baseline ap-

plications considered there. The approximation-of-hypothesis argument conveniently allows one to

be agnostic about the proxy error in ST and zT,1−α, and hence agnostic about their structures. As

a result, the negligibility result can be applied to the many apparently distinct settings described
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in Section 2.1, as well as some extensions described in Section 4.

(ii) The result established in Theorem 2.1 is a form of weak negligibility, in the sense that it

only concerns the rejection probability. An alternative notion of negligibility can be framed as

follows. Let φ†T be a nonrandomized test that is constructed in the same way as φT but with Yt+τ

replaced by Y †t+τ . That is, φ†T is the infeasible test we would use if we could observe the true

forecast target. We may consider the difference between the proxy and the target negligible in a

strong sense if P(φT = φ†T ) → 1. It is obvious that strong negligibility implies weak negligibility.

While the strong negligibility may seem to be a reasonable result to pursue, we argue that the

weak negligibility better suits, and is sufficient for, the testing context considered here. Strong

negligibility requires the feasible and infeasible test decisions to agree, which may be too much

to ask: for example, this would demand φT to equal φ†T even if φ†T commits a false rejection.

Moreover, the strong negligibility would inevitably demand more assumptions and/or technical

maneuvers, as noted in comment (i) above. Hence we do not pursue strong negligibility.

(iii) Similar to our negligibility result, West (1996) defines cases exhibiting “asymptotic ir-

relevance” as those in which valid inference about predictive ability can be made while ignoring

the presence of parameter estimation error. Technically speaking, our negligibility result is very

distinct from West’s result: here, the unobservable quantity is a latent stochastic process (Y †t )t≥1

that grows in T as T →∞, while in West’s setting it is a fixed deterministic and finite-dimensional

parameter β∗. That is, our asymptotic negligibility concerns a measurement error problem, while

West’s asymptotic irrelavance concerns, roughly speaking, a two-step estimation problem. Unlike

West’s (1996) case, where a correction can be applied when the asymptotic irrelevance condition

(w.r.t. β∗) is not satisfied, no such correction (w.r.t. Y †t ) is readily available in our application.

This is mainly because, in the setting of high-frequency financial econometrics with long-span data,

an important component in the approximation error Yt+τ − Y †t+τ is a bias term arising from the

use of discretely sampled data for approximating the latent target that is defined in continuous

time. Our approach shares the same nature as that of Corradi and Distaso (2006) and Todorov

and Tauchen (2012b), although our econometric interest and content are very different from theirs;

see Section 3.6 for further discussions.

We now consider sufficient conditions for Assumption C1. Below, Assumption C2 requires the

proxy to be “precise.” This assumption is still high-level and is further discussed in Section 3.

Assumption C3 is a regularity-type condition. Detailed comments on these sufficient conditions

are given below.

Assumption C2: There exist some bounded deterministic sequence (dt)t≥1 and constants

p ∈ [1, 2), θ > 0, C > 0, such that ‖Yt+τ − Y †t+τ‖p ≤ Cdθt+τ for all t ≥ R.

Assumption C3: (a) ‖f(Yt+τ , Ft+τ (β∗))− f(Y †t+τ , Ft+τ (β∗))‖ ≤ mt+τ‖Yt+τ −Y †t+τ‖ for some
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sequence mt+τ of random variables and all t ≥ R. Moreover, supt≥R ‖mt+τ‖q < ∞ for some

q ≥ p/ (p− 1) , where p is the same as in Assumption C2 and, for p = 1, this condition is

understood as supt≥R ‖mt+τ‖ ≤ C almost surely for some constant C.

(b) (aT /P )
∑T

t=R d
θ
t+τ → 0, where aT and θ are given in Assumptions A1 and C2, respectively.

Lemma 2.1: Assumptions C2 and C3 imply Assumption C1.

Comments on Assumption C2. (i) In financial econometrics applications, dt in Assumption

C2 plays the role of a bound for the intraday sampling interval on day t. While more technical

details are provided in Section 3, here we note that we allow dt to vary across days. This flexibility is

especially appealing when the empirical analysis involves a relatively long history of intraday data,

because intraday data are typically sampled at lower frequencies in earlier periods than recent ones.

The time-varying sampling scheme poses a challenge to existing inference methods on predictive

accuracy, because these methods are often built under covariance stationarity (see, e.g. Diebold

and Mariano (1995), West (1996) and White (2000)), although such restrictions are unlikely to

be essential. The framework of Giacomini and White (2006) allows for data heterogeneity and

naturally fits in our setting here. Giacomini and Rossi (2009) extend the theory of West (1996) to

a heterogeneous setting, which is useful here.

(ii) Assumption C2 imposes an Lp bound on the approximation error of Yt as a (typically

fractional) polynomial of dt. In many basic examples, this assumption holds for θ = 1/2. See

Section 3 for more details.

(iii) Assumption C2 is stable under linear transformations. A simple but practically important

example is the subsampling-and-averaging method considered by Zhang, Mykland, and Aı̈t-Sahalia

(2005).10 If Y †t+τ has np proxies, say (Y
(j)
t+τ )1≤j≤np , and each of them satisfies Assumption C2,

then their average n−1
p

∑np

j=1 Y
(j)
t+τ also satisfies this assumption. Hence, the empirical worker can

always “upgrade” a proxy using sparsely sampled data to its subsampled-and-averaged version so

as to take advantage of all high-frequency data available while still being robust against market

microstructure effects.

(iv) Assumption C2 is also preserved under certain nonlinear transformations, provided that

additional moment conditions are properly imposed. For example, many economically interesting

forecast targets, such as beta and correlation, are defined as ratios. To fix ideas, suppose that

Y †t = A†t/B
†
t . We consider a proxy Yt = At/Bt for Y †t , where At and Bt are available proxies for

A†t and B†t that verify ‖At − A†t‖p′ + ‖Bt − B†t ‖p′ ≤ Kdθt for some p′ ≥ 1. Let p ∈ [1, p′] and

p′′ satisfy 1/p′ + 1/p′′ = 1/p. By the triangle inequality and Hölder’s inequality, it is easy to see

that ‖Yt − Y †t ‖p ≤ ‖1/B
†
t ‖p′′‖At − A

†
t‖p′ + ‖Yt/B†t ‖p′′‖Bt − B

†
t ‖p′ . Therefore, ‖Yt − Y †t ‖p ≤ Kdθt

10In Zhang, Mykland, and Aı̈t-Sahalia (2005), the estimand of interest is the integrated variance, but the scope

of the idea of subsampling-and-averaging extends beyond integrated variance.

13



provided that ‖1/B†t ‖p′′ and ‖Yt/B†t ‖p′′ are bounded; in particular, Yt verifies Assumption C2.

This calculation shows the benefit of considering a general Lp bound in Assumption C2.

Comments on Assumption C3. (i) Assumption C3(a) imposes smoothness of the evaluation

function in the target variable. It is easily verified if f (·) collects pairwise loss differentials of

competing forecasts. For example, if f (Y, (F1, F2)) = L (Y − F1) − L (Y − F2) for some globally

Lipschitz loss function L (·), then mt+τ can be taken as a constant, and Assumption C3(a) holds

trivially for p = 1 (and, hence, any p ≥ 1). An important example of such loss functions in the

scalar setting is the lin-lin loss, i.e. L (u) = (γ − 1)u1{u < 0}+ γu1{u ≥ 0} for some asymmetry

parameter γ ∈ (0, 1); this is the absolute error loss when γ = 0.5. Non-Lipschitz loss functions

are also allowed. For example, when L (u) = u2 (quadratic loss), Assumption C3(a) holds for

mt+τ = 2 |F1,t+τ (β∗)− F2,t+τ (β∗)|, provided that the forecasts have bounded moments up to

order p/(p−1); sometimes the forecasts are bounded by construction (e.g., forecasts of correlation

coefficients), so we can again take mt+τ to be a constant, and verify Assumption C3(a) for any

p ≥ 1.

(ii) Assumption C3(b) is a regularity condition that requires dt to be sufficiently small in

an average sense over the prediction sample. This condition formalizes the notion that a large

sample not only includes more days, but also includes increasingly more intradaily observations.

The asymptotic setting may be referred to as an “eventually fill-in” one. While the asymptotic

embedding is not meant to be interpreted literally, it is interesting to note that this setting does

mimic datasets seen in practice. This condition is relatively less restrictive when θ is large, that

is, when a more accurate proxy is available, and vice versa.

(iii) The index p governs the trade-off between Assumptions C2 and C3. Assumption C2 (resp.

C3) is stronger (resp. weaker) when p is higher, and vice versa. In particular, ifmt+τ in Assumption

C3 can be taken bounded, then it is enough to verify Assumption C2 for p = 1, which sometimes

leads to better rates of convergence (i.e., higher values of θ). The main purpose of allowing p > 1

is to allow some flexibility for verifying Assumption C3. For example, when p = 3/2, we only need

the Lq-boundedness condition in Assumption C3 to hold for q = 3. Moment conditions of this

sort are not strong, and often needed for other purposes in the theory of forecast evaluation, such

as deriving a CLT or proving the consistency of a HAC estimator; see, e.g., Davidson (1994) and

Andrews (1991).

3 Examples and primitive conditions for Assumption C2

This section provides several examples that verify the high-level assumption ‖Yt − Y †t ‖p ≤ Kdθt in

Assumption C2 for some generic constant K > 0. We consider a comprehensive list of latent risk

measures defined as functionals of continuous-time volatility and jump processes, together with
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proxies formed using high-frequency data. Section 3.1 presents the setting and Sections 3.2–3.5

show the examples. In Section 3.6, we discuss the key technical differences between results here

and those in the existing high-frequency literature.

3.1 Setup

We impose the following condition on the logarithmic price process, Xt:

Assumption HF: Fix a filtered probability space (Ω,F , (Ft)t≥0,P). Suppose that the fol-

lowing conditions hold for constants k ≥ 2 and C > 0.

(a) The process (Xt)t≥0 is a d-dimensional Itô semimartingale with the following form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, where (3.1)

Jt =

∫ t

0

∫
R
δ (s, z) 1{‖δ(s,z)‖≤1}µ̃ (ds, dz)

+

∫ t

0

∫
R
δ (s, z) 1{‖δ(s,z)‖>1}µ (ds, dz) ,

and b is a d-dimensional càdlàg adapted process, W is a d′-dimensional standard Brownian motion,

σ is a d×d′ càdlàg adapted process, δ is a d-dimensional predictable function defined on Ω×R+×R,

µ is a Poisson random measure on R+ × R with compensator ν (ds, dz) = ds ⊗ λ (dz) for some

σ-finite measure λ, and µ̃ = µ− ν. We set ct = σtσ
ᵀ
t , that is, the spot covariance matrix.

(b) The process σt is a d× d′ Itô semimartingale with the form

σt = σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0

∫
R
δ̃ (s, z) µ̃ (ds, dz) , (3.2)

where b̃ is a d× d′ càdlàg adapted process, σ̃ is a d× d′ × d′ càdlàg adapted process and δ̃ (·) is a

d× d′ predictable function on Ω× R+ × R.

(c) For some constant r ∈ (0, 2], and nonnegative deterministic functions Γ (·) and Γ̃(·) on R,

we have ‖δ (ω, s, z) ‖ ≤ Γ (z) and ‖δ̃(ω, s, z)‖ ≤ Γ̃(z) for all (ω, s, z) ∈ Ω× R+ × R and∫
R

(Γ (z)r ∧ 1)λ (dz) +

∫
R

Γ (z)k 1{Γ(z)>1}λ (dz) <∞,∫
R

(Γ̃ (z)2 + Γ̃ (z)k)λ (dz) <∞.
(3.3)

(d) Let b′s = bs −
∫
R δ (s, z) 1{‖δ(s,z)‖≤1}λ (ds) if r ∈ (0, 1] and b′s = bs if r ∈ (1, 2]. We have for

all s ≥ 0,

E‖b′s‖k + E‖σs‖k + E‖b̃s‖k + E‖σ̃s‖k ≤ C. (3.4)
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(e) For each day t, the processX is sampled at deterministic discrete times t−1 = τ(t, 0) < · · · <
τ (t, nt) = t, where nt is the number of intraday returns. Moreover, with dt,i = τ(t, i)− τ(t, i− 1),

we have dt = sup1≤i≤nt
dt,i → 0 and nt = O(d−1

t ) as t→∞.

Parts (a) and (b) in Assumption HF are standard in the study of high-frequency data, which

require the price Xt and the stochastic volatility process σt to be Itô semimartingales. Part (c)

imposes a type of dominance condition on the random jump size for the price and the volatility.

The constant r governs the concentration of small jumps, as it provides an upper bound for the

generalized Blumenthal-Getoor index. The integrability condition in part (c) is weaker when r

is larger. The kth-order integrability of Γ(·)1{Γ(·) > 1} and Γ̃ (·) with respect to the intensity

measure λ is needed to facilitate the derivation of bounds via sufficiently high moments; these are

restrictions on “big” jumps. Part (d) imposes integrability conditions to serve the same purpose.11

Part (e) describes the sampling scheme of the intraday data. As mentioned in comment (i) of

Assumption C2, we allow X to be sampled at irregular times with the mesh dt going to zero

“eventually” in later samples.

Below, for each t ≥ 1 and i ≥ 1, we denote the ith return of X in day t by ∆t,iX, i.e.

∆t,iX = Xτ(t,i) −Xτ(t,i−1).

3.2 Generalized realized variations for continuous processes

We start with the basic setting with X continuous. Consider the following general class of esti-

mators: for any function g : Rd 7→ R, we set Ît (g) ≡
∑nt

i=1 g(∆t,iX/d
1/2
t,i )dt,i; recall that dt,i is

the length of the sampling interval associated with the return ∆t,iX. We also associate with g

the following function: for any d × d positive semidefinite matrix A, we set ρ (A; g) = E [g (U)]

for U ∼ N (0, A), provided that the expectation is well-defined. Proposition 3.1 below pro-

vides a bound for the approximation error of the proxy Ît(g) relative to the target variable

It(g) ≡
∫ t
t−1 ρ (cs; g) ds. In the notation from Section 2, Ît (g) corresponds to the proxy Yt and

It(g) to the latent target variable Y †t .

Proposition 3.1: Let p ∈ [1, 2). For some constant C > 0, suppose the following conditions

hold: (i) Xt is continuous; (ii) g(·) and ρ ( · ; g) are continuously differentiable and, for some

q ≥ 0, ‖∂xg (x) ‖ ≤ C(1 + ‖x‖q) and ‖∂Aρ (A; g) ‖ ≤ C(1 + ‖A‖q/2); (iii) Assumption HF with

k ≥ max {2qp/ (2− p) , 4}; (iv) E[ρ(cs; g
2)] ≤ C for all s ≥ 0. Then ‖Ît(g)− It(g)‖p ≤ Kd1/2

t .

11The kth-order integrability conditions in Assumptions HF(c,d) are imposed explicitly because we are interested

in an asymptotic setting with the time span T → ∞, which is very different from the fill-in asymptotic setting with

fixed time span. In the latter case, one can invoke the classical localization argument and assume that Γ, Γ̃, bs,

b′s, σs, σ̃s and b̃s to be uniformly bounded without loss of generality when proving limit theorems and deriving

stochastic bounds; the uniform boundedness then trivially implies the integrability conditions in parts (c) and (d)

in Assumption HF.
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Comment. In many applications, the function ρ ( · ; g) can be expressed in closed form. For

example, if we take g (x) = |x|a /ma for some a ≥ 2, where x ∈ R and ma is the ath absolute

moment of a standard Gaussian variable, then It(g) =
∫ t
t−1 c

a/2
s ds. Another univariate example is

to take g(x) = cos(
√

2ux), yielding It(g) =
∫ t
t−1 exp(−ucs)ds. In this case, Ît(g) is the realized

Laplace transform of volatility (Todorov and Tauchen (2012b)) and It(g) is the Laplace transform

of the volatility occupation density (Todorov and Tauchen (2012a), Li, Todorov, and Tauchen

(2012)). A simple bivariate example is g(x1, x2) = x1x2, which leads to It(g) =
∫ t
t−1 c12,sds, that

is, the integrated covariance between the two components of Xt.

3.3 Functionals of price jumps

In this subsection, we consider target variables that are functionals of the jumps of X. We denote

∆Xt = Xt − Xt−, t ≥ 0. The functional of interest has the form Jt(g) ≡
∑

t−1<s≤t g (∆Xs) for

some function g : Rd 7→ R. The proxy is the sample analogue estimator: Ĵt (g) ≡
∑nt

i=1 g (∆t,iX) .

Proposition 3.2: Let p ∈ [1, 2). Suppose (i) g is twice continuously differentiable; (ii) for

some q2 ≥ q1 ≥ 3 and a constant C > 0, we have ‖∂jxg(x)‖ ≤ C(‖x‖q1−j+‖x‖q2−j) for all x ∈ Rd and

j ∈ {0, 1, 2}; (iii) Assumption HF with k ≥ max{2q2, 4p/(2−p)}. Then ‖Ĵt (g)−Jt(g)‖p ≤ Kd1/2
t .

Comments. (i) The polynomial ‖x‖q1−j in condition (ii) bounds the growth of g(·) and its

derivatives near zero. This condition ensures that the contribution of the continuous part of X to

the approximation error is dominated by the jump part of X. This condition can be relaxed at the

cost of a more complicated expression for the rate. The polynomial ‖x‖q2−j controls the growth

of g(·) near infinity so as to tame the effect of big jumps.

(ii) Basic examples include unnormalized realized skewness (g(x) = x3), kurtosis (g(x) = x4),

coskewness (g(x1, x2) = x2
1x2) and cokurtosis (g(x1, x2) = x2

1x
2
2).12 Bounds on the proxy accuracy

of their normalized counterparts can then be obtained following comment (iv) of Assumption C2.

See Amaya, Christoffersen, Jacobs, and Vasquez (2011) for applications using these risk measures.

3.4 Jump-robust volatility functionals

In this subsection, we consider a general class of volatility functionals with proxies that are robust

to jumps in X. Let g : Rd×d 7→ R be a continuous function. The volatility functional of interest is

I?t (g) =
∫ t
t−1 g(cs)ds. So as to construct the jump-robust proxy for I?t (g), we first nonparametri-

cally recover the spot covariance process by using a local truncated variation estimator

ĉτ(t,i) =
1

kt

kt∑
j=1

d−1
t,i+j∆t,i+jX∆t,i+jX

ᵀ1{‖∆t,i+jX‖≤ᾱd$t,i+j}, (3.5)

12Under the fill-in asymptotic setting with fixed span, the unnormalized (co)skewness does not admit a central

limit theorem; see the comment following Theorem 5.1.2 in Jacod and Protter (2012), p. 128.
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where ᾱ > 0 and $ ∈ (0, 1/2) are constant tuning parameters, and kt denotes a sequence of

integers that specifies the local window for the spot covariance estimation. The proxy for I?t (g) is

the sample analogue estimator Î?t (g) =
∑nt−kt

i=0 g(ĉτ(t,i))dt,i.

Proposition 3.3: Let q ≥ 2 and p ∈ [1, 2) be constant. Suppose (i) g is twice continuously

differentiable and ‖∂jxg(x)‖ ≤ C(1+‖x‖q−j) for j = 0, 1, 2 and some constant C > 0; (ii) kt � d−1/2
t ;

(iii) Assumption HF with k ≥ max{4q, 4p(q − 1)/(2− p), (1−$r)/(1/2−$)} and r ∈ (0, 2). We

set θ1 = 1/(2p) in the general case and θ1 = 1/2 if we further assume σt is continuous. We also

set θ2 = min{1−$r + q(2$ − 1), 1/r − 1/2}. Then ‖Î?t (g)− I?t (g)‖p ≤ Kdθ1∧θ2t .

Comments. (i) The rate exponent θ1 is associated with the contribution from the continuous

component of Xt. The exponent θ2 captures the approximation error due to the elimination of

jumps. If we further impose r < 1 and $ ∈ [(q− 1/2)/(2q− r), 1/2), then θ2 ≥ 1/2 ≥ θ1. That is,

the presence of “inactive” jumps does not affect the rate of convergence, provided that the jumps

are properly truncated.

(ii) Jacod and Rosenbaum (2012) characterize the limit distribution of Î?t (g) under the fill-

in asymptotic setting with fixed span, under the assumption that g is three-times continuously

differentiable and r < 1. Here, we obtain the same rate of convergence under the L1 norm, and

under the Lp norm if σt is continuous, in the eventually fill-in setting with T → ∞. Our results

also cover the case with active jumps, that is, the setting with r ≥ 1.

3.5 Additional special examples

We now consider a few special examples which are not covered by Propositions 3.1–3.3. In the

first example, the true target is the daily quadratic variation matrix QVt of the process X, that

is, QVt =
∫ t
t−1 csds+

∑
t−1<s≤t ∆Xs∆X

ᵀ
s . The associated proxy is the realized covariance matrix

RVt ≡
∑nt

i=1 ∆t,iX∆t,iX
ᵀ.

Proposition 3.4: Let p ∈ [1, 2). Suppose Assumption HF with k ≥ max{2p/(2 − p), 4}.
Then ‖RVt −QVt‖p ≤ Kd1/2

t .

Second, we consider the bipower variation of Barndorff-Nielsen and Shephard (2004b) for uni-

variate X that is defined as

BVt =
nt

nt − 1

π

2

nt−1∑
i=1

|d−1/2
t,i ∆t,iX||d−1/2

t,i+1∆t,i+1X|dt,i. (3.6)

This estimator serves as a proxy for the integrated variance
∫ t
t−1 csds.

Proposition 3.5: Let 1 ≤ p < p′ ≤ 2. Suppose that Assumption HF holds with d = 1 and

k ≥ max{pp′/(p′ − p), 4}. We have (a) ‖BVt −
∫ t
t−1 csds‖p ≤ Kd

(1/r)∧(1/p′)−1/2
t ; (b) if, in addition,

X is continuous, then ‖BVt −
∫ t
t−1 csds‖p ≤ Kd

1/2
t .
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Comment. Part (b) shows that, when X is continuous, the approximation error of the bipower

variation achieves the
√
nt rate. Part (a) provides a bound for the rate of convergence (under Lp)

in the case with jumps. The rate is slower than that in the continuous case. Not surprisingly, the

rate is sharper if r is smaller (i.e., jumps are less active), and p and p′ are close to 1. In particular,

with r ≤ 1 and p′ being close to 1, the bound in the jump case can be made arbitrarily close to

O(d
1/2
t ), at the cost of assuming higher-order moments to be finite (i.e., larger k). The slower rate

in the jump case is in line with the known fact that the bipower variation estimator does not admit

a CLT when X is discontinuous.13

Finally, we consider the realized semivariance estimator proposed by Barndorff-Nielsen, Kin-

nebrouck, and Shephard (2010) for univariate X. Let {x}+ and {x}− denote the positive and

the negative parts of x ∈ R, respectively. The upside (+) and the downside (−) realized semi-

variances are defined as ŜV
±
t =

∑nt
i=1{∆t,iX}2±, which serve as proxies for SV ±t = 1

2

∫ t
t−1 csds +∑

t−1<s≤t{∆Xs}2±.

Proposition 3.6: Let 1 ≤ p < p′ ≤ 2. Suppose that Assumption HF holds with d = 1,

r ∈ (0, 1] and k ≥ max{pp′/(p′−p), 4}. Then (a) ‖ŜV
±
t −SV ±t ‖p ≤ Kd

1/p′−1/2
t ; (b) if, in addition,

X is continuous, then ‖ŜV
±
t − SV ±t ‖p ≤ Kd

1/2
t .

Comment. Part (b) shows that, whenX is continuous, the approximation error of the semivari-

ance achieves the
√
nt rate, which agrees with the rate shown in Barndorff-Nielsen, Kinnebrouck,

and Shephard (2010), but in a different asymptotic setting. Part (a) provides a bound for the

rate of convergence in the case with jumps. The constant p′ arises as a technical device in the

proof. One should make it small so as to achieve a better rate, subject to the regularity condition

k ≥ pp′/(p′ − p). In particular, the rate can be made close to that in the continuous case when p′,

hence p too, are close to 1. Barndorff-Nielsen, Kinnebrouck, and Shephard (2010) do not consider

rate results in the case with price or volatility jumps.

3.6 Technical comments

The proofs of Propositions 3.1–3.6 are based on standard techniques reviewed and developed in

Jacod and Protter (2012). That being said, these results are distinct from those in Jacod and

Protter (2012), and those in the original papers that propose the above estimators, in several

aspects. First, existing results on the rate of convergence in the fill-in setting with fixed span

cannot be directly invoked here because we consider a setting with T →∞. Technically speaking,

the localization argument (see Section 4.4.1 in Jacod and Protter (2012)) cannot be invoked and

the proofs demand extra care. Second, we are only interested in the rate of convergence, rather

13See p. 313 in Jacod and Protter (2012) and Vetter (2010).
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than proving a central limit theorem. We thus provide direct proofs on the rates, which are

(sometimes much) shorter than proofs of central limit theorems for the high-frequency estimators.

Third, bounding the Lp norm of the approximation error is our pursuit here; see comment (iv) of

Assumption C2 and comment (iii) of Assumption C3 for its usefulness. However, the Lp bound

is typically not of direct interest in the proof of limit theorems, where one is mainly concerned

with establishing convergence in probability (see Theorem IX.7.28 in Jacod and Shiryaev (2003))

and establishing stochastic orders. Finally, we note that for estimators with known central limit

theorems under the fill-in asymptotic setting, we establish the
√
nt rate of convergence under the

Lp norm. Moreover, we also provide rate results for estimators that do not have known central limit

theorems; examples include the bipower variation and the semivariance when there are price jumps,

realized (co)skewness, and jump-robust estimators for volatility functionals under the setting with

active jumps, to name a few.

Papers that consider bounds for high-frequency proxy errors under the double asymptotic

setting, that is, the setting with both the time span and the number of intraday observations going

to infinity, include Corradi and Distaso (2006) and Todorov and Tauchen (2012b).

Corradi and Distaso (2006), followed by Corradi, Distaso, and Swanson (2009, 2011), consider

proxies for the quadratic variation, including the realized variance, the bipower variation, and

noise-robust estimators such as the multiscale realized variance (Zhang, Mykland, and Aı̈t-Sahalia

(2005), Zhang (2006)) and the realized kernel (Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008)). In the absence of microstructure noise, Propositions 3.1, 3.4 and 3.5 complement these

existing results by considering the case with general price jumps without assuming jumps to have

finite activity as considered by Corradi, Distaso, and Swanson (2011). This generalization is

empirically relevant in view of the findings of Aı̈t-Sahalia and Jacod (2009, 2012). We stress that

our main technical contribution is to consider a comprehensive list of high-frequency proxies that

is well beyond the basic case of quadratic variation. We do not consider microstructure noise in

this paper. However, we do allow for the subsampled-and-averaged realized variance estimator of

Zhang, Mykland, and Aı̈t-Sahalia (2005). Indeed, we can apply the subsampling-and-averaging

technique to any proxy, as noted in comment (iii) of Assumption C2.

Todorov and Tauchen (2012b) consider the approximation error of the realized Laplace trans-

form of volatility as a proxy for the Laplace transform
∫ t
t−1 exp(−uσ2

s)ds, u > 0, of the volatility

occupation density. In the absence of price jumps, the realized Laplace transform is a special case

of Proposition 3.1. Todorov and Tauchen (2012b) allow for finite-variational price jumps, which

is not considered in Proposition 3.1. That being said, an alternative proxy of
∫ t
t−1 exp(−uσ2

s)ds

is given by Î?t (g) with g(x) = exp(−ux), and Proposition 3.3 provides an Lp bound for the proxy

error under a setting with possibly infinite-variational jumps.
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4 Extensions: additional forecast evaluation methods

In this section we discuss several extensions of our baseline negligibility result (Theorem 2.1). We

first consider tests for instrumented conditional moment equalities, as in Giacomini and White

(2006). We then consider stepwise evaluation procedures that include the multiple testing method

of Romano and Wolf (2005) and the model confidence set of Hansen, Lunde, and Nason (2011). Our

purpose is twofold: one is to facilitate the application of these methods in the context of forecasting

latent risk measures, the other is to demonstrate the generalizability of the framework developed

so far through known, but distinct, examples. The two stepwise procedures each involve some

method-specific aspects that are not used elsewhere in the paper; hence, for the sake of readability,

we only briefly discuss the results here, and present the details (assumptions, algorithms and formal

results) in the Supplemental Material.

4.1 Tests for instrumented conditional moment equalities

Many interesting forecast evaluation problems can be stated as a test for the conditional moment

equality:

H0 : E[g(Y †t+τ , Ft+τ (β∗))|Ht] = 0, all t ≥ 0, (4.1)

where Ht is a sub-σ-field that represents the forecast evaluator’s information set at day t, and

g(·, ·) : Y × Y k̄ 7→ Rκg is a measurable function. Specific examples are given below. Let ht denote

a Ht-measurable Rκh-valued data sequence that serves as an instrument. The conditional moment

equality (4.1) implies the following unconditional moment equality:

H0,h : E[g(Y †t+τ , Ft+τ (β∗))⊗ ht] = 0, all t ≥ 0. (4.2)

We cast (4.2) in the setting of Section 2 by setting f(Yt+τ , Ft+τ (β∗), ht) = g(Yt+τ , Ft+τ (β∗))⊗ ht.
Then the theory in Section 2 can be applied without further change. In particular, Theorem 2.1

suggests that the two-sided PEPA test (with χ = 0) using the proxy has a valid asymptotic level

under H0 and is consistent against the alternative

H2a,h : lim inf
T→∞

‖E[g(Y †t+τ , Ft+τ (β∗))⊗ ht]‖ > 0. (4.3)

Examples include tests for conditional predictive accuracy and tests for conditional forecast

rationality. To simplify the discussion, we only consider scalar forecasts, so κY = 1. Below, let

L(·, ·) : Y × Y 7→ R be a loss function, with its first and second arguments being the target and

the forecast.

Example 4.1: Giacomini and White (2006) consider two-sided tests for conditional equal

predictive ability of two sequences of actual forecasts Ft+τ = (F1,t+τ , F2,t+τ ). The null hy-

pothesis of interest is (4.1) with g(Y †t+τ , Ft+τ (β∗)) = L(Y †t+τ , F1,t+τ (β∗)) − L(Y †t+τ , F2,t+τ (β∗)).
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Since Giacomini and White (2006) concern the actual forecasts, we set β∗ to be empty and treat

Ft+τ = (F1,t+τ , F2,t+τ ) as an observable sequence. Primitive conditions for Assumptions A1 and

A3 can be found in Giacomini and White (2006), which involve standard regularity conditions

for weak convergence and HAC estimation. The test statistic is of Wald-type and readily verifies

Assumptions A2 and B2. As noted by Giacomini and White (2006), their test is consistent against

the alternative (4.3) and the power generally depends on the choice of ht.

Example 4.2: The population forecast Ft+τ (β∗), which is also the actual forecast if β∗ is

empty, is rational with respect to the information set Ht if it solves minF∈Ht E[L(Y †t+τ , F )|Ht]
almost surely. Suppose that L(y, F ) is differentiable in F for almost every y ∈ Y under the

conditional law of Y †t+τ given Ht, with the partial derivative denoted by ∂FL(·, ·). As shown in

Patton and Timmermann (2010), a test for conditional rationality can be carried out by testing

the first-order condition of the minimization problem. That is to test the null hypothesis (4.1)

with g(Y †t+τ , Ft+τ (β∗)) = ∂FL(Y †t+τ , Ft+τ (β∗)). The variable g(Y †t+τ , Ft+τ (β∗)) is the generalized

forecast error (Granger (1999)). In particular, when L(y, F ) = (F − y)2/2, that is, the quadratic

loss, we have g(Y †t+τ , Ft+τ (β∗)) = F − y; in this case, the test for conditional rationality is reduced

to a test for conditional unbiasedness. Tests for unconditional rationality and unbiasedness are

special cases of their conditional counterparts, with Ht being the degenerate information set.

4.2 Stepwise multiple testing procedure for superior predictive accuracy

In the context of forecast evaluation, the multiple testing problem of Romano and Wolf (2005)

consists of k̄ individual testing problems of pairwise comparison for superior predictive accu-

racy. Let F0,t+τ (·) be the benchmark forecast model and let f †j,t+τ = L(Y †t+τ , F0,t+τ (β∗)) −
L(Y †t+τ , Fj,t+τ (β∗)), 1 ≤ j ≤ k̄, be the relative performance of forecast j relative to the benchmark.

As before, f †j,t+τ is defined using the true target variable Y †t+τ . We consider k̄ pairs of hypotheses

Multiple SPA

{
Hj,0 : E[f †j,t+τ ] ≤ 0 for all t ≥ 1,

Hj,a : lim infT→∞ E[f̄ †j,T ] > 0,
1 ≤ j ≤ k̄. (4.4)

These hypotheses concern the true target variable and are stated to allow for data heterogeneity.

Romano and Wolf (2005) propose a stepwise multiple (StepM) testing procedure that conducts

decisions for individual testing problems while asymptotically control the familywise error rate

(FWE), that is, the probability of any null hypothesis being falsely rejected. The StepM procedure

relies on the observability of the forecast target. By imposing the approximation-of-hypothesis

condition (Assumption C1), we can show that the StepM procedure, when applied to the proxy,

asymptotically controls the FWE for the hypotheses (4.4) that concern the latent target. The

details are in Supplemental Appendix S.B.1.
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4.3 Model confidence sets

The model confidence set (MCS) proposed by Hansen, Lunde, and Nason (2011), henceforth HLN,

can be specialized in the forecast evaluation context to construct confidence sets for superior

forecasts. To fix ideas, let f †j,t+τ denote the performance (e.g., the negative loss) of forecast j with

respect to the true target variable. The set of superior forecasts is defined as

M† ≡
{
j ∈

{
1, . . . , k̄

}
: E[f †j,t+τ ] ≥ E[f †l,t+τ ] for all 1 ≤ l ≤ k̄ and t ≥ 1

}
.

That is,M† collects the forecasts that are superior to others when evaluated using the true target

variable. Similarly, the set of asymptotically inferior forecasts is defined as

M† ≡
{
j ∈

{
1, . . . , k̄

}
: lim inf

T→∞

(
E[f †l,t+τ ]− E[f †j,t+τ ]

)
> 0

for some (and hence any) l ∈M†
}
.

We are interested in constructing a sequence M̂T,1−α of 1−α nominal level MCS’s forM† so that

lim inf
T→∞

(
M† ⊆ M̂T,1−α

)
≥ 1− α, P

(
M̂T,1−α ∩M† = ∅

)
→ 1. (4.5)

That is, M̂T,1−α has valid (pointwise) asymptotic coverage and has asymptotic power one against

fixed alternatives.

HLN’s theory for the MCS is not directly applicable due to the latency of the forecast target.

Following the prevailing strategy of the current paper, we propose a feasible version of HLN’s

algorithm that uses the proxy in place of the associated latent target. Under Assumption C1, we

can show that this feasible version achieves (4.5). The details are in Supplemental Appendix S.B.2.

5 Monte Carlo analysis

5.1 Simulation designs

We consider three simulation designs which are intended to cover some of the most common and

important applications of high-frequency data in forecasting: (A) forecasting univariate volatility

in the absence of price jumps; (B) forecasting univariate volatility in the presence of price jumps;

and (C) forecasting correlation. In each design, we consider the EPA hypotheses (2.5) under

the quadratic loss for two competing one-day-ahead forecasts using the method of Giacomini and

White (2006).

Each forecast is formed using a rolling scheme with window size R ∈ {500, 1000} days. The

prediction sample contains P ∈ {500, 1000, 2000} days. The high-frequency data are simulated

using the Euler scheme at every second, and proxies are computed using sampling interval ∆ = 5
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seconds, 1 minute, 5 minutes, or 30 minutes. Each day contains 6.5 trading hours. There are 250

Monte Carlo trials in each experiment. All tests are at the 5% nominal level.

We now describe the simulation designs. Simulation A concerns forecasting the logarithm of

the quadratic variation of a continuous price process. Following one of the simulation designs

in Andersen, Bollerslev, and Meddahi (2005), we simulate the logarithmic price Xt and the spot

variance process σ2
t according to the following stochastic differential equations:{
dXt = 0.0314dt+ σt(−0.576dW1,t +

√
1− 0.5762dW2,t) + dJt,

d log σ2
t = −0.0136(0.8382 + log σ2

t )dt+ 0.1148dW1,t,
(5.1)

where W1 and W2 are independent Brownian motions and the jump process J is set to be identically

zero. The target variable to be forecast is log IVt and the proxy is logRV ∆
t with ∆ = 5 seconds,

1 minute, 5 minutes, or 30 minutes; recall Example 2.8 for the definitions of IVt and RV ∆
t .

The first forecast model in Simulation A is a GARCH(1,1) model (Bollerslev (1986)) estimated

using quasi maximum likelihood on daily returns:

Model A1:

{
rt = Xt −Xt−1 = σtεt, εt|Ft−1 ∼ N (0, 1) ,

σ2
t = ω + βσ2

t−1 + αr2
t−1.

(5.2)

The second model is a heterogeneous autoregressive (HAR) model (Corsi (2009)) for RV 5min
t

estimated via ordinary least squares:

Model A2:

{
RV 5min

t = β0 + β1RV
5min
t−1 + β2

∑5
k=1RV

5min
t−k

+β3

∑22
k=1RV

5min
t−k + et.

(5.3)

The logarithm of the one-day-ahead forecast for σ2
t+1 (resp. RV 5min

t+1 ) from the GARCH (resp.

HAR) model is taken as a forecast for log IVt+1.

In Simulation B, we also set the forecast target to be log IVt, but consider a more complicated

setting with price jumps. We simulate Xt and σ2
t according to (5.1) and, following Huang and

Tauchen (2005), we specify Jt as a compound Poisson process with intensity λ = 0.05 per day and

with jump size distribution N (0.2, 1.42). The proxy for IVt is the bipower variation BV ∆
t ; recall

Example 2.8 for definitions.

The competing forecast sequences in Simulation B are as follows. The first forecast is based

on a simple random walk model, applied to the 5-minute bipower variation BV 5min
t :

Model B1: BV 5min
t = BV 5min

t−1 + εt, where E [εt|Ft−1] = 0. (5.4)

The second model is a HAR model for BV 1min
t

Model B2:

{
BV 1min

t = β0 + β1BV
1min
t−1 + β2

∑5
k=1BV

1min
t−k

+β3

∑22
k=1BV

1min
t−k + et.

(5.5)
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The logarithm of the one-day-ahead forecast for BV 5 min
t+1 (resp. BV 1 min

t+1 ) from the random walk

(resp. HAR) model is taken as a forecast for log IVt+1.

Finally, we consider correlation forecasting in Simulation C. This simulation exercise is of

particular interest as our empirical application in Section 6 concerns a similar forecasting problem.

We adopt the bivariate stochastic volatility model used in the simulation study of Barndorff-Nielsen

and Shephard (2004a). Let Wt = (W1,t,W2,t). The bivariate logarithmic price process Xt is given

by

dXt = σtdWt, σtσ
ᵀ
t =

(
σ2

1,t ρtσ1,tσ2,t

• σ2
2,t

)
.

Let Bj,t, j = 1, . . . , 4, be Brownian motions that are independent of each other and of Wt. The

process σ2
1,t follows a two-factor stochastic volatility model: σ2

1,t = vt + ṽt, where{
dvt = −0.0429(vt − 0.1110)dt+ 0.6475

√
vtdB1,t,

dṽt = −3.74(ṽt − 0.3980)dt+ 1.1656
√
ṽtdB2,t.

(5.6)

The process σ2
2,t is specified as a GARCH diffusion:

dσ2
2,t = −0.035(σ2

2,t − 0.636)dt+ 0.236σ2
2,tdB3,t. (5.7)

The specification for the correlation process ρt is a GARCH diffusion for the inverse Fisher trans-

formation of the correlation:{
ρt = (e2yt − 1)/(e2yt + 1),

dyt = −0.03 (yt − 0.64) dt+ 0.118ytdB4,t.
(5.8)

In this simulation design we take the target variable to be the daily integrated correlation, which

is defined as

ICt ≡
QV12,t√

QV11,t

√
QV22,t

. (5.9)

The proxy is given by the realized correlation computed using returns sampled at frequency ∆:

RC∆
t ≡

RV ∆
12,t√

RV ∆
11,t

√
RV ∆

22,t

. (5.10)

The first forecasting model is a GARCH(1,1)–DCC(1,1) model (Engle (2002)) applied to daily

returns rt = Xt −Xt−1:

Model C1:


rj,t = σj,tεj,t, σ2

j,t = ωj + βjσ
2
j,t−1 + αjr

2
j,t−1, for j = 1, 2,

ρεt ≡ E[ε1,tε2,t|Ft−1] =
Q12,t√
Q11,tQ22,t

, Qt =

(
Q11,t Q12,t

Q12,t Q22,t

)
,

Qt = Q (1− a− b) + bQt−1 + a εt−1ε
ᵀ
t−1, εt = (ε1,t, ε2,t).

(5.11)
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The forecast for ICt+1 is the one-day-ahead forecast of ρεt+1. The second forecasting model extends

Model C1 by adding the lagged 30-minute realized correlation to the evoluation of Qt:

Model C2: Qt = Q (1− a− b− g) + bQt−1 + a εt−1ε
ᵀ
t−1 + g RC30min

t−1 . (5.12)

In each simulation, we set the evaluation function f(·) to be the loss of Model 1 less that

of Model 2. We note that the competing forecasts are not engineered to be equally accurate.

Therefore, for the purpose of examining size properties of our tests, the relevant null hypothesis

is not that the mean-squared-error (MSE) differential is zero. Instead, we conduct one-sided EPA

test with χ in (2.5) being the population MSE of Model 1 less that of Model 2.14 The goal of

this simulation study is to determine whether our feasible tests have finite-sample rejection rates

similar to those of the infeasible tests (i.e., tests based on true target variables), and, moreover,

whether these tests have satisfactory size properties under the “true” null hypothesis.

5.2 Results

The results for Simulations A, B and C are presented in Tables I, II and III, respectively. In the top

row of each panel are the results for the infeasible tests that are implemented with the true target

variable, and in the other rows are the results for feasible tests based on proxies. We consider two

implementations of the Giacomini–White (GW) test: the first is based on a Newey–West estimate

of the long-run variance and critical values from the standard normal distribution. The second is

based on the “fixed b” asymptotics of Kiefer and Vogelsang (2005), using the Bartlett kernel. We

denote these two implementations as NW and KV, respectively. The truncation lag is 3P 1/3 for

NW and is 0.5P for KV.

In Table I we observe that the GW–NW test has a tendency to over-reject, particularly for

R = 1000, although it performs reasonably well for the longest prediction sample (P = 2000). In

the right panels we observe that the GW–KV test has reasonable size control, although it is slightly

conservative. Importantly, the use of a proxy does not lead to worse finite-sample properties than

those obtained using the true target variable; the good (or bad) finite-sample properties of the

feasible tests are inherited from their infeasible counterparts.

In Table II we see that both the GW–NW and the GW–KV tests have finite-sample rejection

rates close to the nominal level, for all values of P and R. The feasible tests have satisfactory size

properties for all but the lowest sampling frequency.

In Table III we find that the GW–NW test over-rejects, even for large sample sizes, with

14We compute the population MSE of each forecast by simulating a long sample with 500,000 days. Importantly,

the population MSE is computed using the true latent target variable, whereas the feasible tests are conducted using

proxies.
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GW–NW GW–KV

Proxy RV ∆
t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 500

True Y †t+1 0.04 0.11 0.06 0.01 0.02 0.02

∆ = 5 sec 0.04 0.11 0.07 0.01 0.02 0.02

∆ = 1 min 0.04 0.11 0.07 0.01 0.02 0.02

∆ = 5 min 0.04 0.11 0.08 0.01 0.02 0.03

∆ = 30 min 0.05 0.13 0.11 0.02 0.04 0.04

R = 1000

True Y †t+1 0.16 0.10 0.07 0.05 0.01 0.02

∆ = 5 sec 0.16 0.10 0.07 0.05 0.01 0.02

∆ = 1 min 0.16 0.10 0.07 0.06 0.01 0.02

∆ = 5 min 0.16 0.09 0.08 0.06 0.01 0.02

∆ = 30 min 0.21 0.13 0.11 0.09 0.02 0.02

Table I: Giacomini–White test rejection frequencies for Simulation A. The nominal size is 0.05, R

is the length of the estimation sample, P is the length of the prediction sample, ∆ is the sampling

frequency for the proxy. The left panel shows results based on a Newey–West estimate of the long

run variance, the right panel shows results based on Kiefer-Vogelsang’s “fixed b” asymptotics.

rejection frequencies as high as 0.27.15 In contrast, the rejection rates of the GW–KV test are

close to the nominal level, especially for P = 1000 and P = 2000. Importantly, consistent with the

negligibility result, feasible tests based on proxies again have very similar properties to infeasible

tests based on the actual latent target variable.

Overall, the tests generally have reasonable finite-sample size control, except for the GW–NW

test applied to correlation forecasts. In all cases, the size distortions in the tests based on a proxy

match those arising in the infeasible test based on the true target variable, and are not exacerbated

by the use of a proxy. Hence, we conclude that the negligibility result holds well in empirically

realistic scenarios. This finding is robust with respect to the choice of the truncation lag in the

estimation of long-run variance. Supplemental Appendix S.C presents these robustness checks and

some additional results on the disagreement between the feasible and the infeasible tests.

15The reason for this poor performance appears to be the relatively high persistence in the quadratic loss differen-

tials in Simulation C. In Simulations A and B, the autocorrelations of the loss differential sequence essentially vanish

at about the 50th and the 30th lag, respectively, whereas in Simulation C they remain non-negligible even at the

100th lag.
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GW–NW GW–KV

Proxy BV ∆
t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 500

True Y †t+1 0.05 0.06 0.06 0.04 0.05 0.04

∆ = 5 sec 0.06 0.06 0.06 0.04 0.04 0.05

∆ = 1 min 0.07 0.08 0.07 0.05 0.06 0.06

∆ = 5 min 0.03 0.05 0.04 0.02 0.06 0.05

∆ = 30 min 0.03 0.02 0.00 0.03 0.03 0.01

R = 1000

True Y †t+1 0.03 0.04 0.04 0.03 0.04 0.05

∆ = 5 sec 0.03 0.04 0.04 0.04 0.04 0.05

∆ = 1 min 0.04 0.05 0.06 0.03 0.04 0.06

∆ = 5 min 0.03 0.04 0.05 0.04 0.04 0.06

∆ = 30 min 0.02 0.01 0.01 0.02 0.01 0.01

Table II: Giacomini–White test rejection frequencies for Simulation B. The nominal size is 0.05, R

is the length of the estimation sample, P is the length of the prediction sample, ∆ is the sampling

frequency for the proxy. The left panel shows results based on a Newey–West estimate of the long

run variance, the right panel shows results based on Kiefer-Vogelsang’s “fixed b” asymptotics.

6 Application: Comparing correlation forecasts

6.1 Data and model description

We now illustrate the use of our method with an empirical application on forecasting the integrated

correlation between two assets. Correlation forecasts are critical in financial decisions such as

portfolio construction and risk management; see Engle (2008) for example. Standard forecast

evaluation methods do not directly apply here due to the latency of the target variable, and

methods that rely on an unbiased proxy for the target variable (e.g., Hansen and Lunde (2006)

and Patton (2011)) cannot be used either, due to the absence of any such proxy.16 We hence

consider this an ideal example to illustrate the usefulness of the method proposed in the current

paper.

16When based on relatively sparse sampling frequencies it may be considered plausible that the realized covariance

matrix is finite-sample unbiased for the true quadratic covariation matrix, however as the correlation involves a ratio

of the elements of this matrix, this property is lost.
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GW–NW GW–KV

Proxy RC∆
t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 500

True Y †t+1 0.26 0.22 0.20 0.12 0.07 0.04

∆ = 5 sec 0.26 0.22 0.20 0.12 0.07 0.04

∆ = 1 min 0.26 0.22 0.19 0.12 0.06 0.04

∆ = 5 min 0.27 0.22 0.19 0.11 0.08 0.05

∆ = 30 min 0.26 0.24 0.19 0.12 0.08 0.06

R = 1000

True Y †t+1 0.27 0.20 0.15 0.11 0.07 0.03

∆ = 5 sec 0.28 0.20 0.15 0.11 0.07 0.03

∆ = 1 min 0.27 0.20 0.15 0.11 0.07 0.03

∆ = 5 min 0.27 0.20 0.16 0.10 0.07 0.03

∆ = 30 min 0.25 0.20 0.13 0.12 0.06 0.03

Table III: Giacomini–White test rejection frequencies for Simulation C. The nominal size is 0.05, R

is the length of the estimation sample, P is the length of the prediction sample, ∆ is the sampling

frequency for the proxy. The left panel shows results based on a Newey–West estimate of the long

run variance, the right panel shows results based on Kiefer-Vogelsang’s “fixed b” asymptotics.

Our sample consists two pairs of stocks: (i) Procter and Gamble (NYSE: PG) and General

Electric (NYSE: GE) and (ii) Microsoft (NYSE: MSFT) and Apple (NASDAQ: AAPL). The

sample period ranges from January 2000 to December 2010, consisting of 2,733 trading days, and

we obtain our data from the TAQ database. As in Simulation C from the previous section, we take

the proxy to be the realized correlation RC∆
t formed using returns with sampling interval ∆.17

While the sampling frequency should be chosen as high as possible in the theory above, in practice

we use relatively sparsely sampled data in order to reduce the effect of market microstructure

effects such as the presence of a bid-ask spread and trade asynchronicity. In order to examine

the robustness of our results, we consider ∆ ranging from 1 minute to 130 minutes, which covers

sampling intervals typically employed in empirical work.

We compare four forecasting models, all of which have the following specification for the con-

17For all sampling intervals we use the “subsample-and-average” estimator of Zhang, Mykland, and Aı̈t-Sahalia

(2005), with ten equally-spaced subsamples.
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ditional mean and variance: for stock i, i = 1 or 2,{
rit = µi + σitεit,

σ2
it = ωi + βiσ

2
i,t−1 + αiσ

2
i,t−1ε

2
i,t−1 + δiσ

2
i,t−1ε

2
i,t−11{εi,t−1≤0} + γiRV

1 min
i,t−1 .

(6.1)

That is, we assume a constant conditional mean, and a GJR-GARCH (Glosten et al. (1993))

volatility model augmented with lagged one-minute RV.

The baseline correlation model is Engle’s (2002) DCC model as considered in Simulation C; see

equation (5.11). The other three models are extensions of the baseline model. The first extension is

the asymmetric DCC (A-DCC) model of Cappiello, Engle, and Sheppard (2006), which is designed

to capture asymmetric reactions in correlation to the sign of past shocks:

Qt = Q (1− a− b− d) + bQt−1 + a εt−1ε
ᵀ
t−1 + d ηt−1η

ᵀ
t−1, where ηt ≡ εt ◦ 1{εt≤0}. (6.2)

The second extension (R-DCC) augments the DCC model with the 65-minute realized correlation.

This extension is in the same spirit as Noureldin, Shephard, and Sheppard (2012), and is designed

to exploit high-frequency information about current correlation:

Qt = Q (1− a− b− g) + bQt−1 + a εt−1ε
ᵀ
t−1 + g RC65 min

t−1 . (6.3)

The third extension (AR-DCC) encompasses both A-DCC and R-DCC with the specification

Qt = Q (1− a− b− d− g) + bQt−1 + a εt−1ε
ᵀ
t−1 + d ηt−1η

ᵀ
t−1 + g RC65 min

t−1 . (6.4)

We conduct pairwise comparisons of forecasts based on these four models, which include both

nested and nonnested cases. We use the framework of Giacomini and White (2006), so that

nested and nonnested models can be treated in a unified manner. Each one-day-ahead forecast is

constructed in a rolling scheme with fixed estimation sample size R = 1500 and prediction sample

size P = 1233. We use the quadratic loss function as in Simulation C.

6.2 Results

Table IV presents results for the comparison between each of the three generalized models and the

baseline DCC model, using both the GW–NW and the GW–KV tests. We summarize our findings

as follows. First, the A-DCC model does not improve the predictive ability over the baseline

DCC model. For each stock pair, the GW–KV test reveals that the loss of the A-DCC forecast is

not statistically different from that of the baseline DCC. The GW–NW test reports statistically

significant outperformance of the A-DCC model relative to the DCC for some proxies. However

this finding needs to be interpreted with care, as the GW–NW test was found to over-reject in

finite samples in Simulation C of the previous section. Interestingly, for the MSFT–AAPL pair,
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GW–NW GW–KV

DCC vs DCC vs DCC vs DCC vs DCC vs DCC vs

Proxy RC∆
t+1 A-DCC R-DCC AR-DCC A-DCC R-DCC AR-DCC

Panel A. PG–GE Correlation

∆ = 1 min 1.603 3.130∗ 2.929∗ 1.947 1.626 1.745

∆ = 5 min 1.570 2.932∗ 2.724∗ 1.845 2.040 2.099

∆ = 15 min 1.892∗ 2.389∗ 2.373∗ 2.047 1.945 1.962

∆ = 30 min 2.177∗ 1.990∗ 2.206∗ 2.246 1.529 1.679

∆ = 65 min 1.927∗ 0.838 1.089 1.642 0.828 0.947

∆ = 130 min 0.805 0.835 0.688 0.850 0.830 0.655

Panel B. MSFT–AAPL Correlation

∆ = 1 min -0.916 2.647∗ 1.968∗ -1.024 4.405∗ 3.712∗

∆ = 5 min -1.394 3.566∗ 2.310∗ -1.156 4.357∗ 2.234

∆ = 15 min -1.391 3.069∗ 1.927∗ -1.195 4.279∗ 2.116

∆ = 30 min -1.177 3.011∗ 2.229∗ -1.055 3.948∗ 2.289

∆ = 65 min -1.169 2.634∗ 2.071∗ -1.168 3.506∗ 2.222

∆ = 130 min -1.068 1.825∗ 1.280 -1.243 3.342∗ 1.847

Table IV: T-statistics for out-of-sample forecast comparisons of correlation forecasting models. In

the comparison of “A vs B,” a positive t-statistic indicates that B outperforms A. The 95% critical

values for one-sided tests of the null are 1.645 (GW–NW, in the left panel) and 2.774 (GW–KV,

in the right panel). Test statistics that are greater than the critical value are marked with an

asterisk.

the more general A-DCC model actually underperforms the baseline model. Second, the R-DCC

model outperforms the DCC model, particularly in the MSFT–AAPL case, where the finding is

highly significant and is robust to the choice of proxy. Third, the AR-DCC model also appears to

outperform the DCC model. That noted, the statistical significance of the outperformance of AR-

DCC depends on the testing method. In view of the over-rejection problem of the GW–NW test,

we conclude with a conservative interpretation of the finding about AR-DCC: it is not significantly

better than the baseline DCC.

Table V presents results from pairwise comparisons among the generalized models. Consistent

with the results in Table IV, we find that the A-DCC forecast underperforms those of R-DCC and

AR-DCC, and significantly so for MSFT–AAPL. The comparison between R-DCC and AR-DCC
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GW–NW GW–KV

A-DCC vs A-DCC vs R-DCC vs A-DCC vs A-DCC vs R-DCC vs

Proxy RC∆
t+1 R-DCC AR-DCC AR-DCC R-DCC AR-DCC AR-DCC

Panel A. PG–GE Correlation

∆ = 1 min 2.231∗ 2.718∗ 0.542 1.231 1.426 0.762

∆ = 5 min 2.122∗ 2.430∗ 0.355 1.627 1.819 0.517

∆ = 15 min 1.564 1.969∗ 0.888 1.470 1.703 1.000

∆ = 30 min 0.936 1.561 1.282 0.881 1.271 0.486

∆ = 65 min -0.110 0.391 1.039 -0.153 0.413 0.973

∆ = 130 min 0.503 0.474 -0.024 0.688 0.516 -0.031

Panel B. MSFT–AAPL Correlation

∆ = 1 min 3.110∗ 3.365∗ -1.239 3.134∗ 3.657∗ -1.580

∆ = 5 min 4.005∗ 4.453∗ -1.554 4.506∗ 6.323∗ -1.586

∆ = 15 min 3.616∗ 4.053∗ -1.307 4.044∗ 5.449∗ -1.441

∆ = 30 min 3.345∗ 3.770∗ -0.834 4.635∗ 7.284∗ -0.882

∆ = 65 min 2.999∗ 3.215∗ -0.542 6.059∗ 7.868∗ -0.635

∆ = 130 min 2.223∗ 2.357∗ -1.039 3.392∗ 5.061∗ -1.582

Table V: T-statistics for out-of-sample forecast comparisons of correlation forecasting models. In

the comparison of “A vs B,” a positive t-statistic indicates that B outperforms A. The 95% critical

values for one-sided tests of the null are 1.645 (GW–NW, in the left panel) and 2.774 (GW–KV,

in the right panel). Test statistics that are greater than the critical value are marked with an

asterisk.

yields mixed, but statistically insignificant, findings, across the two stock pairs.

Overall, we find that augmenting the DCC model with lagged realized correlation significantly

improves its predictive ability, while adding an asymmetric term to the DCC model generally does

not improve, and sometimes hurts, its forecasting performance. These findings are robust to the

choice of proxy.

7 Concluding remarks

This paper proposes a simple but general framework for the problem of testing predictive ability

when the target variable is unobservable. We consider an array of popular forecast evaluation
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methods, including Diebold and Mariano (1995), West (1996), White (2000), Romano and Wolf

(2005), Giacomini and White (2006), McCracken (2007), and Hansen, Lunde, and Nason (2011),

in cases where the latent target variable is replaced by a proxy computed using high-frequency (in-

traday) data. We provide high-level conditions under which tests based on a high-frequency proxy

provide the same asymptotic properties (level and power) under null and alternative hypotheses

involving the latent target variable as those involving the proxy. We then provide primitive con-

ditions for general classes of high-frequency based estimators of volatility and jump functionals,

which cover almost all existing estimators as special cases, such as realized (co)variance, truncated

(co)variation, bipower variation, realized correlation, realized beta, jump power variation, realized

semivariance, realized Laplace transform, realized skewness and kurtosis. In so doing, we bridge

the vast literature on forecast evaluation and the burgeoning literature on high-frequency time

series. The theoretical framework is structured in a way to facilitate further extensions in both

directions.

The asymptotic theory reflects a simple intuition: the approximation error in the high-frequency

proxy will be negligible when the proxy error is small in comparison with the magnitude of the

forecast error, or more precisely, in comparison with the magnitude of the evaluation measure ft+τ

and its sampling variability. To the extent that ex-post measurement is easier than forecasting, this

intuition, and hence our formalization, is relevant in many empirical settings. We verify that the

asymptotic results perform well in three distinct, and realistically calibrated, Monte Carlo studies.

Our empirical application uses these results to reveal the (pseudo) out-of-sample predictive gains

from augmenting the widely-used DCC model (Engle (2002)) with high-frequency estimates of

correlation.
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Gonçalves, S., and H. White (2002): “The Bootstrap of the Mean for Dependent Heteroge-

neous Arrays,” Econometric Theory, 18(6), pp. 1367–1384.

35



Granger, C. (1999): “Outline of Forecast Theory Using Generalized Cost Functions,” Spanish

Economic Review, 1, 161–173.

Hansen, P. R. (2005): “A test for superior predictive ability,” Journal of Business & Economic

Statistics, 23(4), 365–380.

Hansen, P. R., and A. Lunde (2006): “Consistent Ranking of Volatility Models,” Journal of

Econometrics, 131, 97–121.

Hansen, P. R., A. Lunde, and J. M. Nason (2011): “The Model Confidence Set,” Economet-

rica, 79(2), pp. 453–497.

Hansen, P. R., and A. Timmermann (2012): “Choice of Sample Split in Out-of-Sample Forecast

Evaluation,” Discussion paper, European University Institute.

Huang, X., and G. T. Tauchen (2005): “The Relative Contribution of Jumps to Total Price

Variance,” Journal of Financial Econometrics, 4, 456–499.

Inoue, A., and L. Kilian (2004): “In-Sample or Out-of-Sample Tests of Predictability: Which

One Should We Use?,” Econometric Reviews, 23, 371–402.

Jacod, J., and P. Protter (2012): Discretization of Processes. Springer.

Jacod, J., and M. Rosenbaum (2012): “Quarticity and Other Functionals of Volatility: Efficient

Estimation,” Discussion paper, Université de Paris-6.
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