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Abstract

The existing literature on binary games with incomplete information assumes that either payo¤

functions or the distribution of private information are �nitely parameterized to obtain point identi-

�cation. In contrast, we show that, given excluded regressors, payo¤ functions and the distribution

of private information can both be nonparametrically point identi�ed. An excluded regressor for

player i is a su¢ ciently varying state variable that does not a¤ect other players� utility and is

additively separable from other components in i�s payo¤. We show how excluded regressors satis-

fying these conditions arise in contexts such as entry games between �rms, as variation in observed

components of �xed costs. Our identi�cation proofs are constructive, so consistent nonparametric

estimators can be readily based on them. For a semiparametric model with linear payo¤s, we

propose root-N consistent and asymptotically normal estimators for parameters in players�payo¤s.

Finally, we extend our approach to accommodate the existence of multiple Bayesian Nash equilibria

in the data-generating process without assuming equilibrium selection rules.
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1 Introduction

We estimate a class of static game models where players simultaneously choose between binary

actions based on imperfect information about each other�s payo¤s. Such a class of models lends

itself to wide applications in industrial organization. Examples include �rms�entry decisions in

Seim (2006), decisions on the timing of commercials by radio stations in Sweeting (2009), �rms�

choice of capital investment strategies in Aradillas-Lopez (2010) and interactions between equity

analysts in Bajari, Hong, Krainer and Nekipelov (2009).

� Preview of Our Method

We introduce a new approach to identify and estimate such models when players�payo¤s depend

on a vector of �excluded regressors". An excluded regressor associated with a given player i is a

state variable that does not enter payo¤s of the other players, and is additively separable from

other components in i�s payo¤. We show that if excluded regressors are orthogonal to players�

private information given observed states, then interaction e¤ects between players and marginal

e¤ects of excluded regressors on players� payo¤s can be identi�ed. If in addition the excluded

regressors vary su¢ ciently relative to the support of private information, then the entire payo¤

functions of each player and the distribution of players�private information are nonparametrically

identi�ed. No distributional assumption on the private information is necessary for these results.

Our identi�cation proofs are constructive, so consistent nonparametric estimators can be readily

based on them.

We provide an example of an economic application in which pro�t maximization by players gives

rise to excluded regressors with the required properties. Consider the commonly studied game in

which �rms each simultaneously decide whether to enter a market or not, knowing that after entry

they will compete through choices of quantities. The �xed cost for a �rm i (to be paid upon entry)

does not a¤ect its perception of the interaction e¤ects with other �rms, or the di¤erence between

its monopoly pro�ts (when i is the sole entrant) and oligopoly pro�ts (when i is one of the multiple

entrants). This is precisely the independence restriction required of excluded regressors.

The intuition for this result is that �xed costs drop out of the �rst-order conditions in the pro�t

maximization problems both for a monopolist and for oligopolists engaging in Cournot competition.

As result, while �xed costs a¤ect the decision to enter, they do not otherwise a¤ect the quantities

supplied by any of the players. In practice, only some components of a �rm�s �xed cost are observed

by econometricians, while the remaining, unobserved part of the �xed cost is the private information

only known to this �rm. Our method can thus be applied, with the observed component of �xed

costs playing the role of excluded regressors.

Other excluded regressor conditions that contribute to identi�cation (such as conditional in-
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dependence from private information and su¢ cient variation relative to the conditional support

of private information given observed states) also have immediate economic interpretations in the

context of entry games. We discuss those interpretations in greater details in Section 4.

We extend our excluded regressor approach to obtain point identi�cation while allowing for

multiple Bayesian Nash equilibria (BNE) in the data generating process (DGP), without assuming

knowledge of an equilibrium selection mechanism. Identi�cation is obtained as before, but only

using variation of excluded regressors within a set of states with a single BNE in the data-generating

process. We build on De Paula and Tang (2011), showing that when players�private information

is independent conditional on observed states, then the players�actions are correlated given these

states if and only if those states give rise to multiple BNE. Thus it is possible to infer from the

data whether a given set of states give rise to single BNE, and base identi�cation only on those

states, without imposing parametric assumptions on equilibrium selection mechanisms or on the

distribution of private information.

� Relation to Existing Literature

This paper contributes to the existing literature on structural estimation of Bayesian games in

several ways. First, we identify the complete structure of the model under a set of mild nonpara-

metric restrictions on primitives. This is in contrast to the existing literature, which requires that

either the payo¤ functions or the distribution of private information be �nitely parameterized to

obtain point identi�cation.

Bajari, Hong, Nekipelov and Krainer (2009) identify the players�payo¤s in a general model of

multinomial choices, without assuming any particular functional form for payo¤s, but they require

the researcher to have full knowledge of the distribution of private information. In contrast we

allow the distribution of private information to be unknown and nonparametric. We instead obtain

identi�cation by imposing economically motivated exclusion restrictions.

Sweeting (2009) proposes a maximum-likelihood estimator where players�payo¤s are linear in-

dices and the distribution of players�private information is known to belong to a parametric family.

Aradillas-Lopez (2010) estimates a model with linear payo¤s when players�private information are

independent of states observed by researchers. He also proposes a root-N consistent estimator by

extending the semi-parametric estimator for single-agent decision models in Klein and Spady (1993)

to the game-theoretic setup. Tang (2010) shows identi�cation of a similar model to Aradillas-Lopez

(2010), with the independence between private information and observed states replaced by a weaker

median independence assumption, and proposes consistent estimators for linear coe¢ cients with-

out establishing rates of convergence. Wan and Xu (2010) consider a class of Bayesian games with

index utilities under median restrictions. They allow players�private information to be positively

correlated in a particular form, and focus on a class of monotone, threshold crossing pure-strategy

equilibria. Unlike these papers, we show non-parametric identi�cation of players�payo¤s, with no
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functional forms imposed. We also allow private information to be correlated with non-excluded

regressors in unrestricted ways but require them to be independent across players conditional on

observable states.

The second contribution of this paper is to propose a two-step, consistent and asymptotically

normal estimator for semi-parametric models with linear payo¤s and private information corre-

lated with non-excluded regressors. If in addition the support of private information and excluded

regressors are bounded, our estimators for the linear coe¢ cients in baseline payo¤s attain the para-

metric rate. If these supports are unbounded, then the rate of convergence of estimators for these

coe¢ cients depends on properties of the tails of the distribution of excluded regressors. The es-

timators for interaction e¤ects converge at the parametric rate regardless of the boundedness of

these supports.2

Our third contribution is to accommodate multiple Bayesian Nash equilibria without relying on

knowledge of any equilibrium selection mechanism. The possibility of multiple BNE in data poses

a challenge to structural estimation because in this case observed player choice probabilities are an

unknown mixture of those implied by each of the multiple equilibria. Hence, the exact structural link

between the observable distribution of actions and model primitives is not known. The existing

literature proposes several approaches to address this issue. These include parameterizing the

equilibrium selection mechanism, assuming only a single BNE is followed by the players (Bajari,

Hong, Krainer and Nekipelov (2009)), introducing su¢ cient restrictions on primitives to ensure

that the system characterizing the equilibria have a unique solution (Aradillas-Lopez (2010)), or

only obtaining partial identi�cation results (Beresteanu, Molchanov, Molinari (2011)).3

For a model of Bayesian games with linear payo¤s and correlated bivariate normal private

information, Xu (2009) addressed the multiplicity issue by focusing on states for which the model

only admits a unique, monotone equilibrium. He showed, with these parametric assumptions, a

subset of these states can be inferred using the observed distribution of choices and then used for

estimating parameters in payo¤s.

Our approach for dealing with multiple BNE builds on a related idea. Instead of focusing on

states where the model only permits a unique equilibrium, we focus on a set of states where the

observed choice probabilities are rationalized by a unique BNE. This set can include both states
2Khan and Nekipelov (2011) studied the Fisher information for the interaction parameter in a similar model of

Bayesian games, where private information are correlated across players, but the baseline payo¤ fuctions are assumed

known. Unlike our paper, the goal of their paper is not to jointly identify and estimate the full structure of the

model. Rather, they focus on showing regular identi�cation (i.e. positive Fisher information) of the interaction

parameter while assuming knowledge of the functional form of the rest of the payo¤s as well as the equilibrium

selection mechanism.
3Aguirregabiria and Mira (2005) propose an estimator for payo¤ parameters in games with multiple equilibria

where identi�cation is assumed. Their estimator combines a pseudo-maximum likelihood procedure with a genetic

algorithm that searches globally over the space of possible combinations of multiple equilibria in the data.
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where the model admits a unique BNE only, and states where multiple equilibria are possible

but where the agents in the data always choose the same BNE. We identify such states without

parametric restrictions on primitives and without equilibrium selection assumptions. Applying

our excluded regressor assumptions to a set of states where the observed choice probabilities is

rationalized by a unique BNE then allows us to identify the model nonparametrically.

Our use of excluded regressors is related to the use of �special regressors" in single-agent,

qualitative response models (See Dong and Lewbel (2011) and Lewbel (2012) for surveys of special

regressor estimators). Lewbel (1998, 2000) studies nonparametric identi�cation and estimation

of transformation, binary, ordered, and multinomial choice models using a special regressor that

is additively separable from other components in decision-makers� payo¤s, is independent from

unobserved heterogeneity conditional on other covariates, and has a large support. Magnac and

Maurin (2008) study partial identi�cation of the model when the special regressor is discrete or

measured within intervals. Magnac and Maurin (2007) remove the large support requirement on

the special regressor in such a model, and replace it with an alternative symmetry restriction on

the distribution of the latent utility. Lewbel, Linton, and McFadden (2011) estimate features of

willingness-to-pay models with a special regressor chosen by experimental design. Berry and Haile

(2009, 2010) extend the use of special regressors to nonparametrically identify the market demand

for di¤erentiated goods.

Special regressors and exclusion restrictions have also been used for estimating a wider class

of models including social interaction models and games with complete information. Brock and

Durlauf (2007) and Blume, Brock, Durlauf and Ioannides (2010) use exclusion restrictions of instru-

ments to identify a linear model of social interactions. Bajari, Hong and Ryan (2010) use exclusion

restrictions and identi�cation at in�nity, while Tamer (2003) and Ciliberto and Tamer (2009) use

some special regressors to identify games with complete information. Our identi�cation di¤ers

qualitatively from that of complete information games because with incomplete information, each

player-speci�c excluded regressor can a¤ect the strategies of all other players�through its impact

on the equilibrium choice probabilities.

� Roadmap

The rest of the paper proceeds as follows. Section 2 introduces the model of discrete Bayesian

gams. Section 3 establishes nonparametric identi�cation of the model. Section 4 motivates our

key identifying assumptions using an example of entry games, where observed components of each

�rm�s �xed cost lends itself to the role of excluded regressors. Sections 5 and 6 propose estimators

for a semiparametric model where players�payo¤s are linear. Section 7 provides some evidence of

the �nite sample performance of this estimator. Section 8 extends our identi�cation method to

models with multiple equilibria, including testing whether observed choices are rationalizable by a

single BNE over a subset of states in the data-generating process. Section 9 concludes.
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2 The Model

Consider a model of simultaneous games with binary actions and incomplete information that

involves N players. We use N to denote both the set and the number of players. Each player i

chooses an action Di 2 f1; 0g. A vector of states X 2 RJ with J > N is commonly observed by all

players and the econometrician. Let �� � (��i )Ni=1 2 RN denote players�private information, where

��i is observed by i but not anyone else. Throughout the paper we use upper cases (e.g. X; �
�
i ) for

random vectors and lower cases (e.g. x; "�i ) for realized values. For any pair of random vectors R

and R0, let 
R0jR, fR0jR and FR0jR denote respectively the support, the density and the distribution

of R0 conditional on R.

The payo¤ for i from choosing action 1 is [u�i (X; �
�
i ) + hi(D�i)�

�
i (X)]Di where D�i � fDjgj 6=i

and hi(:) is bounded and common knowledge among all players and known to the econometrician.

The payo¤ from choosing action 0 is normalized to 0 for all players. Here u�i (X; �
�
i ) denotes the

baseline return for i from choosing 1, while hi(D�i)��i (X) captures interaction e¤ects, i.e., how

other players� actions a¤ect i�s payo¤. One example of hi is hi(D�i) �
P
j 6=iDj , making the

interaction e¤ect proportional to the number of competitors choosing 1, as in Sweeting (2009) and

Aradillas-Lopez (2010). Other examples of hi(D�i) include minj 6=iD�i or maxj 6=iD�i. We require

the interaction e¤ect hi(D�i)��i (X) to be multiplicatively separable in observable states X and

rivals�actions D�i, but ��i and the baseline u
�
i are allowed to depend on X in general ways. The

model primitives fu�i ; ��i gNi=1 and F��jX are common knowledge among players but are not known

to the econometrician. We maintain the following restrictions on F��jX throughout the paper.

A1 (Conditional Independence) Given any x 2 
X , ��i is independent from f��jgj 6=i for all i, and
F��i jx is absolutely continuous with respect to the Lebesgue measure and has positive Radon-Nikodym

densities almost everywhere over 
��i jx.

This assumption, which allows X to be correlated with players�private information, is main-

tained in almost all previous works on the estimation of Bayesian games (e.g. Seim (2006), Aradillas-

Lopez (2010), Berry and Tamer (2007), Bajari, Hong, Krainer, and Nekipelov (2009), Bajari, Hahn,

Hong and Ridder (2010), Brock and Durlauf (2007), Sweeting (2009) and Tang (2010)).4 Through-

out this paper, we assume players adopt pure strategies only. A pure strategy for i in a game with

X is a mapping si(X; :) : 
��i jX ! f0; 1g. Let s�i(X; ���i) represent a pro�le of N � 1 strategies of
i�s competitors fsj(X; ��j )gj 6=i. Under A1, any Bayes Nash equilibrium (BNE) under states X must

be characterized by a pro�le of strategies fsi(X; :)gi�N such that for all i and ��i ,

si(X; �
�
i ) = 1

�
u�i (X; �

�
i ) + �

�
i (X)E[hi(s�i(X; �

�
�i))jX; ��i ] � 0

	
. (1)

The expectation in (1) is conditional on i�s information (X; ��i ) and is taken with respect to private
4A recent exception is Wan and Xu (2010), who nevertheless restrict equilibrium strategies to be monotone with

a threshold-crossing property, and impose restrictions on the magnitude of the strategic interaction parameters.
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information of his rivals ���i. By A1, E[hi(D�i)jX; ��i ] must be a function of X alone. Thus in any

BNE, the joint distribution of D�i conditional on i�s information (x; "�i ) and the pro�le of strategies

takes the form

Pr fD�i = d�ijx; "�i g = Pr
�
s�i(X; �

�
�i) = d�ijx

	
= �j 6=i (pj(x))

dj (1� pj(x))1�dj , (2)

for all d�i 2 f0; 1gN�1, where pi(x) � Prfu�i (X; �i)+ ��i (X)E[hi(s�i(X; ��i))jX] � 0 j X = xg is
i�s probability of choosing 1 given x.

For the special case where hi(D�i) =
P
j 6=iDj for all i, the pro�le of BNE strategies can be

characterized by a vector of choice probabilities fpi(x)gi�N such that:

pi(x) = Pr
n
u�i (X; �

�
i ) + �

�
i (X)

P
j 6=i pj(X) � 0 j X = x

o
for all i 2 N . (3)

Note this characterization only involves a vector of marginal rather than joint probabilities. The

existence of pure-strategy BNE given any x follows from the Brouwer�s Fixed Point Theorem and

the continuity of F��jX in A1.

In general, the model can admit multiple BNE since the system (3) could admit multiple solu-

tions. So in the DGP players�choices observed under some state x could potentially be rationalized

by more than one BNE. In Sections 3 and 6, we �rst identify and estimate the model assuming

players�choices are rationalized by a single BNE for each state x in data (either because their spe-

ci�c model only admits unique equilibrium, or because agents employ some equilibrium selection

mechanism possibly unknown to the researcher). Later in Section 8 we extend our use of excluded

regressors to obtain identi�cation under multiple BNE. This organization of the paper allows us

to separate our main identi�cation strategy from the added complications involved in dealing with

multiple equilibria, and permits direct comparison with existing results that assume a single BNE,

such as Bajari, Hong, Nekipelov and Krain (2009), Aradillas-Lopez (2010) and Wan and Xu (2010).

3 Nonparametric Identi�cation

We consider nonparametric identi�cation assuming a large cross-section of independent games, each

involving N players, with the �xed structure fu�i ; ��i gi2N and F��jX underlying all games observed

in data.5 The econometrician observes players�actions and the states in x, but does not observe

f"�i gi2N .

A2 (Unique Equilibrium) In data, players�choices under each state x are rationalized by a single
BNE at that state.

5 It is not necessary for all games observed in data to have the same group of physical players. Rather, it is only

required that the N players in the data have the same underlying set of preferences given by (u�i ; �
�
i )i2N .
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This assumption will be relaxed later, essentially by restricting attention to a subset of states for

which it holds. For each state x A2 could hold either because the model only admits a unique BNE

under that state, or because the equilibrium selection mechanism is degenerate at a single BNE

under that state. Without A2, the joint distribution of choices observable from data would be a

mixture of several choice probabilities, with each implied by one of the multiple BNE. The key role

of A2 is to ensure the vector of conditional expectations of hi(D�i) given X as directly identi�ed

from data satis�es the system in (1)-(2). When h(D�i) =
P
j 6=iDj , A2 ensures the conditional

choice probabilities of each player (denoted by fp�i (x)gi2N ) as directly identi�ed from data can

solve (3). As such, (3) reveals how the variation in excluded regressors a¤ects the observed choice

probabilities, which provides the foundation of our identi�cation strategies.

A3 (Excluded Regressors) The J-vector of states in x is partitioned into two vectors xe � (xi)i2N
and ~x such that (i) for all i and (x; "�i ), �

�
i (x) = �i(~x) and u�i (x; "

�
i ) = �ixi + ui(~x; "

�
i ) for �i 2

f�1; 1g and some unknown functions ui and �i, where ui is continuous in ��i at all ~x; (ii) for all i,
��i is independent from Xe given any ~x; and (iii) given any ~x, the distribution of Xe is absolutely

continuous w.r.t. the Lebesgue measure and has positive Radon-Nikodym densities a.e. over the

support.

Hereafter we refer to the N -vector Xe � (Xi)i2N as excluded regressors, and the remaining (J�
N)-vector of regressors ~X as non-excluded regressors. The main restriction on excluded regressors

is that they do not appear in the interaction e¤ects ��i (x), and each only appears additively in

one baseline payo¤ u�i (x; "
�
i ). The scale of each coe¢ cient �i in the baseline payo¤ u�i (x; "

�
i ) =

�ixi + ui(~x; "
�
i ) is normalized to j�ij = 1. This is the free scale normalization that is available in

all binary choice threshold crossing models.

A3 extends the notion of continuity and conditional independence of a scalar special regressor

in single-agent models as in Lewbel (1998, 2000) to the context with strategic interactions between

multiple decision-makers. Identi�cation using excluded regressors in Xe in the game-theoretic

setup di¤ers qualitatively from the use of special regressors in single-agent cases, because in any

equilibrium Xe still a¤ect all players� decisions through its impact on the joint distribution of

actions.

3.1 Identi�cation overview and intuition

To summarize our identi�cation strategy, consider the special case of N = 2 players indexed by

i 2 f1; 2g. When we refer to one player as i, the other will be denoted j. For this special case
assume hi(D�i) = Dj . Here the vector x consists of the excluded regressors x1 and x2 along with

the vector of remaining, non-excluded regressors ~x. Let Si � �ui( ~X; ��i ), where ui( ~X; ��i ) is the
part of player i�s payo¤s that does not depend on excluded regressors, and let FSij~x denote the
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conditional density of Si.

Given A1,2,3, the equation (3) simpli�es in this two player case to

p�i (x) = FSij~x
�
�ixi + �i(~x)p

�
j (x)

�
. (4)

Let p�i;j(x) � @p�i (X)=@Xj jX=x. Taking partial derivatives of equation (4) with respect to xi and
xj gives

p�i;i(x) =
�
�i + �i(~x)p

�
j;i(x)

�
~fi (x) (5)

p�i;j(x) = �i(~x)p
�
j;j(x)

~fi (x) (6)

where ~fi (x) is the density of Sij~x evaluated at �ixi + �i(~x)p
�
j (x). Since choices are observable,

choice probabilities p�i (x) and their derivatives p
�
i;j(x) are identi�ed.

The �rst goal is to identify the signs of the excluded regressor marginal e¤ects �i (recall-

ing that their magnitudes are normalized to one) and the interaction terms �i(~x). Solve equa-

tion (6) for �i(~x), substitute the result into equation (5), and solve for �i to obtain �i ~fi (x) =

p�i;i(x)� p�i;j(x)p�j;i(x)=p�j;j(x). Since the density ~fi (x) must be nonnegative and somewhere strictly
positive, this identi�es the sign �i in terms of identi�ed choice probability derivatives. Next, the in-

teraction term �i(~x) is identi�ed by dividing equation (5) by equation (6) to obtain p�i;i (x) =p
�
i;j (x) =h

�i + �i(~x)p
�
j;i(x)

i
=�i(~x)p

�
j;j(x), and solving this equation for �i(~x).

A technical condition called NDS that we provide later de�nes a set ! of values of x for which

these constructions can be done avoiding the subtle problem of division by zero. Estimation of �i
and �i(~x) can directly follow these constructions, based on nonparametric regression estimates of

p�i (x), then averaging the expression for �i over all x 2 ! for �i and averaging the expression for
�i(~x) over values the excluded regressors take on in ! conditional on ~x. This averaging exploits

over-identifying information in our model to increase e¢ ciency.

The remaining step is to identify the distribution function FSij~x and its features. For each i

and x, de�ne a �generated special regressor" as vi � Vi(x) � �ixi + �i(~x)p
�
j (x). These Vi(x) are

identi�ed since �i and �i(~x) have been identi�ed. It then follows from the BNE and equation (1)

that each player i�s strategy is to choose

Di = 1f�iXi + �i( ~X)p�j (X) + ui( ~X; ��i ) � 0g = 1fVi � Sig.

This has the form of a binary choice threshold crossing model, with unknown function Si =
�ui( ~X; ��i ) and error ��i having an unknown distribution with unknown heteroskaedasticity. It

follows from the excluded regressors Xe being conditionally independent of �i that Vi and Si are
conditionally independent of each other, conditioning on ~x. The main insight is that therefore

Vi takes the form of a special regressor as in Lewbel (1998, 2000), which provides the required

identi�cation. In particular, the conditional independence makes E (Di j vi; ~x) = FSij~x (vi), so FSij~x
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is identi�ed at every value Vi can take on, and is identi�ed everywhere if Vi has su¢ ciently large

support.

De�ne ~ui(~x) � E
�
ui( ~X; �

�
i ) j ~x

�
= E (�Si j ~x). Then by de�nition the conditional mean of

player i�s baseline payo¤ function is E [u�i (X; �
�
i ) j x] = �ixi + ~ui(~x), and all other moments of the

distribution of payo¤ functions likewise depend only on �ixi and on conditional moments of Si.
So a goal is to estimate ~ui(~x), and more generally estimate conditional moments or quantiles of

Si. Nonparametric estimators for conditional moments of Si and their limiting distribution are
provided by Lewbel, Linton, and McFadden (2011), except that they assumed an ordinary binary

choice model where Vi is observed (even determined by experimental design), whereas in our case

Vi is an estimated generated regressor, constructed from estimates of �i, �i(~x), and p�j (x). We will

later provide alternative estimators that take the estimation error in Vi into account. Note that

we cannot avoid this problem by taking the excluded regressor xi itself to be the special regressor

because xi also appears in p�j (x).

The rest of this section formalizes these constructions, and generalizes them to games with more

than two players.

3.2 Identifying �i and �i

First consider identifying the marginal e¤ects of excluded regressors (�i), and the state-dependent

component in interaction e¤ects �i(~x). We begin by deriving the general game analog to equation

(4).

For any x, let ��i (x) denote the conditional expectation of hi(D�i) given x, which is identi�able

directly from data (with hi known to all i and econometricians). When hi(D�i) =
P
j 6=iDj ,

��i (x) �
P
j 6=i p

�
j (x). For all i; j, let �

�
i;j(x) � @��i (X)=@Xj jX=x. Let A denote a N -vector with

ordered coordinates (�1; �2; ::; �N ). For any x, de�ne four N -vectors W1(x); W2(x); V1(x); V2(x)
whose ordered coordinates are (p�i;i(x))i2N , (p

�
1;2(x); p

�
2;3(x); ::; p

�
N�1;N (x); p

�
N;1(x)), (�

�
i;i(x))i2N and

(��1;2(x); �
�
2;3(x); ::; �

�
N�1;N (x); �

�
N;1(x)) respectively. For any two vectors R � (r1; r2; ::; rN ) and

R0 � (r01; r
0
2; ::; r

0
N ), let �R:R

0" and �R:=R0" denote component-wise multiplication and divisions

(i.e. R:R0 = (r1r01; r2r
0
2; ::; rNr

0
N ) and R:=R

0 = (r1=r01; r2=r
0
2; ::; rN=r

0
N )).

De�nition 1 A set ! satis�es the Non-degenerate and Non-singular (NDS) condition if it
is in the interior of 
X and for all x 2 !, (i) 0 < p�i (x) < 1 for all i; and (ii) all coordinates in

W2(x), V2(x) and V2(x):W1(x)� V1(x):W2(x) are non-zero.

The NDS condition holds for ! when the support of Si = �ui(~x; ��i ) includes the support of
�ixi + hi(D�i)�i(~x) in its interior for any x � (xe; ~x) 2 !. This happens when xi takes moderate
values while ��i varies su¢ ciently conditional on ~x to generate a large support of Si. In any BNE
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and for any x,

p�i (x) = FSij~x(�ixi + �i(~x)�
�
i (x))

for all i 2 N . For any ~x, the smoothness of F��j~x in A1 and the continuity of ui in ��i given

~x in A3 imply partial derivatives of p�i ; �
�
i with respect to excluded regressors exist over !. To

have all coordinates in W2(x), V2(x) and V2(x):W1(x)�V1(x):W2(x) be non-zero as NDS requires,

�i(~x) must necessarily be non-zero for all i. This rules out uninteresting cases with no strategic

interaction between players.6

Theorem 1 Suppose A1-3 hold and ! satis�es NDS. Then (i) (�1; :; �N ) are identi�ed as signs of
the ordered coordinates of

E [(W1(X)�W2(X):V1(X):=V2(X)) 1fX 2 !g] . (7)

(ii) For any ~x such that fxe : (xe; ~x) 2 !g 6= ?, the vector (�1(~x); :; �N (~x)) is identi�ed as:

A:E
h
W2(X):= (V2(X):W1(X)� V1(X):W2(X)) j X 2 !; ~X = ~x

i
. (8)

Remark 1.1 For the special case of N = 2 with with h1(D�1) = D2 and h2(D�2) = D1, this

theorem is simpli�ed to the identi�cation argument described in the previous subsection.

Remark 1.2 Our identi�cation of (�i)i2N in Theorem 1 does not depend on identi�cation at

in�nity (i.e. does not need to send the excluded regressor xi to positive or negative in�nity in order

to recover the sign of �i from the limit of i�s choice probabilities). Thus our argument does not

hinge on observing states that are far out in the tails of the distribution. The same is true for

identi�cation of (�i(~x))i2N .

Remark 1.3 If (�i(~x))i2N consists of a vector of constants (i.e. �i(~x) = �i for all i; ~x), then

(�1; :; �N ) are identi�ed as A:E[W2(x):= (V2(x):W1(x)� V1(x):W2(x)) j X 2 !] by pooling data

from all games with states in !. In the earlier two person game this reduces to

�1 = �1E
h�
p�1;1(X)p

�
2;2(X)� p�2;1(X)p�1;2(X)

��1
p�1;2(X)jX 2 !

i
. (9)

and similarly for �2.

Remark 1.4 With more than two players, there exists additional information that can be used

to identify �i and �i, based on using di¤erent partial derivatives from those in W2 and V2. For
example, the proof can be modi�ed to replace W2 with (p�1;N ; p

�
2;1; p

�
3;2; :::; p

�
N�1;N�2; p

�
N;N�1) and

V2 de�ned accordingly. This is an additional source of over-identi�cation that might be exploited
to improve e¢ ciency in estimation.

6To see this, note if �i(~x) = 0 for some i, then p�i (x) would be independent from Xj for all j 6= i in any BNE

and some of the diagonal entries in W2 (and V2) would be zero for any x. Other than this, the NDS condition not
restrict how the non-excluded states enter �i(~x) at all. The condition that all diagonal entries in V2:W1 � V1:W2 be

non-zero can be veri�ed from data, because these entries only involve functions that are directly identi�able.
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3.3 Recovering distributions of Si given non-excluded regressors

For any i and x � (xe; ~x), our �generated special regressor" is de�ned as:

Vi(x;�i; �i; �
�
i ) � �ixi + �i(~x)�

�
i (x).

For any ~x with (�i(~x))i2N identi�ed, such a generated regressor can be constructed from the dis-

tribution of actions and states observed from data. Denote the support of Vi conditional on ~X = ~x

by 
Vij~x. That is, 
Vij~x � ft 2 R : 9xe 2 
Xej~x s.t. �ixi + �i(~x)�
�
i (x) = tg.

Theorem 2 Suppose A1-3 hold and �i and �i(~x) are both identi�ed at ~x. Then FSij~x is identi�ed
over 
Vij~x.

To prove Theorem 2, observe that for a �xed ~x, A3 guarantees that variation in Xe does not

a¤ect the distribution of Si given ~x. Given the unique BNE in data from A2, the choice probabilities
identi�ed from data can be related to the distribution of Si given ~x as:

Pr (Di = 1jX = (xe; ~x)) = Pr(Si � Vi(xe; ~x)j ~X = ~x) (10)

for all i (where the equality follows from independence between Xe and ��i given ~x in A3). Because

the left-hand side of (10) is directly identi�able, we can recover FSij~x(t) for all t on the support

of Vi(X) given ~x. It also follows that the conditional quantiles of ui( ~X; ��i ) given ~X = ~x can also

be identi�ed as inf ft : Pr (�Si � tj~x) � �g for all � 2 ft 2 (0; 1) : 9x such that Pr (Di = 1jx) =
tg.Since �i is identi�ed, identi�cation of FSij~x implies identi�cation of the conditional distribution
of baseline probabilities u�i (x; �

�
i ) = �ixi + ui(~x; �

�
i ) given x.

3.4 Identifying ui under mean independence

A4 (Reparametrization) For all i, E[ui( ~X; ��i )j~x] is bounded for all ~x, so that ui( ~X; ��i ) can be
reparametrized as ~ui( ~X)� �i, with �i � ~ui( ~X)� ui( ~X; ��i ) and ~ui( ~X) � E[ui( ~X; �

�
i )j ~X].

Note that A4 is a free location normalization provided the boundedness condition holds. By

construction, E[�ij~x] = 0 for all i and ~x; and the conditional distribution F�jX satis�es previous

restrictions on F��jX (that is, A1 and condition (ii) in A3 holds with �� replaced by �).

A5 (Large Support and Positive Density) For any i and ~x, (i) the support of Vi(X) given ~x,

denoted 
Vij~x, includes the support of Si given ~x; and (ii) the density of Vi(X) given ~x is positive
almost surely w.r.t. Lebesgue Measure over 
Vij~x.

The next corollary establishes the identi�cation of ~ui(~x), and hence of the conditional mean

of baseline payo¤s. The �large support" assumption (condition (i)) in A5 is key for identi�cation.
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This is analogous to the large support condition for special regressors in single-agent models in

Lewbel (2000). In the special case of the two player game considered earlier, A5-(i) holds if the

support of Xi given ~x is large enough relative to �i(~x) and the support of �i given ~x. We include

detailed primitive conditions that are su¢ cient for A5 in Appendix B. Also note the large support

condition A5-(i) can be checked using data. Speci�cally, 
Sij~x � 
Vij~x if and only if the supreme
and the in�mum of Pr(Di = 1jVi = v; ~X = ~x) over v 2 
Vij~x are respectively 1 and 0.

Corollary 1 (Theorem 2) Under A1-4 and 5(i), ~ui(~x) is identi�ed as E [�Sij~x].

For a given ~x, Theorem 2 implies we can recover the distribution FSij~x over its full support, as

long as the support of the generated regressor Vi given ~x covers the support of Si given ~x. This
then su¢ ces to identify ~ui(~x) since ~ui(~x) = E[�Sij~x]. Corollary 1 then follows immediately given
that the distribution of Si given ~x implies the identi�cation of E [�Sij~x].

With �i, �i(~x) and ~ui(~x) identi�ed at ~x, the distribution of �i given ~x is also identi�ed, and can

be recovered as

E
�
DijVi = v; ~X = ~x

�
= Pr

�
�i � ~ui( ~X) + Vijv; ~x

�
= F�ij~x (~ui(~x) + v)

=) F�ij~x(e) = E
h
DijVi = e� ~ui(~x); ~X = ~x

i
for all e on the support 
�ij~x. By A5, the support of Vi given ~x is su¢ ciently large to ensure that

F�ij~x(e) is identi�ed for all e on the support 
�ij~x.

The remainder of this subsection introduces a useful shortcut for constructing ~ui(~x) from ob-

servable distributions. Such a shortcut allows us to back out ~ui(~x) without having to recover the

whole distribution FSij~x under the mild conditions of positive densities in A5-(ii). Let c
� be a

constant that lies in the interior of 
Vij~x. For all i and x = (xe; ~x) de�ne

Y �i (di; x) �
di�1fVi(x)�c�g
fVij~x(Vi(x))

, (11)

The choice of c� is feasible in estimation, for the support 
Vij~x is known as long as �i; �i(~x) are

identi�ed. Such a choice of c� is also allowed to depend on ~x.

Theorem 3 Suppose A1-5 hold, and �i and �i(~x) are both identi�ed at ~x. Then:

~ui(~x) = E
h
Y �i j ~X = ~x

i
� c�

for any c� in the interior of 
Vij~x.
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Proof of Theorem 3. For all i and ~x,

E (Y �i j~x) = E
h
E
�
Y �i jVi; ~X

�
j ~X = ~x

i
=

Z

Vij~x

E [Dijvi; ~x]� 1fvi > c�g
fVi(vij~x)

fVi(vij~x)dvi

=

Z

Vij~x

E [1f�i � vi + ~ui(~x)g � 1fvi > c�gjvi; ~x] dvi

=

Z

Vij~x

Z

�ij~x

1f"i � vi + ~ui(~x)g � 1fvi > c�gdF�i("ij~x)dvi

=

Z

�ij~x

Z

Vij~x

1fvi � sig � 1fvi > c�gdvidF�i ("ij~x) (12)

where si is a shorthand for �~ui(~x) + "i. The �rst equality follows from the Law of Iterated

Expectation, and the second and the third from the de�nitions of Y �i ; Vi and positive densities in

A5-(ii) respectively. The fourth follows from the independence between �i and Xe given ~x, which

implies F�i (:jvi; ~x) = F�i(:j~x) for all vi; ~x. The last equality follows from a change of the orders of

integration, which is allowed under A5-(i) and the Fubini�s Theorem. The last expression on the

right-hand side of (12) can be written asZ

�ij~x

Z

Vij~x

1fsi � vi < c�g1fsi � c�g � 1fsi � vi > c�g1fsi > c�gdvidF�i ("ij~x)

=

Z

�ij~x

 
1fsi � c�g

Z c�

si

dvi � 1fsi > c�g
Z si

c�
dvi

!
dF�i ("ij~x) =

Z

�ij~x

(c� � si) dF�i ("ij~x)

= c� +

Z

�ij~x

(~ui(~x)� "i) dF�i ("ij~x) = c� + ~ui(~x).

Hence E
h
Y �i j ~X = ~x

i
� c� = ~ui(~x). Q.E.D.

4 Fixed Cost Components as Excluded Regressors in Entry Games

In this section, we show how some components in �rms��xed costs in classical entry games satisfy

properties required to be excluded regressors in our model. We also provide a context for economic

interpretation of these properties.

Consider a two stage entry game with two players i 2 f1; 2g. When we refer to one player
as i, the other will be denoted j. In the �rst stage of the game �rms decide whether to enter.

In the second stage each player observes the other�s entry decision and hence knows the market

structure (monopoly or duopoly). If duopoly occurs, then in the second stage �rms engage in

Cournot competition, choosing output quantities. The inverse market demand function face by

�rm i is denoted  M (qi; ~x) if there is monopoly, and  D(qi; qj ; ~x) if there is duopoly, where qi
denotes quantities produced by i and ~x a vector of market- or �rm-level characteristics observed by
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both �rms and the econometrician. That the inverse market demand functions only depend on the

commonly observed ~x re�ects the assumption that researchers can obtain the same information as

consumers in the market.

Costs for �rms are given by ci(qi; ~x) + xi + "i for i 2 f1; 2g, where the function ci speci�es
i�s variable costs, the scalar xi is a commonly observed component of i�s �xed cost, and "i is a

component of i�s �xed cost that is privately observed by i. The �xed costs xi + "i (and any other

�xed costs that may be absorbed in ci function) are paid after entry but before the choice of

production quantities. Both (x1; x2) and ~x are known to both �rms as they make entry decisions

in the �rst stage, and can be observed by researchers in data. A �rm that decides not to enter

receives zero pro�t in the second stage.

If only �rm i enters in the �rst stage, then its pro�t is given by  M (q�; ~x)q�� ci(q
�; ~x)� xi�

"i, where q� solves
@
@q 

M (q�; ~x)q� +  M (q�; ~x) = @
@q ci(q

�; ~x)

assuming an interior solution exists. If there is a duopoly in the second stage, then i�s pro�t is

 D(q�i ; q
�
j )q

�
i � ci(q

�
i ; ~x) � xi � "i where (q�i ; q

�
j ) solves

@
@qi
 D(q�i ; q

�
j ; ~x)qi +  

D(q�i ; q
�
j ; ~x) = @

@qi
ci(q

�
i ; ~x) and

@
@qj
 D(q�i ; q

�
j ; ~x)qj +  

D(q�i ; q
�
j ; ~x) = @

@qj
cj(q

�
j ; ~x),

assuming interior solutions exist. The non-entrant�s pro�t is 0. The entrants�choices of outputs

are functions of ~x alone in both cases. This is because by de�nition both the commonly observed

and the idiosyncratic (and privately known) component of the �xed costs (xi and "i) do not vary

with output. Hence an entrant�s pro�t under either structure takes the form �si (~x)� xi � "i, with

s 2 fD;Mg, with �si being the di¤erence between �rm i�s revenues and variable costs under market

structure s.

In the �rst stage, �rms simultaneously decide whether to enter or not, based on a calculation of

the expected pro�t from entry conditional on the public information X � ( ~X;X1; X2) and private
information "i. The following matrix summarizes pro�ts in all scenarios, taking into account �rms�

Cournot Nash strategies under duopoly and pro�t maximization under monopoly (Firm 1 is the

row player, whose pro�t is the �rst entry in each cell):

Enter Stay out

Enter (�D1 ( ~X)�X1 � �1 , �D2 ( ~X)�X2 � �2) (�M1 ( ~X)�X1 � �1 , 0)
Stay out (0 , �M2 ( ~X)�X2 � �2) (0 , 0)

It follows that i�s expected pro�ts from entry are:

�Mi (~x) + pj(x)�i(~x)� xi � "i (13)
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where �i(~x) � �Di (~x)� �Mi (~x), and pj(x) is the probability that �rm j decides to enter conditional

on i�s information set (x; "i). That pj does not depend on "i is due to the assumed independence

between private information conditional on ~x in A1. The expected pro�ts from staying out is zero.

Hence, in any Bayesian Nash equilibrium, i decides to enter if and only if the expression in (13) is

greater than zero, and Pr (D1 = d1; D2 = d2 j x) = �i=1;2pi(x)di(1� pi(x))1�di , where

pi(x) = Pr
�
�i � �Mi (~x) + pj(x)�i(~x)� xi j x

	
for i = 1; 2. This �ts in the class of games considered in the paper, with Vi(X) � pj(X)�i( ~X)�Xi
being the generated special regressor.

Examples of �xed cost components (x1; x2) that could be public knowledge include lump-sum

expenses such as equipment costs, maintenance fees and patent/license fees, while (�1; �2) could

be idiosyncratic administrative overhead such as �rms�o¢ ce rental or supplies. The non-excluded

regressors ~x would include market or industry level demand and cost shifters. In these examples

the �xed cost components (�1; �2) and (X1; X2) are incurred by di¤erent aspects of the production

process, making it plausible that they are independent of each other (after conditioning on the

given market and industry conditions ~x), thereby satisfying the conditional independence in A3.

The large support assumption required for identifying ~ui(~x) in Section 3.4 also holds, as long

as the support for publicly known �xed costs is large relative to that of privately known �xed

cost components. This assumption has an immediate economic interpretation. It means that,

conditional on commonly observed demand shifters (non-excluded states in ~X), a �rm i may not

�nd it pro�table to enter even when private �xed costs �i are as low as possible. This can happen if

Xi (the publicly known component of �xed cost) is too high, or the competition is too intense (in the

sense that the other �rm�s equilibrium entry probability pj is too high). Large support also means

that �rm i could decide to enter even when �i is as high as maximum possible, because Xi and

pj(X) can be su¢ ciently low while the market demand is su¢ ciently high to make entry attractive.

These assumptions on the supports of Xi and �i are particularly plausible in applications where

publicly known components of �xed costs are relatively large, e.g., the �xed costs in acquiring land,

buildings, and equipment and acquiring license/patents could be much more substantial than those

incurred by idiosyncratic supplies and overhead. Finally, note that the economic implications of the

large support condition can in principle be veri�ed by checking whether �rms�entry probabilities

are degenerate at 0 and 1 for su¢ ciently high or low levels of the publicly known components of

�xed costs.

5 A Simpli�ed Estimator for ~ui

Estimation for payo¤s could be done in principle using sample analogs of Theorem 3. Nonetheless

we introduce a re�ned and simpli�ed argument for identifying ~ui in this subsection, in order to
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simplify the limiting distribution theory for semiparametric estimators.We then build on a sample

analog of the approach in this subsection to construct a relatively easier estimator in Section 6, and

establish its limiting distribution. For any i 2 N , let xe;�i denote (xj)j2Nnfig and let x�i denote

(xe;�i; ~x).

A5�For any i and ~x, there exists some x�i such that (i) the support of Vi given x�i includes the
support of Si given ~x; (ii) the conditional density of Xi given x�i is positive almost everywhere;

and (iii) the sign of @Vi(X)=@XijX=(xi;x�i) equals the sign of �i for all xi 2 
Xijx�i .

The large support condition in A5�is stronger than that in A5. To see this, note the support

of FSijx does not vary with xe under the conditional independence of excluded regressors in A3.

While condition (i) in A5 and A5�both require generated special regressors to vary su¢ ciently and

cover the same support of FSij~x, the latter is more stringent in that it requires such variation be

generated only by variation in Xi while x�i is �xed. In comparison, the former �xes ~x and allow

variations in Vi to be generated by all excluded regressors in Xe. This stronger support condition

(i) in A5�also provides a source of over-identi�cation of ~ui(~x). Similar to A5, the large support

condition in A5�can in principle be checked using observable distributions. That is, 
Sij~x � 
Vijx�i
if and only if the supreme and in�mum of Pr(Di = 1jXi = t; X�i = x�i) over t 2 
Xijx�i are 1 and
0 respectively.

The last condition in A5� requires the generated special regressor associated with i to be

monotone in the excluded regressor Xi given (xe;�i; ~x). It holds when Xi�s direct marginal ef-

fect on i�s latent utility (i.e. �i) is not o¤set by its indirect marginal e¤ect (i.e. �i(~x)��i;i(xi; x�i))

for all xi 2 
Xijx�i . This condition is needed for the alternative method for recovering ~ui below
(Corollary 2), which builds on changing variables between excluded regressors and generated special

regressors. Such a monotonicity condition is not needed for the identi�cation argument in Section

3.4 (Theorem 3).

Condition (iii) in A5�holds under several scenarios with mild conditions. One such scenario is

when xe;�i takes extreme values. To see this, consider the case with N = 2 and hi(D�i) = Dj .

The marginal e¤ect of Xi on Vi at x = (xi; xj ; ~x) is �i+ �i(~x) @p�j (X)=@Xi
���
X=x

, where �i and �i(~x)

are both �nite constants given ~x. With xj taking extremely large or small values, the impact of

xi on p�j in BNE gets close to 0. Thus the sign of �i + �i(~x)p
�
j;i(x) will be identical to the sign of

�i over 
Xijx�i for such xj and ~x. In another scenario, A5�-(iii) can even hold uniformly over the

entire support of X, provided both �i(~x) and the conditional density of players�private information

f�ij~x are bounded above by small constants. In Appendix B, we formalize in details these su¢ cient

primitive conditions for the monotonicity in A5�-(iii).

We now show how conditions in A5�can be used to provide a short-cut for identifying ~ui(~x). Fix i

and ~x, and consider any xe;�i that satis�es A5�for i and ~x. Let vi(x�i) and vi(x�i) 2 R[f�1;+1g
denote the in�mum and the supremum of the conditional support 
Vijx�i . Let H be a continuous
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cumulative distribution (to be chosen by the econometrician) with a bounded interval support

that is a subset of 
Vijx�i . The choice of H is allowed to depend on both i and x�i, though for

simplicity we will suppress any such dependence in notation. Choosing such a distribution H with

the required support is feasible in estimation, since �i and �i(~x) (and consequently conditional

support 
Vij~x) is identi�ed. Let �H denote the expectation of H, which is known because H is

chosen by the econometrician, and which could potentially depend on x�i. We discuss how to

choose H in estimation in Section 6.2. For any i and x de�ne

Yi;H �
[di �H(Vi(x))]

�
1 + �i�i(~x)�

�
i;i(x)

�
fXi(xijx�i)

(14)

where �i + �i(~x)�
�
i;i(x) by construction is the marginal e¤ect of the excluded regressor xi on the

generated special regressor Vi(x). Note Yi;H is well-de�ned under A5�, for fXijx�i is positive almost

everywhere over 
Xijx�i .

Corollary 2 (Theorem 3) Suppose A1-4 hold, and both �i and �i(~x) are identi�ed at ~x. For any

i and x�i = (xe;�i; ~x) such that A5�holds,

~ui(~x) = E [Yi;H jx�i]� �H . (15)

Remark 4.1 If zero is in the support of Vi given x�i then Corollary 2 holds taking H to be the

degenerate distribution function H (V ) = IfV � 0g and �H = 0. Corollary 2 generalizes the special
regressor results in Lewbel (2000) and Lewbel, Linton, and McFadden (2011) by allowing H (:) to

be an arbitrary distribution function instead of a degenerate distribution function, and by using

the density of an excluded regressor rather than that of the special regressor in the denominator of

the endogenous variable constructed. Both modi�cations simplify the limiting distribution theory

in our context where the special regressor is also a generated regressor. In particular, choosing

H to be continuously di¤erentiable allows us to take standard Taylor expansions to linearize the

estimator as a function of the estimated Vi around the true Vi. Dividing by the density of Xi
instead of the density of Vi requires estimating the density of an observed regressor instead of the

estimating the density of an estimated regressor.

Remark 4.2 It is clear from Corollary 2 that ~ui(~x) can be recovered using any (N � 1)-vector
xe;�i such that the support of Vi given x�i = (xe;�i; ~x) is large enough and Vi(X) is monotone in xi
given x�i. As such, ~ui(~x) is over-identi�ed. The source of over-identi�cation is due to the stronger

support condition required in condition (i) of A5�.

Remark 4.3 The large support condition (i) and the monotonicity condition (iii) in A5�could

be checked from observable distribution. This is because Pr(Di = 1jVi = v; x�i) is identi�ed

over v 2 
Vijx�i for any x�i, and the marginal impact of excluded regressors on generated special
regressors are identi�ed.
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6 Semiparametric Estimation of Index Payo¤s

We estimate a two-player semi-parametric model, where players have constant interaction e¤ects

and index payo¤s. That is, for i = 1; 2 and j � 3� i, hi(Dj) = Dj , ~ui( ~X) = ~X 0�i and �i( ~X) = �i,

where �i, �i are constant parameters to be inferred. The speci�cation is similar to Aradillas-Lopez

(2010), except the independence between (�i)i2N and X therein is replaced here by the weaker

assumption of conditional independence between (�1; �2) and (X1; X2) given ~X.

We �rst show how to relate �i; �i; �i to observable distributions in the semiparametric model.

Given identi�cation has been established for the general non-parametric case, our focus here is to

propose convenient algebraic links between parameters and observable distributions under addi-

tional parametric restrictions. Consider any ! such that 0 < p�i (X); p
�
j (X) < 1 and all coordinates

inW2(x), V2(x) and V2(x):W1(x)�V1(x):W2(x) are non-zero almost everywhere on !. For i = 1; 2,

�i are identi�ed as

�i = sign
n
E
h�
p�i;i(X)�

p�i;j(X)p
�
j;i(X)

p�j;j(X)

�
1fX 2 !g

io
(16)

and �i are identi�ed as in equation (9) respectively. To attain identi�cation of �i in this semi-

parametric model based on Corollary 2, de�ne for any i and x

Yi;H �
[di �H(Vi(x))] [1 + �i�ip�j;i(x)]

fXi(xijx�i)
,

where Vi(x) � �ixi + �ip
�
j (x), and H is an arbitrary continuously di¤erentiable distribution with

a support contained in the support of Vi(X) given x�i and an expectation equal to �H . We will

choose H explicitly while estimating �i in Section 6.2 below. We maintain the following assumption

throughout this section.

A5� (i) Given any i and ~x, the support 
Vijx�i includes the support 
Sij~x for all x�i 2 
X�ij~x;
(ii) Given any i and ~x, the density of Xi given x�i is positive almost surely for all x�i 2 
X�ij~x.
(iii) The sign of @Vi(X)=@XijX=x equals the sign �i for all x 2 
X .

Condition A5�is more restrictive than A5�(stated in Section 5), in that A5�requires the set of

x�i satisfying the three conditions in A5�to be the whole support of X�i given ~x. Intuitively, A5�

can be satis�ed when (i) conditional on any x�i, the support of Xi is su¢ ciently large relative to

that of Si given ~x; and (ii) �i(~x) and the density of �i given ~x are both bounded above by constants
that are relative small (in the sense stated in Appendix B). The condition that f�ij~x is bounded

above by small constant is plausible especially in cases where the support of � and Xe are both

large given ~x. We formalize these restrictions on model primitives which imply A5� in Appendix

B.
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Corollary 3 (Theorem 3) Suppose A1-4 and A5� hold and ~ui(~x) = ~x0�i, �i(~x) = �i for i = 1; 2.

Suppose �i,�i are identi�ed for both i. If E
�
~X ~X 0

�
has full rank, then

�i =
h
E
�
~X ~X 0

�i�1
E
h
~X (Yi;H � �H)

i
. (17)

To prove Corollary 3, apply the proof of Corollary 2 with ~ui( ~X) = ~X 0�i to get ~x
0�i = E[Yi;H j

x�i] � �H for any x�i = (xe;�i; ~x) 2 
X�ij~x. Thus ~x~x0�i = E [~x (Yi;H � �H) jx�i] for all such x�i.
Integrating out X�i on both sides proves (17).

Sections 6.1 and 6.2 below de�ne semiparametric estimators for �i; �i; �i and derive their asymp-

totic distributions. Recovering these parameters requires conditioning on a set of states ! in (16)

and (9). Because marginal e¤ects of excluded regressors Xi on the equilibrium choice probabilities

(p�i ; p
�
j ) are identi�ed from data, the set can be estimated using sample analogs of the choice prob-

abilities and the generated special regressors. For instance, ! can be estimated by !̂ = fx : p̂i(x),
p̂j(x) 2 (c; 1�c); jp̂i;i(x)j, jp̂j;j(x)j > c and jp̂i;i(x)p̂j;j(x)� p̂i;j(x)p̂j;i(x)j > cg, where p̂i; p̂j ; p̂i;i; p̂j;j
are kernel estimators to be de�ned in Section 6.1 and c is some constant close to 0. As c is strictly

above 0, Prf!̂ � !g ! 1 by construction. Thus estimation errors in !̂ has no bearing on the

limiting distribution of estimators for the other parameters. In what follows, we do not account

for estimation error in ! while establishing limiting distributions of our estimators for �i; �i and

�i. Such a task is left for future research. This choice allows us to better focus on dealing with

estimation errors in p̂i; p̂j ; p̂i;i; p̂i;j as well as in �̂i in our multi-step estimators below.

6.1 Estimation of �i and �i

We consider the case where X consists of Jc continuous and Jd discrete coordinates (denoted by

Xc � (Xe; ~Xc) and ~Xd respectively). We show �i can be estimated at an arbitrarily fast rate and

�i at the root-N rate. Let 
 denote a vector of functions (
0; 
1; 
2), where 
0(x) � f(xcj~xd)fd(~xd)
and 
k(x) � E[Dkjx]f(xcj~xd)fd(~xd) for k = 1; 2, with f(:j:), E(:j:) being conditional densities and
expectations, and fd(:) being a probability mass function for ~Xd respectively. De�ne 
k;i(x) �

@
k(x)
@Xi

for k 2 f0; 1; 2g and i 2 f1; 2g. De�ne a 9-by-1 vector:


(1) �
�

0; 
1; 
2; 
0;1; 
0;2; 
1;1; 
1;2; 
2;1; 
2;2

�
.

Let 
�(1) and 
̂(1) denote true parameters in the data-generating process and their corresponding

kernel estimates respectively. (For notation simplicity, we sometimes suppress their arguments X

when there is no ambiguity.) We use the sup-norm supx2
X k:k for spaces of functions with domain

X .

For i = 1; 2, let j � 3� i and de�ne

Ai � E
h
mi
A

�
X;
�(1)

�
1fX 2 !g

i
and �i � E

h
mi
�

�
X;
�(1)

�
j X 2 !

i
,
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where

mi
A

�
x;
(1)

�
� 
i;i(x)
0(x)�
i(x)
0;i(x)


0(x)
0(x)
� 
i;j(x)
0(x)�
i(x)
0;j(x)


0(x)
0(x)


j;i(x)
0(x)�
j(x)
0;i(x)

j;j(x)
0(x)�
j(x)
0;j(x)

,

mi
�

�
x;
(1)

�
�

�

i;i(x)
0(x)�
i(x)
0;i(x)

i;j(x)
0(x)�
i(x)
0;j(x)

� 
j;i(x)
0(x)�
j(x)
0;i(x)

j;j(x)
0(x)�
j(x)
0;j(x)

��1 �
j;j
0�
j
0;j

0(x)
0(x)

��1
.

Estimate Ai;�i by their sample analogs as

Âi � 1
G

P
g wgm

i
A

�
xg; 
̂(1)

�
; (18)

�̂i �
�P

g wg

��1P
g wgm

i
�

�
xg; 
̂(1)

�
, (19)

where wg is a short-hand for 1fxg 2 !g. Let K(:) be a product kernel for continuous coordinates
in Xc, and � be a sequence of bandwidths with � ! 0 as G! +1. To simplify exposition, de�ne
dg;0 � 1 for all g � G. Kernel estimates for 
�k and its partial derivatives with respect to excluded

regressors are


̂k(xc; ~xd) � 1
G

P
g dg;kK� (xg;c � xc) 1f~xg;d = ~xdg


̂k;i(xc; ~xd) � 1
G

P
g dg;kK�;i (xg;c � xc) 1f~xg;d = ~xdg

for k = 0; 1; 2 and i = 1; 2, where K�(:) � ��JcK(:=�), K�;i(:) � ��Jc@K(:=�)=@Xi.7 Our

estimators for �i; �i are

�̂i = sign(Âi) ; �̂i = �̂i�̂
i.

Let F �Z , f
�
Z denote the true distribution and the density of Z � (X;D1; D2) in the data-generating

process.

Assumption S (i) 
� is continuously di¤erentiable in xc to an order of �m � 2 given any ~xd,

and the derivatives are continuous and uniformly bounded over an open set containing !. (ii) 
�(1)
is bounded away from 0 over !. (iii) Let V ARui(x) be the variance of ui = di � p�i (x) given x.

There exists � > 0 such that [V ARui(x)]
1+� f�(xcj~xd) is uniformly bounded over !. For any ~xd,

both p�i (x)
2f�(xcj~xd) and V ARui(x)f�(xcj~xd) are continuous in xc and uniformly bounded over !.

Assumption K The kernel K(:) satis�es: (i) K(:) is bounded and di¤erentiable in Xe of order

�m and the partial derivatives are bounded over !; (ii)
R
jK(u)jdu < 1,

R
K(u)du = 1, K(:) has

zero moments up to the order of m (where m � �m), and
R
jjujjmjK(u)jdu <1; and (iii) K(:) is

zero outside a bounded set.

Assumption B
p
G�m ! 0 and

�p
G

lnG

�
�(Jc+2) ! +1 as G! +1.

7Alternatively, we can also replace the indicator functions in 
̂k and 
̂k;i with smoothing product kernels for the

discrete covariations as well. Denote such a joint product kernel for all coordinates in X as ~K. Bierens (1985) showed

uniform convergence of 
̂k in probability of can be established as long as
p
G
R
supjudj>�=� j ~K(uc; ud)jduc ! 0 for all

� > 0.
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A sequence of bandwidths � that satis�es Assumption B exists, as long as the parameter for

smoothness m is su¢ ciently large relative to Jc. Under Assumptions S, K and B, supx2! jj
̂(1)(x)�

�(1)(x)jj = op(G

�1=4). This ensures the remainder term from linearization of 1G
P
g wgm

i
A(xg; 
̂(1))

at 
�(1) diminishes at a rate faster than
p
G.

Assumption W The set ! is convex and contained in an open subset of 
X .

The convexity of ! implies that for all i the the set fxi : (xi; x�i) 2 !g must be an interval.
Denote end-points of the interval by li(x�i) and hi(x�i) for i and x�i. This property implies for any

function G(x), the expression
R
1fx 2 !gG(x)dF �X can be written as

R R hi(x�i)
li(x�i)

G(x)
�0(x)dxidx�i,

which comes in handy as we derive the correction terms in the limiting distribution of
p
G
�
Âi �Ai

�
and

p
G(�̂i ��i) due to the use of kernel estimates 
̂(1). That ! is contained in an open subset

of 
X is necessary for derivatives of 
(1);

�
(1) with respect to x to be well-de�ned over !.

To specify correction terms in the limiting distribution, we need to introduce additional no-

tations. Let wx � 1fx 2 !g for the convex set ! satisfying NDS. For i = 1; 2, let ~Di;A (x) (and
~Di;�(x)) denote two 9-by-1 vectors that consist of derivatives of mi

A(x;
(1)) (and m
i
�(x;
(1)) re-

spectively) with respect to the ordered vector (
0; 
i; 
j ; 
0;i; 
0;j ; 
i;i; 
i;j ; 
j;i; 
j;j) at 

�
(1).

Let ~Di;A;k (and ~Di;�;k) denote the k-th coordinate in ~Di;A (and ~Di;�) for all k. For s = i; j, let
~D
(s)
i;A;k(x) (and

~D
(s)
i;�;k(x)) denote the derivative of

~Di;A;k(X)

�
0(X) (and ~Di;�;k(X)


�
0(X)) with re-

spect to the excluded regressor Xs at x. We include the detailed forms of ~Di;A; ~Di;�; ~D
(s)
i;A;

~D
(s)
i;� in

the supplement of this article (Lewbel and Tang (2012)).

Let  iA � ( iA;0;  iA;i;  iA;j), where

 iA;0

�
x;
�(1)

�
� wx

h
~Di;A;1(x)


�
0(x)� ~D

(i)
i;A;4(x)� ~D

(j)
i;A;5(x)

i
+ IiA;1(x);

 iA;i

�
x;
�(1)

�
� wx

h
~Di;A;2(x)


�
0(x)� ~D

(i)
i;A;6(x)� ~D

(j)
i;A;7(x)

i
+ IiA;2(x);

 iA;j

�
x;
�(1)

�
� wx

h
~Di;A;3(x)


�
0(x)� ~D

(i)
i;A;8(x)� ~D

(j)
i;A;9(x)

i
+ IiA;3(x),

with

IiA;1(x) �
 

1fxi = hi(x�i)g ~Di;A;4 (x) 
�0 (x)� 1fxi = li(x�i)g ~Di;A;4 (x) 
�0 (x)
+1fxj = hj(x�j)g ~Di;A;5 (x) 
�0 (x)� 1fxj = lj(x�j)g ~Di;A;5 (x) 
�0 (x)

!
. (20)

The term IiA;2(x) is de�ned by replacing ~Di;A;4, ~Di;A;5 in (20) with ~Di;A;6, ~Di;A;7 respectively.

Likewise, IiA;3(x) is de�ned by replacing ~Di;A;4, ~Di;A;5 in (20) with ~Di;A;8, ~Di;A;9 respectively.

Similarly, de�ne  i� � ( i�;0;  i�;i;  i�;j) by replacing ~Di;A;, ~D
(s)
i;A, IiA in  

i
A;s with ~Di;�;, ~D

(s)
i;�, Ii�

respectively, where Ii� � (Ii�;1; Ii�;2; Ii�;3) is de�ned by replacing ~Di;A;k in the de�nition of IiA with
~Di;�;k for all k.

Assumption D (i) For both i and s = 1; 2, ~Di;A, ~Di;�, ~D
(s)
i;A, ~D

(s)
i;� are continuous and bounded over

an open set containing !. (ii) The second order derivatives of mi
A(x;
(1)) and mi

�(x;
(1)) with
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respect to 
(1) are bounded at 

�
(1) over an open set containing !. (iii) For both i, there exists con-

stants ciA; c
i
� > 0 such that E

h
supk�k�ciA



 iA;s(x+ �)

4i < 1 and E
h
supk�k�ci�



 i�;s(x+ �)

4i
< 1 for s = 0; 1; 2.

As before, we let D � [D0; D1; D2]0 (with D0 � 1) in order to simplify notations, and use lower
case d and d1; d2 for corresponding realized values. Conditions D-(i),(ii) ensure the remainder term

after linearizing the sample moments around the true functions 
�(1) in DGP vanishes at a rate

faster than
p
G. Applying the V-statistic projection theorem (Lemma 8.4 in Newey and McFadden

(1994)), we also use these conditions to show that the di¤erence between 1
G

P
g wgm

i
A(xg; 
̂(1)) and

1
G

P
g wgm

i
A(xg;


�
(1)) can be written as

R
wx(
̂(1) � 
�(1))

0 ~Di;AdF
�
X plus a term that is op(G�1=2),

where F �X is the true marginal distribution of X in the DGP. Furthermore, by de�nition and the

smoothness properties in S, for any 
 that is twice continuously di¤erentiable in excluded regressors

Xe,  iA � ( iA;0;  iA;1;  iA;2) satis�es:Z
wx(
(1))

0 ~Di;AdF
�
X =

Z P
s=0;1;2  

i
A;s(x)
s(x)dx. (21)

Using (21), the di¤erence
R
wx(
̂(1) � 
�(1))

0 ~Di;AdF
�
X can be written as

R
~�A(z)d ~FZ , where

~�A(z) �  iA(x)d � E
�
 iA(X)D

�
and ~FZ is some smoothed version of the empirical distribution

of Z � (X;Di; Dj). Condition (iii) in Assumption D is used for showing the di¤erence betweenR
~�A(z)d ~FZ and 1

G

P
g�G ~�A(zg) is op(G

�1=2). Thus the di¤erence between 1
G

P
g wgm

i
A(xg; 
̂(1))

and 1
G

P
g[wgm

i
A(xg; 


�
(1)) + ~�A(zg)] is op(G

�1=2). Under the same conditions and steps for deriva-

tions, a similar result holds with mi
A, ~Di;A and  

i
A;s replaced by m

i
�, ~Di;� and  

i
�;s respectively.

For condition (iii) in Assumption D to hold, it is su¢ cient that for i = 1; 2, there exists constants

ciA; c
i
� > 0 with E[supk�k�ciA




 ~Di;A;s(x+ �)


4] < 1 and E[supk�k�ci�




 ~Di;�;s(x+ �)


4] < 1 for

s = 0; 1; 2, and E[supk�k�ciA jj
~D
(s)
i;A;k(x + �)jj4] < 1 and E[supk�k�ci� jj

~D
(s)
i;�;k(x + �)jj4] < 1 for

s = 1; 2 and k 2 f4; 5; 6; 7g.

Assumption R (i) There exists an open neighborhood N
 around 
�(1) with E[sup
(1)2N
 jjwXm
i
�(X;


(1))jj ] <1. (ii) E[jjwXmi
A(X;


�
(1)) + ~�A(Z)jj

2] <1 and E[jjwX [mi
�(X;


�
(1)) � �

i]+ ~��(Z)jj2]
< 1.

Condition (i) in Assumption R ensures 1
G

P
g�Gwgm

i
�(X; 
̂(1))

p�! E[wXm
i
�(X;


�
(1))] when


̂(1)
p�! 
�(1). This is useful for deriving the correction term that results from the use of sample pro-

portions 1
G

P
g wg instead of the population probability �0 � E(wX) � Pr(X 2 !) while estimating

�i. Condition (ii) in Assumption R is necessary for the Central Limit Theorem to apply.
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Lemma 1 Suppose S, K, B, D, W and R hold. Then for i = 1; 2,

p
G
�
Âi �Ai

�
d! N

�
0 ; V ar

h
wXm

i
A

�
X;
�(1)

�
+ ~�iA(Z)

i�
p
G
�
�̂i ��i

�
d�! N

�
0 ; ��20 V ar

h
wX

�
mi
�

�
X;
�(1)

�
��i

�
+ ~�i�(Z)

i�
(22)

where ~�iA(z) �  iA(x)d� E
�
 iA(X)D

�
and ~�i�(z) �  i�(x)d� E[ i�(X)D].

Lemma 1 follows from the steps in Section 8 of Newey and McFadden (1994) delineated above.

The proof of this lemma is included in the supplement of this paper (Lewbel and Tang (2012)). It

follows from Lemma 1 and Slutsky�s Theorem that �̂i converges to �i at the parametric rate.

Theorem 4 Suppose A1-4 and Assumptions S, K, B, W, D and R hold. Then for i = 1; 2,

Pr(�̂i = �i)! 1 and
p
G(�̂i��i)

d! N (0;�i�), where �i� is the limiting variance of
p
G
�
�̂i ��i

�
in (22).

Proof of Theorem 4 is included in the supplement of this paper. The rate of convergence for each

�̂i is arbitrarily fast because each is de�ned as the sign of an estimator that converges at the root-N

rate to its population counterpart. The parametric rate can be attained by �̂i because it takes the

form of a sample moment involving su¢ ciently regular preliminary nonparametric estimates. Both

properties come in handy as we derive the limiting behavior of our estimator for �i.

6.2 Estimation of �i

Since Pr(�̂i = �)! 1, we derive asymptotic properties of the estimator for �i treating �i as if it is

known. In some applications �i�s are in fact known a priori, as in the entry game example where

Xi (observed components in �xed costs) must negatively a¤ect pro�ts. Without loss of generality,

let �i = �1 in what follows as would be the case in the entry game.

Let vli < vhi be any two values that known to be in the support of Vi(X) given x�i = (xe;�i; ~x).

The dependence of vli; v
h
i (and the choice of the smooth distribution H) on x�i is suppressed to

simplify the notation throughout this section. Choices of vli; v
h
i are feasible in estimation as the

support 
Vijx�i can be estimated by inf and sup of �t+ �̂ip̂j;i(t; x�i) for t 2 
Xijx�i . We take vli; vhi
as known while deriving the asymptotic distribution of �̂i. De�ne a smooth distribution by

H(v) � K
�
2

�
v � vli
vhi � vli

�
� 1
�
for all v 2 [vli; vhi ],

where K denotes the integrated bi-weight kernel function. That is, K(u) = 0 if u < �1; K(u) = 1
if u > 1; and K(u) = 1

16(8+ 15u� 10u3+ 3u5) for �1 � u � 1. The integrated bi-weight kernel
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is continuously di¤erentiable with its �rst-order derivative K0(u) equal to 0 if juj > 1 and equal

to the bi-weight kernel 1516(1 � u2)2 otherwise. This distribution H depends on x�i through its

support [vli; v
h
i ], and it is symmetric around its expectation �H � 1

2(v
h
i + vli). This choice of H is

not necessary, but is convenient for our estimator and satis�es all the required conditions.

For i = 1; 2 and j � 3� i, de�ne:

p̂j(x) � 
̂j(x)=
̂0(x); p̂j;i(x) � [
̂0(x)]�2
�

̂j;i(x)
̂0(x)� 
̂j(x)
̂0;i(x)

�
;bHi(x) � H(�xi + �̂ip̂j(x)); and bV(i)(x) � 1� �̂ip̂j;i(x).

We use bHi(x) as an estimator for H(Vi(x)) and bV(i)(x) an estimator for �@Vi(x)=@Xi in the case
with �i = �1.

For i = 1; 2 and j = 3 � i, let pj � 
j=
0 and pj;i �
�

j;i
0 � 
j
0;i

�
=
20; and 
(1;i) �

(
0; 
j ; 
0;i; 
j;i) denote a subvector of 
(1). For any x, the conditional density f(xijx�i) is a
functional of 
0 as 
0(xi; x�i)=

R

0(t; x�i)dt. Let 


�
(1;i), p

�
j , p

�
j;i denote true functions in the data-

generating process, and 
̂(1;i), p̂j , p̂j;i to denote kernel estimates.For each game g � G and both

i = 1; 2, de�ne

ŷg;i �

h
dg;i � bHi(xg)i bV(i)(xg) R 
̂0(t; xg;�i)dt


̂0(xg)
.

Our estimator for �i is given by �̂i �
�P

g ~x
0
g~xg

��1 �P
g ~x

0
g (ŷg;i � �H)

�
.

Assumption S�(a) Assumption S holds with the set ! therein replaced by 
X . (b) the true density
f�(xijx�i) is bounded above and away from zero by some positive constant over 
X .

Along with kernel and bandwidth conditions in Assumptions K and B, conditions (a) and (b)

in Assumption S�ensure supx2
X jj
̂(1;i) � 

�
(1;i)jj converges in probability to 0 at rates faster than

G1=4. Bounding 
�(x) and f�(xijx�i) away from zero over the support 
X and 
Xijx�i helps attain
the stochastic boundedness of

p
G
�
�̂i � �i

�
.

With the excluded regressors Xe continuously distributed with positive densities almost every-

where, this requires the support of excluded regressors given X�i to be bounded. Thus in order for

the support of Vi given x�i to cover that of �~ui(~x) + �i, it is necessary that the support of � given
~X is also bounded. (See the discussion in the next section regarding outcomes if boundedness is

violated.) Condition (a) in Assumption S�also implies p�j;i(x) is bounded above over 
X for i = 1; 2

and j = 3� i.

De�ne mi
B

�
z; �i;
(1;i)

�
for i = 1; 2 as

mi
B

�
z; �i;
(1;i)

�
� ~x0

n
[di �H (�xi + �ipj(x))] 1��ipj;i(x)f(xijx�i) � �H

o
,
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with z � (d1; d2; x) and pj ; pj;i; fXijx�i being functions of 
(1;i) de�ned above. By de�nition,

�̂i =
�P

g ~x
0
g~xg

��1P
gm

i
B

�
zg; �̂i; 
̂(1;i)

�
.

For i = 1; 2 and j = 3� i, de�ne

~Di;B;�

�
z; �i;
(1;i)

�
� @

@~�i
mi
B

�
z; ~�i;
(1;i)

�
j~�i=�i

= ~x0
n
�H 0(�xi + �ipj(x))pj(x)[1��ipj;i(x)]f(xijx�i) � [di �H(�xi + �ipj(x))] pj;i(x)

f(xijx�i)

o
.

For i = 1; 2 and j = 3�i, denote partial derivatives of mi
B

�
z; �i;
(1;i)

�
with respect to components

of 
(1;i)(x) at �i and 

�
(1;i)(x) as:

~Di;B;1 (z) �
@mi

B

�
z;�i;


�
(1;i)

�
@p�j (x)

@p�j (x)

@
0(x)
+

@mi
B

�
z;�i;


�
(1;i)

�
@p�j;i(x)

@p�j;i(x)

@
0(x)
,

~Di;B;2 (z) �
@mi

B

�
z;�i;


�
(1;i)

�
@p�j (x)

@p�j (x)

@
j(x)
+

@mi
B

�
z;�i;


�
(1;i)

�
@p�j;i(x)

@p�j;i(x)

@
j(x)
,

~Di;B;3 (z) �
@mi

B

�
z;�i;


�
(1;i)

�
@p�j;i(x)

@p�j;i(x)

@
0;i(x)
, and ~Di;B;4(z) �

@mi
B

�
z;�i;


�
(1;i)

�
@p�j;i(x)

@p�j;i(x)

@
j;i(x)
.

Let ~Di;B (z) denote a four-by-one vector with its k-th coordinate being ~Di;B;k(z) for k = 1; 2; 3; 4

and i = 1; 2. For any i and z, de�ne

M i
B;


�
z;
(1;i)

�
= 
(1;i)(x)

0 ~Di;B(z). (23)

Note ~Di;B on the right-hand side of (23) is evaluated at the true parameters �i and 
�(1;i).

For both i, let �Di;B;k(x) � E
h
~Di;B;k(Z)jx

i
for all k, and �D(s)

i;B;k(x) �
@[ �Di;B;k(x)
�0(x)]

@Xs
for s = 1; 2

and k = 3; 4. De�ne

 iB;0(x) � �Di;B;1(x)

�
0(x)� �D

(i)
i;B;3(x) + I

i
B;1(x);

 iB;j(x) � �Di;B;2(x)

�
0(x)� �D

(i)
i;B;4(x) + I

i
B;2(x),

where

IiB;1(x) � 1fxi = h�i (x�i)g �Di;B;3 (x) 
�0 (x)� 1fxi = l�i (x�i)g �Di;B;3 (x) 
�0 (x) ;
IiB;2(x) � 1fxi = h�i (x�i)g �Di;B;4 (x) 
�0 (x)� 1fxi = l�i (x�i)g �Di;B;4 (x) 
�0 (x) ,

with h�i (x�i); l
�
i (x�i) being the supreme and in�mum of the support of Xi given x�i.

For i = 1; 2 and any h twice continuously di¤erentiable in xc over 
X , de�ne

M i
B;f (z;h) �

C�i (z)
R
h(t;x�i)dt


�0(x)
� C�i (z)h(x)

R

�0(t;x�i)dt


�0(x)
2
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where

C�i (z) � ~x0
�
di �H(�xi + �ip�j (x))

� �
1� �ip�j;i(x)

�
.

The functional M i
B;f (z;h) is the Frechet derivative of m

i
B

�
z; �i;
(1;i)

�
with respect to 
(1;i) at


�(1;i) in DGP.De�ne

 iB;f (x) � E
�
C�i (Z)

�0(X)

jx�i
�

�0(x�i)�

E(C�i (Z)jx)

�0(x)

Z

�0(t; x�i)dt,

where the integral is over the support 
Xijx�i , and we also use 

�
0(x�i) to denote the true density

of X�i. Our proof builds on the observation that
R
M i
B;f (z;h)dF

�
Z =

R
 iB;f (x)h(x)dx.

We now de�ne the major components in the limiting distribution of
p
G(�̂i � �i):

~�iB(zg) �  iB;0(xg) +  
i
B;f (xg) +  

i
B;j(xg)dg;j � E

�
 iB;0(X) +  

i
B;f (X) +  

i
B;j(X)Dj

�
;

	i�(zg) � � 1
�0

h
wg

�
mi
�

�
xg;


�
(1;i)

�
��i

�
+ ~�i�(zg)

i
; M�

i;� � E
h
~Di;B;�

�
Z; �i;


�
(1;i)

�i
;

	iB(z) � mi
B

�
z; �i;


�
(1;i)

�
+ ~�iB(z) +M�

i;�	
i
�(z).

The key step in �nding the limiting distribution of
p
G
�
�̂i � �i

�
is to show 1

G

P
gm

i
B(zg; �̂i; 
̂(1;i))

= 1
G

P
g 	

i
B(zg) + op(G

�1=2). Speci�cally, the di¤erence between 1
G

P
gm

i
B(zg; �̂i; 
̂(1;i)) and the

infeasible moment 1
G

P
gm

i
B(zg; �i;


�
(1;i)) is a sample average of some correction terms ~�

i
B(z) +

M�
i;�	

i
�(z) plus op(G

� 1
2 ). The form of these correction terms depends on 
�(1) in the DGP as well

as how �̂i; 
̂(1) enter the moment function m
i
B.

Assumption D�(i) For i = 1; 2, the second order derivatives of mi
B

�
z; �i;
(1;i)

�
with respect to


(1;i)(x) at 

�
(1;i)(x) are continuous and bounded over the support of Z (i.e. f1; 0g2 
 
X). (ii)

For both i and s = 1; 2, ~D(s)
i;B, are continuous and bounded over f1; 0g2 
 
X . (iii) For i = 1; 2

and j = 3 � i, there exists c > 0 such that E[supk�k�c


 iB;s(x+ �)

4] < 1 for s = 0; j and

E[supk�k�c jj iB;f (x+ �)jj4] < 1.

Assumption W�For any i and x�i, the support of Xi given x�i is convex and closed.

Assumption R�(i) There exists open neighborhoods N�, Ni around ��i , 

�
(1;i) respectively such

that E[sup�i2N� ;
(1;i)2Ni jj ~Di;B;�(Z; �i;
(1;i))jj ] < 1. (ii) E[jj	iB(Z) � ~X 0 ~X�ijj2] < +1. (iii)

E
h
~X 0 ~X

i
is non-singular.

Condition R�-(i) is used for showing the di¤erence between 1
G

P
gm

i
B(zg; �̂i; 
̂(1;i)) and

1
G

P
gm

i
B(zg;

�i; 
̂(1;i)) is represented by a sample average of a certain function plus an op(G
� 1
2 ) term. Under R�-

(i), this function takes the form of the product of E[ ~Di;B;�(z; �i;
�(1;i))] and the in�uence function

that leads to the limiting distribution of
p
G(�̂i � �i).



28

Similar to the case with �̂i, we can apply the linearization argument and the V-statistic

Projection Theorem to show that, under conditions in D�-(i) and (ii), 1
G

P
g[m

i
B(xg; �i; 
̂(1))�

mi
B(xg; �i;


�
(1))] can be written as

R
M i
B;
(z; 
̂(1;i) � 
�(1;i)) +M i

B;f (z; 
̂0 � 
�0)dF
�
Z plus op(G

� 1
2 ),

where F �Z is the true distribution of Z in the DGP. Again by de�nition and smoothness properties

in S�, for any 
(1;i) that is twice continuously di¤erentiable in excluded regressors, the functions

 iB;0,  
i
B;j and  

i
B;f can be shown to satisfy:Z

M i
B;
(z;
(1;i)) +M

i
B;f (z; 
0)dF

�
Z =

Z
[ iB;0(x) +  

i
B;f (x)]
0(x) +  

i
B;j(x)
j(x)dx

using an argument of integration by parts.

Using this equation, the di¤erence
R
M i
B;
(z; 
̂(1;i) � 
�(1;i)) +M

i
B;f (z; 
̂(1;i) � 
�(1;i))dF

�
Z can be

expressed as
R
~�iB(z)d

~FZ , where ~�iB(z) was de�ned above and ~FZ is some smoothed version of the

empirical distribution of Z as mentioned in the proof of asymptotic properties of �̂i. Condition

D�-(iii) is then used for showing the di¤erence between
R
~�iB(z)d

~FZ and 1
G

P
g ~�

i
B(zg) is op(G

� 1
2 ).

Thus the di¤erence between 1
G

P
gm

i
B(zg; �i; 
̂(1)) and

1
G

P
g[m

i
B(zg; �i;


�
(1))+~�

i
B(zg)] is op(G

�1=2).

For D�-(iii) to hold, it su¢ ces to have that, for i = 1; 2, there exists ci > 0 such that E[supk�k�ci

 �Di;B(x+ �)

4] < 1 and E[supk�k�ci jj �D
(s)
i;B(x+ �)jj4] < 1. Condition R�-(ii) ensures the Central

Limit Theorem can be applied. Condition R�-(iii) is the standard full-rank condition necessary for

consistency of regressor estimators. Proof of the following theorem is included in the supplement

of this paper.

Theorem 5 Under A1-4, A5� and S�, K, B, D�, W�, R�,
p
G(�̂i � �i)

d! N(0;�iB) for i = 1; 2,

where

�iB �
�
E
�
~X 0 ~X

��1�
V ar

�
	iB(Z)� ~X 0 ~X�i

��
E
�
~X 0 ~X

��1�0
.

Estimation errors in �̂i and p̂j a¤ect the distribution of �̂i in general. The optimal rate of

convergence of p̂j is generally slower than
p
G because p̂j depends on the number of continuous

coordinates in X, but �̂i can still converge at the parametric rate because �̂i takes the form of a

sample average.

6.3 Discussion of �i Estimation Rates

To obtain a parametric convergence rate for �̂i, Assumption S�assumes that excluded regressors

have bounded support, and that support of Vi given some x�i = (xe;�i; ~x) includes that of �~x�i+�i
given ~x. This necessarily requires the support of �i given ~x to be bounded. As discussed earlier,

such boundedness is a sensible assumption in the entry game example.
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Lewbel (2000) shows that special regressor estimates can converge at parametric rates (
p
G in

the current context) with unbounded support, but doing so requires that that the special regressor

have very thick tails. It should therefore be possible to relax the bounded support restriction in

Assumption S�. However, Khan and Tamer�s (2010) impossibility result shows that, in the unbound-

edness case, the tails would need to be thick enough to give the special regressor in�nite variance.8

Moreover our estimator would need to be modi�ed to incorporate asymptotic trimming or some

similar device to deal with the denominator of Yi going to zero in the tails.

More generally, without bounded support the rate of convergence of �̂i depends on the tail

behavior of the distributions of Vi given x�i. Robust inference of �̂i independent of the tail behaviors

might be conducted in our context using a �rate-adaptive" approach as discussed in Andrews and

Schafgans (1993) and Khan and Tamer (2010). This would involve performing inference on a

studentized version of �̂i. More speculatively, it may also be possible to attain parametric rates of

convergence without these tail thickness constraints by adapting some version of tail symmetry as

in Magnac and Maurin (2007) to our game context. We leave these topics to future research.

7 Monte Carlo Simulations

In this section we present evidence for the performance of the estimators in 2-by-2 entry games with

linear payo¤s. For i = 1; 2, the payo¤ for Firm i from entry (Di = 1) is �0i +�
1
i
~X�Xi+�iD3�i��i,

where D3�i is the entry decision of i�s competitor. The payo¤ from staying out is 0 for both

i = 1; 2. The non-excluded regressor ~X is discrete with Pr( ~X = 1=2) = Pr( ~X = 1) = 1=2. The

true parameters in the data-generating process (DGP) are set to [�01; �
1
1] = [1:8; 0:5] and [�

0
2; �

1
2] =

[1:6; 0:8]. For both i = 1; 2, the support of the observable part of the �xed costs (i.e. excluded

regressors Xi) is [0; 5] and the supports for the unobservable part of the �xed costs (i.e. �i) is [�2; 2].
All variables ( ~X;X1; X2; �1; �2) are mutually independent. To illustrate how the semiparametric

estimator performs under various distributions of unobservable states, we experiment with two

DGP designs: one in which both Xi and �i are uniformly distributed (Uniform Design); and one

in which Xi is distributed with symmetric, bell-shaped density fXi(t) =
3
8(1� (

2t
5 � 1)

2)2 over [0; 5]

while �i is distributed with symmetric, bell-shaped density f�i(t) =
15
32(1 �

t2

4 )
2 over [�2; 2]. That

is, both Xi; �i are linear transformation of a random variable whose density is given by the Quartic

(Bi-weight) kernel, so we will refer to the second design as the BWK design. By construction, the

8More precisely, Khan and Tamer (2010) showed for a single-agent, binary regression with a special regressor

that the semiparametric e¢ ciency bound for linear coe¢ cients are not �nite as long as the second moment of all

regressors (including the special regressors) are �nite. For a further simpli�ed model where Y = 1f� + v + " � 0g
(with v ? ", � constant and both v; " distributed over the real-line), they showed that the rate of convergence for an
inverse-density-weighted estimator can vary between N�1=4 and the parametric rate, depending on the relative tail

behaviors.
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conditional independence, additive separability, large support, and monotonicity conditions are all

satis�ed by these designs.

For each design, we simulate S = 300 samples and calculate summary statistics from empirical

distributions of estimators �̂i from these samples. These statistics include the mean, standard

deviation (Std.Dev), 25% percentile (LQ), median, 75% percentile (HQ), root of mean squared

error (RMSE ) and median of absolute error (MAE ). Both RMSE and MAE are estimated using

the empirical distribution of estimators and the knowledge of our true parameters in the design.

Table 1(a) reports performance of (�̂1; �̂2) under the uniform design. The two statistics reported
in each cell of Table 1(a) correspond to those of [�̂1; �̂2] respectively. Each row of Table 1(a) reports
Each row relates to a di¤erent sample size N (either 5; 000 or 10; 000) and certain choices of
bandwidth � for estimating p�i ; p

�
j and their partial derivatives w.r.t. Xi; Xj . We use the tri-weight

kernel function (i.e. K(t) = 35
32(1� t2)31fjtj � 1g) in estimation. We choose the bandwidth (b.w.)

through cross-validation by minimizing the Expectation of Average Squared Error (MASE) in the
estimation of p�i and p

�
j . This is done by choosing the bandwidths that minimize the Estimated

Predication Error (EPE) for estimating p�i ; p
�
j .
9 To study how robust the performance of our

estimator is against various bandwidths, we report summary statistics for our estimator under both
intentional under-smoothing (with a bandwidth equal to half of b.w.) and over-smoothing (with a
bandwidth equal to 1.5 times of b.w.). To implement our estimator, we estimate the set of states !
satisfying NDS by fx : p̂i(x), p̂j(x) 2 (0; 1), p̂i;i(x), p̂j;j(x) 6= 0 and p̂i;i(x)p̂j;j(x) 6= p̂i;j(x)p̂j;i(x)g.

Table 1(a): Estimator for (�1; �2) (Uniform Design )

N Mean Std.Dev. LQ Median HQ RMSE MAE

b.w. [-1.397,-1.384] [0.163,0.174] [-1.514,-1.499] [-1.387,-1.386] [-1.294,-1.267] [0.189,0.193] [0.123,0.122]

5k 1
2
b.w. [-1.430,-1.433] [0.282,0.292] [-1.606,-1.621] [-1.408,-1.404] [-1.257,-1.232] [0.310,0.320] [0.196,0.199]

3
2
b.w. [-1.442,-1.429] [0.141,0.148] [-1.536,-1.529] [-1.436,-1.425] [-1.344,-1.324] [0.200,0.196] [0.144,0.139]

b.w. [-1.380,-1.379] [0.113,0.119] [-1.456,-1.457] [-1.381,-1.374] [-1.298,-1.294] [0.138,0.143] [0.096,0.098]

10k 1
2
b.w. [-1.390,-1.394] [0.187,0.185] [-1.519,-1.520] [-1.376,-1.386] [-1.256,-1.254] [0.207,0.207] [0.134,0.129]

3
2
b.w. [-1.424,-1.420] [0.098,0.102] [-1.488,-1.487] [-1.421,-1.417] [-1.352,-1.349] [0.158,0.157] [0.121,0.117]

The column of RMSE in Table 1(a) shows that the mean squared error (MSE) in estimation
diminishes as the sample size increases from N = 5000 to N = 10000. There is also evidence
for improvement of the estimator in terms median absolute errors as N increases. The trade-o¤
between variance and bias of the estimator as bandwidth changes is also evident from the �rst two
columns in Table 1(a). The choice of bandwidth has a moderate e¤ect on estimator performance.

9See Page 119 of Pagan and Ullah (1999) for de�nition of EPE and MASE.
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Table 1(b): Estimator for (�1; �2) (BWK Design )

N Mean Std.Dev. LQ Median HQ RMSE MAE

b.w. [-1.347,-1.342] [0.095,0.090] [-1.402,-1.410] [-1.343,-1.335] [-1.287,-1.282] [0.105,0.100] [0.071,0.062]

5k 1
2
b.w. [-1.343,-1.343] [0.120,0.112] [-1.418,-1.424] [-1.342,-1.345] [-1.263,-1.266] [0.127,0.120] [0.084,0.081]

3
2
b.w. [-1.406,-1.440] [0.092,0.090] [-1.462,-1.464] [-1.404,-1.391] [-1.346,-1.344] [0.141,0.135] [0.108,0.095]

b.w. [-1.317,-1.320] [0.061,0.061] [-1.361,-1.356] [-1.312,-1.314] [-1.276,-1.276] [0.063,0.064] [0.042,0.038]

10k 1
2
b.w. [-1.309,-1.311] [0.076,0.077] [-1.361,-1.357] [-1.305,-1.300] [-1.264,-1.263] [0.076,0.077] [0.048,0.045]

3
2
b.w. [-1.365,-1.368] [0.058,0.060] [-1.407,-1.404] [-1.361,-1.365] [-1.325,-1.325] [0.087,0.090] [0.061,0.066]

Table 1(b) reports the same statistics for the BWK design where both Xi; �i are distributed

with bell-shaped densities. Again there is strong evidence for convergence of the estimator in terms

of MSE (and MAE). A comparison between panels (a) and (b) in Table 1 suggests the estimators

for �i; �j perform better under the BWK design. First, for a given sample size, the RMSE is smaller

for the BWK design. Second, as sample size increases, improvement of performance (as measured

by percentage reductions in RMSE) is larger for the BWK design. This di¤erence is due in part to

the fact that, for a given sample size, the BWK design puts less probability mass towards tails of

the density of Xi. To see this, note that by construction, the large support property of the model

implies pi; pj could hit the boundaries (0 and 1) for large or small values of Xi; Xj in the tails.

Therefore states with such extreme values of xi; xj are likely to be trimmed as we construct �̂i; �̂j
conditioning on states in ! (i.e. those satisfying the NDS condition). The uniform distribution

assigns higher probability mass towards the tails than bi-weight kernel densities. Thus, for a �xed

N , the uniform design tends to trim away more observations than BWK design while estimating

�i; �j . Note that while these trimmed out tail observations do not contribute towards estimation of

�̂i; �̂j , their presence is required for parametric rate convergence of �̂
0

i ; �̂
1

i .

Next, we report performance of estimators (�̂
0

i ; �̂
1

i )i=1;2 in Table 2, where we experiment with
the same set of bandwidths as in Table 1. Besides, we report in Table 2 the performance of an
�infeasible version" of our estimator where the preliminary estimates for pi; pj and their partial
derivatives w.r.t. excluded regressors are replaced by true values in the DGP. Panels (a) and (b)
show summary statistics from the estimates in S = 300 simulated samples under the uniform design.
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Table 2(a): Estimator for (�0i ; �
1
i ) (Uniform Design, N = 5k)

Mean Std.Dev. LQ Median HQ RMSE MAE

Infeasible [�̂
0
1; �̂

1
1] [1.818,0.487] [0.088,0.116] [1.756,0.408] [1.819,0.483] [1.879,0.564] [0.090,0.117] [0.062,0.081]

[�̂
0
2; �̂

1
2] [1.617,0.786] [0.081,0.105] [1.560,0.710] [1.622,0.785] [1.677,0.855] [0.083,0.105] [0.060,0.073]

b.w. [�̂
0
1; �̂

1
1] [1.835,0.510] [0.095,0.120] [1.774,0.427] [1.839,0.502] [1.900,0.599] [0.101,0.120] [0.066,0.085]

[�̂
0
2; �̂

1
2] [1.636,0.801] [0.096,0.111] [1.571,0.713] [1.635,0.801] [1.706,0.884] [0.102,0.111] [0.079,0.085]

1
2
b.w. [�̂

0
1; �̂

1
1] [1.875,0.490] [0.104,0.123] [1.816,0.403] [1.873,0.482] [1.946,0.574] [0.128,0.123] [0.088,0.090]

[�̂
0
2; �̂

1
2] [1.685,0.770] [0.107,0.114] [1.604,0.682] [1.689,0.770] [1.764,0.853] [0.136,0.117] [0.102,0.086]

3
2
b.w. [�̂

0
1; �̂

1
1] [1.815,0.533] [0.095,0.123] [1.751,0.446] [1.812,0.523] [1.887,0.620] [0.096,0.127] [0.068,0.089]

[�̂
0
2; �̂

1
2] [1.613,0.826] [0.097,0.112] [1.544,0.737] [1.617,0.826] [1.684,0.911] [0.098,0.115] [0.074,0.079]

Table 2(b): Estimator for (�0i ; �
1
i ) (Uniform Design, N = 10k)

Mean Std.Dev. LQ Median HQ RMSE MAE

Infeasible [�̂
0
1; �̂

1
1] [1.816,0.492] [0.059,0.076] [1.777,0.440] [1.811,0.496] [1.855,0.542] [0.061,0.076] [0.040,0.052]

[�̂
0
2; �̂

1
2] [1.627,0.776] [0.063,0.078] [1.587,0.725] [1.629,0.773] [1.667,0.826] [0.069,0.081] [0.046,0.051]

b.w. [�̂
0
1; �̂

1
1] [1.823,0.525] [0.067,0.083] [1.779,0.477] [1.822,0.531] [1.866,0.577] [0.071,0.087] [0.047,0.059]

[�̂
0
2; �̂

1
2] [1.631,0.811] [0.073,0.085] [1.584,0.754] [1.634,0.809] [1.676,0.864] [0.079,0.086] [0.056,0.053]

1
2
b.w. [�̂

0
1; �̂

1
1] [1.847,0.497] [0.069,0.082] [1.801,0.451] [1.849,0.500] [1.888,0.548] [0.083,0.081] [0.057,0.049]

[�̂
0
2; �̂

1
2] [1.658,0.780] [0.074,0.085] [1.611,0.730] [1.658,0.782] [1.700,0.831] [0.094,0.087] [0.067,0.059]

3
2
b.w. [�̂

0
1; �̂

1
1] [1.790,0.575] [0.070,0.087] [1.745,0.522] [1.792,0.582] [1.837,0.631] [0.071,0.115] [0.049,0.090]

[�̂
0
2; �̂

1
2] [1.599,0.860] [0.076,0.089] [1.548,0.803] [1.604,0.858] [1.644,0.918] [0.075,0.107] [0.049,0.070]

Similar to Table 1, these panels in Table 2 show some evidence that estimators are converging
(with MSE diminishing) as sample size increases. In Table 2(a) and 2(b), the choices of bandwidth
now seem to have less impact on estimator performance relative to Table 1. Furthermore, the
trade-o¤ between bias and variances of �̂

0

i ; �̂
1

i as bandwidth varies is also less evident than in Table
1. This may be partly explained by the fact that the �rst-stage estimates �̂i and �̂j (which itself
is a sample moment involving preliminary estimates of nuisance parameters p̂i; p̂j ; p̂i;j ; p̂j;i etc) now

enter �̂
0

1; �̂
1

1 through sample moments. While estimating �
0
i ; �

1
i , these moments are then averaged

over all observed states in data, including those not necessarily satisfying NDS. This second-round
averaging, which involves more observations from data, possibly further mitigates the impact of
bandwidths for nuisance estimates (p̂i; p̂j etc) on �nal estimates. It is also worth noting that the
performance of the feasible estimator is somewhat comparable to that of the infeasible estimators in
terms of MSE and MAE. Again, this is as expected, because the �nal estimator for �0i ; �

1
i requires

further averaging of sample moments that involve preliminary estimates.
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Table 2(c): Estimator for (�0i ; �
1
i ) (BWK Design, N = 5k)

Mean Std.Dev. LQ Median HQ RMSE MAE

Infeasible [�̂
0
1; �̂

1
1] [1.811,0.513] [0.072,0.095] [1.757,0.448] [1.813,0.516] [1.860,0.573] [0.072,0.096] [0.051,0.064]

[�̂
0
2; �̂

1
2] [1.618,0.804] [0.064,0.084] [1.574,0.747] [1.620,0.801] [1.661,0.858] [0.066,0.083] [0.046,0.055]

b.w. [�̂
0
1; �̂

1
1] [1.813,0.513] [0.074,0.096] [1.773,0.456] [1.814,0.514] [1.859,0.576] [0.075,0.097] [0.045,0.055]

[�̂
0
2; �̂

1
2] [1.619,0.797] [0.069,0.085] [1.569,0.739] [1.618,0.795] [1.665,0.854] [0.071,0.085] [0.051,0.058]

1
2
b.w. [�̂

0
1; �̂

1
1] [1.835,0.487] [0.073,0.097] [1.784,0.421 [1.835,0.494] [1.881,0.544] [0.081,0.098] [0.058,0.061]

[�̂
0
2; �̂

1
2] [1.641,0.776] [0.073,0.089] [1.593,0.716] [1.643,0.774] [1.688,0.831] [0.083,0.092] [0.061,0.066]

3
2
b.w. [�̂

0
1; �̂

1
1] [1.796,0.574] [0.074,0.098] [1.742,0.503] [1.796,0.576] [1.848,0.637] [0.074,0.123] [0.053,0.090]

[�̂
0
2; �̂

1
2] [1.619,0.835] [0.071,0.088] [1.564,0.775] [1.620,0.832] [1.665,0.892] [0.074,0.095] [0.053,0.056]

Table 2(d): Estimator for (�0i ; �
1
i ) (BWK Design, N = 10k)

Mean Std.Dev. LQ Median HQ RMSE MAE

Infeasible [�̂
0
1; �̂

1
1] [1.805,0.521] [0.052,0.067] [1.778,0.484] [1.811,0.523] [1.842,0.561] [0.052,0.070] [0.030,0.044]

[�̂
0
2; �̂

1
2] [1.616,0.809] [0.053,0.062] [1.587,0.768] [1.619,0.803] [1.649,0.847] [0.055,0.062] [0.038,0.039]

b.w. [�̂
0
1; �̂

1
1] [1.810,0.507] [0.052,0.067] [1.773,0.469] [1.812,0.506] [1.845,0.552] [0.053,0.067] [0.037,0.046]

[�̂
0
2; �̂

1
2] [1.618,0.796] [0.052,0.065] [1.581,0.749] [1.620,0.793] [1.654,0.838] [0.055,0.065] [0.038,0.044]

1
2
b.w. [�̂

0
1; �̂

1
1] [1.827,0.487] [0.054,0.070] [1.789,0.442] [1.828,0.490] [1.865,0.532] [0.060,0.071] [0.042,0.045]

[�̂
0
2; �̂

1
2] [1.632,0.780] [0.055,0.070] [1.592,0.735] [1.635,0.781] [1.670,0.825] [0.063,0.070] [0.043,0.050]

3
2
b.w. [�̂

0
1; �̂

1
1] [1.808,0.527] [0.056,0.067] [1.766,0.489] [1.808,0.527] [1.841,0.571] [0.056,0.072] [0.036,0.050]

[�̂
0
2; �̂

1
2] [1.619,0.807] [0.052,0.064] [1.582,0.764] [1.621,0.804] [1.655,0.849] [0.055,0.065] [0.040,0.043]

The remaining two panels 2(c) and 2(d) report estimator performance for the BWK design.

These two panels exhibit similar patterns as noted for Table 2(a) and 2(b). The performance

of (�̂
0

i ; �̂
1

i ) under the BWK design is slightly better than that in the uniform design in terms of

both MSE and MAE. The uniform design has more observations in the data that are closer to

the boundary of supports than the BWK, which, for a given accuracy of �rst stage estimates,

should have made estimation of �0; �1i more accurate under the uniform design. However, this

e¤ect was o¤set by the impact of distributions of Xi; �i on �rst-stage estimators �̂i; �̂j , which were

more precisely estimated in the uniform design.

8 Extension: Multiple Bayesian Nash Equilibria

As discussed in Section 2, the model may admit multiple BNE in general. Preceding sections

maintained the assumption that choices under each state are generated by a single BNE in the

data-generating process (A2). This section shows how to extend our identi�cation and estimation

strategies to allow for multiple BNE in some states.
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Our approach di¤ers qualitatively from other methods such as those surveyed in the introduc-

tion, and only requires fairly mild nonparametric restrictions. Consider the possibly unknown set

of all states in which choices observed in data are rationalized by a single BNE. Denote this set by

!� � 
X . Note !� not only includes those states in which the system of equations in (1) has a

unique solution, but also includes those in which (1) admits multiple solutions in fsi(x; :)gi2N but
for which some (possibly unknown to the researcher) equilibrium selection mechanism in data is

degenerate at only one of them.

We �rst modify previous arguments to identify �i and interaction e¤ects �i(~x) by conditioning

on states being in a known subset !0 of !�. Furthermore, provided the excluded regressors Xe
vary su¢ ciently over !0, we similarly extend previous arguments to identify the baseline payo¤s.

These extensions of results in Sections 3.2 and 3.4 are provided in Section 8.1. Also, in Appendix B

we provide su¢ cient conditions to guarantee that a non-empty set !0 exists which contains enough

states, and hence is su¢ ciently large enough, to allow identi�cation of players�payo¤s in the model.

Implementation of this identi�cation strategy assumes knowledge of some su¢ ciently large sub-

set !0 of !�. Our �nal results show that this assumption is testable, that is, given a su¢ ciently

large candidate set of states !, we can use our data to test if ! is a subset of !�, and hence test if

! is a valid choice of a set of states !0 to use in our identi�cation method.

8.1 Identi�cation under multiple equilibria in some states

Corollary 4 (Theorem 1)Suppose A1,3 hold and let !0 be an open subset of !� that satis�es NDS.

Then (i) (�1; :; �N ) is identi�ed as in (7) in Theorem 1 with ! replaced by !0. (ii) For all ~x such

that Pr(X 2 !0j ~X = ~x) > 0, (�1(~x); :; �N (~x)) is identi�ed as in (8) in Theorem 1 with ! replaced

by !0.

Corollary 4 identi�es �i(~x) at those ~x for which an open subset !0 � !� with Pr(X 2 !0j~x) > 0
is known. In Appendix B, we present su¢ cient conditions for existence of such a !0 that also

satis�es the NDS condition. Essentially these conditions require the density of Si given ~x to be
bounded away from zero over intervals between �ixi + �i(~x) and �ixi for any (xe; ~x) 2 !0.10 The
next subsection discusses how to test the assumption that a given set of states belongs to !�.

Now consider extending the arguments that identify ~ui(~x) in Section 3 under the mean inde-

pendence of �i to allow for multiple BNE in data. The idea is to use the variation of Xi as before,

but now only over some subset states in !�.

10This condition is su¢ cient for the system in (3) to admit only one solution for all (xe; ~x) 2 !0 when hi(D�i) =P
j 6=iDj and ui(x; �i) is additively separable in x and �i for both i. It is stronger than what we need because there

can be a unique BNE in the DGP even when the system admits multiple solutions at a state x.
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A5000 For any i and ~x, there exists some x�i = (xe;�i; ~x) and !i � 
Xijx�i such that (i) !i is an
interval with Pr(Xi 2 !ijx�i) > 0 and !i
x�i � !�; (ii) the support of Vi conditional on Xi 2 !i
and x�i includes the support of Si given ~x; (iii) the density of Xi conditional on Xi 2 !i and x�i
is positive a.e. on !i; and (iv) the sign of @Vi(X)=@XijX=(xi;x�i) is identical to the sign of �i for
all xi 2 !i.

A5000 is more restrictive than A5�, because A5000 requires the large support condition and the

monotonicity condition to hold over a set of states with a unique equilibrium in DGP. The presence

of excluded regressors with the assumed support properties in our model generally implies that

!� is not empty. An intuitive su¢ cient condition for A5000 to hold for some i and ~x is that the

other excluded regressors (except xi) take extremely large or small values so that the system (3)

admits a unique solution. (To see this, consider the example of entry game. Suppose the observed

component of �xed costs, or excluded regressors, for all but one �rm take on extremely large values.

Then the probability of entry for all but one of the �rms are practically zero, yielding a unique

BNE where the remaining one player with a non-extreme �xed cost component Xi enters if and

only if his monopoly pro�t exceeds his �xed cost of entry.)

Nonetheless, note that such extreme values are not necessary for !� to be non-empty and for

A5000 to hold. This is because the equilibrium selection mechanism may well be such that even

for states with non-extreme values the data is rationalized by a single BNE. For instance, in the

extreme case of !� = 
X we would be back to the scenario as assumed in A2. Conditions (i) and

(iii) in A5000 are mild regularity conditions. Condition (iv) in A5000 can be satis�ed when �i(~x) and

the density of �i given ~x are bounded above. We formalize primitive conditions that are su¢ cient

for the existence of such x�i and !i satisfying A5000 in Appendix B.

For any x�i and !i, de�ne Y 0i;H by replacing f(xijx�i) with f(xijx�i; !i) in the de�nition of
Yi;H in (14). Choose a continuous distribution H as in (14), but now require it to have an interval

support contained in the support of Vi conditional on �X�i = x�i and Xi 2 !i". Let �H denote

the expectation with respect to the chosen distribution H. Again, the potential dependence of H

(and �H) on (x�i; !i) is suppressed to simplify notations.

Corollary 5 (Theorem 3) Suppose A1,3,4 hold. For any i, x�i and !i such that A5000 holds,

~ui(~x) = E
�
Y 0i;H jXi 2 !i; x�i

�
� �H .

Once we condition on x�i and !i with !i 
 x�i � !�, the link between model primitives and

distribution of states and actions observed from data takes the form of (1). The proof of Corollary

5 is then an extension of Corollary 2, and is omitted for brevity.

Similar to the case with unique BNE, we could also modify the identifying argument in Corollary

5 to exploit the variation of Xe over a set of states with unique BNE and ~X = ~x. This would be
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done by replacing the denominator of (11) with fVi(Vi(x)jXe 2 !e; ~x), where !e consists of a set of
xe such that: (a) Pr(Xe 2 !ej~x) > 0; (b) !e 
 ~x � !�; and (c) the support of Vi given � ~X = ~x and

Xe 2 !e" covers that of �~ui(~x) + �i given ~x.

8.2 Testing the assumption of unique equilibrium in a subset of states

When there may be multiple BNE in data under some states, estimation of �i; �i(~x) and ~ui(~x)

requires knowledge of some subset of !�. Speci�cally, the researcher needs to know some !e � 
Xej~x
with !e
 ~x � !� in order to estimate �i; �i(~x), and some !i � 
Xijx�i with !i
x�i � !� in order

to estimate ~ui(~x). The goal of this subsection is to discuss how to test the assumption that a given

set of states the researcher chooses to use for estimation is in fact a subset of !�. More speci�cally,

given some �! � 
X , we modify the method in De Paula and Tang (2011) to propose a test for the
null that for almost all states in �! the actions observed in data are rationalized by a single BNE.

For brevity we focus on the semiparametric case with �i(~x) = �i and N = 2.

For any generic �! � 
X with Pr(X 2 �!) > 0, de�ne:

T (�!) � E [1fX 2 �!g (D1D2 � p�1(X)p�2(X))] .

The following lemma is a special case of Proposition 1 in De Paula and Tang (2011), which builds

on results in Manski (1993) and Sweeting (2009).

Lemma 2 Suppose �i(~x) = �i 6= 0 for all ~x and i = 1; 2. Under A1,

PrfX 62 !�j X 2 �!g > 0 if and only if T (�!) 6= 0 (24)

The intuition for (24) is that, if players�private information sets are independent conditional

on x, then their actions must be uncorrelated if the data are rationalized by a single BNE. Any

correlations between actions in data can only occur as players simultaneously move between strate-

gies prescribed in di¤erent BNE. De Paula and Tang (2011) showed this result in a general setting

where both the baseline payo¤s ui(x; �i) and the interaction e¤ects �i(x) are unrestricted functions

of states x. They also propose the use of a multiple testing procedure to infer the signs of strategic

interaction e¤ects in addition to the presence of multiple BNE.

Given Lemma 2, for any �! with PrfX 2 �!g > 0, the formulation of the null and alternative as

H0 : PrfX 2 !�jX 2 �!g = 1 vs. HA : PrfX 2 !�jX 2 �!g < 1

is equivalent to the formulation

H0 : T (�!) = 0 vs. HA : T (�!) 6= 0.
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Exploiting this equivalence, we propose a test statistic based on the analog principle and derive

its asymptotic distribution. To simplify exposition, we focus on the case where ~X is discrete

(recall that Xe is continuous). The generalization to the case with continuous coordinates in ~X is

straightforward.

For a product kernel K with support in R2 and bandwidth � (with � ! 0 as G ! +1),
de�ne K�(:) � ��2K(:=�). Let Dg � (Dg;0; Dg;1; Dg;2) where Dg;0 � 1, Xg � (Xg;e; ~Xg) and

Xg;e � (Xg;1; Xg;2) denotes actions and states observed in independent games, each of which is

indexed by g. De�ne the statistic

T̂ (�!) � 1
G

P
g�G 1fxg 2 �!g [d1;gd2;g � p̂1(xg)p̂2(xg)] , (25)

with

p̂i(x) � 
̂i(x)=
̂0(x) and 
̂k(x) � 1
G

P
g dg;kK� (xg;e � xe) 1f~xg = ~xg

for i = 1; 2 and k = 0; 1; 2.11 De�ne 
̂ � [
̂0; 
̂1; 
̂2]0. We then have

T̂ (�!) = 1
G

P
g 1fxg 2 �!gm(zg; 
̂)

where z � (d1; d2; x), and m(z; 
) � d1d2 � 
�20 (x)
1(x)
2(x) for a generic vector 
 � [
0; 
1; 
2].
For notation simplicity, suppress the dependence of w and m on (~x; !e) when there is no ambiguity.

Let 
� � [
�0; 
�1; 
�2]
0, where 
�0 denotes the true density of X and 
�i � p�i 


�
0 for i = 1; 2 (with p

�
i

being choice probabilities directly identi�ed from data). Let F �; f� denote the true distribution

and density of z in the DGP.

The detailed conditions needed to obtain the asymptotic distribution of T̂ (�!) (T1-4 ) are col-

lected in the supplement of this article (Lewbel and Tang (2012)). These conditions include assump-

tions on smoothness and boundedness of relevant population moments (T1, T4 ), the properties of

kernel functions (T2 ) and properties of the sequence of bandwidth (T3 ).

Theorem 6 Suppose assumptions T1-4 hold and PrfX 2 �!g > 0. Then

p
G
�
T̂ (�!)� ��!

�
d�! N (0;��!)

where ��! � E [1fX 2 �!g (D1D2 � p�1(X)p�2(X))] and ��! is de�ned as

V ar
h
1fX 2 �!g

�
D1D2 � p�1(X)p�2(X) +

2p�1(X)p
�
2(X)�D1p�2(X)�D2p�1(X)


�0(X)

�i
.

The covariance matrix ��! above is expressed in terms of functions that are observable in the

data, and so can be consistently estimated by its sample analog under standard conditions.
11Alternatively, we could replace the indicator function 1f~xg = ~xg with smooth kernels while estimating 
. These

joint product kernels will be de�ned over RJ and satisfy
R
j ~K(t1; t2;0)jdt1dt2 < 1;

R
~K(t1; t2;0)dt1dt2 = 1; and for

any � > 0,
p
G supjj~tjj>�=�

R
j ~K(t1; t2;~t)jdt1dt2 ! 0. See Bierens (1987) for details.
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9 Conclusions

We have provided conditions for nonparametric identi�cation of static binary games with incom-

plete information, and associated estimators that converge at parametric rates for a semiparametric

speci�cation of the model with linear payo¤s. The point identi�cation extends to allow for the pres-

ence of multiple Bayesian Nash equilibria in the data-generating process. We show that assumptions

required for identi�cation are plausible and have ready economic interpretations in contexts such

as simultaneous market entry decisions by �rms.

Our identi�cation and estimation methods depend critically on observing excluded regressors,

which are state variables that a¤ect just one player�s payo¤s, and do so in an additively separable

way. Like all public information a¤ecting payo¤s, excluded variables still a¤ect all player�s proba-

bilities of actions. Nevertheless, we show that a function of excluded regressors and payo¤s can be

identi�ed and constructed that play the role of special regressors for identifying the model. Full

identi�cation of the model requires relatively large variation in these excluded regressors, to give

these constructed special regressors a large support.

In the entry game example, observed components of �xed costs are natural examples of excluded

regressors. An obstacle to applying our results in practice is that data on components of �xed costs,

while public, is often not collected, perhaps because existing empirical applications of entry games

(which generally require far more stringent assumptions than our model) do not require observation

of �xed cost components for identi�cation. We hope our results will provide the incentive to collect

such data in the future.

Our results may also be applicable to di¤erent types of games, e.g. they might be used to

identify and estimate the outcomes of household bargaining models, given su¢ cient data on the

components of each spouse�s payo¤s.

Appendix A: Proofs of Identi�cation Results

Proof of Theorem 1. For any ~x, let D(~x) denote a N -vector with ordered coordinates (�1(~x); �2(~x);
::; �N (~x)). For any x � (xe; ~x), let F(x) denote a N -vector with the i-th coordinate being

fSij~x(�ixi+ �i(~x)�
�
i (x)). Under Assumptions 1-3, for any x and all i,

p�i (x) = PrfSi � �iXi + �i( ~X)�
�
i (X)jX = xg. (26)

Now for any x, �x ~x and di¤erentiate both sides of (26) with respect to Xi for all i. This gives:

W1(x) = F(x): (A+D(~x):V1(x)) (27)
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where �:" denotes component-wise multiplication. Furthermore, for i � N � 1, di¤erentiate both
sides of (26) w.r.t. Xi+1 at x. Also di¤erentiate both sides of (26) for i = N with respect to X1 at

x. Stacking N equations resulting from these di¤erentiations, we have

W2(x) = F(x):D(~x):V2(x) (28)

For all x 2 ! (where ! satis�es NDS), none of the coordinates in F(x), V2(x) and V2(x):W1(x)�
V1(x):W2(x) are zero. It then follows that for any x 2 !,

A:F(x)=W1(x)�W2(x):V1(x):=V2(x) (29)

D(~x)= A:W2(x):= [V2(x):W1(x)� V1(x):W2(x)] , (30)

where A is a constant vector and �:=" denotes component-wise divisions. Note F(x) is a vector
with strictly positive coordinates under Assumption 1. Hence signs of �i�s must be identical to

those of coordinates on the right-hand side in (29) for any x 2 !. Integrating out X over ! using

the marginal distribution of X gives (7). The equation (30) suggests Di(~x) is over-identi�ed from
the right-hand side for all x 2 !. Integrating out X over ! using the distribution of X conditional

on ~x and X 2 ! gives (8). Q.E.D.

Proof of Corollary 2. Fix a x�i = (xe;�i; ~x) that satis�es A5�. Then

E[Yi;H jx�i] =
Z

[E(DijX=x)�H(Vi(x))][1+�i�i(~x)��i;i(x)]
fXi (xijx�i)

fXi(xijx�i)dxi

=

Z
[E (DijVi = Vi(x); ~x)�H(Vi(x))] [1 + �i�i(~x)��i;i(x)]dxi (31)

where the �rst equality follows from the law of iterated expectations and A5�-(ii); and the second

from A3 and that �i ? Vi(X) given ~x. The integrand in (31) is continuous in Vi(X), and Vi(X) is

continuously di¤erentiable in Xi given x�i under A1 and A3, with
@Vi(X)
@Xi

jX=x = �i + �i(~x)�
�
i;i(x).

We suppress the dependence of vi; vi; �H on x�i to simplify notations in the proof. Consider the case

with �i = 1 so that Vi is increasing in xi given x�i under A5�-(iii). In this case, 1+�i�i(~x)��i;i(x) =

�i + �i(~x)�
�
i;i(x), and a change of variables between vi and xi while holding x�i �xed gives us

E[Yi;H jx�i] =
Z vi

vi

[E (Dijv; ~x)�H(v)] dv =
Z vi

vi

[E (Dijv; ~x)� 1fv � �Hg] dv,

where the second equality uses integration by parts and the properties of H. It also uses that �H
is in the interior of support of H. Then

E [Yi;H jx�i] =
Z vi

vi

 Z

�ij~x

1f"i � ~ui(~x) + vgdF ("ij~x)
!
� 1 fv � �Hg dv

=

Z

�ij~x

Z vi

vi

1fv � sig � 1 fv � �Hg dvdF ("ij~x),
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where si � �~ui(~x) + "i and the last equality follows from a change of the order of integration

between v and "i allowed under the support condition in A5�-(i) and the Fubini�s Theorem. Then

E [Yi;H jx�i] becomesZ

�ij~x

Z vi

vi

1fsi � v < �Hg1fsi � �Hg � 1 f�H < v � sig 1fsi > �HgdvdF (�ij~x)

=

Z

�ij~x

 
1fsi � �Hg

Z �H

si

dv � 1fsi > �Hg
Z si

�H

dv

!
dF (�ij~x)

=

Z

�ij~x

(�H � si) dF (�ij~x) = ~ui(~x) + �H .

Next consider the case with �i = �1 so that Vi is decreasing in xi given x�i under A5�-(iii). By
construction 1 + �i�i(~x)�

�
i;i(x) = ��i � �i(~x)�

�
i;i(x) = �@Vi(X)

@Xi
jX=x. The proof then follows from

change of variables as above. Q.E.D.

Proof of Lemma 2. Under A1,

x 2 !� if and only if E[D1D2jX = x] = p�1(x)p
�
2(x), (32)

and sign(E[D1D2jX = x]� p�1(x)p
�
2(x)) = sign(�i) for all x 62 !�. (See Proposition 1 in De Paula

and Tang (2011) for details.)

First suppose PrfX 2 !�jX 2 �!g = 1. Integrating out X in (32) given "X 2 �!" shows

E [D1D2 � p�1(X)p�2(X)jX 2 �!], which in turn implies T (�!) = 0. Next suppose PrfX 62 !�jX 2
�!g > 0. Then sign(�1) must necessarily equal sign(�2). (Otherwise, there can�t be multiple BNE
at any state x.) The set of states in �! can be partitioned into its intersection with !� and its

intersection with the complement of !� in the support of states. For all x in the latter intersection,

E[D1D2jx] � p�1(x)p
�
2(x) is non-zero and its sign is equal to sign(�i) for i = 1; 2. For all x in the

former intersection (with !�), E[D1D2jx]� p�1(x)p�2(x) is equal to 0. Applying the Law of Iterated
Expectations using these two partitioning intersections shows E [D1D2 � p�1(X)p�2(X)jX 2 �!] 6= 0
and its sign is equal to sign(�i). This in turn implies T (�!) 6= 0 with sign(T (�!)) = sign(�i) for

i = 1; 2. Q.E.D.

Appendix B: NDS, Large Support and Monotonicity Conditions

In this section, we provide conditions on the model primitives that are su¢ cient for some of the

main identifying restrictions stated in the text. These include the NDS condition for identifying �i
and �i(~x); the large support condition in A5, A5�,A5�and A5000 for identifying component of the

baseline payo¤ ~ui(~x /); as well as the monotonicity condition in A5�, A5�and A5000 that the sign of

marginal e¤ects of excluded regressors on generated special regressors are identical to the sign of

�i.
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B1. Su¢ cient conditions for NDS

We now present fairly mild su¢ cient conditions for there to exist a subset of states ! � !� that

satis�es NDS. Consider a game with N = 2 (with players denoted by 1 and 2) and hi(Dj) = Dj

for i = 1; 2 and j = 3� i. We begin by reviewing the su¢ cient conditions under which the system
characterizing BNE in (3) admits only a unique solution at x. Let p � (p1; p2) and de�ne:

'(p;X) �
"
'1(p;X)

'2(p;X)

#
�

24 p1 � FS1j ~X
�
�1X1 + �1( ~X)p2

�
p2 � FS2j ~X

�
�2X2 + �2( ~X)p1

� 35
By Theorem 7 in Gale and Nikaido (1965) and Proposition 1 in Aradillas-Lopez (2010), the solution

for p in the �xed point equation p = '(p;x) at any x is unique if none of the principal minors of the

Jacobian of '(p;x) with respect to p vanishes on [0; 1]2. Or equivalently, if �i=1;2�i(~x)fSij~x(�ixi +

�i(~x)p3�i(x)) 6= 1 for all p 2 [0; 1]2 at x. Let Ii(~x) denote the interval between 0 and �i(~x) for any
~x. That is, Ii(~x) � [0; �i(~x)] if �i(~x) > 0 and [�i(~x); 0] otherwise. For any ~x, de�ne:

!a(~x) �
�
xe : fSij~x(t+ �ixi) bounded away from 0 for all t 2 Ii(~x) and i = 1; 2

	
; and

!b(~x) �
(
xe :

Q
imint2Ii(~x) fSij~x(t+ �ixi) > (�1(~x)�2(~x))

�1 orQ
imaxt2Ii(~x) fSij~x(t+ �ixi) < (�1(~x)�2(~x))

�1

)

Proposition B1 Suppose A1,3 hold with N = 2. (a) If �1(~x)�2(~x) < 0 and Pr fXe 2 !a(~x)j~xg > 0,
then !a(~x)
 ~x � !� and satis�es NDS. (b) If �1(~x)�2(~x) > 0 and Pr

�
Xe 2 !a(~x) \ !b(~x)j~x

	
> 0,

then
�
!a(~x) \ !b(~x)

�

 ~x � !� and satis�es NDS.

Proof of Proposition B1. First consider ~x with �i=1;2�i(~x) < 0. Then �i=1;2�i(~x) fSij~x(�ixi +

�i(~x)p3�i(x)) < 0 for all xe 2 !a(~x) and all p on [0; 1]2. It then follows that (xe; ~x) 2 !� for

all xe 2 !a(~x). That @p�i (X)
@Xi

jX=x, @p�i (X)
@X3�i

jX=x exist for i = 1; 2 a.e. on !a(~x) follows from the

exclusion restrictions and smoothness conditions in Assumption 3. We now show Prfp�i;i(X)p�j;j(X)
6= p�i;j(X)p

�
j;i(X) and p

�
j;j(X) 6= 0 j Xe 2 !a(~x); ~X = ~xg = 1. Suppose this probability is strictly

less than 1 for i = 1. Suppose Prf@p
�
2(X)
@X2

= 0j Xe 2 !a(~x); ~X = ~xg > 0. By (5)-(6) for i = 1,

this implies there is a set of (x1; x2) on !a(~x) with positive probability such that both @p�2(x)
@X2

and @p�1(x)
@X2

are 0. But then by (5)-(6) for i = 2 implies the same set of (x1; x2) must satisfy
@p�1(x1;x2;~x)

@X2
= ��2=�1(~x) 6= 0, because the conditional densities of Si over the relevant section of

its domain is nonzero by de�nition of !a(~x). Contradiction. Hence Prf @p�2(X)
@X2

= 0j Xe 2 !a(~x);

~X = ~xg = 0. Symmetric arguments prove the same statement with @p�2(X)
@X2

replaced by @p�1(X)
@X1

. Now

suppose Prf@p
�
i (X)
@Xi

@p�3�i(X)
@X3�i

=
@p�i (X)
@X3�i

@p�3�i(X)
@Xi

j Xe 2 !a(~x); ~X = ~xg > 0. By construction, for all xe
in !a(~x), the relevant conditional densities of Si must be positive for i = 1; 2. Hence

@p�1(x)
@X1

@p�2(x)
@X2

� @p�1(x)
@X2

@p�2(x)
@X1

= �1
�1(~x)

@p�1(x)
@X2

(33)
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for all xe on !a(~x). Because Prf@p
�
2(X)
@X2

6= 0 j Xe 2 !a(~x); ~X = ~xg = 1 as argued above, (5)-

(6) for i = 1 and the de�nition of !a(~x) implies Prf@p
�
1(X)
@X2

6= 0 j Xe 2 !a(~x) ; ~X = ~xg = 1.

Hence Prfp�1;1(X)p�2;2(X) = p�1;2(X)p
�
2;1(X) j Xe 2 !a(~x) ; ~X = ~xg = 0. This proves part (a).

Next consider ~x with �1(~x)�2(~x) > 0. Because !a(~x) \ !b(~x) � !a(~x), arguments in the proof

of part (a) applies to show that the non-zero requirements in the NDS condition must hold over�
!a(~x) \ !b(~x)

�

 ~x under Assumptions 1,3. Furthermore, by construction, for any (x1; x2) in

!b(~x), either �i�i(~x)fSij~x(�ixi + �i(~x)p3�i(x)) > 1 or �i�i(~x)fSij~x(�ixi + �i(~x)p3�i(x)) < 1 for all

p 2 [0; 1]2. Hence the BNE (as solutions to (3)) must be unique for all states in !b(~x) 
 ~x. This
proves (!a(~x) \ !b(~x))
 ~x. Q.E.D.

B2. Su¢ cient conditions for various large support conditions

We begin with su¢ cient conditions on model primitives that are su¢ cient for the large support

condition in A5000. We will then give primitive conditions that are su¢ cient for large support

restrictions in A5� and A5�. Consider the case with N = 2. For any ~x, let sil; sih denote the

in�mum and supremum of the conditional support of Si given ~x respectively, and let �+i (~x) �
maxf0; �i(~x)g and ��i (~x) � minf0; �i(~x)g.

Proposition B2 Let N = 2 and hi(Dj) = Dj for both i = 1; 2 and j = 3 � i, and let A1,3 hold.

Suppose for i and x�i = (xe;�i; ~x), there exists an interval !i � 
Xijx�i such that !i 
 x�i 2 !�

and the support of �iXi given Xi 2 !i and x�i is an interval that contains [sil��+i (~x); sih��
�
i (~x)].

Then the set !i satis�es (i) !i is an interval with Pr(Xi 2 !ijx�i) > 0; and (ii) support of Si
given ~x is included in the support of Vi given x�i.

Proof of Proposition B2. Because !i 
 x�i 2 !�, the smoothness conditions in A1,3 imply for all
i that p�i (x) is continuous in xi over !i. Since !i is an interval (path-wise connected), the support

of Vi given x�i and Xi 2 !i(x�i) must also be an interval. By A2 and the condition in Proposition
C2, Prf�iXi + ��i (

~X) > sihj x�i; Xi 2 !ig > 0. This implies PrfVi > sihj x�i; Xi 2 !ig > 0.

Symmetrically, Prf�iXi + �+i (
~X) < sil j x�i; Xi 2 !ig > 0 implies PrfVi < silj x�i; Xi 2 !ig >

0. Since the support of Vi conditional on x�i and Xi 2 !i is an interval, the de�nition of sil; sih
suggests the conditional support of Vi must contain the support of Si � �ui( ~X) + �i given ~x.

Q.E.D.

The large support condition in A5000 holds if for all ~x there exists x�i = (xe;�i; ~x) that satis�es

conditions in Proposition B2.

Next, we give su¢ cient primitive conditions for large support restrictions in A5�and A5�. Under

A2, !� = 
X . Hence with A2 in the background (as is the case with Sections 5 and 6), the large

support condition in A5�holds when conditions in Proposition B2 are satis�ed by !i = 
Xijx�i for
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all x�i 2 
X�ij~x. Furthermore, under A2, the large support condition in A5�is satis�ed as long as
the conditions in Proposition B2 are satis�ed by !i = 
Xijx�i by some x�i 2 
X�ij~x. The large
support condition in A5 is implied by that in A5�. As stated in the text, these various versions of

large support conditions are veri�able using observed distributions.

B3. Su¢ cient conditions for monotonicity conditions

For simplicity in exposition, consider the case with N = 2, h(D�i) = Dj and �i = �1. For all
x 2 
X , we can solve for pj;i(x) using the system of �xed point equation in the marginal e¤ects of

excluded regressors on the choice probabilities. By construction, this gives:

@Vi(X)=@XijX=(xe;~x) = �1 + �i(~x)pj;i(x) =
1

�i(~x)�j(~x) ~fi(x) ~fj(x)�1

as �i(~x)�j(~x) ~fi(x) ~fj(x) 6= 1 almost surely. Thus the sign of @Vi(X)=@XijX=(xe;~x) is identical to
the sign of �i(~x)�j(~x) ~fi(x) ~fj(x) � 1. For the monotonicity condition in A5�to hold over x 2 
X ,
it su¢ ces to have two positive constants c1; c2 such that c1c2 < 1 and sign(�i(~x)) = sign(�j(~x))

and j�i(~x)j; j�j(~x)j � c1 and f�ij~x; f�j j~x bounded above by some positive constant c2 uniformly over


�ij~x;
�ij~x and ~x 2 
 ~X . This would imply the monotonicity condition in A5�as well.

In A5�, the monotonicity condition is only required to hold for some x�i = (xe;�i; ~x). Hence it

can also hold without such uniform bound conditions in the previous paragraph. It su¢ ces to have

�i; �j bounded and some xe;�i large or small enough so that the �rst term in the denominator is

smaller than 1 for the ~x and x�i = (xe;�i; ~x) considered.
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