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1 Introduction

In this article I propose a simple framework for quantifying the stance of monetary
policy in terms of a �shadow short rate�when nominal interest rates within the term
structure are near the zero lower bound (ZLB).
The ZLB framework I propose is a tractable and close approximation to the Black

(1995) framework for modelling the term structure in ZLB environments. The Black
framework obtains non-negative short rates as r

¯
(t) = max fr (t) ; 0g, which represents

the �real world�option to hold physical currency when the shadow short rate evolves
to negative values.1 Bond prices and yields are then generated from the expected path
of r
¯
(t). However, as I will discuss in section 4, practical implementations of the Black

framework are relatively complex, particularly as the number of factors increase.
Conversely, my ZLB framework is e¤ectively based on non-negative forward rates

obtained using bond options to represent the availability of physical currency. I outline
the framework in section 2. Section 3 compares a one-factor version of my ZLB frame-
work to the Black framework, and section 4 applies my ZLB framework empirically
to Japanese data. I conclude in section 5 and also discuss the important advantages
relative to the Black framework for extensions to multiple factors.

2 A non-negative forward rate framework

To establish notation, I introduce a �nite-step shadow nominal bond with a price
P(t+ � ; �) at time t+ � that pays 1 at time t+ � +�, where � � 0 is any future horizon
from time t and � > 0 represents the time to maturity. I also assume physical currency
is always available at time t+ � with a price of 1 and will pay 1 at time t+ � + �.
To maximize their returns, investors will choose the minimum priced investment

at time t + � , i.e. min f1;P (t+ � ; �)g.2 This expression may be re-arranged to 1 �
max f0; 1� P (t+ � ; �)g, which is a terminal boundary condition in two convenient
components. Respectively, the boundary condition of 1 implies a shadow bond price
at time t of P(t; �), and max f0; 1� P (t+ � ; �)g implies a put option price at time
t of Q(t; � ; � + �), with a strike price of 1 and expiry at time t + � . The combined
solution P(t; �)� Q(t; � ; � + �) may then be expressed as P(t; � + �)� C(t; � ; � + �),
where C(t; � ; � + �) is a call option with a strike price of 1 and expiry at time t+ � .3

The expression P(t; � + �)� C(t; � ; � + �) may be used to obtain forward rates
f
¯
(t; �) that are guaranteed to be non-negative for all maturities. Speci�cally, the most

1A prevalent literature has evolved over several decades with various speci�cations of short-rate
dynamics designed to avoid negative short rates. Examples are Cox, Ingersoll, and Ross (1985)/square-
root models, appropriately constrained quadratic-Gaussian models, and log-interest-rate models;
James and Webber (2000) pp. 226-33 provides further discussion. However, such models lack the
potential information provided by the shadow short rate in the Black framework and in the present
article. Note also that the shadow rate, as originally named in Black (1995), is not a shadow price in
the usual economic sense; i.e. it is not the marginal change of an objective function with respect to a
constraint.

2Investors�choices will not be distorted by in�ation considerations, because any such e¤ects on the
real returns from nominal bond and physical currency will be identical.

3The re-expression uses standard put-call parity, i.e. F = C � Q, with strike prices of 1. Hence,
setting the forward bond price F = P(t; � + �) = P(t; �) � 1 = 0 gives P(t; � + �)� P(t; �) = C � Q,
and so P(t; � + �)� C = P(t; �)� Q.
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transparent way to obtain what I will refer to as currency-adjusted-bond (CAB) forward
rates is the following numerical approximation:4

f
¯
(t; �) = �1

�

�
log

�
P (t; � + �)� C (t; � ; � + �)

P (t; �)

��
(1)

Note that I use an underscore to denote quantities that are constrained by the ZLB,
such as f

¯
(t; �), and omit the underscore to denote shadow quantities that have no ZLB

constraint, such as P(t; � + �).
CAB interest rates corresponding to f

¯
(t; �) may be obtained using the standard

term structure relationship R
¯
(t; �) = 1

�

R �
0
f
¯
(t; �)d� where � is a dummy integration

variable from zero to the time to maturity. Note that the numerical approximation to
R
¯
(t; �) is conveniently the arithmetic mean of f

¯
(t; �) when the latter is calculated at

uniformly spaced maturities �� .5

3 Comparing the CAB and Black frameworks

In this section I compare results from the Black and CAB frameworks using the risk-
neutral Vasicek (1977) model to represent the shadow short rate process and term
structure. Speci�cally, the di¤usion process is d r(t) = � [� � r (t)]d t+ �dW (t), where
r(t) is the shadow short rate (the single state variable), �, �, and � are respectively
the mean reversion, steady state level, and volatility (annualized standard deviation)
parameters, and dW (t) are Gaussian unit normal N(0; 1) innovations.
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Figure 1: Actual, CAB-Vasicek, and Black-Vasicek term structures for Japan in
February 2004, and associated model-implied information.

4The expression arises from the standard term structure relationship and intermediate steps as

follows: f
¯
(t; �) = � d

d� log [P¯
(t; �)] ' � 1

�

�
log
h
P(t;�+�)�C(t;�;�+�)
P(t;�)�C(t;�;�)

i�
, and C(t; � ; �) = 0. For cross-

checking the results in sections 3 and 4, I have also derived a lengthier analytic expression for f
¯
(t; �)

in the limit as � ! 0; see appendix A.
5That is, R

¯
(t; �) = 1

�

R �
0
f
¯
(t; �)d� ' 1

�

h
��
PI

i=1 f¯
(t; i��)

i
= 1

I

PI
i=1f¯

(t; i��), where �� = �=I.
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Panel 1 of �gure 1 summarizes the zero-coupon government bond yield data from
Gorovoi and Linetsky (2004) table 7.1, p. 71 and the estimated Black-Vasicek in-
terest rates (i.e. based on the risk-neutral Vasicek model within the Black frame-
work) from the same source. I obtain comparable CAB-Vasicek interest rates R

¯
(t; �)

from values of f
¯
(t; �) obtained via equation 1. Speci�cally, I use the closed-form an-

alytic bond price and bond option price formulas for the Vasicek model (as available
from standard textbooks; see, for example, Hull (2000) pp. 567-8) and the risk-
neutral Vasicek state variable/parameter set from Gorovoi and Linetsky (2004), i.e.
fr (t) ; �; �; �g = f�0:0512; 0:212; 0:0354; 0:0283g to evaluate f

¯
(t; �) and then R

¯
(t; �).

The immediate point to note for the purpose of the present article is that the CAB-
Vasicek and Black-Vasicek term structures are not identical despite sharing an identical
shadow short rate speci�cation. That di¤erence is fundamental rather than due to
numerical approximation,6 and arises because the Black (1995) framework restricts
current and future short rates to be non-negative while the CAB framework restricts
all current forward rates to be non-negative.7 That said, the di¤erences between the two
frameworks are very small in this example, i.e. a maximum of 14 basis points (bps) at
the 30-year maturity. Parameter sensitivity tests show that long-maturity divergences
increase mainly with larger values of � and smaller values of � (see appendix B).
However, the divergences remain small for typical parameters values, including those
estimated in the following section.
Panel 2 of �gure 1 illustrates model-implied information associated with panel

1. First, the shadow short rate is the value of the shadow interest rate R(t; �) =
� log [P (t; �)] =� in the limit of a zero time to maturity, i.e. r(t) = R(t; 0). Sec-
ond, CAB-Vasicek forward rates are non-negative for all times to maturity. Third,
I plot the model-implied expected path of the short rate conditional on the pre-
vailing value of the shadow short rate r(t); i.e. E[r (t+ �) j r (t)] which I abbrevi-
ate to E[r (t+ �)]. That expectation is given by the standard Vasicek expression
E[r (t+ �)] = � + exp (���) [r (t)� �], and so negative values of r(t) can readily be
translated into a horizon � 0 at which E[r (t+ �)] crosses zero, i.e.:

� 0 = �
1

�
log

�
� �

r (t)� �

�
(2)

The value of the zero horizon � 0 can be interpreted as the market expectation of a
return to a conventional monetary policy environment; i.e. when the ZLB will no
longer impose a constraint between the shadow short rate and the actual short rate.8

Figure 1 has a value of � 0 = 4:2 years.

6I use � = 10�6 years to obtain f
¯
(t; �) but the numerical results can be made more precise with

smaller values of �. The analytic expression for f
¯
(t; �) in appendix A gave practically identical results.

Similarly, I use �� = 0:001 to numerically evaluate R
¯
(t; �) but the results are insensitive to �ner

spacing and/or alternative methods of numerical integration.
7Therefore, the CAB-Vasicek model o¤ers arbitrage opportunities relative to the Black-Vasicek

model, obtainable in principle by selling bonds priced via the CAB-Vasicek framework and investing
the proceeds in a rolling investment of max fr (t) ; 0g.

8Interest rates along the term structure will still have ZLB e¤ects to various degrees, given that
the prices and yields of securities are based on the expected value of the r(t) di¤usion process which
will be constrained by the ZLB.
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4 Applying the CAB-Vasicek model to Japan

In this section I provide a simple illustration of applying the CAB-Vasicek model
empirically to Japanese data. The data are the end-of-month zero-coupon government
bond yields for the 3-month to 7-year maturities shown in each sub-plot of �gure 2,
plus the 10-, 15-, 20-, and 30-year data for each date, all sourced from Bloomberg. The
CAB-Vasicek model applied is as speci�ed in section 3, but I have also allowed for risk
premiums by adopting the original Vasicek (1977) model with a constant market price
of risk to represent the shadow term structure.9 The closed-form analytic bond and
option price formulas are available from Chaplin (1987) (or from Chaplin (1987) and
Chen (1995) by imposing a single factor).
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Figure 2: Japanese interest rate data, estimated CAB-Vasicek interest rates R
¯
(t; �),

and model-implied expected paths of the shadow short rate E[r (t+ �)].

I use non-linear least squares to jointly estimate the CAB-Vasicek state variables
r(t) for each date and the three parameters across all dates (the latter ensures that

9Bond risk premiums will therefore be a time-invariant function of time to maturity. Time-varying
risk premiums could readily be allowed for using the essentially a¢ ne market price of risk speci�cation
from Du¤ee (2002), but the essentially a¢ ne component of Black-Vasicek model is found by Ichiue
and Ueno (2006) to be statistically insigni�cant. Similarly, I found little di¤erence between results
obtained with a¢ ne and essentially a¢ ne Vasicek speci�cations within the CAB framework, so I have
chosen the more parsimonious speci�cation for this article.
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the model is intertemporally self-consistent). Regarding divergences with the Black-
Vasicek model, I obtain the latter results using Monte Carlo simulations with the
estimated CAB-Vasicek state variables r(t) noted in �gure 2 and the shadow Vasicek
model parameters estimates f�; �; �; g = f0:0704; 0:0561; 0:0179;�0:0168g.10 The
results are indistinguishable from the CAB-Vasicek results (i.e. a maximum of 4 bps
for the 7-year maturity shown, rising to 7 and 27 bps basis points for the 10- and
30-year maturities respectively) so I have omitted them for clarity.
Each sub-�gure contains the model-implied expected path of the short rate E[r (t+ �)]

associated with r(t). The respective zero horizons for the two negative shadow short
rate values as at June 2002 and June 2012 are � 0 = 5:2 years and � 0 = 7:4 years.
From an economic perspective, the levels and changes of the shadow short rate r(t)

re�ect the stances and changes of monetary policy monetary policy around each date.
Speci�cally: (1) r(t) is initially positive, and at a level close to the prevailing 0.5 percent
o¢ cial discount rate; (2) r(t) becomes materially negative following the zero interest
rate policy (ZIRP) instigated by the Bank of Japan in February 1999 and subsequent
unconventional monetary policy measures (i.e. easings via quantitative money targets)
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Figure 3: Estimated CAB-Vasicek shadow short rates r(t) and zero horizon times � 0
with parameters f�; �; �; g = f0:0704; 0:0561; 0:0179;�0:0168g. The lower panel

plots the Japanese data for selected times to maturity.
10I use the Euler discretization of the Vasicek di¤usion for r(t) with antithetic draws. All imple-

mentations are undertaken to ensure that the standard deviation of the estimated interest rate for
each maturity is less than 0.5 basis points.
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announced from December 2001; (3) r(t) becomes slightly positive again following
the exit from the ZIRP (July 1995);11 and (4) r(t) becomes very negative following
the re-instigation of the ZIRP and quantitative easing measures (October 2010) and
subsequent measures in the wake of the Global Financial Crisis.
Figure 3 provides the estimated monthly time series for the shadow short rate r(t)

(and the associated zero horizon � 0) based on the estimated parameters f�; �; �; g
noted earlier. The local minimum for the most recent estimates is May 2012 with
r(t) = �3:99 percent (� 0 = 7:6 years), which is the lowest value since the onset of
the Global Financial Crisis during 2007/2008. The local minimum of August 2010,
i.e. r(t) = �3:63 percent (� 0 = 7:1 years), corresponds with the U.S. Federal Reserve
presaging a second round of unconventional monetary policy measures (i.e. easing via
large scale asset purchases) at the Jackson Hole conference, and the likely anticipation
of the Bank of Japan�s re-instigation of the ZIRP in October 2010.
There are two historical periods when shadow short rates temporarily dipped lower

than their most recent values, but those episodes are likely dominated by �ow-driven
movements rather than representing genuine monetary policy expectations. For exam-
ple, the global minimum for the sample is May 2003, with r(t) = �8:27 percent and
� 0 = 12:9 years (both o¤ scale). That period corresponds to the U.S. de�ation scare
and new record lows in U.S. bond yields at the time; in sympathy, all Japanese yields
with maturities three years or greater reached their global low in April or May 2003
(e.g. the 30-year rate reached 1.05 percent).
The other local minimum is September 1998, with r(t) = �4:40 percent and � 0 = 8:2

years. That period corresponds to the Asian/Russian/Long Term Capital Management
crisis, which was accompanied by sharp declines in U.S. bond yields associated with
��ight to quality�buying and U.S. monetary policy easing.
The pro�le of the Black-Vasicek results for r(t) and � 0 from Ichiue and Ueno (2006)

over the comparable dates are similar to my CAB-Vasicek results,12 although the mag-
nitudes di¤er. The di¤erences are likely partly due to the di¤erent sample period, but
mainly because I use 3-month to 30-year interest rate data which results in a smaller
estimate of � = 0:0704 associated with a larger estimate of � = 0:0561 (i.e. a steady-
state shadow short rate level of 5.61 percent). Ichiue and Ueno (2006) use 6-month to
10-year data over the period 1995 to 2006 and obtain � = 0:215 with � = 1:45 percent.
Appendix C shows that I get results more similar to Ichiue and Ueno (2006) when

repeating my estimation over the 1997-2012 period using 3-month to 10-years data.
At the same time, the di¤erence in the magnitudes of those results relative to the 3-
month to 30-year results illustrates the sensitivities to di¤erent data/parameters, hence
indicating that it is important to quote shadow short rates and zero horizon times in
conjunction with their associated model speci�cation, parameters, and data.

11Although, with reference to �gure 3, the positive value is only for a single month and it is
surrounded by moderately negative values. In other words, the term structure around that time
is generally shaped as if the ZIRP and some unconventional monetary policy remained in place or the
market expected a return to such an environment.
12As noted by Kim and Singleton (2011) p. 25, Ueno, Baba, and Sakurai (2006) obtains implausibly

low shadow short rates (a low of around 18 percent). Those results may be due to using a risk-
neutral Vasicek model with the non-intemporally consistent approach of separately estimating the
state variable and parameters for each term structure observation.
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5 Conclusion and extensions

The results in this article suggest that the CAB-Vasicek framework o¤ers a simple,
tractable, and close approximation to the Black-Vasicek model for summarizing the
stance of monetary policy in a ZLB environment. The estimated shadow short rates
from the CAB-Vasicek model are consistent with the evolution of Japanese monetary
policy from the late 1990s.
Two obvious examples of the many potential extensions to this article are applying

the model to other countries, and improving the model estimation (likely with non-
linear �ltering and potentially incorporating option price data). The third and most
important extension is to multiple factors; �rst because it is generally accepted that
single factor models are not realistic representations of the term structure; and second
because Black-Gaussian models increase substantially in �numerical intensity�(i.e. the
number of analytic calculations required for implementation) as factors are added.13

Conversely, the numerical intensity of CAB-Gaussian models does not change with the
number of factors because closed-form analytic solutions for bond and option prices
are available (see Chen (1995), for example). Finally, if precise Black implementations
are required, the CAB framework should facilitate more e¢ cient estimation for one or
more factors via Monte Carlo simulations.
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A The analytic expression for CAB-Vasicek for-
ward rates

Appendices A and B in Krippner (2012) contain the expression for CAB forward rates
when the generic Gaussian a¢ ne term structure model from Chen (1995) is used to
represent the shadow-GATSM term structure. To summarize the speci�cation, the
shadow short rate is:

r (t) =
NX
n=1

sn (t) (3)

where sn (t) are the N state variables that evolve as a correlated Ornstein-Uhlenbeck
process under the physical or P measure, i.e.:

dsn (t) = �n [�n � sn (t)]dt+ �ndWn (t) (4)

where �n are constants representing the long-run levels of sn (t), �n are positive con-
stants representing the mean reversion rates of sn (t) to �n, �n are positive con-
stants representing the volatilities (annualized standard deviations) of sn (t), Wn (t)
are Wiener processes with dWn (t) � N (0; 1)dt, and E [dWm (t) ; dWm (t)] = �mndt,
where �mn are correlations �1 � �mn � 1. The market prices of risk for each factor
are constants n.

14

Krippner (2012) derives the associated CAB forward rate expression as:

f
¯
(t; �) = f (t; �) �N

�
f (t; �)
! (�)

�
+ ! (�) � 1p

2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
(5)

14The speci�cation could readily be extended to the essentially a¢ ne market prices of risk from
Du¤ee (2002); i.e. � (t) = 0 + 1s (t) in obvious matrix notation, although such an extension is
irrelevant for the risk-neutral speci�cation I derive here.
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where f(t; �) is the instantaneous shadow forward rate:

f (t; �) =
NX
n=1

�n + [sn (t)� �n] � exp (��n�)

+

NX
n=1

�nn �G (�n; �)

�1
2
Tr [� (�)	] (6)

with G (�n; �) = 1
�n
[1� exp (��n�)], �ij (�) = �ij�i�j � �i�jG (�i; �)G (�j; �), 	ij =

1
�i�j

, and Tr[�] the matrix trace operator; and ! (�) is the instantaneous annualized
volatility:

! (�) =

vuut NX
n=1

�2n �G (2�n; �) + 2
NX
m=1

NX
n=m+1

�mn�m�n �G (�m + �n; �) (7)

The Vasicek (1977) model is a member of the generic GATSM class with N = 1,
s1 (t) = r(t), �1 = �, �1 = �, �1 = �, and 1 = . Making the relevant substitutions for
f(t; �) in the �rst line of equation 6 gives �+[r (t)� �] �exp (���), the second line gives
� �G (�; �), and the third line gives �2 � 1

2
G (�; �)2 (given �11 (�) = �2 � �2 [G (�; �)]2,

and 	 = 1=�2). The substitutions for ! (�) give ! (�) =
p
�2 �G (2�n; �).

Therefore, the resulting analytic expression for CAB-Vasicek forward rates is:

f
¯
(t; �) = f (t; �) �N

�
f (t; �)
! (�)

�
+ ! (�) � 1p

2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
(8a)

f (t; �) = � + [r (t)� �] � exp (���)� � �G (�; �)� �2 � 1
2
G (�; �)2 (8b)

! (�) = �
p
G (2�; �) (8c)

Note that
R �
0
f
¯
(t; �)d� does not admit a closed-form analytic solution (because the

integral of the cumulative normal density function is non-analytic), so R
¯
(t; �) must be

obtained by numerical integration whether f
¯
(t; �) is obtained with its analytic expres-

sion or its numerical approximation. (The integral of the normal density function is
also non-analytic, but it is well-tabulated or readily approximated analytically via the
error function erf (x). Similarly, tabulating the integral of the cumulative normal den-
sity function or using an analytic approximation may prove more time-e¢ cient than
direct numerical integration.)

B The sensitivity of CAB-Vasicek and Black-Vasicek
divergences

Figure 4 illustrates the sensitivity of divergences between the Black-Vasicek and CAB-
Vasicek frameworks to changes in the parameters of the shadow short rate speci�ca-
tion. The �rst sub-�gure repeats panel 1 from �gure 2, i.e. the ZLB models with

9



the state variable parameter set fr (t) ; �; �; �g = f�0:0512; 0:212; 0:0354; 0:0283g from
Gorovoi and Linetsky (2004), and the second sub-�gure plots the divergence between
the two frameworks. The remaining sub-�gures plot the divergences (not changes in
divergences) between the two frameworks when the given parameter changes are made
while holding the other parameters at their Gorovoi and Linetsky (2004) values. Note
that the divergence increases mainly with larger values of volatility � and smaller val-
ues of mean-reversion �. The sensitivity of divergences to changes in the steady state
level � and the shadow short rate r(t) are immaterial.
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Figure 4: Divergences between the Black-Vasicek and CAB-Vasicek frameworks with
the base shadow short rate speci�cation fr (t) ; �; �; �g

= f�0:0512; 0:212; 0:0354; 0:0283g and with the given parameters changes labelled in
subsequent sub-�gures.

C Alternative estimated results for the CAB-Vasicek
model

Figure 5 illustrates the CAB-Vasicek results estimated as described in the main text,
but using 3-month to 10-year time-to-maturity data. The estimated parameters are
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f�; �; �; g = f0:199; 0:0294; 0:0234;�0:00916g, which are similar to those in Ichiue
and Ueno (2006), as are the associated shadow short rates and zero horizons.
At the same time, while the pro�les of r(t) and � 0 remain consistent with the results

in �gure 3, the magnitudes are quite di¤erent. That di¤erences indicate that r(t) and
� 0 are materially sensitive to the parameter sets for the shadow short rate model, which
in turn highlights the importance of quoting the results for r(t) in association with the
model speci�cation and estimated parameters.
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Figure 5: Estimated CAB-Vasicek shadow short rates r(t) and zero horizon times � 0
with parameters f�; �; �; g = f0:199; 0:0294; 0:0234;�0:00916g. The lower panel

plots data for selected times to maturity.
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