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Abstract. This paper provides inference results for series estimators with a high dimen-

sional component. In conditional expectation models that have an additively separable

form, a single component can be estimated with rates customary in nonparametric esti-

mation even when then number of series terms for remaining components is large relative

to the sample size. This allows, for example, estimation of a nonlinear response of an

outcome variable given a treatment variable of interest while accounting for potentially

very many confounders. A key condition which makes inference in this setting possible is

sparsity; there is a small (unknown) subset of terms which can replace the entire series

without inducing significant bias. This paper considers a model selection procedure for

choosing series terms that generalizes the post-double selection procedure given in Belloni,

Chernozhukov, Hansen (2013) to the nonparametric setting. In one stage, variables are

selected if they are relevant for predicting the treatment. In a second stage, variables are

selected if they are relevant in predicting the treatment regressor of interest. Rates of

convergence and asymptotic normality are derived for series estimators of a component of

a conditional expectation in high dimensional models under sparsity conditions. Simula-

tion results demonstrate that the proposed estimator performs favorably in terms of size

of tests and risk properties relative to other estimation strategies.

Key words: nonparametric regression, additively separable, series estimation, high-

dimensional models, post-double selection

1. Introduction

Nonparametric estimation of economic or statistical models is useful for applications

where functional forms are unavailable. The econometric theory for nonparametric estima-

tion using an approximating series expansion is well-understood under standard regularity

conditions; see, for example, Chen (2007), Newey (1997) or Andrews (1991). For many

applications, the primary object of interest can be calculated as a conditional expectation

function of a response variable y given a regressor x1 and possible confounders x2. When

x1 is endogenously determined, or otherwise exhibits dependence with covariates that affect

Date: First version: August 2013, this version December 2, 2013. I gratefully acknowledge helpful com-

ments from Christian Hansen, Matthew Taddy, Azeem Shaikh, Matias Cattaneo, Dan Nguyen, Eric Floyd.
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y, estimates of any (nonlinear) partial effect of x1 on y will be inconsistent if x2 is ignored.

A common method for overcoming this problem is jointly modeling the response of y to x1

and all other relevant covariates x2 with the idea that x1 can be taken as approximately

randomly assigned given x2. This may include, for example, a specifying a partially linear

model E[y|x] = g(x1) + x′2β or a fully nonparametric model E[y|x] = g(x) = g(x1, x2).

However, the partially linear approach is unreliable or infeasible when the dimension of the

potential confounding variables is large. The fully nonparametric model suffers from the

curse of dimensionality even for moderately many covariates. This paper gives a formal

model selection technique which provides robust inference for the partial effects of x1 when

the dimension of the confounding x2 variable is prohibitively large for standard methods.

A standard series estimator of g(x) = E[y|x] is obtained with the aid of a dictionary of

transformations pK(x) = (p1K(x), ..., pKK(x))′: a set of K functions of x with the property

that a linear combination of the pjK(x) can approximate g to an increasing level of precision

that depends on K. K is permitted to depend on n and pK(x) may include splines, fourier

series, orthogonal polynomials or other functions which may be useful for approximating g.

The series estimator is simple and implemented with standard least squares regression: given

data (yi, xi) for i = 1, ..., n, a series estimator for g is takes the form: ĝ(x) = pK(x)′β̂ for

P = [pK(x1), ..., pK(xn)]′, Y = (y1, ..., yn)′ and β̂ = (P ′P )−1P ′Y . Traditionally, the number

of series terms, chosen in a way to simultaneously reduce bias and increase precision, must

be small relative to the sample size. Thus the function of interest must be sufficiently

smooth or simple. If the dimension of the variable x is high, additional restrictions on the

function g are often necessary since approximating arbitrary functions of a high-dimensional

variable requires very many terms. A convenient and still flexible restriction on g is that it

be additively separable, g(x) =
∑d

j=1 gj(xj) where (x1, ..., xd) are components of the vector

x. (Stone (1985), Huang, Horowitz and Wei (2010)). This paper focuses on estimation and

inference in additively separable models. In particular, when E[y|x] = g1(x1) + g2(x2), and

the target is to learn the function g1, the structure of an additively separable model allows

for inference even when the approximating dictionary for g2 has a large number of terms.

An alternative to traditional nonparametric estimation using a small number of series

terms acting as an approximating model is a sparse high-dimensional approximating model.

Sparse approximation generalizes the notion of an approximating series. Sparsity in the

context of regression refers to the notion that most parameters are actually zero or very

near zero which leaves a small set of nonzero parameters to be estimated. In the context of

nonparametric regression, sparsity refers to the notion that a linear combination of a small

set of terms approximate the nonparametric function in question. In classical nonparametric
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estimiation, the series terms are typically known a priori (though the exact number can be

data dependent, for example, choosing K to minimize a cross validation criterion. Sparsity

allows the relevant terms to be a priori unknown and estimated from the data.) In this

paper, a high-dimensional model refers generally to a model where the number of parameters

to be estimated is on the order of, or larger than the sample size. This can mean that there

are many distinct variables that enter the conditional expectation function. Alternatively,

this can mean that many series terms are required to adequately model a function of a

low-dimensional variable. For example, Belloni and Chernozhukov (2011) present methods

for nonparametric regression where a small number K terms is selected from a much larger

pool of terms using modern variable selection techniques but do not consider inference.

This paper adddresses questions of inference and asymptotic normality for functionals of

a component of a nonparametric regression function which is estimated with a series selected

by a formal model selection procedure. Modern techniques in high dimensional regression

make signal recovery possible in cases where the number of regressors is much higher than

the number of observations. By leveraging additively separable structure, inference for

nonparametric conditional expectation functions can be performed under much more general

approximating series, provided that appropriate sparsity conditions are met. This paper

compliments existing literature on nonparametric series estimation by expanding the class

of allowable dictionaries when the primary object of interest can still be described by a

small number of known series terms.

This paper contributes to a broader program aimed at conducting inference in the context

of high-dimensional models. Statistical methods in high dimensions have been well devel-

oped for the purpose of prediction (Tibshirani (1996), Hastie, Tibshirani and Friedman

(2009) Candes and Tao (2006) Bickel, Ritov, and Tsybakov (2009), Huang, Horowitz, and

Wei (2010, Belloni and Chernozkukov (2011), Meinshausen and Yu (2009)). These methods

feature regularized estimation which buys stability and reduction in estimate variability

at the cost of a modest bias, or estimation which favors parsimony where many param-

eter values are set identically to zero, or both. More recently, some authors have begun

the important task of assigning uncertainties or estimation error to parameter estimates

in high dimensional models (Buhlman (2013), Belloni Chernozhukov and Hansen 2013)).

Quantifying estimation precision has been shown to be difficult theoretically and in many

cases, formal model selection can preclude the validity of standard
√
n inference (Leeb and

Potscher (2008), Potscher (2009)). The paper builds on the methodology found in Bel-

loni, Chernozhukov and Hansen (2013) which give robust statistical inference for the slope

parameter of a treatment variable d with high-dimensional confounders z by selecting the
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elements of z that are most useful for predicting d in one step, and selecting elements of z

most useful for predicting y in a second step. The use of two model selection steps overcomes

impossibility results about statistical inference. This paper generalizes the approach from

estimating a linear treatment model to estimating a component in nonparametric additively

separable models. The main technical contribution lies in providing conditions under which

model selection provides inference that is uniformly robust to suitably regular functions.

2. A high dimensional additively separable model

This section provides an intuitive discussion of the additively separable nonparametric

model explored in this paper. Consider a conditional expectation function with two distinct

components:

E[y|x] = g(x) = g1(x1) + g2(x2)

The component functions g1 and g2 are restricted to belong to ambient spaces g1 ∈
G1, g2 ∈ G2 which allow them to be uniquely identified. The function g and therefore, g1,

g2 will be allowed to depend on n which allows for a many variable setup, however, this

dependence will be supressed from the notation. In particular, this allows estimation of

models of the form E[y|x] = g1(x1)+x′2nβn with dim(x2n) = pn. This is useful for modeling

nonlinear conditional expectation functions with a large list of potential confounders. The

formulation will be slightly more general than the additively separable model. It allows,

for instance, additive interaction models like those found in Andrews and Whang (1991) so

that. For example, the model E[y|x] = g1(x1) + γ · x1 · x2 + g2(x2) where γ is a parameter

to be estimated is allowed. Then G1 consists of functions that depend only on x1 except for

the additional term γ ·x1 ·x2. Alternatively, x1 and x2 can share components, provided that

the researcher provides conditions on G1 and G2 that allow g1 and g2 to be well identified.

Because of this, and for the sake of notation, g1(x1), g2(x2) will simply be written, g1(x),

g2(x).

The estimation of g proceeds by a series approximation. Suppose there is a dictionary

pK(x) = (p1K(x), ..., pKK(x)) which is compatible with the decomposition given above so

that pK can be separated into two parts pK = (pK1
1 , pK2

2 ). The approximating dictionaries

pK1
1 (x) = (p1;1K1(x), ..., p1;K1K1(x))′ and pK2

2 (x) = (p2;1K2(x), ..., p2;K2K2(x))′ are for the

two components g1, g2. In what follows, dependence on K1 and K2 is suppressed in the

notation so that for example pK1
1 (x) = p1(x) and pK2

2 (x) = p2(x).
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The two dictionaries differ in nature. The first dictionary, p1(x) is traditional, and

follows standard conditions imposed on series estimators, for example, Newey (1997). The

first dictionary can approximate the function g1 sufficiently well so that given g2(x), it

can be estimated in the traditional way and inference on functionals of g1(x) are reliable.

This requires a well-thought-out approximating series provided by the researcher. When

the problem of interest is in recovering and performing inference for g1(x), the second

component g2(x) may be considered a nuisance parameter. In this case, because g2(x) is

not central to inference, added flexibility in choosing the second dictionary by allowing p2(x)

to be high dimensional is permitted. In particular K2 >> n, is allowed. This increased

flexibility can potentially increase the robustness of subsequent inference for g1(x). However,

the increased flexibility requires additional structure of p2(x); the key conditions are sparse

approximation. The first sparsity requirement is that there is a small number of components

of p2(x) that adequately approximate the function g2(x). The second sparsity requirement

is that information about functions h ∈ G1 conditional on G2 can be suitably approximated

using a small number of terms in p2(x). The identities of the contributing terms, however,

can be unkown to the researcher a priori.

Aside from estimating an entire component of conditional expectation function g1(x)

itself, the structure outlined above will allow estimating certain functionals of g1(x). Let a

be a functional a(g) and suppose that g has a decomposition so that g(x) = g1(x) + g2(x)

with a(g) = a(g1). Such functionals include integrals of g1, weighted average derivatives of

g1(x), evaluation of g1(x) at a point x0, and the arg max g1(x). For illustration, suppose

that E[y|x] is additively seperable so that E[y|x] = g1(x1) + ... + gd(xd) for d-dimensional

covariate x. Then any functional a of the form a(g) = E[∂g/∂x1(x)|x] satisfies the condition

outlined above. Further specialization of the example to a partially linear model E[y|x] =

αx1 + g(x2, ..., xd) in which the desired derivative is given by α was explored in Belloni,

Chernozhukov and Hansen (2013).

3. Estimation

When the effective number of free parameters is larger than the sample size, model se-

lection or regularization is unavoidable. There are a variety of different model selection

techniques available to researchers. A popular approach is via the Lasso estimator given by

Tibshirani (1996) which in the context of regression, simultaneously performs regularization

and model selection. The Lasso is used in many areas of science and image processesing

and has demonstrated good predictive performance. Lasso allows the estimation of regres-

sion coefficients even when the sample size is smaller than the number of parameters by
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adding to the quadratic objective function a penalty term which mechanically favors re-

gression coefficients that contain zero elements. By taking advantage of ideas in regularized

regression, this paper demonstrates that quality estimation of g1(x) can be attained even

when K1 +K2, the effective number of parameters, exceeds the sample size n. Estimating

proceeds by a model selection step that effectively reduces the number of parameters to be

estimated.

Estimation of the function g(x) will be based on a reduced dictionary p̃(x) comprised of

a subset of the series terms in p1(x) and p2(x). Because the primary object of interest is

g1(x), it is natural to include all terms belonging to p1(x) in p̃(x). As mentioned above, this

is inclusion is actually unavoidable; the asymptotic normality results require that there is

no selection of the terms belonging to p1(x). 1 The main selection step involves choosing a

subset of terms from p2(x). Suppose that a model selection procedure provides a new dic-

tionary p̃2(x), which contains K̃2 series terms. Each term in p̃2(x) is also a term from p2(x).

Then estimation of the function E[y|x] is based on the dictionary p̃(x) = (p1(x), p̃2(x).

ĝ1(x) = p1(x)′β̂1

where (β̂′1, β̂
′
2)′ = (P̃ ′P̃ )−1P̃ ′Y . Since estimation of g2(x) is of secondary concern, only the

components of g2(x) that are informative for predicting g1(x) and y need to be estimated.

There are many candidates for model selection devices in the statistics and econometrics

literature. The appropriate choice of model selection methodology can be taylored to the

application. In addition to the Lasso, the Scad (Fan (2001)), the BIC, the AIC all feasible.

In the exposition of the results, the model selection procedure used will be specifically

the Lasso, though results are provided for generic model selection that attains certain

performance bounds. Therefore, the next section provides a brief review of issues related

to Lasso, especially those that arise in econometric applications.

3.1. Lasso methods in econometrics. The following description of the lasso estimator

is a review of the particular implementation given in Belloni, Chen, Chernozhukov and

Hansen (2013). Consider the conditional expectation E[y|x] = f(x) and assume that p(x)

is an approximating dictionary for the function f(x) so that f(x) ≈ p(x)′β. The lasso

1An interesting related question, though, is in justifying inference for data dependent K1 for example,

with cross-validation.
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estimate for β is defined by

β̂ = arg min
β

n∑
i=1

(yi − p(xi)′β)2 + λ
K∑
j=1

|Ψ̂jβj |

where λ and Ψ̂j are tuning parameters named the penalty level and the penalty loadings.

Belloni, Chen, Chernozhukov and Hansen (2013) provided estimation methodology as well

as results guaranteeing performance for the Lasso estimator under conditions which are

common in econometrics including heteroskedastic and non-Gaussian disturbances. Tun-

ing parameters are chosen by considerations that balance regularization with bias. For

the simple heteroskedastic Lasso above, Belloni, Chen, Chernozhukov and Hansen (2013)

recommend setting

λ = 2c
√
nΦ−1(1− γ/2p), Ψj =

√√√√ n∑
i=1

pj(xi)2ε2i /n

with γ → 0 sufficiently slowly, and c > 1. The choices γ = log−1 n and c = 1.1 are

acceptable. The exact values εi are unobserved, and so a crude preliminary estimate ε̂i =

yi − ȳ is used to give Ψ̂j =
√∑n

i=1 pj(xi)
2ε̂2i /n. 2 The preliminary estimates are sufficient

for the results below to hold, but the process can be iterated by estimating new residuals

using the preliminary estimate. 3

Lasso performs particularly well relative to some more traditional regularization schemes

(eg. ridge regression) under sparsity: the parameter β satisfies |{j : βj 6= 0}| 6 s for some

sequence s << n. A feature that has granted Lasso success is that it sets some components

of β̂ to exactly zero in many cases. and thus serves as a model selection device. The Post-

Lasso estimator is defined as the least squares series estimator that considers only terms

selected by Lasso (ie terms with nonzero coefficients) in a first stage estimate. Post-Lasso

estimation as described above is used as a model selection tool in the subsequent analysis.

3.2. Post-Double Selection. The main obstacle in statistical inference after model se-

lection is in attaining robustness to model selection errors. When coefficients are small

2This can be iterated as suggested by Belloni, Chen, Chernozhukov and Hansen (2013). The validity of

the of the crude preliminary estimate as well as iterative estimates are detailed in the appendix.
3A fully data-driven procedure for choosing the penalty level is still unavailable. Cross validation proce-

dures are known to provide relatively low penalty levels so that the regularization event cannot be ensured

with high probability
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relative to the sample size (ie statistically indistinguishable from zero), model selection mis-

takes are unavoidable. 4 When such errors are not accounted for, subsequent inference has

been shown to be potentially severely misldeading. Difficulties arising from model selection

errors under suitable regularity conditions can be overcome through post-double selection,

a methodology first proposed by Belloni, Chernozhukov and Hansen (2013). Post-double

selection provides an extra measure of robustness by performing two model selection steps

before estimating the final model. The basic underlying principal is that regressors misclas-

sified in both model selection steps, and thus wrongly excluded from the model, are those

whose omission has negligible effect on inference asymptotically.

To be concrete, in the linear model E[yi|di, xi] = αdi + x′iβ, post double selection con-

siders model selection on two regression equations: (1) the first stage E[di|xi] = x′iβFS

and (2) the reduced form E[yi|xi] = x′iβRF . Estimation of α proceeds by linear regression

using those components of x which were selected in one of the above stages. Under ap-

propriate regularity conditions, Belloni, Chernozhukov and Hansen (2013) show that the

corresponding α̂ is is consistent and asymptotically Gaussian.

3.3. Additively Separable Models and Dictionary Selection. In the additively sep-

arable model, the two selection steps are summarized as follows:

(1) First Stage Model Selection Step - Select those terms in p2 which are relevant for

predicting terms in p1.

(2) Reduced Form Model Selection Step - Select those terms in p2 which are relevant for

predicting y.

To further describe the first stage selection, consider an operator T on functions that

belong to G1:

Th(x) = E[h(x)|G2(x)]

The operator T measures dependence between functions in the ambient spaces G1,G2 which

house the functions g1, g2 and the conditioning is understood to be on all function f ∈ G2. If

the operator T can be suitably well approximated, then the post double selection method-

ology generalizes to the nonparametric additively separable case. Though it is convenient

to consider the general operator T , it is sufficient for estimation purposes to approximate

the restriction of T to the subspace spanned by p1.

4Under some conditions, perfect model selection can be attained. For example, beta-min conditions which

require that coefficients be either exactly zero or well separate from zero can give perfect model selection
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This approximation problem is approached with the Lasso regression. Each component

of p1 is regressed onto the dictionary p2 giving an approximation for Tp1j(x) as a linear

combination of elements p2(x) for 1 6 k 6 K1. If this can be done with all p1k, for each

1 6 k 6 K1, then a linear combination Tp1(x)′β can also be approximated by a linear

combination of elements of p2. The estimation can be summarized with one optimzation

problem which is equivalent to K1 separate Lasso problems. All nonzero components of the

solution to the optimization are collected and included as elements of the refined dictionary

p̃.

Γ̂ = arg min
Γ

K1∑
j=1

n∑
i=1

(p1;k(xi)− p(xi)′Γk)2 + λFS
K1∑
k=1

K2∑
j=1

|ΨFS
jk Γkj |.

Note that the estimate Γ̂ approximates T in the sense that (p2(x)′Γ̂)′β approximates

Tp1(x)′β. The first stage tuning parameters λFS , Ψ̂FS
jk are chosen similarly to the method

outlined above but account for the need to estimate effectively K1 different regressions. Set

λFS = 2c
√
nΦ−1(1− γ/2K1K2),

ΨFS
jk =

√√√√ n∑
i=1

pj(xi)2(pj(xi)− Tpj(xi))2/n.

As before, the ΨFS
jk are not directly observable and so estimates Ψ̂FS

jk are used in their place

following the exact method described above .

Running the regression above will yield coefficient estimates of exactly zero for many of

the Γkj . For each 1 6 j 6 K1 let Îk = {j : Γkj 6= 0}. Then the first stage model selection

produces the terms ÎFS = Î1 ∪ ... ∪ ÎK1 .

The reduced form selection step proceeds after the first stage model selection step. For

this step, let

π̂ = arg min
π

n∑
i=1

(yi − p2(xi)
′π)2 + λRF

K2∑
j=1

|Ψ̂RF
j πj |

Where the reduced form tuning parameters λRF , Ψ̂RF
jk are chosen according to the method

outlined above with

λRF = 2c
√
nΦ−1(1− γ/2K2),

ΨRF
j =

√√√√ n∑
i=1

pj(xi)2(yi − E[yi|G2(xi)])2/n.
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Let ÎRF = {j : πj 6= 0} be the outcome of the reduced form step of model selection.

Considering the set of dictionary terms selected in the first stage and reduced form model

selection steps. Let Î be the union of all dictionary terms. Then define the refined dictionary

by p̃(x) = (p1(x), {p2j(x)}
j∈Î). Let P̃ be the n × (K1 + |Î|) matrix with the observations

of the refined dictionary stacked. Then β̂ = (P̃ ′P̃ )−1P̃ ′Y and ĝ = p̃(x)′β̂. Partitioning

β̂ = (β̂1, β̂2) leads to the post-double selection estimate of g1 defined by:

ĝ1 = p1(x)′β̂1.

There are many alternative model selection devices that can be used in place of lasso.

Alternatively, the entire first stage model selection procedure can be done in one step using

a group-lasso type penalty which favors a common support in p2 for approximating all

components of p1. This type of first stage model selection was considered, for example,

by Farrell (2013) for a finite number of first stage equations and logistic loss. Further

alternatives include square root lasso, SCAD type estimators etc. These examples have

all been shown to have good perfomance properties for a single outcome and are expected

to exhibit the similar performance as Lasso when the number of regression equations is

permitted to grow at a suitalby controlled rate. Therefore, the analysis in this paper focuses

on an inference procedure which uses a lasso model selection for each first stage equation.

4. Regularity and Approximation Conditions

In this section, the model described above is written formally and conditions guaranteeing

convergence and asymptotic normality of the Post-Double Selection Series Estimator are

given.

Assumption 1. (i) (yi, xi) are i.i.d. random variables and satisfy E[yi|xi] = g(xi) =

g1(xi) + g2(xi) with g1 ∈ G1 and g2 ∈ G2 for prespecified classes of functions G1,G2.

The first assumption specifies the model. The observations are required to be identically

distributed, which is stronger than the treatment of i.n.i.d variables given in Belloni, Cher-

nozhukov and Hansen (2013). This can be weakened at the cost of more stringent conditions

on the size of the first dictionary using for example the ideas in Andrews 1991.

4.1. Regularity and approximation conditions concerning the first dictionary.

To state the regularity conditions, a few definitions that help characterize the smoothness

of target function g1 and approximating functions p1. Letf be a function defined on the

support X of x. Define |f |d = supx∈X max|a|6d ∂
|a|f/∂xa. This defines the standard Sobolev
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norm. In addition, let ζd(K1) = max|a|6d supx∈X ‖∂|a|p1(x)/∂xa‖ where ‖ · ‖ denotes the

Euclidean norm.

Assumption 2. There is an integer d > 0, a real number α > 0, and vectors β1 = β1,K1

such that ‖β1‖ = O(1) and |g1 − p′1β1|d = O(K−α1 ) as K1 →∞.

Assumption 2 is standard in nonparametric estmiation. It requires that the dictionary p1

can approximate g1 at a prespecified rate. Values of d and α can be derived for particular

classes of functions. Newey (1997) gives approximation rates for several leading examples,

for instance orthogonal polynomials, regression splines, etc.

Assumption 3. For each K1, the smallest eigenvalue of the matrix

E
[
(p1(x)− Tp1(x))(p1(x)− Tp1(x))′

]
is bounded uniformly away from zero in K1. In addition, there is a sequence of constants

ζ0(K) satisfying supx∈X ‖p1(x)‖ 6 ζ0(K1) and ζ0(K1)2K1/n→ 0 as n→∞.

The next condition is a direct analogue of a combination of Assumption 2 from Newey

(1997) and the necessary and sufficient conditions for estimation of partially linear models

from Robinson (1988). Requiring E [(p1(x)− Tp1(x))(p1(x)− Tp1(x))′] to have uniformly

bounded away from zero eigenvalues is an identifiability condition. It is an analogue of the

standard condition that E[p(x)p(x)′] have eigenvalues bounded away from zero specialized

to the residuals of p1(x) after conditioning on G2(x). The second statement of Assumption

2 is a standard regularity condition on the first dictionary.

4.2. Sparsity Conditions. The next assumptions concern sparsity properties surrounding

the second dictionary. As outlined above, sparsity will be required along two dimensions

in the second dictionary: both with respect to the outcome equation (1) and with respect

to the functional T . Consider a sequence s = sn that controls the number of nonzero

coefficients in a vector. A vector X is s−sparse if |{j : Xj 6= 0}| 6 s. The following give

formal restrictions regarding the sparsity of the outcome equation relative to the second

approximating dictionary as well as a sparse approximation of the operator T described

above.

Assumption 4. Sparsity Conditions. There is a sequence s = sn and φ = s log(max{K1K2, n})
such that

(i) Approximate sparsity in the outcome equation. There is a sequence of vectors β2 =

β2,K2 that are s-sparse and the approximation
√∑n

i=1(g2(xi)− p2(xi)′β2)2/n := ξ0 =

OP (
√
φ/n) holds.
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(ii) Approximate sparsity in the first stage. There are s−sparse Γk = Γk,K2 such that

maxk6K1

√∑n
i=1 (E[p1k(x)|G2(x)]− p2(x)′Γk)

2 /n := ξFS = OP (
√
φ/n).

Note: The assumption above imposes no conditions on the sparsity s. This is postponed

until Assumption 6. The conditions listed in Assumption 6 will require thatK
3/2
1 φn−1/2 → 0

The first statement requires that the second dictionary can approximate g2 is a small

number of terms. The restriction on the approximation error follows the convention used

by Belloni, Chen, Chernozhukov and Hansen (2013). The average squared approximation

error from using a sparse β2 must be smaller than the conjectured estimation error when the

support of the correct small number of terms is known. The second statement generalizes

the the first approximate sparsity requirement. It requires that each component of the

dictionary p1 can be approximated by a linear combination of a small set of terms in p2.

The second statement is substantive because it requires for each k that there be a relatively

small number of elements of p2(x) which can adequately the conditional expectation of each

term in p1(x). Finally, the third condition formalizes the rate at which the sparsity index

can increase relative to the sample size. The assumption is substantive and implies that

favorable estimation results are only guaranteed if the number of relevant series terms in

p2(x) is small in comparison to the sample size. In addition, if more terms are required in

p1(x) to approximate g1(x), so that K1 is inflated, then the restrictions on the sparsity are

even more stringent. This implies that not only do y and p1 require a sparse approximation

with p2(x), but also that g1(x) is particularly smooth or well behaved.

4.3. Regularity conditions concerning the second dictionary. The following cond-

tions restricts the sample Gram matrix of the second dictionary. A standard condition for

nonparametric estimation is that for a dictionary P , the Gram matrix P ′P/n eventually

has eigenvalues bounded away from zero uniformly in n with high probability. If K2 > n,

then the matrix P ′2P2/n will be rank deficient. However, it is sufficient that only small

submatrices of P ′2P2/n have the desired property. In the sparse setting, it is convenient to

define the following sparse eigenvalues of a positive semi-definite matrix M :

ϕmin(m)(M) := min
16‖δ‖06m

δ′Mδ

‖δ‖2
, ϕmax(m)(M) := max

16‖δ‖06m

δ′Mδ

‖δ‖2

In principal, the sparse eigenvalues of the sample Gram matrix are observed, however,

explicitly calculating them for each m < n is computationally prohibitive. However, under

many classes of data generating processess, the sparse eigenvalues are known to be bounded

away from zero with high probability. See Bickel, Ritov and Tsybakov (2009), Zhou (2009)
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for explicit examples of dgps for which sparse eigenvalue conditions hold. In this paper,

favorable behavior of restricted eigenvalues is taken as a high level condition. Impose the

following simple assumption.

Assumption 5. There is a sequence `n → ∞ and constants κ′′ > κ′ > 0 such that the

sparse eigenvalues obey

κ′ 6 ϕmin(`nsK1)(P ′2P2/n) 6 ϕmax(`nsK1)(P ′2P2/n) 6 κ′′.

4.4. Moment Conditions. The final conditions are moment conditions which ensure good

performance of the Lasso as a model selection device. They allow the use of moderate

deviation results given in Jing Shao and Wang (2003) which ensures good performance of

Lasso under non-Gaussian and heteroskedastic errors. In addition, the moment conditions

are needed in order to guarantee that the the validity of the plug in variance estimator.

Belloni, Chernozhukov and Hansen (2013) discuss plausibility of these types of moment

conditions for various models for the case K1 = 1. For common approximating dictionaries

for a single variable, the condition can be readily checked in a similar manner. This is only

one possible set of moment conditions.

Assumption 6. Let ε = y − g(x). For each k 6 K1 let Wk = p1k(x) − Tp1k(x). Let

q > 4. Let c, C be constants that do not depend on n and can take different values in each

occurance. The following moment conditions are satisfied:

(i) For each j, E[|p1j(xi)|q]. c 6 E[ε2i |xi] 6 C. E[ε4i |xi] 6 C.

(iii) E[|εi|q] + E[y2
i ] + max

j6K2

{E[p2j(xi)
2y2
i ] + E[|p2j(xi)|3|ε|3] + E[p2j(xi)]

−1} 6 C

(iv) For each k 6 K1, E[|Wk|q] + E[p1k(x)2]

+ max
j6K2

{E[p2j(xi)
2p1k(xi)

2] + E[|p2j(xi)|3|Wki |
3] + E[p2j(xi)]

−1} 6 C.

(v) log3K2/n = o(1).

(vi) max
i,j

p2j(xi)
2φ/n = oP (1)

(vii) max
k6K1,j6K2

|
∑
i

p2j(xi)
2(W 2

ki + ε2i )/n− E[p2j(x)2(W 2
ki + ε2i )]| = oP (1)

(viii) K
3/2
1 φn−1/2+2/q → 0.

4.5. Global Convergence. The first result is a preliminary result which gives bounds on

convergence rates for the estimator ĝ1. Though they are of interest in their own right in

that they develope a direct comparison of pervious methods with high dimensional methods,

they are used in the course of the proof of Theorem 2 which is the main inferential result.
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The proposition is a direct analogue of the rates given in Theorem 1 of Newey (1997). This

is a demonstration that identical to those encountered in classical nonparametric estimation

can often be recovered when considering an isolated component of a very high dimensional

problem.

Proposition 1. Under assumptions listed above, the post double selection estimates for the

function g satisfy ∫
(g1(x)− ĝ1(x))2dF (x) = Op(K1/n+K−2α

1 )

|ĝ1 − g1|d = OP (ζd(n)
√
K1/
√
n+K−α1 ).

The result is stated for congergence of ĝ1. A similar result is expected to hold for the

second component, ĝ2 and therefore also ĝ. However, the asymptotic normality results will

not hold for g2 and therefore, the Theorem is stated concerning g1 only.

5. Inference and asymptotic normality

In this section, formal results concerning inference are stated. Proofs of the theorems

are provided in the appendix. The theorem concerns estimators which are asymptotically

normal and is the main consideration of the paper. In particular, consider estimation of a

functional a on the class of functions G1. The quantity of interest, θ = a(g1), is estimated

by

θ̂ = a(ĝ1).

The following assumptions on the functional a are imposed. They are regularity assump-

tions that imply that a attains a certain degree of smoothness. For example, they imply

that a is Fréchet differentiable.

Assumption 7. Either (i) a is linear over G1; or (ii) for d as in the previous assumption,

ζd(K1)4K2
1/n → 0. In addition, there is a linear function D(f, f̃) that is linear in f and

such that for some constants C, ν > 0 and all f̄ , f̃ with |f̃ − g1|d < ν, |f̄ − g1|d < ν, it holds

that ‖a(f)− a(f̃)−D(f − f̃ ; f̃)‖ 6 C(|f − f̃ |d)2 and ‖D(f ; f̃)−D(f ; f̄)‖ 6 L|f |d|f̃ − f̄ |d.

The function D is related to the functional derivative of a. The following assumption

imposes further regularity on the continuity of the derivative. For shorthand, let D(g) =

D(g; g0).

Assumption 8. Either (i) a is scalar, |D(g1)| 6 C|g|d for d described above. There

is β̄1 dependent on K1 such that for ḡ1(x) = p1(x)′β̄1, it holds that E[ḡ1(x)2] → 0 and
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D(ḡ1) > C > 0; or (ii) There is v(x) with E[v(x)v(x)′] finite and nonsingular with D(g1) =

E[v(x)g1(x)] and D(p1k) = E[v(x)p1k(x)] for every k. There is β̃1 so that E[‖v(x) −
p1(x)′β̃‖2]→ 0.

In order to use θ̂ for inference on θ, an approximate expression for the variance var(θ̂)

is necessary. As is standard, the expression for the variance will be approximated using

the delta method. An approximate expression for the variance of the estimator θ̂ there-

fore requires an appropriate derrivative of the function a, (rather, an estimate). Let A

denote the derivatives of the functions belonging to the approximating dictionary, A =

(D(p11, ..., D(p1K1)′. Let Â = ∂a(p1(x)′b
∂b (β̂1) provided that Â exists. Let

The approximate variance, given by the delta method is given by V = VK1 :

V = AQ−1ΣQ−1A

Q = E[(p1(x)− Tp1(x))(p1(x)− Tp1(x))′]

Σ = E[(p1(x)− Tp1(x))(p1(x)− Tp1(x))′(y − g(x))2]

These quantities are unobserved but can be estimated:

V̂ = ÂQ̂−1Σ̂Q̂−1Â

Q̂ =

n∑
i=1

(p1(xi)− p̂1(xi))(p1(xi)− p̂1(xi))
′/n

Σ̂ =
n∑
i=1

(p1(xi)− p̂1(xi))(p1(xi)− p̂1(xi))
′(y − ĝ(xi))

2/n

The estimates p̂1 are defined as componentwise least squares projections. For each k 6 K1,

p̂1k is the orthogonal projection of p1k onto the components of p2 that belong to Î. Them

V̂ is used as an estimator of the asymptotic variance of θ̂ and assumes a sandwhich form.

The next result is the main result of the paper. It establishes the validity of standard

inference procedure after model selection as well as validity of the plug in variance estimator.

Theorem 1. Under the Assumptions 1-7 and Assumption 8(i), and if in addition
√
nK−α →

0 then θ̂ = θ +OP (ζd(K1)
√
n) and

√
nV −1/2(θ̂ − θ) d→ N(0, 1),

√
nV̂ −1/2(θ̂ − θ) d→ N(0, 1)
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If Assumptions 1-7 and Assumption 8(ii) hold and d = 0 and
√
nK−α → 0 then for

V̄ = E[v(x)v(x)′var(y|x)], the following convergences hold.

√
n(θ̂ − θ) d→ N(0, V̄ ), ‖V̂ − V̄ ‖ p→ 0

This establishes the validity of standard inference for functionals after selection of series

terms. Note that under assumption 8(i) the
√
n rate is not achieved because the the

functional a does not have a mean square continuous derivative. By contrast, Assumption

8(ii) is sufficient for
√
n-consistency. Conditions under which the particular assumptions

regarding the approximation of g1 hold are well known. For example, conditions on K1

for various common approximating dictionaries including power series or regression splines

etc follow those directly derived in Newey (1997). Asymptotic normality of these types

of estimates under the high dimensional additively separable setting should therefore be

viewed as a corollary to the above result.

Consider one example with the functional of interest being evaluation of g1 at a point

x0: a(g1) = g1(x0). In this case, a is linear and D(ḡ) = ḡ(x0) for all functions ḡ. This

particular example does not attain a
√
n convergence rate provided there is a sequence of

functions g1K in the linear span of p1 = pK1 such that E[g1K(x)2] converges to zero but

g1K(x0) is positive for each K. Another example is the weighted average derivative a(g1) =∫
w(x)∂g1(x)/∂x for a weight function w which satisfies regularity conditions. For example,

the theorem holds if w is differentiable , vanishes outside a compact set, and the density

of x is bounded away from zero wherever w is positive. In this case, a(g1) = E[v(x)g1(x)]

for v(x) = −f(x)−1∂w(x)/∂x by a change of variables provided that x is continuously

distributed with non vanishing density f . These are one possible set of sufficient conditions

under which the weighted average derivative does achieve
√
n-consistency.

6. Simulation study

The results stated in the previous section suggest that post double selection type se-

ries estimation should exhibit good inference properties for additively separable conditional

expectation models when the sample size n is large. The following simulation study is con-

ducted in order to illustrate the implementation and performance of the outlined procdure.

Results from several other candidate estimators are also calculated to provide a compari-

son between the post-double method and other methods. Estimation and inference for two

functionals of the conditional expectation function are considered. Two simulation designs

are considered. In one design, the high dimensional component over which model selection
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is performed is a large series expansion in four variables. In the other design, the high

dimensional component is a linear function of a large number of different covariates.

6.1. Low Dimensional Additively Separable Design. Consider the following model

of six continuous variables x1, ..., x5 of form:

E[y|x] = E[y|x1, ..., x5] = g1(x1) + g2(x2, ..., x5)

The appearence of the term g2(x2, ..., x5) can be problematic for standard nonparametric

regression because g2 is an unspecified function of 5 variables and so the dimensionality of

the problem becomes a burdon. The objective is to estimate a population averge derivative,

θ(1), and a function evaluation, θ(2) given by

θ(1) = a(1)(g1) =

∫
X
∂g/∂x1dF (x1), θ(2) = a(2)(g1) = g1(E[x1]).

The average derivative is integrated over the middle 50-percent of the values assumed by x1.

The integration is performed over the central two quartiles in order to avoid edge effects.

According to the theorem, both parameters can be estimated compared to a Gaussian

reference distribution for testing. The true function of interest, g1, used in the simulation

is given by the functional form:

g1(x1) = (x1 − 3)− (x1 − 3)2/12 + 2
exp(x1 − 3)

1 + exp(x1 − 3)
+ C

with the constant C in the expression for g1 is defined to ensure that g1(0) = 0. g1 is

comprised of a quadratic function and a logistic function of x1. Ex post, the function is

simple, however, for the sake of the simulation, knowledge of the logistic form is assumed

unkown. The second component is given by

g2(x2, ..., x6) = −6(x2 − x2x3 + x3) + 6
exp(x4 + x5)

1 + exp(x4 + x5)

The second function g2 is similar, being defined by a combination of a logistic function

and a quadratic function. The logistic part can potentially require many interaction terms

unkown in advance to produce an accurate model. The component functions g1 and g2

will be used throughout the simulation. The remaining parameters, eg. dictating the data

generating processes for x1, ..., x5 will be changed accross simulation to give an illustration

of performance accross different settings.

The covariates and outcome are drawn as follows. The marginal distribution of the

regressors x2, ..., x5 iis set at N(0, 1); their correlations are set to corr(xj , xk) =
(

1
2

)−|j−k|
.

The variable of interest, x1 is determined by x1 = 3 + (x2 + ... + x5) · +v · σv with v ∼
N(0, 1) independent of x2, ...x5. The structural errors ε = y−E[y|x] are drawn N(0, 1) · σε
independent of x. Several simulations of this model are conducted by varying the sample
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size n, the dependence between x1 and the remaining regressors (x2, ..., x5), as well as the

size of the residual errors ε. The sample size is set to either n = 500 or n = 800. The

dependence between x1 and the remaining covariates is dictated by σv. To capture high

dependence between the covariates, the value σv = 3 is used, and to capture low dependence,

σv = 5 is used. Finally, the variability of the structural shocks are set to σε = 3 and σε = 5.

Estimation is based on a cubic spline interpolation for the first dictionary. When the

sample size is n = 500, knot points are given at x1 = −2, 2, 6, 10. When the sample size is

n = 800, additional knot points are used at x1 = 0, 4, 8. The second dictionary is comprised

of cubic splines in each variable with knots at xj = −1, 0, 1. When n = 500, interactions of

the variables are allowed for only the linear and quadratic terms. When n = 800, the spline

terms are allowed to have interactions. At most 3 terms from each marginal dictionary for

the xj are allowed to be interacted. This gives K2 = 170, K2 = 640 for the two sample

sizes.

In addition to the post-double lasso based model, several alternative estimates are cal-

culated for comparison. Two standard series estimator which are designed to approximate

the function g = g1 + g2 is given. The first is based on a series approximation which uses

polynomials up to order two. The second series estimator is allows general polynomials up

to order two but also allows powers of each individual variable up to order 4 (ie no higher

order interaction terms). Second, a single step selection estimator is provided. The single

step estimator is done by performing a first stage lasso on the union of the two dictionaries,

then reestimating coefficients of the remaining dictionary terms in the second stage. Finally,

an infeasible estimator is provided, where estimation proceeds as standard series estimation

given the dictionary p1 and as if g2(xi) where known for each i.

Because the true population distribution of dF (x1) is not known exactly, an estimate is

used for calculating â(1) and â(2). In particular, â(1) is given by the derivative of ĝ1 integrated

against the empirical distribution dF̂ (x1). â(1) =
∫
∂ĝ1/∂x1(t)dF̂ (t) =

∑n
i=1 ∂ĝ1/∂x1(x1i).

Similarly, â(2) = ĝ1(
∫
x1dF̂ (x1)). Given the true function g1, and the true distribution

dF (x1), the true value for θ(1), θ(2) is apprixmately θ
(1)
0 = 4.20 and θ(2) = 10.32. These

value will be used for hypothesis testing in the simulation.

Results for estimating θ(1) and θ(2) are based on 500 simulations for each setting described

earlier. For each estimator, the median bias, median absolute deviation, and rejection

probability for a 5-percent level test of H
(1)
0 : θ(1) = θ

(1)
0 or H

(2)
0 : θ(2) = θ

(2)
0 are presented.

Results for estimating θ(1) are presented in Table 1. In each of the simulation, estimates

of θ based on post double selection exhibit small median absolute deviation relative to
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the competing estimates. With the exception of the infeasible estimates the post double

selection estimates are also the only estimates which exhibit reasonable rejection frequencies

consistently accross all settings. Results for estimation of θ(2) are reported in Table 2. The

results are qualitatively similar to those for θ(1). The only reasonable rejection frequencies

are obtained with the post-double selection. A small amount of size distortion can be seen as

rejection frequencies are closer to 10-percent in most simulations. The distortion in the post

double estimator matches that in the infeasible estimator suggesting that they are driven

by bias in approximating a nonlinear function with a small bais rather than a consequence

of model selection.

6.2. High Dimensional Additively Separable Design. In this design, a high dimen-

sional setting is considered:

E[y|x] = E[y|x1, ..., xp] = g1(x1) + g2(x2, ..., xp).

The model now depends on p parameters which is allowed to change with the sample size.

For n = 500, p = 400 is used, while for n = 800, p = 640 is used. The variables x2, ..., xp

are drawn marginally from N(0, 1) with correlation structure corr(xj , xk) =
(

1
2

)−|j−k|
.

The target function g1(x1) remains the same as before. The function g2(x2) is given

by g2(x2, ..., xp) =
∑

j .7
−jxj . The dependence between x1 and x2, ..., xp is defined with

x1 = 3 +
∑

j .7
−jxj + v · σv. The specifications for v, σv, ε, and σε are the same as they

were in the low dimensional example. Estimation is again based on a cubic spline inter-

polation for the first dictionary. When the sample size is n = 500, knot points are given

at x1 = −2, 2, 6, 10. When the sample size is n = 800, additional knot points are used

at x1 = 0, 4, 8. The second dictionary comprises of the variables x2, ...xp.The simulation

evaluates the performance of the estimator when the goal is to control for many distinct

possible sources of confounding. Results are recorded in Table 3 for sample size n = 500

and Table 4 for n = 800. In this simulation, the single selection and infeasible estimators

are defined as they were in the low dimensional simulation. The series estimator simply uses

the entire set of controls in estimation. The results are qualitatively similar to those for the

first design. The only reasonable rejection frequencies are obtained with the post-double

selection.

7. Conclusion

This paper provides convergence rates and inference results for series estimators with a

high dimensional component. In models that admit an additively seperable form, an single
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component can be estimated with standard rates customary in nonparametric estimation,

even when then number of remaining terms is large relative to the sample size. Restrictions

on the first dictionary are exactly like those standard in nonparametric series estimation.
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9. Appendix: Proofs of the Main Results

9.1. Additional notation used in proofs. In the course of the proofs, the following no-

tation will be used. Let Î be the full set of series terms chosen in the final estimation coming

from the dictionary p2. Î is given by Î = Î0 ∪ ÎR.F. ∪ Î1∪, ...,∪IK1 . Define for any subset

J ⊂ [p], P2[J ] to be the corresponding set of selected dictionary elements. Let b be the

least squares coefficient for the regression of any vector U on P2[J ] so that b = b(U ; J) =

(P2[J ]′P2[J ])−1P2[J ]′U . Let P
Î

= P2[Î](P2[Î]′P2[Î])−P2[Î] be the sample projection onto

the space spanned by P2[Î]. Let M
Î

= In−P
Î

be projection onto the corresponding orthog-

onal space. Let Q̂ = P ′1MÎ
P1/n. Let Q = E[(p1(x) − E[p1(x)|G2])(p1(x) − E[p1(x)|G2])′].

Similarly, decompose P1 = m + W where m = E[P2|G2(X)]. Let Q̄ = W ′W/n. Let ‖ · ‖
denote Euclidean norm when applied to a vector and the matrix norm ‖A‖ =

√
trA′A when

applied to a square matrix. Let ‖ · ‖1 and ‖ · ‖∞ denote L1 and L∞ norms. Let ξFS =

maxk
√

(mk − P2Γk)′(mk − P2Γk)/n and ξRF =
√

(G1 +G2 − P2π)′(G1 +G2 − P2π)/n be

the approximation error in the first stage and reduced form.

9.2. Proof of Proposition. Begin by establishing the claim ‖Q̂ − Q‖ p→ 0 by bounding

each of the following terms seperately: ‖Q̂−Q‖ = ‖Q̂− Q̄+ Q̄−Q‖ 6 ‖Q̂− Q̄‖+ ‖Q̄−Q‖.
The argument in Theorem 1 of Newey (1997), along with the fact that supx∈X ‖p1(x) −
Tp1(x)‖ 6 2 supx∈X ‖p1(x)‖ gives the bound ‖Q̄−Q‖ = OP (ζ0(K1)K

1/2
1 /
√
n). Next bound

‖Q̂ − Q̄‖. Using the decomposition, P1 = m + W , write Q̂ = (m + W )′M
Î
(m + W )/n =

W ′W/n−W ′(In−M
Î
)W/n+m′M

Î
m/n+ 2m′M

Î
W/n. By triangle inquality, ‖Q̄− Q̂‖ 6

‖W ′P
Î
W/n‖+ ‖m′M

Î
m/n‖+ ‖2m′M

Î
W/n‖. Bounds for each of the three previous terms

are established in Lemma 4 giving ‖Q̄− Q̂‖ = OP (K1φ/n).

Since Q has minimal eigenvalues bounded from below by assumption, it follows that Q̂ is

inveritble with probability approaching 1. Consider the event L = {λmin(Q̂) > λmin(Q)/2}.
By reasoning identical to that given in Newey (1997), it follows that 1L ‖Q̄−1W ′ε/n‖ =

OP (
√
K1/
√
n) and 1L ‖Q̄−1W ′(G1 − P1β1)/n‖ = OP (K−α1 ). To proceed, it is required to

obtain analogous bounds for 1L ‖Q̂−1P ′1MÎ
ε/n‖ and 1L ‖Q̂−1P ′1MÎ

(G1 − P1β1)/n‖. Note

that

1L ‖Q̂−1P ′1MÎ
ε/n− Q̄−1W ′ε/n‖ 6 1L ‖(Q̂−1 − Q̄−1)W ′ε/n‖+ 1L ‖Q̄−1(W ′ − P ′1MÎ

)ε/n‖.

Consider the first term above. 1L ‖(Q̂−1 − Q̄−1)W ′ε/n‖ 6 1L λmax(Q̂−1 − Q̄−1)‖W ′ε/n‖ =

OP (
√
K1/n)OP (ζ0(K1)

√
K1/
√
n) = OP (

√
K1/n). Second, ‖Q̄−1(W ′ − P1 M

Î
)ε/n‖ 6

λmax(Q̄−1)‖(W ′ − P ′1MÎ
)ε/n‖ = OP (1)‖m′M

Î
ε/n‖ = OP (

√
K1φ/

√
n) by Lemma 4. Also,
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1L ‖Q̄−1P ′1MÎ
(G1 − P1β1)/n‖ = OP (K−α1 ) by the same argument as 1L ‖Q̄−1W ′(G1 −

P1β1)/n‖ = OP (K−α1 ).

Also, 1L ‖Q̂−1P ′M
Î
G2/n‖ = OP (1)‖P ′M

Î
G2/n‖ = OP (ζ0(K1)

√
K1φ/n+

√
K1φ2/ns+

√
K1K

−α√φ/s)/√n + OP (
√
K1φK

−α
1 +

√
K1

√
K2

1φ
2/n
√
φ/n)/

√
n by triangle inequality

and Lemma 4(iv) and 4(v). This reduces to oP (
√
K1/n+K−α).

To show the proposition, bound the difference β̂1 − β1. Note that 1L (β̂1 − β1) =

1L Q̂
−1P ′1MÎ

(y − G1 − G2)/n + 1L Q̂
−1P ′M

Î
(G1 − P1β1)/n − 1L Q̂

−1P ′M
Î
G2/n. Tri-

angle inequality and bounds described above give 1L ‖β̂1 − β1‖ 6 1L ‖Q̂−1P ′M
Î
ε/n‖ +

1L ‖Q̂−1P ′1MÎ
(G1 − P1β1)/n‖ + 1L ‖Q̂−1P ′1MÎ

G2/n‖ = Op(K
1/2/
√
n + K−α). The state-

ment of the proposition follows from the bound on β̂1 − β1.

9.3. Proof of Theorem. The proof follows the outline set by Newey (1997) but accounts

for model selection considerations. Let F = V −1/2 and ḡ1 = p1(x)′β2 and decompose the

quantity 1L
√
nF [a(ĝ1)− a(g1)] by

1L
√
nF [a(ĝ1)−a(g1)] = 1n

√
nF [a(ĝ1)−a(g1)+D(ĝ1)−D(g1)+D(ḡ1)−D(g1)+D(ĝ1)−D(ḡ1)].

By arguments given in the proof of Theorem 2 in Newey (1997), 1L |
√
nF [D(ḡ1) −

D(g1)]| 6 C
√
nK−α1 . In addition, bounds on |ĝ1 − g1|d given by the proposition imply

that |
√
nF [a(ĝ1)− a(g1)−D(ĝ1) +D(g1)| 6 L

√
n|ĝ1 − g1|2d = OP (L

√
nζd(K1)(

√
K1/
√
n+

K−α1 +
√
s/
√
n)2) → 0. It remains to be shown that 1L

√
nF [D(ĝ1) − D(ḡ1)] satisfies an

appropriate central limit theorem. Note that D(ĝ1) can be expanded

D(ĝ1) = D(p1(x)′β̂1) = D(p1(x)′Q̂−1P ′1MÎ
y)

= D(p1(x)′Q̂−1P ′1MÎ
(G1 +G2 + ε)) = D(p1(x))′Q̂−1P ′1MÎ

(G1 +G2 + ε)

= A′Q̂−1P ′1MÎ
(G1 +G2 + ε) = A′Q̂−1P ′1MÎ

G1 +A′Q̂−1P ′1MÎ
G2 +A′Q̂−1P ′1MÎ

ε

Using the above expansion and D(ḡ1) = D(p1(x)′β1) = A′β1 gives

√
nF [D(ĝ1)−D(ḡ1)] =

√
nFA′[Q̂−1P ′1MÎ

G1 − β1]

+
√
nFA′[Q̂−1P ′1MÎ

G2] +
√
nFA′[Q̂−1P ′1MÎ

ε]

The terms
√
nFA′[Q̂−1P ′1MÎ

G1 − β1] and
√
nFA′[Q̂−1P ′1MÎ

G2] are negligible while the

third term
√
nFA′[Q̂−1P ′1MÎ

ε] satisfies a central limit theorem. First, note the expressions

1L ‖FA′Q̂−1‖ = OP (1), 1L ‖FA′Q̂−1/2‖ = OP (1) both hold by arguments in Newey (1997).
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Beginning with the first term,

1L |
√
nFA′[Q̂−1P ′1MÎ

G1/n− β1]|

= 1L |
√
nFA′[(P ′1MÎ

P1/n)−1P ′1MÎ
(G1 − P1β1)/n]|

6 1L ‖FA′Q̂−1P ′1MÎ
/
√
n‖‖G1 − P1β1‖

6 1L ‖FA′Q̂−1/2‖
√
nmax

i6n
|g1(xi)− ḡ1(xi)|

6 1L ‖FA′Q̂−1/2‖
√
n|g1 − ḡ1|0 = OP (1)OP (

√
nK−α1 ) = oP (1)

Next, consider
√
nFA′Q̂−1P ′1MÎ

G2/n. By P1 = m + W , triangle inequality, Cauchy-

Schwartz and Lemma 4,

|FA′Q̂−1P ′1MÎ
G2/
√
n| 6 |FA′Q̂−1m′M

Î
G2/
√
n|+ ‖FA′Q̂−1W ′M

Î
G2/
√
n‖

6 ‖FA′Q̂−1‖‖m′M
Î
G2/
√
n‖+ ‖FA′Q̂−1‖‖W ′M

Î
G2/
√
n‖

= OP (1)oP (1) +OP (1)oP (1)

Next consider the last remaining term for which a central limit result will be shown. Note

that using the bounds for ‖P ′1MÎ
ε/
√
n‖ and ‖m′M

Î
ε/
√
n‖ derived in Lemma 4,

√
nFA′Q̂−1P ′1MÎ

ε/n =
√
nFA′Q−1P ′1MÎ

ε/n+
√
nFA′(Q̂−1 −Q−1)P ′1MÎ

ε/n

=
√
nFA′Q−1P ′1MÎ

ε/n+O(‖FA′(Q̂−1 −Q−1)‖‖P ′1MÎ
ε/
√
n‖)

=
√
nFA′Q−1P ′1MÎ

ε/n+ oP (1)

=
√
nFA′Q−1W ′ε/n+

√
nFA′Q−1(W ′ − P ′1MÎ

)ε/n+ oP (1)

=
√
nFA′Q−1W ′ε/n+O(‖FA′Q−1‖‖m′M

Î
ε/
√
n‖) + oP (1)

=
√
nFA′Q−1W ′ε/n+ oP (1)

Let Zin = FA′Wiεi/
√
n. Then

∑
i Zin = FA′V ′ε/

√
n. For each n, Zin is i.i.d. with

E[Zin] = 0,
∑

iE[Z2
in] = 1. In addition,

nE[1{|Zin|>δ}Z
2
in] = nδ2E[1{|Zin/δ|>1}Z

2
in/δ

2] 6 nδ2E[Z4
in/δ

4]

6 nδ2‖FA′‖4ζ0(K1)2E[‖wi‖2E[ε4i |xi]]/n2δ4 6 Cζ0(K1)2K1/n→ 0.

By the Lindbergh-Feller Central Limit Theorem,
∑

i Zin
d→ N(0, 1).

Next consider the plug in variance estimate. First, bound ‖Â − A‖. In the case that

a(g) is linear in g, then a(p′1β) = A′β =⇒ Â = A. Therefore, it is sufficient to consider

the case (ii) of Assumption 7, that a(g) is not linear in g. For ν as in the statement

of Assumption 7, Define the event E = En = {|ĝ1 − g1|d < ν/2}. In addition, let Ĵ =
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(D(p11; ĝ1), ..., D(p1K ; ĝ1))′. Then for any β such that |p′1β − ĝ| < ν/2, it follows that

|p′1β − g1| ≤ ν and

1E |a(p′1β)− a(ĝ1)− Ĵ ′(β − β̂)|/‖β − β̂‖

=1E |a(p′1β − a(ĝ)−D(p′1β; ĝ) +D(ĝ; ĝ)|/‖β − β̂‖

61EC · |p′1β − ĝ|2d/β − β̂‖ 6 1EC · ζd(K1)2‖β − β̂‖ → 0

Therefore, Â exists and equals Ĵ if 1E = 1.

1E‖Â−A‖2 = 1E(Â−A)′(Â−A) = 1E |D((Â−A)′p1; ĝ)−D((Â−A)′p1; g1)|

6 C · 1E |(Â−A)′p1|d|ĝ − g1|d 6 C · ‖Â−A‖ζd(K1)|ĝ − g0|d

This gives 1E‖Â−A‖ 6 C · ζd(K1)|ĝ − g1|d = OP (ζd(K1)2(
√
K/
√
nK−α))

p→ 0.

A consequence of the bound on ‖Â−A‖ is that 1E‖FÂ‖ 6 1E‖F‖‖Â−A‖+‖FA‖ = OP (1).

Similarly, 1E‖FÂQ̂−1‖ = OP (1). Next, define ĥ = 1EQ̂
−1ÂF and h = 1EQ

−1AF .

‖ĥ− h‖ 6 1E‖FÂ′Q̂−1(Q− Q̂)‖+ 1E‖F (Â−A)′‖

6 1E‖FÂ′Q̂−1‖‖Q− Q̂‖+ 1E |F |‖Â−A‖
p→ 0

Next, note that h′Σh = 1E . In addition, Σ 6 C · I in the positive definite sense by

Assumption. Therefore,

1E |ĥ′Σĥ− 1| = |ĥΣĥ− h′Σh| 6 (ĥ− h)′Σ(ĥ− h) + |2(ĥ− h)′Σh|

6 C · ‖ĥ− h‖2 + 2((ĥ− h)′Σ(ĥ− h))1/2(h′σh)1/2

6 oP (1) + C‖ĥ− h‖ p→ 0.

Define Σ̃ =
∑

iWiW
′
i ε

2
i /n, an infeasible sample analogue of Σ. By reasoning similar to that

showing ‖Q̄−Q‖ p→ 0 it follows that ‖Σ̃−Σ‖ p→ 0. Then this implies that 1E |ĥΣ̃ĥ− ĥ′Σĥ| =
|ĥ′(Σ̃− Σ)ĥ| 6 ‖ĥ‖2‖Σ̃− Σ‖ = OP (1)oP (1)

p→ 0.

Next, let ∆1i = g1(xi)− ĝ1(xi) and ∆2i = g2(xi)− ĝ2(xi). Then maxi6n |∆i| 6 |ĝ1−g1|0 =

o(1)
p→ 0 follows from the proposition above. Let S̃ =

∑
iWiW

′
i |εi|/n, Ŝ =

∑
i ŴiŴ

′
i |εi|/n

and S = E[WiW
′
i |εi|] = E[WiW

′
iE[|εi||xi]] 6 C ·Q. Let ω2

i = ĥ′WiW
′
i ĥ . Bound Σ̃ to Σ̂ by

considering the quantity

En|FV̂ F − ĥ′Σ̃ĥ| = |ĥ′(Σ̂− Σ̃)ĥ| =

∣∣∣∣∣
n∑
i=1

ĥ′ŴiŴ
′
i ε̂

2
i ĥ/n−

n∑
i=1

ĥ′WiW
′
i ε

2
i ĥ/n

∣∣∣∣∣
6

∣∣∣∣∣
n∑
i=1

ω2
i (ε̂

2
i − ε2i )/n

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

(ω̂2
i − ω2

i )ε
2
i /n

∣∣∣∣∣
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Both terms on the right hand side will be bounded. Consider the first term. Expanding

(ε̂2i − ε2i ) gives∣∣∣∣∣
n∑
i=1

ω2
i (ε̂

2
i − ε2i )/n

∣∣∣∣∣ 6 2

∣∣∣∣∣
n∑
i=1

ω2
i ∆

2
1i/n

∣∣∣∣∣+2

∣∣∣∣∣
n∑
i=1

ω2
i ∆

2
2i/n

∣∣∣∣∣+2

∣∣∣∣∣
n∑
i=1

ω2
i ∆1iεi/n

∣∣∣∣∣+2

∣∣∣∣∣
n∑
i=1

ω2
i ∆2iεi/n

∣∣∣∣∣
These four terms above are bounded in order of their appearence.

n∑
i=1

ω2
i ∆

2
1i/n 6 max

i6n
|∆1i|

n∑
i=1

ω2
i /n = oP (1)OP (1)

n∑
i=1

ω2
i ∆

2
2i/n 6 max

i6n
|∆2i|

n∑
i=1

ω2
i |εi|/n = oP (1)OP (1)

n∑
i=1

ω2
i ∆1iεi/n 6 max

i6n
|∆1i|

n∑
i=1

ω2
i |εi|/n = oP (1)OP (1)

n∑
i=1

ω2
i ∆2iεi/n 6 max

i6n
|∆2i|

n∑
i=1

ω2
i |εi|/n = oP (1)OP (1)

Where the bounds maxi6n |∆1i| = oP (1) follows by the proposition and maxi6n |∆2i| =

oP (1) follows from Lemma 5 below. On the other hand, the second term is bounded by∣∣∣∣∣
n∑
i=1

ĥ(ŴiŴ
′
i −WiW

′
i )ε

2
i ĥ/n

∣∣∣∣∣ 6 max
i6n
|ε2i |

∣∣∣∣∣
n∑
i=1

ĥ(ŴiŴ
′
i −WiW

′
i )ĥ/n

∣∣∣∣∣
6 max

i6n
|ε2i |‖ĥ‖2‖

n∑
i=1

(ŴiŴ
′
i −WiW

′
i )/n‖ = max

i6n
|ε2i |‖ĥ‖2‖‖Q̂− Q̄‖

= OP (n2/q)OP (1)OP (K
3/2
1 φ/

√
n)

= oP (1)

by Assumption 4. This implies that En|FV̂ F − 1| p→ 0. With probability approaching 1,

1E = 1, this gives FV̂ F
p→ 1 which in turn implies that

√
nV̂ −1/2(θ̂ − θ) =

√
nF (θ̂ − θ)/(FV̂ F )1/2 d→ N(0, 1).

To provide a rate of convergence, |V | 6 C · ζd(K1)2 since θ̂ = θ0 + (V 1/2/
√
n)
√
nF (θ̂− θ) =

θ + OP (V 1/2/
√
n). Cauchy-Schwartz inequality implies that |p′1β|d 6 ζd(K1)‖β‖ for any

choice of β. Then ‖A‖2 = |D(p′1A)| 6 C·|p′1A|d 6 C·ζd(K1)‖A‖. This gives ‖A‖ 6 C·ζd(K1)

and |V | 6 C · ‖A‖2 6 C · ζd(K1)2.

The proof of the second statement of the Theorem uses similar arguments as the proof

of the first and follows from the proof of Theorem 3 in Newey (1997).
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9.4. Lemmas. The first lemma is a performance bound for Post-Lasso estimates. It is

required for use in the next two Lemmas. It is based on the results of Belloni, Chen,

Chernozhukov and Hansen (2013). Define the following four events which are useful for

describing the regularization properties of the lasso regressions.

AFS = {λFS/n > c‖Sk‖∞∀k}, ARF = {λRF /n > c‖S‖∞}

BFS = {`ΨFS
jk 6 Ψ̂FS

jk 6 uΨFS
ij ∀j, k}, BRF = {`ΨRF

j 6 Ψ̂RF
j 6 uΨRF

j ∀j}.

Define the regularization event R = AFS ∩ ARF ∩ BFS ∩ BRF . In addition, define c0 =

(uc + 1)/(`c − 1). Let κC = minδ∈∆C,T |T |6s sδ
′(P ′2P2/n)δ/‖δT ‖21 where ∆C,T = {δ 6= 0 :

‖δT c‖1 6 C‖δT ‖1}. This defines the restricted eigenvalue and is useful for Lasso bounds. For

more details regarding the definition, see for example, Bickel, Ritov, and Tybakov (2009).

Let κkc0 = min‖ΨFS
k δTc

k
‖16c0‖ΨFS

k δTk‖1‖
√
sδ′(P ′2P2/n)δ/‖Ψ̂FS

k δTk‖1. Define κc0 analogously

using the reduced form Ψ̂RF .

Lemma 1. Under the conditions given in Assumption 4, the following inequalities holds.

1R max
k6K1

‖M
Î
mk/
√
n‖2 6 1R

(
max
k6K1

(u+ 1/c)
λFS
√
s

nκlc0
+ 3ξFS

)
.

1R‖MÎ
E[y|G2(x)]/

√
n‖2 6 1R

(
(u+ 1/c)

λRF
√
s

nκc0
+ 3ξRF

)
.

In addition, the regularization event satisfies P(R)→ 1.

Proof. That ARF holds with probability approaching 1 was established in Belloni, Chen,

Chernozhukov and Hansen (2013). The conditions listed in Assumption 6 allow use of the

same argument to show that AFS holds with high probability by allowing the application

of the moderate deviation results of de la Pena, Lai and Shao (2009). The proof of that

fact is an identical to the proof given in BCCH and omitted. In addition, BRF holds with

probability approaching one by Lemma 11 of Belloni, Chen, Chernozhukov and Hansen

(2013). Again, under the additional conditions listed in Assumption 6, the argument extends

to show BFS happens with probability approaching 1.

Define p̄1k(xi) = p1k(xi)−
∑n

i=1 p1k(xi) and p̃1k(xi) = p1k(xi)− E[p1k(xi)]. Then let

(Ψ̂FS
jk )

2
=

n∑
i=1

p2j(xi)
2p̄1k(xi)

2/n, (Ψ̃FS
jk )

2
=

n∑
i=1

p2j(xi)
2p̃1k(xi)

2/n

To show P(BFS) → 1 for the basic penalty loadings it is sufficient to show that u1 :=

maxk,j |(Ψ̂FS
jk )

2
− (Ψ̃FS

jk )
2| p→ 0 and u2 := maxk,j |(Ψ̂FS

jk )
2
− (ΨFS

jk )
2| p→ 0. Assumption six
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gives u2
p→ 0. Next note that that using

∑n
i=1 p̃1k(xi)/n− E[p1k(xi)],

u1 = max
k,j
|
n∑
i=1

p2j(xi)
2

[
(p̃1k(xi)−

n∑
i=1

p̃1k(xi)/n)2 − p̃1k(xi)
2

]
|

6 max
k,j

2|(
n∑
i=1

p2j(xi)
2p̃1k(xi)/n)|

n∑
i=1

p̃1k(xi)/n)|

+ max
k,j

(
n∑
i=1

p2j(xi)
2)(

n∑
i=1

p̃1k(xi)/n)2

Note that maxk,j(
∑n

i=1 p2j(xi)p̃1k(xi)
2/n)6 maxi,k,j |p2j(xi)|maxk,j

√∑n
i=1 p2j(xi)2p̃1k(xi)2/n

and by Assumption 6. The second term converges to zero by Assumption 6.

The proof that the iterated option mentioned in the text is valid follows similar logic. In

addition, it is shown in BCCH for fixed K1. The result follows from their proof, but using

Lemma 3 of this paper for a bound on maxk ‖m′kMÎ
‖.

Therefore, 1R
p→ 1 giving the last claim of the lemma. The first two claims follow

immediately from the third statement of Lemma 7 in Belloni, Chen, Chernozhukov and

Hansen (2013).

�

Lemma 2. maxk6K1(1/κkc0) = OP (1) and maxk6K1 |{j : Γ̂kj 6= 0}| = OP (s)

Proof. For the first result, let a = mink,j |Ψ̂FS
kj |∞ and b = maxk,j |Ψ̂FS

kj |∞. Step 1 of the

the proof of Theorem 1 in BCCH shows that maxk6K1(1/κkc0) 6 b(κbc0/a(P
′
2P2/n))−1.

By the results of the previous lemma, a and b are bounded from above and away from

zero with probability approaching 1. Then using Assumption 5, (κbc0/a(P
′
2P2/n))−1 =

OP (1). This implies the first statement. For the second statement, let ŝk be the num-

ber of incorrectly selected terms in the k-th first stage regression. Then By Lemma

10 of BCCH, ŝk 6 sϕmax(q) maxj |Ψ̂0
jk|4(2c0/κ

k
c0 + 6c0nξFS/λ

√
s)2 for every integer q >

2sϕmax(q) maxj |Ψ̂0
jk|−2(2c0/κ

k
c0+6c0nξFS/λ

√
s)2. The choice q = κ′′2sϕmax(q) maxk,j |Ψ̂0

jk|−2(2c0/κ
k
c0+

6c0nξFS/λ
√
s)2 yields maxk ŝk 6 gives ϕmax(q) = OP (1) by Assumption 5 and by using

maxk,j |Ψ̂0
jk|−2 = OP (1), maxk 2c0/κ

k
c0 = OP (1) and 6c0/nξFS/λ

FS√s = oP (1) which were

shown in Lemma 1. �

The following lemmas bounds various quantities used in the proof above. The lemma pro-

vides analogous results to steps 4-6 of Belloni, Chernozhukov and Hansen (2013)’s proof of

their Theorem 1 but accounts increasing number of series terms terms in the first dictionary.

Lemma 3. First Stage and Reduced Form Performance Bounds
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(i) maxk6K1 ‖MÎ
mk/
√
n‖ = OP (

√
φ/n+ ξFS), ξFS = OP (φ/n)

(ii) ‖M
Î
G2/
√
n‖ = OP (

√
K1φ/n+ ξRF ), ξRF = O(K−α1 ) +OP (

√
K1φ/n)

(iii) maxk6K1 ‖Γ̂k(Î)− Γk‖ = OP (
√
φ/n)

(iv) ‖b(G2; Î)− β2‖ = OP (
√
φ/n+K−α1 )

(v) maxk6K1 ‖b(Wk; Î‖1 = OP (
√
sφ/n)

(vi) maxk6K1 ‖P ′2Wk/
√
n‖∞ = OP (φ/s), ‖P ′2ε/

√
n‖∞ = OP (K1

√
sφ/n).

Proof. Statement (i) follows from an application of Lemma 1:

1R max
k6K1

‖M
Î
mk/
√
n‖ 6 1R max

k6K1

‖M
Îk
mk/
√
n‖

6 1R max
k6K1

(u+ 1/c)λFS
√
s/nκkc0 + 3ξFS

6 1R max
k6K1

(u+ 1/c)(C
√
n log(max(K1K2, n))

√
s/nκkc0 + 1R3ξFS

= O(
√
φ/n)/κkc0 + 3ξFS = OP (

√
φ/n)

Where the last equality follows from Lemma 2 and the definition of λFS , ξFS = OP (
√
s/n)

and 1R
p→ 1. Next, Consider statement (ii).

1R‖MÎ
G2/
√
n‖ 6 1R‖MÎ

(E[G1|G2] +G2)/
√
n‖+ 1R‖MÎ

E[G1|G2]/
√
n‖

6 1R‖MIRF
(E[G1|G2] +G2)/

√
n‖+ 1R‖MÎ

E[G1|G2]/
√
n‖

6 1R(u+ 1/c)λRF
√
K1s/nκ

RF
c0 + 1R3ξRF + 1R‖MÎ

E[G1|G2]/
√
n‖

6 1R(u+ 1/c)(C
√
n log(max(K1K2, n))

√
K1s/nκ

RF
c0

+ 1R3ξRF + 1R‖MÎ
E[G1|G2]/

√
n‖

The Last bound follows from Lemma 1. To control the approximation error for the reduced

form, ie. to bound ξRF , note that

g1(x) + g2(x) = p2(x)′(Γβ1 + β2) + (g1(x)− p1(x)β1) + (g2(x)− p2(x)′β2)

The approximation error ξRF is then given by

ξ2
RF = (G1 − P1β1 +G2 − P2β2)′(G1 − P1β1 +G2 − P2β2)/n

6 2(G1 − P1β1)′(G1 − P1β1)/n+ 2(G2 − P2β2)′(G2 − P2β2)/n

= O(K−2α) +O(K1s/n)

Next consider ‖M
Î
E[G1|G2]/

√
n‖ and note that E[G1|G2] = mβ1 + E[G1 − mβ1|G2]. By

statement (i) of this lemma, ‖M
Î
mβ1/

√
n‖ 6 maxk ‖MÎ

mk/
√
n‖‖β1‖ = OP (

√
φ/n)O(1).
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Next, ‖M
Î
E[G1−mβ1|G2]/

√
n‖ 6 ‖M

Î
E[G1−P1β1|G2]/

√
n‖+‖M

Î
E[P1β1−mβ1|G2]/

√
n‖.

The first term ‖M
Î
E[G1 − P1β1|G2]/

√
n‖ is O(K−α) and the second term ‖M

Î
E[P1β1 −

mβ1|G2]/
√
n‖ vanishes identically. These results put together establish that 1R‖MÎ

G2/
√
n‖ 6

1ROP (
√
K1φ/n) +O(K−α). The result follows by noting that 1R

p→ 1.

Next consider statement (iii). Let T̂ = Î ∪ supp(Γ1) ∪ ... ∪ supp(ΓK1).

max
k6K1

‖Γ̂k(Î)− Γk‖ 6 max
k
{
√
ϕmin(|T̂k|)‖Γ̂k(Î)− Γk‖} 6 max

k6K1

‖P2(Γ̂k(Î)− Γk)/
√
n‖

6 max
k6K1

{‖M
Î
mk/
√
n‖+ ‖(mk − P2Γk)/

√
n‖} = OP (

√
φ/n).

Where the last bound follows from ϕmin(T̂ ) = OP (1) by Assumption 5 on the restricted

eigenvalues and by T̂ = OP (K1s) by the result of the lemma above. Statement (iv) follows

from similar reasoning as for statement (iii).

To show statement (v), note that by Lemma 4 of BCH, a sufficient condition for

max
k6K1j6K2

|P ′2jWk|/
√
n√∑

i p2j(xi)2W 2
ki/n

= OP (φ/s)

Is that mink6K1,j6K2 E[p2j(xi)
2W 2

ki]
1/2E[|p2j(xi)|3|Wki|3]−1/3 = O(1) and log(K1K2) =

o(n1/3). These conditions follow from Assumption 6. In addition,
√∑

i p2j(xi)2W 2
ki/n =

OP (1) by Assumption 6. This gives the first part of statement (vi). The second part follows

in the same manner.

Statement (v):

max
k6K1

‖b(Wk; Î)‖1 6 max
k6K1

√
|Î‖b(Wk; Î)‖ 6 max

k6K1

√
|Î|(P2(Î)′P2(Î))−1P2(Î)′Wk/n‖

6
√
|Î|ϕ−1

min(|Î|)
√
|Î|max

k6K1

‖P ′2Wk/
√
n‖∞ = OP (K1

√
s
√
φ/n)

�

Lemma 4. The following bounds hold.

(i) ‖W ′P
Î
W/n‖ = OP (K1φ/n)

(ii) ‖m′M
Î
m/n‖ = OP (K1φ/n)

(iii) ‖m′M
Î
W/n‖ = OP (K

3/2
1

√
φ2/n)

(iv) ‖m′M
Î
G2/
√
n‖ = OP (

√
K1φ/n(

√
nK−α1 +

√
K2

1φ
2/n))

(v) ‖W ′M
Î
G2/
√
n‖ = OP (ζ0(K1)

√
K1φ/n+

√
K1φ2/n+K−α1

√
K1φ/s)

(vi) ‖W ′P
Î
ε/
√
n‖ = OP (K

3/2
1

√
φ2/n)
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(vii) ‖m′M
Î
ε/
√
n‖ = OP (K1

√
φ/n)

Proof. Bounds for statement (i):

‖W ′P
Î
W/n‖2 =

∑
k,l6K1

(W ′kPÎ
Wl/n)2 =

=
∑

k,l6K1

(b(Wk; Î)′P2Wl/n)2 6
∑

k,l6K1

‖b(Wk; Î)/
√
n‖21‖P ′2Wl/

√
n‖2∞

=

∑
k6K1

‖b(Wk; Îk)‖21/n

∑
k6K1

‖P ′2Wl/
√
n‖2∞


= OP (K1sφ/n

2)OP (K1φ/s)

Where the last probability bounds follow from Lemma 3. This gives ‖W ′P
Î
W/n‖ = oP (1)

by K2
1φ

2/n→ 0.

Next, bounds for statement (ii):

‖m′M
Î
m/n‖2 =

∑
k,l6K1

(m′kMÎ
ml/n)2 6

∑
k,l6K1

‖M
Î
mk/
√
n‖2‖M

Î
ml/
√
n‖2

=

∑
k6K1

‖M
Î
mk/
√
n‖2
2

= OP (K1φ/n)2

where again the final probability bounds follow from Lemma 3. This implies that ‖m′M
Î
m/n‖ =

oP (1) by K1φ/n→ 0. Finally, a bound on the third term is established by

‖m′M
Î
W/n‖ = ‖m′W/n−m′P

Î
W/n‖

= ‖ΓP ′2W/n+ (m′ − Γ′P ′2)W/n−m′P
Î
W/n‖

= ‖R′mW/n+ (Γ− Γ(Î))′P ′2W/n‖

6 ‖R′mW/n‖+ ‖(Γ− Γ(Î))′P ′2W/n‖
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Then the first term in the last line is bounded by ‖R′mW/n‖ 6 ‖(m′−Γ′P ′2)(m−P2Γ)/n‖2ζ0(K1)

while the second term has

‖(Γ− Γ(Î))′P ′2Wl/n‖2 =
∑
k,l

[(Γk − Γk(Î))′P ′2Wl/n]2

=
∑
k,l

‖Γk − Γk(Î)‖21‖P ′2Wl/
√
n‖2∞

=

(∑
k

‖Γk − Γk(Î)‖21

)(∑
l

‖P ′2Wl/
√
n‖2∞

)

6

(
|Î|
∑
k

‖Γk − Γk(Î)‖2
)(∑

l

‖P ′2Wl/
√
n‖2∞

)
= OP (K1)OP (K1sφ/n)K1OP (φ/s)

With the last asertion following from Lemma 3. this gives ‖m′M
Î
W/n‖ = oP (1)

Statement (iv):

‖FA′Q̂−1m′M
Î
G2/
√
n‖ 6 ‖FA′Q̂−1‖max

k6K1

‖m′M
Î
/
√
n‖
√
n‖M

Î
G2/
√
n‖

= OP (1)OP (
√
φ/n)

√
nOP (

√
φ/n+K−α) = oP (1).

Statement (v):

‖W ′M
Î
G2/
√
n‖ 6 ‖(G2 − P ′2β2)′W/

√
n‖+ ‖(b(G2; Î)− β2)′P ′2W/

√
n‖

6 OP (ζ0

√
K1φ/n) +

√
K1 max

k6K1

‖b(G2; Î)− β2‖1‖P ′2Wk/
√
n‖∞

6 OP (ζ0

√
K1φ/n) +

√
K1OP (

√
φ/n+Kalpha

1 )OP (
√
φ/s)

Statement (vi):

‖W ′P
Î
ε/
√
n‖ = ‖b(W ; Î)P ′2ε/

√
n‖

6
√
K1 max

k
‖b(Wk; Î)‖1‖P ′2ε/

√
n‖∞

=
√
K1OP (

√
K2

1sφ/n)OP (
√
φ/s)

Statement (vii): Let Rm = m−P2Γ. By reasoning similar to that for Lemma 3(iii), m′M
Î
ε
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‖Γ(Î)− Γ)′P ′2ε/
√
n‖ 6

√
K1 max

k6K1

|Γ(Î)− Γ)′P ′2ε/
√
n|

6
√
K1 max

k6K1

‖Γ(Î)− Γ)‖1‖P ′2ε/
√
n‖∞

6
√
K1 max

k

√
|Î|+K1s‖Γ(Î)− Γ)‖‖P ′2ε/

√
n‖∞

= OP (K1

√
φ/n)OP (

√
φ/s)

�

Lemma 5. maxi6n |g2(xi)− ĝ2(xi)| = oP (1)

Proof. Let T̂ = Î ∪ supp(β2). Then maxi |g2(xi) − ĝ2(xi)| 6 maxi |g2(xi) − p2(xi)
′β2| +

maxi |ĝ2(xi)−p2(xi)
′β2|. The first term has the bound maxi |g2(xi)−p2(xi)

′β2| = OP (
√
φ/n)

by assumption. A bound on the second term is obtained by the following:

max
i
|ĝ2(xi)− p2(xi)

′β2|2 = max
i
|p2(xi)

′(β̂2 − β2)|2

6 max
i
‖p

2,T̂
(xi)‖2‖β̂2 − β2‖2

6 |T̂ |max
i

max
j6K2

|p2j(xi)|2‖β̂2 − β2‖2

6 OP (K1s) max
i

max
j6K2

|p2j(xi)|2‖β̂2 − β2‖2

Then

‖β̂2 − β2‖ = ‖b(y − Ĝ1; Î)− β2‖ = ‖b(G1; Î) + b(G2; Î) + b(ε; Î)− b(Ĝ1; Î)− β2‖

6 ‖b(G1; Î)− β2‖+ ‖b(ε; Î)‖+ ‖b(G1 − Ĝ1; Î)‖

First note that ‖b(G2; Î) − β2‖ = OP (
√
φ/n + K−1α

1 ) by Lemma 3. Next, ‖b(ε; Î)‖ 6√
|Î|φmin(Î)‖P ′2ε/n‖∞ = OP (

√
K1s)OP (1)‖P ′2ε/

√
n‖∞/

√
n = OP (

√
K1φ/n). Finally,

‖b(Ĝ1 − G1; Î)‖ 6 ‖b(P1(β1 − β̂1); Î)‖ + ‖b(G1 − P1β1; Î)‖. The right term is ‖b(G1 −
P1β1; Î)‖ = OP (K−α1 ). The left term is bounded by
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‖b(P1(β1 − β̂1); Î)‖ 6 ϕmin(|T̂ |)−1
√
T̂ max

j
|
∑
i

p2j(xi)p1(xi)
′(β1 − β̂1)/n|

6 ϕmin(|T̂ |)−1
√
T̂ max

j

∑
i

|p2j(xi)‖p1(xi)/n‖|‖(β1 − β̂1)‖

= OP (1)OP (
√
K1s)ζ0(K1)OP (

√
K1/n+K−α1 ) max

j

∑
i

|p2j(xi)|/n

These together with Assumption 6 imply that maxi |ĝ2(xi)− p2(xi)
′β2| = oP (1) �
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Figure 1. Simulation Table 1

MAD Med. Bias RP 5% MAD Med. Bias RP 5%

Post-Double 0.089 0.032 0.060 0.085 0.006 0.052
Post-Single I 0.162 0.159 0.196 0.112 0.091 0.176
Post-Single II 0.645 0.645 0.948 0.500 -0.500 0.800
Series I 0.158 0.152 0.232 0.136 0.136 0.256
Series II 0.097 0.023 0.208 0.090 -0.010 0.092
Infeasible 0.051 0.036 0.120 0.055 0.000 0.060

Post-Double 0.081 0.049 0.080 0.069 -0.027 0.048
Post-Single I 0.116 0.111 0.192 0.074 0.025 0.072
Post-Single II 0.523 0.523 0.868 0.135 -0.098 0.152
Series I 0.124 0.117 0.228 0.089 0.078 0.148
Series II 0.087 0.024 0.236 0.077 -0.029 0.112
Infeasible 0.052 0.042 0.176 0.055 -0.019 0.084

Post-Double 0.137 0.058 0.052 0.113 -0.009 0.064
Post-Single I 0.221 0.211 0.176 0.122 0.096 0.092
Post-Single II 0.665 0.665 0.936 0.484 -0.484 0.660
Series I 0.212 0.207 0.164 0.147 0.138 0.168
Series II 0.153 0.043 0.184 0.123 -0.025 0.072
Infeasible 0.077 0.066 0.144 0.089 -0.007 0.048

Post-Double 0.104 -0.026 0.072 0.103 0.017 0.048
Post-Single I 0.107 0.047 0.076 0.108 0.079 0.088
Post-Single II 0.438 0.438 0.792 0.129 -0.069 0.120
Series I 0.107 0.062 0.084 0.131 0.117 0.156
Series II 0.139 -0.045 0.296 0.112 0.009 0.096
Infeasible 0.058 -0.014 0.088 0.073 0.013 0.056

Table 1. Simulation Results: Low Dimensional Design, Average Derivative

N = 500 N = 800

Note:  Results are based on 250 simulation replications.  The table reports median bias (Med. Bias), median absolute 
deviation (MAD) and rejection frequency for a 5% level test (RP 5%) for six different estimators of the average derivative:  
the Post-Double proposed in this paper;  a post-model selection estimator (Post-Single I) based on selecting terms with 
Lasso on the reduced form equation only, a post-model selection estimator (Post-Single II) based on selecting terms using 
Lasso on the outcome equation (Post-Single II); an estimator that uses a small number of series terms (Series I); an 
estimator that uses a large number of series terms (Series II); and infeasible estimator that is explicitly given the control 
function.

D.  Low First Stage Signal/Noise, Low Structural Signal/Noise

C.  High First Stage Signal/Noise, Low Structural Signal/Noise

B.  High First Stage Signal/Noise, Low Structural Signal/Noise

A.  High First Stage Signal/Noise, High Structural Signal/Noise



36 DAMIAN KOZBUR

Figure 2. Simulation Table 2

MAD Med. Bias RP 5% MAD Med. Bias RP 5%

Post-Double 0.330 -0.002 0.096 0.619 -0.176 0.068
Post-Single I 0.470 0.443 0.220 0.654 0.174 0.064
Post-Single II 1.402 1.402 0.676 5.436 5.436 1.000
Series I 0.489 0.442 0.200 0.971 0.936 0.204
Series II 0.418 -0.068 0.268 0.729 -0.141 0.120
Infeasible 0.234 0.051 0.104 0.255 -0.083 0.064

Post-Double 0.312 -0.165 0.108 0.609 0.063 0.048
Post-Single I 0.311 0.015 0.088 0.616 0.239 0.052
Post-Single II 1.439 1.439 0.704 6.110 6.110 1.000
Series I 0.311 0.109 0.096 0.935 0.917 0.216
Series II 0.392 -0.200 0.236 0.685 0.024 0.104
Infeasible 0.247 -0.151 0.164 0.269 0.041 0.044

Post-Double 0.504 -0.144 0.084 0.894 0.160 0.060
Post-Single I 0.524 0.293 0.124 1.028 0.582 0.052
Post-Single II 1.283 1.283 0.504 5.537 5.537 1.000
Series I 0.479 0.283 0.104 1.286 1.238 0.208
Series II 0.623 -0.267 0.240 0.912 0.063 0.112
Infeasible 0.276 -0.066 0.056 0.369 0.087 0.080

Post-Double 0.375 -0.108 0.080 0.767 0.113 0.036
Post-Single I 0.413 0.094 0.076 0.797 0.341 0.048
Post-Single II 1.483 1.483 0.620 6.191 6.191 1.000
Series I 0.401 0.165 0.068 1.107 1.018 0.120
Series II 0.515 -0.197 0.220 0.830 0.114 0.076
Infeasible 0.278 -0.089 0.076 0.361 0.087 0.036

D.  Low First Stage Signal/Noise, Low Structural Signal/Noise

C.  High First Stage Signal/Noise, Low Structural Signal/Noise

Note:  Results are based on 250 simulation replications.  The table reports median bias (Med. Bias), median absolute 
deviation (MAD) and rejection frequency for a 5% level test (RP 5%) for six different estimators of the function evaluated at 
the mean:  the Post-Double proposed in this paper;  a post-model selection estimator (Post-Single I) based on selecting 
terms with Lasso on the reduced form equation only; a post-model selection estimator (Post-Single II) based on selecting 
terms using Lasso on the outcome equation (Post-Single II); an estimator that uses a small number of series terms (Series 
I); an estimator that uses a large number of series terms (Series II); and and infeasible estimator that is explicitly given the 
control function.

A.  High First Stage Signal/Noise, High Structural Signal/Noise

Table 2. Simulation Results: Low Dimensional Design,  Evaluation at the Mean

N = 500 N = 800

B.  High First Stage Signal/Noise, Low Structural Signal/Noise
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Figure 3. Simulation Table 3

MAD Med. Bias RP 5% MAD Med. Bias RP 5%

Post-Double 0.056 0.027 0.124 0.057 -0.023 0.092
Post-Single I 0.300 -0.300 0.964 0.471 -0.471 1.000
Post-Single II 0.301 -0.301 0.968 0.473 -0.473 1.000
Series I 0.102 0.045 0.400 0.120 -0.016 0.420
Infeasible 0.059 0.045 0.140 0.057 0.003 0.048

Post-Double 0.097 -0.095 0.356 0.058 -0.031 0.120
Post-Single I 0.365 -0.365 1.000 0.365 -0.365 0.984
Post-Single II 0.365 -0.365 1.000 0.365 -0.365 0.988
Series I 0.106 -0.070 0.464 0.099 -0.010 0.380
Infeasible 0.079 -0.079 0.328 0.053 -0.015 0.100

Post-Double 0.081 -0.063 0.084 0.088 0.017 0.064
Post-Single I 0.372 -0.372 0.972 0.429 -0.429 0.980
Post-Single II 0.372 -0.372 0.972 0.432 -0.432 0.980
Series I 0.154 -0.053 0.408 0.179 0.050 0.428
Infeasible 0.069 -0.049 0.084 0.084 0.043 0.076

Post-Double 0.065 -0.033 0.084 0.072 0.035 0.076
Post-Single I 0.299 -0.299 0.940 0.315 -0.315 0.892
Post-Single II 0.299 -0.299 0.940 0.316 -0.316 0.896
Series I 0.130 -0.004 0.440 0.152 0.053 0.424
Infeasible 0.061 -0.019 0.100 0.069 0.046 0.120

D.  Low First Stage Signal/Noise, Low Structural Signal/Noise

Note:  Results are based on 250 simulation replications.  The table reports median bias (Med. Bias), median absolute 
deviation (MAD) and rejection frequency for a 5% level test (RP 5%) for five different estimators of the average derivative:  
the Post-Double proposed in this paper;  a post-model selection estimator (Post-Single I) based on selecting terms with Lasso 
on the reduced form equation only, a post-model selection estimator (Post-Single II) based on selecting terms using Lasso on 
the outcome equation (Post-Single II); an estimator that includes every covariate (Series); and infeasible estimator that is 
explicitly given the control function.

Table 3. Simulation Results: High Dimensional Design, Average Derivative

N = 500 N = 800

A.  High First Stage Signal/Noise, High Structural Signal/Noise

B.  High First Stage Signal/Noise, Low Structural Signal/Noise

C.  High First Stage Signal/Noise, Low Structural Signal/Noise
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Figure 4. Simulation Table 4

MAD Med. Bias RP 5% MAD Med. Bias RP 5%

Post-Double 0.197 -0.013 0.104 0.238 0.031 0.060
Post-Single I 0.827 -0.827 0.780 0.343 0.230 0.096
Post-Single II 0.827 -0.827 0.780 0.343 0.241 0.096
Series I 0.395 0.002 0.372 0.527 -0.022 0.368
Infeasible 0.223 0.017 0.112 0.242 0.005 0.076

Post-Double 0.214 -0.058 0.120 0.329 -0.142 0.052
Post-Single I 0.748 -0.748 0.684 0.293 0.030 0.044
Post-Single II 0.748 -0.748 0.684 0.293 0.030 0.044
Series I 0.388 0.032 0.404 0.721 -0.193 0.448
Infeasible 0.204 -0.016 0.120 0.334 -0.176 0.060

Post-Double 0.302 -0.070 0.060 0.381 0.129 0.048
Post-Single I 0.885 -0.885 0.608 0.427 0.294 0.064
Post-Single II 0.885 -0.885 0.608 0.427 0.294 0.068
Series I 0.610 0.012 0.380 0.866 0.155 0.416
Infeasible 0.283 -0.048 0.084 0.375 0.110 0.040

Post-Double 0.276 0.110 0.096 0.409 0.206 0.044
Post-Single I 0.565 -0.562 0.356 0.464 0.344 0.088
Post-Single II 0.569 -0.565 0.356 0.455 0.344 0.088
Series I 0.538 0.166 0.408 0.860 0.028 0.380
Infeasible 0.289 0.145 0.092 0.418 0.163 0.036

Table 4. Simulation Results: HighDimensional Design, Evaluation at the Mean

N = 500 N = 800

Note:  Results are based on 250 simulation replications.  The table reports median bias (Med. Bias), median absolute deviation 
(MAD) and rejection frequency for a 5% level test (RP 5%) for five different estimators of the functional evaluated at the mean:  
the Post-Double proposed in this paper;  a post-model selection estimator (Post-Single I) based on selecting terms with Lasso on 
the reduced form equation only, a post-model selection estimator (Post-Single II) based on selecting terms using Lasso on the 
outcome equation (Post-Single II); an estimator that includes every covariate (Series); and infeasible estimator that is explicitly 
given the control function.

A.  High First Stage Signal/Noise, High Structural Signal/Noise

B.  High First Stage Signal/Noise, Low Structural Signal/Noise

D.  Low First Stage Signal/Noise, Low Structural Signal/Noise

C.  High First Stage Signal/Noise, Low Structural Signal/Noise
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