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Abstract. A semiparametric regression estimator that exploits categorical (i.e. discrete-
support) kernel functions is developed for a broad class of hierarchical models including the
pooled regression estimator, the fixed-effects estimator familiar from panel data, and the
varying coefficient estimator, among others. Separate shrinking is allowed for each coeffi-
cient. Regressors may be continuous or discrete. The estimator is motivated as an intuitive
and appealing generalization of existing methods. It is then supported by demonstrating
that it can be realized as a posterior mean in the Lindley & Smith (1972) framework. As
a demonstration of the flexibility of the proposed approach, the model is extended to non-
parametric hierarchical regression based on B-splines.

1. Introduction

Kernel smoothing of coefficients across groups of related regressions provides an attractive

method of combining common information without forcing a choice between constrained

and unconstrained regressions. Choosing the extent of smoothing is subjective, but cross

validation (Stone 1974) provides a practical and appealing method for choosing smoothing

parameters in a wide range of settings. Though these methods appear to perform well in

examples and simulations, they lack a firm statistical foundation. In fact, kernel smoothed

estimators are closely related to posterior means in a normal hierarchical model. We explore

that relationship, in the process providing a sound foundation and interpretation for the

kernel smoother. Further, we extend the class of models with a new smoother suggested

by the Bayesian formulation. The new class includes constrained regressions (the pooled

model), unconstrained regressions, the fixed-effect model familiar from panel data analysis
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(cf Breusch et al. (1989)), some classical combined estimators (cf Theil & Goldberger (1961),

Judge & Bock (1976)) and a model with common intercepts but potentially different slopes.

These are in a sense endpoints of the class of models. All in-between models are obtained

by choice of the bandwidth.

We fix ideas by considering briefly the simple regression model, where the calculations are

instructive. This allows stressing the essential ideas without unduly complicating notation.

In this setting we compare the kernel and Bayes estimators. We then turn to the general

hierarchical model. We extend the kernel estimator to this case. The general setting suggests

a generalized kernel estimator allowing differential smoothing across coefficients. The devel-

opment is ad hoc, as it results from modifying the equations defining the kernel estimator.

Turning to the Bayesian formulation, we find a sound foundation for the new estimator. To

demonstrate the flexibility inherent to our approach, we extend the method to a formulation

based on B-splines which delivers a convenient and flexible nonparametric estimator. This

simple extension substantially increases the range of application for these methods. The

methods are illustrated with an application to a wage regression which demonstrates advan-

tages over common parametric models based on the same functional form, and also highlights

potential benefits from pursuing the more flexible nonparametric B-spline extension.

Though there exists a literature on Bayesian nonparametric regression that predictably

involves mixtures of densities and Dirichlet priors (see Griffin & Steel (2010) and Karabatsos

& Walker (2012) by way of illustration), our aim in the current context is to provide a firm

statistical foundation for frequentist kernel estimators and suggest new estimators having

the same solid foundations by demonstrating that they can be realized as a posterior mean

in the Lindley & Smith (1972) framework.

2. The Simple Linear Model

2.1. Ordinary and Kernel Estimators. We begin by considering a single-regressor para-

metric hierarchical model1 of the form

yji = xjiβi + εji, j = 1, . . . , ni, i = 1, . . . , c,

where ni is the number of observations drawn from group i, and where there exist c groups.

For the ith group we write this as

yi = xiβi + εi, i = 1, . . . , c,

1We ignore the intercept for notational simplicity (perhaps the data are centered) but return to that case in
Section 3. Here βi is a scalar).
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where xi is the vector xi = (x1i, x2i, . . . , xnii)
′, yi =(y1i, y2i, . . . , ynii)

′ and εi = (ε1i, . . . , εnii)
′.

Assume E(εi|xi) = E(εi) = 0 and E(εiε
′
j) = 0 so we abstract from consideration of en-

dogeneity and error covariance. For the full sample we write this using matrix notation

as

y = Aβ + ε,

where y is the n-vector of observations (n =
∑c

i=1 ni), A is the (n × c) design matrix, and

β = (β1, . . . , βc)
′, the vector of group derivatives.

Let 1(l = i) be the indicator function taking value 1 when l = i and 0 otherwise. The

frequency estimator of βi, which we denote β̂i, is the solution to

β̂i = arg min
βi

c∑
l=1

nl∑
j=1

(yjl − xjlβi)21(l = i)

=
c∑
l=1

nl∑
j=1

yjl
xjl∑c

l=1

∑nl

j=1 x
2
jl1(l = i)

1(l = i)

=

∑c
l=1 x

′
lyl1(l = i)∑c

l=1 x
′
lxl1(l = i)

=
x′iyi
x′ixi

We express the estimator in this form to facilitate comparison with the kernel estimator.

The semiparametric kernel estimator2 β̂i,λ of βi is the solution to

β̂i,λ = arg min
βi

c∑
l=1

nl∑
j=1

(yjl − xjlβi)2L(l, i, λ),

where we use the kernel function

L(l, i, λ) =

{
1, when l = i,

λ, otherwise,

where the “bandwidth” λ ∈ [0, 1] The case λ = 0 leads to an indicator function, and λ = 1

gives a uniform weight function. We can also express this kernel as L(l, i, λ) = λ1(l 6=i), where

1(cond) is the usual indicator function taking on value 1 when (cond) is true, 0 otherwise.

Looking ahead to generalization it is useful to consider the FOC:

c∑
l=1

nl∑
j=1

L(l, i, λ)xjl(yjl − xjlβi) = 0.

2The approach is semiparametric since it uses kernel smoothing for categorical (discrete) covariates while
the relationship between y and x is parametrically specified. See Li et al. (2013) for detailed analysis of this
class of kernel estimators and a demonstration of the asymptotic optimality of cross-validation for selecting
smoothing parameters.
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The kernel estimator of βi is given by

β̂i,λ =
c∑
l=1

nl∑
j=1

yjl
xjl∑c

l=1

∑nl

j=1 x
2
jlL(l, i, λ)

L(l, i, λ) =

∑c
l=1 x

′
lylL(l, i, λ)∑c

l=1 x
′
lxlL(l, i, λ)

.

We rewrite this for comparison with the Bayes estimator as

β̂i,λ =
x′iyi + λ

∑c
l 6=i x

′
lyl

x′ixi + λ
∑c

l 6=i x
′
lxl
,

and define the pooled (overall) OLS estimator β̂ =
∑c

l=1 x
′
lyl/

∑c
l=1 x

′
lxl. Note that

c∑
l 6=i

x′lyl =
c∑
l=1

x′lxlβ̂ − x′ixiβ̂i

since x′iyi = x′ixiβ̂i. Therefore, the kernel estimator can be written as

β̂i,λ =
(1− λ)x′ixiβ̂i + λ

∑c
l=1 x

′
lxlβ̂

(1− λ)x′ixi + λ
∑c

l=1 x
′
lxl

,

which we could write as

(1) β̂i,λ =
x′ixiβ̂i + λ

1−λδβ̂

x′ixi + λ
1−λδ

,

where δ =
∑c

l=1 x
′
lxl depends on data through the covariates but not on the group or the

responses.

It is useful to gain intuition by considering the balanced case in which s = x′ixi is the same

for all i. In this case

(2) β̂i,λ =
β̂i + cλ

1−λ β̂

1 + cλ
1−λ

,

showing clearly that the kernel estimator in each group is a weighted average of the within

group OLS estimator and the pooled OLS estimator.

2.2. Bayes Estimators. We consider a three-stage hierarchical Bayes model. The first

stage is given by

y ∼ (A1β, C1).

As a function of β and C1 for given y, this first stage specification can be regarded as the

likelihood function for the normally distributed case, otherwise as a quasi likelihood based

on two moments (Heyde 1997). We return to A1 below.

The second stage,

β ∼ (A2θ2, C2),
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can be regarded as a prior distribution for β given A2θ2 and C2 in the normal case (where it is

conjugate) or as an approximation to the prior if not normal, or from a frequency viewpoint

as a second stage in the data generating process (DGP). The first stage “parameters” are

themselves generated by a random process in this view. This interpretation focuses attention

on the hyperparameters θ2 (and C2) rather than β which strictly speaking is not a parameter

in the frequency sense.

The third stage,

θ2 ∼ (A3θ3, C3),

can again be regarded as a prior on the second stage parameter θ2, or as an additional stage

in the DGP.

Our interest lies in estimating the c×1 vector of coefficients β. Following Lindley & Smith

(1972) we are thinking of normal distributions at each stage. For our purposes we can also

regard the stages as approximate distributions characterized by two moments noting the

calculations are exact only for the normal. The point of the stages is that the dimension of

the conditioning parameter is reduced at each step.

We are using the Bayesian hierarchical setup to obtain insight into the kernel estimator.

The full Bayesian analysis will require additional specification in the form of a prior on C1 and

possibly C2. Lindley & Smith (1972) suggest specifications proportional to identity matrices

and inverted gamma densities for the factors of proportion (and related generalizations).

They suggest using modal estimators in the expressions for the posterior means of interest.

Using MCMC methods it is now possible to marginalize with respect to these variances,

probably a better procedure; see Seltzer et al. (1996).

For the problem at hand, we try to stick with the notation of Lindley & Smith (1972) as

closely as possible. The first stage is

A1 = {aji} with aji ∈ {0, Xji},
c∑
i=1

ali = Xji,
n∑
l=1

ali = ι′ixi,

β =

β1...
βc

 ,
C1 = σ2In,

A1 is the n × c design matrix with A′1A1 the c × c diagonal matrix with x′ixi, the sum

of squared regressors in the ith group, as the ith diagonal element, β is a c × 1 vector of

coefficients σ2 is the within-group variance (i.e., var(yij)), and In is the n×n identity matrix.

The idea here is to get at the relation between kernel and Bayes estimators in a very simple
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model where the effects of a single continuous covariate are different across c groups. The

general case with l regressors, continuous or discrete, is discussed in the next section. Next,

the second stage will become

A2 = ιc,

θ2 = β.,

C2 = τ 2Ic,

where β. is the average effect (the average slope), and τ 2 = var(βi). Note that A2θ2 = ιcβ. is

simply a c×1 vector with elements being the mean effect β. to which the Bayes (and kernel)

estimators can shrink. Finally, we let the scalar

C−13 → 0

so that the prior on β. is improper. Note that the impropriety is confined to one dimension.

The frequency analysis corresponds to an improper prior on the c-vector β, so that we expect

inadmissibility of the frequency estimator through a Stein effect if c > 2. By adding a third

stage, we reduce the improper prior in this single regressor setting to one dimension. The

results are seen below.

The three stage Bayes estimate is (Lindley & Smith 1972, page 7, Equation (16))

(3) β∗ = D0d0

where

D−10 =
(
A′1C

−1
1 A1 + C−12 − C−12 A2

(
A′2C

−1
2 A2

)−1
A′2C

−1
2

)
(4)

d0 =
(
A′1C

−1
1 y

)
.

β∗ is the posterior mean and is an optimal estimator under quadratic loss. Writing

Λ = A′1C
−1
1 A1 =

1

σ2


x′1x1 0 0 . . .

0 x′2x2 0 . . .
...

. . .
... 0 0 x′nxn


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we see that

D−10 =
(
Λ + τ−2Ic − τ−2ιcι′c/c

)
,

d0 = A′1C
−1
1 y

= σ−2

x
′
1y1
...

x′cyc

 .

Thus the vector of posterior means satisfies(
Λ + τ−2Ic − τ−2ι′cιc/c

)
β∗ = d0

or, element-wise

(σ−2x′jxj + τ−2)β∗j − τ−2β∗. = σ−2x′jyj,

where β∗. =
∑c

j=1 β
∗
j /c. Thus

β∗j =
σ−2x′jyj + τ−2β∗.
σ−2x′jxj + τ−2

=
σ−2x′jxjβ̂ + τ−2β∗.
σ−2x′jxj + τ−2

and the Bayes estimator for the jth mean is a weighted average of the group OLS estimator

and the overall posterior mean.

We now re-express this estimator in terms of the OLS estimators alone for comparison with

the kernel specification. First, we use a convenient partitioned inversion formula, namely

the Woodbury identity:

(5) Q = (A+BDB′)
−1

= A−1 − A−1B
(
B′A−1B +D−1

)−1
B′A−1.

Letting

A = Λ + τ−2Ic,

B = ι,

D = −τ−2/c,

we have

Q =
(
Λ + τ−2Ic

)−1 − (Λ + τ−2Ic
)−1

ι
(
ι′
(
Λ + τ−2Ic

)−1
ι− cτ 2

)−1
ι′
(
Λ + τ−2Ic

)−1
.
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Let wi = x′ixi/σ
2, di = x′ixi/σ

2 + τ−2 = wi + τ−2. Note that

ι′
(
Λ + τ−2Ic

)−1
ι− cτ 2 =

c∑
i=1

1

di
− cτ 2 = −τ 2

c∑
i=1

wi
di

= −τ 2η.

Next, the Bayes estimator of the ith component of β is given by

β∗i = d−1i σ−2x′iyi + τ−2η−1d−1i σ−2
c∑
j=1

x′jyj

dj
,

which can be written in terms of the OLS estimators for each group β̂i

β∗i = d−1i σ−2x′ixiβ̂i + τ−2η−1d−1i σ−2
c∑
j=1

x′jxjβ̂j

dj
.

The second term is τ−2d−1i times a weighted average of the β̂i, which can be seen by verifying

that ησ2 is in fact the summed weights
∑c

j=1

x′jxj

dj
. The OLS estimator within each group is

drawn toward an average of the OLS estimators over all the groups. A little more insight

can be obtained in the balanced case (wi = wj = sσ−2), in which the second term is an

unweighted average of the group-specific OLS estimators, which with balance is equal to the

overall OLS estimator β̂, i.e.

(6) β∗i =
β̂i + s−1σ2τ−2β̂

1 + s−1σ2τ−2
.

2.3. Comparison of Estimators. We now compare (2) with (6). Recall that τ 2 = var(βi),

hence τ−2 ∈ [0,∞], and that the kernel smoothing parameter λ ∈ [0, 1], hence λ/(1 − λ) ∈
[0,∞]. The role of s−1σ2τ−2 for the Bayesian estimator defined in Equation (6) is that played

by cλ/(1− λ) for the kernel estimator defined in Equation (2). The role played by c in the

balanced kernel case is that of the relative precision of β̂ to β̂j. This is a little harder to break

out in the Bayesian formulation. It is captured in s−1σ2τ−2, but τ also captures the influence

of λ. Comparison of (2) and (6) also gives some intuition for the choice of the smoothing

parameter λ if one chooses not to adopt the Bayesian approach explicitly. λ should be larger

as the groups are thought to be more homogeneous (smaller τ 2) and smaller as the groups

are thought to be less similar. Recalling that s = xix
′
i, higher variance in x should lead

to lower λ. Higher error variance should indicate higher λ. The signal to noise ratio s/σ2

when higher leads to lower λ. Of course, if one is to do this thinking, it is natural to use

the Bayesian specification directly, noting that the logic applies equally in the unbalanced

case. In a special case (the c-means problem) Kiefer & Racine (2009) obtained conditions

giving bounds on λ under which a MSE improvement was assured. Simulations showed that

cross-validation produced λ-values satisfying these conditions.
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Turning to implications for consistency, we note that standard arguments give consistency

of the Bayes estimator. Looking at (6) we see that the effect of the prior vanishes as n→∞.

In the unbalanced case we require ni/n ∼ O(1). Looking at (1) we see that the effect of the

kernel smoother λ does not vanish. Hence, for consistency we require λ ∼ O(n−1). Use less

smoothing in larger samples.

3. The General Hierarchical Linear Model

There exist a number of variations on the hierarchical model according to the hierarchy

structure, number of levels, and so forth. Below we consider a framework that is useful for

not only fostering a direct comparison between kernel and Bayes estimators, but suggesting

novel estimators that, to the best of our knowledge, have not been explored in the hierarchical

setting.

The general hierarchical model allows for multiple covariates as well as multiple groups.

Write

(7) yi = Xiβi + εi, i = 1, . . . , c,

as above, but now allow Xi to be the ni × k matrix of ni observations on k covariates in

group c. The covariates can be continuous or discrete. By choice of regressor interactions

and choice of the grouping into c groups the model accommodates a number of popular

specifications. The OLS estimator can be characterized as above as

β̂i = arg min
βi

c∑
j=1

(yj −Xjβi)
′(yj −Xjβi)1(j = i)

implying β̂i = (X ′iXi)
−1X ′iyi.

3.1. A Categorical Kernel Approach. Li et al. (2013) propose a semiparametric kernel-

based approach to the estimation of a smooth kernel model where the coefficients are grouped

into c groups. For the general model the corresponding kernel estimator is

(8) β̂i,λ = arg min
βi

c∑
j=1

(yj −Xjβi)
′(yj −Xjβi)L(i, j, λ)

with associated FOC

(9)
c∑
l=1

L(l, i, λ)X ′l(yl −Xlβi) = 0
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leading to

β̂i,λ =

[
c∑
j=1

L(i, j, λ)X ′jXj

]−1 c∑
j=1

L(i, j, λ)X ′jyj.

With L(l, i, λ) = λ1(l 6=i) this simplifies to

(10) β̂i,λ =

[
(1− λ)X ′iXi + λ

c∑
j=1

X ′jXj

]−1 [
(1− λ)X ′iyi + λ

c∑
j=1

X ′jyj

]
,

which can be rewritten as a matrix-weighted average of the within-group OLS estimator and

the pooled OLS estimator

(11) β̂i,λ =

[
X ′iXi +

λ

(1− λ)

c∑
j=1

X ′jXj

]−1 [
X ′iXiβ̂i +

λ

(1− λ)

c∑
j=1

X ′jXjβ̂j

]
.

Equation (11) is useful for interpretation but (10) is more general as it accommodates the

important case in which some or all of the X ′jXj are singular. Of course, the sum
c∑
j=1

X ′jXj

must be nonsingular.

3.2. A Novel Kernel Estimator. A natural and practically useful generalization of this

estimator is obtained by re-representing the kernel as L(l, i, λ), a k×k diagonal matrix with

diagonal elements λ
1(l 6=i)
l , l = 1, . . . , k. Thus λ is now a vector. Substituting into the FOC

in Equation (9) gives

(12)
c∑
l=1

L(l, i, λ)X ′l(yl −Xlβi) = 0.

Note that the equation system on the LHS of (12) is not the first derivative of a scalar

function of β. Nevertheless, the resulting estimator is intuitively appealing and a sound

foundation is given by the Bayesian analysis to follow. Solving (12) gives

β̂i,λ =

[
c∑
j=1

L(i, j, λ)X ′jXj

]−1 c∑
j=1

L(i, j, λ)X ′jyj.

Letting λ be the k × k diagonal matrix with diagonal element λl we can write

(13) β̂i,λ =

[
(I − λ)X ′iXi + λ

c∑
j=1

X ′jXj

]−1 [
(I − λ)X ′iyi + λ

c∑
j=1

X ′jyj

]
.
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This can be represented in terms of the least-squares estimators as

β̂i,λ =

[
(I − λ)X ′iXi + λ

c∑
j=1

X ′jXj

]−1 [
(I − λ)X ′iXiβ̂i + λ

c∑
j=1

X ′jXjβ̂j

]
.

This representation requires that each X ′iXi be invertible. In the special case in which each

λl is less than one (so each element of β is “shrunk”) the matrix (I −λ) is invertible and we

have an alternative representation useful for comparison with the Bayes estimator to come,

β̂i,λ =

[
X ′iXi + (I − λ)−1λ

c∑
j=1

X ′jXj

]−1 [
X ′iXiβ̂i + (I − λ)−1λ

c∑
j=1

X ′jXjβ̂j

]
.

Equation (13), a generalization of Equation (11), does not appear to have been explored

in a hierarchical setting. Some progress toward putting it on a sound foundation is provided

by the Bayesian analysis. Additional interpretation can be developed by considering the

“balanced” case X ′jXj = X ′X ∀j:

β̂i,λ = [(I − λ)X ′X + λcX ′X]
−1
[
(I − λ)X ′Xβ̂i + λcX ′Xβ̂

]
,

where β̂ is the overall OLS estimator. Thus β̂i,λ is a matrix-weighted average of the within

estimator and the pooled estimator.

3.3. A Bayesian Approach. For the Bayes estimator we again consider the 3-stage hier-

archical model y ∼ (A1β, C1), β ∼ (A2θ2, C2), and θ2 ∼ (A3θ3, C3) with now

A1 =

X1 0 0

0 . 0

0 0 Xc

 ,
β = (β′1, β

′
2, . . . , β

′
c)
′ and C1 = σ−2Ick. Here A1 is n× ck and β ck × 1. In the second stage

we have A2 = (Ik, . . . , Ik)
′, a stack of c k× k identity matrices, and θ2 = β0, a k-dimensional

common prior mean for the βj, and

C2 =

T 0 0

0 . 0

0 0 T


a block-diagonal matrix with c k × k blocks of the prior variance matrix T . In the third

stage we again let C−13 → 0.

Using (3) and (4) we see following the development above that the posterior means satisfy

(σ−2X ′jXj + T−1)β∗j − T−1β∗. = σ−2X ′jyj
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where

β∗. = c−1
∑
j

β∗j

so

β∗i = (σ−2X ′iXi + T−1)−1(σ−2X ′jyj + T−1β∗. )

= (σ−2X ′iXi + T−1)−1(σ−2X ′iXiβ̂i + T−1β∗. ),

a matrix-weighted average of the OLS estimator and the average of the posterior means. To

get this in the form of a weighted average of the OLS and average OLS estimator we again

use the partitioned inversion formula (5) and define Wj = σ−2X ′jXj and Dj = Wj + T−1.

The matrix inverted in the RHS of (5) is
∑

j D
−1
j − cT . Simplify by noting that D−1j − T =

−TWjD
−1
j . Write Ξ =

∑
jWjD

−1
j . Then we can write

β∗j = (σ−2X ′jXj + T−1)−1(σ−2X ′jyj + σ−2T−1Ξ−1
∑
i

D−1i Xiyi)

= (σ−2X ′jXj + T−1)−1(σ−2X ′jXjβ̂j + σ−2T−1Ξ−1
∑
i

D−1i XiXiβ̂i),

giving the posterior mean as a matrix weighted average of the within-group and the pooled

OLS estimators. Again, the first representation may be most useful since it does not re-

quire inversion of each X ′jXj, while the second may be more useful for interpretation and

comparison with the kernel estimator.

Again, we gain insight by examining the balanced case with X ′jXj = X ′X for all j and

hence equal Wj and Dj. Here

β∗j = (σ−2X ′X + T−1)−1(σ−2X ′Xβ̂j + T−1β̂),

where β̂ is the pooled OLS estimator. The balanced case is unlikely to arise in practice except

by design. Nevertheless it offers clear insight into the relationship between the estimators

and hence some guidance for bandwidth selection. The connection is similar but more

complicated in the unbalanced case, as seen from our general expressions.

4. What is this Class of Models?

The hierarchical model captures a wide class of useful models as special cases as well as a

range of estimators that may offer MSE advantages and clearly allow incorporation of prior

confidence in the specifications. To fix ideas consider the simple parametric model

yij = αj + βjxij + εij,
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where xij is a scalar. Using our kernel method the bandwidths (λ1, λ2) ∈ [0, 1]2 must

be specified. The endpoint λ = [0, 0] is the case of separate regressions for each of the

groups indexed by j. The endpoint λ = [1, 1] is the pooled regression estimator, with the

(α, β) constrained to be the same across each group. The endpoint λ = [0, 1] is the “fixed

effect” model familiar from panel data analysis. In this model the effect of the regressors

are the same across groups, but differences in intercepts (group locations) due perhaps to

fixed but unobserved variables are incorporated. Finally, the endpoint λ = [1, 0] fixes the

intercepts across groups but allows different slopes. An example might be a system of demand

equations, which require zero quantities at zero expenditure but which allow for different

price responses.

Our general class allows these models and all models in between as defined by varying λ.

As long as λ → 0 as n → ∞ the models are all consistent estimators for the most general

specification. Previous work has shown MSE improvement in examples and we expect this

is available generally.

5. Nonparametric Hierarchical Regression with B-Splines

The categorical kernel-based models outlined above are semiparametric since they require

specification of the functional relationship among the non-categorical regressors and response

along the lines of the semiparametric estimator proposed in Li et al. (2013). However, in

many applications a fully nonparametric specification may be required. The framework we

consider can immediately be generalized to a fully nonparametric specification by replacing

the regressors with an appropriate spline basis. We consider splines simply because they

constitute a powerful generalization that is immediately accessible to those familiar with

polynomial regression via least squares fitting. Below we generalize the categorical kernel-

based approach outlined in Section 3.1 to a semiparametric additive B-spline regression

model (i.e. allow for nonlinearity with respect to each continuous regressor but retain the

additive structure) or a fully nonparametric B-spline regression model using the approaches

of Ma & Racine (2013) and Ma et al. (2012), respectively. This approach may appeal to

practitioners comfortable with weighted least-squares estimation who otherwise might resist

semiparametric and nonparametric methods. Some background is provided for the interested

reader who may not be familiar with B-splines, while others can skip to the proceeding

section.

5.1. A Brief Overview. Spline regression is a nonparametric technique that involves noth-

ing more than replacing a model’s regressors (and perhaps ‘raw polynomials’ thereof) with
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their B-spline bases (which are themselves polynomials). Spline methods can deliver consis-

tent estimates of a broad range of DGPs, hence their appeal. Naturally we must determine

the optimal ‘order’, number of interior ‘knots’, and bandwidths for the model (see below),

however, the reader may immediately recognize that, when extended to admit categorical

regressors, this involves little more than weighted least squares estimation. A ‘spline’ is

a function that is constructed piece-wise from polynomial functions, and we focus atten-

tion on a class of splines called ‘B-splines’ (‘basis-splines’). We consider ‘regression spline’

methodology which differs in a number of ways from ‘smoothing splines’, both of which

are popular in applied settings. The fundamental difference between the two approaches is

that smoothing splines use the data points themselves as potential knots whereas regression

splines place knots at equidistant/equiquantile points. Also, smoothing splines explicitly

penalize ‘roughness’ where curvature (i.e. second derivative) is a proxy for roughness. We

direct the interested reader to Wahba (1990) for a treatment of smoothing splines.

The B-spline is a generalization of the Bézier curve and is popular due to a fundamental

theorem (cf de Boor (2001)) stating that every spline of a given degree and smoothness can

be represented as a linear combination of B-splines (the B-spline function is the maximally

differentiable interpolative basis function, while a B-spline with no ‘interior knots’ is a Bézier

curve). B-splines are defined by their ‘order’ m and number of interior ‘knots’ N (there are

two ‘endpoints’ which are themselves knots so the total number of knots will be N +2 which

we denote by t0, . . . , tN+1). The degree d of the B-spline polynomial is the spline order minus

one (i.e. d = m− 1).

A B-spline of degree d is a parametric curve composed of a linear combination of basis

B-splines Bi,d(x) of degree d given by

B(x) =
N+n∑
i=0

βiBi,d(x), x ∈ [t0, tN+1].

The βi are called ‘control points’ or ‘de Boor points’, the tj the knots. For an order m

B-spline having N interior knots there are K = N +m = N +d+1 control points (one when

j = 0). The B-spline order m must be at least 2 (hence at least linear, i.e. degree d is at

least 1) and the number of interior knots must be non-negative (N ≥ 0).

Figure 1 presents an illustration where we consider order m = 4 (i.e. degree = 3) basis B-

splines B0,3(x), . . . , B6,3(x) (left) with 4 sub-intervals (segments) using uniform knots (N = 3

interior knots, 5 knots in total (2 endpoint knots)) and the 1st-order derivative basis B-

splines B′0,3(x), . . . , B′6,3(x) which is needed for computation of marginal effects (right). The

dimension of B(x) is K = N +m = 7.
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Figure 1. Fourth-order B-spline basis functions with three interior knots and
the associated 1st derivative B-spline basis functions.

In general we will have k (continuous) regressors, X = (X1, . . . , Xk)
′, each having its own

basis. There are two types of multivariate B-spline basis systems used, namely the ‘tensor-

product’ and ‘additive’ bases. Letting ⊗ denote tensor product, then B (x) = B1 (x1) ⊗
· · · ⊗ Bk (xk) is a tensor basis system where the mj and Nj represent the spline order and

number of interior knots for the jth regressor, j = 1, . . . , k. This multivariate tensor-product

B-spline is quite powerful, but may exhaust degrees of freedom fairly rapidly as k increases.

Similarly, we can define the multivariate additive B-spline which is naturally simpler as they

simply involve concatenation of the univariate spline bases and consume fewer degrees of

freedom than their tensor-based counterpart (i.e. B (x) = B1 (x1) + · · · + Bk (xk)). In high-

dimensional settings additive splines may be preferred/necessary, though as an anonymous

referee pointed out, we emphasize that the additive B-spline model is applicable only to an

additive regression model.

For the general model (7) the corresponding B-spline-based nonparametric estimator is

(14) β̂i,λ = arg min
βi

c∑
j=1

(yj − B(Xj)βi)
′(yj − B(Xj)βi)L(i, j, λ)

with associated FOC

(15)
c∑
l=1

L(l, i, λ)B(Xl)
′(yl − B(Xl)βi) = 0
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leading to

(16) β̂i,λ =

[
c∑
j=1

L(i, j, λ)B(Xj)
′B(Xj)

]−1 c∑
j=1

L(i, j, λ)B(Xj)
′yj.

Note again that we have simply replaced Xj by B(Xj), all else is unchanged. All results

obtained for the model considered in Section 3.1 hold for this estimator via simple substitu-

tion of B(Xj) for Xj. Next we discuss data-driven selection of spline degree(s), knot(s), and

bandwith(s).

Cross-validation has a rich pedigree in the regression spline arena and has been used for

decades to choose the appropriate number of interior knots. Following in this tradition we

can choose both the degree and number of interior knots (i.e. the vectors m and N) and

kernel smoothing parameters (i.e. the bandwidth vector λ) by minimizing the cross-validation

function defined by

CV (m,N, λ) = n−1
n∑
i=1

(Yi − B(Xi)
′β̂−i,λ)

2,

where β̂−i,λ denotes the leave-one-out estimate of β. Cross-validation has a number of ap-

pealing theoretical and practical properties, including the ability to automatically remove

irrelevant regressors with probability approaching one asymptotically without the need for

pretesting. For further details we refer the reader to Ma & Racine (2013) and Ma et al.

(2012).

6. An Illustrative Example

For the following illustration we consider Wooldridge’s wage1 dataset and consider three

models for an earnings equation, namely i) a parametric model, ii) a semiparametric kernel-

based model, and iii) a nonparametric kernel-based model.3 The aim of this section is simply

to demonstrate that the estimators considered above may appeal to practitioners.

We first estimate a parametric regression model where the response is lwage and the

regressors are a constructed variable Z having 8 outcomes being the unique combinations

of the categorical variables female, nonwhite and married, along with the variables educ,

exper, and tenure which are treated as continuous, and we also allow exper to enter as

a quadratic via I(exper**2) (this model delivers the OLS estimators for each group, β̂i,

i = 0, . . . , c− 1, c = 2× 2× 2 = 8, hence the model contains 40 parameters in total). This

3For what follows we consider an implementation in the R language for statistical computing and graphics.
See ?wage1 in the R (R Core Team (2013)) package np (Hayfield & Racine (2008)).
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corresponds directly to running separate regressions for each of the c = 8 groups, and is

sometimes called the ‘frequency estimator’.

We then fit a semiparametric categorical kernel-based model where the coefficients can

change with the categorical covariates (i.e. β̂i,λ in Equation (8)). When λ = 0 this model

is the parametric model described above, i.e. the frequency estimator. Cross-validation is

used to determine the appropriate value of λ. When λ > 0 the coefficients shrink towards

the overall OLS coefficients, while when λ = 1 this is equivalent to pooled OLS. Both the

parametric and semiparametric models, as noted above, specify a linear additive relationship

between the regressors and response.

Finally, we fit a nonparametric categorical kernel-based B-spline model (i.e. β̂i,λ in Equa-

tion (16) where here we drop the regressor I(exper**2) since we use B-splines to model

potential nonlinearity). The kernel and kernel B-spline models use cross-validation for se-

lecting smoothing parameters (bandwidths, spline degree, number of knots) while the kernel

B-spline model in addition uses cross-validation for determining whether to use the additive

or tensor basis. When the additive basis is selected the model is a semiparametric addi-

tive kernel model which is more flexible than the linear-in-parameters semiparametric kernel

model outlined in the previous paragraph since the relationship between the response and

each regressor is modelled nonlinearly using B-splines. See Ma & Racine (2013) and Ma

et al. (2012) along with the R (R Core Team 2013) packages ‘crs’ (Racine & Nie 2014) and

‘np’ (Hayfield & Racine 2008) for implementation and further details.

Semiparametric and nonparametric methods are sometimes criticized for ‘overfitting’ the

data at hand. The parametric (i.e. frequency) model itself could be overfit since all parame-

ters are allowed to vary with respect to all realizations of the categorical covariates. Readers

are no doubt properly skeptical of model comparison based upon in-sample measures of fit

such as R2 and their ilk. In this illustration in-sample R2 are 0.4976 for the parametric

model, 0.4666 for the kernel model, and 0.5116 for the kernel B-spline model.

Readers would also likely concur that the model that performs best on independent data

taken from the same DGP is closest to the true unknown DGP. In order to assess which

of the above models performs the best in terms of squared prediction error on unseen data

taken from the same DGP, we follow Racine & Parmeter (2014) and assess each model’s

out-of-sample performance by splitting the data set S = 10, 000 times into two independent

samples of size n1 = 520 and n2 = 6. Predicted square error (PSE) is computed for the

n2 hold-out observations via n−12

∑n2

i=1(Yi − Ŷi)2 where the predictions Ŷi are those obtained

from the regressors in the hold-out sample (for comparison purposes we compute the same

measure for the in-sample measures based on the full sample predictions). We then assess
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expected performance on the hold-out data via the median and means taken over all S

replications.

Results are summarized in Figure 2 and tables 1-3. Median out-of-sample PSE is 0.1513

for the parametric model, 0.1338 for the kernel model, and 0.1276 for the kernel B-spline

model (mean out-of-sample PSE is 2.3946 for the parametric model, 0.1663 for the kernel

model, and 0.1576 for the kernel B-spline model). Applying the test for revealed performance

of Racine & Parmeter (2014) indicates that the kernel B-spline model performs significantly

better than its peers (p-value < 2.2e − 16) These results indicate that the kernel B-spline

model performs best in terms of its ability to predict unseen data taken from the same DGP.

We note that in-sample PSEs (i.e. residual variances) are 0.1417 for the parametric model,

0.1504 for the kernel, and 0.1374 for the kernel B-spline model which mirrors R2 and is of

limited utility as a basis for model selection.

Based on these results, it would appear that the kernel-based approaches may hold much

appeal to practitioners. And the fact that these methods have been placed on a sound footing

by drawing the connection between them and Bayes models delivers additional insight into

their performance and behaviour.

7. Concluding Remarks

We have established a relation between kernel and Bayesian hierarchical models. This

relationship provides a sound statistical foundation for kernel methods that have proven

themselves practically useful. Exploring this relationship led to a new class of kernel estima-

tors for grouped data including pooled regression, separate regressions, fixed-effect models,

and models with common intercepts but different slopes as special cases. All models “in

between” these are covered. In the Bayesian case the model is determined by prior infor-

mation. In the kernel case the model can be determined by cross validation. Extension to

a fully nonparametric approach via B-splines is straightforward. An application shows that

the approach can deliver specifications with good (prediction) properties.
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Figure 2. Comparison of out-of-sample predictive performance when the
data is split into 10,000 training and validation samples of size n1 = 520
and n2 = 6. Median out-of-sample PSE is 0.1513 for the parametric model
(‘Param’), 0.1338 for the kernel model (‘Semiparam’), and 0.1276 for the kernel
B-spline model (‘Nonparam’).
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Appendix: Model Summaries

Table 1. Parametric Model Summary

Linear Regression Model

Regression data: 526 training points, in 1 variable(s)

categ8

Bandwidth(s): 0

Bandwidth Type: Fixed

Residual standard error: 0.3764

R-squared: 0.4976

Unordered Categorical Kernel Type: Aitchison and Aitken

No. Unordered Categorical Explanatory Vars.: 1

Table 2. Semiparametric Kernel-Based Model Summary

Smooth Coefficient Model

Regression data: 526 training points, in 1 variable(s)

categ8

Bandwidth(s): 0.3491

Bandwidth Type: Fixed

Residual standard error: 0.3879

R-squared: 0.4666

Unordered Categorical Kernel Type: Aitchison and Aitken

No. Unordered Categorical Explanatory Vars.: 1
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Table 3. Nonparametric Kernel-Based B-Spline Model Summary

Kernel Weighting/B-spline Bases Regression Spline

There are 3 continuous predictors

There is 1 categorical predictor

Spline degree/number of segments for educ: 1/2

Spline degree/number of segments for exper: 3/3

Spline degree/number of segments for tenure: 1/3

Bandwidth for categ8: 0.1466

Model complexity proxy: degree-knots

Knot type: quantiles

Basis type: additive

Training observations: 526

Rank of model frame: 11

Trace of smoother matrix: 32

Residual standard error: 0.3751 on 515 degrees of freedom

Multiple R-squared: 0.5116, Adjusted R-squared: 0.5022

F-statistic: 16.68 on 31 and 494 DF, p-value: 2.186e-58

Cross-validation score: 0.15646184

Number of multistarts: 10

Estimation time: 314.5 seconds


