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Abstract. We consider repeated Bayesian two-player games in which
the players’ types evolve according to an irreducible Markov chain, type
transitions are independent across players, and players have private val-
ues. The main result shows that, with communication, any Pareto effi-
cient payoff vector above a minmax value can be approximated arbitrarily
closely in a perfect Bayesian equilibrium as the discount factor goes to
one. As an intermediate step we construct a dynamic mechanism (with-
out transfers) that is approximately efficient for patient players given
sufficiently long time horizon.

JOB MARKET PAPER

1. Introduction

In many long-term economic or social relationships, the parties have pri-
vate information about their payoffs. Examples of such situations abound
and range from principal-agent relationships within a firm, in which the par-
ties are asymmetrically informed about the cost of effort (Levin, 2003), to
trading institutions such as repeated auctions in which bidders have pri-
vate values for the object (Skrzypacz and Hopenhayn, 2004), to competition
among oligopolists with privately known costs (Athey and Bagwell, 2001,
2008; Athey, Bagwell, and Sanchirico, 2004), to society-wide redistributive
programs when the tastes or productivity of individual citizens are their pri-
vate information (Atkeson and Lucas, 1992), and, finally, to voting in interna-
tional organizations whose members are privately informed about the costs
and benefits of the alternatives to their constituency (Maggi and Morelli,
2006). Yet another class of examples comes from the repeated social situa-
tions of everyday life such as the problem faced by roommates who decide
every night who should do the dishes, each one of them knowing privately
how busy he really is with work.

Common to all of the above situations is that not only are the parties
initially asymmetrically informed about their payoffs, but new information
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arrives over time, with the resulting evolution of private information natu-
rally exhibiting serial dependence. In the oligopoly example, for instance,
costs evolve as a result of changing firm-specific conditions, which tend to be
persistent. Thus a natural modeling strategy would be to assume that the
parties play a “repeated game” in which the players’ private information,
their types, evolves with some persistence. It is thus somewhat surprising,
and clearly unsatisfactory, that the existing game theoretic tools are of rather
limited value in the analysis of such games. Indeed, all of the papers cited
above—with the exception of Athey and Bagwell (2008)—assume that the
players’ types are independently and identically distributed (iid) over time in
which case the game is truly a repeated one and standard tools apply. Conse-
quently, beyond the special case of iid types, there is little theory to suggest
whether we should expect these long-term relationships to achieve Pareto-
efficient outcomes—and if so, how—or whether the problems of asymmetric
information and self-interested behavior will entail a social cost. Addressing
these issues calls for a better understanding of dynamic Bayesian games in
which the players’ types are serially dependent.1

In this paper we study what kind of equilibrium outcomes can be achieved
by patient players in a class of dynamic Bayesian games with Markovian pri-
vate information, which includes stylized versions of the long-term relation-
ships discussed above. In particular, we consider infinitely repeated Bayesian
two-player games in which the players’ privately known types affect only their
own payoffs (i.e., values are private). The players’ types evolve according to
an irreducible Markov chain, whose transitions are assumed to be indepen-
dent across players. Before each round of play, the players privately observe
their current types. Then they exchange (cheap-talk) messages. Finally, the
players take public actions (i.e., monitoring is perfect).

Our main result shows that any ex-ante Pareto efficient payoff profile v
above a “minmax value” can be approximately attained as a perfect Bayesian
equilibrium (PBE) payoff profile, provided that the players are sufficiently
patient and a mild restriction on the Pareto frontier is satisfied. Moreover,
this can be done so that not only is the expected payoff profile close to v at
the start of the game, but the expected continuation payoff profiles are close
to v at all histories on the equilibrium path.2

1Starting with the seminal work of Aumann and Maschler (1995) on zero-sum games, there
is a literature on repeated games with perfectly persistent (i.e., non-changing) types. See,
e.g., Fudenberg and Yamamoto (2009), Hörner and Lovo (2009), Peski (2008), and Watson
(2002). Such models are found also in the reputation literature, notably Kreps and Wilson
(1982) and Milgrom and Roberts (1982). The case of perfect persistence is qualitatively
different from that of changing types. E.g., the results of Myerson and Satterthwaite
(1983) imply that a folk theorem does not hold under independent private values.
2Because of serial dependence of types, the set of feasible payoffs V (δ) is a function of
the discount factor δ in the games we study. Thus, it is impossible to fix an efficient
payoff profile independent of δ. Instead, we fix v on the Pareto frontier of the limit set
V = limδ→1 V (δ) (where the convergence is in the Hausdorff metric) and show that any
such v can be approximately attained.
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Our proof combines mechanism design ideas with repeated game argu-
ments. We start by considering an auxiliary finite-horizon mechanism design
problem in which the players send messages as in the game, but a mecha-
nism enforces actions as a function of the messages. We construct an indirect
dynamic mechanism in which, in each period, players publicly report types,
and a fixed efficient choice rule maps the players’ reports to actions. Instead
of using transfers, the mechanism provides incentives by means of history-
dependent message spaces. The message spaces allow a player to report a
type in the current period only if the type is “credible” with respect to the
true joint type process given both players’ past reports. The restriction is
roughly that the realized sequence of reports must resemble a “typical” re-
alization of the joint type process. We show that given any efficient payoff
profile v, the mechanism can be constructed so that, by reporting honestly—
that is, by reporting as truthfully as possible given the restrictions—each
player can secure himself an expected payoff approximately equal to his pay-
off in v regardless of the other player’s strategy, provided that the horizon is
long enough and the players are sufficiently patient.

We then consider a “block mechanism,” in which the finite-horizon mech-
anism is played repeatedly over an infinite horizon. We show that in all of
its sequential equilibria, continuation payoffs are approximately equal to v
at all histories. This step is non-constructive. It is established by bounding
the continuation payoffs from below by applying the finite-horizon security
payoff result to each block, and bounding them from above using efficiency of
v. An existence result by Fudenberg and Levine (1983) for infinite-horizon
games of incomplete information implies that the block mechanism has a
sequential equilibrium. Together the results imply that, for any Pareto effi-
cient payoff profile v, there exists a block mechanism that has a sequential
equilibrium in which the continuation payoff profile is approximately equal
to v at all histories.3

Finally, we construct a PBE of the game for patient players that has
payoffs close to an efficient target payoff v by “decentralizing” a sequential
equilibrium of the block mechanism. On the equilibrium path the players
send messages as in the equilibrium of the block mechanism, and mimic
the mechanism’s actions. This behavior is supported by stick-and-carrot
punishment equilibria. The stick phase consists of minmaxing the player who
deviated; the carrot phase has the players mimic an approximately efficient
equilibrium of a block mechanism that rewards the punisher for following
through with the punishment.4

3By the Revelation Principle of Myerson (1986) for multi-stage games, for any equilibrium
of our block mechanism, there exists a direct mechanism that has an outcome-equivalent
equilibrium with truthful reporting. However, the Revelation Principle requires in general
that reports to the mechanism are confidential. Thus it is of limited value for the purposes
of constructing equilibria of the game in which communication is not mediated.
4Formally, the punishment equilibria are also obtained by decentralizing equilibria of “pun-
ishment mechanisms.” The argument proceeds by bounding payoffs during the stick and
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Our mechanism is of independent interest in that it gives an approxi-
mately efficient dynamic mechanism for patient players without assuming
transferable utility. It is inspired by the linking mechanism of Jackson and
Sonnenschein (2007), which requires that, over time, the distribution of each
player’s messages must resemble his true type distribution.5 Jackson and
Sonnenschein show that with iid types, the linking mechanism can be used
to approximately implement efficient choice rules provided that players are
sufficiently patient. However, when types are Markovian, a player can glean
information about his opponent’s type from her past reports, which—given
serial dependence—can be used to predict her future types. As illustrated in
the following example, this gives rise to contingent deviations, which under-
mine the linking mechanism in our environment. The example shows how our
mechanism rules out these deviations by requiring the message distribution
resemble the true type distribution conditional on past messages.

Example 1.1. Consider dynamic price competition between two firms, 1
and 2, whose privately known costs are θ1 ∈ {L,H} and θ2 ∈ {M,V },
respectively, with L < M < H < V (i.e., “low, medium, high, and very
high”). Firm 1’s cost evolves according to a symmetric Markov chain in
which with probability p ≥ 1

2
the cost in period t+ 1 is the same as in period

t; firm 2’s costs are iid and equiprobable. The cost draws are independent
across firms. In each period there is one buyer with reservation value r > V .
The firms send messages about their current cost types and a mechanism
implements prices. The horizon T is large but finite. The firms do not
discount profits.

Consider first using the linking mechanism of Jackson and Sonnenschein
(2007) to sustain the efficient collusive scheme in which the firm with the
lowest cost makes the sale at the monopoly price r. Then each firm is only
allowed to report each cost in 1

2
of the periods as this is the long-run distribu-

tion of costs for each firm. In each period, the firm who reported the lowest
cost makes the sale.

Suppose first that both firms report honestly, i.e., as truthfully as they
can. Then, given sufficiently long horizon, firm 2 gets to make the sale in
approximately T

4
periods. The resulting (average) profits are approximately

r−L
2

+ r−H
4

for firm 1, and r−M
4

for firm 2.
Suppose then that instead of reporting honestly, firm 2 sends message M

if and only if firm 1 reported H in the previous period. (This strategy is
feasible as it results in firm 2 reporting M in 1

2
of the periods.) For T

sufficiently large, firm 2 gets to make the sale in approximately pT
2

periods

carrot phases of the mechanism uniformly across equilibria, and then appealing to an
existence result to obtain the desired punishment.
5Given identical and independent copies of a social choice problem, the linking mechanism
of Jackson and Sonnenschein (2007) assigns each player a budget of messages to be used
over the problems. The budget forces the distribution of the player’s reports over the
problems to match the true distribution from which the player’s types are drawn. For
earlier work using the idea, see for instance Radner (1981) and Townsend (1982).
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Figure 1.

earning a profit approximately equal to p r−M
4

+ p r−V
4

. Hence, for p large
enough, firm 2 is strictly better off trying to match its reports to firm 1’s
reports rather than to its own costs. This explains why approximate truth-
telling is not an equilibrium of the linking mechanism. Moreover, note that
the misrepresentation by firm 2 hurts the honest firm 1, whose payoff drops
from r−L

2
+ r−H

4
when both firms report honestly to r−L

2
+ (1 − p) r−H

2
when

firm 2 misrepresents its costs.
Note that the deviation by firm 2 introduces strong correlation between the

firms’ reports whereas the true cost processes are independent. In particular,
conditional on firm 1’s cost being H in the previous period, the true frequency
of firm 2’s cost M is 1

2
, not 1. This suggests ruling out contingent deviations

by forcing the firms’ reports to match the true distribution conditional on
past reports.

Motivated by the above observation, consider the following alternative mech-
anism. Fix a message profile (θ1, θ2) and consider the (random) set of all
periods in which the (not necessarily truthful) previous period message pro-
file was (θ1, θ2). We require that the frequencies of firm i’s reports over these
periods converge to the corresponding conditional frequencies of its costs as-
suming that its true cost in the previous period was equal to its report θi.
For example, over the periods that follow reports (H,M), the frequency with
which firm 1 reports H must converge to p as the number of visits to (H,M)
tends to infinity. Similarly, over the said periods, the frequency with which
firm 2 reports M must converge to 1

2
.

The restriction on reporting is schematically illustrated in Figure 1. Imag-
ine plotting on the picture the frequency at which firm 1 has reported H over
the periods that follow (H,M) in the previous period. The mechanism allows
firm 1 to report only in such a way that this frequency as a function of the
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total number of visits to (H,M) stays within the bounds given by the two
curves converging to the true frequency p.

The mechanism tracks the frequency with which firm 1 reports H following
each possible message profile, and the frequency with which firm 2 reports M
following each message profile. So in total it tracks eight different frequencies
and requires the firms to report such that all of them stay within acceptable
bounds.

Consider firm 1 that is reporting honestly. For simplicity, assume that it
can report truthfully in every period. Then firm 1’s reports over the periods
in which the previous period messages were (H,M) are independent draws
from (1 − p)[L] + p[H]. Since the firms report simultaneously, this implies
that the joint distribution of their messages over these periods converges to
the product distribution (

(1− p)1
2

(1− p)1
2

p1
2

p1
2

)
,

regardless of the reporting strategy of firm 2. Note that this is in fact the
true conditional distribution for the period t+ 1 cost profile given cost profile
(H,M) in period t.

Similar calculations for the other three cost profiles in place of (H,M) show
that if firm 1 is truthful, then the empirical transition distributions for the
sequence of message profiles converge to the true transition distributions for
the joint cost process regardless of the strategy of firm 2.6 We may then use
the fact that convergence of transitions implies convergence of the empirical
distribution to the invariant distribution7 to conclude that the distribution of
messages converges to the invariant distribution for the joint cost process.
In particular, this implies that the truthful firm 1 faces the same distribution
of firm 2’s costs as it would if firm 2 was reporting honestly regardless of 2’s
actual reporting strategy. But given private values, firm 1’s profit must be
approximately equal to its profit under mutual truth-telling, i.e., r−L

2
+ r−H

4
.

Note that this is firm 1’s profit in the collusive scheme we are trying to
sustain.

The above heuristic argument shows that given the history-dependent re-
strictions on messages, firm 1 can secure a profit approximately equal to the
target collusive profits regardless of the strategy of firm 2 by simply reporting
honestly. The symmetric argument for firm 2 then implies that in any equi-
librium the firms’ profits are bounded from below by approximately the target
profits r−L

2
+ r−H

4
and r−M

4
, respectively. But then the profits have to actually

be close to these numbers by feasibility.

6For the general model this result is established in the proof of Proposition 4.1. The actual
formal argument has to consider all past message profiles simultaneously, since part of the
problem is to show that each of them is visited often enough for law-of-large-numbers
arguments to apply.
7See Lemma A.1 in Appendix A.
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One way to view the linking mechanism and our mechanism is to note
that the restrictions imposed on messages imply (shadow) prices for send-
ing each message. From the literature on dynamic mechanism design with
transfers we know that efficiency can be implemented in quasilinear private
value environments by setting this price equal to the externality that sending
the message imposes on other players through changes in the allocation (see,
e.g., Athey and Segal, 2007; Bergemann and Välimäki, 2007). As empha-
sized by Athey and Segal (2007), in a dynamic setting players have access
to contingent deviations which implies that the externality—and hence the
price—must be calculated conditional on the history of types rather than
just in expectation. But note that in the linking mechanism the price of
reporting a message at any given period is simply that this message can be
sent one less time in the future. Thus the implied shadow price does not
condition on the history at which the message is sent. In contrast, when
the message spaces condition on the history, the implied shadow prices can
better reflect the actual externality.

The results of Athey and Segal (2007) imply that, in our auxiliary mech-
anism design problem, if the players can use budget-balanced transfers and
payoffs are quasilinear, then Pareto efficiency can be achieved for all discount
factors.8 Our contribution to the literature on dynamic mechanism design is
thus to show how approximate efficiency can be achieved by patient players
even when there are wealth effects or when transfers are not available.

We conclude the Introduction by discussing the relationship of the present
paper to the literature on repeated games.9 The natural starting point for the
discussion are the recursive tools developed by Abreu, Pearce, and Stacchetti
(1990) and Fudenberg, Levine, and Maskin (1994) for the characterization
of the equilibrium payoff set in repeated games with imperfect public mon-
itoring. In particular, Fudenberg, Levine, and Maskin (1994) prove a folk
theorem for such games under certain identifiability restrictions on the mon-
itoring technology. They further observe that a repeated Bayesian game in
which types are independent across periods and players can be converted
into a repeated game with imperfect public monitoring in which the public
signal has product structure.10 As a result, they obtain a Nash-threat folk
theorem for such games. In the special case of iid types neither result implies
the other: Our result uses a minmax value rather than the static Nash as
the threat point. Hence there are games (such as the incomplete information
versions of Bertrand and Cournot duopolies) in which our result is strictly

8Athey and Segal (2007) show further that in some settings their mechanism can be
made self-enforcing if the players are sufficiently patient. However, the result maintains
the assumptions about transfers, and assumes in addition that there exists a “static”
punishment equilibrium. We dispense with both transfers and the punishment equilibrium.
9See Mailath and Samuelson (2006) for the definitive treatment of repeated games.
10Examples of papers using this approach include the works cited in the opening para-
graph of the Introduction. See also Abdulkadiroglu and Bagwell (2007) and Hauser and
Hopenhayn (2008) who study models in which agents trade favors as in Mobius (2001).
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stronger. But since our minmax value is defined with pure actions whereas
the static Nash equilibrium can be in mixed strategies, there are other games
where the implication is reversed.11

Any attempt to construct equilibrium strategies in repeated games of in-
complete information must deal with the problem of the evolution of beliefs
over private histories. Private histories grow exponentially in the history
length and keeping track of them is a nontrivial task. Our approach sidesteps
this difficulty by using the auxiliary mechanism design problem to prove the
existence of strategies that result in bounds on equilibrium payoffs that hold
uniformly in public and private histories and, thus, uniformly in beliefs. This
is a key element in our proof and exploits the irreducibility of the Markov
chains of types. However, even though payoffs are bounded uniformly in
beliefs, the players’ best responses still depend on the beliefs. This is un-
like the “belief-free” approach of Hörner and Lovo (2009) and Fudenberg
and Yamamoto (2009)—who study repeated games with perfectly persistent
types—in which attention is restricted to equilibria in which strategies are
best-responses regardless of beliefs.

Athey and Bagwell (2008) is perhaps the paper closest in focus to ours.
They study collusive equilibria in a Bertrand duopoly in which each firm’s
privately known cost follows a two-state Markov chain. While our result
can be seen as an extension of theirs to general two-player games, our tech-
niques are quite different. Whereas Athey and Bagwell use constructive
arguments tailored to the symmetric two-type Bertrand game, our proof is
non-constructive and builds on the general dynamic mechanism we construct.
Our player-specific punishments generalize their stick-and-carrot scheme and
no longer have both players pooling during the stick phase.

The structure of our punishment equilibria is similar to the player-specific
punishments constructed by Fudenberg and Maskin (1986) for repeated games
with perfect monitoring.12 One important difference is that in our environ-
ment we attain the target payoffs only approximately and, as a result, we
must keep a balance between the discount factor and the length of the stick
phase. It is also worth noting that the use of stick-and-carrot schemes is
not just to have the harshest possible punishments but rather a necessity:
With Markovian types the repetition of an equilibrium of the stage game is
in general not an equilibrium of the dynamic game. This is because stage-
game equilibria depend on beliefs over types and players have an incentive

11Cole and Kocherlakota (2001) extend the recursive characterization by Abreu, Pearce,
and Stacchetti (1990) to a class of games that includes ours (see also Fernandes and
Phelan, 2000). Their method operates on pairs of type-dependent payoff profiles and
beliefs. The inclusion of beliefs makes the operators hard to manipulate, and, as a result,
the characterization is difficult to put to work. In particular, extending the techniques of
Fudenberg, Levine, and Maskin (1994) to this case appears difficult.
12Dutta (1995) also builds on Fudenberg and Maskin (1986) to prove a folk theorem for
stochastic games in which the state is public.
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to choose their actions in part to manipulate these beliefs. Thus there is no
immediate analog to Nash reversion.

Our construction is reminiscent of the “review strategies” of Radner (1985).
While our block construction appears similar, our incentive problem is one
of adverse selection rather than moral hazard.13 In particular, unlike with
the signals in the case of moral hazard, a player has full control over the
messages he sends. As a result, under moral hazard the inefficiency in the
approximately efficient equilibria comes from the fact that, with small proba-
bility, the agent fails the review which triggers the punishment. In contrast,
the inefficiency in our equilibria stems from the fact that the players are
sometimes forced to lie to avoid triggering the punishment.

The rest of the paper is organized as follows. We set up the model in
Section 2 and present the main result in Section 3. We then consider the
auxiliary mechanism design problem in Section 4. In Section 5 we prove the
main theorem building on the results from Section 4. We conclude in Section
6. Two appendices collect the proofs and auxiliary results we omit from the
main text. A reader who is mainly interested in the mechanism design part
can read only Sections 2.1–2.2, 2.4, and 4 without loss of continuity.

2. The Model

We consider dynamic two-player games where a fixed Bayesian stage game
is played in each period over an infinite horizon.

2.1. The Stage Game. The stage game is a finite Bayesian two-player game
in normal form. Let I = {1, 2} denote the set of players. It is convenient to
identify the stage game with the payoff function

u : A×Θ→ R2,

where A = A1 × A2 is a finite set of action profiles, and Θ = Θ1 × Θ2 is
a finite set of possible type profiles. The interpretation is that each player
i ∈ I has a privately known type θi ∈ Θi and chooses an action ai ∈ Ai. We
allow for (correlated) mixed actions by extending u to ∆(A) × Θ by taking
expectations.

We assume throughout that the stage game u has private values, stated
formally as follows.

Assumption 2.1 (Private Values). For all i ∈ I, a ∈ A, θ ∈ Θ and θ′ ∈ Θ,

θi = θ′i ⇒ ui(a, θ) = ui(a, θ
′).

Given the assumption, we sometimes write ui(a, θi) = ui(a, θ). Under
private values a player is concerned about the other player’s type only in so
far as it influences the action chosen by the other player.

13Review strategies have been used in adverse selection context with iid types by Radner
(1981) and Hörner and Jamison (2007).
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2.2. The Dynamic Game. The dynamic game has the stage game u played
over an infinite horizon with communication allowed in each period t =
1, 2, . . . Player i’s current type θti evolves according to a Markov chain (λi, Pi)
on Θi, where λi is the initial distribution, and Pi is the transition matrix.
The timing within period t is as follows:

t.1 Each player i ∈ I privately learns θti ∈ Θi.
t.2 The players send simultaneous public messages mt

i ∈ Θi.
t.3 The players observe the outcome of a public randomization device.
t.4 The stage game u is played with the realized actions ati ∈ Ai perfectly

monitored by all players.

We do not introduce notation for the public randomization device in order
to economize on notation.14

Let (λ, P ) denote the joint type process, i.e., a Markov chain on Θ in-
duced by the Markov chains (λi, Pi), i ∈ I, for the players. We make two
assumptions about the joint type process.

Assumption 2.2 (Irreducible Types). P is irreducible.15

Irreducibility of P implies that the dynamic game is stationary, or repet-
itive, in a particular sense. It also implies that each Pi is irreducible, and
hence for each chain (λi, Pi) there exists a unique invariant distribution πi.

Assumption 2.3 (Independent Transitions). For all θ ∈ Θ and θ′ ∈ Θ,

P (θ, θ′) = P1(θ1, θ
′
1)P2(θ2, θ

′
2).

The assumption of independent transitions imposes conditional indepen-
dence across players. That is, the players’ types in period t + 1 are inde-
pendent conditional on the types in period t. However, no restrictions are
put on the joint initial distribution λ. Thus, unconditionally, types are not
necessarily independent across players. Independence of the transitions im-
plies that the invariant distribution for the joint process, denoted π, is the
product of the πi.

Player i’s dynamic game payoff is the discounted average of his stage game
payoffs. That is, given a sequence (xti)

∞
t=1 of stage game payoffs, player i’s

dynamic game payoff is given by

(1− δ)
∞∑
t=1

δt−1xti,

where the discount factor δ ∈ [0, 1[ is assumed common for all players.

14Since we allow for communication, there is a sense in which allowing for a public ran-
domization device is redundant. Namely, provided that the set of possible messages is
large enough, the players can conduct jointly-controlled lotteries to generate public ran-
domizations (see Aumann and Maschler, 1995).
15Under Assumption 2.3, a sufficient (but not necessary) condition for P to be irreducible
is that each Pi is irreducible and aperiodic (i.e., that each Pi is ergodic).



A FOLK THEOREM WITH MARKOVIAN PRIVATE INFORMATION 11

2.3. Histories, Assessments, and Equilibria. A public history in the
game can be of two sorts. For each t ≥ 1, some public histories contain all
the messages and actions taken up to and including period t − 1, whereas
others contain all the messages and actions taken up to period t−1 together
with the message sent at the beginning of period t. The first type of history
takes the form (m1, a1, . . . ,mt−1, at−1), whereas the second type takes the
form (m1, a1, . . . ,mt−1, at−1,mt). The set of all public histories at t is thus
H t = (Θt−1 × At−1) ∪ (Θt × At−1) and the set of all public histories is
H = ∪t≥1H

t.
A private history of length t for player i consists of the sequence of private

types drawn up to and including t. Formally, the set of private histories of
length t for player i is H t

i = Θt
i and the set of all private histories is simply

Hi = ∪t≥1H
t
i .

A (behavior) strategy for player i is a sequence of functions σi = (σti)t≥1

such that σti : H
t × H t

i → ∆(Ai) ∪ ∆(Θi) with σti(· | ht, hti) ∈ ∆(Ai) if
ht ∈ Θt × At−1, while σti(· | ht, hti) ∈ ∆(Θi) if ht ∈ Θt−1 × At−1.

A belief system for player i is a sequence µi = (µti)t≥1 such that µti : H
t ×

Θi → ∆(Θt
−i). Note that the belief player i forms about his rival, µti(· |

ht, θ1
i ), depends on his private history of types only through his first type

θ1
i . This is so since transitions are independent while initial types can be

correlated. Thus it is natural to rule out beliefs that condition on irrele-
vant information, namely the own private history of types beyond the initial
type.16

An assessment is a pair (σ, µ) where σ = (σi)i∈I is a strategy profile
and µ = (µi)i∈I is a belief system profile. Given any assessment (σ, µ), let
uµii (σ | ht, hti) denote player i’s continuation value at history (ht, hti), i.e., the
expected sum of discounted average payoffs for player i after history (ht, hti),
given the strategy profile σ and taking expectations over i’s rival’s private
histories according to µti(· | ht, hti)

An assessment (σ, µ) is sequentially rational if for any player i, any history
(ht, hti) and any strategy σ′i for i, uµii (σ | ht, hti) ≥ uµii (σ′i, σ−i | ht, hti).

We say that the belief system profile µ = (µi)i∈I is computed using Bayes
rule given strategy profile σ = (σi)i∈I if µ1

i (θ−i | θ1
i ) = λ−i(θ−i | θ1

i ) and if
for any ht and θ1

i ∈ Θi with σ−i(x−i | ht, ht−i) > 0 and µti(h
t
−i | ht, θ1

i ) > 0
for some x−i ∈ A−i×Θ−i and ht−i ∈ Θt

−i, the belief player i forms at history
((ht, x), θ1

i ) is computed using Bayes rule (i.e., Bayes rule is used wherever
possible both on and off the path of play).

An assessment (σ, µ) is a perfect Bayesian equilibrium if it is sequentially
rational and µ is computed using Bayes rule given σ.

16When the initial types are independently drawn, it is natural to restrict attention to
belief systems such that for any j, j’s rival forms beliefs about j’s private history us-
ing a map µj,t : Ht → Θt

j . This and other natural restrictions on beliefs can be easily
accommodated when initial types are independently drawn.
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2.4. Feasible Payoffs. We now consider sequences f = (f t)t≥1 of arbitrary
decision rules f t : Θt × At−1 → ∆(A) mapping histories consisting of types
and actions into distributions over actions. We define the set of feasible
discounted payoffs attained using all such sequences, given the discount factor
δ, as

V (δ) =
{
v ∈ R2 | for some f = (f t)t≥1,

vi = (1− δ)Ef

[ ∞∑
t=1

δt−1ui(a
t, θti)

]
for all i ∈ I

}
,

where the expectation Ef is with respect to the probability measure induced
over the set of histories by the decision rules f = (f t)t≥1 and the joint type
process (λ, P ).

It is useful to consider the set of all payoffs attainable using randomized
rules in a one-shot interaction in which types θ ∈ Θ are drawn according to
the invariant distribution π, formally defined as

V =
{
v ∈ R2 | for some f : Θ→ ∆(A), vi = Eπ

[
ui(f(θ), θi)

]
for all i ∈ I

}
.

Note that V depends neither on λ nor on δ.
Using the irreducibility of P , the following result shows that for discount

factors close to 1, V (δ) is approximately equal to V .

Lemma 2.1 (Dutta, 1995). As δ → 1, V (δ) → V in the Hausdorff metric.
Moreover, the convergence is uniform in the initial distribution λ.

Heuristically, the result follows from noting that for δ close to 1 only the
invariant distribution of types matters, and hence the limit is independent of
the initial distribution. Moreover, given the stationarity of the environment,
stationary (but in general randomized) decision rules are enough to generate
all feasible payoffs. Consult Dutta (1995) for details.17

In what follows we investigate what payoffs v ∈ V can be attained in
equilibrium when the discount factor is arbitrarily large, keeping in mind
that in this case V (δ) is arbitrarily close to V .

2.5. Minmax Values. We define player i’s (pure action) minmax value as

vi = min
a−i∈A−i

Eπi

[
max
ai∈Ai

ui((ai, a−i), θi)
]
.

Our motivation for this definition comes from observing that vi is approx-
imately the lowest payoff that can be imposed on a very patient player i
if player −i is restricted to playing a fixed pure strategy for a long time,
and player i best responds to that action knowing his current type.18 This in
turn is motivated by the practical concern to be able to construct punishment

17Dutta (1995) studies dynamic games where the state is publicly observable. However,
as feasibility is defined without reference to incentives, the result applies verbatim.
18To see this, note that when player i is patient, his long-run payoff from any station-
ary decision rule—such as the one where −i plays a fixed action and i myopically best
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equilibria that generate payoffs close to the minmax value. In particular, no
claim is made that vi would in general be the harshest punishment, or that
all equilibria would need to give i at least this payoff. There are games
such as the Cournot and Bertrand oligopoly examples below where this min-
max value indeed corresponds to the worst possible punishment, but there
are also games where randomization by player −i would allow for a harsher
punishment (e.g., standard matching pennies). Furthermore, since there is
serial correlation, it is conceivable that player −i could try to tailor the pun-
ishment to the information he learns about i’s type during the punishment
rather than simply play a fixed action. However, constructing punishment
equilibria that deal with these two extensions appears complicated and is
left for future research.19

Despite the possible limitations discussed above, our notion of minmax
(and the punishment equilibria that we construct based on it) provides an
effective punishment that facilitates sustaining good outcomes in a large class
of games. We note that in the special case of a repeated game (i.e., when
each Θi is a singleton) our definition of the minmax value reduces to the
standard pure action minmax value.

2.6. Examples. This subsection illustrates our dynamic game model and
some of the definitions already introduced.

Example 2.1 (Cournot competition). Each player i is a firm that chooses a
quantity ai ∈ Ai. We assume that Ai ⊆ [0,∞[, 0 ∈ Ai and there is ā−i ∈ A−i
such that ā−i ≥ 1. The market price is given by pi = max{1 −

∑
i∈I ai, 0}.

Firm i’s cost function takes the form ci(ai, θi) ≥ 0, where θi ∈ Θi, ci(ai, θi) is
nondecreasing in ai, and ci(0, θi) = 0. Period payoffs are given by ui(a, θi) =
max{1 −

∑
i∈I ai, 0}ai − ci(ai, θi). Then vi = 0 since i’s rival can flood the

market by setting a−i = ā−i and drive the price to zero.

Example 2.2 (Bertrand competition/First-price auction). As in the previ-
ous example, but now firms fix prices ai ∈ {0, 1

N
, 2
N
, . . . , 1}, where N ≥ 2.

There is only one buyer demanding one unit of the good each period, hav-
ing a reservation value of one, and buying from the firm setting the lowest
price (randomizing uniformly if multiple firms choose the lowest price). Firm
i’s cost is θi ∈ Θi ⊆ [0,∞[ and therefore its period payoffs are ui(a, θi) =

responds knowing his type—is approximately equal to the expectation of his payoff from
the stationary decision rule under the invariant distribution.
19Fudenberg and Maskin (1986) prove a mixed minmax folk theorem by adjusting the
continuation payoffs in the carrot phase so that during the stick phase players are indiffer-
ent over all actions in the support of a mixed minmax profile. To extend that logic to our
setting, players’ variations in payoffs during the stick phase should be publicly conveyed
so that the carrot phase payoffs can be adjusted accordingly. But the variations in payoffs
are private information and our methods apply only to efficient profiles. Furthermore,
our methods characterize continuation values only “up to an ε” so guaranteeing exact
indifference would be hard.
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(ai − θi)1{ai=minj∈I aj}
1

|{k|ak=minj∈I aj}| . Firm i’s minmax equals vi = 0 and is

attained when a−i = 0.

The above examples are special in two ways: First, all types can be pun-
ished as hard as possible with the same action. Second, player i’s payoff is
equal to the minmax value type by type, not just in expectation. The next
example is one in which the second property is false; player i can only be
punished on average.

Example 2.3 (Insurance without commitment). Each of two players faces
an income shock θi ∈ Θi ⊂ R+. After receiving the shock (and communicat-
ing), player i chooses an amount ai ∈ {0, . . . , θi} to give to the other player.
Player i’s payoff is ūi(θi− ai + a−i), where ūi is nondecreasing and concave.
Firm i’s minmax value equals vi = Eπi [ūi(θi)]; it is attained by living in
autarky (i.e., a1 = a2 = 0).

As a final example we consider a game in which neither of the special
properties shared by the Cournot and Bertrand games is true.

Example 2.4 (Battle of Sexes with Taste Shocks). Each of two players
decides whether to go to a soccer game (S) or the opera (O). Payoffs are as
shown in the matrix below.

S O
S θ1, 2 0, 0
O 0, 0 2, θ2

We assume that θi ∈ {1, 3} so that each player may prefer the outcome (S, S)
over (O,O) or vice versa, depending on the payoff shock. When θ1 = θ2,
then one of the players prefers (S, S) while the other prefers (O,O). Just for
simplicity, we assume that πi(1) = π1(3) = 1/2. Then the minmax value is
given by vi = 2 and is attained by any action a−i ∈ {S,O}. Any such action,
however, is i’s favorite action for one of the types.

3. The Main Result

The following is the main result of the paper.

Theorem 3.1. Let v, w1, and w2 be points on the Pareto frontier of V such
that

vi < min{vi, wii},
and

wii < min{vi, w−ii }.
Then, for all ε > 0, there exists δ̄ < 1 such that for all δ > δ̄, there exists a
perfect Bayesian equilibrium such that for all on-path histories, the expected
continuation payoffs are within distance ε of v.

Theorem 3.1 shows that any payoff v that is Pareto efficient in V and
dominates the minmax value v can be virtually attained in an equilibrium of
the dynamic game, provided that the players are patient enough. Moreover,
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Figure 2.

this can be done so that the continuation payoffs are close to v at all on-path
histories.

The result requires the existence of two other Pareto-efficient points, w1

and w2, dominating the minmax profile v that are used to build player-
specific punishments; see Figure 2 for illustration. Since V is convex, this
amounts to assuming that the Pareto frontier of V is not a singleton.20 This
assumption plays a role similar to, but is slightly stronger than, the full-
dimensionality condition usually imposed in repeated games with perfect
monitoring (see, e.g., Fudenberg and Maskin, 1986).21 The assumption ap-
pears unrestrictive: All that is required is that in a one-shot interaction,
when types are drawn according to the invariant distribution, there is more
than one Pareto-efficient decision rule. This is trivially satisfied in any game
with transfers and quasilinear payoffs. More generally, multiple Pareto op-
tima are the norm in situations with competing interests including all of the
examples of Section 2.6.22 In fact, in the special case of a repeated game

20Since v is calculated using pure actions, there is also the usual caveat about games in
which v lies outside of V and for which the result is thus vacuously true. The standard
matching pennies (without types) is an example.
21If the Pareto frontier of V is not a singleton, then V has full dimension except in the
non-generic case where all u(a, θ), (a, θ) ∈ A×Θ, lie on the same downward-sloping line.
(Note that in that case everything is efficient in the stage game.)
22To see that the theorem has bite in each of the examples, we first note that for each
of them the Pareto frontier of V is not a singleton: In both oligopoly examples, it is
Pareto efficient to have either of the firms always produce the monopoly output (provided
that it is strictly positive; for realizations for which it is zero, we can have the other firm
produce). Similarly, in the insurance example, it is Pareto efficient to have either of the
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without types (i.e., when Θ is a singleton), if the Pareto frontier of V is a
singleton, then the one-shot game has a Nash equilibrium with these pay-
offs. However, for completeness we sketch at the end of this section a weaker
version of the result that dispenses with the assumption at the expense of
weakening the definition of the minmax value.

The assumption about communication in every period can not in general
be dispensed with. To see this, it suffices to consider the Cournot example
of Section 2.6 in the special case of iid types. Without communication it is
impossible to coordinate production. For example, it is impossible to achieve
payoffs close to the collusive scheme where the firm with the lowest cost
always produces the monopoly output given its cost. In contrast, by Theorem
3.1 such payoffs can be approximated arbitrarily closely when communication
is allowed.

The rest of the paper is essentially devoted to the proof of Theorem 3.1.
As parts of it are relatively heavy on the details, we outline here the general
proof strategy and discuss its implications for the equilibrium behavior. The
construction of the equilibrium attaining payoffs near v in Theorem 3.1 has
two main parts. We start in Section 4 by considering the problem of designing
a (dynamic) mechanism that virtually attains the target payoff v ∈ V given
a sufficiently long finite horizon and enough patience. In each period the
mechanism implements actions as functions of the messages sent by each
player about his current type. Rather than using transfers, the mechanism
uses history-dependent sets of feasible messages that allow the players to
only send messages that are “credible” given the true underlying type process
and history of messages. Given a message profile m, the mechanism then
implements the action f(m), where f : Θ → ∆(A) is the decision rule for
which v = Eπ[u(f(θ), θ)].

We show in Theorem 4.1 that—as a result of the restrictions imposed by
the history-dependent message spaces—by reporting honestly player i can
secure a discounted expected payoff bounded from below by vi (up to an ar-
bitrarily small approximation term) regardless of the other player’s strategy.
We then cover the infinite horizon with a “block mechanism” that has the
players play the finite-horizon mechanism over and over again. The security-
payoff result can then be applied to each repetition to get a lower bound
arbitrarily close to vi on player i’s continuation values in the block mecha-
nism. This combined with the efficiency of the target payoff v implies that,
at any on-path history in any Nash equilibrium of the block mechanism, the
continuation payoffs are arbitrarily close to v even if in the Nash equilibrium
the players do not report honestly (Corollary 4.2). The existence of a PBE

players always consume the entire endowment. Finally, in the Battle of the Sexes, it is
Pareto efficient to always choose the favorite outcome of one of the players. It can then
be verified that in all of the games, there exists a Pareto-efficient point in V (and hence
a continuum of such points) that strictly dominates the minmax profile. We leave the
details to the reader.
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in the block mechanism then gives us a candidate for the equilibrium path
of the PBE for the game.

Theorem 3.1 is then finally proved in Section 5 where we decentralize a
PBE of the block mechanism by constructing stick-and-carrot punishment
equilibria. The main concern there is ruling out observable deviations from
the PBE of the mechanism (i.e., sending a message that would not have been
feasible in the mechanism, or deviating from the actions specified by f). Such
deviations are punished by reverting for finitely many periods to a stick phase
where the deviator is minmaxed, followed by a carrot phase rewarding the
non-deviator for following through with the punishment. In order to deal
with issues such as manipulation of beliefs during the punishment by the
player being punished, these punishment equilibria are also constructed by
decentralizing a PBE of a mechanism.23 The “punishment mechanism” is
a modification of the block mechanism, where initially the deviating player
i is minmaxed, and then a block mechanism approximating wi, the reward
profile for player −i, ensues.

While on the face of it the construction of the punishment equilibria ap-
pears to follow familiar lines (say, of Fudenberg and Maskin, 1986), persistent
private information introduces its own complications. Beyond the technical
intricacies of constructing equilibria for a dynamic Bayesian game, there is
a qualitative difference involving the minmax value. As already discussed
in the examples, our minmax value can in general be imposed only as an
average payoff over a sufficiently long block of periods. In particular, player
i can have a type θi such that at the time of choosing actions (i.e., at t.4),
conditional on his own current type being θi, player i’s expected current pe-
riod payoff when he is being minmaxed may well be even higher than his
payoff in the efficient target profile v we are trying to sustain. This is in
stark contrast with standard repeated games, in which the minmax value
can be imposed as the expected payoff (at the time of choosing the actions)
period-by-period.24 This observation explains why our construction with two
players features player-specific punishments even though in repeated games
with perfect monitoring the two-player case can be handled using a stick
phase where the players mutually minmax each other (see Fudenberg and
Maskin, 1986).25

23In equilibrium, the player being punished best responds to the punishment. However,
given serial correlation, this is in general not achieved by myopic maximization during the
stick phase as it is in the interest of the player to manipulate the other player’s beliefs
about his type in order to have a higher payoff in the carrot phase.
24As discussed, the Bertrand and Cournot examples are special in that they have this
feature also in the incomplete-information version.
25To see in more detail what goes wrong, suppose the stick phase consisted of mutual
minmaxing, and consider the first period of the stick phase. As usual, the punishment
for not playing along with the mutual minmaxing is that the stick phase restarts in the
next period. Now, if player i happens to draw the favorable type θi discussed above, he
is happy to delay the start of the carrot phase by one period. With enough persistence in
the type process he may actually prefer to do so for a while.



18 ESCOBAR AND TOIKKA

As is typical in the literature on repeated games, Theorem 3.1 focuses on
payoffs. It is also interesting to ask what kind of behavior sustains (approxi-
mately) efficient outcomes. However, our proof is non-constructive, and thus
it does not yield a characterization of the equilibrium behavior. (In fact,
this is the very reason why the proof strategy succeeds.) Nevertheless, cer-
tain things can still be inferred about behavior. First, on the equilibrium
path, for any message profile sent at stage t.2 the actions at stage t.4 are
those prescribed by the decision rule f . In this sense the equilibrium actions
are stationary. Second, since expected payoffs are close to efficient payoffs
from mutual truth-telling, it must be the case that “players report truthfully
in a large fraction of periods with high probability.” Hence in equilibrium
misrepresentation of private information is limited. Third, given that the
equilibrium path mimics the equilibrium of the mechanism, players’ mes-
sages must respect the restrictions of the history-dependent message spaces.
This puts relatively strong bounds on the equilibrium strategies. One simple
qualitative implication is that the players will sometimes have to lie in order
for cooperation to continue.

We conclude this section by considering briefly the case where the Pareto
frontier of V is a singleton. In this case Theorem 3.1 is vacuous. How-
ever, we can recover a weaker result by weakening the minmax value to
mina−i∈A−i maxθi∈Θi maxai∈Ai ui((ai, a−i), θi).

26 In this case the stick-and-
carrot punishment can be taken to consist of mutual minmaxing followed
by the return to the cooperative phase, and hence there is no need to re-
ward the punisher. Essentially the same proof then shows that any Pareto
efficient v ∈ V dominating the weaker minmax value can be approximated
with perfect Bayesian equilibrium payoffs as δ goes to 1.

4. An Approximately Efficient Dynamic Mechanism

We assume in this section that the players can write a contract, also known
as a mechanism, which specifies for each period a (possibly randomized)
action profile to be played as a function of the public messages sent by
the players, and which can be enforced by a third party such as a court
of law. Such a mechanism induces a dynamic game that differs from the
original game defined above in that, in each period, the players only send
public messages from some set of feasible messages (at t.2); the actions are
automatically implemented by the mechanism as a function of these messages
(at t.4). In what follows we introduce a particular dynamic mechanism that
is approximately efficient—in a sense to be made precise later—even with
a sufficiently long finite horizon provided that the players are sufficiently
patient.

26While this is in general a higher payoff than the minmax defined above, the two coincide
for the Cournot and Bertrand games discussed in the examples. This not the case for the
insurance game nor the Battle of Sexes.
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While the mechanism is constructed as an intermediate step towards The-
orem 3.1, it is also of independent interest. In particular, as we do not assume
transferable utility, the mechanism is applicable to settings such as decision
making within organizations, or allocation of tasks within a firm, in which
it is possible to write enforceable contracts, but transfers are typically not
available or not used. Moreover, it gives a new efficiency result for settings
such as dynamic insurance problems, in which utility is transferable, but
wealth effects prevent the use of the dynamic VCG mechanisms proposed by
Athey and Segal (2007) and Bergemann and Välimäki (2007).

4.1. A Preliminary Result. The following lemma, which relies on Mas-
sart’s (1990) result about the rate of converge in the Glivenko-Cantelli the-
orem, motivates the message spaces we construct for the mechanism in the
next section. Throughout ‖ · ‖ denotes the sup-norm.

Lemma 4.1. Let Θ be a finite set, and let g be a probability measure on
(Θ, 2Θ). Given an infinite sequence of independent draws from g, let gn

denote the empirical measure obtained by observing the first n draws. (I.e.,
for all n ∈ N and all θ ∈ Θ, gn(θ) = 1

n

∑n
l=1 1{θl=θ}.) Fix α > 0 and

construct a decreasing sequence (bn)n∈N, bn → 0, by setting

bn =

√
2

n
log

π2n2

3α
.

Then
P(∀n ∈ N ‖gn − g‖ ≤ bn) ≥ 1− α.

The proof of the lemma can be found in Appendix A. For a suggestive in-
terpretation of the result, consider an honest player who observes a sequence
of independent draws from Θ that are distributed according to a probability
measure g. Suppose that the player is asked to report the realized value of
each draw subject to the constraint that the empirical distribution of his
reports after n observations, gn, be within bn of g (in the sup-norm) for all
n. Then with probability at least 1− α the player can truthfully report the
entire sequence.

4.2. The Mechanism. The environment is a T -period truncation of the
game for some T ∈ N:

• two players: i = 1, 2,
• discrete time: t = 1, 2, . . . , T ,
• set of feasible action profiles in each period: A,
• player i’s periodic payoff function: ui : A×Θi → R,
• player i’s type θti follows a Markov process (λi, Pi),
• discounted average payoffs.

By the maintained Assumptions 2.1– 2.3 we have private values and irre-
ducible types, and transitions are independent across players.

We construct a collection of history-dependent message spaces for the T -
period environment as follows. Let α > 0. (The interesting case is where α
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is small.) Define the decreasing sequence (bαn)n∈N, bαn → 0, as in Lemma 4.1
by setting

bαn =

√
2

n
log

π2n2

3α
.

For all i, and all θi ∈ Θi, define

Ξα
i (θi) =

{
ξi ∈ Θ∞i : ∀n ∈ N max

θ̂i∈Θi

∣∣∣∣∣ |{l ≤ n : ξli = θ̂i)}|
n

− Pi(θi, θ̂i)

∣∣∣∣∣ ≤ bαn

}
.

In words, Ξα
i (θi) is the set of sequences on Θi such that the distribution of

types in the sequence converges to Pi(θi, ·) in the sup-norm at a rate specified
by the sequence (bαn). By Lemma 4.1 the set Ξα

i (θi) is non-empty for all i
and all θi. Indeed, if we have an iid sequence of random variables distributed
according to Pi(θi, ·), then the realized sequence lies in the set Ξα

i (θi) with
probability at least 1− α.

We can now define the sets of feasible messages. For t = 1 player i’s set of
feasible messages is simply Θi. Consider then t > 1. Let htm = (m1, . . . ,mt−1)
be a history of message profiles before period t. Let φi(h

t
m) denote the

(possibly null) subsequence of player i’s messages in history htm in periods
τ ≤ t− 1 such that mτ−1 = mt−1. (I.e., φi(h

t
m) is a record of i’s messages in

periods where the previous period message profile was the same as in period
t− 1.) Player i’s set of feasible messages at message history htm is

Mα
i (htm) =

{
θi ∈ Θi : ∃ξi ∈ Θ∞i (φi(h

t
m), θi, ξi) ∈ Ξα

i (mt−1
i )
}
.27

By construction the set Mα
i (htm) is non-empty at any history htm at which

all past messages in φi(h
t
m) have been chosen from the appropriate feasible

sets. Since other kinds of histories are by definition infeasible, it follows that
player i always has some feasible message that he can send.

Let H t
m denote the set of all period t message histories htm (both feasible

and infeasible) with H1
m = {h1

m} an arbitrary singleton. Letting Mα
i (h1

m) =
Θi the message spaces are then determined by the function Mα,T : ∪Tt=1H

t
m →

2Θ defined by Mα,T (htm) = Mα
1 (htm)×Mα

2 (htm).
Given the message spaces, the mechanism is defined as follows.

Definition 4.1. A mechanism is a pair (f,Mα,T ), where f : Θ→ ∆(A) is a
decision rule, and Mα,T : ∪Tτ=1H

τ
m → 2Θ is a collection of history-dependent

message spaces. At each message history htm ∈ ∪Tτ=1H
τ
m each player i ∈ I

sends a simultaneous public message mt
i ∈ Mα

i (htm) and the mechanism
implements the (possibly randomized) action f(mt) ∈ ∆(A).

For a given horizon T and a decision rule f , there is a family of mechanisms
parameterized by the constant α. Any such mechanism induces a T -period
dynamic game between the players. A pure (reporting) strategy for player i
in the game induced by the mechanism (f,Mα,T ) is a sequence of mappings
ρi = (ρti)

T
t=1 where each ρti is a mapping from the set of feasible histories of the

27Here, (φi(htm), θi, ξi) denotes the concatenation of φi(htm), θi, and ξi.
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mechanism’s actions, messages, and player i’s true types into Θi such that
the type chosen by ρti is feasible given the message history. Let Rα,T

i denote
the set of player i’s pure strategies. The set of player i’s mixed strategies is
denoted ∆(Rα,T

i ).
As the construction of the mechanism is somewhat involved, we offer here

an informal discussion (see also the example in the Introduction). We start by
noting that by construction, at any history, whether a message is feasible or
not depends only on the history of messages. Furthermore, the construction
of the message spaces uses only the transition matrix P of the joint type
process. That is, it is independent of the joint initial distribution λ, the payoff
function u, and the decision rule f . Finally, the construction is independent
of the time horizon in the sense that for any S and T , S < T , the S-period
mechanism is simply an S-period truncation of the T -period mechanism.28

The general idea behind the message spaces is that they amount to keeping
track of |Θ| empirical message distributions for each player i. These empirical
distributions are indexed by the previous period message profile θ, which
determines to which empirical distribution player i’s current message is to
be added. The message spaces then allow i to report a type θ′i given previous
period message profile θ = (θi, θ−i) only if this has the relevant empirical
distribution converging fast enough to Pi(θi, ·)—the conditional distribution
of θti given θt−1 = θ.

To see the restriction on player i’s reporting in more detail, fix a type
profile θ = (θi, θ−i) ∈ Θ and consider the (random) set of periods τ(θ) =
{t = 2, . . . , T : mt−1 = θ}, i.e., the periods where the realized message profile
in the previous period was θ. The message spaces force player i to report in
such a way that the empirical distribution of i’s reports along the periods in
τ(θ) converge to Pi(θi, ·) at a rate specified by the sequence (bαn). The set
Mα

i (htm) captures this by allowing player i to report type θ′i given reporting
history htm ending in θ only if, after the addition of θ′i, it is still possible to
continue the sequence of i’s reports over τ(θ) in a way that preserves the rate
of convergence. More precisely, it must be possible to continue the sequence
to an element of Ξα

i (θi).
The motivation for using the set Ξα

i (θi) as the basis for the message spaces
is that, since the true joint type process is Markovian, player i’s types in
periods in τ(θ) are independent draws from Pi(θi, ·) provided that he reported
truthfully in the previous periods. Thus in this case i’s true types would
indeed converge at the rate imposed by (bαn) along the periods in τ(θ) with
probability at least 1−α (by Lemma 4.1). Hence if α is small, the constraint
is unlikely to bind for a player who tries to report truthfully.

Finally, the mechanism can be compared to the linking mechanism of
Jackson and Sonnenschein (2007). In the linking mechanism each player
i is assigned a budget of messages—to be used over T independent and

28This last property is for the sake of convenience. For any given T <∞ it is possible to
improve on the bounding sequence (bαn), which is chosen here to work for all T . While the
bounds matter for the rate of convergence, qualitatively the results are unaffected.
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identical copies of a collective choice problem—that forces the distribution
of player i’s reports to match his true type distribution. Conceptually, the
key difference is that our mechanism has “conditional budgets,” i.e., the set
of feasible messages depends on the history.29 This is what allows us to
deal with serial correlation of types in a dynamic setting. In particular, the
dependence of player i’s set of feasible messages on player−i’s past message is
what effectively prevents i from systematically matching −i’s messages with
particular messages of his own. There are also important differences in how
the “budgeting” of messages is implemented (by bounding the convergence
of the message distributions rather using fixed budgets), but—while a crucial
part of our proof—these are somewhat more technical in nature.

4.3. Approximate Efficiency for Patient Players. We now show that
the mechanism defined in the previous section can be used to approximate
Pareto-efficient payoff profiles arbitrarily closely if the horizon T is long
enough and if the players are sufficiently patient. In fact, we show a stronger
result: Under the said conditions, for any payoff profile v in V , there is a
mechanism in which each player has a strategy that secures a lower bound
on his expected payoff that is approximately equal to his payoff in the target
payoff profile v regardless of the strategy of the other player.

We say that player i is honest in the mechanism (f,Mα,T ) if he reports
his type truthfully whenever he can. None of the results depend on the
specification of an honest player’s behavior at histories where the set of
feasible messages forces him to lie. However, to fix ideas, we assume that at
such histories an honest player i always reports the smallest feasible message
with respect to some fixed ordering of Θi. It is worth noting that when player
i is honest, his strategy conditions only on his own current type.

Fix a mechanism (f,Mα,T ) and let ρ∗i denote the honest strategy for player
i. We say that player i can secure the expected payoff v̄i in the mechanism
(f,Mα,T ) by being honest if

min
ρ−i∈∆(Rα,T−i )

E(ρ∗i ,ρ−i)

[ 1− δ
1− δT

T∑
t=1

δt−1ui(f(mt), θti)
]
≥ v̄i,

where the expectation is with respect to the distribution induced by the
strategy profile (ρ∗i , ρ−i). That is, honesty secures expected payoff v̄i to
player i if, regardless of the reporting strategy of the other player, player i’s
expected payoff from honest reporting is at least v̄i.

The following “security payoff theorem” is the main result about our mech-
anisms.

29Our mechanism can be thought of as an attempt to link together periods where the
previous period types were identical and where—by the Strong Markov property—the
current types are independently and identically distributed. However, this interpretation
is only suggestive as the mechanism can base the set of feasible messages only on the
players’ past messages which in general are not truthful (not even the equilibrium ones).
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Theorem 4.1. Let v ∈ V and let ε > 0. Then there exists a decision rule
f , a constant α > 0, and a time T ∗ such that for all T ≥ T ∗ there exists a
discount factor δ∗ < 1 such that for all δ ≥ δ∗ and all initial distributions λ,
each player i can secure the expected payoff vi−ε in the mechanism (f,Mα,T )
by being honest.

Note that the result is independent of “initial conditions” in that the same
mechanism and critical discount factor work for all initial distributions.

The proof, which is presented in the next subsection, can be sketched
as follows. By definition any v ∈ V can be generated under truth-telling
by a decision rule f when the expectation over types is with respect to
the invariant distribution of the joint type process. This f is the decision
rule used in the mechanism. By construction of the message spaces the
honest player i can be taken to be truthful in all periods with an arbitrarily
high probability regardless of −i’s strategy by choosing α small enough. So
suppose this is the case and consider the problem of choosing player −i’s
strategy to minimize the payoff to a truthful player i in the mechanism
(f,Mα,T ). When player i is truthful, his payoff depends only on the joint
distribution of his own true type θi and the other player’s message m−i since
we have private values by Assumption 2.1. If there is no discounting, then
even the timing is irrelevant and only the long-run distribution of (θi,m−i)
matters. Since the minimization problem is continuous in the discount factor,
the Maximum theorem implies that this remains approximately true given
sufficiently little discounting. Hence the proof boils down to showing that
the joint long-run distribution of i’s types and −i’s messages converges to
the invariant distribution of the joint type process.

For T large the distribution of player i’s types θi is close to the invariant
distribution πi by the law of large numbers since the type process is irre-
ducible by Assumption 2.2. Similarly, for T large the distribution of player
−i’s messages m−i can be shown to be close to the invariant distribution
π−i by construction of the message spaces.30 Furthermore, since the message
spaces condition on both players’ messages from the previous period and the
players send their current messages simultaneously, we can use the indepen-
dence of transitions (Assumption 2.3) to show that the joint distribution of
(θi,m−i) is close to the product distribution πi × π−i. But this is precisely
the invariant distribution for the true joint type process, which is what we
wanted to show.

We now turn to the implications of Theorem 4.1. Let V (δ, T ) denote the
set of feasible expected discounted average payoffs in the T -period truncation

30This is the only step that uses the fact that there are only two players. With more than
two players the mechanism still forces the marginal distribution of each player’s messages
to converge to the invariant distribution, but the joint distribution of messages by players
−i need not converge to the product of these distributions. (An analogous problem arises
already in a static model with iid types; see Jackson and Sonnenschein, 2007.) Handling
the n-player case requires an augmented mechanism, the details of which are in progress.
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of the game. Formally,

V (δ, T ) =
{
v ∈ RI | for some f = (f t)Tt=1

vi =
1− δ

1− δT
Ef

[ T∑
t=1

δt−1ui(a
t, θt)

]
for all i ∈ I

}
,

where f t : Θt × At−1 → ∆(A) and Ef is the expectation induced by the
decision rules f = (f t)Tt=1 and the process (λ, P ).

Lemma 4.2. For all ε > 0, there exists a time T ∗ such that for all T > T ∗,
there exists a discount factor δ∗ < 1 such that for all δ > δ∗

dist(V, V (δ, T )) < ε,

where dist is the Hausdorff distance.

This lemma shows that for δ and T large enough V (δ, T ) is well approx-
imated by V (see Appendix A for the proof). This motivates the following
approximate efficiency result.

Corollary 4.1. Let v be a point on the Pareto-frontier of V . Let ε > 0.
There exists a decision rule f , a constant α > 0 and a time T ∗ such that for
all T ≥ T ∗ there exists a discount factor δ∗ < 1 such that, for all δ ≥ δ∗, the
expected payoff profile is within distance ε of v in all Nash equilibria of the
mechanism (f,Mα,T ).

Proof sketch. Clearly all Nash equilibria (and hence all of its refinements
such as PBE) of the mechanism must yield each player i an expected payoff
at least as great as the lower bound secured by honesty. By Theorem 4.1
this lower bound can be taken to be arbitrarily close to vi by choosing the
parameters appropriately. Pareto efficiency of v in V then implies that the
players’ payoffs must in fact be approximately equal to v: V (δ, T ) is close
to V for δ close to 1 and T large by Lemma 4.2. Thus player i receiving
substantially more than vi when player−i receives at least v−i is infeasible for
large δ and T by efficiency of v in V . Details can be found in Appendix A. �

Since the game induced by the mechanism is finite, all standard dynamic
refinements of Nash equilibria such as a PBE or a sequential equilibrium ex-
ist. Hence Corollary 4.1 implies that the mechanism can be used to virtually
implement Pareto-efficient payoffs in, say, a sequential equilibrium provided
that the horizon is long enough and the players are sufficiently patient. As the
proof is non-constructive, we do not have a characterization of the behavior
in such an equilibrium. It appears prohibitively difficult to solve for it analyt-
ically as the players face complicated non-stationary dynamic optimization
problems. The security payoff theorem does imply that honesty is an ε-Nash
equilibrium, but in general honesty is not a best-response. However, since
the payoffs are close to the efficient payoffs from mutual truth-telling, any
equilibrium must have the players reporting truthfully in a “large fraction of
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periods with high probability.” Formal results along these lines are left for
future work.

In order to cover the original dynamic game defined in Section 2 we now
extend the efficiency result to an infinite horizon. Rather than using the in-
finite horizon version of the above mechanism, we construct a “block mecha-
nism” in which the players repeatedly play a fixed finite horizon mechanism
(f,Mα,T ).31 We then apply the security payoff of Theorem 4.1 to each repe-
tition. This serves to guarantee that the players not only have approximately
efficient expected payoffs at the beginning of the mechanism, but also their
expected continuation payoffs are approximately efficient. This is of interest
in settings with “participation constraints.” In particular, it is needed in
the proof of Theorem 3.1 where we essentially decentralize an equilibrium of
the block mechanism. There participation constraints arise from the players’
ability to “opt out” by choosing not to play the actions that would have been
implemented by the mechanism.

Consider the infinite horizon environment defined by the dynamic game.
Note that for any T < ∞ the T -period blocks (k − 1)T + 1, . . . , kT , k ∈ N,
define a sequence of T -period environments, which differ from each other
only because of the initial distribution of types. Since the construction of
the mechanisms (f,Mα,T ) is independent of the initial distribution, any such
mechanism can be applied to any of the T -period blocks. With this in mind,
for any message history htm = (m1, . . . ,mt−1) ∈ ∪∞τ=1H

τ
m, let

h̄tm = (mt−[(t−1) mod T ], . . . ,mt−1),

where (t−1) mod T denotes the residue from the division of t−1 by T , and
where we adopt the convention that (ms, ...,mt) = h1

m if s > t. (Recall that
h1
m is an arbitrary constant.) Then h̄tm simply collects from htm the messages

that have been sent in the current block.

Definition 4.2. A block mechanism is an infinitely repeated mechanism
(f,Mα,T )∞ in which the mechanism (f,Mα,T ) is applied to each T -period
block (k − 1)T + 1, . . . , kT , k ∈ N. At each message history htm ∈ ∪∞τ=1H

τ
m

each player i ∈ I sends a simultaneous public message mt
i ∈ Mα

i (h̄tm) and
the mechanism implements the (possibly randomized) action f(mt) ∈ ∆(A).

The next corollary shows that block mechanisms can be used to approxi-
mate Pareto-efficient payoffs in equilibria that have approximately stationary
continuation payoffs.

Corollary 4.2. Let v be a point on the Pareto-frontier of V . Let ε > 0.
There exists a block mechanism (f,Mα,T )∞ and a discount factor δ∗ < 1 such
that, for all δ ≥ δ∗ and all initial distributions λ, the expected continuation
payoff profile is within distance ε of v at every on-path history in all Nash

31As is evident from the construction, a mechanism (f,Mα,T ) can be extended to an
infinite horizon by simply putting T = ∞. The results developed above for the finite
horizon case have natural analogs in the infinite horizon case. We do not pursue the
details.
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equilibria of the block mechanism (f,Mα,T )∞. Moreover, in all sequential
equilibria the expected continuation payoff profile is within distance ε of v at
all feasible histories.

Proof Sketch. Fix v on the Pareto-frontier of V and let ε > 0. By Theo-
rem 4.1 there exists a mechanism (f,Mα,T ) and a critical discount factor
δ∗ < 1 such that for all δ ≥ δ∗, at the beginning of each block, each player
can secure the expected payoff vi − ε

3
from the block by being honest given

any distribution of types at the start of the block.32 Now, to make the secu-
rity result hold at all periods rather than just at the beginning of blocks, we
choose a discount factor δ∗∗ ≥ δ∗ high enough so that, at any period t, the
payoff from the remaining periods in the current block has a negligible im-
pact on the total expected continuation payoff from period t onwards. (This
is possible since payoffs are bounded.) Then for all δ ≥ δ∗∗ each player i can
secure the expected payoff vi − ε

2
at every period t.

Since a player can always revert to playing honestly from now on, any on-
path history in any Nash equilibrium must yield each player i an expected
continuation payoff of at least vi − ε

2
. But then, analogously to the proof of

Corollary 4.1, the efficiency of v in V implies that no player can receive more
than vi + ε for δ large enough. The result for sequential equilibria follows by
noting that there the strategy profile must be sequentially rational at all fea-
sible histories, and hence at each history the players’ expected continuation
payoffs must be at least as high as the lower bound achieved by reverting to
honest reporting from now on. �

A result by Fudenberg and Levine (1983) implies that a sequential equi-
librium exists in the infinite horizon game induced by the block mechanism.
Hence for any v on the Pareto frontier of V there exists a block mechanism
that has a sequential equilibrium in which the expected continuation payoffs
at all (feasible) histories are approximately efficient.33

4.4. Proof of Theorem 4.1. Let v ∈ V and let ε > 0. By definition of
V there exists a decision rule f such that v = Eπ[u(f(θ), θ)]. Consider the
problem of minimizing the payoff of an honest player i in the mechanism
(f,Mα,T ) for some α > 0 and T < ∞. Without loss, assume that player 1

plays the honest strategy ρ∗1, while player 2 chooses a strategy ρ2 ∈ ∆(Rα,T
2 )

so as to minimize 1’s payoff. We want to show that we can choose α > 0 such
that if T is large enough, then there exist δ∗ < 1 such that, for all δ ≥ δ∗

32While in the block mechanism the players in general have public and private histories
that could act as a correlation device, this does not affect the security payoff from a given
block. Indeed, suppose that at the beginning of a block player i reverts to playing honestly
in the block, and consider choosing −i’s strategy to minimize i’s payoff over the block.
Since the honest strategy does not condition on the public nor the private history, having
the payoff-irrelevant correlation device is of no value for this minimization problem.
33As in the case of a T -period mechanism, honesty is an ε-equilibrium of the block mech-
anism.
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and for all initial distributions λ,

min
ρ2∈∆(Rα,T2 )

E(ρ∗1,ρ2)

[ 1− δ
1− δT

T∑
t=1

δt−1u1(f(mt), θt1)
]
≥ v1 − ε,

where the expectation is with respect to the distribution induced by the
strategies (ρ∗1, ρ2).

We start by simplifying the minimization problem on the left-hand side
of the above inequality. The minimum is attained by a pure strategy, so
it suffices to consider pure strategies of player 2. Furthermore, since the
mechanism’s randomizations are independent across periods and the honest
strategy ρ∗1 does not condition on the mechanism’s actions, it is without loss
to assume that ρ2 does not condition on the mechanism’s actions either.
Finally, by Blackwell’s theorem it suffices to consider the case where λ1 is
degenerate and puts probability one on some θ1.34 But then it is without loss
to assume that ρ2 does not condition on player 2’s private history (i.e., on
player 2’s realized types), since transitions are independent between players
by Assumption 2.3 and θ1

1 is known. Thus we are left with a problem of the
form

w(θ1, δ, T, α) = min
ρ2∈R̄α,T2

E(ρ∗1,ρ2)

[ 1− δ
1− δT

T∑
t=1

δt−1u1(f(mt), θt1)
]
,

where θ1 refers to player 1’s first period type, and R̄α,T
2 ⊂ Rα,T

2 denotes the
set of player 2’s pure strategies that do not condition on player 2’s private
history nor the mechanism’s actions. In other words, R̄α,T

2 is the set of pure
strategies that condition only on player 1’s past messages. Note that the
expectation is only over player 1’s types, the messages being deterministic
functions thereof.

We argue then that it suffices to consider the case of no discounting. Ex-
tend the problem to δ = 1 by defining

w(θ1, 1, T, α) = min
ρ2∈R̄α,T2

E(ρ∗1,ρ2)

[ 1

T

T∑
t=1

u1(f(mt), θt1)
]
.

It is then straightforward to check that for fixed θ1, T , and α the objective
function is continuous in (δ, ρ2) on [0, 1] × R̄α,T

2 . Thus by Berge’s Maxi-
mum theorem the value of the problem, w(θ1, δ, T, α), is continuous in δ on
[0, 1]. Hence we can approximate w(θ1, δ, T, α) for δ large by considering
w(θ1, 1, T, α). Thus it suffices to show

(∗) ∃α > 0 ∃T ∗ <∞ : ∀T ≥ T ∗ ∀θ1 ∈ Θ1 w(θ1, 1, T, α) ≥ v1 −
ε

2
.

34Recall that M1
1 = Θ1 so that m1

1 = θ11. Thus in general player 2 learns θ11 after the
first period, whereas with a degenerate λ1 player 2 knows θ11 before the first period. Since
player 1 is honest and hence non-strategic, this extra information can only help player 2.
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As a first step towards condition (∗) we make precise the idea that an
honest player is unlikely to be constrained by the message spaces.35 Given
realized sequences of player i’s types (θt)Tt=1 and messages (mt)Tt=1, we say
that player i is truthful if mt

i = θt1 for all t.

Lemma 4.3. Let λ1 assign probability one to some θ1 ∈ Θ1. For all T and
all α > 0, if player 1 plays the honest strategy ρ∗1 ∈ R

α,T
1 and player 2 plays

a pure strategy ρ2 ∈ R̄α,T
2 , then player 1 is truthful with probability at least

1− |Θ|α.

This lemma follows essentially by construction of the message spaces. The
proof strategy is to first assume that the honest player 1 is not subject to
any restrictions in his reporting (i.e., set Mα

1 (htm) = Θ1 for all htm) and
hence is always truthful. Then we argue that the truthful messages would
remain feasible with probability at least 1−|Θ|α even if player 1 was subject
to the history-dependent message spaces. As the proof is not particularly
illuminating, we leave the details to Appendix A.

The following proposition is the key to the proof.

Proposition 4.1. Let λ1 assign probability one to some θ1 ∈ Θ1. For all
q > 0, there exists T ∗ < ∞ such that, for all T ≥ T ∗, if player 1 plays the

honest strategy ρ∗1 ∈ R
q

2|Θ| ,T

1 and player 2 plays a pure strategy ρ2 ∈ R̄
q

2|Θ| ,T

2 ,
then the empirical distribution of messages, πT , satisfies

P(‖πT − π‖ < q) ≥ 1− q,
where π is the invariant distribution of the joint type process.

Proof. Let λ1 be degenerate. Fix q > 0 and put α = q
2|Θ| . We argue first that

it suffices to consider an honest player 1 who is not subject to the message

spaces (i.e., set Mα
1 (htm) = Θ1 for all htm). To this end, fix T and ρ2 ∈ R̄

q
2|Θ| ,T

2 ,
and suppose that player 1 is not subject to the message spaces. Note that, by
construction, player 2’s message spaces are non-empty even at histories that
include infeasible histories by player 1. Player 2’s strategy ρ2 can be extended
arbitrarily to such histories as they play no role in what follows. Suppose
we have found a set C ⊂ ΘT

1 of probability 1− q
2

such that ‖πT − π‖ < q if
player 1’s realized type sequence (θt1)Tt=1 is in C. By Lemma 4.3 there exists
a set D ∈ ΘT

1 of probability 1 − q
2

such that for all (θt1)Tt=1 ∈ D the honest
player 1 is truthful even if he is subject to the message spaces. But then for
any (θt1)Tt=1 ∈ C ∩D we have ‖πT − π‖ < q even if player 1 is subject to the
message spaces. Moreover, P(C ∩D) ≥ 1− q. So for the rest of the proof we
put Mα

1 (htm) = Θ1 for all htm.
It is convenient to generate player 1’s types by means of an auxiliary

probability space ([0, 1],B, P̂). (The construction that follows is adapted

35Given the above derivation, we assume in the sequel that λ1 is degenerate, and that
player 2 plays a pure strategy ρ2 ∈ R̄α,T2 . While these restrictions simplify the proofs
somewhat, Lemma 4.3 and Proposition 4.1 can be extended to general λ1 and ρ2 ∈
∆(Rα,T2 ).
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from Billingsley, 1961.) On this space, define a countably infinite collection
of independent random variables

ψ̃nθ,θ′2 : [0, 1]→ Θ1, θ ∈ Θ, θ′2 ∈ Θ2, n ∈ N,

where

P̂(ψ̃n(θ1,θ2),θ′2
= θ′1) = P1(θ1, θ

′
1).

That is, for fixed θ = (θ1, θ2) the variables ψ̃nθ,θ′2
, θ′2 ∈ Θ2, n = 1, 2, . . . are

independent draws from P1(θ1, ·). Imagine the variables ψ̃nθ,θ′2
set out in the

following array:

ψ̃1
1,1 ψ̃2

1,1 · · · ψ̃n1,1 · · ·
ψ̃1

1,2 ψ̃2
1,2 · · · ψ̃n1,2 · · ·

...

ψ̃1
1,|Θ2| ψ̃2

1,|Θ2| · · · ψ̃n1,|Θ2| · · ·
ψ̃1

2,1 ψ̃2
2,1 · · · ψ̃n2,1 · · ·

...

...

ψ̃1
|Θ|,|Θ2| ψ̃2

|Θ|,|Θ2| · · · ψ̃n|Θ|,|Θ2| · · ·

Then along each of the K = |Θ||Θ2| rows the variables are independent
draws from a fixed distribution. We can apply Lemma 4.1 along any fixed
row of the array to conclude that with P̂-probability at least 1− q

2K
, for all

n the empirical measure for the first n observations along the row is within

cn =

√
2

n
log

π2n22K

3q

of the true distribution in the sup-norm. (Note that cn → 0.) Thus, if
we let E ∈ B denote the event where this is true along all K rows, then
P̂(E) ≥ 1− q

2
.

Given any T and any strategy ρ2 ∈ R̄
q

2|Θ| ,T

2 for player 2, the array can be
used to generate a sequence (θt1,m

t
2)t≥1 of player 1’s types (which equal his

messages) and player 2’s messages as follows. Player 2’s first period message
is some m1

2. Since λ1 puts probability one on some θ1, player 1’s period 1 type
is simply θ1

1 = θ1. Player 2’s message in period 2 is given by m2
2 = ρ2

2(θ1
1).

Player 1’s period 2 type θ2
1 is then drawn by sampling the first variable in

the row indexed by (θ1
1,m

1
2),m2

2 (i.e., by setting θ2
1 = ψ1

(θ1
1 ,m

1
2),m2

2
). Player 2’s

period 3 message is then given by m3
2 = ρ3

2(θ1
1, θ

2
1). Player 1’s period 3 type is

then drawn by sampling the first element of the row indexed by (θ2
1,m

2
2),m3

2,
unless (θ1

1,m
1
2),m2

2 = (θ2
1,m

2
2),m3

2, in which case the second variable in the
row indexed by (θ1

1,m
1
2),m2

2 is sampled instead. And so forth.
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To see that this construction indeed gives rise to the right process for the
T -period environment, fix (θt1,m

t
2)Tt=1. Obviously we must have

mt
2 = ρt2(θ1

1, . . . , θ
t−1
1 )

for all t = 1, . . . , T since otherwise the probability of this sequence is trivially
zero. So suppose this is the case. Then the probability of the sequence
according to the original description of the process is simply

λ1(θ1
1)P1(θ1

1, θ
2
1) · · ·P1(θT−1

1 , θT1 ).

On the other hand, the above array construction assigns this sequence the
probability

λ1(θ1
1)P̂(ψ̃1

(θ1
1 ,m

1
2),m2

2
= θ2

1) · · · P̂(ψ̃k
(θT−1

1 ,mT−1
2 ),mT2

= θT1 ),

where k−1 is the number of times the combination (θT−1
1 ,mT−1

2 ),mT
2 appears

in the sequence, and where we have used independence of the ψ̃nθ,θ2 to write
the joint probability as a product. By construction of the array,

P̂(ψ̃1
(θ1

1 ,m
1
2),m2

2
= θ2

1) = P1(θ1
1, θ

2
1)

and

P̂(ψ̃k
(θT−1

1 ,mT−1
2 ),mT2

= θT1 ) = P1(θT−1
1 , θT1 ),

(and similarly for the elements we haven’t explicitly written out) so both
methods assign the sequence the same probability.

It suffices to show that if T is large enough, then conditional on E, given

any ρ2 ∈ R̄
q

2|Θ| ,T

2 , we have ‖πT − π‖ < q. Let P T denote the empirical tran-
sition matrix for the sequence (θt1,m

t
2)Tt=1.36 By Lemma A.1 in Appendix A,

there exists T̄ and ν > 0 such that if T ≥ T̄ and ‖P T − P‖ < ν, then
‖πT − π‖ < q. (Recall that P is the transition matrix for the joint type pro-
cess.) Thus, in order to show that the distribution of messages πT converges
to π on E, it is enough to show that the transitions P T converge to P on E.

Let p = mini∈I min {Pi(θi, θ′i) : Pi(θi, θ
′
i) > 0} denote the smallest positive

transition probability. For any x ∈ R+, let bxc = max {n ∈ N0 : n ≤ x}.

Claim 4.1. Suppose that conditional on E, the message profile θ̄ ∈ Θ is sent
at least n+ 1 times during T periods. Then

(1) ‖P T (θ̄, ·)− P (θ̄, ·)‖ ≤ cb(p−bαn)nc + bαn, and
(2) the number of times each θ in the support of P (θ̄, ·) is sent is at least

b(p− cb(p−bαn)nc)b(p− bαn)ncc.

36That is, put

PT ((θ1,m2), (θ′1,m
′
2)) =

|{s < T : ((θs1,m
s
2), (θs+1

1 ,ms+1
2 )) = ((θ1,m2), (θ′1,m

′
2))}|

|{s < T : (θs1,m
s
2) = (θ1,m2)}|

.
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Proof. Define the sets

τ(θ̄) = {t ∈ {2, . . . , T} : mt−1 = θ̄}
and

τ(θ̄, θ2) = {t ∈ {2, . . . , T} : (mt−1,mt
2) = (θ̄, θ2)}, θ2 ∈ Θ2.

Let P T
2 (θ̄, ·) denote the empirical distribution of player 2’s messages over

τ(θ̄). By assumption |τ(θ̄)| ≥ n so that by construction of the message
spaces we have

‖P T
2 (θ̄, ·)− P2(θ̄, ·)‖ ≤ bα|τ(θ̄)| ≤ bαn,

where we have included θ̄1 as an argument in player 2’s type transition P2

for convenience. Thus for all θ2 in the support of P2(θ̄, ·) we have

|τ(θ̄, θ2)| ≥ b(P2(θ̄, θ2)− bαn)nc ≥ b(p− bαn)nc.
Let P T

1 ((θ̄, θ2), ·) denote the empirical distribution of player 1’s types over
τ(θ̄, θ2). By the above construction P T

1 ((θ̄, θ2), ·) can be taken to be the
empirical distribution for the first |τ(θ̄, θ2)| elements of the θ̄, θ2-row in our
array. Since we are conditioning on the event E, we thus have

‖P T
1 ((θ̄, θ2), ·)− P1(θ̄, ·)‖ ≤ c|τ(θ̄,θ2)| ≤ cb(p−bαn)nc.

But then the joint message distribution P T (θ̄, ·) over τ(θ̄) satisfies

|P T (θ̄, θ)− P (θ̄, θ)| = |P T
2 (θ̄, θ2)P T

1 ((θ̄, θ2), θ1)− P2(θ̄, θ2)P1(θ̄, θ1)|
≤ P T

2 (θ̄, θ2)|P T
1 ((θ̄, θ2), θ1)− P1(θ̄, θ1)|

+ P1(θ̄, θ1)|P T
2 (θ̄, θ2)− P2(θ̄, θ2)|

≤ cb(p−bαn)nc + bαn,

where the equality is simply by definition, the first inequality is by triangle
inequality, and the second inequality follows by the above results. This
establishes (1). Furthermore, the number of times each θ in the support of
P (θ̄, ·) is sent over τ(θ̄) is bounded from below by

b(p− bαn)nc(P1(θ̄, θ1)− cb(p−bαn)nc) ≥ b(p− bαn)nc(p− cb(p−bαn)nc),

where b(p−bαn)nc is the lower bound on |τ(θ̄, θ2)| from above, and P1(θ̄, θ1)−
cb(p−bαn)nc is a lower bound on P T

1 ((θ̄, θ2), θ1). This establishes (2). �

Since P is irreducible, there exists L < ∞ such that it is possible to go
from any θ̄ ∈ Θ to any other θ ∈ Θ in at most L steps. Thus iterating the
claim at most L times we obtain bounds for ‖P T (θ, ·)−P (θ, ·)‖ for all θ ∈ Θ.
(Indeed, in the special case where P has full support only one iteration is
needed.) By inspection the bounds in (1) and (2) are independent of θ̄, so
this procedure yields a bound on ‖P T − P‖ which is independent of θ̄. It is
straightforward to check that this bound converges to zero as n → ∞ since
only finitely many iterations are needed.

We will now use Claim 4.1 and Lemma A.1 to finish the proof of the
proposition. For any T and any ρ2 there exists some θ̄ ∈ Θ that is sent at
least T

|Θ| times during the T periods. We may thus put n+1 = T
|Θ| in Claim 4.1
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and iterate it at most L times to get a bound on ‖P T − P‖ conditional on
E. The bound so obtained is independent of θ̄ and hence independent of ρ2.
Moreover, since n grows linearly in T , the bound is arbitrarily small if T is
large enough. So for T large enough we can apply Lemma A.1 to conclude
that ‖πT − π‖ < q conditional on E. �

We can now establish condition (∗). Since A and Θ are finite, there exists
B <∞ such that |u1(a, θ1)| ≤ B. Put

q =
ε

4B|Θ|
and α =

q

2|Θ|
.

Since Θ1 is finite, Proposition 4.1 implies that if player 1 is honest, then there
exists T ∗ such that for all initial types θ1, all ρ2 ∈ R̄α,T

2 , and all T ≥ T ∗, we

have P(‖πT −π‖ < q) > 1− q. Now fix θ1, T ≥ T ∗, and some ρ2 ∈ R̄α,T
2 that

achieves w(θ1, 1, T, α). Since 0 ≤ ‖πT − π‖ ≤ 1, we then have

E(ρ∗1,ρ2)[‖πT − π‖] < (1− q)q + q ≤ 2q =
ε

2B|Θ|
.

This implies that∣∣∣w(θ1, 1, T, α)− v1

∣∣∣ =
∣∣∣E(ρ∗1,ρ2)

[ 1

T

T∑
t=1

u1(f(θt1,m
t
2), θt1)

]
−
∑
θ∈Θ

πθu1(f(θ), θ1)
]∣∣∣

=
∣∣∣E(ρ∗1,ρ2)

[∑
θ∈Θ

(πTθ − πθ)u1(f(θ), θ1)
]∣∣∣

≤ B|Θ|E(ρ∗1,ρ2)[‖πT − π‖] ≤
ε

2
,

where the equalities follow by simply writing out the definitions and rearrang-
ing terms, the first inequality follows by passing the absolute value through
the expectation and the sum, and the last inequality is by the bound on
E(ρ∗1,ρ2)[‖πT − π‖]. This implies condition (∗).

To complete the proof of Theorem 4.1, note that the choice of α above
is independent of the identity of the players. Hence, reversing the roles of
the players in the above argument and taking the maximum over the cutoff
times and discount factors across players implies the result.

5. Proof of Theorem 3.1

Let f and f i be the decision rules giving expected payoffs v and wi re-
spectively. Before turning into the analysis of the dynamic-game strategies
resulting in payoffs approximately equal to v, it is useful to introduce and
study an auxiliary dynamic mechanism we use as off-path punishment.

5.1. Preliminaries: The Punishment Mechanism. For i ∈ I, take a
minmaxing action

ai−i ∈ arg min
a−i∈A−i

max
ai∈Ai

Eπi [ui(a, θi)].



A FOLK THEOREM WITH MARKOVIAN PRIVATE INFORMATION 33

For each Li, T i, and α, we consider an infinite-horizon dynamic mechanism,
characterized by the tuple (i, Li, (f i,Mαi,T i)∞), running through t = 1, 2, . . . .
At each date t = 1, . . . , Li, player i picks an action ati ∈ Ai; player −i has
no choice but to pick at−i = ai−i. At t = Li + 1, the block mechanism

(f i,Mαi,T i)∞ starts. Note that the construction of the block mechanism
starting at Li + 1 does not depend on how play transpires during the first
Li rounds of the mechanism. We think of this mechanism as embedded
in our main dynamic game model. In particular, the evolution of private
types is characterized by the transition matrix P and players’ payoffs are the
discounted sum of period payoffs. We allow the initial beliefs to be different
from λ and equal to some µ.

The mechanism described above is what we call the “punishment mecha-
nism against i.” It starts with a stick phase in which player −i is restricted
to minmax player i during Li periods while player i can choose arbitrary
actions ati ∈ Ai. The mechanism then moves on to a carrot phase in which
players simultaneously report their types, subject to the restrictions imposed
by the block mechanism (f i,Mαi,T i)∞.

The punishment mechanism inherits many of the properties of the block
mechanism already discussed in Section 4.3, important among them is the
following corollary.

Corollary 5.1. Fix i ∈ I, let wi be on the Pareto-frontier of V , and let
ε > 0. There exists a block mechanism (f i,Mαi,T i)∞ and a discount factor
δ∗ such that, for all δ ≥ δ∗, all Li, all µ, and all sequential equilibria of
the punishment mechanism (i, Li, (f i,Mαi,T i)∞), the expected continuation
payoff profile is within distance ε of wi at all feasible histories of length at
least Li + 1.

The punishment mechanism possesses a sequential equilibrium (Fudenberg
and Levine, 1983).

5.2. Strategies and Beliefs. Equilibrium strategies can be informally de-
scribed as follows.37 Players start in the cooperative phase by reporting
as in a sequential equilibrium of the block mechanism (f,Mα,T )∞, where
v = Eπ[u(f(θ), θ)], and given a message profile mt ∈ Θ, by taking actions
according to f(mt). Any observable deviation by player i (i.e., reporting a
message that would have been infeasible in the mechanism, or, given mes-
sages mt, choosing an action other than fi(m

t)) triggers the players to mimic
the play of a sequential equilibrium of the punishment mechanism against i.
As described above, this consists of an Li-period stick phase followed by a
carrot phase. An observable deviation by any player j from the equilibrium
of the punishment mechanism against i triggers the players to mimic the play
of a sequential equilibrium of the punishment mechanism against j, unless
the deviation is by player i during the stick phase against himself, in which

37How we set the free parameters describing the strategies will be discussed in the next
subsection.
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case play continues to mimic the equilibrium of the punishment mechanism
against i.

Let us now describe more formally the assessment. To simplify the no-
tation, in the sequel we assume that f(θ), f i(θ) ∈ A for all θ ∈ Θ and all
i ∈ I. (We note that when f is a randomized rule, players coordinate their
actions by conditioning on the realization of the public randomization de-
vice.) Take Hα,T as the set of all public histories of feasible messages of
the block mechanism (f,Mα,T )∞. These histories are not proper dynamic
game public histories as they do not specify actions ensuing reports. It is
therefore useful to define the set of cooperative histories Hα,T

f as the set of

histories in which the reports belong to Hα,T and each report mt is followed

by an action profile f(mt). It is also useful to define Hαj ,Lj ,T j

fj
as the set of

dynamic game public histories in which players play as in arbitrary feasible
histories of the punishment mechanism (j, Lj, (f j,Mαj ,T j)∞) with arbitrary
reports during the cheap talk stages of the first Lj rounds, j picking arbi-
trary actions aj ∈ Aj but −j minmaxing j by choosing aj−j during the first

Lj rounds, whereas from round Lj+1 on messages are restricted by the block
mechanism (f j,Mαj ,T j)∞ and actions coincide with f j(mt).38

The assessment (σ, µ) is constructed as follows. Pick first a sequential
equilibrium (ρ0, µ0) of the block mechanism (f,Mα,T )∞, given initial beliefs

λ ∈ ∆(Θ). For cooperative histories h ∈ Hα,T
f , σi mandates player i to

report as ρ0
i , and to pick actions according to fi(m

t). Beliefs are as given by
the belief system µ0.

Take now a history h /∈ Hα,T
f such that all histories preceding it belong

to Hα,T
f . If it is not enough to change the action of only one player to

transform h into a history in Hα,T
f , then restart the mechanism with some

given beliefs µ̄. Suppose then that it is enough to change the play of only
one of the players, say player j, to transform h into a history belonging
to Hα,T

f . As discussed informally above, play now mimics the behavior in
a punishment mechanism against j. Take the beliefs players have at the
beginning of the punishment mechanism about the rivals’ current type as
µ̄−j and µ̃j, where µ̄−j is fixed and µ̃j is the belief player j can form about
−j’s type by using Bayes rule after observing the preceding on-path behavior
by −j. Let (ρj, µj) be the sequential equilibria of the punishment mechanism

(j, Lj, (f j,Mαj ,T j)∞), given the beliefs µ̄−j and µ̃j. For histories (h, h′) with

h′ ∈ Hαj ,Lj ,T j

fj
of length less than Lj (i.e., stick-phase histories) pick reports

uniformly in Θi; play the minmaxing action aji if j 6= i, or pick actions as

prescribed by the equilibrium ρji of the punishment mechanism against j if

38Formally, Hαj ,Lj ,T j

fj is composed of two types of histories. Histories of length less than

Lj , say t ≤ Lj , belonging to Θt × At′j × {a
j
−j}t

′
, with t′ = t or t′ = t − 1; and histories

of length greater than Lj obtained by concatenating the aforementioned histories, for
t′ = t = Lj , with histories in Hα,T j

fj .
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j = i. For histories of length greater than Lj (i.e., carrot-phase histories)
the reports are as prescribed by ρj and actions are taken as mandated by
f j. Beliefs are as given by the belief system µj associated to the punishment
mechanism equilibrium.

If after some history player k deviates while −k conformed to the above
punishment phase, then start mimicking the punishment mechanism against
k as explained computing beliefs about current types by Bayes rule when
possible. The exception is that after deviations by player i in the stick phase
against himself the play continues as specified by ρi.

5.3. Proof. Suppose, without loss, that ε > 0 is small enough such that
there exists γ ∈]0, 1[ satisfying

vi + ε < min{vi, wii}

wii + ε < min{vi, w−ii }

γ >
ε

wii − vi
and

γ
(
v−i +

ε

2
− b
)

+ (1− γ)
(
w−i−i − wi−i + ε

)
< 0.

for all i ∈ I, where b = min{ui(a, θi) | i ∈ I, a ∈ A, θi ∈ Θi}. Such γ can
always be found when ε is small enough, given our assumptions on v and wi.

Take now the block mechanism (f,Mα,T )∞ yielding payoffs within distance
ε/2 of v for all sequential equilibria (Corollary 4.2) and the punishment

mechanism (i, Li, (f i,Mαi,T i)∞) yielding payoffs within distance ε/2 of wi

during the carrot phase (Corollary 5.1), for all δ ≥ δ0 and all Li. We will
prove that when δ is large enough we can pick Li, for each i ∈ I, such that
the assessment described in the previous subsection forms a PBE.

Note that in the punishment mechanism against i, player i’s total expected
payoff during the first Li rounds in which he is being minmaxed is at most

max
θi∈Θi

Li∑
t=1

δtE[max
ai∈Ai

ui(ai, a
i
−i, θ

t
i) | θ1

i = θi].

The following lemma uses the irreducibility of each player’s type process to
provide an upper bound for this term for large Li. It will be convenient to
consider di ∈ N as the period of the Markov chain with transition matrix Pi
(see Norris 1997 for details) and define

Li(δ) = max{ndi | n ∈ N, ndi ≤ d ln(1− γ)

ln(δ)
e}.

We observe that, as δ → 1, Li(δ)→∞ and δL
i(δ) → 1− γ.
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Lemma 5.1. There exists δ1 ≥ δ0 such that for all δ > δ1, all i ∈ I, and all
θi ∈ Θi

1− δ
1− δLi(δ)

Li(δ)∑
t=1

δt−1E
[

max
ai∈Ai

ui(ai, a
i
−i, θ

t
i) | θ1

i = θi

]
≤ vi +

ε

2
.

The proof of this result is presented in the Appendix B.
Let us now show that for all δ sufficiently large, when Li = Li(δ), the

prescribed assessment forms an equilibrium. Since in all equilibria of the
block and punishment mechanisms beliefs are consistent, it is enough to
show that (σ, µ) is sequentially rational. Now, deviations that do not trigger
a change in phase cannot be optimal as the prescribed behavior corresponds
to a sequentially rational behavior in a game having, at each round, the same
expected continuation payoffs as in our dynamic game. (In other words, such
a deviation would be a profitable deviation in the block mechanism or in the
punishment mechanism, which is impossible given that the play within each
phase mimics a sequential equilibrium of the mechanism.) Thus, it is enough
to show that deviations triggering a change in phase cannot be optimal.39

Consider first the incentives at the cheap-talk stage (i.e., at t.2). At any
stick-phase history each player i randomizes uniformly over Θi and hence all
messages are on the equilibrium path. At any cooperative or carrot phase
history, conforming to the equilibrium strategy player i is getting at least
wii − ε

2
, while a deviation will result in a payoff of at most

(1− δLi)(vi +
ε

2
) + δL

i

(wii +
ε

2
) ≤ wii +

ε

2
,

where we use Lemma 5.1 to bound the stick payoffs. Taking the limit as
δ → 1, the incentive constraint becomes vi + ε ≤ wii, which holds with strict
inequality. Thus we can find δ2 ≥ δ1 such that for all δ > δ2, the incentive
constraint holds.

Consider then the incentives to conform with the prescribed actions at the
action stage (i.e., at t.4).

Cooperative Histories. At any history h ∈ Hα,T
f , player i’s payoff is at

least vi − ε
2
. A deviation will trigger the punishment mechanism and, from

Lemma 5.1, will yield expected payoffs of at most

(1− δ)B+(δ − δLi+1)(vi +
ε

2
) + δL

i+1
(
wii +

ε

2

)
≤ (1− δ)B + (δ − δ2)(vi +

ε

2
) + δ2

(
wii +

ε

2

)
.

At δ = 1, the right side is strictly less than the vi − ε
2

and thus we can find
δ3 ≥ δ2, such that for all δ > δ3, the on-path incentives hold.

Stick-Phase Histories. During the first Li rounds of a punishment mech-
anism against i, by construction of the strategies, player i has no incentive
to deviate from his prescribed equilibrium strategy. It is therefore enough to

39Note that such deviations include “double deviations,” where a player first deviates
unobservably and only then deviates in a way that triggers the punishment.
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show that it is in player −i’s interest to choose ai−i. Indeed, by conforming,
−i’s payoff is at least

(1− δLi)b+ δL
i
(
wi−i −

ε

2

)
,

while a deviation will result in a current payoff of at most B and will trigger
a punishment mechanism against −i. From Lemma 5.1, this will result in a
payoff of at most

(1− δ)B + (δ − δLi+1)(vi +
ε

2
) + δL

i+1
(
w−i−i +

ε

2

)
.

The incentive constraint can be written as

(1− δ)B + (1− δLi)
{
δ
(
v−i +

ε

2

)
− b
}

+ δL
i
{
δ
(
w−i−i +

ε

2

)
− (wi−i −

ε

2
)
}
≤ 0.

As δ → 1, the left side goes to γ
(
v−i + ε

2
− b
)

+ (1 − γ)
(
w−i−i − wi−i + ε

)
which is strictly less than 0. Therefore, there exists δ4 ≥ δ3 such that for all
δ > δ4, the incentive constraint holds.

Carrot-Phase Histories. Consider now the incentives each of the players
has during the carrot phase following the stick phase triggered after a devi-
ation by i. It is enough to show that, after each history of reports, it is in
each of the players’ interest to choose actions as prescribed by f i(mt). Con-
forming to the equilibrium strategy, player j gets a payoff of at least wij − ε

2
.

A deviation by j will trigger the punishment phase against j resulting in an
expected discounted payoff of at most

(1− δ)B + (δ − δLi+1)
(
vj +

ε

2

)
+ δL

i+1
(
wjj +

ε

2

)
.

Player j will not deviate provided

(1− δ)B + (δ − δLi+1)
(
vj +

ε

2

)
+ δL

i+1
(
wjj +

ε

2

)
≤ wij −

ε

2
.

As δ → 1, the inequality becomes

γ
(
vj +

ε

2

)
+ (1− γ)

(
wjj +

ε

2

)
≤ wij −

ε

2
,

and this inequality will hold strictly provided

γ >
ε

wjj − vj
.

Hence there exists δ5 ≥ δ4 such that for all δ > δ5, the corresponding in-
equality holds.

It then follows that by taking δ̄ = δ5, the prescribed strategies form a PBE
when δ > δ̄.
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6. Concluding Remarks

Private information is a pervasive feature of many economic situations.
There are well known examples showing how informational asymmetries im-
pair efficiency and how interaction among self-interested players may result
in dramatic efficiency losses. The present paper asks whether the cost of
asymmetric information and self-interested behavior disappears when the
interaction is repeated and shows that—under plausible restrictions on the
nature of the private information—the answer is “yes” provided that the
players are sufficiently patient.

Our main theorem applies to infinitely repeated games with changing pri-
vate types generated from an irreducible Markov chain. It shows that any
ex-ante efficient payoff profile can be virtually attained in an equilibrium of
the game as the discount factor goes to 1. Understanding the role of efficiency
and patience in these results is a problem that deserves further attention.

We assume that the process governing the evolution of types is autonomous
in that it is independent of the players’ actions. Extending the results to
decision controlled processes studied in the literature on stochastic games
with a public Markov state (see, e.g., Dutta, 1995, and the references therein)
appears feasible, but is notationally more involved.

The main restrictions on the nature of the private information are the
assumptions about private values and independence of transitions across
players. Both assumptions are crucial for our argument. The literature on
mechanism design tells us that when valuations are interdependent (some-
times referred to as common values), efficiency need not be achievable (see
Jehiel and Moldovanu, 2001). Thus extending our results to games with in-
terdependent valuations necessitates additional assumptions about how the
information effects the players’ payoffs. In contrast, going from independent
to correlated types in general expands the set of implementable outcomes
in a mechanism design setting (see Cremer and McLean, 1988). This sug-
gests that the results can be potentially extended to the case of correlated
transitions.

We focus on adverse selection by assuming that monitoring is perfect. A
natural question is whether the approach can be extended to games with
imperfect public monitoring of actions (as in, e.g., Abreu, Pearce, and Stac-
chetti, 1990; Fudenberg, Levine, and Maskin, 1994).

Finally, we can think of the type process as being generated by an under-
lying continuous time process which is sampled at fixed intervals. Then our
approach of varying the discount factor δ but keeping the process fixed cor-
responds to varying the (continuous time) discount rate keeping the length
of the intervals fixed. A plausible alternative in the spirit of Abreu, Mil-
grom, and Pearce (1991) and Sannikov and Skrzypacz (2007) is to keep the
discount rate fixed and vary the interval length instead. In our model this
corresponds changing the process as δ tends to 1. This is roughly equiv-
alent to making the process more persistent the more patient the players.
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As noted in footnote 1, under perfect persistence of private information a
folk theorem does not hold. Hence increasing persistence is potentially bad
news for efficiency. We plan to investigate to what extent this may limit the
players ability to sustain cooperation in future work.

Appendix A. Proofs for the Mechanism Section

This appendix contains the omitted proofs from Section 4 and an auxiliary
lemma used in the proof of Proposition 4.1. They are presented in the order
they appear in the main text.

Proof of Lemma 4.1. Without loss we may label the elements of Θ from 1 to
|Θ|. Define the cdf G from g by setting G(k) =

∑k
j=1 g(j). The empirical

cdf’s Gn are defined analogously from gn. For all n, all k,

|gn(k)− g(k)| ≤ |Gn(k)−G(k)|+ |Gn(k − 1)−G(k − 1)|,

so that ‖gn − g‖ ≤ 2‖Gn − G‖. Defining the events Bn = {‖gn − g‖ ≤ bn}
we then have

{
‖Gn −G‖ ≤ bn

2

}
⊂ Bn. Thus,

P(Bn) ≥ P(‖Gn −G‖ ≤ bn
2

) ≥ 1− 2e−2n( bn
2

)2

= 1− 6α

π2n2
,

where the second inequality is by Massart (1990) and the equality is by
definition of bn. The lemma now follows by observing that

P(
⋂
n∈N

Bn) = 1− P(
⋃
n∈N

BC
n ) ≥ 1−

∑
n∈N

P (BC
n ) ≥ 1−

∑
n∈N

6α

π2n2
= 1− α,

where the last equality follows since
∑∞

n=1
1
n2 = π

6
. �

Proof of Lemma 4.2. The following claim presents a useful characterization
of the set V (δ, T ).

Claim A.1. For all δ and all T ,

V (δ, T ) =
{
v ∈ RI | ∃f : Θ→ ∆(A) v =

1− δ
1− δT

T∑
t=1

δt−1E[u(f(θt), θt)]
}
.

To prove the claim, note first that V (δ, T ) is convex and thus it can be
obtained as the convex hull of its extreme points. Moreover, for any such
extreme point we can find a vector p ∈ R2 such that the stationary rule
f : Θ→ A resulting in total payoffs v solves f(θ) ∈ arg maxa∈A p · u(a, θ) for
all θ ∈ Θ. Considering arbitrary randomizations over the extreme points, we
obtain the whole set V (δ, T ).

We now prove the lemma. For each T , denote by πT the empirical distri-
bution of types, given a realization (θ1, . . . , θT ). Then, there exists T ′ such
that for all T ≥ T ′,

P[
∥∥πT − π∥∥ < ε

4B |Θ|
] > 1− ε

4B |Θ|
,
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and thus
E[
∥∥πT − π∥∥] ≤ ε

2B |Θ|
.

For each T ≥ T ′, take δ′ > 0 such that for all (at)Tt=1 ∈ AT , all (θt)Tt=1 ∈ ΘT ,
and all δ ≥ δ′ ∣∣∣∣∣ 1

T

T∑
t=1

u(at, θt)− 1− δ
1− δT

T∑
t=1

δt−1u(at, θt)

∣∣∣∣∣ < ε

4
.

To prove the result, we need to show that for T ≥ T ′ and δ ≥ δ′(= δ′(T ))

dist(V, V (δ, T )) = max
{

sup
v∈V

dist(v, V (δ, T )), sup
v′∈V (δ,T )

dist(v′, V )
}
< ε.

Take first v ∈ V and the rule f : Θ → ∆(A) such that v = Eπ[u(f(θ), θ)].
Now, take v′ ∈ V (δ, T ) defined as

v′ =
1− δ

1− δT
T∑
t=1

δt−1E[u(f(θ), θ)].

Note that

|v − v′| ≤

∣∣∣∣∣Eπ[u(f(θ), θ)]− 1

T

T∑
t=1

E[u(f(θ), θ)]

∣∣∣∣∣
+

∣∣∣∣∣ 1

T

T∑
t=1

E[u(f(θ), θ)]− 1− δ
1− δT

T∑
t=1

δt−1E[u(f(θ), θ)]

∣∣∣∣∣ .
The first term on the right side is less than or equal to ε

2
. Indeed,∣∣∣∣∣Eπ[u(f(θ), θ)]− 1

T

T∑
t=1

E[u(f(θ), θ)]

∣∣∣∣∣ =

∣∣∣∣∣E[∑
θ∈Θ

u(f(θ), θ)
(
π(θ)− πT (θ)

)]∣∣∣∣∣
≤ E

[∑
θ∈Θ

|u(f(θ), θ)|
∣∣π(θ)− πT (θ)

∣∣ ]
≤ E[|Θ|B

∥∥π − πT∥∥]

≤ ε

2
.

To bound the second term,∣∣∣∣∣ 1

T

T∑
t=1

E[u(f(θ), θ)]− 1− δ
1− δT

T∑
t=1

δt−1E[u(f(θ), θ)]

∣∣∣∣∣
≤ E[

∣∣∣∣∣ 1

T

T∑
t=1

u(at, θt)− 1− δ
1− δT

T∑
t=1

δt−1u(at, θt)

∣∣∣∣∣] < ε

4
.

It then follows that |v − v′| < 3
4
ε and thus supv∈V dist(v, V (δ, T )) < ε.

Conversely, take v′ ∈ V (δ, T ) and the associated stationary decision rule

f : Θ → ∆(A) such that v′ = 1−δ
1−δT

∑T
t=1 δ

t−1E[u(f(θt), θt)]. Defining v =
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Eπ[u(f(θ, θ))] ∈ V , the bounds above show that |v′ − v| < 3
4
ε and thus

supv′∈V dist(v
′, V ) < ε. We have thus established the lemma. �

The following preliminary result is used in the proofs of Corollaries 4.1
and 4.2. Take p ∈ RI

+ \ 0 such that for all w ∈ V , p · w ≤ p · v. Define the
set Tr(κ, v) = {w ∈ RI | w′i ≥ vi − κ, p · w ≤ p · v}, for κ > 0.

Claim A.2. Assume that p � 0 and
∑

i∈I pi = 1. Then, for all w ∈
Tr(κ, v), ‖w − v‖ ≤ κmax{ 1

pi
| i ∈ I}.

Proof. Consider the problem max{‖w − v‖ | w ∈ Tr(κ, v)}. This is a maxi-
mization problem, with a convex objective function, and a convex and com-
pact set of restrictions. Corollary 32.3.2 in Rockafellar (1970) implies that
the maximum is attained at extreme points of Tr(κ, v). Let w be an extreme
point of Tr(κ, v) such that for some i, wi 6= vi−κ. Then, for j 6= i, wj = vj−κ
and p · w = p · v. (Otherwise, we would contradict the fact that w is an ex-
treme point by obtaining it as a convex combination of points in Tr(κ, v).)
It follows that for any such extreme point w, |wi − vi| = p−i

pi
κ ≤ 1

pi
κ. We

deduce that

max{‖w − v‖ | w ∈ Tr(κ, v)} ≤ max{κ,max
i∈I

κ

pi
} ≤ κmax{ 1

pi
| i ∈ I},

which proves the claim. �

We are now in a position to prove Corollaries 4.1 and 4.2.

Proof of Corollary 4.1. Assume, without loss, that for some vector p normal
to V at v, p� 0 and

∑
i∈I pi = 1. (If all normal vectors at v have some zero

component, v can be approximated by points in the frontier having strictly
positive normal vectors.) Take e > 0 such that e(1 + 2 max{ 1

pi
| i ∈ I}) = ε.

From Theorem 4.1 and Lemma 4.2, there is T ∗ such that for all T ≥ T ∗ there
exists δ∗ such that for all δ ≥ δ∗ (i) the Hausdorff distance between V and
V (δ, T ) is at most e, and (ii) for any Nash equilibrium payoff vδ,T ∈ V (δ, T )

of the mechanism (f,Mα,T ), vδ,Ti ≥ vi − e. Let wδ,T ∈ V be such that∥∥wδ,T − v∥∥ ≤ e and thus wδ,Ti ≥ vi − 2e for all i ∈ I, all T ≥ T ∗ and all

δ ≥ δ∗(T ). Since wδ,T ∈ Tr(2e, v), Claim A.2 implies that∥∥wδ,T − v∥∥ ≤ 2emax{ 1

pi
| i ∈ I},

and thus∥∥vδ,T − v∥∥ ≤ ∥∥vδ,T − wδ,T∥∥+
∥∥wδ,T − v∥∥ ≤ e(1 + 2 max{ 1

pi
| i ∈ I}) = ε.

The result follows. �

Proof of Corollary 4.2. We start by establishing the result about sequential
equilibria. Take p to be a normal vector to V at v, with p� 0 and

∑
i∈I pi =

1 and let e > 0 be such that e(1 + 2 max{ 1
pi
| i ∈ I}) = ε

2
. Theorem 4.1

and Lemma 2.1 implies the existence of a block mechanism (f,Mα,T )∞ and
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δ′ < 1 such that for all δ ≥ δ′ and all initial beliefs (i) the Hausdorff distance
between V and V (δ) is at most e, and (ii) each player i can secure a payoff
vi − e at the beginning of the block mechanism (f,Mα,T )∞. (To see (ii),
observe that Theorem 4.1 implies the result for each of the blocks and then
note that the total payoffs in the block mechanism can be decomposed as a
sum of payoffs over all the blocks.) Since (ii) holds irrespective of the initial
beliefs and the beginning of each block is the beginning of a block mechanism,
we can strengthen (ii) and say that (iii) each player i can secure a payoff
vi − e at the beginning of each block of the block mechanism (f,Mα,T )∞.
In particular, we have that (iv) for any sequential equilibrium payoff vδ,Tn

of the block mechanism (f,Mα,T )∞ accruing at the beginning of some block

(or, equivalently, after a history of length Tn with n ∈ N), vδ,Tni ≥ vi − e
for all i ∈ I. Now, combining (i), (iv), and Claim A.2, we deduce, as we
did in the proof of Corollary 4.1 that

∥∥vδ,Tn − v∥∥ ≤ ε
2
. Now, the result

follows by taking δ∗ ∈ [δ′, 1[ such that for all δ ≥ δ∗, (1−δT ) max{|ui(a, θi)| |
i ∈ I, a ∈ A, θi ∈ Θi} ≤ ε

4
and (1− δT ) ‖v‖ ≤ ε

4
.

The result about Nash equilibrium payoffs after on-path histories follows
by noting that after any on-path history a player can always revert to playing
the honest strategy. Details can be filled in as in the paragraph above. �

Proof of Lemma 4.3. Let λ1 be degenerate. Fix T and α > 0. Suppose
that the honest player 1 is not subject to the message spaces and hence is
truthful. It is straightforward to check that, by construction, player 2’s sets
of feasible messages remain non-empty at histories that include infeasible
messages by player 1. Furthermore, player 2’s strategy ρ2 can be extended
to such histories arbitrarily as they play no role in what follows.

It is convenient to introduce an auxiliary probability space.40 Consider
the probability space ([0, 1],B, P̂) and a countable collection of independent
random variables

ψ̃nθ : [0, 1]→ Θ1, θ ∈ Θ, n ∈ N,
where

P̂(ψ̃n(θ1,θ2) = θ′1) = P1(θ1, θ
′
1).

Imagine the variables ψ̃nθ set out in the following array:

ψ̃1
1 ψ̃2

1 · · · ψ̃n1 · · ·
ψ̃1

2 ψ̃2
2 · · · ψ̃n2 · · ·

...

ψ̃1
|Θ| ψ̃2

|Θ| · · · ψ̃n|Θ| · · ·

Given the array, we can think of the sequence of player 1’s types and player 2’s
messages, (θt1,m

t
2)Tt=1, as being generated as follows. Since λ1 puts probability

one on some θ1, player 1’s period 1 type is simply θ1
1 = θ1. Player 2’s period

40The construction is adapted from Billingsley (1961). It is similar to, yet distinct from,
the one used in the proof of Proposition 4.1.
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1 message is some constant m1
2. Player 1’s period 2 type θ2

1 is then drawn by
sampling the first variable in the row indexed by the first period messages
(θ1

1,m
1
2). (I.e., we observe ψ̃1

(θ1
1 ,m

1
2)

and put θ2
1 = ψ1

(θ1
1 ,m

1
2)

.) Player 2’s period 2

message is given by m2
2 = ρ2

2(θ1
1). Player 1’s period 3 type θ3

1 is then drawn by
sampling the first element of the row indexed by the second period messages
(θ2

1,m
2
2), unless (θ1

1,m
1
2) = (θ2

1,m
2
2), in which case the second variable in the

row indexed by (θ1
1,m

1
2) is sampled instead. And so forth.

To see that this construction indeed gives rise to the right process over the
T periods, fix a finite sequence (θ1

1,m
1
2), (θ2

1,m
2
2), . . . , (θT1 ,m

T
2 ). Obviously we

must have

mt
2 = ρt2(θ1

1, . . . , θ
t−1
1 )

for all t = 1, . . . , T since otherwise the probability of this sequence is trivially
zero. So suppose this is the case. Then the probability of the sequence
according to the original description of the process is simply

λ1(θ1
1)P1(θ1

1, θ
2
1) · · ·P1(θT−1

1 , θT1 ).

On the other hand, the above construction assigns this sequence the proba-
bility

λ1(θ1
1)P̂(ψ̃1

(θ1
1 ,m

1
2) = θ2

1) · · · P̂(ψ̃k
(θT−1

1 ,mT−1
2 )

= θT1 ),

where k − 1 is the number of times the pair (θT−1
1 ,mT−1

2 ) appears in the

sequence, and where we have used independence of the ψ̃nθ to write the joint
probability as a product. By construction of the array,

P̂(ψ̃1
(θ1

1 ,m
1
2) = θ2

1) = P1(θ1
1, θ

2
1),

and

P̂(ψ̃k
(θT−1

1 ,mT−1
2 )

= θT1 ) = P1(θT−1
1 , θT1 ),

(and similarly for the elements we haven’t explicitly written out) so both
methods assign the sequence the same probability. Hence we may work with
the auxiliary probability space and the above array.

We may apply Lemma 4.1 along each row of the array to conclude that,
with P̂-probability at least 1 − α, for all n ∈ N the empirical measure of
the first n observations along the row is within bαn of the true distribution.

Hence with P̂-probability at least 1 − |Θ|α this is true along all |Θ| rows.
But in this event player 1’s truthful reports remain feasible even if he was
subject to the message spaces: Regardless of how the realized types θt1 and
the strategy ρ2 lead us to sample from the array, player 1’s types (and hence
his messages) are converging fast enough conditional on any previous period
message profile θ because, by construction, player 1’s types in periods t where
mt−1 = θ are drawn along the row indexed by θ.

In terms of the original description of the process the above argument
implies that with at least probability 1− |Θ|α we get a sample path (θt1)Tt=1

such that truthful reporting is feasible. But given such a path player 1 is
truthful even if he was subject to the messages spaces. The claim follows. �
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The following lemma is used in the proof of Proposition 4.1.

Lemma A.1. Let P be an irreducible stochastic matrix on a finite set Θ,
and let π denote the unique invariant distribution for P . Let (θt)t∈N be a
sequence in Θ. For all t, define the empirical matrix P t by setting

P t(θ, θ′) =
|{s ∈ {1, . . . , t− 1} : (θs, θs+1) = (θ, θ′)}|

|{s ∈ {1, . . . , t− 1} : θs = θ}|
,

and define the empirical distribution πt by setting

πtθ =
|{s ∈ {1, . . . , t} : θs = θ}|

t
.

For all ε > 0 there exists T <∞ and η > 0 such that for all t ≥ T ,

‖P t − P‖ < η ⇒ ‖πt − π‖ < ε.

P t is an empirical transition matrix that records for each state θ the em-
pirical conditional frequencies of transitions θ → θ′ in (θs)ts=1. Similarly, πt

is an empirical measure that records the frequencies of visits to each state
in (θs)ts=1. So in words the lemma states roughly that if the conditional
transition frequencies converge to those in P , then the empirical distribution
converges to the invariant distribution for P .

Proof. Fix θ′ ∈ Θ and t ∈ N. Note that tπtθ′ is the number of visits to θ′ in
(θs)ts=1. Since each visit to θ′ is either in period 1 or preceded by some state
θ, we have

tπtθ′ ≤ 1 +
∑
θ∈Θ

|{s < t : θs = θ}|P t(θ, θ′) ≤ |Θ|+
∑
θ∈Θ

tπtθP
t(θ, θ′).

On the other hand,

tπtθ′ ≥
∑
θ∈Θ

|{s < t : θs = θ}|P t(θ, θ′) ≥
∑
θ∈Θ

tπtθP
t(θ, θ′)− |Θ|,

where the second inequality follows, since |{s < t : θs = θ}| ≥ tπtθ − 1 and∑
θ P

t(θ, θ′) ≤ |Θ|. Putting together the above inequalities gives

−|Θ|
t
≤ πtθ′ −

∑
θ∈Θ

πtθP
t(θ, θ′) ≤ |Θ|

t
.

Since θ′ was arbitrary, we have in vector notation

−|Θ|
t

1 ≤ πt(I − P t) ≤ |Θ|
t

1,

where I is the identity matrix and 1 denotes a |Θ|-vector of ones. This implies

that for all t, there exists et ∈ R|Θ| such that ‖et‖ ≤ |Θ|
t

and πt(I −P t) = et.
Let E be a |Θ| × |Θ|-matrix of ones. Then

πt(I − P t + E) = 1 + et and π(I − P + E) = 1.

It is straightforward to verify that the matrix I − P + E is invertible when
P is irreducible (see, e.g., Norris, 1997, Exercise 1.7.5). The set of invertible



A FOLK THEOREM WITH MARKOVIAN PRIVATE INFORMATION 45

matrices is open, so there exists η1 > 0 such that I − P t + E is invertible if
‖P t−P‖ < η1. Furthermore, the mapping Q 7→ (I−Q+E)−1 is continuous
at P , so there exists η2 > 0 such that ‖(I−P t+E)−1−(I−P +E)−1‖ < ε

4|Θ|
if ‖P t − P‖ < η2. Put η = min {η1, η2} and put

T =
2|Θ|2‖(I − P + E)−1‖

ε
.

If t ≥ T and ‖P t − P‖ < η, then

‖πt − π‖ = ‖(1 + et)(I − P t + E)−1 − 1(I − P + E)−1‖
≤ ‖(1 + et)[(I − P t + E)−1 − (I − P + E)−1]‖+ ‖et(I − P + E)−1‖

≤ 2|Θ|‖(I − P t + E)−1 − (I − P + E)−1‖+
|Θ|2

t
‖(I − P + E)−1‖

≤ ε

2
+
ε

2
.

The lemma follows. �

Appendix B. Proof of Lemma 5.1

Proof. Fix i ∈ I and the initial state θ1
i = θi. Let P (t)(θi, θ

′
i) = P[θti = θ′i |

θ1
i = θi]. From Theorem 1.8.4 in Norris (1997), for each i ∈ I, there exists a

partition (Ci
r)
di

r=1 of Θi such that P
(n)
i (θi, θ

′
i) > 0 only if θi ∈ Ci

r and θ′i ∈ Ci
r+n

for some r ∈ {1, . . . , di}, where we write Ci
ndi+r = Ci

r. Observe that, without

loss, we can assume that the initial state is such that θi ∈ Ci
1 for all i.

From Theorem 1.8.5 in Norris (1997), there exists N = N(θi) ∈ N such

that for all n ≥ N and all θ′i ∈ Ci
r,
∣∣∣P (ndi+r)(θi, θ

′
i)− diπi(θ′i)

∣∣∣ ≤ ε
8B|Θi| . Note

that for any such n ≥ N ,

∣∣∣∣∣∣
di∑
r=1

∑
θ′i∈Θi

max
ai

ui(ai, a
i
−i, θ

′
i)(P

(ndi+r)(θi, θ
′
i)− πi(θ′i))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
di∑
r=1

∑
θ′i∈Cir

max
ai

ui(ai, a
i
−i, θ

′
i)
(
P (ndi+r)(θi, θ

′
i)− diπi(θ′i)

)∣∣∣∣∣∣
≤

di∑
r=1

∑
θ′i∈Cir

B
ε

8B |Θi|
≤ ε

8
.



46 ESCOBAR AND TOIKKA

Now, note that for any δ and any L ≥ Ndi + 1,∣∣∣∣∣ 1− δ
1− δL

L∑
t=1

δt−1E[max
ai∈Ai

ui(ai, a
i
−i, θ

t
i) | θi]− vi

∣∣∣∣∣
≤ 1− δNdi

1− δL
2B+

∣∣∣∣∣∣ 1− δ
1− δL

L∑
t=Ndi+1

δt−1
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (t)(θ′i)− πi(θ′i)

)∣∣∣∣∣∣ .
To bound the second term, assume L/di ∈ N and note that∣∣∣∣∣∣

L∑
t=Ndi+1

δt−1
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (t)(θ′i)− πi(θ′i)

)∣∣∣∣∣∣
≤

L/di−1∑
n=N

δnd
i−1

∣∣∣∣∣∣
di∑
r=1

δr
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (ndi+r)(θ′i)− πi(θ′i)

)∣∣∣∣∣∣
≤

L/di−1∑
n=N

δnd
i−1
{ ∣∣∣∣∣∣

di∑
r=1

(1− δr)
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (ndi+r)(θ′i)− πi(θ′i)

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
di∑
r=1

∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (ndi+r)(θ′i)− πi(θ′i)

)∣∣∣∣∣∣
}

≤
L/di−1∑
n=N

δnd
i−1
{

(1− δdi)2Bdi |Θi|+
ε

8

}
=
δd

iN−1 − δL−1

1− δdi
{

(1− δdi)2Bdi |Θi|+
ε

8

}
,

and thus∣∣∣∣∣∣ 1− δ
1− δL

L∑
t=Ndi+1

δt−1
∑
θ′i∈Θi

max
ai∈Ai

ui(ai, a
i
−i, θ

′
i)
(
P (t)(θ′i)− πi(θ′i)

)∣∣∣∣∣∣
≤ 1− δ

1− δdi
δd

iN−1 − δL−1

1− δL
{

(1− δdi)2Bdi |Θi|+
ε

8

}
≤
{

(1− δdi)2Bdi |Θi|+
ε

8

}
≤ ε

4
,

if δ is big enough (uniformly in L ≥ Ndi + 1). Let δ(i) ∈]0, 1[ be such that
the last inequality holds for all δ ≥ δ(i).

Now, let δθi be such that for all δ ≥ δθi , L
i(δ) ≥ N(θi)d

i + 1 and

1− δNdi

1− δLi(δ)
2B <

ε

4
.
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Defining δi,θi = max{δθi , δ(i)}, it then follows that for all δ ≥ δi,θi ,∣∣∣∣∣∣ 1− δ
1− δLi(δ)

Li(δ)∑
t=1

δt−1E[max
ai∈Ai

ui(ai, a
i
−i, θ

t
i) | θi]− vi

∣∣∣∣∣∣ < ε

2
.

Finally, taking δ1 = max{δ0,max{δi,θi | i ∈ I, θi ∈ Θi}} gives the result. �
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