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Abstract

How can we justify the play of iteratively admissible strategies in a game as a con-
sequence of the players’ rationality? Brandenburger, Friedenberg, and Keisler (2008)
models beliefs as lexicographic probability systems toward that end. If rational players
never rule out any scenarios, then they will avoid inadmissible (i.e., weakly dominated)
strategies. Under this definition of rationality, Brandenburger et al. showed that, when
the set of beliefs is complete (i.e., each lexicographic probability system is a possible
belief), iteratively admissible strategies will be played if each player is rational, each
player thinks the other players are rational, and so on. They leave as an open question
whether the condition on interactive beliefs about rationality, called rationality and
common assumption of rationality, and completeness of beliefs can be satisfied simul-
taneously. I answer this question in the affirmative. Thus, an epistemic foundation for
iterated admissibility is provided.
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1 Introduction

Analysis of games typically begins by assuming that players are rational. Moreover, it is

assumed, at least implicitly, that the rationality of the players is common knowledge in the

sense of Aumann (1976). That is, each player in the game is rational, each player thinks

the other players are rational, and so on. It is natural to ask, what is implied by common

knowledge of rationality? The first answer to this question was given by Bernheim (1984)

and Pearce (1984), who proposed that players should choose rationalizable strategies.1

With regards to the implications of beliefs on the actions of Bayesian rational players,

Monderer and Samet (1989) show that common certainty, i.e., common belief with proba-

bility one, has analogous properties to those of common knowledge. Bernheim (1984) and

Pearce (1984) show that rationalizable strategies are played if common certainty of rational-

ity is satisfied. It is well known that the set of rationalizable strategies coincides with the set

of strategies that survive iterated elimination of strongly dominated strategies. The result

that Bayesian rational players may play any strategy that is not strongly dominated is crucial

to this equivalence. Is there an analogous correspondence between admissible behavior, i.e.,

avoidance of weakly dominated strategies, and some notion of rationality? Presumably, if

each player in a game is rational, each player thinks the other players are rational, and so on,

then we would hope to obtain the prediction that all players choose iteratively admissible

strategies, i.e. strategies that survive iterated elimination of weakly dominated strategies.2

This paper provides an epistemic justification for iterated admissibility (IA in the sequel)

along those lines.

Admissibility is a prima facie reasonable criterion of rational decision making whose roots

1 See Aumann (1987); Brandenburger and Dekel (1987); Tan and Werlang (1988) for formal results on
the relationship between common knowledge of rationality and rationalizability.

2 It is well known that the order of eliminating weakly dominated strategies matters whereas the order
does not matter for elimination of strongly dominated strategies. Iteratively admissible strategies correspond
to an order of elimination in which all weakly dominated strategies of all players are deleted simultaneously
in each round; this is sometimes called iterated maximal deletion of weakly dominated strategies.

1



in statistical decision theory go back to Wald (1939). A Bayesian rational player who never

rules out any scenario will choose admissible strategies. Such caution has been advocated as a

starting point of sensible intellectual inquiry since classical times. Aside from the attractive

epistemic foundations of admissible behavior, IA has numerous convenient properties as

a solution concept that have long been recognized. Luce and Raiffa (1957, pp. 98–101)

informally argue that IA is a consequence of common knowledge of rationality and apply

it to obtain the backward induction outcome in the finitely repeated prisoner’s dilemma.3

IA also reflects forward induction reasoning, which refines the equilibria of various signaling

games, including the beer-quiche game. Furthermore, IA yields solutions of games that

are invariant up to irrelevant transformations of the game tree à la Thompson (1952a) and

Dalkey (1953).4 Therefore it is consistent with von Neumann and Morgenstern’s (1944)

influential argument that the normal form of a game should capture all strategically relevant

information about its extensive form.

IA also gives tighter predictions in games with weak equilibria in weakly dominant strate-

gies. For example, consider costless majority voting games in which, if everyone votes truth-

fully, only the median voter’s choice matters. If each person believes that everyone else

votes truthfully, then those beliefs form an equilibrium of the game.5 However, voters with

minority opinions are indifferent between truthful and untruthful voting under these beliefs.

Thus, despite the beliefs being in equilibrium, equilibrium actions (that is, truthful voting

by all) may not be observed. If rationality incorporates admissibility, each voter will vote

truthfully since there is at least one scenario in which she will be the pivotal voter, and in

all other scenarios her vote does not matter.

3 In Luce and Raiffa (1957), any strategy that does not satisfy IA is said to be “dominated in the wide
sense”. Moulin (1986) explores when IA yields unique predictions of payoffs for all players.

4 For a more detailed discussion, see Kohlberg and Mertens (1986).
5 The interpretation of Nash equilibrium as a profile of mutually consistent beliefs is due to Aumann and

Brandenburger (1995).
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L R
T 1, 1 1, 0
B 1, 0 0, 1

Figure 1: Ann is the row player and Bob is the column player.

Unfortunately, there is a fundamental tension between the epistemic foundations of ad-

missible behavior and common certainty of rationality. In order to obtain admissible be-

havior, we require that players never entirely discount any possibility. However, in being

certain of others’ rationality, each player completely rules out the scenario that some of her

opponents are irrational. Consider the game in Figure 1, which is Example 8 in Samuelson

(1992). In order to give an epistemic argument for the strong conclusion that Ann will neces-

sarily play T rather than B (that is, she will play her unique IA strategy), we must suppose

that she will put positive weight on the possibility that Bob will play R, even though R will

be dominated once B is eliminated. In other words, once Bob is certain that B will not

be played, he will not play R. However, we would like Ann, being certain of these facts, to

put positive weight on R. It follows that IA cannot obtained as a consequence of common

certainty of rationality in this game.

Brandenburger, Friedenberg, and Keisler (2008), hereafter BFK, cleared this hurdle by

modeling beliefs as lexicographic probability systems (LPS in the sequel), which were intro-

duced in Blume, Brandenburger, and Dekel (1991a). Loosely speaking, an LPS is a finite

sequence of hypotheses based on mutually exclusive premises, which are ordered by their

importance to the player. Each hypothesis is represented by a standard Borel probability

measure. The most important hypothesis may be called primary, the second most important

hypothesis may be called secondary, and so on. The role of “importance” as it relates to

decision making is as follows: A player evaluates her actions according to her many hy-

potheses, starting with the primary hypothesis and subsequently moving on to the next

most important hypothesis in the case where no uniquely optimal action can be found under
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the previous hypotheses. In this context, we may interpret more important hypotheses as

infinitely more likely hypotheses.

LPSs can express the belief that each player is rational without ruling out the scenario

that there are irrational players. Imagine an LPS in which the hypotheses that presume

rational players are all more important than hypotheses that do not presume rational play-

ers. If a player holds such a belief, it is said that she assumes each player is rational (In

general, a player assumes an event if it is given probability one in all sufficiently important

hypotheses and probability zero in all less important hypotheses). Then the analogue of

common knowledge of rationality in the BFK framework, called rationality and common

assumption of rationality (RCAR in the sequel), can be defined as the conjunction of the

following statements.

(1) each player is rational;

(2) each player assumes (1);

(3) each player assumes (1), (2);

and so on. . .

If (1),. . . , (m), and (m+1) are simultaneously satisfied, it is said that there is rationality

and mth order assumption of rationality (RmAR in the sequel). BFK find that, if the set of

beliefs is complete in the sense that each player considers all beliefs of her opponent to be

possible, then RmAR implies that each player will choose an m-admissible strategy (i.e., a

strategy that survives m rounds of elimination of inadmissible strategies) and RCAR implies

that each player will choose an iteratively admissible strategy. When the set of beliefs is

complete, BFK show that RmAR can be satisfied, but leave open the question of whether

RCAR can be satisfied. My main result shows that completeness and RCAR can indeed be

satisfied simultaneously, providing an epistemic foundation for iterated admissibility.

Section 2 defines the BFK framework of epistemic analysis. Section 3 states the main

result. Section 4 discusses the tension between completeness and a condition BFK call
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continuity as they relate to the existence of RCAR. All proofs are contained in the appendices.

2 Setup

The setup is borrowed verbatim from BFK with a few inconsequential stylistic alterations.

The discussion in this paper is limited to finite games of complete information played by Ann

and Bob. I follow BFK in adopting this simplifying convention. The analysis easily extends

to three or more players. This section is organized as follows. First, we define lexicographic

probability systems, which will express beliefs in our model, and related apparati. Second,

we define a model of interactive beliefs via the use of types in the style of Harsanyi. Lastly,

we formally define rationality and common assumption of rationality (RCAR).

2.1 Lexicographic Probability Systems

Fix a Polish space Ω and a compatible metric, where Polish means complete and separable.

Let M (Ω) denote the set of all Borel probability measures on Ω. We define the set N (Ω)

of all finite sequences of Borel probability measures on Ω in the following way.

Nn(Ω) ≡
n times︷ ︸︸ ︷

M (Ω)× · ×M (Ω)

N (Ω) ≡
∞⋃
n=1

Nn(Ω)

We define a Polish topology on N (Ω) by following the usual conventions. First, we

give M (Ω) its weak* topology, which makes it a Polish space. Second, we give Nn(Ω) =∏n
k=1 M (Ω) the product topology. Nn(Ω) can be metrized by defining the distance between

(µ0, . . . , µn−1), (ν0, . . . , νn−1) ∈ Nn(Ω) as the maximum of the Prohorov distances between

µk and νk for k < n.6 Finally, we topologize N (Ω) =
⋃∞
n=1 Nn(Ω) as a disjoint union. This

6 The Prohorov metric generates the weak* topology on M (Ω), the space of component measures.
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can be done by defining the distance between any two sequences of unequal lengths to be

one. Then N (Ω) is a countable union of Polish spaces at uniform distance one from each

other. N (Ω) is also a Polish space, and we call its members sequential probability systems

(SPS in the sequel). SPSs were originally called LPSs in Blume, Brandenburger, and Dekel

(1991a). However, I follow BFK in reserving the term LPS for an SPS that satisfies what is

called the mutual singularity requirement.

Definition 1 (Lexicographic probability systems). Fix µ = (µ0, . . . , µn−1) ∈ N (Ω), for

some integer n. Say µ is a lexicographic probability system (LPS) if µ is mutually singular—

that is, for each j = 0, . . . , n−1, there are Borel sets Uj in Ω with µj(Uj) = 1 and µj(Uk) = 0

for j 6= k.

Write L (Ω) for the set of LPSs and write L (Ω) for the closure of L (Ω) in N (Ω). The

closure operation is with respect to the topology on N (Ω) that was previously defined. We

will later make use of the convenient fact that L (Ω) is Polish since closed subsets of Polish

spaces are themselves Polish.

Definition 2. The support of µ = (µ0, . . . , µn−1) ∈ N (Ω) is defined as follows:

Suppµ =
⋃
k<n

Suppµk

The sequence µ is full-support if Ω = Suppµ.

We write N +(Ω) and L +(Ω) for the set of full-support sequences in N (Ω) and L (Ω),

respectively.

Definition 3. Fix an event E and an LPS µ = (µ0, . . . , µn−1) ∈ N (Ω). E is assumed under

µ if and only if there is a j such that:

1. µj(E) = 1 for all j ≤ k;

2. µj(E) = 0 for all j > k; and
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3. if U is open with U ∩ E 6= ∅, then µj(U ∩ E) > 0 for some j (i.e., µ has full support

relative to E).

The above characterization of assumption is from Proposition 5.1 in BFK. Since it is quite

convenient, it is adopted as the primary definition of assumption. Intuitively speaking, E is

assumed if it is infinitely more likely than its complement.

2.2 RmAR and RCAR

For the remainder of the paper, fix a game
〈
Sa, Sb, πa, πb

〉
. Sa is Ann’s strategy set and πa

is her payoff function. The corresponding objects for Bob are Sb and πb. The payoffs πa and

πb are extended in the usual way to take distributions on Sa and Sb as arguments.

Definition 4. An (Sa, Sb)-based type structure is a 4-tuple

〈
T a, T b, λa, λb

〉
,

where T a and T b are nonempty Polish spaces and λa : T a → L (Sb × T b) and λb : T b →

L (Sa × T a) are Borel measurable.7 Members of T a, T b are called types. Members of Sa ×

T a × Sb × T b are called states (of the world). A type structure is called lexicographic if

rangeλa ⊆ L (Sb × T b) and rangeλb ⊆ L (Sa × T a).

We define the lexicographic order >L between finite sequences of equal lengths as follows.

Given n and (x0, . . . , xn−1), (y0, . . . , yn−1) ∈ Rn, write x >L y if there exists k < n such that,

for all j < k, xj = yj and xk > yk. Write x ≥L y if x = y or x >L y. Preference maximization

under lexicographic beliefs (lexicographic utility maximization) is defined using >L.

7 BFK define a type structure to be a 6-tuple
〈
Sa, Sb, T a, T b, λa, λb

〉
. I elect to omit the strategy spaces

Sa and Sb from the definition since the analysis herein limits itself to a fixed game.
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Definition 5. A strategy sa is optimal under (µ0, . . . , µn−1) ∈ L (Sb × T b) if

∀ra ∈ Sa
[
πa(sa,margSb µj(s

b))
]n−1

j=0
≥L
[
πa(ra,margSb µj(s

b))
]n−1

j=0

More compactly, we may write sa ∈ arg max
ra∈Sa

[
πa(ra,margSb µj(s

b))
]n−1

j=0
.

Definition 6. A strategy-type pair (sa, ta) ∈ Sa × T a is rational if λa(ta) ∈ L +(Sb × T b)

and sa is optimal under λa(ta).

Definition 7. Fix an event E ⊆ Sb × T b and write

Aa(E) ≡ {t ∈ T a : λa(ta) assumes E} .

Definition 8. Let Ra
1 be the set of rational strategy-type pairs (sa, ta). For finite m, define

Ra
m by

Ra
m+1 ≡ Ra

m ∩ [Sa × Aa(Rb
m)].

Definition 9. If (sa, ta, sb, tb) ∈ Ra
m+1 × Rb

m+1, say there is rationality and mth-order as-

sumption of rationality (RmAR) at this state. If (sa, ta, sb, tb) ∈
⋂∞
m=1R

a
m × Rb

m, say there

is rationality and common assumption of rationality (RCAR) at this state.

Definition 10. Two type structures
〈
T a, T b, λa, λb

〉
and

〈
T a, T b, κa, κb

〉
are equivalent if:

• they have the same type spaces;

• for each ta ∈ T a, if either κa(ta) or λa(ta) belongs to L +(Sb×T b), then κa(ta) = λa(ta)

(and likewise with a and b reversed)

Loosely speaking, a type structure is called complete if it contains all beliefs that can be

expressed as LPSs.
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Definition 11. A type structure
〈
T a, T b, λa, λb

〉
is complete if L +(Sb×T b) ( rangeλa and

L +(Sa × T a) ( rangeλb.

Definition 12. The sets of m-admissible strategies Sam and Sbm are defined as follows. Let

Sa0 = Sa and Sb0 = Sb. We say that a strategy sa is admissible against Xb ⊆ Sb if sa is not

weakly dominated in Sa against Xb. Then Sam is the set of all sa that are admissible against

Sb0, . . . , S
b
m−1. That is, Sam is the set of Ann’s m-admissible strategies. Let Sa∞ ≡

⋂∞
m=1 S

a
m.

Then Sa∞ is Ann’s IA set.

3 Main Result

The main result can formally stated as follows.

Theorem 1 (Main Theorem). There exists a complete lexicographic type structure such that

the set of states satisfying RCAR is nonempty.

Theorem 1 is an immediate corollary of Lemma 1, a more general result that can be used

to shed light on the relationship between continuity and completeness.

Lemma 1 (Main Lemma). Given uncountable Polish spaces T a and T b, there exist bijective

Borel functions λa : T a → L (Sb× T b) and λb : T b → L (Sa× T a) such that
〈
T a, T b, λa, λb

〉
is a complete lexicographic type structure with a nonempty RCAR set.

4 Continuity and Completeness

In BFK, a negative result shows that if RCAR is nonempty, then the type structure cannot

be simultaneously complete and continuous.

Theorem (Theorem 10.1 in BFK). RCAR is empty in each complete and continuous type

structure.
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Consider the following theorem from descriptive set theory:8

Theorem. Let (X,T ) be a Polish space, Y a second countable space, and f : X → Y a

Borel function. Then there is a Polish topology Tf ⊇ T with B(Tf ) = B(T ) such that

f : (X,Tf )→ Y is continuous.

It will be convenient to let X = T a and Y = L (Sb × T b). Since separability is equivalent

to second countability in metrizable spaces, all Polish spaces are second countable as well.

Now consider the following paradoxical sequence of facts. By adding some open sets to the

topology of T a, any type-belief mapping λa that exists by Lemma 1 can be made continuous

while maintaining the “Polish-ness” of T a. Call these new Polish spaces with the augmented

topologies T̂ a and T̂ b. Once the type-belief mappings are made continuous in this way,

Theorem 10.1 in BFK applies and no RCAR state exists. Then Lemma 1 implies that there

exists a complete type structure with type spaces T̂ a and T̂ b such that RCAR is nonempty.

Rather than continuity, it is the topologies of the spaces T a and T b that determine

whether RCAR is empty or not. The above theorem makes a mapping continuous by adding

some open sets to the existing topology. The primary implication of such additions is that

the set of full-support measures shrinks since full-support measures need to assign positive

measure to the added open sets. A continuous type structure is often described as a type

structure in which neighboring full-support LPSs are associated with neighboring full-support

types. However, given that any type structure can be made continuous without changing

the type-belief mappings or the topology of the belief space, the desirable economic meaning

of “nearness” of types and the appropriate mathematical definition that captures it would

seem to require further scrutiny than previously believed.

8Kechris (1995, see 13.11, pp. 84).
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A Appendix: The Shape of RmAR Sets

It turns out that the shapes of RmAR sets are invariant across all complete type structures

associated with the same game. The precise sense in which Ann’s RmAR sets are invariant

can be expressed using an index set X a
m ⊆ P (Sa). More precisely Ra

m can be written in

the form
⋃
{Xa × τm(Xa) : Xa ∈X a

m}. The invariance property states that the appropriate

index set X a
m is the same in all complete type structures and that, for every Xa ∈ X a

m,

τm(Xa) 6= ∅.

Recall that whether or not Ann’s state (sa, ta) satisfies RmAR is determined by two

requirements. First, (sa, ta) must be rational in the given type structure
〈
T a, T b, λa, λb

〉
.

Second, ta must be a type that assumes the sets Rb
1, . . . , R

b
m−1. The interpretation of ta ∈

τm(Xa) is that Xa is exactly the set of optimal strategies for ta, and ta assumes Rb
1, . . . , R

b
m−1.

Consider the sequence {X a
m : m ∈ N0} (and Bob’s equivalent, which is obtained by

switching a and b), defined below. It is obvious that {X a
m : m ∈ N0} and

{
X b

m : m ∈ N0

}
are entirely determined by {Sam : m ∈ N0} and

{
Sbm : m ∈ N0

}
, which in turn are entirely

determined by the game
〈
Sa, Sb, πa, πb

〉
.

Definition 13. Let X a
0 ≡ {Sa0}. For each m ∈ N, define

X a
m ≡

{
arg max
sb∈Sb

[πa(sa, νk)]
m−1
k=0 : ν ∈M +(Sbm−1)× · · · ×M +(Sb0)

}
.

If Xa ∈ X a
m, then Xa is exactly the set of Ann’s optimal strategies under some ν ∈

M +(Sbm−1) × · · · ×M +(Sb0). The interpretation of ν is as the marginal on Sb of some

belief that µ that assumes Rb
1, . . . , R

b
m−1. This is view is justified by the fact that Sbm−1 =

projSb Rb
m−1 and Sbm−2 = projSb(Rb

m−2 \ Rb
m−1), . . . , S

b
0 = projSb(Rb

0 \ Rb
1). Consider any

µ = (µ0, . . . , µm−1) such that µ0(R
b
m−1) = 1 and µ1(R

b
m−2\Rb

m−1) = 1, . . . , µm−1(R
b
0\Rb

1) = 1.

Then µ is an LPS, it assumes Rb
1, . . . , R

b
m−1, and margSb µ ∈ M +(Sbm−1) × · · · ×M +(Sb0).

Let X a
∞ ≡

⋂
{X a

m : m ∈ N}. Analogous objects are defined for Bob.

11



Remark. It is obvious from the definition that, for all m ∈ N, X a
m 6= ∅ and X a

m+1 ⊆ X a
m.

Since each X a
m ⊆ 2S

a
and Sa is a finite set, the above implies that X a

∞ 6= ∅.

Lemma 2 (Invariance of RmAR). In any complete type structure
〈
T a, T b, λa, λb

〉
, for all

m ∈ N, there exists a family of pairwise disjoint sets {τm(Xa) ⊆ T a : Xa ∈X a
m} such that

Ra
m =

⋃
{Xa × τm(Xa) : Xa ∈X a

m} .

Analogous results hold for Bob.

To show my main result, I first show the existence of sets that have the shape of RmAR

sets in the sense above and have a nonempty intersection. Lemma 2 provides useful guidelines

in that regard. Then I show that there exists a complete type structure whose RmAR sets

coincide with those candidates.

Pf. of Lemma 2. We will have the desired result if the following two statements jointly hold

for all m ∈ N.

1. For all Xa ∈ X a
m, there exists ta ∈ projTa Ra

m such that Xa is exactly the optimal set

under λa(ta).

2. For all ta ∈ projTa Ra
m, there exists Xa ∈ X a

m such that Xa is exactly the optimal set

under λa(ta).

Part 1. Fix m ∈ N. By definition, for each Xa ∈ X a
m, there exists ν ∈ M +(Sbm−1) ×

· · ·×M +(Sb0) such that Xa is exactly the optimal set under ν. By the proof of Theorem 9.1

BFK, pp. 330–331, there exists µ ∈ L +(Sb × T b) such that µ assumes Rb
1, . . . , R

b
m−1 and

margSb µ = ν. It follows that Xa is exactly the optimal set under µ. By completeness, there

exists ta such that λa(ta) = µ since µ ∈ L +(Sb × T b).

Part 2. For all m ∈ N0, S
b
m = projSb Rb

m by Theorem 9.1 in BFK. Fix m ∈ N. Let

ta ∈ projTa Ra
m. Let µ = λa(ta) and let ν = margSb µ. Denote the set of optimal strategies
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under µ as Xa. Then µ assumes Rb
1, . . . , R

b
m−1. Let α(k) denote the level in µ at which Rb

k is

assumed. Then, Theorem 9.1 in BFK implies that
⋃
j≤α(k) Supp νj = Sbk. By Proposition 1 in

Blume, Brandenburger, and Dekel (1991b), for each k = 0, . . . ,m− 1, there exists ν̂m−1−k ∈

M +(Sbk) such that the set of optimal strategies under (ν̂m−1−k) is equal to the set of optimal

strategies under (ν0, . . . , να(k)). Then the set of optimal strategies under ν̂ = (ν̂0, . . . , ν̂m−1) ∈

M +(Sbm−1)×· · ·×M +(Sb0) is equal to Xa, the set of optimal strategies under ν (equivalently,

optimal under λa(ta)). Therefore Xa ∈X a
m. Analogous arguments hold for Bob.

B Appendix: Proof of Main Result

Recall that RCAR is the intersection
⋂∞
m=1(R

a
m×Rb

m) of an infinite sequence of nested sets.

Intuitively, it would be easier to show that RCAR is nonempty, if each RmAR set was large in

some sense. If RmAR is large in a probabilistic sense (i.e, given probability one by some full-

support measure that is fixed across all values of m), then the difference between RmAR and

R(m+ 1)AR is small (i.e., given probability zero by the same measure). Furthermore, since

probability measures are countably additive, it follows that the set of states not satisfying

RCAR is small in the same sense. Nonemptiness of RCAR is an immediate consequence of

this fact.

Unfortunately, we may not directly apply the method of constructing RmAR sets. Since

the strategy space is finite, if some strategy sa is inadmissible, then the RmAR sets will have

an empty intersection with the open set {sa} × T a. Therefore, the RmAR sets cannot be

given probability one by a full-support measure if some strategies are inadmissible. Instead,

we replace “given probability one by a full-support measure” with “given probability one by

a measure having full-support on some open set U” as the appropriate notion of large size.

Our general strategy will be to first construct some sequence of sets that we would like

to be the RmAR sets, then show the existence of a complete type structure in which the
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candidates are indeed the RmAR sets. For each m, the candidate for RmAR will need to be

shaped like RmAR as described by Lemma 2 and given probability one by a measure having

full-support on the same open set U for all m.

As we have done throughout the paper, we fix the underlying game
〈
Sa, Sb, πa, πb

〉
. We

also fix T a and T b and assume that they are uncountable Polish spaces.

Lemma 3. There exists {τ1(Xa) : Xa ∈X a
1 }, a family of pairwise disjoint uncountable open

sets such that T a \
⋃
{τ1(Xa) : Xa ∈X a

1 } is uncountable and closed. Analogous objects exist

for Bob.

Pf. of Lemma 3. Since X a
1 is a finite set, the desired result follows immediately from Lemma 10.

For the remainder, fix {τ1(Xa) : Xa ∈X a
1 }, which exists by Lemma 3. Furthermore, fix

some full-support Borel probability measures φa ∈M +(T b) and φb ∈M +(T a).

Lemma 4. Fix Xa ∈X a
1 . There exists a family {τm(Xa) : m > 1} of open sets in T a such

that, for all m ∈ N,

(i) τm(Xa) ⊇ τm+1(X
a);

(ii) τm(Xa) \ τm+1(X
a) is an uncountable φb-null set;

(iii) τ∞(Xa) ≡
⋂∞
m=1 τm(Xa) is an uncountable open set; and

(iv) φb(τ∞(Xa)) = φb(τm(Xa)).

Analogous results hold for Bob.

Pf. of Lemma 4. The result follows immediately from Lemma 12.

For each m, fix the family of sets {τm(Xa) : Xa ∈X a
1 } that exists by Lemma 3 and

Lemma 4.
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Definition 14. For all m ∈ N, define

R̂a
0 ≡ Sa × T a

R̂a
m ≡

⋃
{Xa × τm(Xa) : Xa ∈X a

m} and

R̂a
∞ ≡

∞⋂
m=1

R̂a
m.

Analogous objects are defined for Bob.

Lemma 5. For all m ∈ N0,

(i) R̂a
m ⊇ R̂a

m+1;

(ii) R̂a
m is an uncountable open set;

(iii) R̂a
∞ is an uncountable open set; and

(iv) R̂a
m \ R̂a

m+1 is uncountable.

Analogous results hold for Bob.

Pf. of Lemma 5. The desired results follow from Lemma 4 and the finiteness of Sa.

Lemma 6. For any ν ∈ M +(Sa), ν ⊗ φb ∈ L +(Sa × T a) denotes the product measure on

Sa×T a. For all m ∈ N, if X a
m = X a

m+1, then R̂a
m \ R̂a

m+1 is (ν⊗φb)-null. Analogous results

hold for Bob.

Pf. of Lemma 6. Fix m ∈ N. If X a
m = X a

m+1, then

R̂a
m \ R̂a

m+1 =
⋃
{Xa × [τm(Xa) \ τm+1(X

a)] : Xa ∈X a
m} .

By Lemma 4, τm(Xa) \ τm+1(X
a) is φb-null. It follows that Xa × (τm(Xa) \ τm+1(X

a)) is

(ν ⊗ φb)-null. Then R̂a
m \ R̂a

m+1 is (ν ⊗ φb)-null since it is a finite union of such sets.

Definition 15. Given any Xa ∈ X a
1 , let Λm(Xa) denote the set of all µ ∈ L +(Sb × T b)

such that

15



1. Xa = {sa ∈ Sa : sa is optimal under µ}; and

2. µ assumes R̂b
1, . . . , R̂

b
m−1.

Let Λ∞(Xa) ≡
⋂∞
m=1 Λm(Xa). Analogous objects are defined for Bob.

Lemma 7. The following holds for all m ∈ N:

(i) For all Xa ∈X a
m+1, Λm(Xa) \ Λm+1(X

a) is uncountable; and

(ii) For all Xa ∈X a
∞, Λ∞(Xa) is uncountable; and

(iii) For all Xa ∈X a
m, Λm(Xa) is Borel.

Analogous results hold for Bob.9

Proof. Part i. Since Xa ∈ X a
m+1, it follows that Xa ∈ X a

m. By the definition of X a
m,

there must exist ν = (ν0, . . . , νm−1) ∈ N +(Sb) such that Xa is exactly the optimal set of

strategies under ν; and Supp νk = Sbm−1−k for all k = 0, . . . ,m−1. By Lemma 13, there exists

µ = (µ0, . . . , µm−1) ∈ L +(Sb×T b) such that margSb µ = ν; µ assumes R̂b
k at level m− 1− k

for all k = 0, . . . ,m− 1; and µ does not assume R̂b
m. It follows that Λm(Xa) \ Λm+1(X

a) is

nonempty. Lemma E.2 in BFK implies that, for any µ, there exists a continuum of µ̂ such

that margSb µ̂ = margSb µ and µ̂ assumes the same sets as µ.

Part ii. There exists an M ∈ N such that X b
∞ = X b

M since
{
X b

n : n ∈ N
}

is a de-

creasing sequence of nonempty finite sets. By the definition of X a
M+1, there must exist

ν = (ν0, . . . , νM) ∈ N +(Sb) such that Xa is exactly the optimal set of strategies under ν;

and Supp νk = SbM−k for all k = 0, . . . ,M . Now take any ν ′0 ∈ M +(Sb). By Lemma 6,

for all m ≥ M , R̂b
m \ R̂b

m+1 is (ν ⊗ φa)-null and ν ⊗ φa ∈ M +(statesofbob). It follows, by

Lemma 14, that there exists µ ∈ L +(Sb × T b) such margSb µ = ν and µ assumes R̂b
m for all

m ≥ 0. Therefore Λ∞(Xa) is nonempty. Lemma E.2 in BFK implies that, for any µ, there

exists a continuum of µ̂ such that margSb µ̂ = margSb µ and µ̂ assumes the same sets as µ.

Part iii. First, the set of all LPSs µ that assume a Borel set is Borel (See Lemma C.3 in

BFK, p. 340). Second, the set of all LPSs µ under which a strategy is optimal is Borel since,

9 I am grateful to H. Jerome Keisler for pointing out an error in an earlier version of this proof.
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by the finiteness of the game, optimality is defined by a finite set of inequalities between

two continuous real functions of µ (i.e., expected utility under µ). Λm(Xa) is a set of LPSs

µ for which a finite combination of these conditions are satisfied. Therefore it is a finite

intersection of Borel sets, which is also a Borel set.

Lemma 8. There exists a Borel isomorphism λa : T a → L (Sb × T b) such that, for all

m ∈ N,

(i) For all Xa ∈X a
m+1, λa (Λm(Xa) \ Λm+1(X

a)) = τm(Xa) \ τm+1(X
a); and

(ii) For all Xa ∈X a
m \X a

m+1, λa (Λm(Xa)) = τm(Xa).

Analogous results hold for Bob.

Pf. of Lemma 8. Fix Xa ∈ X a
1 . For each m ∈ N, if Xa ∈ X a

m+1, then Λm(Xa) \ Λm+1(X
a)

is uncountable. Consider two cases.

Case 1: There exists a largest M such that Xa ∈ X a
M . Then Ξ(Xa) is a partition of

Λ1(X
a). In the case that M = 1, Ξ(Xa) = {Λ1(X

a)}. Each member of Ξ(Xa) is uncountable.

Ξ(Xa) ≡ {Λ1(X
a) \ Λ2(X

a), . . . ,ΛM−1(X
a) \ ΛM(Xa),ΛM(Xa)}

The corresponding partition Π(Xa) of τ1(X
a) is defined below. Each member of Π(Xa) is

uncountable.

Π(Xa) ≡ {τ1(Xa) \ τ2(Xa), . . . , τM−1(X
a) \ τM(Xa), τM(Xa)}

Ξ(Xa) and Π(Xa) are equinumerous (in particular, have size M) and each member of each

partition is an uncountable Borel set. Therefore, by the Borel Schröder-Bernstein Theorem

(See 15.7, 15.8 in Kechris, 1995, pp. 90-91), there exists a Borel isomorphism f : τ1(X
a)→

17



Λ1(X
a) such that

f(τ1(X
a) \ τ2(Xa)) = Λ1(X

a) \ Λ2(X
a)

f(τ2(X
a) \ τ3(Xa)) = Λ2(X

a) \ Λ3(X
a)

. . . = . . .

f(τM−1(X
a) \ τM(Xa)) = ΛM−1(X

a) \ ΛM(Xa)

f(τM(Xa)) = ΛM(Xa).

Case 2: For all m ∈ N, Xa ∈X a
m. We define the partitions Ξ(Xa) of Λ1(X

a) and Π(Xa)

of τ1(X
a) as follows.

Ξ(Xa) ≡ {Λ1(X
a) \ Λ2(X

a),Λ2(X
a) \ Λ3(X

a), . . . ,Λ∞(Xa)}

Π(Xa) ≡ {τ1(Xa) \ τ2(Xa), τ2(X
a) \ τ3(Xa), . . . , τ∞(Xa)}

Ξ(Xa) and Π(Xa) are equinumerous (in particular, countably infinite) and each member

of each partition is an uncountable Borel set. Therefore, by the Borel Schröder-Bernstein

Theorem (See 15.7, 15.8 in Kechris, 1995, pp. 90-91), there exists a Borel isomorphism

f : τ1(X
a)→ Λ1(X

a) such that

f(τ1(X
a) \ τ2(Xa)) = Λ1(X

a) \ Λ2(X
a)

f(τ2(X
a) \ τ3(Xa)) = Λ2(X

a) \ Λ3(X
a)

. . . = . . .

f(τ∞(Xa)) = Λ∞(Xa).

Since T a\
⋃
{τ1(Xa) : Xa ∈X a

1 } and L (Sb×T b)\
⋃
{Λ1(X

a) : Xa ∈X a
1 } are uncount-

able, we conclude that there exists a Borel isomorphism f : T a → L (Sb × T b) such that f

18



satisfies the properties described in the cases above.

Lemma 9. Fix a type structure
〈
T a, T b, λa, λb

〉
in which λa and λb are given by Lemma 8.

Then, for all m ∈ N, R̂a
m = Ra

m and R̂b
m = Rb

m.

Pf. of Lemma 9. First, note that, for all m ∈ N and Xa ∈X a
m, λa(τm(Xa)) = Λm(Xa). For

all Xa ∈ X a
1 , Λ1(X

a) is the set of all full-support beliefs under which Xa is exactly the set

of optimal strategies. By Lemma 2, it follows that

Ra
1 = {Xa × τ1(Xa) : Xa ∈X a

1 } = R̂a
1.

An analogous result holds for Bob.

It follows by induction that, for each m ∈ N, τm+1(X
a) is precisely the set of all full-

support types such that

1. each type in τm+1(X
a) assumes Rb

1, . . . , R
b
m; and

2. Xa is exactly the set of optimal strategies for each type in τm+1(X
a).

It follows that Ra
m+1 =

{
Xa × τm+1(X

a) : Xa ∈X a
m+1

}
= R̂a

m+1.

Pf. of Lemma 1. Since
⋂∞
m=1(R

a
m × Rb

m) =
⋂∞
m=1(R̂

a
m × R̂b

m) 6= ∅, there exists an RCAR

state in
〈
T a, T b, λa, λb

〉
. λa and λb are isomorphisms, therefore

〈
T a, T b, λa, λb

〉
is a complete

type structure.

C Appendix: Polish Spaces and Assumption

Remark. It is well known that every uncountable subset of a Polish space has cardinality

equal to that of the continuum. Throughout this paper, it is implicitly understood that such

sets have cardinality 2ℵ0 .
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Lemma 10. Given any uncountable Polish space X and n ∈ N, there exists a family of

pairwise disjoint uncountable open sets {U1, . . . , Un} in X such that X \
⋃
{U1, . . . , Un} is

uncountable.

Pf. of Lemma 10. The Cantor-Bendixon Theorem states that each Polish space X can be

uniquely written as a disjoint union of a perfect set P and a countable open set C. It is

immediate that P is uncountable. Now fix n + 1 distinct points x1, . . . , xn+1 ∈ P . All

singletons in Polish spaces are closed sets. All Polish spaces are normal topological spaces,

i.e., any two disjoint closed sets are separated by open neighborhoods. Therefore there

exist disjoint open neighborhoods U1, . . . , Un+1 of x1, . . . , xn+1, respectively. By the proof

of the Cantor-Bendixon Theorem (see Kechris, 1995, p. 32), xk ∈ P if and only if all open

neighborhoods of xk are uncountable. Therefore U1, . . . , Un+1 are all uncountable open sets.

Since X \
⋃
{U1, . . . , Un} contains an uncountable set Un+1, it is uncountable.

Definition 16. The Cantor space is C ≡ {0, 1}N endowed with the product topology,

where {0, 1} is given the discrete topology.

Lemma 11. Let X be a Polish space and fix a Borel probability measure µ on X. For all

uncountable open U ⊆ X, there exists an uncountable µ-null Borel set E in U such that

U \ E is uncountable.

Pf. of Lemma 11. Let B denote the Borel sets of X. Let A denote the atoms of µ. A is a

countable set. The desired result follows immediately if µ(U\A) = 0. Consider the case when

µ(U \A) > 0. The restriction of B to U \A is denoted B|(U \A). Then (U \A,B|(U \A))

is an uncountable standard Borel space. The conditional probability µ(·|U \A) is nonatomic

since it excludes the atoms of µ and can be defined using Bayes’ Rule. By the isomorphism

theorem for Borel measures (see Kechris, 1995, p. 116), there exists a Borel isomorphism

f : U \ A → [0, 1] such that µ(f−1(·)|U \ A) is the Lebesgue measure on [0, 1]. The space

[0, 1] contains an uncountable Borel set that has zero Lebesgue measure, namely the ternary
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Cantor set, which is denoted C1/3. It follows that E ≡ f−1(C1/3) is an uncountable µ-null

Borel set. (U \A) \E is uncountable since it is a not µ-null and contains no atoms of µ.

Lemma 12. Let X be a Polish space and fix a Borel probability measure µ on X. For all

uncountable open U ⊆ X, there exists a decreasing sequence {Un : n ∈ N} of open subsets of

U such that, for each n ∈ N,

(i) U1 = U ;

(ii) Un \ Un+1 is uncountable;

(iii) µ(Un) = µ(U);

(iv)
⋂
{Un : n ∈ N}, denoted U∞, is an uncountable open set; and

(v) µ(U∞) = µ(U).

Pf. of Lemma 12. By Lemma 11, there exists an uncountable µ-null Borel set E in U such

that U\E is uncountable. By Theorem 13.6 in Kechris (1995), E, being an uncountable Borel

set, contains a homeomorphic copy Z of the Cantor space. Therefore, Z can written as the

disjoint union
⋃
{Zn : n ∈ N}, where each Zn is a compact set containing a homeomorphic

copy of Z.10 Let U0 ≡ U . Now, for each n ∈ N, define Un+1 ≡ Un \ Zn. For all n ∈ N,

Zn is compact since it is a continuous of image of a compact set. It follows that U2 is

open. An induction argument shows that, for all n ∈ N, Un is open. By definition, U∞ =

U \
⋃
{Zn : n ∈ N} = U \ Z. U∞ is an uncountable open set since U \ Z ⊇ U \ E. It is

obvious that Z,Z1, Z2, . . . are all µ-null since they are subsets of E, a µ-null set. Therefore

µ(Un) = µ(U) = µ(U∞) for all n ∈ N.

Lemma 13. Let Z be a nonempty finite set and let X be a Polish space. Y ≡ Z × X is

a Polish space. Let Y0 ≡ Y . Let {Yn : n ∈ N} be a family of nonempty open subsets of Y

10 Let the Cantor space be denoted C = {0, 1}N. Let Cn ≡ {0}n−1 ×{1}× C. {Cn : n ∈ N} forms a family
of pairwise disjoint sets whose union is C \ {0}N. It is obvious that, for all n ∈ N, Cn is homeomorphic
to C. Let C′1 ≡ C1 ∪ {0}N. C′1 is a finite union of compact sets, and therefore is itself compact. Then
C = C′1 ∪

⋃
{Cn : n ∈ N \ {1}}
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such that, for all n ≥ 0, Yn ) Yn+1 and projZ Yn = projZ(Yn \ Yn+1). Fix m ∈ N. Given

ν = (ν0, . . . , νm−1) ∈ N +(Z) such that Supp νm−1−k = projZ Yk for k = 0, . . . ,m− 1, there

exists µ = (µ0, . . . , µm−1) ∈ L +(Y ) such that margZ µ = ν; µ assumes Yk at level m− 1− k

for all k = 0, . . . ,m− 1; and µ does not assume Ym.

Pf. of Lemma 13. First, for all n ≥ 0, define Zn ≡ projZ Yn. Note that, for all n ≥ 0, Yn

and Yn \ Yn+1 are nonempty Gδ sets in Y . By Theorem 3.11 in Kechris (1995), a subspace

of Y is Polish if and only if it is a Gδ. Therefore, for all n ≥ 0, Yn and Yn \ Yn+1 are Polish

spaces if given the relative topology.

For any k ≥ 1, fix some ρk ∈M +(Ym−1−k \ Ym−k). Define µk in the following way:

µk(E) ≡
∑

z∈Zm−1−k

νk(z)ρk(E|(Ym−1−k \ Ym−k) ∩ ({z} ×X)).

(Ym−1−k \ Ym−k)∩ ({z}×X) is open in Ym−1−k \ Ym−k since {z}×X is open in Y . {z}×X

is open in Y because Y = Z ×X and Z is finite. The conditional probability involving ρk

above is well-defined via Bayes’ rule since ρk is a full-support measure on Ym−1−k \Ym−k and

(Ym−1−k \ Ym−k) ∩ ({z} ×X) is open in Ym−1−k \ Ym−k. It is clear from the definition that

µk and ρk are mutually absolutely continuous. Also, margZ µk = νk.

Fix some ρ′0 ∈ M +(Ym−1 \ Ym) and ρ′′0 ∈ M +(Ym). Now fix a nontrivial convex combi-

nation of ρ′0 and ρ′′0, say ρ0 ≡ 1
2
ρ′0 + 1

2
ρ′′0. It follows that ρ0 ∈M +(Ym−1), ρ0(Ym−1 \ Ym) > 0,

and ρ0(Ym) > 0. Define µ0 in the following way:

µ0(E) ≡
∑

z∈Zm−1

ν0(z)ρ0(E|Ym−1 ∩ ({z} ×X)).

By arguments similar to those in the previous paragraph, it is readily apparent that ρ0 is

well-defined via Bayes’ rule. It is clear from the definition that µ0 and ρ0 are mutually

absolutely continuous. An immediate implication of this fact is that µ0 ∈ M +(Ym−1),
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µ0(Ym−1 \ Ym) > 0, and µ0(Ym) > 0. Also, margZ µ0 = ν0.

The following facts are easily verified: µ = (µ0, . . . , µm−1) ∈ L +(Y ); margZ µ = ν; µ

assumes Yk at level m− 1− k for all k = 0, . . . ,m− 1; and µ does not assume Ym.

Lemma 14. Let Z be a nonempty finite set and let X be a Polish space. Y ≡ Z ×X is a

Polish space. Let Y0 ≡ Y . Let {Yn : n ∈ N} be a family of nonempty open subsets of Y such

that, for all n ≥ 0, Yn ) Yn+1 and projZ Yn = projZ(Yn \ Yn+1). Let Y∞ ≡
⋂
{Yn : n ∈ N}

be a nonempty open set. Suppose that there exist φ ∈ M +(Y ) and M ∈ N such that

φ(YM \ Y∞) = 0.

Given ν = (ν0, . . . , νM) ∈ N +(Z) such that Supp νM−k = projZ Yk for k = 0, . . . ,M ,

there exists µ = (µ0, . . . , µM) ∈ L +(Y ) such that margZ µ = ν; µ assumes Yk for all k ≥ 0.

Pf. of Lemma 14. By Lemma 13, there exists ρ = (ρ0, . . . , ρM) ∈ L +(Y ) such that margZ µ =

ν; ρ assumes Yk at level M − k for all k = 0, . . . ,M . Now define µ0 ∈M +(YM) as follows.

µ0(E) ≡
∑
z∈ZM

ν0(z)φ(E|YM ∩ ({z} ×X)).

The conditional probability φ(·|YM ∩ ({z} × X)) is well-defined via Bayes’ rule because

φ(YM ∩ ({z} × X)) > 0. It is clear from the definition that µ0 � φ. For all k ≥ 1, let

µk ≡ ρk.

The following facts are immediate: µ = (µ0, . . . , µM) ∈ L +(Y ), margZ µ = ν, and µ

assumes Yk for all k ≤ M . It remains to verified that µ assumes Yk for all k ≥ M . By

construction, if k ≥ M and j ≥ 1, then µj(Yk) = 0. Since µ0 � φ and φ(YM \ Y∞) = 0, we

have µ0(YM \Y∞) = 0. Furthermore, µ0(Y∞) = 1 since µ0 ∈M +(YM) and µ0(YM \Y∞) = 0.

It follows that µ0(Yk) = 1 for all k ≥M since Yk ⊃ Y∞ for all k ≥M .
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