
FORWARD INDUCTION EQUILIBRIUM
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Abstract. Forward induction is the notion that players in a game assume, even when con-

fronted with an unexpected event, that their opponents chose rationally in the past and will

choose rationally in the future. This paper modifies Govindan and Wilson’s (2009, Econo-

metrica 77(1), 1-28) definition of forward induction and constructs an admissible, invariant

forward induction equilibrium concept for general games using normal form perfect equilib-

rium. Forward induction equilibrium according to this new definition exists for all finite,

generic extensive form games with perfect recall. It does not satisfy backward induction.

Yet for generic extensive form games the set of forward induction outcomes contains an

invariant sequential equilibrium outcome. Forward induction is not equivalent to iterative

elimination of strategies dominated at the equilibrium value. In signaling games, a forward

induction equilibrium survives most existing equilibrium refinements.

1. Introduction

Forward induction is the idea that players in a game tend to make inferences from other

players’ behaviors even when confronted with the unexpected. While it has been a long-

standing notion in game theory, only recently have Govindan and Wilson (2009b) provided

a formal definition of forward induction for general extensive form games with perfect recall.

This paper modifies their definition and explores the properties of the resulting equilibrium

concept. There are two purposes for this exercise. First, to formalize forward induction for

general games and understand its implications. We improve upon Govindan and Wilson
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(2009b) definition to obtain an admissible, invariant forward equilibrium concept. This pro-

vides a formal expression of forward induction as an equilibrium concept for further analysis.

The second purpose is to understand the consequences if we treat forward induction as a

basic decision theoretic criterion for equilibrium concepts. Game theorists sometimes con-

sider forward induction as a secondary requirement to be imposed only when its counterpart,

backward induction, fails to have cutting power (for example, see van Damme (1989); Pearce

(1984) could be viewed as an exception). By focusing solely on forward induction, we wish

to explore the forces and limitations of forward induction as a basic requirement for solution

concepts. This is not to say that forward induction should always prevail. Rather, we feel an

understanding of forward induction as comprehensive as that of backward induction should

provide good theoretical reasons for favoring one or another.

Central to forward induction is that players maintain the assumption that their opponents

have maximized their expected utility in the past as long as this assumption is tenable — even

if they observe the unexpected. In other words, if a player finds himself off the equilibrium

path, he should not interpret it as a result of unintentional mistakes by his opponents as long

as his opponents’ deviations are “rationalizable”. As a classic example, consider the Outside

Option Game in Figure 1.1 in which Player 1 could choose between an outside option and

playing a “battle of the sexes” game with Player 2. Player 1 prefers her favorite Nash

equilibrium outcome (that is, (T, L)) in the battle of the sexes game to the outside option.

Yet she prefers the outside option to the other two Nash equilibrium outcomes ((B,R) and

the mixed strategy equilibrium) in the subgame. Typical forward induction argument rules

out the outcome (2, 2) in this game. To sustain (2, 2) as an equilibrium outcome, Player 2

must put positive probability on R. However, Player 2 could reason: as long as Player 1

followed her equilibrium strategy, she would have got a payoff of 2 and Player 2 would not

get to move. If Player 1 is not making a mistake letting Player 2 move, she must have chosen

T , because B always gives her strictly less than 2. Yet if Player 2 believes with probability

1 that Player 1 had chosen T , his best response is L. This upsets the original equilibrium.
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Figure 1.1. Outside Option Game

Simple as it is, this example reveals a crucial consequence of forward induction: that a

subgame cannot be treated as a game on its own. In Figure 1.1, (B,R) is a strict Nash equi-

librium in the subgame following “In”. Most refinement concepts, including those motivated

by forward induction, will not rule out a strict Nash equilibrium (neither will ours). Yet in

the game containing this subgame, (B,R) is not part of a forward induction equilibrium. In

other words, a forward induction solution of a subgame need not be part of the solution of

the whole game. This violates one of the basic properties of backward induction.

Indeed, forward induction requires players to attach meanings to deviations. How a sub-

game is reached in a larger game conveys information about intended play in the subgame.

This piece of information would be absent had the subgame been a game in its own right.

Requiring forward inducting players to treat a subgame as a stand-alone game is requiring

them to discard this piece of information when formulating the “meaning” of a deviation.

We do not see any particular philosophical or decision theoretic reasons for requiring them

to do so. However, if a subgame is not treated as a game in its own right, we cannot expect a

forward induction solution to project into a subgame the same solution, nor could we require

a forward induction solution of a subgame to be part of the solution of the whole game.

3



In short, it is not obvious whether forward induction reasoning is always compatible with

backward induction.

An immediate consequence of this incompatibility is that a formal definition of forward

induction cannot be built upon a backward induction solution concept such as sequential

equilibrium. Govindan and Wilson (2009b) build their definition on weakly sequential equi-

librium (Reny, 1992), which does not require backward induction. A weakly sequential

equilibrium of an extensive form game is a consistent assessment such that each player’s be-

havioral strategy constitutes an optimal continuation given his beliefs at those information

sets not excluded by this strategy. An information set of a player is excluded by a behavioral

strategy of his if this strategy reaches the information set with zero probability regardless of

his opponents’ strategies. We follow the interpretation by Reny (1992, p. 631-632) that a

weakly sequential equilibrium strategy of a player consists of two parts. One part describes

his rational plan at information sets that could potentially be reached given this strategy;

another describes other players’ predictions about this player’s future behaviors in the event

he deviates from his rational plan. In light of this interpretation, forward induction is a

restriction on the second part. It requires the opponents to believe whenever possible that

the deviating player maximizes expected utility, knows the equilibrium outcome according

to the rational plan, but might not know the off-equilibrium continuation.

Until now we have outlined the concept of forward induction in the language of extensive

form games. Yet we wish to argue whether an outcome or an equilibrium satisfies forward

induction should not depend on the particular way the game tree is drawn. That is, we

propose that forward induction should be an invariant concept — it should depend only on

the reduced normal form representation of the extensive form game. Consider Figure 1.2, the

reduced normal form of the game tree in Figure 1.1. Player 2 could observe from the reduced

normal form representation that his choice matters only when Player 1 chooses either T or

B. If Player 2 considers what rational choices of Player 1 could give him an “non-trivial

move”, he should conclude that Player 1 is choosing T since B always gives strictly less than
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Out 2,2 2,2
T 3,1 0,0
B 0,0 1,3

Figure 1.2. Outside Option Game: Reduced Normal Form

2, the proposed equilibrium payoff. The best response to this belief is L, which upsets any

equilibrium giving outcome (2, 2)1.

Moreover, two finite extensive form games with perfect recall having the same reduced nor-

mal form can be transformed into one another through a sequence of strategically inessential

transformations2 (Thompson, 1952; Dalkey, 1953; Elmes and Reny, 1994). Thus invariance

seems to be a basic property that should be respected by solution concepts motivated by

decision theoretic principles. As we treat forward induction as a basic decision theoretic

criterion, it is reasonable to combine the two criteria. Anyone contending that forward

induction should not be invariant would need to point out which transformation(s) would

affect the forward induction reasoning.

To construct an invariant concept of forward induction, we follow the definition outlined by

Govindan and Wilson (2009b) in their Appendix B and build our definition on normal form

perfect equilibrium. Reny (1992) shows that weakly sequential equilibrium is generically

equivalent to normal form perfect equilibrium so this seems a natural extension. Using

the representation of Blume, Brandenburger, and Dekel (1991), one could interpret a normal

form perfect equilibrium as a Nash equilibrium under certain lexicographic belief system. The

concept of forward induction is therefore a restriction on the set of possible lexicographic

beliefs that players could hold. To be precise, take a normal form perfect equilibrium.

1Mailath, Samuelson, and Swinkels (1993, Section 9) make the same argument using normal form information
sets.
2These transformation includes: inflation-deflation of information sets, addition of superfluous move, co-
alescing information sets, interchanging simultaneous moves, reducing simple lotteries to their expected
values and adding a mixed strategy as a pure strategy. Dalkey (1953) suggests the first one. The first four
transformations are considered by Thompson (1952). The last two transformations are added to the list by
Kohlberg and Mertens (1986). Elmes and Reny (1994) modify the second one and delete the first one to
preserve perfect recall.
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Consider the set of all normal form perfect equilibria that are outcome equivalent to it. Call

a pure strategy of a player “relevant” for this outcome if there exists a sequence of ε-perfect

equilibria converging to a point in this set such that the pure strategy is a best response

to this sequence. Otherwise the strategy is “irrelevant” for the outcome. Notice that a

relevant strategy could be adopted by an optimizing player who knows the outcome but

is uncertain about which equilibrium giving the outcome is “in effect”. Forward induction

posits that players believe relevant strategies to be infinitely more likely than irrelevant

strategies. Thus we say an normal form equilibrium satisfies forward induction if it could

be supported by a lexicographic belief system in which all strategy profiles putting positive

probability only on relevant strategies occurs before all those putting positive probability on

some irrelevant strategies.

As an illustration, consider again the Outside Option Game in Figure 1.2. All normal

form perfect equilibria giving the outcome (2, 2) are of the form (Out, (α, 1− α)) where

α ∈
[
0, 2

3

]
. Consider the sequence of ε-perfect equilibria

(
(1− 4ε, 3ε, ε) ,

(
2
3
, 1

3

))
converging

to
(
Out,

(
2
3
, 1

3

))
. Player 1’s strategies Out and T are both best responses to this sequence;

so are Player 2’s L and R. On the other hand, B is not a best response to any sequence of

ε-perfect equilibria as it is a strictly dominated strategy. Thus we say Out, T , L and R are

relevant for the outcome (2, 2) while B is irrelevant for the same outcome. However, there

is no normal form perfect equilibrium with outcome (2, 2) if T is infinitely more likely than

B. Hence (2, 2) is not a forward induction outcome and none of the normal form perfect

equilibria giving this outcome is a forward induction equilibrium3.

The definition by Govindan and Wilson (2009b) stops here but a consistency argument

suggests that one should go further. Suppose we select a subset of normal form perfect equi-

libria (giving a certain outcome) that satisfies forward induction. We may find all strategies

relevant for this subset. Call these strategies “second-order relevant” for the equilibrium
3This example also explains why we consider all normal form equilibria giving the same outcome rather
than just a single equilibrium when we define relevant strategies. Consider the equilibrium (Out, R) in the
Outside Option Game. If we define relevant strategies with respect to this single equilibrium, among Player
1’s strategies only Out is relevant for this equilibrium. There is no way we could rule this equilibrium out.
Yet it clearly violates the idea of forward induction!
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outcome. We then require the opponents of a player to believe these “second-order relevant

strategies” are infinitely more likely than the “first-order relevant strategies”, which are infin-

itely more likely than the irrelevant strategies. This may strictly refine the set of equilibria

selected (we give an example in Section 3.3). We can keep iterating our “forward induction

algorithm” until no more strategy can be “pruned”4. The resulting set of forward induction

equilibria can be considered as a “fixed point”: Every equilibrium in the set can be supported

by players believing that the deviators maximize expected utility but may be confused about

which equilibria in the set is in effect. Having said that, the more rounds of iteration carried

out, the more detailed an equilibrium plan players must be sharing. We do not want to assert

that such a high level of sophisticated induction is always reasonable in all applications.

We then examine a few properties of our forward induction equilibrium. We show that

any strategically stable set (Kohlberg and Mertens, 1986) with a constant outcome contains

a forward induction equilibrium. Since finite generic extensive form games with perfect re-

call have a stable outcome, forward induction equilibrium exists for all generic extensive

form games5. We also explore the relationship between forward and backward induction.

A forward induction equilibrium need not satisfy backward induction. Nevertheless, ev-

ery generic extensive form game has a forward induction outcome which is an admissible

invariant backward induction outcome. This result is closely related to that of Govindan

and Wilson (2009b, Theorem 6.1) that any invariant backward induction outcome satisfies

forward induction (using their definition).

Forward induction is often associated with the operation of iteratively eliminating strate-

gies dominated at the equilibrium value (Kohlberg and Mertens, 1986, Proposition 6) in the

literature. However, we show that our forward induction equilibrium does not survive itera-

tive elimination of dominated strategies (weakly or strictly). Nor does it survive elimination

of strategies dominated at the equilibrium value in any order. This discrepancy suggests

4In this paper, “pruning” a strategy means it is made arbitrarily less likely than the surviving ones. It does
not mean eliminating the strategies. The two procedures are not equivalent. See Section 4.3 for details.
5By “generic” we mean the property that the tree possesses finitely many Nash equilibrium outcomes, see
Kreps and Wilson (1982).
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that forward induction is not equivalent to iteratively eliminating strategies dominated at

the equilibrium value. There are two reasons for this: First, a strategy that is eliminated is

different from a strategy receiving zero probability in equilibrium. When admissibility is re-

quired, the former does not receive any probability whereas the latter still receives arbitrarily

small probability along the “trembling sequence”. Thus conceptually we should not consider

eliminating irrelevant strategies the same as making them very unlikely. Second, forward in-

duction requires all irrelevant strategies to be infinitely less likely than all relevant strategies.

Eliminating irrelevant strategies in an arbitrary order need not preserve equilibria satisfying

this restriction. The concept of forward induction can at most justify deleting all irrelevant

strategies for all players at the same time. Indeed, our forward induction equilibrium survives

this elimination.

We do not want to claim that our definition is the only correct formalization for forward

induction. After all, forward induction is not our innovation. Kohlberg and Mertens (1986,

p. 1029) use the term “forward induction” to describe a property of the stable set. The

concept has also been introduced in signaling games (Cho and Kreps, 1987; Banks and

Sobel, 1987) and bargaining games (Rubinstein, 1985, Assumption B1). van Damme (1989)

suggests a minimal criterion for a forward induction concept, upon which Al-Najjar (1995)

builds a definition of forward induction for two-person multi-stage games. We compare our

equilibrium concept with some of these precursors in Section 5. Our forward induction

equilibrium implies some commonly known refinements in signaling games: the Intuitive

Criterion, D1, D2 and Never a Weak Best Response (Cho and Kreps, 1987; Banks and

Sobel, 1987). Any equilibrium outcome that could be deleted using these refinement fails

our forward induction concept. In this sense our definition is a generalization of their concept.

The concept of extensive form rationalizability by Pearce (1984) is probably the earliest

work on iteratively identifying “reasonable” beliefs in an extensive form game. Two other

equilibrium concepts — justifiable equilibrium (McLennan, 1985) and explicable equilib-

rium (Reny, 1992) — apply iterative procedures based on variants of rationalizability to

refine sequential and weakly sequential equilibrium. They are probably closest to forward
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induction equilibrium. Loosely speaking, justifiable equilibrium iteratively prunes actions

that give strictly lower payoffs than the remaining sequential equilibrium payoffs. Explica-

ble equilibrium iteratively prunes strategies that are not best responses to any remaining

weakly sequential equilibrium behavioral strategy profiles. One key difference between these

concepts and forward induction equilibrium is that their iterative procedures do not anchor

to a particular equilibrium outcome while our definition is outcome dependent. McLennan

(1985) and Reny (1992) motivate their concept by suggesting that a deviator knows he is in

an equilibrium but is unsure about which one. We maintain a stronger assumption that a

deviator knows the equilibrium outcome. Thus, when considering the confusion a deviator

could have about the equilibrium plan, we assume the deviator knows the equilibrium path

but might be confused over off-equilibrium continuations. Due to this difference, some justi-

fiable or explicable equilibria do not satisfy forward induction, and some forward induction

equilibria are not justifiable or explicable (see Section 5.2 for examples).

The rest of the paper is organized as follows: Section 2 contains the notations and the

definition of weakly sequential equilibrium, which we will use throughout the paper. The

formal definition of forward induction equilibrium is given in Section 3. We examine var-

ious properties of forward induction equilibrium in Section 4. Section 5 compares forward

induction equilibrium to related equilibrium refinement concepts. Section 6 concludes.

2. Notations and Preliminaries

2.1. Notations. We consider only finite extensive form games with perfect recall. A typical

game tree is denoted as Γ. The set of player is N . Let X be the set of nodes in the game. For

each player i ∈ N , let Xi be the set of decision nodes at which i moves. Let Hi be the set of

i’s information sets (a partition of Xi). For x ∈ Xi, let h (x) ∈ Hi be the unique information

set of i containing x. The set of actions available to player i at information set hi ∈ Hi is

given by Ai (hi). The set of all actions available to player i is given by Ai = ∪hi∈Hi
Ai (hi). A

pure strategy of player i is a function πi : Hi → Ai with the restriction that πi (hi) ∈ Ai (hi)

for all hi ∈ Hi. Let Πi be the set of all pure strategy of player i. A mixed strategy of player
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i is a distribution over Πi. A behavioral strategy of player i is a function bi : Hi → ∆ (Ai)

with the restriction that supp b (hi) ⊆ Ai (hi) for all hi ∈ Hi. The set of all behavioral

strategies of player i is denoted as Bi. A belief of a player i is a function µi : Xi → [0, 1]

such that
∑

x∈hi
µi (x) = 1 for all hi ∈ Hi. An assessment is a belief system and profile of

behavioral strategies pair (µ, b). An assessment (µ, b) is consistent if there exists a sequence

of assessments {(µn, bn)}n converging to (µ, b) such that for every n, bn is completely mixed

and µn is derived from bn using Bayes’ Rule.

Define the partial order ≺ on X such that x ≺ y if x is on the unique path from the root

of the tree to node y. For a node x ∈ hi and an action a ∈ Ai (hi), write (x, a) ≺ y if x ≺ y

and the unique path from the root to y requires player i to choose action a at information

set hi.

Adopting the notations in Govindan and Wilson (2009a), for each player i, any pure

strategy πi ∈ Πi, and any node y ∈ X (which could be terminal), write βi (y, πi) as the

probability that πi does not exclude y. That is,

βi (y, πi) =


1 if for each (x, a) ≺ y where x ∈ Xi, πi (h (x)) = a

0 otherwise.

If ρi ∈ ∆ (Πi) is a mixed strategy, extend the definition of βi such that for any node y ∈ X,

βi (y, ρi) =
∑
πi∈Πi

βi (y, πi) ρi (πi) .

For a behavioral strategy bi, βi (y, bi) is the product of the probabilities that bi puts on the

actions on the path from the root of the tree to y. That is,

βi (y, bi) =
∏
x∈Xi

(x,a)≺y

bi (h (x)) (a) .

By perfect recall, for any player i, if x, y ∈ hi ∈ Hi, then for any pure strategy πi, βi (x, πi) =

βi (y, πi). In this case we will adopt the shorthand βi (hi, πi). Define similarly the same
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shorthand for mixed and behavioral strategies. Finally, define β0 (y) as the probability that

nature does not exclude y (equal to 1 for all y if nature does not have a move).

Let Z be the set of all terminal nodes in the tree. For each player i, two pure strategies

πi, π
′
i ∈ Πi are equivalent if βi (z, πi) = βi (z, π

′
i) for all z ∈ Z. Let {Πk

i }Kk=1 denote the

partition of Πi defined by this equivalence relation. For a mixed strategy ρi ∈ ∆ (Πi), the

definition of βi (·, ρi) means βi (z, ρi) depends only on the probability on each equivalence

class, but not on how the probabilities are distributed within each equivalence class. Hence,

we call two mixed strategies ρi, ρ′i equivalent if they put the same probability on every

equivalence class of pure strategies. Now let ski = Πk
i and Si = {s1

i , . . . , s
K
i }. Then every

pure and mixed strategy of player i has an equivalent representation on Σi = ∆Si. The set

of all mixed strategy profile is Σ = ×i∈NΣi.

An outcome of the game is a distribution over Z. Given a profile of mixed strategy σ ∈ Σ,

the probability that terminal node z results is given by

gz (σ) = β0 (z)
∏
i∈N

βi (z, σi) .

The vector (gz (σ))z∈Z gives the outcome (as a distribution over Z) resulting from the strategy

profile σ. When no confusion may arise, we will shorthand it as g (σ). Let ui : Z → R be

player i’s utility function over terminal nodes. Using the terminology of Mailath, Samuelson,

and Swinkels (1993), the Pure Strategy Reduced Normal Form game associated with Γ is

G = (Si, vi)i∈N where vi : Σ→ R is defined by vi (σ) =
∑

z∈Z ui (z) gz (σ) for all i.6

It is possible that, for some player i, some pure strategy si ∈ Si is outcome equivalent as

a convex combination of other pure strategies. In this case we call si a redundant strategy.

Using again the terminology of Mailath, Samuelson, and Swinkels (1993), the Mixed Strategy

Reduced Normal Form of Γ is obtained from G by deleting all redundant strategies for all

6We define the utility function over mixed strategies profiles rather than pure strategy profiles. This is
because utility is not multi-linear in all pure strategies. Nevertheless, given a strategy profile of all other
players σ−i, utility of Player i is linear in i’s pure strategies as usual.
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players. We refer to the mixed strategy reduced normal form when we use the phrase Reduced

Normal Form in this paper.

Since we work with games with perfect recall, every mixed strategy σi ∈ Σi has a behavioral

strategy bi ∈ Bi that is realization equivalent to it (Kuhn, 1953). Moreover, if σi is completely

mixed, we can construct from it an equivalent behavioral strategy bi by defining: for all

information sets hi ∈ Hi, all actions ai ∈ Ai (hi),

bi(hi)(ai) =

∑
si s.t. βi((x,ai),si)>0 for x∈hi

σi(si)∑
s′i s.t. βi(hi,si)>0 σi(s

′
i)

.

In this case we say σi induces bi. If {σn} is a sequence of completely mixed strategy pro-

files converging to σ on Σ, we say {σn} induces the consistent assessment (µ, b) where b is

realization equivalent to σ if there exists a sequence of assessments {(µn, bn)}n → (µ, b) such

that each bn is induced by σn; and µn is derived from bn using Bayes’ Rule. Conversely, if

b is a profile of behavioral strategies, we say it corresponds to a profile of mixed strategies

σ ∈ Σ if b is realization equivalent to σ.

2.2. Weakly Sequential Equilibrium. We now introduce the concept of weakly sequential

equilibrium and a variant of it, which we adopt for the rest of this paper. First, we say that

a behavioral strategy bi of player i excludes an information set hi ∈ Hi of his if βi (hi, bi) = 0.

If instead βi (hi, bi) > 0, we say bi enables hi.

Definition 2.1. (Reny, 1992) A consistent assessment (µ, b) of the extensive form game Γ

is a weakly sequential equilibrium if, for all player i ∈ N , for all information sets hi ∈ Hi

such that βi (hi, bi) > 0,

bi ∈ arg max
b′i∈Bi

Eµ,(b′i,b−i) [ui (z) | hi] .

In other words, a weakly sequential equilibrium is a consistent assessment that constitutes

an optimal continuation for each player at every information set enabled by his behavioral

strategy. Notice however that the maximization is taken over all behavioral strategies, not

just those agreeing with bi at all enabled information sets. A weakly sequential equilibrium
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differs from a sequential equilibrium (Kreps and Wilson, 1982) as a player’s strategy need

not be optimal at information sets that can never be reached given his equilibrium strategy.

Every sequential equilibrium is weakly sequential, but the converse is not true unless no

player moves twice along any path. For simultaneous move games, all Nash equilibria are

weakly sequential.

Reny (1992) interprets a weakly sequential equilibrium by partitioning a player’s behav-

ioral strategy bi into two parts: the first part is player i’s rational plan of actions at all

information sets that could be reached with positive probability given his plan; the second

part is a prediction of player i’s behavior at his excluded information sets — that is, after

i has deviated from his rational plan. Of course, this prediction and i’s opponents response

to this prediction should in turn render i’s equilibrium plan optimal.

Our reason for adopting weakly sequential equilibrium and hence abandoning backward

induction is more practical than philosophical. In some sense, backward induction treats

deviations as “mistakes” and players are still optimizing after the unlikely event of mistakes.

Moreover, mistakes across information sets are uncorrelated. One mistake bears no infor-

mation on the likelihood of future mistakes. Under this assumption, making inferences on

perceived deviations is futile. This goes against the spirit of forward induction. Weakly

sequential equilibrium offers the advantage of an equilibrium analysis without backward

induction. Whether it is philosophically well-founded is beyond the scope of this paper.

The above definition of weakly sequential equilibrium, however, allows a player to use

a weakly dominated behavioral strategy. This is undesirable. To achieve admissibility, we

strengthen the definition of weakly sequential equilibrium to weakly quasi-perfect equilibrium

as follows:

Definition 2.2. An assessment (µ, b) of an extensive form game Γ is a weakly quasi-perfect

equilibrium if there exists a sequence of assessments with completely mixed behavioral strate-

gies {(µn, bn)} converging to (µ, b) such that:

(1) for all n, µn is derived from bn using Bayes’ Rule (that is, (µ, b) is consistent); and
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(2) for all player i ∈ N , all information set hi ∈ Hi not excluded by bi,

bi ∈ arg max
b′i∈Bi

Eµn,(b′i,bn−i)
[ui (z) | hi] for all n.

That is, we strengthen the definition of a weakly sequential equilibrium by requiring

the equilibrium strategy to be a best response to a sequence of assessments converging to

the equilibrium assessment. We do not perturb nature’s strategy in this definition. Nor

do we perturb player i’s own behavioral strategies at continuation information sets. The

relationship between a weakly sequential equilibrium and a weakly quasi-perfect equilibrium

is analogous to that between a sequential equilibrium (Kreps and Wilson, 1982) and a quasi-

perfect equilibrium (van Damme, 1984).

The following equivalence between weakly quasi-perfect equilibrium and normal form per-

fect equilibrium (Selten, 1975) is demonstrated by Reny (1992):

Fact 2.3. Let Γ be an extensive form game and G be its (reduced) normal form representa-

tion. Then

(1) If σ is a normal form perfect equilibrium in G with justifying sequence {σn}, then

there exists a sequence of assessments {(µm, bm)} induced by a subsequence of {σn},

and {(µm, bm)} justifies a weakly quasi-perfect equilibrium (µ, b) in Γ such that σ and

b are realization equivalent.

(2) If (µ, b) is a weakly quasi-perfect equilibrium in Γ justified by a sequence of assess-

ments {(µn, bn)}, then there is a sequence of completely mixed strategies {σn} in G

such that each σn corresponds to bn and {σn} justifies a normal form perfect equilib-

rium σ in G corresponding to b.

Proof. See Reny (1992, p. 632-633). �

Due to this equivalence, we state most of the definitions in this paper using only the

reduced normal form representation. We trust that readers could readily translate our defi-

nitions into the language of extensive form representation if they so wish.
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In addition to its equivalence to weakly quasi-perfect equilibrium, normal form perfect

equilibrium has its own merits. As Blume, Brandenburger, and Dekel (1991) show (using the

lexicographic belief system representation), a normal form perfect equilibrium is equivalent

to an admissible Nash equilibrium satisfying the common prior and strong independence

assumptions. It is also invariant to adding or deleting redundant strategies. Thus it is a

mild refinement of Nash equilibrium simple enough to be the basic building block of other

refinement concepts.

3. Definitions

3.1. Definition by Govindan and Wilson. Let us first review the definition of forward

induction given by Govindan and Wilson (2009b) in their main text. Consider an outcome

ζ ∈ ∆ (Z) of an extensive form game. A pure strategy πi of player i is relevant for ζ if

there is a weakly sequential equilibrium (µ, b) giving outcome ζ such that πi constitutes an

optimal continuation given µi and b−i at every information set hi enabled by πi. Notice that

a relevant strategy πi may or may not be in the support of the mixed strategy realization

equivalent to bi. An information set h is relevant for ζ if it can be reached under some

profile strategies relevant for ζ (not necessarily an equilibrium profile). A forward induction

outcome is then defined as follows:

Definition 3.1. (Govindan and Wilson, 2009b) An outcome ζ satisfies forward induction if

it results from a weakly sequential equilibrium (µ, b) such that, at every information set hi

relevant for ζ, the support of µi at hi is confined to nodes that can be reached by profiles of

other players’ strategy π−i that are relevant for ζ.

The intuition behind this definition merits some discussion. Recall our interpretation that

a weakly sequential equilibrium strategy could be partitioned into two parts: a rational

plan of a player and a prediction of his behavior had he deviates from his rational plan.

Since a player is supposed to follow his rational plan, he knows the outcome arising from

the rational plan. However, a player could potentially be confused about the prediction of
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his behavior after his deviations and hence not his opponents’ response after his deviation.

In other words, he might have in mind another weakly sequential equilibrium with the

same equilibrium path (hence outcome) but different off-equilibrium continuations. A pure

strategy is relevant for this outcome if it is a best response to one of these other weakly

sequential equilibria. Now if indeed Player i deviates, and the other players would like

to maintain the view that: (1) Player i knows that they are playing a weakly sequential

equilibrium with this particular outcome; and (2) Player i is an expected utility maximizer;

then the other players should believe that Player i must be mixing between his relevant

strategies. Of course, this restriction applies only if the information set could be reached

with some relevant strategies, and that the opponent himself has not deviated (if he had, he

could still maintain this belief but his behavior there need not be optimal given this belief

anyway). Hence, forward induction — maintaining (1) and (2) whenever possible — can be

expressed as a restriction on the support of beliefs at all relevant information sets. Finally,

this belief system and the optimal response of other players should render it optimal for

Player i to follow his equilibrium plan.

As an illustration, apply this definition to the Outside Option Game depicted in Figure

1.1. Consider the outcome (2, 2) and let µ be the probability Player 2 puts on the node after

T . Then any weakly sequential equilibrium assessment giving outcome (2, 2) is of either the

form 〈(Out, (α, 1− α)) , µ = 3
4
〉 where α ≤ 2

3
; or 〈(Out, R) , µ〉 where µ ≤ 3

4
(notice that

Player 1 need not optimize at her second information set, as it is excluded by the strategy

Out). For Player 1, both the pure strategies Out and T are relevant for (2, 2): Out because

it is the equilibrium strategy, T because it is a best response in 〈
(
Out,

(
2
3
, 1

3

))
, 3

4
〉. The pure

strategy B, however, is not relevant for (2, 2) since Out always gives a strictly higher payoff.

For Player 2, both of his pure strategies are relevant for (2, 2) since they are both equilibrium

strategies in some of these equilibria. Given the relevant strategies, both information sets

are relevant: Player 1’s information set is the root of the tree; Player 2’s information set is

enabled by the relevant strategy T . Now (2, 2) does not satisfy forward induction, since in
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Figure 3.1. Outside Option Game: A Variant

every weakly sequential equilibrium giving (2, 2), Player 2’s belief at his relevant information

set puts positive probability on the irrelevant strategy B.

Unfortunately, Definition 3.1 is not an invariant concept. That is, an outcome could satisfy

forward induction in an extensive form game but not in another with the same reduced

normal form. To see this, consider Figure 3.1, an extensive form game obtained from Figure

1.1 by coalescing the information sets of Player 1 and adding a superfluous move for Player

2. Both games have the same reduced normal form given in Figure 1.2. Again consider

the outcome (2, 2) (the two terminal nodes giving (2, 2) are considered the same). Using

almost the same argument as before, Out, T , L and R, as well as both information sets are

all relevant for (2, 2). Note that (Out, R), together with the belief putting probability 1 on

Out, is a weakly sequential equilibrium. Since Out is a relevant strategy, this belief system

satisfies the restriction in Definition 3.1. Therefore (2, 2) is a forward induction outcome of

this game.

In general, if we consider a finite extensive form game Γ with perfect recall, then there

exists another extensive form game Γ′ with the same pure strategy reduced normal form such

that all Nash equilibrium outcomes of Γ′ (hence that of Γ) satisfy forward induction according

to Definition 3.1. To see this, consider the trivial simultaneous move extensive form game

corresponding to the pure strategy reduced normal form. Since it is a simultaneous move
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game, all Nash equilibria are sequential, hence weakly sequential. Consistency guarantees

the belief system puts positive probability only on nodes reached by equilibrium strategies

— which are all relevant for that equilibrium outcome — at every information set in every

sequential equilibrium. Hence every Nash equilibrium outcome satisfies forward induction

according to Definition 3.1. Forward induction loses all its refinement power in this extensive

form game.

One may argue that this is not a defect of the definition, but forward induction itself should

not be an invariant concept. After all, there is nothing “forward” for Player 2 to induct on in

Figure 3.1. We do not find this argument convincing. First of all, while Player 2 would not

be able to “observe the unexpected” in this simultaneous move game, he could realize that

his choice matters only when Player 1 has chosen T or B. Player 2 can reason: what are the

circumstances when my choice makes a difference so that I should choose carefully? Player 1

can get a payoff of 2 for sure if she follows her equilibrium plan. Thus there is no way for her

to choose B rationally. Player 2 can then deduce that he should choose L in response to T .

This line of reasoning is consistent with forward induction, and could be carried out even in

the representation depicted by Figure 3.1. Thus forward induction reasoning is possible as

long as players (or theorists) have information on the reduced normal form in this example.

In general, one could utilize the normal form information sets defined by Mailath, Samuelson,

and Swinkels (1993) to make similar forward induction arguments in normal form games.

Since in many applications, it is not clear if economic agents have a particular extensive form

representation in mind, an applicable definition of forward induction should not depend on

the specific ways one presents an extensive form game.

3.2. First-Order Forward Induction Equilibrium. Careful readers may notice that, in

the game depicted in Figure 3.1, there is no equilibrium with outcome (2, 2) if Player 2

is optimizing against a sequence of completely mixed strategy of Player 1 such that the

relevant strategy T is infinitely more likely than the irrelevant strategy B at the limit.

This observation leads us naturally to adopt the stronger version of weakly quasi-perfect
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equilibrium. Since weakly quasi-perfection on the extensive form is equivalent to normal

form perfection (Fact 2.3), we have the luxury of working with the reduced normal form

game. The following definitions follow those given by Govindan and Wilson (2009b) in their

Appendix B.

Definition 3.2. Let ζ ∈ ∆ (Z) be a normal form perfect equilibrium outcome in the (re-

duced) normal form G. A pure strategy si ∈ Si of player i is (first-order) relevant for ζ if

there exists a sequence of ε-perfect equilibrium {σn} converging to a strategy profile σ ∈ Σ

giving outcome ζ, such that

vi
(
si, σ

n
−i
)
≥ vi

(
s′i, σ

n
−i
)

for all s′i ∈ Si, for all n.

In other words, a relevant strategy for an outcome is a strategy which could be adopted

rationally and cautiously by a player who knows the equilibrium outcome but is unsure

which normal form perfect equilibrium is in effect. Since we are requiring best response

to a sequence of completely mixed strategies, no dominated strategy (weakly or strictly)

could be relevant for any outcome. One may feel that, since relevant strategies are potential

explanations for deviations, they need not satisfy as strict a requirement as equilibrium

strategies. It is possible to weaken our definition by allowing all best responses in some

normal form perfect equilibrium with a certain outcome to be relevant for that outcome.

This would allow for more forward induction outcomes. We do not find this definition very

useful, though, since in normal form games obtained from an extensive form game, many

“suboptimal” strategies can be best responses to an equilibrium as long as the information

set in which they matter are excluded by other players’ strategies.

We now give the normal form version of Definition 3.1:

Definition 3.3. An outcome ζ ∈ ∆ (Z) satisfies (first-order) forward induction if there

exists a sequence of ε-perfect equilibria {σn} converging to a strategy profile σ ∈ Σ with

g (σ) = ζ, such that for all player i ∈ N , for any si, s′i ∈ Si, if si is relevant for ζ and s′i is
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not, then

lim
n→∞

σni (s′i)

σni (si)
= 0.

The requirement suggests that any relevant strategy is infinitely more likely than any

irrelevant strategy at the equilibrium along the sequence of ε-perfect equilibria justifying σ.

This supplement the intuition behind Definition 3.1 with a form of cautious behavior.

Definition 3.3 gives the condition for an outcome to satisfy forward induction. We might

nonetheless wish to define forward induction as a property of an equilibrium. For this purpose

we give the following definition of a forward induction equilibrium:

Definition 3.4. A normal form perfect equilibrium σ ∈ Σ in G is a (first-order) forward

induction equilibrium if there exists a sequence of ε-perfect equilibria {σn} converging to σ

such that for all player i ∈ N , all pairs of pure strategies si, s′i ∈ Si, if si is relevant for the

outcome g (σ) and s′i is not, then

lim
n→∞

σni (s′i)

σni (si)
= 0.

By definition, a forward induction outcome is the outcome of a forward induction equilib-

rium.

3.3. An Iterative Definition. The definition above suggests an algorithm for checking for

forward induction: Take a set of normal form perfect equilibria with a certain outcome. Look

for all the pure strategies that are best response to some justifying sequence of some equi-

librium in the set. Call them relevant strategies for this outcome. Then select the equilibria

that could be justified by some sequence in which any relevant strategy is infinitely more

likely than any irrelevant strategy at the limit. We may wish, for a consistent motivation,

that the set of all forward induction equilibria for a given outcome would be a fixed point of

this procedure. Such a set would be a “fixed point” for forward induction reasoning: every

equilibria in the set can be justified by all players believing that other players are infinitely
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Figure 3.2. Three-Person Outside Option Game

more likely to play best responses in (a neighborhood of) this set. Unfortunately, this is not

true with Definition 3.4. To see this, consider the three-person game depicted in Figure 3.2.

In this game, the outcome (2, 2, 2) satisfies first-order but not “second-order” forward in-

duction. To see this, first note that Player 3 always prefers U to D if she believes that the

relative probability of T to B is greater than 1
2
. Next, consider the sequence of ε-perfect equi-

libria 〈(1− 2ε, ε, ε) ,
(

2
3(1−2ε)

, 1− 2
3(1−2ε)

)
, (ε, ε, 1− 2ε)〉. It converges to

(
Out,

(
2
3
, 1

3

)
, D
)
.

Out, B, L, R, U and D are all best responses to this sequence. There is another se-

quence of ε-perfect equilibria, 〈(1− 2ε, ε, ε) ,
(

2
2+ε

, ε
2+ε

)
,
(

2+ε
3
, ε

3
, 1−2ε

3

)
〉, which converges to(

Out, L,
(

2
3
, 0, 1

3

))
. Out, T , L, U and D are best responses to this sequence. Thus all pure

strategies but M (which is dominated) are first-order relevant for the outcome (2, 2, 2). The
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second sequence of ε-perfect equilibria satisfies the restrictions on relative probabilities be-

tween relevant and irrelevant strategies. Therefore (2, 2, 2) is a first-order forward induction

outcome.

However, whenM is infinitely less likely than U , Player 1 needs to play T with probability

strictly higher than 1
2
for R to be a best response. Yet whenever this is the case, Player 3

strictly prefers U to her other strategies and R is an inferior response to U . Thus in no

first-order forward induction equilibrium can R receive positive probability. Since Player

1’s strategy B gets a strictly lower payoff than Out unless Player 2 plays R, B cannot be

second-order relevant. On the other hand, T remains second-order relevant since it is a

best response to the second sequence of ε-perfect equilibria we constructed, which converges

to a first-order forward induction equilibrium. Now if Player 3 believes T to be infinitely

more likely than B, she plays U with probability 1, causing Player 2 to best respond by

L. Player 1 can profitably deviate to T . Therefore (2, 2, 2) does not satisfy second-order

forward induction.

A natural response is to starting from the set of all normal form perfect equilibria giving a

certain outcome and keep iterating our “forward induction algorithm” until no more strategies

can be pruned. To formalize this idea, define, for any outcome ζ ∈ ∆ (Z),

F−1 (ζ) = {σ ∈ Σ : g (σ) = ζ}

R0
i (ζ) = Si for all i ∈ N .

Then for any k ≥ 0, given F l and Rl+1
i for all i ∈ N , all l = −1, . . . , k− 1, define inductively

F k (ζ) =


σ ∈ F k−1 (ζ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ a sequence of ε-perfect equilibria{σn} → σ

with g (σ) = ζ such that:

∀l ∈ {0, . . . , k} ,∀i ∈ N,∀si, s′i ∈ Si,

si ∈ Rl
i and s′i /∈ Rl

i ⇒
σn

i (s′i)
σn

i (si)
→ 0.


; (3.1)
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and

Rk+1
i (ζ) =

si ∈ R
k
i (ζ)

∣∣∣∣∣∣∣∣∣
∃ a sequence of ε-perfect equilibria{σn} → σ

satisfying the conditions in (3.1), such that

vi
(
si, σ

n
−i
)
≥ vi

(
s′i, σ

n
−i
)
for all s′i ∈ Si, for all n.

 . (3.2)

So F 0 (ζ) is the set of all normal form perfect equilibria giving outcome ζ; Rk
i (ζ) is the set of

player i’s strategies kth-order relevant for ζ for all k ≥ 1; and F k (ζ) is the set of kth-order

forward induction equilibria for outcome ζ. We define forward induction equilibrium and

outcome as follows:

Definition 3.5. For all k ≥ 1, a normal form perfect equilibrium σ ∈ Σ is a kth-order

forward induction equilibrium if σ ∈ F k (g (σ)). It is a forward induction equilibrium if it

is a kth-order forward induction equilibrium for all k ≥ 1. An outcome ζ satisfies kth-

order forward induction if it is the outcome of a kth-order forward induction equilibrium. It

satisfies forward induction if it is the outcome of a forward induction equilibrium.

One can easily check that Definitions 3.3 and 3.4 are the k = 1 version of this definition.

Given an outcome, denote F (ζ) = ∩k≥1F
k (ζ) as the set of all forward induction equilibria

with outcome ζ and likewise Ri (ζ) = ∩k≥1R
k
i (ζ) as all strategies of player i relevant for the

outcome ζ. Since the game is finite, if F (ζ) is non-empty, then there is a finite K such that

FK (ζ) = F (ζ) and RK
i (ζ) = Ri (ζ) for all player i. The set F (ζ) can therefore be viewed

as a “fixed point” of the forward induction iteration defined by equations (3.1) and (3.2).

We wish to remark on our definition before proceeding to analyze the properties of forward

induction equilibrium. Condition (b) in equation (3.1) imposes a sophisticated lexicographic

ordering of a player’s pure strategies that is commonly known to all players, including the
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deviators. This assumption is rather strong7. There may be applications in which one would

wish to stop after a few rounds of iteration instead.

4. Properties of Forward Induction Equilibrium

4.1. Existence. As the term “forward induction” is used by Kohlberg and Mertens (1986)

to describe a property of their Stable Set, it is not surprising that there is a close relationship

between Stable Set and Forward Induction Equilibrium. Recall that a closed set of Nash

equilibria is said to be pre-stable in a game G if, for any ε > 0 there exists a δ0 > 0 such that,

for any completely mixed strategy vector (σ1, . . . , σN), and any vector of strictly positive real

numbers δ = (δ1, . . . , δN) with ‖δ‖ < δ0, the perturbed game obtained from replacing every

pure strategy si of player i by (1− δi) si + δiσi has a Nash equilibrium ε-close to the set.

A set of Nash equilibria is Stable if it is a minimal (by set inclusion) pre-stable set. If all

equilibria in a stable set give the same outcome, we will call it a constant outcome stable

set and the outcome a stable outcome. It turns out that every constant outcome stable set

contains a forward induction equilibrium and every stable outcome is a forward induction

outcome.

Proposition 4.1. Every constant outcome stable set contains a forward induction equilib-

rium and every stable outcome is a forward induction outcome.

Proof. Let E be a constant outcome stable set of a game G and ζ be the outcome of every

equilibrium in E. For each player i, let Σ0
i be the set of all his completely mixed strategies.

7One might therefore be tempted to define a set of equilibria as “forward induction set” if it is a fixed point
of our forward induction operator. This approach is unsatisfactory. If we choose a small set, we could admit
too many outcomes: In the Outside Option Game example in Figure 1.2, the singleton set {(Out, R)} would
pass an analog of an iteration defined by equations (3.1) and (3.2). Yet we certainly would not want to call it
a forward induction equilibrium. On the other hand, if we require the set to contain all normal form perfect
equilibria with the same outcome, we can easily run into non-existence. It is hard to argue a priori why we
should consider some sets but not others.
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Take some ε > 0, define for each player i,

Σ0
i (ε) = Σ0

i

Σk
i (ε) =

σi ∈ Σ0
i

∣∣∣∣∣∣∣∣∣
For all l ∈ {1, . . . , k} , all si, s′i ∈ Si,

if si ∈ Rl
i (ζ) and s′i /∈ Rl

i (ζ) ,

then σi (s′i) < εσi (si) .

 for all k > 0.

For ε sufficiently small, as long as Rk
i (ζ) is non-empty, Σk

i (ε) is non-empty. Moreover,

with a proper rescaling of ε to ε′, Σk+1
i (ε′) ⊆ Σk

i (ε) for all k ≥ 0. Next define, for each

k ≥ 0, P k as the set of sequences of perturbations of G, {G (ε)} (with ε→ 0) such that, for

each ε, G (ε) is defined by replacing each pure strategy si ∈ Si by (1− ε) si + σ̃i (ε) where

σ̃i ∈ Σk
i (ε) for all player i ∈ N . Again, as long as Σk

i (ε) is non-empty, P k is well-defined

and P k ⊆ P k−1 ⊆ · · · ⊆ P 0.

Let NE (G (ε)) be the set of Nash equilibrium of the game G (ε). Now define inductively

E0 = E

Ek =

e ∈ E
k−1

∣∣∣∣∣∣∣∣∣
∃ {G (ε)} ∈ P k, a sequence {σ (ε)}

with σ (ε) ∈ NE (G (ε)) for all ε

such that σ (ε)→ e.

 for all k > 0.

Since E is a stable set, for every sequence of perturbations in P 0, there exists an e ∈ E = E0

such that e is the limit of a sequence of Nash equilibria of the perturbed games. Now if for

all l ≤ k, for every sequence of perturbations in P l, there exists an e ∈ El such that e is

the limit of a sequence of Nash equilibria of the perturbed games, then since P k+1 ⊆ P k the

same is true for k+1 (as long as Rk+1
i (ζ) is non-empty for all i so that P k+1 is well-defined).

We wish to show that for all k ≥ 0, Ek is non-empty and Ek ⊆ F k (ζ). For k = 0 this

follows from the fact that all equilibria in a stable sets are normal form perfect equilibria.

Now suppose for all l = 1, . . . , k, El is non-empty and El ⊆ F l (ζ). Then since Ek ⊆ F k (ζ),

and all equilibrium strategies of a kth-order forward induction equilibrium with outcome ζ

are (k+1)th-order relevant for ζ, Rk+1
i (ζ) is non-empty for all i. So Σk+1

i (ε) (for ε sufficiently
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small) is non-empty for all i and P k+1 ⊆ P k is well-defined. By our earlier argument, Ek+1 is

non-empty. It remains to show that every equilibrium e ∈ Ek+1 is a (k + 1)th-order forward

induction equilibrium.

If e ∈ Ek+1, then there exists a sequence of Nash equilibria of perturbed games satisfying

the conditions of P k+1 such that σ (ε) → e. We claim that for each player i, for all ε

small, σi (ε) assigns zero probability to any pure strategy si /∈ Rk+1
i (ζ). To see this, first

note that any si ∈ Si \ R1
i (ζ) is not a best response to any justifying sequence for any

normal form perfect equilibrium with outcome ζ. Thus si cannot be a best response in any

Nash equilibrium of perturbed games sufficiently close to e. Hence σi (ε) (si) = 0. Write

σ̂i (ε) as the effective distribution induced by σi (ε) on Si (that is, for each si ∈ Si, let

σ̂i (ε) (si) = (1 − ε)σi (ε) (si) + εσ̃i (ε) (si)). Take l ≤ k + 1. If for all j < l, si /∈ Rj
i (ζ)

receives zero probability according to σi (ε), then {σ̂ (ε)} is a sequence of ε-perfect equilibria

converging to e such that: For all i ∈ N , all j = 1, . . . , l − 1, any si, s′i ∈ Si, if si ∈ R
j
i (ζ)

and s′i /∈ R
j
i (ζ), then

σ̂i (ε) (s′i)

σ̂i (ε) (si)
<
εσ̃i (si)

σ̃i (si)
= ε→ 0.

By definition, any si /∈ Rl
i (ζ) cannot be a best response to such a sequence and hence

σ (ε) (si) = 0 for such si. Inducting on l gives a sequence of completely mixed strategy

profiles σ̂ (ε)→ e which satisfies the conditions in equation (3.1) for F k+1 (ζ). As the choice

of e ∈ Ek+1 is arbitrary, Ek+1 ⊆ F k+1 (ζ).

By now we have shown that

Ek ∩ F k (ζ) = Ek for all k ≥ 0;

and
{
Ek
}
is a decreasing (by set inclusion) sequence of non-empty, closed sets in a compact

space. Therefore, ⋂
k≥0

(
Ek ∩ F k (ζ)

)
6= ∅.

Thus there exists a e ∈ E such that e ∈ ∩k≥0F
k (ζ) = ∩k≥0F

k (g (e)). By definition, e is a

forward induction equilibrium and ζ is a forward induction outcome. �
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Since every finite generic extensive form game with perfect recall has a stable outcome

(Kohlberg and Mertens, 1986), the existence of forward induction equilibrium in generic

extensive form games is immediate:

Corollary 4.2. Every finite generic extensive form game with perfect recall has a forward

induction equilibrium, hence a forward induction outcome.

Since every hyperstable set contains a fully stable set which contains a stable set (Kohlberg

and Mertens, 1986), Proposition 4.1 remains true if we replace “stable” by “hyperstable” or

“fully stable”. Hence all strict Nash equilibria are forward induction equilibria (since they

are singleton hyperstable sets), so are all completely mixed equilibria (since all strategies

are relevant). However, a quasi-strict equilibrium (a strategy profile σ such that for all

players i, the support of σi equals the set of pure best responses to σ−i) may not be a

forward induction equilibrium. In the Outside Option Game (Figure 1.2),
(
Out,

(
1
2
, 1

2

))
is a

quasi-strict equilibrium but not a forward induction equilibrium.

Forward induction equilibria are admissible since they are normal form perfect equilibria.

Our definition ensures that they are invariant — since normal form perfect equilibrium is

invariant to adding a mixed strategy as a pure one and a mixed strategy can only be a best

response if all pure strategies in its support are.

Fixing an outcome, the set of all forward induction equilibria giving that outcome need

not be connected. Figure 4.2 provides an example. In this game, there are two disjoint

components of Nash equilibria in which Player 1 chooses T , giving outcome (2, 0, 0): one in

which the product of Player 2’s probability on L and Player 3’s probability on l is strictly

greater than that on R and r, and the expected payoff of Player 1 from going into the game is

less than 2; another similar one but the product of probability on L and l is strictly less than

that on R and r. It can be shown (see Section 4.2) that all equilibria in these two components

are forward induction equilibria giving outcome (2, 0, 0), but the two components are not

connected.
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It is also not true that if an equilibrium satisfies forward induction, then any equilibrium

in the same component of Nash equilibria would satisfy forward induction. In Figure 4.1,

the game has a single connected component of Nash equilibria, all of the form (T, (α, 1− α))

where α ∈ [0, 1]. However, only (T, L) among them is a forward induction equilibrium as all

other equilibria put positive probability on the weakly dominated strategy R.

4.2. Backward Induction. Since a (constant outcome) stable set need not contain a se-

quential equilibrium nor gives a sequential equilibrium outcome, it follows from Proposition

4.1 that forward induction equilibrium and outcome need not satisfy backward induction.

To be precise, a forward induction equilibrium of a normal form game G need not be a

backward induction equilibrium on an extensive form game with reduced normal form G.

There are also forward induction outcomes which are not sequential equilibrium outcomes on

an extensive form with the same reduced normal form. Figure 11 in Kohlberg and Mertens

(1986), which they attribute to Faruk Gul, gives one such example. For the readers’ con-

venience the extensive form of the game is reproduced in Figure 4.2. In this game, the set

of Nash equilibria {(T, L, l) ∪ (T,R, r)} is a stable set giving outcome (2, 0, 0). By Propo-

sition 4.1, (2, 0, 0) is a forward induction outcome. Both equilibria in the set are forward

induction equilibria (M is a best response to
(
(1− 2ε, ε, ε) ,

(
1
11
, 10

11

)
,
(

1
5
, 4

5

))
and B is one to(

(1− 2ε, ε, ε) ,
(

25
31
, 6

31

)
,
(

9
10
, 1

10

))
so all strategies are relevant for (2, 0, 0)). However, in the
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Figure 4.2. Gul’s Example

representation in Figure 4.2, the unique sequential equilibrium is
((

0, 1
2
, 1

2

)
,
(

1
2
, 1

2

)
,
(

1
2
, 1

2

))
with payoffs

(
11
4
, 5

4
, 5

4

)
.

One may object to our definition of forward induction based on this example. After all,

we start with some weakly sequential equilibria (all those in which Player 1 plays T ) which

are not sequential in this tree. Take (T, L, l) as an example. Player 2 and 3 must believe

M is relatively more likely than B for their actions to be optimal. Yet given (L, l), Player

1 strictly prefers B to M at her second information set. However, if Player 1 is maximizes

her expected utility and knows the plan of (L, l), she should have chosen T in the first place.

That Player 2 and 3 gets to move is an evidence that either Player 1 does not maximizes

expected utility (in which case there is no need to require her to optimize) or she does not

know the plan of 2 and 3 is (L, l). Since there is an equilibrium with outcome (2, 0, 0) in

which M is a best response, it is plausible that Player 2 and 3 could have conjectured the

play M .

Put differently, if we hold onto the notion that players attach meaning to the “unexpected”,

a subgame cannot be treated as a game in its own right. The context of the larger game

provides extra information on intended play in the subgame. Therefore, a forward induction

solution of a game would not, on the ground of forward induction alone, induce the same
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solution in any subgame; nor would any solution of a subgame necessarily be part of the

solution of a game. Of course, one could resolve this tension between forward and backward

induction by imposing stronger conditions on the solution concept. Yet nothing intrinsic in

forward induction requires backward induction.

It is interesting to note, however, that every generic game tree has a forward induction

outcome that is an admissible invariant backward induction outcome. Since every fully stable

set of a tree contains a trembling hand perfect equilibrium of the tree (Kohlberg and Mertens,

1986, Proposition 3), a fully stable outcome is an admissible invariant backward induction

outcome. By the fully stable version of Proposition 4.1 and the fact that every generic game

tree has a fully stable outcome, every generic game tree has a forward induction outcome

that is an admissible invariant backward induction outcome.

Govindan and Wilson (2009b, Theorem 6.1) prove that an invariant sequential equilibrium

outcome of a generic8 two-player game satisfies forward induction using their definition (c.f.:

Definition 3.1). One may wonder if an analog of this theorem remains true under our

definition. To be precise, we have the following conjecture:

Conjecture 4.3. Let Γ be a two-person, finite extensive form game with perfect recall. Then

there exists a full (Lebesgue) measure set of payoffs in RN×|Z| such that if the payoffs of Γ

is in the set and G is the mixed strategy reduced normal form associated with Γ, then every

invariant proper equilibrium outcome of G satisfies forward induction according to Definition

3.5.

As we require admissibility, it is natural to strengthen the condition in the main theorem

of Govindan and Wilson (2009b) from invariant sequential equilibrium to invariant quasi-

perfect equilibrium. Since an invariant quasi-perfect equilibrium outcome is an invariant

proper equilibrium outcome (see Mailath, Samuelson, and Swinkels (1997)), the conjecture

is stated in terms of proper equilibrium to aid normal form analysis. Recall that proper
8Their generic requirement is stronger than ours. We require only that the game has finitely many Nash
equilibrium outcomes. They impose an extra condition in addition to ours. See their Appendix A for a
precise meaning of their generic games.
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B 0,0 2,2

(b) Normal Form

Figure 4.3. A Two-Person Non-Generic Game

equilibrium is invariant with respect to the pure strategy reduced normal form game. Hence

in the following discussion, it is without loss that we consider only the transformation of

adding a mixed strategy as a pure strategy.

While the author is unable to prove Conjecture 4.3 or find a counter-example, all assump-

tions in the conjecture are indispensable. To see why genericity is necessary, consider Figure

4.3, an Outside Option Game with modified payoff. The payoff assignment is not generic in

the sense that the following argument would not hold had we perturb the payoff to Player

1 after (B,R). The same argument as in the standard Outside Option Game shows that

the outcome after Out does not satisfy forward induction (B is weakly dominated by Out).

However, the outcome resulting from Out is an invariant proper equilibrium outcome. To see

this, notice that (Out, R) is a proper equilibrium (the profile ((1, ε2, ε) , (ε, 1)) is ε-proper).

The only transformation that could potentially upset this proper equilibrium is the addition

of a mixed strategy between T and Out (Player 2 has only two pure strategies; and adding

other mixed strategies for Player 1 would not change the relative likelihood between T and

B). So suppose we add a mixed strategy T δ that plays T with probability δ and Out with

probability 1− δ. Unfortunately, B achieves the equilibrium payoff against R and performs

strictly better than T . Thus for Player 2’s strategies sufficiently close to R, B is also going to
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Figure 4.4

be a strictly better response than T δ and T . Properness then requires B to be infinitely more

likely than T δ and T . To be precise, fix any δ ∈ (0, 1) and denote Player 1’s strategies in

the game with the added mixed strategy in the form of
(
Out, T, T δ, B

)
. It could be verified

that ((1, ε3, ε2, ε) , (ε, 1)) is an ε-proper equilibrium for ε < 2δ
2+3δ

. Conjecture 4.3 does not

hold.

To see why two-person is necessary, consider Figure 4.4, a three-person game with perfect

recall. Payoffs of this game can be perturbed to make it generic. The outcome (1, 2, 2)

does not satisfy forward induction: Player 1’s strategy M is dominated by B and Player

2’s strategy L is dominated by R. On the other hand, T is relevant for (1, 2, 2) since it is

a best response to the ε-perfect equilibrium 〈(ε2, ε, 1− ε− ε2) , (ε, 1− ε) ,
(

1
3
, 2

3

)
〉. Yet when

Player 2 plays R with sufficiently high probability and T is infinitely more likely than M ,

Player 3 plays U , causing Player 1 to deviate to T . Nevertheless, (1, 2, 2) is an invariant

proper equilibrium outcome. First note that 〈(ε2, ε, 1− ε− ε2) , (2ε, 1− 2ε) , (ε, 1− ε)〉 is an
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ε-proper equilibrium converging to (B,R,D) as ε → 0. Adding mixed strategies for Player

2 or 3 is not going to upset this equilibrium since they both strictly prefer their equilibrium

strategy along the sequence. The only potential way to upset this proper equilibrium is to

add a mixture between T and B for Player 1. If the mixture could performs strictly better

than M in the ε-proper equilibrium, then when σ2 (L)→ 0, Player 3 would strictly prefer U

and upset any equilibrium with payoff (1, 2, 2). Unfortunately this is impossible. Indeed, fix

any δ ∈ (0, 1) and suppose a mixed strategy T δ which puts probability δ on T and 1−δ on B

is added. Denote the strategies of Player 1 in the form of
(
T, T δ,M,B

)
. It could be verified

that 〈(ε3, ε2, ε, 1− ε− ε2 − ε3) , (2ε, 1− 2ε) , (ε, 1− ε)〉 is ε-proper for ε < −(δ+2)+
√

(δ+2)2+8δ

4
.

Again Conjecture 4.3 does not hold.

Common to these examples is that an irrelevant strategy is achieving the equilibrium

payoff while a relevant strategy is suboptimal in a proper equilibrium. As a result, any

mixed strategy putting positive probability on the relevant strategy performs strictly worse

than the irrelevant strategy at profiles sufficiently close to that proper equilibrium. This

makes it possible for other players to believe that the irrelevant strategy is infinitely more

likely than the relevant strategy at the proper equilibrium even after the transformations.

More generally, adding a mixed strategy as a pure strategy is ineffective in changing the

relative likelihood between a relevant and an irrelevant strategy when the payoff of the latter

converges to the equilibrium payoff at a faster rate than the former. If both strategies reach

an information set of an opponent player, the opponent may put positive probability on the

node that is reached by the irrelevant strategy in a quasi-perfect equilibrium. It is unclear

to the author how restricting attention to two-person and generic games could circumvent

this difficulty in general.

4.3. Iterative Dominance. A forward induction equilibrium of a game G may fail to be

one after deleting a dominated strategy. Consider the game in Figure 4.5. In this example,

(T, L) is a forward induction equilibrium since Rk
1 ((3, 3)) = {T}, Rk

2 ((3, 3)) = {L,C} for all

k ≥ 1 and the sequence 〈(1− ε− ε2, ε, ε2) , (1− ε− ε2, ε, ε2)〉 justifies (T, L). However, if we
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L C R
T 3,3 2,3 1,0
M 0,2 0,1 0,0
B 0,1 0,2 4,4

Figure 4.5

delete the strictly dominated strategyM , (T, L) is no longer a forward induction equilibrium

as L will then be weakly dominated by C. This example also shows a forward induction

equilibrium may fail to survive iterative elimination of strictly dominated strategies, or an

iterative elimination process that deletes all dominated strategies for all players at each

round.

Even worse, a forward induction equilibrium could fail to survive elimination of strategies

dominated at the equilibrium. Both M and B are irrelevant strategies for the equilibrium

(T, L). Yet if we eliminate only M but not B, (T, L) is not a forward induction equilib-

rium after the elimination. Thus, forward induction equilibrium is weaker than Stable Set

(Kohlberg and Mertens, 1986) in terms of iterative dominance. A stable set of a game con-

tains a stable set of any game obtained by deletion of a dominated strategy or a strategy

that is an inferior response in all the equilibria in the set (Kohlberg and Mertens, 1986,

Proposition 6), regardless of the order of deletion. On the other hand, a forward induction

equilibrium can only satisfy the following order-dependent version of equilibrium dominance:

Proposition 4.4. A forward induction equilibrium σ of a normal form game G remains

a forward induction equilibrium in the game obtained from G after deleting all strategies

si /∈ Ri (g (σ)) for all players i ∈ N .

Proof. Let G∗ = (Ri (g (σ)) , v∗i ) be the game obtained from deleting all irrelevant strategies

for g (σ) from G, where v∗i is the utility function vi restricted to the domain ×i∈NRi (g (σ)).

We claim that if σ is a forward induction equilibrium of G, it is a normal form perfect

equilibrium in G∗. Since σ is a forward induction equilibrium of G, there exists a sequence

of ε-perfect equilibria {σn} converging to σ such that, for all i, for all si ∈ Ri (g (σ)), all
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s′i /∈ Ri (g (σ)),
σni (s′i)

σni (si)
→ 0.

For each i, project σni onto ∆ (Ri (g (σ))) and rescale the weights by a constant (so that they

add up to one) to obtain a sequence of completely mixed strategies {σ∗ni } in ∆ (Ri (g (σ))).

Take σ∗n = (σ∗n1 , . . . , σ∗nN ). We claim that this is a sequence of ε-perfect equilibria converging

to σ in G∗. For if not, then there exists an i ∈ N , a strategy si ∈ supp σi, a strategy

s′i ∈ Ri (g (σ)) such that

v∗i
(
s′i, σ

∗n
−i
)
> v∗i

(
si, σ

∗n
−i
)

for all n sufficiently large. Then for n sufficiently large it must also be the case that

vi
(
s′i, σ

n
−i
)
> vi

(
si, σ

n
−i
)
,

contradicting the fact that {σn} is a sequence of ε-perfect equilibria converging to σ in G.

Now the set of forward induction equilibria F (g (σ)) of G is contained in the set of normal

form perfect equilibria of G∗. By definition, any strategy in Ri (g (σ)) is a best response to

some justifying sequence of some equilibrium in F (g (σ)) so they are all first-order relevant

for the outcome g (σ) in G∗. Therefore all normal form perfect equilibria of G∗ with outcome

g (σ), hence all forward induction equilibria with outcome g (σ) in G are forward induction

equilibria of G∗. �

The fact that forward induction equilibrium fails to survive iterative elimination of dom-

inated strategies illuminates the nature of the latter procedure. In particular, there is a

fundamental difference between an eliminated strategy and a strategy getting zero proba-

bility in equilibrium. The former cannot be used in any sense. The latter remains a threat

as a potential deviation. This threat, even if it is never carried out in equilibrium, changes

the strategic interaction. The difference between an eliminated strategy and a probability

zero strategy is particularly pronounced when we require admissibility. A best response to

a completely mixed strategy profile takes the latter but not the former into account. Since
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T 2,2 1,2
M 0,1 0,0
B 0,0 0,1

Figure 4.6

we are considering threats to a candidate equilibrium and are requiring admissibility, our

forward induction equilibrium would be sensitive to this difference9.

Even if we accept the procedure of eliminating a dominated strategy, the usual motivation

for such a procedure may not justify eliminating strategies in any order. Consider the game

in Figure 4.6, the standard example for demonstrating the order-dependence of iteratively

eliminating weakly dominated strategies. If we eliminate M but not B, then L is weakly

dominated so the only surviving outcome is (1, 2). On the other hand, if we eliminate B

but not M , then R is weakly dominated so the only outcome is (2, 2). But is the procedure

of “eliminating just M (or B)” well-justified? If M is eliminated based on the argument

that a rational Player 1 would not choose a strictly dominated strategy, then B is subjected

to the same reasoning and should be eliminated as well. Eliminating only M and arguing

that R is a better choice for Player 2 because “in the unlikely event that Player 1 chooses B

Player 2 does better by choosing R” is inconsistent — the exact argument for eliminating M

means Player 2 would never choose B! Eliminating only M is like eliminating both M and

B and then adding B back. Yet we certainly do not consider adding a dominated strategy a

well-founded procedure (see Kohlberg and Mertens (1986, p. 1017) for a discussion). Indeed,

if we eliminate both M and B on the grounds that they are both strictly dominated, both

(2, 2) and (1, 2) survive.

The same argument should extend to the case of iteratively eliminating strategies domi-

nated at a certain set of equilibria. In the game depicted in Figure 4.5, if M is eliminated

based on the reason that Player 1 knows the outcome is (3, 3) and M is not a best response

to any equilibrium giving this outcome, on the same grounds should B be eliminated. If
9Apparently, other forward induction motivated concepts are also sensitive to this difference. McLennan
(1985, p. 893) and Cho and Kreps (1987, p. 207-208) note the same issue; the former regarding justifiable
equilibrium, the latter regarding D2 and Never a Weak Best Response.
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both M and B (and to be consistent, R) are eliminated, (T, L) remains a normal form

perfect and forward induction equilibrium of the resulting game. Forward induction allows

for eliminating all irrelevant strategies for a certain outcome (as a rational player knowing

the outcome would not choose them), rather than an arbitrary subset of them. Because

of this, we feel it is inappropriate to equate forward induction with iterative elimination of

dominated strategies.

Understandably, one might wish to argue that the strategies M and B in Figure 4.5 are

not born equal — M is strictly dominated while B is not. Implicit in this argument is that

(strictly) dominated strategies are further down the hierarchies of “rational choices” than

strategies dominated only at a set of equilibria. We defer the discussion of such hierarchies

to Section 5.2 when we compare forward induction equilibrium and explicable equilibrium.

5. Comparison with Other Forward Induction Concepts

5.1. Signaling Games. Forward induction is often applied to signaling games to select

“reasonable” (often separating) equilibria. In this subsection we compare our general def-

inition with some forward induction concepts in signaling games. A signaling game is a

two-person extensive form game with perfect recall. Player 1 is the “sender” and Player 2 is

the “receiver” of a “signal” or “message”. Nature moves first, selects with a commonly known

prior a type t of Player 1 from a finite type set T and reveals it to Player 1. Player 1, upon

observing her type, chooses a “message” m from a finite message space M . Player 2 observes

the message sent by Player 1 but not her type. Contingent on the message received, he then

chooses an action a from a finite action set A.10 A terminal node of the game is given by

a type-message-action triple, (t,m, a). The utility function of Player i, i = 1, 2, is given by

ui : T ×M × A → R. We restrict our attention to signaling games in which messages are

“costly” for Player 1. This rules out cheap talk games (Crawford and Sobel, 1982) in which

Player 1’s utility is constant in message.

10It is possible to allow the message space M to depend on the type, and the action set to depend on the
message. See Cho and Kreps (1987).
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A pure strategy of Player 1 is a signaling function s : T → M . A behavioral strategy

of Player 1 is given by σ : T → ∆ (M) A pure strategy of Player 2 is a response function

r : M → A. Player 2’s behavioral strategy is given by ρ : M → ∆ (A). Player 2’s belief is

given by a posterior probability µ over the type space T . Using the notations in Cho and

Kreps (1987), write the set of best responses for Player 2 after observing m when his belief

is µ as

BR (µ,m) = arg max
a∈A

∑
t∈T

u2 (t,m, a)µ (t | m) .

If T ′ ⊆ T , let BR (T ′,m) denote the set of best responses by Player 2 to posteriors concen-

trated on the set T ′. Formally,

BR (T ′,m) =
⋃

µ:µ(T ′|m)=1

BR (µ,m) .

And let MBR (µ,m) and MBR (T ′,m) be the mixed best responses by Player 2 to belief µ

and beliefs concentrated on the subset T ′ respectively.

In signaling games, a sequential equilibrium reduces to an assessment 〈(σ, ρ)µ〉 such that:

(1) For each type t, Player 1 maximizes her expected utility given the response of Player 2,

that is,

supp σ (t) ⊆ arg max
m∈M

∑
a∈A

u1 (t,m, a) ρ (a | m) for all t ∈ T ;

(2) For each message m, Player 2 maximizes his expected utility given µ:

supp ρ (m) ⊆ BR (µ,m) ;

and (3) Player 2’s belief is updated using Bayes’ rule whenever possible.

Since both players move only once along every path in a signaling game, sequential equi-

librium coincides with weakly sequential equilibrium. In addition, we are going to assume

that the payoffs are generic so that weakly sequential equilibrium and weakly quasi-perfect

(hence normal form perfect) equilibrium are equivalent. Due to this simplification, we are

going to use Definition 3.1 without worrying about the caveats mentioned earlier.
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Signaling games are typically plagued by multiple equilibria, many of which are supported

by “unreasonable” off-equilibrium beliefs. There are forward induction motivated refinement

concepts constructed particularly for signaling games. We review some of them here.

Intuitive Criterion: (Cho and Kreps, 1987) Take a sequential equilibrium outcome

and let u∗1(t) be the payoff of a type t Player 1 in this equilibrium. For each out of

equilibrium message m, form the set

T (m) =

{
t ∈ T : u∗1(t) > max

a∈BR(T,m)
u1(t,m, a)

}
.

If, for any out of equilibrium message m there exists a type t′ ∈ T such that

u∗1(t′) < min
a∈BR(T\S(m),m)

u1(t′m, a),

then the equilibrium outcome fails the Intuitive Criterion.

Criterion D1: (Banks and Sobel, 1987) Fix a sequential equilirbium outcome and

again denote the equilibrium payoff to type t of Player 1 as u∗1(t). For an out of

equilibrium message m and for each type t, define the following two sets:

Dt =

{
α ∈MBR(T,m) : u∗1(t) <

∑
a

u1(t,m, r)α(a)

}

D0
t =

{
α ∈MBR(T,m) : u∗1(t) =

∑
a

u1(t,m, r)α(a)

}

A type-message pair (t,m) could be pruned according to D1 if there exists a type

t′ 6= t such that

Dt ∪D0
t ⊆ Dt′ .

Criterion D2: (Banks and Sobel, 1987) Fix a sequential equilibrium outcome and

define Dt and D0
t as above. A type-message pair (t,m) could be pruned according to

D2 if

Dt ∪D0
t ⊆

⋃
t′ 6=t

Dt′ .
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Never a Weak Best Response: (Cho and Kreps, 1987) Again define Dt and D0
t as

above. A type-message pair (t,m) could be pruned if

D0
t ⊆

⋃
t′ 6=t

Dt′ .

It turns out that our forward induction concept implies these criteria:

Proposition 5.1. Consider a generic signaling game Γ . Then under Definition 3.1,

(1) If an equilibrium outcome of Γ fails the Intuitive Criterion, it does not satisfy forward

induction.

(2) If, given an equilibrium outcome, a type-message pair (t,m) can be pruned under

Criteria D1, D2 or Never a Weak Best Response, then any pure strategy s such that

s (t) = m is irrelevant for that outcome.

Proof. For the Intuitive Criterion: Given an equilibrium outcome, if a type t is in T (m),

then any pure strategy s such that s (t) = m is irrelevant for that outcome since the strategy

obtained from s by replacing s (t) with the equilibrium message sent by type t performs

strictly better than s in any (weakly) sequential equilibrium. Since there exists a type

t′ ∈ T \ T (m) that could potentially achieve a payoff strictly higher than her equilibrium

one by sending the message m, the information set in which Player 2 observes m, h (m), is

relevant for the outcome. However, since

u∗1 (t′) < min
a∈BR(T\T (m),m)

u1 (t′,m, a) ,

there does not exist any sequential equilibrium giving the candidate equilibrium outcome

when beliefs at the information set h (m) puts zero probability on the set T (m).

For D1, D2 and Never a Weak Best Response: Notice that any signaling function s with

s (t) = m is a best reply to a sequential equilibrium 〈(σ, ρ) , µ〉 giving the fixed outcome

only when ρ (m) ∈ D0
t . However, since D0

t ⊆ ∪t′ 6=tDt′ , whenever this is case there is always
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another type having a strictly profitable deviation. Hence s is not a best reply to any

sequential equilibrium giving the candidate outcome. �

Therefore, in a signaling game, any equilibrium that can be ruled out by the Intuitive

Criterion, D1, D2 and Never a Weak Best Response can be ruled out by forward induc-

tion. Thus forward induction rejects the “both-quiche” outcome in the Beer-Quiche game

and picks the Riley outcome in a Spence signaling game with finitely many types (appro-

priately discretized to make it finite) (Cho and Kreps, 1987). Yet since Never a Weak Best

Response is strictly stronger than D1 and D2 (for an example, see Figure IV of Cho and

Kreps (1987)), and that our iterative definition of forward induction requires all relevant

strategies being infinitely more likely than all irrelevant strategies, our iterative definition

need not correspond to Divinity and Universal Divinity, the iterative version of D1 and D2

respectively (Banks and Sobel, 1987).

5.2. Justifiable and Explicable Equilibrium. The program of identifying strategies that

cannot be adopted by rational players who might potentially be confused about which equi-

librium is “in effect” and iteratively “pruning” such strategies can be traced back to McLennan

(1985). Working with extensive form games, McLennan calls an action (at an information

set) first-order useless if it is an inferior reply in all sequential equilibria in that extensive

form game. One then selects among sequential equilibria such that the belief system assigns

positive probability to the node reached with the smallest number of useless actions at each

information set. Now we can inductively define higher order useless actions as those that are

inferior responses in all sequential equilibria remained after the last round of selection. Then

select among the remaining equilibria by putting a lexicographic “uselessness condition” on

the belief system. The resulting solution concept is known as Justifiable Equilibrium.

Since all justifiable equilibria are sequential while some forward induction equilibria are

not, not all forward induction equilibria are justifiable. (Figure 4.2 provides some obvious

examples.) Conversely, there are justifiable equilibria that do not satisfy forward induction.

In our first presentation of the Outside Option Game (Figure 1.1), since ((Out, B) , R) and
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((In, T ) , L) are both sequential (actually, trembling hand perfect) in this representation,

none of the actions are useless. So the equilibrium ((Out, B) , R) is justifiable. Yet it does

not satisfy forward induction.

Another closely related concept is Explicable Equilibrium by Reny (1992). Again working

on extensive form games, Reny takes a set of behavioral strategy profiles, B, which contains

the set of all behavioral profiles from all weakly sequential equilibria. A behavioral strategy

bi of player i is first-order best response relative to B if there is a profile b in the convex

hull of B, a belief system µ derived from b using Bayes’ rule whenever possible, such that

bi constitutes an optimal continuation at every information set hi ∈ Hi enabled by bi. A

first-order explicable equilibrium is a consistent assessment such that, if a pure strategy si is

first-order best response relative to B and s′i is not, then the limiting probability (defined

by the sequence giving the consistent assessment) on the set of all realization equivalent

strategies of s′i relatively to that of si is zero. One can iterate this procedure taking the

behavioral strategies from all first-order explicable equilibrium to be the new choice of B.

The resulting equilibrium concept is known as Explicable Equilibrium.

It would not be instructive to focus on the difference between explicable equilibrium and

forward induction equilibrium arising from the difference between weakly sequential and nor-

mal form perfect equilibrium. To aid a meaningful comparison, we modify Reny’s definition

by replacing “weakly sequential equilibrium” with “weakly quasi-perfect equilibrium”. In ad-

dition, we require a best response relative to B, bi, to constitute an optimal continuation

at every enabled information set against a sequence of completely mixed behavioral strate-

gies converging to some b in the convex hull of B. This strengthened version of explicable

equilibrium will be adopted throughout this subsection.

A key difference between explicable and forward induction equilibrium is that, when de-

termining the “possible explanations” for deviations, the former allows for best responses

with respect to any weakly quasi-perfect equilibrium (or equivalently, normal form perfect)

whereas the latter allows only for best responses with respect to normal form perfect equi-

libria with the same outcome. Explicable equilibrium would be better motivated if we feel
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Figure 5.1. Reny’s Example

the deviators do not know the outcome in addition to being confused about which weakly

sequential equilibrium is in effect. Forward induction equilibrium, on the other hand, asserts

that deviators know the outcome but could be confused about which normal form perfect

equilibrium giving that outcome is in effect.

Due to this difference, it is not surprising that some explicable equilibria supported by

beliefs that a deviator is best responding to a weakly quasi-perfect equilibrium with another

outcome do not satisfy forward induction. Figure 5.1, a game taken from Reny (1992, Figure

4), provides one such example. Let µ be the belief Player 2 puts on the node after T in his

information set. There is a weakly quasi-perfect equilibrium 〈
(
0, 1

2
, 1

2

)
,
(

1
2
, 1

2

)
, µ = 1

2
〉 giving

expected payoffs (3, 0). There is also a connected component which consists of weakly quasi-

perfect equilibria of the form 〈(Out, r) , µ〉 with µ ≥ 1
2
and those with 〈(Out, (α, 1− α)) , 1

2
〉

where α ≤ 1
4
. All equilibria in this component give payoffs (2, 2). Since all strategies are

equilibrium strategies in some weakly quasi-perfect equilibrium, all strategies are first-order

best response (relative to any set of strategy profiles containing all weakly quasi-perfect

equilibrium profiles). Hence all equilibria in the connected component with payoffs (2, 2) are

explicable. However, if we restrict attention to this connected component, only Out and B

are relevant for the outcome (2, 2): Out is an equilibrium strategy and B is a best response

to the sequence of assessments 〈(1− 2ε, ε, ε) ,
(

1
4
, 3

4

)
, 1

2
〉. T is not relevant for the outcome
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(2, 2): For T to achieve an expected payoff of 2, Player 2 needs to put probability at least
1
3
on L. Yet in such cases, B yields a payoff strictly higher than 2. Thus in any forward

induction equilibrium giving (2, 2) Player 2 needs to put probability 1 on B. But then L is

a best response for 2 and Player 1 would deviate from Out. Therefore (2, 2) is not a forward

induction outcome and none of the equilibria in the connected component satisfies forward

induction.

How about the converse? Is it true that all forward induction equilibria are explicable?

Again the answer is no. Recall the game in Figure 4.5. We have argued that (T, L) is a

forward induction equilibrium. Yet it is not explicable in the strengthened sense: (B,R) is

a strict Nash equilibrium so B is a best response relative to any set of strategy profiles con-

taining all normal form perfect equilibrium profiles. M is a strictly dominated strategy so it

cannot be a best response relative to any strategy profile. However, if the relative probability

of M to B is zero, then (T, L) can no longer be a normal form perfect equilibrium11.

We have argued in Section 4.3 that as long as Player 2 believes Player 1 knows the outcome

is (3, 3), we should treatM and B equally as they are both inferior at any equilibrium giving

(3, 3). On the other hand, one may feel that a strictly dominated strategy should not be

treated the same way as a strategy which is a best response in some equilibrium. Very weak

notion of rationality suffices to prune a strictly dominated strategy while a much stronger

common belief requirement is required for pruning a strategy that is a best response in some

equilibrium. Explicable equilibrium respects part of this intuition, while forward induction

equilibrium asserts strongly that the equilibrium outcome is common belief.

In general, one could come up with a “hierarchy of rational choices” and require that

strategies down the hierarchy should be infinitely less likely than those higher up. But

what is a “reasonable” ordering of strategies? Should the ranking be “local”, that is, should

the ranking pertain to the particular equilibrium in consideration (e.g.: proper equilibrium

orders strategies by their costs at the equilibrium); or should it be “global” (e.g.: strictly

11Though it is still a weakly sequential equilibrium since it is a Nash equilibrium of a simultaneous move
game.
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dominated strategies are always infinitely less likely than undominated strategies)? It would

be interesting to look for a well-founded ranking and construct an equilibrium concept in

accordance with the hierarchy.

5.3. Requirement by van Damme. In an early paper on forward induction, van Damme

(1989) proposes a property which “should be satisfied by any concept consistent with forward

induction” (p. 485). This property requires that if in any generic two-person (extensive form)

game Γ in which player i chooses between an outside option and entering a subgame of Γ

which possess a unique equilibrium e∗ (according to the concept) giving player i more than

his outside option, then the concept should only admit equilibria of Γ in which player i

enters the subgame and the equilibrium of the subgame is e∗. An example in which a stable

outcome fails this property is given by van Damme (1989, p. 485-487, Figure 4). Since every

constant outcome stable set contains a forward induction equilibrium (Proposition 4.1), our

definition fails his requirement as well.

Does this mean we should rename our equilibrium concept? We feel the answer is no.

Notice that van Damme’s requirement asks for backward induction before forward induction

— it demands a solution of a game to induce a solution in a subgame. This is explicit

in the text: “forward induction can only determine which solution should be played in

a subgame, but a solution of a game should always induce a solution in each subgame;

backwards induction ranks above forward induction.” (van Damme, 1989, p.485, emphasis

added). As we have argued, how a subgame is reached conveys strategic information for

players. To be consistent with forward induction, a subgame should not be treated as a

game of its own right. The very fact that it is embedded in a larger game changes the

strategic consideration players could have. Hence a solution concept consistent with forward

induction may not respect backward induction. While we do not object to solution concepts

capturing both backward and forward induction (and imposing a ranking between them),

we disagree with the assertion that any concept consistent with forward induction should

satisfy a property ranking backward induction above forward induction.

45



6. Conclusion

In this paper, we propose a definition of forward induction equilibrium and analyze its

properties. However, there are aspects of forward induction we have not considered. In

particular, we rule out the possibility that a player believes (correctly or incorrectly) that

his opponents’ strategies might be correlated. A strategy may be a best response to a

correlated strategy profile of the opponents but fail to be relevant under our definition. Gul

and Pearce (1996) suggest that forward induction reasoning loses its refinement power in

stage games when public randomization is introduced. While Govindan and Robson (1998)

point out that Gul and Pearce’s argument relies on players using inadmissible strategies, it is

true that expanding the set of relevant strategies by allowing correlation weakens a forward

induction argument in general. Nevertheless, an extension of our definitions to games with

correlation device is not trivial as they are often infinite games.

On a related note, we have insisted on the consistency of belief system (subsumed in

the sequence of ε-perfect equilibria) in our definition. As consistency is implied by the

independence of players’ randomization and common beliefs (Kohlberg and Reny, 1997), we

view it as the appropriate restriction on the belief system. However, a consistent assessment

need not be structurally consistent, that is, it may not be possible for a player to find a

single strategy profile as an alternative hypothesis for reaching his information sets (Kreps

and Ramey, 1987). In the game depicted in Figure 1 of Kreps and Ramey (1987), there is no

structurally consistent assessment supporting the unique forward induction outcome (which

is also the unique Nash equilibrium outcome). While we do not view this as a flaw of our

definition, one should be careful when interpreting the restrictions we put on off-equilibrium

beliefs in our forward induction equilibrium.
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