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Abstract

We study the contribution of industrial production (IP) to the decomposition of US output. While the

use of factor models has been found convenient, the challenge one faces is that sectoral data beyond IP

is only available annually. This imbalance of sampling frequencies poses serious technical problems. We

propose a new class of mixed frequency data approximate factor models which enable us to study the full

spectrum of quarterly IP sector data combined with the annual non-IP sectors of the economy. We derive the

large sample properties of the estimators for the new class of approximate factor models involving mixed

frequency data. Using our new approximate factor model, we find that a single common factor explains

around 90% of the variability in the aggregate IP output growth index and 60 % of total GDP output growth

fluctuations. A single low frequency factor unrelated to manufacturing explains around 14 % of GDP growth

fluctuations. The picture with a structural factor model featuring technological innovations is quite different.

A factor specific to technological innovations in IP sectors is more important for the IP sector shocks and a

low frequency factor which appears to explain variation in information industry as well as professional and

business services innovations plays relatively speaking a more important role.



1 Introduction

In the public arena it is often claimed that manufacturing has been in decline in the US and most

jobs have migrated overseas to lower wage countries. First, we would like to nuance this observation

somewhat. It is true, as the figure below clearly shows, that the share of the industrial production

sector has been in decline since the late 70’s, which is the beginning of our sample period.1 However,

does size matter? The fact that the size shrank does not necessarily exclude the possibility that the

industrial production sector still is a key factor, or even the dominant factor, of total US output. We

study the validity of this question using novel econometric methods designed to deal with some of the

challenging data issues one encounters when trying to address the problem.

Figure 1: Sectoral decomposition of US nominal GDP.
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When studying the role of the industrial production sector we face a conundrum. On the one hand,

we have fairly extensive data on industrial production (IP) which consists of 117 sectors that make up

aggregate IP, each sector roughly corresponding to a four-digit industry classification using NAICS.

1The figure displays the evolution from 1977 to 2011 of the sectoral decomposition of US nominal GDP. We aggregate
the shares of different sectors available from the website of the US Bureau of Economic Analysis, according to their North
American Industry Classification System (NAICS) codes, in 5 different macro sectors: Industrial Production (yellow),
Services (red), Government (green), Construction (white), Others (grey).
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These data are published monthly, and therefore cover a rich time series and cross-section. In our

analysis we use the data sampled at quarterly frequency, for reasons explained later in the paper, and

consists of over 16,000 data points counting all quarters from 1977 until 2011 (end of our data set)

across all sectors. On the other hand, contrary to IP, we do not have monthly or quarterly data about

the cross-section of US output across non-IP sectors, but we do so on an annual basis. Indeed, the US

Bureau of Economic Analysis provides Gross Domestic Product (GDP) and Gross Output by industry

- not only IP sectors - annually. In our empirical analysis we use data on 42 non-IP sectors. If we were

to study all sectors annually, we would be left with roughly 4000 data points for IP - a substantial loss

of information.

Economists have proposed different models about how various sectors in the economy interact.

Some rely on aggregate shocks which affect all sectors at once. Foerster, Sarte, and Watson (2011),

who use an approximate factor model estimated with quarterly data, find that nearly all of IP vari-

ability is associated with (a small number of) common factors - even a single common factor suffices

according to their findings. Does the single common factor which drives IP sectors also affect the rest

of the economy, in particular in light of the fact that the services sector grew in relative size? To put

it differently, can we maintain a common factor view if we expand beyond IP sectors? Or should we

think about sector-specific shocks affecting aggregate US output? If so, are these IP sector shocks, or

rather services sector ones?

We propose a new class of factor models able to address these key questions of interest using all

the data - despite the mixed sampling frequency setting. Empirical research generally avoids the direct

use of mixed frequency data by either first aggregating higher frequency series and then performing

estimation and testing at the low frequency common across the series, or neglecting the low frequency

data and working only on the high frequency series. The literature on large scale factor models is no

exception to this practice, see e.g. Forni and Reichlin (1998), Stock and Watson (2002a,b) and Stock

and Watson (2010). Using the terminology of the approximate factor model literature, we have a panel

consisting of NH cross-sectional IP sector growth series sampled across MT time periods, where M =

4 for quarterly data andM = 12 for monthly data, with T the number of years. Moreover, we also have

a panel of NL non-IP sectors - such as services and construction for example - which is only observed

over T periods. Hence, generically speaking we have a high frequency panel data set of size NH ×

MT and a corresponding low frequency panel data set of size NL × T. The issue we are interested in
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can be thought of as follows. There are three types of factors: (1) those which explain variations in

both panels - say gC , and therefore are economy-wide factors, (2) those exclusively pertaining to IP

sector movements - say gH , and finally (3) those exclusively affecting non-IP, denoted by gL. Hence,

we have (1) common, (2) high frequency and (3) low frequency factors. We use superscripts C, H and

L because the theory we develop is generic and pertains to common (C), high frequency (H) and low

frequency (L) factors. The question how to extract common factors from a mixed frequency panel data

set is of general interest and has many applications in economics and other fields. In fact our analysis

covers an even broader class of group factor models, as will be explained shortly, which is of general

interest beyond the mixed frequency setting considered in the empirical application.

The purpose of this paper is to propose large scale approximate factor models in the spirit of Bai

and Ng (2002), Stock and Watson (2002a), Bai (2003), Bai and Ng (2006), and extend their analysis to

mixed frequency data settings. A number of mixed frequency factor models have been proposed in the

literature, although they almost exclusively rely on small cross-sections.2 Stock and Watson (2002b) in

their Appendix A, propose a modification of the EM algorithm of Dempster, Laird, and Rubin (1977)

to estimate high frequency factors from potentially large unbalanced panels, with mixed-frequency

being a special case.

We approach the problem from a different angle. We start with a setup which identifies factors

common to both high and low frequency data panels, the aforementioned gC , and factors specific to the

high and low frequency data. Our approach amounts to writing the model as a grouped factor model.

The idea to apply grouped factor analysis to mixed frequency data is novel and has many advantages in

terms of identification and estimation. In the proposed identification strategy, the groups correspond to

panels observed at different sampling frequencies. While there is a literature on how to estimate factors

in a grouped model setting, there does not exist a general unifying asymptotic theory for large panel

data.3 We propose estimators for the common and group specific factors, and an inference procedure

for the number of common and group specific factors based on canonical correlation analysis of the

principal components estimators on each subgroup. One may wonder why we do not apply canonical

correlation analysis directly to the high and low frequency data - avoiding the first step of computing

2See for example, Mariano and Murasawa (2003), Nunes (2005), Aruoba, Diebold, and Scotti (2009) Frale and Monte-
forte (2010), Marcellino and Schumacher (2010) and Banbura and Rünstler (2011), among others.

3For grouped factor models, see for example Krzanowski (1979), Flury (1984), Kose, Otrok, and Whiteman (2008),
Goyal, Pérignon, and Villa (2008), Bekaert, Hodrick, and Zhang (2009), Wang (2012), Hallin and Liska (2011), Moench
and Ng (2011), Moench, Ng, and Potter (2013), Ando and Bai (2013) and Breitung and Eickmeier (2014), among others.
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principal components since the extra step considerably complicates the asymptotics and actually entails

a novel contribution of the paper.4 What makes the first step of computing principal components

necessary is the fact that canonical correlations applied to the raw data may not necessarily uncover

pervasive factors.5 The procedure is therefore general in scope and also of interest in many applications

other than the one considered in the current paper.

Our empirical application revisits the analysis of Foerster, Sarte, and Watson (2011) who use factor

analytic methods to decompose industrial production (IP) into components arising from aggregate

shocks and idiosyncratic sector-specific shocks. They focus exclusively on the industrial production

sectors of the US economy. We find that a single common factor explains around 90% of the variability

in the aggregate IP output growth index, and a factor specific to IP has very little additional explanatory

power. This implies that the single common factor can be interpreted as an Industrial Production

factor. Moreover, more than 60% of the variability of GDP output growth in service sectors, such

as Transportation and Warehousing services, is also explained by the common factor. A single low

frequency factor unrelated to manufacturing, explaining around 14 % of GDP growth fluctuations,

drives the comovement of non-IP sectors such as Construction and Government.

We re-examine whether the common factor reflects sectoral shocks that have propagated by way of

input-output linkages between service sectors and manufacturing. A structural factor analysis indicates

that both low and high frequency aggregate shocks continue to be the dominant source of variation in

the US economy. The propagation mechanisms are very different, however, from those identified

by Foerster, Sarte, and Watson (2011). Looking at technology shocks instead of output growth, it

does not appear that a common factor explaining IP fluctuations is a dominant one for the entire

economy. A factor specific to technological innovations in IP sectors is more important for the IP

sector shocks and a low frequency factor which appears to explain variation in information industry as

well as professional and business services innovations plays relatively speaking a more important role.

Hence, when it comes to innovation shocks, IP is no longer the dominant factor.

The rest of the paper is organized as follows. In section 2 we introduce the formal model and

4Our work is most closely related to Wang (2012) and Chen (2010, 2012). Yet, there is no comprehensive asymptotic
treatment of grouped factor models in a large dimension setting. For example, Wang (2012) proposes an iterative solution
from a Least Square (LS) problem. Their procedure is not operational as the resulting equations do not have a unique
solution.

5A simple example would be to add an anomalous series to one panel and repeat the series to the other one. The
canonical correlation analysis applied to the raw data will uncover the presence of the anomalous series in both panels.
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discuss identification. In section 3 we study estimation and inference on the number of common

factors. The large sample theory appears in section 4. Section 5 covers the empirical application.

Section 6 concludes the paper.

Readers who are only interested in the empirical applications can go directly to section 5 which

starts with a summary of the novel econometric procedure.

2 Model Specification and Identification

We consider a setting where both low and high frequency data are available. Let t = 1, 2, . . . , T be the

low frequency (LF) time units. Each period (t−1, t] is divided into M subperiods with high frequency

(HF) dates t − 1 + m/M , with m = 1, . . . , M. Moreover, we assume a panel data structure with a

cross-section of size NH of high frequency data and NL of low frequency data. It will be convenient

to use a double time index to differentiate low and high frequency data. Specifically, we let xHi
m,t, for i

= 1, . . . , NH , be the high frequency data observation i during subperiod m of low frequency period t.

Likewise, we let xLit , with i = 1, . . . , NL, be the observation of the ith low-frequency series at t. These

observations are gathered into the NH-dimensional vectors xHm,t, ∀m, and the NL-dimensional vector

xLt , respectively.

We have a latent factor structure in mind to explain the panel data variation for both the low and

high frequency data. To that end, we assume that there are three types of factors, which we denote

by respectively gCm,t, g
H
m,t and gLm,t. The former represents factors which affect both high and low

frequency data (throughout we use superscript C for common), whereas the other two types of factors

affect exclusively high (superscript H) and low (marked by L) frequency data. We denote by kC , kH

and kL, the dimensions of these factors. The latent factor model with high frequency data sampling is:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t,

xL∗m,t = ΛLCg
C
m,t + ΛLg

L
m,t + eLm,t,

(2.1)

where m = 1, ...,M and t = 1, ..., T , and ΛHC , ΛH , ΛLC and ΛL are matrices of factor loadings. The

vector xL∗m,t is not observable for each high frequency subperiod and the measurements, denoted by

xLt , depend on the observation scheme, which can be either flow sampling or stock sampling (or some

general linear scheme). In the remainder of this section we study identification of the model for the
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case of flow sampling, corresponding to the empirical application covered later in the paper.6

In the case of flow sampling, the low frequency observations are the sum (or average) of all xL∗m,t in

each high frequency subperiod m, that is: xLt =
∑M

m=1 x
L∗
m,t. Then, model (2.1) implies:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t, m = 1, ...,M,

xLt = ΛLC

∑M
m=1 g

C
m,t + ΛL

∑M
m=1 g

L
m,t +

∑M
m=1 e

L
m,t.

(2.2)

Let us define the aggregated variables and innovations xHt :=
∑M

m=1 x
H
m,t, ē

U
t :=

∑M
m=1 e

U
m,t, U =

H,L, and the aggregated factors:

ḡUt :=
M∑

m=1

gUm,t, U = C,H,L.

Then we can stack the observations xHt and xLt and write:

 xHt

xLt

 =

 ΛHC ΛH 0

ΛLC 0 ΛL



ḡCt

ḡHt

ḡLt

+

 ēHt

ēLt

 . (2.3)

The last equation corresponds to a group factor model, with common factor ḡCt and “group-specific”

factors ḡHt , ḡLt .

To further generalize the setup, and draw directly upon the group-factor structure, we will consider

the generic specification. To separate the specific from the generic case, we will change notation

slightly. Namely, we keep the notation introduced so far with high and low frequency data, temporal

aggregation, etc. for the mixed frequency setting further used in the empirical application and use the

following for the generic grouped factor model setting:

 y1,t

y2,t

 =

 Λc
1 Λs

1 0

Λc
2 0 Λs

2



f c
t

f s
1,t

f s
2,t

+

 ε1,t

ε2,t

 , (2.4)

6The identification with stock sampling is discussed in Appendix A.1. It is worth noting though that any sampling
scheme leading to a representation of the model analogous to the group-factor model in equation (2.3) or (2.4) - discussed
shortly - is compatible with the identification and estimation strategies of this paper.
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where yj,t = [yj,1t, ..., yj,Njt]
′, Λc

j = [λcj,1, ..., λ
c
j,Nj

]′, Λs
j = [λsj,1, ..., λ

s
j,Nj

]′ and εj,t = [εj,1t, ..., εj,Njt]
′,

with j = 1, 2. The dimensions of the common factor f c
t and the group-specific factors f s

1,t, f
s
2,t are

kc, ks1 and ks2, respectively. In the case of no common factors, we set kc = 0, while in the case of no

group-specific factors we set ksj = 0, j = 1, 2.7 The group-specific factors f s
1,t and f s

2,t are orthogonal

to the common factor f c
t . Since the unobservable factors can be standardized, we assume:

E


f c
t

f s
1,t

f s
2,t

 =


0

0

0

 , (2.5)

and

V


f c
t

f s
1,t

f s
2,t

 =


Ikc 0 0

0 Iks1 Φ

0 Φ′ Iks2

 , (2.6)

where Φ is the covariance between the group-specific factors.

2.1 Separation of common and group-specific factors

In standard linear latent factor models, the normalization induced by an identity factor variance-

covariance matrix identifies the factor process up to a rotation (and change of signs). Let us now

show that, under suitable identification conditions, the rotational invariance of model (2.4) - (2.6) al-

lows only for separate rotations among the components of f s
1,t, among those of f s

2,t, and among those

of f c
t . The rotation invariance of model (2.4) - (2.6) therefore maintains the interpretation of common

factor and specific factors. More formally, let us consider the following transformation of the stacked

factor process: 
f c
t

f s
1,t

f s
2,t

 =


A11 A12 A13

A21 A22 A23

A31 A32 A33



f̃ c
t

f̃ s
1,t

f̃ s
2,t

 (2.7)

7The case of more than two groups is a relatively straightforward generalization. Note that would also handle situations
with more than two sampling frequencies. In the interest of conciseness, we do not consider this type of generalization in
the current paper.
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where (f̃ c ′
t , f̃ s ′

1,t , f̃
s ′
2,t)
′ is the transformed stacked factor vector, and the block matrix A = (Aij) is

nonsingular.

DEFINITION 1. The model is identifiable if: the data y1,t and y2,t satisfy a factor model of the

same type as (2.4) - (2.6) with (f c ′
t , f s ′

1,t , f
s ′
2,t)
′ replaced by (f̃ c ′

t , f̃ s ′
1,t , f̃

s ′
2,t)
′ only when matrix A is a

block-diagonal orthogonal matrix.

The following proposition gives a sufficient condition for the identification of the model with common

and group-specific factors.8

PROPOSITION 1. If matrices Λ1 =

[
Λc

1

... Λs
1

]
and Λ2 =

[
Λc

2

... Λs
2

]
are full column-rank (for

Nj large enough), then the model is identifiable in the sense of Definition 1.

Proof: See Appendix A.4.1.

Therefore the common factor f c
t and the group-specific factors f s

1,t, f
s
2,t and the factor loadings Λc

j ,

Λs
j , are identifiable up to a linear transformation, since the variables yj,t are observable. By the same

token in the mixed frequency setting of equation (2.3), the aggregated factors ḡCt , ḡHt , ḡLt , and the

factor loadings ΛHC , ΛLC , ΛH , ΛL, are identified. Once the factor loadings are identified from (2.3),

the values of the common and high frequency factors for subperiods m = 1, ...,M are identifiable

by cross-sectional regression of the high frequency data on loadings ΛHC and ΛH in (2.1). More

precisely, gCm,t and gHm,t are identified by regressing xHi
m,t on λHC,i and λH,i across i = 1, 2, ..., for any

m = 1, ...,M and any t. Hence, with flow sampling, we can identify the common factor gCm,t and the

high frequency factor gHm,t at all high frequency subperiods. On the other hand, only ḡLt =
M∑

m=1

gLm,t,

i.e. the within-period sum of the low frequency factor, is identifiable by the paired panel data set

consisting of xHt combined with xLt . This is not surprising, since we have no HF observation available

for the LF process. Note the great advantage of the mixed frequency setting - compared to the single

frequency one - in the context of our IP and GDP sector application. The mixed frequency panel

setting allows us to identify and estimate the high frequency observations of factors common to IP and

non-IP sectors. With IP (i.e. high frequency) data only we cannot assess what is common with non-IP.

With low frequency data only, we cannot estimate the high frequency common factors.

8See also results in e.g. Schott (1999), Wang (2012), Chen (2010, 2012). Proposition 1 is implied by Proposition 1 in
Wang (2012).
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2.2 Identification of the (common) factor space from canonical correlations

and directions

In the interest of generality, let us again consider the generic setting of equation (2.4) and let kj = kc +

ksj , for j = 1, 2, be the dimensions of the factor spaces for the two groups, and define k = min(k1, k2).

We collect the factors of each group in the kj-dimensional vectors hj,t:

hj,t :=

 f c
t

f s
j,t

 , j = 1, 2, t = 1, ..., T, (2.8)

and the loadings in the kj-dimensional vectors λj,i:

λj,i :=

 λcj,i

λsj,i

 , j = 1, 2, i = 1, ..., Nj.

Using these definitions, model (2.4) can equivalently be written as:

yj,it = λ′j,ihj,t + εj,it, j = 1, 2, i = 1, ..., Nj, t = 1, ..., T,

We also stack the factors hj,t, j = 1, 2, into the K-dimensional vector ht = (h′1,t, h
′
2,t)
′, with K =

k1 + k2. Moreover, let us express the (K,K)-dimensional matrix V (ht) as:

V (ht) =

 V11 V12

V21 V22

 , (2.9)

where:

Vj` := E(hj,th
′
`,t), j, ` = 1, 2. (2.10)

Let us first recall a few basic results from canonical analysis (see e.g. Anderson (2003) and Magnus

and Neudecker (2007)). Let ρ`, ` = 1, ..., k denote the canonical correlations between h1,t and h2,t.
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The largest k eigenvalues of matrices

R = V −1
11 V12V

−1
22 V21, and R∗ = V −1

22 V21V
−1

11 V12,

are the same, and are equal to the squared canonical correlations ρ2
` , ` = 1, ..., k between h1,t and h2,t.

The associated eigenvectors w1,` (resp. w2,`), with ` = 1, ..., k, of matrix R (resp. R∗) standardized

such that w′1,`V11w1,` = 1 (resp. w′2,`V22w2,` = 1) are the canonical directions which allow to construct

the canonical variables from vector h1,t (resp. h2,t). The matrices wj = (wj,1, ..., wj,k), j = 1, 2, are

such that w′jVjjwj = Ik, j = 1, 2. Moreover, if ρ` 6= 0, then

w1,` =
1

ρ`
V −1

11 V12w2,`,

w2,` =
1

ρ`
V −1

22 V21w1,`.

(2.11)

PROPOSITION 2. The following hold:

i) If kc > 0, the largest kc canonical correlations between h1,t and h2,t are equal to 1, and the remain-

ing k − kc canonical correlations are strictly smaller than 1.

ii) Let Wj be the (kj, k
c) matrix whose columns are the canonical directions for hj,t associated with

the kc canonical correlations equal to 1, with j = 1, 2. Then, we have f c
t = W ′

jhj,t (up to a rotation

matrix), for j = 1, 2.

iii) If kc = 0, all canonical correlations between h1,t and h2,t are strictly smaller than 1.

iv) Let W s
1 (resp. W s

2 ) be the (k1, k
s
1) (resp. (k2, k

s
2)) matrix whose columns are the eigenvectors of

matrix R (resp. R∗) associated with the smallest ks1 (resp. ks2) eigenvalues. Then f s
j,t = W s′

j hj,t (up to

a rotation matrix) for j = 1, 2.

Proof: See Appendix A.4.2.

Proposition 2 shows that the number of common factors kc, the common factor space spanned by f c
t ,

and the spaces spanned by group specific factors, can be identified from the canonical correlations and

canonical variables of h1,t and h2,t. Therefore, the dimension kc, and factors f c
t and f s

j,t, j = 1, 2, (up

to a rotation) are identifiable from information that can be inferred by disjoint principal component

analysis (PCA) on the two subgroups. Note that disjoint PCA on the two subgroups allows us to

identify h1,t and h2,t up to linear transformations. This fact does not prevent identifiability of the
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common and group-specific factors from Proposition 2. More precisely, from the subpanel j we can

identify the vector hj,t up to a non-singular matrix Uj , say, j = 1, 2. Under the transformation hj,t →

Ujhj,t, the matrices R and R∗ are transformed such that R → (U ′1)−1RU ′1 and R∗ → (U ′2)−1R∗U ′2.

Therefore, the matrices of canonical directions W1 and W2 are transformed such as Wj → (U ′j)
−1Wj ,

j = 1, 2. Therefore, the quantities W ′
jhj,t, j = 1, 2, are invariant under such transformations.

Last, but certainly not least, we provide in the Online Appendix to the paper an alternative way for

the identification of the common factor space from variance-covariance matrix of stacked factors (see

Section OA.1).

3 Estimation and inference on the number of common factors

In Section 3.1 we provide estimators of the common and group-specific factors, based on canonical

correlations and canonical directions, when the true number of group-specific and common factors

are known. In Section 3.2 we propose a sequential testing procedure for determining the number of

common factors when only the dimensions k1 and k2 are known. The test statistic is based on the

canonical correlations between the estimated factors in each subgroup of observables. In Section 3.3

we explain why the asymptotic results concerning the test statistic and the factors estimators obtained

under the assumption that the number of pervasive factors k1 and k2 in each group is known, remain

unchanged when the number of pervasive factors is consistently estimated. Finally, in Section 3.4 we

use these results to define estimators and test statistics for the mixed frequency factor model.

3.1 Estimation of common and group-specific factors when the number of com-

mon and group-specific factors is known

Let us assume that the true number of factors kj > 0 in each subgroup, j = 1, 2 is known, and also that

the true number of common factors kc > 0, is known. Proposition 2 suggests the following estimation

procedure for the common factor. Let h1,t and h2,t be estimated (up to a rotation) by extracting the

first kj Principal Components (PCs) from each subpanel j, and denote by ĥj,t these PC estimates of

the factors, j = 1, 2. Let Ĥj = [ĥj,1, ..., ĥj,T ]′ be the (T, kj) matrix of estimated PCs extracted from

panel Yj = [yj,1, ..., yj,T ]′ associated with the largest kj eigenvalues of matrix
1

NjT
YjY

′
j , j = 1, 2. Let
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V̂j` denote the empirical covariance matrix of the estimated vectors ĥj,t and ĥ`,t, with j, ` = 1, 2:

V̂j` =
Ĥ ′jĤ`

T
=

1

T

T∑
t=1

ĥj,tĥ
′
`,t, j, ` = 1, 2, (3.1)

and let matrices R̂ and R̂∗ be defined as:

R̂ := V̂ −1
11 V̂12V̂

−1
22 V̂21, and R̂∗ := V̂ −1

22 V̂21V̂
−1

11 V̂12. (3.2)

Matrices R̂ and R̂∗ have the same non-zero eigenvalues. From Anderson (2003) and Magnus and

Neudecker (2007), we know that the largest kc eigenvalues of R̂ (resp. R̂∗), denoted by ρ̂2
` , ` = 1, ..., kc,

are the first kc squared sample canonical correlation between ĥ1,t and ĥ2,t. We also know that the

associated kc canonical directions, collected in the (k1, k
c) (resp. (k2, k

c)) matrix Ŵ1 (resp. Ŵ2), are

the eigenvectors associated with the largest kc eigenvalues of matrix R̂ (resp. R̂∗), normalized to have

length 1 w.r.t. matrix V̂11 (resp. V̂22). It also holds:

Ŵ ′
1V̂11Ŵ1 = Ikc , and Ŵ ′

2V̂22Ŵ2 = Ikc .

DEFINITION 2. Two estimators of the common factors vector are f̂ c
t = Ŵ ′

1ĥ1,t and f̂ c∗
t = Ŵ ′

2ĥ2,t.

Let matrix Ŵ s
1 (resp. Ŵ s

2 ) be the (k1, k
s
1) (resp. (k2, k

s
2)) matrix collecting ks1 (resp. ks2) eigenvectors

associated with the ks1 (resp. ks2) smallest eigenvalues of matrix R̂ (resp. R̂∗), normalized to have length

1 w.r.t. matrix V̂11 (resp. V̂22). It also holds:

Ŵ s ′
1 V̂11Ŵ

s
1 = Iks1 , and Ŵ s ′

2 V̂22Ŵ
s
2 = Iks2 .

The estimators of the group-specific factors can be defined analogously to the definition of the common

factors.

DEFINITION 3. Two estimators of the specific factors vector are f̆ s
1,t = Ŵ s ′

1 ĥ1,t and f̆ s
2,t = Ŵ s ′

2 ĥ2,t.

Let F̂ c = [f̂ c ′
1 , ..., f̂ c ′

T ]′ and F̂ c∗ = [f̂ c ∗ ′
1 , ..., f̂ c ∗ ′

T ]′ be the (T, kc) matrices of estimated common

factors, and F̆ s
j = [f̆ s ′

j,1, ..., f̆
s ′
j,T ]′ be the (T, ksj ), for j = 1, 2, be the matrices of estimated group-

specific factors. Then, F̂ c (resp. F̂ c∗) and F̆ s
1 (resp. F̆ s

2 ) are orthogonal in sample.

12



An alternative estimator for the group-specific factors f s
1,t (resp. f s

2,t) is obtained by computing the

first ks1 (resp. ks2) principal components of the variance-covariance matrix of the residuals of the regres-

sion of y1,t (resp. y2,t) on the estimated common factors.9 More specifically, let Λ̂c
j = [λ̂cj,1, ..., λ̂

c
j,Nj

]′

be the (Nj, k
c) matrix collecting the loadings estimators:

Λ̂c
j = Y ′j F̂

c(F̂ c ′F̂ c)−1, j = 1, 2. (3.3)

Let ξj,it = yj,it−λ̂c ′j,if̂ c
t be the residuals of the regression of yj,t on the estimated common factor f̂ c

t , and

let ξj,t = [ξj,1t, ..., ξj,Njt]
′, for j = 1, 2. Let Ξj = [ξj,1, ..., ξj,T ]′ be the (T,Nj) matrix of the regression

residuals, for j = 1, 2.

DEFINITION 4. An alternative estimator of the specific factor vector is f̂ s
1,t (resp. f̂ s

2,t), defined as

the first ks1 (resp. ks2) Principal Components of subpanel Ξ1 (resp. Ξ2).

We denote by F̂ s
j = [f̂ s ′

j,1, ..., f̂
s ′
j,T ]′ the (T, ksj ) matrix of estimated group-specific factors, corresponding

to the PCs extracted from panel Ξj associated with the largest ksj eigenvalues of matrix
1

NjT
ΞjΞ

′
j ,

for j = 1, 2. Then, F̂ c is orthogonal in sample both to F̂ s
1 and to F̂ s

2 . Moreover, we define Λ̂s
j =

[λ̂sj,1, ..., λ̂
s
j,Nj

]′ as the (Nj, k
s
j ) matrix collecting the loadings estimators:

Λ̂s
j = Y ′j F̂

s
j (F̂ s ′

j F̂ s
j )−1 = Ξ′jF̂

s
j (F̂ s ′

j F̂ s
j )−1, j = 1, 2, (3.4)

where the second equality follows from the in-sample orthogonality of F̂ c and F̂ s
j , for j = 1, 2.

3.2 Inference on the number of common factors based on canonical correla-

tions

Suppose that the number of factors k1 and k2 in each subpanel is known, and hence k = min(k1, k2) as

well, and let us consider the problem of inferring the dimension kc of the common factor space. From

Proposition 2, this dimension is the number of unit canonical correlations between h1,t and h2,t. We

9This alternative estimation method for the group-specific factors corresponds to the method proposed by Chen (2012).
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consider the following set of hypotheses:

H(0) = {1 > ρ1 ≥ ... ≥ ρk} ,

H(1) = {ρ1 = 1 > ρ2 ≥ ... ≥ ρk}

...

H(kc) = {ρ1 = ... = ρkc = 1 > ρkc+1 ≥ ... ≥ ρk} ,

...

H(k) = {ρ1 = ... = ρk = 1} ,

where ρ1, ..., ρk are the canonical correlations of h1,t and h2,t. Hypothesis H(0) corresponds to the

case of no common factor in the two groups of observables Y1 and Y2. Generically, H(kc) corresponds

to the case of kc common factor and k1 − kc and k2 − kc group-specific factors in each group. The

largest possible number of common factors is the minimum between k1 and k2, i.e. k, and corresponds

to hypothesis H(k). In order to select the number of common factors, let us consider the following

sequence of tests:

H0 = H(kc) against H1 =
⋃

0≤r<kc

H(r),

for each kc = k, k − 1, ..., 1. We propose the following statistic to test H0 against H1, for any given

kc = k, k − 1, ..., 1:

ξ̂(kc) =
kc∑
`=1

ρ̂`. (3.5)

The statistic ξ̂(kc) corresponds to the sum of the kc largest sample canonical correlations. We reject

the null H0 = H(kc) when ξ̂(kc)− kc is negative and large. The critical value is deduced by the large

sample distribution provided in Section 4.
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3.3 Inference on the number of common factors when k1 and k2 are unknown

The tests defined in Section 3.2 require the knowledge of the true number of pervasive factors kj > 0

in each subgroup, j = 1, 2. When the true number of pervasive factors is not known, but consistent

estimators k̂1 and k̂2, say, are available, the asymptotic distributions and rates of convergence for the

test statistic ξ̂(kc) based on k̂1 and k̂2 are the same as those of the test based on the true number of

factors. Intuitively, this holds because the consistency of estimators k̂j , implies that P (k̂j = kj) → 1

for j = 1, 2, which means that the error due to the estimation of the number of pervasive factors is

(asymptotically) negligible.10

The estimators based on the penalized information criteria of Bai and Ng (2002) applied on the two

subgroups, are examples of consistent estimators for the numbers of pervasive factors. Therefore, in

the next Section 4, the asymptotic distributions and rates of convergence of the test statistic and factors

estimators are derived assuming that the true numbers of factors kj > 0 in each subgroup, j = 1, 2,

are known.

3.4 Estimation and inference in the mixed frequency factor model

The estimators and test statistics defined in Sections 3.1 - 3.3 for the group factor model (2.4) allow

to define estimators for the loadings matrices ΛHC , ΛH , ΛLC , ΛL, the aggregated factor values gUt ,

U = C,H,L and the test statistic for the common factor space dimension kC in equation (2.3). We

denote these estimators Λ̂HC , Λ̂H , Λ̂LC , Λ̂L, ĝ
U

t , and the test statistic ξ̂(kC). The estimators of the

common and high frequency factor values are: ĝCm,t

ĝHm,t

 =
(

Λ̂′1Λ̂1

)−1

Λ̂′1x
H
m,t, m = 1, ...,M, t = 1, ..., T, (3.6)

where Λ̂1 = [Λ̂HC
... Λ̂H ].

10This argument is formalized using similar arguments as, for instance, in footnote 5 of Bai (2003).
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4 Large sample theory

In this section we derive the large sample distributions of the estimators of factor spaces and factor

loadings, and of the test statistic for the dimension of the common factor space. We consider the joint

asymptotics N1, N2, T →∞ under Assumptions A.1-A.8 provided in Appendices A.2 and A.3. From

the asymptotic theory of principal component analysis (PCA) estimators in large panels (see e.g. Bai

and Ng (2002), Stock and Watson (2002a), Bai (2003), Bai and Ng (2006)) we know that:

ĥj,t ' Ĥj

(
hj,t +

1√
Nj

uj,t +
1

T
bj,t

)
, j = 1, 2, (4.1)

where bj,t is a deterministic bias term, the matrix Ĥj converges to a non-singular matrix asNj, T →∞,

and:

uj,t :=

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

1√
Nj

Nj∑
i=1

λj,iεj,it

=

(
Λ′jΛj

Nj

)−1
1√
Nj

Λ′jεj,t. (4.2)

Note that the terms uj,t depend also from the cross-sectional dimension Nj , but for notational con-

venience, we omit the index Nj in uj,t. From Assumptions A.2 and A.5 d) the error terms uj,t are

asymptotically Gaussian as Nj →∞:

uj,t
d−→ N(0,Σu,j), (4.3)

where the asymptotic variance is:

Σu,j = Σ−1
Λ,jΩjΣ

−1
Λ,j, (4.4)
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and

ΣΛ,j = lim
Nj→∞

1

Nj

Nj∑
i=1

λj,iλ
′
j,i, (4.5)

Ωj = lim
Nj→∞

1

Nj

Nj∑
i=1

Nj∑
`=1

λj,iλ
′
j,`Cov(εj,i,t, εj,`,t), j = 1, 2. (4.6)

Without loss of generality, let N2 ≤ N1. We assume
√
N1/T = o(1) (Assumption A.6), which allows

to neglect the bias terms bj,t/T in the asymptotic expansion (4.1). We also assume T/N2 = o(1),

which further simplifies the asymptotic distributions derived in the next section.

4.1 Main asymptotic results for the group factor model

In this section we collect the main results concerning the asymptotic distributions of estimators and

test statistics for the group factor model. Define the matrices:

Ωj,k(h) = lim
Nj , Nk→∞

1√
NjNk

Nj∑
i=1

Nk∑
`=1

λj,iλ
′
k,`Cov(εj,i,t, εk,`,t−h), (4.7)

Σu,jk(h) = Σ−1
Λ,jΩjk(h)Σ−1

Λ,k, (4.8)

for j, k = 1, 2, and h = ...,−1, 0, 1, ... Matrix Σu,jk(h) is the asymptotic covariance between uj,t

and uk,t−h. Moreover, we have Ωj ≡ Ωj,j(0) and Σu,j ≡ Σu,jj(0), and similarly we define Σu,12 ≡

Σu,12(0) = Σ′u,21. Let us denote N = min{N1, N2} = N2 the minimal cross-sectional dimension

among the two groups, and µ2
N = N2/N1 ≤ 1. Let µN → µ, with µ ∈ [0, 1]. The boundary value

µ = 0 accounts for the possibility that N1 grows faster than N2.

THEOREM 3. Under Assumptions A.1 - A.6, and the null hypothesis H0 = H(kc) of kc common

factors, we have:

N
√
T

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc ΣU,N

}]
d−→ N

(
0,

1

4
ΩU

)
, (4.9)
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where

Σ̃cc =
1

T

T∑
t=1

f c
t f

c′
t , (4.10)

ΩU = 2
∞∑

h=−∞

tr {ΣU(h)ΣU(h)′} , (4.11)

ΣU(h) = µ2Σ
(cc)
u,11(h) + Σ

(cc)
u,22(h)− µΣ

(cc)
u,12(h)− µΣ

(cc)
u,21(h), (4.12)

ΣU,N = µ2
NΣ

(cc)
u,1 + Σ

(cc)
u,2 − µNΣ

(cc)
u,12 − µNΣ

(cc)
u,21, (4.13)

and the upper index (c, c) denotes the upper-left (kc, kc) block of a matrix.

Proof: See Appendix A.5.

The asymptotic distribution of ξ̂(kc)− kc after appropriate recentering and rescaling is Gaussian. The

convergence rate is N
√
T . The asymptotic expansion of ξ̂(kc) − kc involves a time series average

of squared estimation errors on group factors. Since these estimation errors are of order 1/
√
N , the

expected value of their square will be of order 1/N , originating a recentering term of the second order

analogous to an error-in-variable bias adjustment. Moreover, the averaging over time of the recen-

tered squared estimation errors allows to apply a root-T central limit theorem for weakly dependent

processes, originating a total estimation uncertainty for the test statistic of order 1/(N
√
T ).

THEOREM 4. Under Assumptions A.1 - A.6 we have:

√
N1(Ĥcf̂

c
t − f c

t )
d−→ N

(
0,Σ

(cc)
u,1

)
, (4.14)√

N2(Ĥ∗c f̂ c ∗
t − f c

t )
d−→ N

(
0,Σ

(cc)
u,2

)
, (4.15)√

Nj

[
Ĥs,j f̂

s
j,t −

(
f s
j,t − (F s ′

j F c)(F c ′F c)−1f c
t

)] d−→ N
(

0, (Σ
(ss)
Λ,j )−1Ω

(ss)
j (Σ

(ss)
Λ,j )−1

)
,(4.16)

for any j, t, where Ĥc, Ĥ∗c and Ĥs,j are non-singular matrices, F c = [f c
1 , ..., f

c
T ]′, F s

j = [f s
j,1, ..., f

s
j,T ]′

and the upper index (ss) denotes the lower-right (ksj , k
s
j ) block of a matrix.

Proof: See Appendix A.6.

From Theorem 4 a linear transformation of vector f̂ c
t (resp. f̂ c∗

t ) estimates the common factor f c
t at

a rate 1/
√
N1 (resp. 1/

√
N2). The variance of the asymptotic Gaussian distribution is the upper-

left (c, c) block of matrix Σu,1 (resp. Σu,2), i.e. the asymptotic variance of the estimation error u1,t
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(resp. u2,t) for the PC vector in group 1 (resp. group 2). The estimation error for recovering the

common factors from the group PC’s is of order 1/
√
NT , and therefore asymptotically negligible.

The estimator f̂ s
j,t approximates the residual of the sample projection of the group-j specific factor on

the common factor, up to a linear transformation, at rate 1/
√
Nj .

Let us now derive the asymptotic distribution of the factor loadings estimators.11 Define the matri-

ces:

Φj,i = lim
T→∞

1

T

T∑
t=1

T∑
r=1

E[fj,tf
′
j,r]cov(εj,i,t, εj,i,r), (4.17)

Ψj = lim
T→∞

1

T

T∑
t=1

T∑
r=1

E
[
f s
j,tf

s′
j,r ⊗ f c

t f
c′
r

]
. (4.18)

THEOREM 5. Under Assumptions A.1 - A.6 we have:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

d−→ N
(

0,Φ
(cc)
j,i + (λs′j,i ⊗ Ikc)Ψj(λ

s
j,i ⊗ Ikc)

)
, (4.19)

√
T

[(
Ĥ′s,j

)−1

λ̂sj,i − λsj,i
]

d−→ N
(

0,Φ
(ss)
j,i

)
, (4.20)

for any j, i, where Ĥc and Ĥs,j , j = 1, 2, are the same non-singular matrices of Theorem 4.

Proof: See Appendix A.6.

The factor loadings are estimated at rate
√
T . To get a feasible distributional result for the statistic

ξ̂(kc), we need consistent estimators for the unknown matrices Σ̃cc, ΣU,N and ΩU in Theorem 3. To

simplify the analysis, we assume at this stage that the errors εj,it are uncorrelated across subpanels j,

individuals i and dates t (Assumption A.7). 12 Then, we have:

ΣU,N = µ2
NΣ

(cc)
u,1 + Σ

(cc)
u,2 , ΣU(0) = µ2Σ

(cc)
u,1 + Σ

(cc)
u,2 , ΩU = 2tr

{
ΣU(0)2

}
. (4.21)

In Theorem 6 below, we replace Σ̃cc, ΣU,N and ΣU(0) by consistent estimators, such that the estimation

error for tr(Σ̃−1
cc ΣU,N) in the bias adjustment is op(1/

√
T ). Therefore, the asymptotic distribution of

11We assume that f̂ ct is used for the estimation of the factor loadings. The distribution of the loadings estimators is
analogous when using f̂ c ∗t as common factor estimator.

12If the errors are weakly correlated across series and/or time, consistent estimation of ΣU,N and ΩU requires threshold-
ing of estimated cross-sectional covariances and/or HAC-type estimators.
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the statistic is unchanged.

THEOREM 6. Let Σ̂U = (N2/N1)Σ̂
(cc)
u,1 + Σ̂

(cc)
u,2 , with

Σ̂u,j =

(
Λ̂′jΛ̂j

Nj

)−1(
1

Nj

Λ̂′jΓ̂jΛ̂j

)(
Λ̂′jΛ̂j

Nj

)−1

, j = 1, 2, (4.22)

where Γ̂j = diag(γ̂j,ii, i = 1, ..., Nj), and Λ̂j = [Λ̂c
j

... Λ̂s
j ], where Λ̂c

j and Λ̂s
j , with j = 1, 2, are the

loadings estimators defined in equations (3.3) and (3.4), and

γ̂j,ii =
1

T

T∑
t=1

ε̂2
j,it, (4.23)

where ε̂j,it = yj,it − λ̂c ′j,if̂ c
t − λ̂s ′j,i f̂ s

j,t. Moreover, let Σ̂cc =
1

T

T∑
t=1

f̂ c
t f̂

c ′
t be the estimator of Σ̃cc. Then,

under Assumptions A.1 - A.7, and the null hypothesis H0 = H(kc) of kc common factors, we have:

ξ̃(kc) := N
√
T

(
1

2
tr{Σ̂2

U}
)−1/2 [

ξ̂(kc)− kc +
1

2N
tr
{

Σ̂−1
cc Σ̂U

}]
d−→ N (0, 1) . (4.24)

Proof: See Appendix A.7.

The feasible asymptotic distribution in Theorem 6 is the basis for a one-sided test of the null hypothesis

of kc common factors. If ξ̃(kc) < −1.64, this null hypothesis is rejected at 5% level against the

alternative hypothesis of less than kc common factors.

4.2 Main asymptotic results for the mixed frequency factor model

In this section we give the asymptotic distribution for estimators of factor values in the mixed frequency

factor model. The asymptotics is forNH , NL, T →∞, such thatNL ≤ NH ,
√
NH/T = o(1), NL/T =

o(1). Define the matrices:

Ω∗Λ,m = lim
NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(ei,Hm,t, e

`,H
m,t), m = 1, ...,M, (4.25)

where λ′1,i is the i-th row of the (NH , k
C + kH) matrix Λ1 = [ ΛHC

... ΛH ].
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THEOREM 7. Under Assumptions A.1 - A.8 we have:

√
NH(Ĥcĝ

C
m,t − gCm,t)

d−→ N
(
0, [Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1](CC)

)
, (4.26)√

NH

[
Ĥ1,sĝ

H
m,t − (gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1)gCm,t

]
d−→ N

(
0, [Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1](HH)

)
, (4.27)

for any m, t, where Ĥc and Ĥ1,s are the same non-singular matrices of Theorem 4, ḡC = [ḡC1 , ..., ḡ
C
T ]′,

ḡH = [ḡH1 , ..., ḡ
H
T ]′, ΣΛ,1 = lim

NH→∞

1

NH

NH∑
i=1

λ1,iλ
′
1,i, and indices (CC) and (HH) denote the upper-left

(kC , kC) block and lower-right (kH , kH) block of a matrix, respectively.

Proof: See Appendix A.8.

From Theorem 7, a linear transformation of vector ĝCm,t, resp. ĝHm,t, estimates the common factor gCm,t,

resp. the residual of the sample projection of the high-frequency factor on the common factor. The

estimation rate is
√
NH . There is no asymptotic effect from the error-in-variable problem induced by

using estimated factor loadings in the cross-sectional regression when T/NH = o(1). The asymptotic

distribution of the estimator ˆ̄gLt of the aggregated low-frequency factor is deduced from Theorem 4.

5 Empirical application

It is worth summarizing the procedure underpinning the empirical analysis, for the benefit of the

readers who skipped the previous sections. This is done in a first subsection.

5.1 Practical implementation of the procedure

We first assume that kC , kH , kL, the number of respectively common, high and low frequency factors

in equation (2.1), are known and all strictly larger than zero. The identification strategy presented in

Section 2 directly implies a simple estimation procedure for the factor values and the factor loadings,

which consists of the three following steps:

1. PCA performed on the HF and LF panels separately
Define the (T,NH) matrix of temporally aggregated (in our application flow-sampled) HF ob-
servables asXH = [xH1 , ..., x

H
T ]′, and the (T,NL) matrix of LF observables asXL = [xL1 , ..., x

L
T ]′.

The estimated pervasive factors of the HF data, which are collected in (T, kC + kH) matrix
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ĥH = [ĥH,1, ..., ĥH,T ]′, are obtained performing PCA on the HF data:(
1

TNH

XHXH′
)
ĥH = ĥH V̂H , (5.1)

where V̂H is the diagonal matrix of the eigenvalues of (TNH)−1XHXH′. Analogously, the
estimated pervasive factors of the LF data, which are collected in the (T, kC + kL) matrix ĥL =
[ĥL,1, ..., ĥL,T ]′, are obtained performing PCA on the LF data:(

1

TNL

XLXL′
)
ĥL = ĥLV̂L, (5.2)

where V̂L is the diagonal matrix of the eigenvalues of (TNL)−1XLXL′.

2. Canonical correlation analysis performed on estimated principal components
Let ŴC

U be the (kC + kU , kC) matrix whose columns are the canonical directions for ĥU,t as-
sociated with the kC largest canonical correlations between ĥH and ĥL, for U = H,L. Then,
the estimator of the (in our application flow sampled) common factor is ˆ̄gCt = ŴC ′

U ĥU,t, for
U = H,L and t = 1, ..., T , and the estimated loadings matrices Λ̂HC and Λ̂C are obtained from
the least squares regressions of xHt and xLt on estimated factor ˆ̄gCt . Collect the residuals of these
regressions:

ˆ̄ξHt = xHt − Λ̂HC ˆ̄gCt ,

ˆ̄ξLt = xLt − Λ̂LC ˆ̄gCt ,

in the following (T,NU), with U = H,L, matrices:

Ξ̂U =
[

ˆ̄ξU ′1 , ..., ˆ̄ξU ′T

]′
, U = H,L.

Then the estimators of the HF-specific and LF-specific factors, collected in the (T, kU), U =
H,L, matrices:

ĜU =
[
ˆ̄gU ′1 , ..., ˆ̄gU ′T

]′
, U = H,L,

are obtained extracting the first kH and kL PCs from the matrices:(
1

TNU

Ξ̂U Ξ̂U ′
)
ĜU = ĜU V̂ U

S , U = H,L,

where V̂ U
S , with U = H,L are the diagonal matrices of the associated eigenvalues. Next, the

estimated loadings matrices Λ̂H and Λ̂C are obtained from the least squares regression of ξ̂Ht and
ξ̂Lt on respectively the estimated factors ˆ̄gHt and ˆ̄gLt .

3. Reconstruction of the common and high frequency-specific factors
The estimates of the common and HF-specific factors for each HF subperiod, denoted by ĝCm,t

and ĝHm,t, for any m = 1, ...,M and t = 1, ..., T , are obtained by cross-sectional regression of
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xm,t on the estimated loadings [Λ̂HC
... Λ̂H ] obtained from the second step.

Inference on the number of common, low and high-frequency specific factors proceeds as follows:

• Suppose that kX := kC + kH and kY := kC + kL, i.e. the numbers of pervasive factors in panels
X and Y , are known (consistent estimators: ICp1 and ICp2 criteria of Bai and Ng(2002)).

• Let k∗ := min(kX , kY ), we develop a test for:

H0 : kC = r against H1 : kC < r,

for any given r = k∗, k∗ − 1, ..., 1.

• We use the statistic defined in equation (3.5), namely: ξ̂(r) =
∑r

`=1 ρ̂`, where ρ̂`, ` = 1, ..., r, are
the r largest canonical correlations between ĥH,t and ĥL,t (i.e. the empirical analogs of hH,t and
hL,t).

5.2 Data description

The data consists of a combination of IP and non-IP sectors. For industrial production we use the same

data on 117 IP sectoral indices considered by Foerster, Sarte, and Watson (2011), sampled at quarterly

frequency from 1977.Q1 to 2011.Q4.13 These indices correspond to the finest level of disaggregation

for the sectoral components of the IP aggregate index which can be matched with the available sectors

in the Input-Output and Capital Use tables used in the structural analysis in Section 5.4. The data for

all the remaining non-IP sectors consist of the annual growth rates of real GDP for the following 42

sectors: 35 services, Construction, Farms, Forestry-Fishing and related activities, General government

(federal), Government enterprises (federal), General government (state and local) and Government

enterprises (state and local). These LF data are available from 1977 until 2011 and are published

by the Bureau of Economic Analysis (BEA).14 Moreover, as IP is a Gross Output measure, in the

structural analysis it is convenient to consider the yearly growth rates of real Gross Output (GO) for

the non-IP sectors. These data are available from 1988 until 2011 and are also published by the BEA.

Following the sectoral productivity literature, in the structural analysis we focus exclusively on the

private sectors, and therefore exclude four Government Gross Output indices, reducing the sample

13The IP data are available also at monthly frequency. Following Foerster, Sarte, and Watson (2011), we focus only on
quarterly IP data, as they share the main feature of the monthly ones, but are less noisy.

14GDP data are available at quarterly frequency for the aggregate index, but not for sectoral ones. As in the remaining
part of the paper we study comovements among different sectors, we consider the panel of yearly GDP sectoral data.
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size to 38 non-IP sectors indices. All growth rates refer to seasonally adjusted real output indices, and

are expressed in percentage points.15

Figure 2: Growth rates of the Industrial Production and Gross Domestic Product indices
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Figure 2 displays the growth rates of the aggregate Industrial Production (dotted (blue) quarterly data)

and Gross Domestic Product (solid line (red) annual data) indices over the sample period from 1977

until 2011. The objective of this empirical application is to use our mixed frequency factor model to

capture the major sources of comovement among the sectoral constituents of these two indices, which

are the most reliable measures of US economic activity.

5.3 Factors common to all US sectors

We assume that our dataset follows the factor structure for flow sampling as in equation (2.2), with xHm,t

and xLt corresponding to respectively quarterly IP and annual non-IP data. Let XH = [xH1 , ..., x
H
T ]′,

with xHt :=
∑4

m=1 x
H
m,t, be the (T,NH) panel of the yearly observations of the IP indices growth

rates (computed as the sum of the quarterly growth rates xHm,t, m = 1, ..., 4 for year t), and let XL =

15A detailed description of the dataset is provided in the Online Appendix OA.2.
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[xL1 , ..., x
L
T ]′ be the (T,NL) panel of the yearly growth rates of the non-IP indices. Let also XHF =

[xH1,1, x
H
2,1, ..., x

H
m,t, ..., x

H
4,T ]′ be the (4T,NH) panel of IP indices quarterly growth rates.

We start by selecting the number of factors in each subpanel, which are of dimensions kX =

kC + kH and kY = kC + kL, respectively. We use the ICp2 information criteria of Bai and Ng (2002),

and report the results in Table 1. Results for other criteria are in the Online Appendix OA.4.

Table 1: Estimated number of factors

XHF XH XL [ XH XL ]

IP data: 1977.Q1-2011.Q. Non-IP data: Gross Domestic Product, 1977-2011

ICp2 1 2 1 1

IP data: 1988.Q1-2011.Q4. Non-IP data: Gross Output, 1988-2011

ICp2 1 1 2 2

The number of latent pervasive factors selected by the ICp2 information criteria is reported for different subpanels. Sub-
panels XHF and XH correspond to IP data sampled at quarterly and yearly frequency, respectively. Panels XL and
[ XH XL ] correspond to non-IP data, and the stacked panels of IP and non-IP data, respectively. We use kmax = 15 as
maximum number of factors when computing ICp2.

Table 1 corroborates the evidence in Foerster, Sarte, and Watson (2011) suggesting that there is either

one or perhaps two pervasive factors in the IP data (kX = 1 or kX = 2). Likewise, for the non-IP data,

we also find evidence in favor of either one or two pervasive factors (kY = 1 or kY = 2).

Table 2: Canonical Correlations and Tests for Common Factors

ρ̂1 ρ̂2 ξ̃(2) ξ̃(1)

0.84 0.06 -3.56 -1.56

0.80 0.11 - -

Top panel: IP data: 1977.Q1-2011.Q4, Non-IP data: GDP, 1977-2011. Lower panel: IP data: 1988.Q1-2011.Q4, Non-IP
data: Gross Output, 1988-2011. In rows 1 and 2 we report the canonical correlations of the first two PCs computed in each
subpanel of IP and non-IP data, and the values of ξ̃(r), the feasible standardized value of the test statistic ξ̂(r), for the null
hypothesis of r = 2 or r = 1 common factors, respectively.

In order to select the number of common and frequency-specific factors, we follow the procedure

detailed in Section 5.1. In Table 2 we report the estimated canonical correlations of the first two PC’s

estimated in each subpanel XH and XL, which are used to compute the value of the test statistic ξ̂(r),

25



for the null hypothesis of r = 2 or r = 1 common factors.16 We note that the first canonical correlation

is close to one for both datasets, which is consistent with the presence of one common factor in each

of the two mixed frequency datasets considered. The tests reject the null hypotheses r = 2, i.e. the

presence of two common factors, for any significance level, while we cannot reject the null of one

common factor with a 5% significance level. In light of the results in Tables 1 and 2 we select a model

with kC = kH = kL = 1, for both the panel where the LF data are GDP non-IP indices as well as for

the panel in which the LF data are Gross Output non-IP indices. The factors for both datasets are then

obtained using the estimation procedure of Section 5.1.

In Figure 3 we plot the estimated factors from the panels of 42 GDP sectors and 117 IP indices on

the entire sample going from 1977 to 2011. All factors are standardized to have zero mean and unit

variance, and their sign is chosen so that the majority of the associated loadings are positive. A visual

inspection of the plots in Figure 3 reveals that the common factor in Panel (a) resembles the IP index

of Figure 2, with a large decline corresponding to the Great Recession following the financial crisis

of 2007-2008 and the positive spike associated to the recent economic recovery. On the other hand,

the LF-specific factor features a less dramatic fall during the Great Recession and actually features

a positive spike in 2008, followed by large negative values in the following years. This constitutes

preliminary evidence suggesting that some non-IP sectors could feature different responses to the

financial crisis of 2007-2008.

The interpretation of factors is easier when they are used as explanatory variables in standard

regression analysis. We start with a disaggregated analysis, and look at the relative importance of the

common and frequency specific factors in explaining the variability across all sectoral growth rates.

For each sector in the panel, we regress the index growth rates on (i) the common factor only, (ii) on the

specific factor only, and (iii) on both common and specific factors. In Table 3 we report the quantiles of

the empirical distribution of the adjusted R2 (denoted R̄2) of these regressions. In the first and fourth

rows of Panels A and B we report the quantiles of R̄2 of the regressions involving as explanatory

variable the common factor only, in the second and fifth rows we report the quantiles of R̄2 when the

explanatory variables are the common and frequency-specific factors. Finally, the quantiles of R̄2 in

the third and sixth rows refer to regressions where the explanatory variable is the frequency-specific

16We extract the first two PC’s in each subgroup, compute the matrix R̂ as defined in equation 3.2 and compute the
canonical correlations as the square root of its two largest eigenvalues.
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Figure 3: Sample paths of the estimated common and specific factors
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(a) Common factor
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(b) HF specific factor
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(c) LF specific factor

Panel (a) displays the time series plot of the estimated common factor. Panel (b) displays that of the HF-specific factor and
finally Panel (c) that of the LF-specific factor. The factors are estimated from the panels of 42 non-IP GDP sectors and 117
IP indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period is 1977.Q1-2011.Q4.

factor only.17

From the first three lines of Panel A we observe that adding the LF specific factor to the common

factor regressions for the non-IP indices yields an increment of the median R̄2 around 14%, going from

11.5% to 25.4%, and for more than 10% of the sectors the R̄2 increases at least by 17%. On the other

hand, the HF-specific factor, when added to the common factor, contributes less to the increments in

17The regressions in the second and third rows are restricted MIDAS regressions. The regressions in fourth, fifth and
sixth rows impose the estimated coefficients of the common and HF-specific factors to be the same for each quarter, as they
are estimated as HF regressions.
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Table 3: Adjusted R2 of regressions on common factors from indices growth rates

Panel A
R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Domestic Product, 1977-2011

common -2.2 -0.5 11.5 28.9 42.9
common, LF-spec. 0.1 9.2 25.4 34.5 60.3
LF-spec. -2.8 -2.3 5.7 15.7 22.4

Observables: IP, 1977.Q1-2011.Q4

common 0.3 4.8 20.3 36.0 60.0
common, HF-spec. 1.1 6.8 28.7 45.3 63.4
HF-spec. -0.7 -0.1 3.0 11.2 23.5

Panel B
R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Output, 1988-2011

common -2.0 6.6 28.2 45.6 64.5
common, LF-spec. 2.8 15.2 45.0 63.7 70.8
LF-spec. -4.5 -3.8 3.2 13.4 40.7

Observables: IP, 1988.Q1-2011.Q4

common 0.1 3.5 10.5 29.8 48.2
common, HF-spec. 0.8 7.9 28.2 43.2 65.4
HF-spec. -0.8 2.0 10.0 21.9 33.9

Panel A. The regressions in the first three lines involve the growth rates of the 42 non-IP sectors as dependent variables,
while those in the last tree lines involve the growth rates of the 117 IP indices as dependent variables. The explanatory
variables are factors estimated from the same indices using a mixed frequency factor model with kC = kH = kL = 1.
The sample period for the estimation of both the factor model and the regressions is 1977-2011. Panel B. The regressions
in the first three lines involve the Gross Output growth rates growth of the 38 non-IP as dependent variables, while those
in the last tree lines involve the growth of the 117 IP indices as dependent variables. The explanatory variables are factors
estimated from the same indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for
the estimation of both the factor model and the regressions is 1988-2011.

R̄2 for the IP sectors. In Panel B we note that for at least 50% of both the IP and non-IP Gross Output

sectoral indices, the frequency-specific factors contribute to an increase in R̄2 of at least 15% when

added to the common factor. Overall, Table 3 confirms that the common and frequency-specific factors

explain a significant part of the variability of output growth for the majority of the sectors of the US

economy. Moreover, the common factor is pervasive for most of the IP and non-IP sectors alike.

In order to give economic interpretation to the estimated factors, we list in Table 4 the top and

bottom ten GDP non-IP sectors in terms of R̄2 when regressed on the common factor only, and both

the common and LF-specific factors. We also report the top and bottom ten GDP non-IP sectors with

the highest and lowest absolute increments in R̄2 when the LF-specific factor is added to the common

one.18 From Panel A we first note that the common factor explains most of the variability of service

sectors with direct economic links to industrial production sectors like Transportation and Warehous-

ing: for instance, Truck Transportation, Other Transportation & Support Activities, and Warehousing

& Storage have an R̄2 of 63%, 43% and 41%, respectively, when regressed on the common factor only.

This is a clear indication that the common factor could be interpreted as IP factor.

18The entire lists of ordered non-IP sectors for the three panels in Table 4 is available in Tables OA.7-OA.9 in the Online
Appendix.
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On the other hand, the common factor is completely unrelated to Agriculture, forestry, fishing &

hunting, most of the Financial and Information services sectors.

Turning to Panel C, we note that the LF-specific factor explains more than 20% of the variability of

output for very heterogeneous services sectors like Miscellaneous professional, scientific, & technical

services, Administrative & support services, Legal services, Real Estate, some important financial ser-

vices like Credit intermediation, & Related activities, Rental & Leasing Services but also Government

(state & local). Interpreting these results, we can conclude that the LF-specific factor is completely

unrelated to service sectors which depend almost exclusively on IP output, and is a common factor

driving the comovement of non-IP sectors such as some Services, Construction and Government.

In Table 4 we highlight further differences in the dynamics of output growth between the two sub-

sectors of the financial services industry which are particularly revealing: “Securities” and “Credit

intermediation”, extensively studied by Greenwood and Scharfstein (2013). We find that the subsec-

tors “Funds, trusts, & other financial vehicles” and “Securities, commodity contracts, & investments”

are unrelated to both the common and LF-specific factors, indicating that their output growth is uncor-

related with the common component of real output growth across the other sectors of the US economy.

In contrast, the “credit intermediation” industry comoves with the other IP and non-IP sectors.19

Up to this point, we looked at the explanatory power of the factors for sectoral output indices. For

both the non-IP GDP and Gross Output, these indices correspond to the finest level of disaggregation of

output growth by sector. In Table 5 we report the results of regressions with aggregated indices instead.

In particular, we regress the output of each aggregate index either on the estimated common factor or

the common and frequency specific factors, and focus on the adjusted R2s of these regressions. It is

also important to note that we also include the GDP Manufacturing aggregate index which is not used

in the estimation of the factors. This will help us with the interpretation of the factors - common and

frequency-specific - which we obtained.

19See also Tables OA.7 and OA.8 in the Online Appendix.
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Table 5: Adj. R2 of aggregate IP and selected GDP indices growth rates on estimated factors

Panel A Quarterly observations, 1977.Q1-2011.Q4

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H)

Industrial Production 89.06 5.02 90.26 1.20

Panel B Yearly observations, 1977-2011

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

GDP 60.54 8.59 74.21 13.67
GDP - Manufacturing 81.88 -3.03 81.53 -0.35
GDP - Agriculture, forestry, fishing, and hunting 1.43 -2.52 -1.26 -2.69
GDP - Construction 44.05 11.22 59.75 15.70
GDP - Wholesale trade 20.35 7.90 30.83 10.48
GDP - Retail trade 30.70 -2.86 28.56 -2.15
GDP - Transportation and warehousing 62.14 -2.95 60.97 -1.17
GDP - Information 12.14 22.28 37.57 25.43
GDP - Finance, insurance, real estate, rental, and leasing -1.42 21.22 21.11 22.53
GDP - Professional and business serv. 30.02 30.21 65.61 35.59
GDP - Educational serv., health care, and social assist. -1.38 18.38 18.18 19.56
GDP - Arts, entert., recreat., accomm., and food serv. 53.51 -2.23 53.70 0.18
GDP - Government -2.12 22.37 20.47 22.59

In the table we report the adjusted R2, denoted R̄2, of the regression of growth rates of the aggregate IP index and selected
aggregated sectoral GDP non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF factors
(columns R̄2(H) and R̄2(L)) only, and the common and frequency-specific factors together (column (3)). The last column
displays the difference between the values in the third and first columns. The factors are estimated from the panel of 42
GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with kC = kH = kL = 1. The sample
period for the estimation of both factor model and regressions is 1977-2011.

Panel A of Table 5 shows that the common factor explains around 90% of the variability in the

aggregate IP index. This implies that the common factor can be interpreted as an Industrial Production

factor. This is further corroborated in Panel B where we find an R̄2 around 82% for the regression

of the GDP Manufacturing Index on the common factor only. As most of the sectors included in the

Industrial Production index are Manufacturing sectors, this result is not surprising, but is still worth

noting because, as noted earlier, the GDP data on Manufacturing have not been used in the factor

estimation, in order not to double-count these sectors in our mixed frequency sectoral panel.20 As

expected from the results in Table 4, more than 60% of the variability of GDP of Transportation and
20A detailed discussion of the difference in the sectoral components of the IP index and the GDP Manufacturing index

is provided in Appendix OA.2.
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Warehousing services index is explained by the common factor only, and the LF-specific factor has no

explanatory power. On the other hand, the HF-specific factor seems not to be important in explaining

the aggregate IP index, as the R̄2 increases only by 1% when it is added as a regressor to the common

factor.21 This suggests that the HF-specific factor is pervasive only for a subgroup of IP sectors which

have relatively low weights in the index, meaning that their aggregate output is a negligible part of the

output of the entire IP sector and, consequently, also the entire US economy.22

Looking at the aggregate GDP index, we first note that even if the weight of Industrial Production

sectors in the aggregate nominal GDP index has always been below 30%, as evident from Figure 1,

still 60% of its total variability can be explained exclusively by the common factor which - as shown

in Panel A - is primarily an IP factor. This implies that there must be substantial comovement between

IP and some important service sectors. Moreover, it appears from the first entry in Panel B that a

relevant part of the variability of the aggregate GDP index not due to the common factor is explained

by the LF-specific factor (the R̄2 increases by about 14% to 74%).23 This indicates that significant

comovements are present among the most important sectors of the US economy which are not related

to manufacturing. Indeed, Panel B in Table 5 indicates that some services sectors such as Professional

& Business Services and Information and Construction load significantly both on the common and

the LF-specific factor, while some other sectors like Finance and Government load exclusively on the

LF-specific factor.24

5.4 Structural model and productivity shocks

The macroeconomics literature, with the works of Long and Plosser (1983), Horvath (1998) and Car-

valho (2007), among many others, has recognized that input-output linkages in both intermediate

materials and capital goods lead to propagation of sector-specific shocks in a way that generates co-

movements across sectors. An important contribution of the work of Foerster, Sarte, and Watson

(2011) was to describe the conditions under which an approximate linear factor structure for sectoral

21See also Table OA.10 in Appendix OA.4 for the R̄2 of the regression of all GDP indices on the HF factor only, and all
the 3 factors together.

22These results corroborate the findings of Foerster, Sarte, and Watson (2011), who claim that the main results of their
paper are qualitatively the same when considering either one or two common factors extracted from the same 117 IP indices
of our study.

23See the results in Table OA.10 in the Online Appendix.
24The results change when we look at Finance sector disaggregated in Credit Intermediation, “Securities”, Insurance

and Real estate, as evident in Table 4.
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output growth arises from standard neoclassical multisector models including those linkages. In par-

ticular, they develop a generalized version of the multisector growth model of Horvath (1998), which

allows them to filter out the effects of these linkages and reconstruct the time series of productivity

shocks of each of the sectors for which data on output growth and input-output tables for intermediate

materials and capital goods are available. We can characterize this as statistical versus structural factor

analysis.

The main objective of this section is to verify the presence of a common factor in the innovations

of productivity for all the sectors (not just IP) of the US economy by means of our mixed frequency

factor model. If a common factor is present also in the productivity shocks, then the factor structure

uncovered by the reduced form analysis of output growth in Section 5.3 is not only due to interlinkages

in materials and capital use among different sectors.

We rely on the same multi-industry real business cycle model described in Section IV of Foerster,

Sarte, and Watson (2011) to extract productivity shocks from the time series of the growth rates of

the same 117 IP indices considered in the previous section, and the growth rates of 38 non-IP Gross

Output of private sectors, therefore excluding the 4 Government indices considered previously.25 One

challenge due to the mixed frequency nature of our output growth dataset consists in the extraction

of mixed frequency technological shocks. In the Online Appendix OA.3 we explain how to adapt

the algorithms proposed by Foerster, Sarte, and Watson (2011), and based on the work of King and

Watson (2002), to estimate technological shocks for our mixed frequency output series. Specifically,

the multi-sector business cycle model that we use to filter out the technological shocks correspond to

the “Benchmark” model considered by Foerster, Sarte, and Watson (2011) in their Section IV, while the

data on input-output and capital use matrices necessary to estimate the model are built from the BEA’s

1997 “use table” and “capital flow table”, respectively.26 Using the extracted productivity shocks for

the IP and non-IP sectors, denoted ε̂Xm,t and ε̂Yt , respectively, we estimate our mixed frequency factor

model with these productivity shock series. The sample period for the estimation of both the factor

model and the regressions is 1989-2011, because the productivity shocks can not be computed for the

first year of the sample (see Foerster, Sarte, and Watson (2011), especially their equation (B38) on

page 10 of their Appendix B). For a direct comparison between the statistical factor model covered

25The exclusion of the public sector from the analysis is a standard choice in the sectoral productivity literature.
26The last year for which sectoral capital use tables have been constructed by the BEA is 1997.
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in the previous subsection and the structural factor analysis, we need to first re-estimate our model

with one common, one HF-specific and one LF-specific factors on the panels of growth rates of annual

Gross Output non-IP indices (as opposed to the GDP growth indices in Table 5) and the same 117

quarterly sectoral IP indices. The results are reported in Table 6. We expect some difference with the

previous results for at least two reasons. First, the dataset in which the non-IP data are Gross Output

indices, refers to shorter time period going from 1988, instead of 1977, to the end of 2011, as Gross

Output indices are not available before 1988. Second, as the panel in Table 6 does not include the four

governmental sectors, we expect that the common and frequency-specific factors may have different

dynamics when compared to those extracted from the panel with GDP non-IP sectors.

Table 6: Adj. R2 of aggregate IP and selected Gross Output indices growth rates on estimated factors

Panel A Quarterly observations, 1988.Q1-2011.Q4

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H)

Industrial Production 63.71 38.32 89.48 25.78

Panel B Yearly observations, 1988-2011

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

GO (all sectors) 68.54 12.20 89.66 21.12
GO - Manufacturing 86.08 -3.05 88.94 2.86
GO - Agriculture, forestry, fishing, and hunting -3.21 3.35 -0.25 2.96
GO - Construction 25.30 34.16 67.15 41.84
GO - Wholesale trade 80.82 -3.85 79.97 -0.85
GO - Retail trade 64.72 -4.50 63.15 -1.57
GO - Transportation and warehousing 83.82 -4.51 83.22 -0.60
GO - Information 33.70 38.59 81.54 47.84
GO - Finance, insurance, real estate, rental, and leasing 3.37 50.30 59.29 55.92
GO - Professional and business services 45.13 21.97 75.48 30.36
GO - Educational serv., health care, and social assist. -4.19 -1.58 -6.17 -1.98
GO - Arts, entert., recreat., accomm., and food serv. 71.06 -3.74 71.90 0.84

In the table we display the adjustedR2, denoted R̄2, of the regressions of growth rates of the aggregate IP index and selected
aggregated sectoral Gross Output non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF
factors (columns R̄2(H) and R̄2(L))only, and the common and frequency-specific factor together (column (3)). The last
column displays the difference between the values in the third and first columns. The factors are estimated from the panel
of 38 Gross Output non-IP sectors and 117 IP indices using a mixed frequency factor model with kC = kH = kL = 1.
The sample period for the estimation of both factor model and regressions is 1988-2011.
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We obtain qualitatively similar results, as shown in Table 6. There appear to be only two notable

differences with the results reported in Table 5. We see an increased importance of the HF-specific

factor in explaining the variability of the IP aggregate index (see Panel A in Table 6), at the expense

of a lower explanatory power for the common factor. Moreover, there is also an increased importance

of both the common and LF-specific factors in explaining the total variability of total aggregate output

(measured as total Gross Output, in the first line of Panel B in Table 6). Still the common factor

explains roughly 65 % of the variation in the panel of IP data.

What do we learn from the structural analysis with common and frequency-specific factors of pro-

ductivity shocks? First, it is remarkable to find that again there is one common factor in productivity

shocks. Indeed, the selection of the number of common factors is performed as in the previous section,

and our testing methodology suggests the presence of one common factor. Therefore we estimate a

model for the productivity innovations with kC = kH = kL = 1.27 As in the previous section, we start

with a disaggregated analysis and look at the relative importance of the new common and frequency

specific factors in explaining the variability of the constituents of the panel of productivity innova-

tions, and the panels of all output growth rates used for the extraction of the productivity innovation

themselves. For each sector, we regress both the productivity innovations and the index growth rates

on the common factor only, on the specific factor only, and on both common and specific factors. In

Table 7 we report the quantiles of the empirical distribution of the adjusted R2 (denoted R̄2) of these

regressions.28 Panel A of Table 7 confirms that both the common and the frequency-specific factors are

pervasive for the panels of productivity innovations. From the first two rows we note that the common

factor alone explains at least 11% of the variability of half of the non-IP series considered, and this

fraction increases to more than 26 % when the LF-specific factor is added as regressor to the common

one. On the other hand, from the last three rows of we note that for the panels of IP the high frequency

specific factor seems to explain the majority of the variability of the productivity indices, while the

explanatory power of the common factor only seem to be significant only for 50% of the IP sectors.

Panel B reports the R̄2 of the regressions of the GO indices growth rates on the factors estimated on

the panels of productivity shocks themselves. Therefore, they give an indication of the fraction of

27The values of the penalized selection criteria of Bai and Ng (2002) performed on different subpanels and the test for
the number of common factors are available in Tables OA.12 and OA.13 in the Online Appendix OA.4.

28The regressions in the second and third rows are restricted MIDAS regressions. The regressions in fourth, fifth and
sixth rows impose the estimated coefficients of the common and HF-specific factors to be the same at each quarter, as they
are estimated as HF regressions.
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Table 7: Adjusted R2 of regressions on common factors from productivity innovations

Panel A
Adjusted R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Output productivity innovations, 1989-2011

common -3.3 -0.3 11.0 33.6 46.1
common, LF-spec. -2.6 4.8 26.3 45.0 60.7
LF-spec. -4.2 -3.6 -0.1 17.7 33.1

Observables: IP productivity innovations, 1989.Q1-2011.Q4

common -1.0 -0.4 1.5 12.1 22.4
common, HF-spec. -0.6 3.1 13.1 28.4 40.1
HF-spec. -0.7 0.6 6.2 18.7 28.2

Panel B
Adjusted R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Output, 1988-2011

common -2.4 3.7 21.2 31.5 55.8
common, LF-spec. -0.9 7.8 28.2 56.9 68.0
LF-spec. -4.6 -3.3 1.3 20.6 43.8

Observables: IP,1988.Q1-2011.Q4

common -0.8 0.2 4.5 17.7 34.7
common, HF-spec. 1.2 5.9 25.7 40.8 63.8
HF-spec. -0.3 2.2 14.7 29.2 37.8

Panel A: The regressions in the first three lines involve the productivity innovations of the 38 non-IP sectors as dependent
variables, while the regressions in the last tree lines involve the productivity innovations of the 117 IP indices as dependent
variables. Productivity innovations are computed using the panel of Gross Output growth rates for the LF observables.
The explanatory variables are factors estimated from a mixed frequency factor model with kC = kH = kL = 1, on the
panels of productivity innovations filtered adapting the procedure of Foerster, Sarte, and Watson (2011). The sample period
for the estimation of both the factor model and the regressions is 1989.Q1-2011.Q4. Panel B: The regressions in the first
three lines involve the Gross Output growth rates of the 38 non-IP sectors as dependent variables, while the regressions
in the last tree lines involve the growth of the 117 IP indices as dependent variables. The explanatory variables are the
same factors used in the regressions of Panel A. The sample period for the estimation of both the factor model and the
regressions is 1989.Q1-2011.Q4. Productivity innovations are computed using the panel of Gross Output growth rates for
the LF observables.

variability of the indices explained by the common components of the output growth which is not due

to input-output linkages between sectors, as captured by the structural “Benchmark” of Foerster, Sarte,

and Watson (2011). Panel B of Table 7 can be compared with Panel B of Table 3. As expected, as part

of the comovement among different sectors is due to input-output and capital use linkages, all the R̄2

in Panel B of Table 7 are strictly lower than those in Table 3, if we exclude the negative ones and those

very close to zero. For instance the median R̄2 of regressions including the common only factor for the

non-IP sectors decrease from 28% to 21%, and median R̄2 of regressions including the common and

LF-specific factors decreases from 45% to 28%. A similar pattern is observed for the higher quantiles,

and for the IP indices. Overall, Panel B gives a first indication of the presence of commonality in the

comovement on the majority of the sectors of the US economy even when the output growth rates are

purged of the input-output linkages in both intermediate materials and capital goods.

We conclude the analysis repeating the same exercise of Table 6, and regress the Industrial Pro-

duction and aggregate (mostly non-IP) Gross Output indices growth on the factors extracted from

productivity innovations and look at the adjusted R2s in Table 8.
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Table 8: Adj. R2 aggregate IP and selected Gross Output indices on the estimated factors from pro-
ductivity innovations

Panel A Quarterly observations, 1988.Q1-2011.Q4

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H)

Industrial Production (Q) 31.21 50.15 77.25 46.05

Panel B Yearly observations, 1989-2011

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

GO (all sectors) 42.17 13.97 57.60 15.43
GO - Manufacturing 62.29 -0.20 64.42 2.13
GO - Agriculture, forestry, fishing, and hunting 0.96 -4.23 -3.35 -4.31
GO - Construction 6.64 20.55 27.78 21.14
GO - Wholesale trade 74.73 -3.08 74.74 0.01
GO - Retail trade 47.02 -4.35 45.04 -1.98
GO - Transportation and warehousing 70.42 -2.69 70.58 0.15
GO - Information 17.78 42.45 61.76 43.98
GO - Finance, insurance, real estate, rental, and leasing -4.09 17.55 13.96 18.05
GO - Professional and business services 25.17 44.89 71.81 46.64
GO - Educational services, health care, and social assistance -4.73 -4.48 -9.66 -4.93
GO - Arts, entert., recreat., accommodation, and food serv. 55.64 -2.29 55.49 -0.16

In the table we report the adjustedR2, denoted R̄2, of the regressions of growth rates of the aggregate IP index and selected
aggregated sectoral Gross Output non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF
factors (columns R̄2(H) and R̄2(L))only, and the common and frequency-specific factor together (column (3)). The last
column displays the difference between the values in the third and first columns. The factors are estimated from the panels
of productivity innovations filtered adapting the procedure of Foerster, Sarte, and Watson (2011), using a mixed frequency
factor model with kC = kH = kL = 1. The sample period for the estimation of both the factor model and the regressions
is 1989.Q1-2011.Q4.

From Panel A we observe that the common extracted from productivity innovations explains around

31% of the variability of the aggregate IP index, i.e. around half of the variability explained by the

common factor extracted directly from the output series. Moreover, when the high frequency-specific

productivity factor is added as explanatory variable, the R̄2 increases to 77% which is also significantly

smaller than the 89% R̄2 obtained using as regressors the factors extracted from the output series.29

Hence, the case of a common pervasive factor in innovation shocks across the entire economy mainly

related to IP sector technology shocks is less compelling. From Panel B we observe that 42% of the

29See in particular Panel A of Table 6. This result is in line with the findings of Foerster, Sarte, and Watson (2011) in
their Section IV C.
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variability of the aggregate Gross Output of the US economy can be explained by the common factor

of productivity shocks, and when the factor specific to non-IP sector is added, the R̄2 grows to 57%.

From this analysis we learn something interesting which Foerster, Sarte, and Watson (2011) were

not able to address since they exclusively examined IP sectors. Overall there is a difference in the

explanatory power of factors in structural versus non-structural factor models - as they found. How-

ever, it seems that looking at technology shocks instead of output, it does not appear that a common

factor explaining IP fluctuations is a dominant factor for the entire economy. A factor specific to tech-

nological innovations in IP sectors is more important for the IP sector shocks and a low frequency

factor which appears to explain variation in information industry as well as professional and business

services innovations plays, relatively speaking, a more important role.

5.5 Subsample analysis

Our sample covers what is known as the Great Moderation, which refers to a reduction in the volatility

of business cycle fluctuations starting in the mid-1980s. We turn therefore to analyzing subsamples.

We start by selecting the number of pervasive factors in each subpanel, using the ICp2 information cri-

teria, and report the results in Table 9. We consider two subsample configurations: 1984.Q1-2007.Q4

and 1984.Q1-2011.Q4. The former is the Great Moderation sample considered by Foerster, Sarte, and

Watson (2011) whereas the second is an augmented subsample including the Great Depression. In

light of the results in Tables 9 and 10 we select a model with kC = kH = kL = 1, for both subsamples.

The factors for both datasets are obtained using the estimation procedure described in Section 5.1. 30

In Table 11 we report the results of regressions of aggregated version of the indices used for the

estimation on the same factors considered in the full samples. This allows us to understand if, and

to what extent, the most important sectors of the US economy comoved over the different subsam-

ples. Again, we regress the output of each aggregate index on the estimated common factor only, the

common and frequency specific factors, and concentrate our attention on the adjusted R2s of these

regressions.

30For the shorter sample 1984.Q1-2007.Q4, selecting a model with k1 = k2 = 3 pervasive factors in each subpanel, we
reject the null hypotheses of 3 and 2 common factor, while we cannot reject the null of 1 common factor. Regression results
for kC = 1 and kH = kL = 2 are very similar than those presented in Table 11, i.e. for a model with kC = kH = kL = 1
factors, and therefore are omitted.
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Table 9: Estimated number of factors for different subsamples

XHF XH XL [ XH XL ]

IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007

ICp2 1 2 1 1

IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011

ICp2 1 2 1 1

The number of latent pervasive factors selected by the ICp2 information criteria is reported for different subpanels and
different sample periods. Subpanels XHF and XH correspond to IP data sampled at quarterly and yearly frequency,
respectively. Panels XL and [ XH XL ] correspond to non-IP data, and the stacked panels of IP and non-IP data,
respectively. We use kmax = 15 as maximum number of factors when computing ICp2.

Table 10: Canonical Correlations and Tests for Common Factors

ρ̂1 ρ̂2 ρ̂3 ξ̃(3) ξ̃(2) ξ̃(1)

IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007

0.81 0.13 - - -6.61 -2.98
0.87 0.57 0.45 -3.15 -2.74 -1.03

IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011

0.70 0.33 - - -1.67 -1.28

We report the canonical correlations of the first two PCs computed in each subpanel of IP and non-IP data, and the values
of ξ̃(r), the estimated value of the test statistic ξ̂(r), for the null hypothesis of r = 3, 2, 1 common factors, respectively.

The results in Table 11 indicate that in general there is a deterioration of the overall fit of approximate

factor models during the Great Moderation, i.e. during the sample starting in 1984 and ending 2007

– a finding also reported by Foerster, Sarte, and Watson (2011) – and that the common factor plays

a lesser role during the Great Moderation. According to the results in Panel A, the common factor

only explains roughly 72 % of the variation across IP sectors, but interestingly when the financial

crisis is added to the Great Moderation subsample, we see again a pattern closer to the full sample

results reported in the previous subsection. This also transpires from Panels B and C, when examining

the total GDP variations projected on the common factor. During the Great Moderation the common

factor only explained around 30 %, which goes to 56 % when we add the Great Depression. The other

patterns, i.e. the exposure of the various subindices, appear to be similar to those in the full sample.
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Table 11: Adj. R2 of aggregate IP and selected GDP indices growth rates on estimated factors

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H)

Panel A Quarterly observations IP

IP 1984.Q1-2007.Q4 72.48 10.58 80.02 7.54
IP 1984.Q1-2011.Q4 80.11 16.83 88.87 8.76

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

Panel B Yearly observations, 1984-2007

GDP 29.22 39.24 76.71 47.49
GDP - Manufacturing 70.69 -3.85 71.18 0.50
GDP - Agriculture, forestry, fishing, and hunting 0.81 -0.87 0.51 -0.30
GDP - Construction 13.02 50.30 70.39 57.37
GDP - Wholesale trade -4.40 21.36 18.09 22.49
GDP - Retail trade -0.44 58.14 62.65 63.09
GDP - Transportation and warehousing 41.43 11.16 52.02 10.59
GDP - Information -4.37 -4.10 -8.83 -4.46
GDP - Finance, insurance, real estate, rental, and leasing -3.78 -0.60 -4.78 -1.00
GDP - Professional and business services 4.89 56.09 67.06 62.18
GDP - Educational serv., health care, and social assist. -3.81 3.31 -0.20 3.61
GDP - Arts, entert., recreat., accomm., and food serv. 13.66 37.32 57.01 43.35
GDP - Government 0.74 14.51 14.83 14.09

Panel C Yearly observations, 1984-2011

GDP 56.33 14.88 77.87 21.55
GDP - Manufacturing 83.78 -3.85 83.37 -0.41
GDP - Agriculture, forestry, fishing, and hunting -3.64 -2.65 -6.59 -2.95
GDP - Construction 40.54 21.76 68.61 28.07
GDP - Wholesale trade 23.62 10.48 37.71 14.09
GDP - Retail trade 20.70 6.76 30.39 9.69
GDP - Transportation and warehousing 65.17 1.10 67.14 1.97
GDP - Information 6.20 9.23 17.35 11.14
GDP - Finance, insurance, real estate, rental, and leasing -1.95 5.04 3.68 5.64
GDP - Professional and business services 27.59 30.75 64.39 36.80
GDP - Educational serv., health care, and social assist. -0.73 -0.90 -2.00 -1.27
GDP - Arts, entert., recreat., accomm., and food serv. 56.94 1.56 62.97 6.03
GDP - Government 0.50 18.75 19.03 18.53

In the table we report the adjusted R2, denoted R̄2, of the regression of growth rates of the aggregate IP index and selected
aggregated sectoral GDP non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF factors
(columns R̄2(H) and R̄2(L)) only, and the common and frequency-specific factor together(column (3)). The last column
displays the difference between the values in the third and first columns. The factors are estimated from the panel of 42
GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with kC = kH = kL = 1. The sample
periods for the estimation of both factor model and regressions are 1984-2007 (Great Moderation), and 1984-2011.
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6 Conclusions

Panels with data sampled at different frequencies are the rule rather than the exception in economic

applications. We develop a novel approximate factor modeling approach which allows us to estimate

factors which are common across all data regardless of their sample frequency, versus factors which are

specific to subpanels stratified by sampling frequency. To develop the generic theoretical framework,

we cast our analysis into a group factor structure and develop a unified asymptotic theory for the

identification of common and group- or frequency-specific factors, for the determination of the number

of common and specific factors, for the estimation of loadings and the factors via principal component

analysis in a setting with large dimensional data sets, using asymptotic expansions both in the cross-

sections and the time series.

There are a plethora of applications to which our theoretical analysis applies. We selected a spe-

cific example based on the work of Foerster, Sarte, and Watson (2011) who analyzed the dynamics

of comovements across 117 industrial production sectors using both statistical and structural factor

models. We revisit their analysis and incorporate the rest, and most dominant part of the US economy,

namely the non-IP sectors which we only observe annually.

Despite the generality of our analysis, we can think of many possible extensions, such as models

with loadings which change across subperiods (i.e. periodic loadings) or loading which vary stochas-

tically or feature structural breaks. All these extensions are left for future research.
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Technical Appendices

A.1 Identification: stock sampling
In the case of stock sampling, the low frequency observations of xL∗m,t in the factor model (2.1) are the values of xL∗M,t, i.e.
xLt = yL∗M,t. Then, the model for the observable variables becomes:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t, m = 1, ...,M,

xLt = ΛLCg
C
M,t + ΛLg

L
M,t + eLM,t.

We stack the observations xm,t and yt of the last high frequency subperiod and write:

[
xHt
xLt

]
=

[
ΛHC ΛH 0
ΛLC 0 ΛL

] gCM,t

gHM,t

gLM,t

+

[
eHM,t

eLM,t

]
. (A.1)

This equation corresponds to a group factor model, with common factor gCM,t and “group-specific” factors gHM,t, g
L
M,t.

Therefore, the factor values gCM,t, f
H
M,t, f

L
M,t, and the factor loadings ΛHC , ΛLC , ΛH , ΛL, are identifiable up to a sign as

proved in Section 2.1 (see also results in e.g. Schott (1999), Wang (2012), Chen (2010, 2012)).
Once the factor loadings are identified from (A.1), the values of the common and high frequency factors for subperiods

m = 1, ...,M − 1 are identifiable by cross-sectional regression of the high frequency data on loadings ΛHC and ΛH in
(2.1). More precisely, gCm,t and gHm,t are identified by regressing xHi

m,t on λHC,i and λH,i across i = 1, 2, ..., NH , for any
m = 1, ...,M − 1 and any t. To summarize, with stock sampling, we can identify the common factor gCm,t and the high
frequency factor gHm,t at all high frequency subperiods. We cannot estimate gLm,t, for m < M, as only gLM,t is identified by
the last paired panel data set consisting of xHM,t combined with xLt . This is not surprising, since we have no HF observation
available for the LF process.

A.2 Assumptions: group factor model
Let ‖A‖ =

√
tr(A′A) denote the Frobenius norm of matrix A. Let kF = kc + ks1 + ks2, and define the kF -dimensional

vector of factors: Ft = [ f c ′t , fs ′1,t, fs ′2,t ]′, and the (T, kF ) matrix F = [ F ′1, ..., F
′
T ]′. We make the following

assumptions:

Assumption A.1. The unobservable factor process is such that F ′F/T = ΣF + Op(1/
√
T ) as T → ∞, where ΣF is a

positive definite (kF × kF ) matrix defined as:

ΣF =

 Ikc 0 0
0 Iks

1
Φ

0 Φ′ Iks
2

 . (A.2)

Assumption A.2. The loadings matrices Λ1 =

[
Λc

1

... Λs
1

]
and Λ2 =

[
Λc

2

... Λs
2

]
are full column-rank, for N1, N2

large enough. The loadings λj,i are such that:

Λ′jΛj

Nj
= ΣΛ,j +O

(
1√
Nj

)
, j = 1, 2, (A.3)

where ΣΛ,j := lim
Nj→∞

(
Λ′jΛj

Nj

)
is a p.d. (kj , kj) matrix, for j = 1, 2.
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Assumption A.3. The error terms (ε1,it ε2,it)
′ are weakly dependent across i and t, and such that E[εj,it] = 0.

Assumption A.4. There exists a constant Cε such that E[ε4
j,it] ≤ Cε for all j, i and t.

Assumption A.5. a) The variables Ft and εj,is are independent, for all i, j, t and s.
b) The processes {εj,it} are stationary, for all j, i.
c) The process {Ft} is stationary and weakly dependent over time.
d) For each j and t, as Nj →∞, it holds:

1√
Nj

Nj∑
i=1

λj,iεj,it
d→ N(0,Ωj), (A.4)

where Ωj = lim
Nj→∞

1

Nj

Nj∑
i=1

Nj∑
`=1

λj,iλ
′
j,`E[εj,itεj,`t].

Assumption A.6. The asymptotic analysis is for N1, N2, T →∞ such that N2 ≤ N1, T/N2 = o(1),
√
N1/T = o(1).

The following Assumption A.7 simplifies the derivation of the feasible asymptotic distribution of the statistic used to test
the dimension of the common factor space kc.

Assumption A.7. The error terms εj,it are uncorrelated across j, i and t, and εj,it ∼ (0, γj,ii).

Assumption A.7 is a stronger condition than Assumptions A.3 and A.5 b). Moreover, under Assumption A.7, the matrix

Ωj in Assumption A.5 d) simplifies to Ωj = lim
Nj→∞

1

Nj

Nj∑
i=1

λj,iλ
′
j,iγj,ii .

A.3 Assumptions: mixed frequency factor model

Let λ′1,i be the i-th row of the (NH , k
C + kH) matrix Λ1 = [ ΛHC

... ΛH ]. We make the following assumption:

Assumption A.8. The variables λ1,i and ei,Hm,t are such that:

1√
NH

NH∑
i=1

λ1,ie
i,H
m,t

d→ N(0,Ω∗Λ,m), (A.5)

where

Ω∗Λ,m = lim
NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(ei,Hm,t, e

`,H
m,t), m = 1, ...,M. (A.6)

A.4 Proofs of Theorems and Lemmas

A.4.1 Proof of Proposition 1
By replacing equation (2.7) into model (2.4), we get

[
y1,t

y2,t

]
=

[
Λc

1A11 + Λs
1A21 Λc

1A12 + Λs
1A22 Λc

1A13 + Λs
1A23

Λc
2A11 + Λs

2A31 Λc
2A12 + Λs

2A32 Λc
2A13 + Λs

2A33

] f̃ ct
f̃s1,t
f̃s2,t

+

[
ε1,t

ε2,t

]
.

(A.7)
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This factor model satisfies the restrictions in the loading matrix appearing in equation (2.4) if, and only if,

Λc
1A13 + Λs

1A23 = 0, (A.8)
Λc

2A12 + Λs
2A32 = 0. (A.9)

Equations (A.8) and (A.9) can be written as linear homogeneous systems of equations for the elements of matrices
[A′13 A

′
23]′ and [A′12 A

′
32]′: [

Λc
1

... Λs
1

] [
A13

A23

]
= 0, and

[
Λc

1

... Λs
2

] [
A12

A32

]
= 0.

Since
[
Λc

1

... Λs
1

]
and

[
Λc

2

... Λs
2

]
are full column rank, it follows that

A13 = 0, A23 = 0, (A.10)
A12 = 0, A32 = 0. (A.11)

Therefore, the transformation of the factors that is compatible with the restrictions on the loading matrix in equation (2.4)
is:  f ct

fs1,t
fs2,t

 =

 A11 0 0
A21 A22 0
A31 0 A33

 f̃ ct
f̃s1,t
f̃s2,t

 .
We can invert this transformation and write:

f̃ ct = A−1
11 f

c
t ,

f̃s1,t = A−1
22 f

s
1,t −A−1

22 A21A
−1
11 f

c
t ,

f̃s2,t = A−1
33 f

s
2,t −A−1

33 A31A
−1
11 f

c
t .

The transformed factors satisfy the normalization restrictions in (2.6) if, and only if,

Cov(f̃s1,t, f̃
c
t ) = −A−1

22 A21A
−1
11 (A−1

11 )′ = 0, (A.12)

Cov(f̃s2,t, f̃
c
t ) = −A−1

33 A31A
−1
11 (A−1

11 )′ = 0, (A.13)

V (f̃ ct ) = A−1
11 (A−1

11 )′ = Ikc , (A.14)
V (f̃s1,t) = A−1

22 (A−1
22 )′ +A−1

22 A21A
−1
11 (A−1

11 )′A′21(A−1
22 )′ = Iks

1
, (A.15)

V (f̃s2,t) = A−1
33 (A−1

33 )′ +A−1
33 A31A

−1
11 (A−1

11 )′A′31(A−1
33 )′ = Iks

2
, (A.16)

Since the matrices A11, A22 and A33 are nonsingular, equations (A.12) and (A.13) imply

A21 = 0, and A31 = 0. (A.17)

Then, from equations (A.14) - (A.16), we get that matrices A11, A22 and A33 are orthogonal.
Q.E.D.

A.4.2 Proof of Proposition 2
From equation (2.6) we have

R =

(
Ikc 0
0 ΦΦ′

)
and R∗ =

(
Ikc 0
0 Φ′Φ

)
.

Matrix R is block diagonal, and the upper-left block Ikc has eigenvalue 1 with multiplicity kc. The associated eigenspace
is {(ξ′, 0′)′, ξ ∈ Rkc}. The lower-right block ΦΦ′ is a positive semi-definite matrix, and its largest eigenvalue is ρ̃2, where
ρ̃2 = sup

{
ξ′1ΦΦ′ξ1 : ξ1 ∈ Rks

1 , ‖ξ1‖ = 1
}
< 1 is the first squared canonical correlation of vectors fs1,t and fs2,t. There-

fore, we deduce that the largest eigenvalue of matrix R is equal to 1, with multiplicity kc, and the associated eigenspace,
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denoted by Ec, is spanned by vectors (ξ′, 0′)′, with ξ ∈ Rkc

. Let S1 be an orthogonal (kc, kc) matrix, then the columns of
the (k1, k

c) matrix

W1 =

(
S1

0ks
1×kc

)
are an orthonormal basis of the eigenspace Ec. We have:

W ′1h1,t = S′1f
c
t . (A.18)

Analogous arguments allow to show that the largest eigenvalue of matrix R∗ is equal to 1, with multiplicity kc and that the
associated eigenspace , denoted by E∗c , is spanned by vectors (ξ∗ ′, 0′)′, with ξ∗ ∈ Rkc

. Let S2 be an orthogonal (kc, kc)
matrix. Then, the columns of the (k2, k

c) matrix

W2 =

(
S2

0ks
2×kc

)
are an orthonormal basis of the eigenspace E∗c . We have:

W ′2h2,t = S′2f
c
t , (A.19)

which yields parts i) and ii).
When there is no common factor, the matrix R becomes R = ΦΦ′, and matrix R∗ becomes R∗ = Φ′Φ. By the above

arguments, the largest eigenvalue of matrix R, which is equal to the largest eigenvalue of matrix R∗, is not larger than ρ̃2,
where ρ̃2 < 1 is the first squared canonical correlation between the two group-specific factors. This yields part iii).

Finally, we prove part iv). We showed that the lower-right block ΦΦ′ of matrix R is a positive semi-definite matrix
and all its ks1 = k1 − kc eigenvalues are strictly smaller than one. These are also eigenvalues of matrix R. Let us denote
the space spanned by the associated ks1 eigenvectors of matrix R by Es,1. This space is spanned by vectors (0′, ξ̃′)′ with
ξ̃ ∈ Rks

1 . We note that, by construction, the vectors (0′, ξ̃′)′ are linearly independent of the vectors (ξ′, 0′)′ spanning the
eigenspace Ec. Let Q1 be an orthogonal (ks1, k

s
1) matrix, then the columns of matrix

W s
1 =

(
0kc×ks

1

Q1

)
are an orthonormal basis of the eigenspace Es,1. We have:

W s′
1 h1,t = Q′1f

s
1,t. (A.20)

Analogously, we have that the lower-right block Φ′Φ of matrixR∗ is a positive semi-definite matrix and all its ks2 = k2−kc
eigenvalues are strictly smaller than one. These are also eigenvalues of matrix R∗. Let us denote the space spanned by the
associated ks2 eigenvectors of matrix R∗ by Es,2. This space is spanned by vectors (0′, ξ̃∗′)′ with ξ̃∗ ∈ Rks

2 . We note that,
by construction, the vectors (0′, ξ̃∗′)′ are linearly independent of the vectors (ξ∗′, 0′)′ spanning the eigenspace E∗c . Let Q2

be an orthogonal (ks2, k
s
2) matrix, then the columns of matrix

W s
2 =

(
0kc×ks

2

Q2

)
are an orthonormal basis of the eigenspace Es,2. We have:

W s′
2 h2,t = Q′2f

s
2,t. (A.21)

Q.E.D.
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A.5 Proof of Theorem 3

A.5.1 Asymptotic expansion of R̂
In order to derive the asymptotic distribution of the test statistic ξ̂(kc) defined in equation (3.5), and common factor
estimator introduced in Definition 2, we consider a perturbation of matrix R̂ and its eigenvalues and eigenvectors. More
precisely, the perturbation of the eigenvalues will allow us to derive the asymptotic distribution of the test statistic ξ̂(kc),
while the perturbation of the eigenvectors will allow us to derive the asymptotic distribution of the common factor estimator.

The canonical correlations and the canonical directions are invariant to one-to-one transformations of the vectors ĥ1,t

and ĥ2,t (see, among others, Anderson (2003)). Therefore, without loss of generality, for the asymptotic analysis of the
estimator of the dimension of the common factor space statistic ξ̂(kc), we can set Ĥj = Ikj

, j = 1, 2, in approximation
(4.1). Moreover, under Assumption A.6 the bias term is negligible, and we get:

ĥj,t ' hj,t +
1√
Nj

uj,t, j = 1, 2. (A.22)

By using approximation (A.22), and N2 = N , N1 = N/µN
2, we have:

V̂12 =
1

T

T∑
t=1

ĥ1,tĥ
′
2,t

' 1

T

T∑
t=1

(
h1,t +

1√
N
µNu1,t

)(
h2,t +

1√
N
u2,t

)′
= Ṽ12 + X̂12,

where:

Ṽ12 =
1

T

T∑
t=1

h1,th
′
2,t,

X̂12 =
1

T
√
N

T∑
t=1

(h1,tu
′
2,t + µNu1,th

′
2,t) +

µN

TN

T∑
t=1

u1,tu
′
2,t. (A.23)

Similarly:

V̂jj =
1

T

T∑
t=1

ĥj,tĥ
′
j,t

' 1

T

T∑
t=1

(
hj,t +

1√
Nj

uj,t

)(
hj,t +

1√
Nj

uj,t

)′
= Ṽjj + X̂jj (A.24)

= Ṽjj

(
Id+ Ṽ −1

jj X̂jj

)
, j = 1, 2, (A.25)
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where:

Ṽjj =
1

T

T∑
t=1

hj,th
′
j,t, j = 1, 2, (A.26)

X̂11 =
µN

T
√
N

T∑
t=1

(h1,tu
′
1,t + u1,th

′
1,t) +

µ2
N

TN

T∑
t=1

u1,tu
′
1,t, (A.27)

X̂22 =
1

T
√
N

T∑
t=1

(h2,tu
′
2,t + u2,th

′
2,t) +

1

TN

T∑
t=1

u2,tu
′
2,t. (A.28)

Therefore, we get:

R̂ '
(
Id+ Ṽ −1

11 X̂11

)−1

Ṽ −1
11

(
Ṽ12 + X̂12

)(
Id+ Ṽ −1

22 X̂22

)−1

Ṽ −1
22

(
Ṽ21 + X̂21

)
.

Let us expand R̂ at first order in the X̂j,k = Op

(
1√
NT

)
. By using (Id+X)−1 ' Id−X for X ' 0, we have:

R̂ '
(
Id− Ṽ −1

11 X̂11

)
Ṽ −1

11

(
Ṽ12 + X̂12

)(
Id− Ṽ −1

22 X̂22

)
Ṽ −1

22

(
Ṽ21 + X̂21

)
' Ṽ −1

11 Ṽ12Ṽ
−1
22 Ṽ21

−Ṽ −1
11 X̂11Ṽ

−1
11 Ṽ12Ṽ

−1
22 Ṽ21 + Ṽ −1

11 X̂12Ṽ
−1
22 Ṽ21 − Ṽ −1

11 Ṽ12Ṽ
−1
22 X̂22Ṽ

−1
22 Ṽ21 + Ṽ −1

11 Ṽ12Ṽ
−1
22 X̂21.

Defining the following quantities:

Ã = Ṽ −1
11 Ṽ12, (A.29)

B̃ = Ṽ −1
22 Ṽ21, (A.30)

R̃ = Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21 = ÃB̃, (A.31)

Ψ̂∗ = −X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21, (A.32)
Ψ̂ = Ṽ −1

11 Ψ̂∗, (A.33)

we get the asymptotic expansion of matrix R̂:

R̂ = R̃+ Ψ̂ +Op

(
1

NT

)
. (A.34)

A.5.2 Matrix R̃ and its eigenvalues and eigenvectors
Let us now compute matrix R̃ and its eigenvalues, that are ρ̃2

1, ..., ρ̃
2
k1

, i.e. the squared sample canonical correlations of
vectors h1,t and h2,t, under the null hypothesis of kc > 0 common factors among the 2 groups of observables. Since
the vectors h1,t and h2,t have a common component of dimension kc, we know that ρ̃1 = ... = ρ̃kc = 1 a.s.. Using the
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notation:

Σ̃cc =
1

T

T∑
t=1

f ct f
c′
t ,

Σ̃cj =
1

T

T∑
t=1

f ct f
s′
j,t , Σ̃jc = Σ̃′cj , j = 1, 2,

Σ̃jj =
1

T

T∑
t=1

fsj,tf
s′
j,t , j = 1, 2,

Σ̃12 =
1

T

T∑
t=1

fs1,tf
s′
2,t ,

we can write matrices Ṽjj , with j = 1, 2, and Ṽ12 as:

Ṽjj =

(
Σ̃cc Σ̃c,j

Σ̃j,c Σ̃jj

)
, j = 1, 2, (A.35)

Ṽ12 =

(
Σ̃cc Σ̃c,2

Σ̃1,c Σ̃12

)
= Ṽ ′21. (A.36)

By matrix algebra we get:

Ṽ −1
11 =

[
Σ−1
∗ −Σ̃−1

∗ Σ̃c1Σ̃−1
11

−Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃−1

11 + Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c1Σ̃−1

11

]
, (A.37)

where

Σ̃∗ = Σ̃cc − Σ̃c1Σ̃−1
11 Σ̃1c. (A.38)

From assumption A.1, we have:

Σ̃c1 = Op(1/
√
T ), (A.39)

Σ̃cc = Ikc +Op(1/
√
T ), (A.40)

Σ̃11 = Iks
1

+Op(1/
√
T ), (A.41)

Σ̃22 = Iks
2

+Op(1/
√
T ), (A.42)

Σ̃12 = Φ +Op(1/
√
T ), (A.43)

which imply:

Σ̃∗ = Σ̃cc +Op(1/T ), (A.44)

Σ̃−1
∗ = Σ̃−1

cc +Op(1/T ), (A.45)

−Σ̃−1
∗ Σ̃c1Σ̃−1

11 = −Σ̃−1
cc Σ̃c1Σ̃−1

11 +Op(1/T ),

= −Σ̃c1 +Op(1/T ), (A.46)

Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c1Σ̃−1

11 = Op(1/T ). (A.47)
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Substituting results (A.44) - (A.47) into equation (A.37) we get:

Ṽ −1
11 =

[
Σ̃−1

cc −Σ̃c1

−Σ̃1c Σ̃−1
11

]
+Op(1/T ). (A.48)

Equation (A.37) allows to compute Ã :

Ã = Ṽ −1
11 Ṽ12

=

[
Σ̃−1
∗ −Σ̃−1

∗ Σ̃c1Σ̃−1
11

−Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃−1

11 + Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c1Σ̃−1

11

] [
Σ̃cc Σ̃c2

Σ̃1c Σ̃12

]
=

[
Ikc Ãcs

0 Ãss

]
, (A.49)

where:

Ãcs = Σ̃−1
∗ Σ̃c2 − Σ̃−1

∗ Σ̃c1Σ̃−1
11 Σ̃12 = Op

(
1√
T

)
, (A.50)

Ãss = −Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c2 + Σ̃−1

11 Σ̃12 + Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c1Σ̃−1

11 Σ̃12

= Σ̃−1
11 Σ̃12 +Op

(
1

T

)
= Φ +Op

(
1√
T

)
. (A.51)

REMARK 1. Matrices Ṽ12 and Ṽ11 have the same first kc columns, therefore also matrices Ṽ −1
11 Ṽ12 and Ṽ −1

11 Ṽ11 = Ik1

have the first kc columns, which implies:

Ṽ −1
11 Ṽ12 =

[
Ikc ∗
0 ∗

]
.

Let us compute:

Ṽ −1
22 =

[
Σ̃−1
∗2 −Σ̃−1

∗2 Σ̃c2Σ̃−1
22

−Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃−1

22 + Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃c2Σ̃−1

22

]
, (A.52)

where

Σ̃∗2 = Σ̃cc − Σ̃c2Σ̃−1
22 Σ̃2c.

Equation (A.52) allows to compute B̃ :

B̃ = Ṽ −1
22 Ṽ21

=

[
Σ̃−1
∗2 −Σ̃−1

∗2 Σ̃c2Σ̃−1
22

−Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃−1

22 + Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃c2Σ̃−1

22

] [
Σ̃cc Σ̃c1

Σ̃2c Σ̃21

]
=

[
Ikc B̃cs

0 B̃ss

]
, (A.53)
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where:

B̃cs = Σ̃−1
∗2 Σ̃c1 − Σ̃−1

∗2 Σ̃c2Σ̃−1
22 Σ̃21 = Op

(
1√
T

)
, (A.54)

B̃ss = −Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃c1 + Σ̃−1

22 Σ̃21 + Σ̃−1
22 Σ̃2cΣ̃

−1
∗ Σ̃c2Σ̃−1

22 Σ̃21

= Σ̃−1
22 Σ̃21 +Op

(
1

T

)
= Φ′ +Op

(
1√
T

)
. (A.55)

Finally, using results (A.49) and (A.53) we can compute:

R̃ = ÃB̃ (A.56)

=

(
Ikc Ãcs

0 Ãss

)(
Ikc B̃cs

0 B̃ss

)
=

(
Ikc R̃cs

0 R̃ss

)
, (A.57)

where

R̃cs = B̃cs + ÃcsB̃ss = Op(1/
√
T ), (A.58)

R̃ss = ÃssB̃ss

= Σ̃−1
11 Σ̃12Σ̃−1

22 Σ̃21 +Op (1/T )

= ΦΦ′ +Op(1/
√
T ). (A.59)

The eigenvalues of matrix R̃ are ρ̃2
1 = ... = ρ̃2

kc = 1 > ρ̃2
kc+1 ≥ ... ≥ ρ̃2

k1
. The eigenvectors associated with the first kc

eigenvalues are spanned by the columns of matrix:

Ec
(k1×kc)

=

[
Ikc

0

]
. (A.60)

Define:

Es
(k1×(k1−kc))

=

[
0

Ik1−kc

]
. (A.61)

We note:

Ik1
=

[
Ec

... Es

]
,

so that the columns of matrices Ec and Es span the space Rk1 . The estimators of the first kc canonical correlations are
such that ρ̂2

` , with ` = 1, ..., kc are the kc largest eigenvalues of matrix R̂. We derive their asymptotic expansion using
perturbations arguments.

A.5.3 Perturbation of the eigenvalues and eigenvectors of matrix R̂
Under the null hypothesis H(kc), let Ŵ ∗1 be a (k1, k

c) matrix whose columns are eigenvectors of matrix R̂ associated with
the eigenvalues ρ̂2

` , with ` = 1, ..., kc. We have:

R̂Ŵ ∗1 = Ŵ ∗1 Λ̂, (A.62)
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where:

Λ̂ = diag(ρ̂2
` , ` = 1, ..., kc), (A.63)

is the (kc, kc) diagonal matrix containing the kc largest eigenvalues of R̂. We know from the previous subsection that the
eigenspace associated with the largest eigenvalue of R̃ (equal to 1) has dimension kc and is spanned by the columns of
matrix Ec. Since the columns of Ec and Es span Rk1 , we can write the following expansions:

Ŵ ∗1 = Ec Û + Esα, (A.64)
Λ̂ = Ikc + M̂, (A.65)

where Ec and Es are defined in equations (A.60) and (A.61), Û is a (kc, kc) nonsingular matrix, M̂ = diag(µ̂1, ..., µ̂kc),
and α is a (k1 − kc, kc) matrix, with α, µ̂1, ..., µ̂kc converging to zero as N1, N2, T →∞. Substituting the expansions in
equations (A.34) and (A.62) we get:

(R̃+ Ψ̂)(Ec Û + Esα) ' (Ec Û + Esα)(Ikc + M̂),

which implies:

R̃Ec Û + R̃Esα+ Ψ̂Ec Û + Ψ̂Esα ' Ec Û + Esα+ Ec ÛM̂ + EsαM̂.

By using R̃Ec = Ec, and keeping only the terms at first order, we get:

R̃Esα+ Ψ̂Ec Û ' Esα+ Ec ÛM̂. (A.66)

Pre-multiplying equation (A.66) by E′c, we get:

E′cR̃Esα+ E′cΨ̂Ec Û ' ÛM̂

⇔ M̂ ' Û−1
(
R̃csα+ Ψ̂cc Û

)
, (A.67)

where we use the fact that Û is non-singular and

Ψ̂cc = E′cΨ̂Ec.

Pre-multiplying equation (A.66) by E′s, we get:

E′sR̃Esα+ E′sΨ̂Ec Û ' α
⇔ α ' R̃ssα+ Ψ̂sc Û , (A.68)

where

Ψ̂sc = E′sΨ̂Ec.

This implies:

α ' (Ik1−kc − R̃ss)
−1Ψ̂sc Û . (A.69)

Substituting the first order approximation of α from equation (A.69) into equation (A.64) we get:

Ŵ ∗1 '
(
Ec + Es(Ik1−kc − R̃ss)

−1Ψ̂sc

)
Û . (A.70)

The normalized eigenvectors corresponding to the canonical directions are:

Ŵ1 = Ŵ ∗1 · diag(Ŵ ∗ ′1 V̂11Ŵ
∗
1 )−1/2. (A.71)
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Substituting the first order approximation of α from equation (A.69) into (A.67), we get the first order approximation of
matrix M̂ :

M̂ ' Û−1
(

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)
−1Ψ̂sc

)
Û . (A.72)

Substituting the first order approximation of M̂ from equation (A.72) into (A.65), matrix Λ̂ can be approximated as:

Λ̂ ' Ikc + Û−1
(

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)
−1Ψ̂sc

)
Û .

Note that this first order approximation holds for the terms in the main diagonal, as matrix Λ̂ has been defined to be
diagonal, and the out-of-diagonal terms are of higher order. Up to higher order terms we have:

Λ̂1/2 ' Ikc +
1

2
Û−1

[
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)

−1Ψ̂sc

]
Û ,

which implies:

kc∑
`=1

ρ̂` = tr(Λ̂1/2)

= kc +
1

2
tr
[
Û−1

(
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)

−1Ψ̂sc

)
Û
]

+Op

(
1

NT

)
,

= kc +
1

2
tr
[
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)

−1Ψ̂sc

]
+Op

(
1

NT

)
, (A.73)

by the commutative property of the trace.

A.5.4 Asymptotic distribution of
∑kc

`=1 ρ̂`.
Equation (A.73) can be written as:

kc∑
`=1

ρ̂` = kc +
1

2
tr

{[
Ikc

... R̃cs(I(k1−kc) − R̃ss)
−1

]
Ψ̂Ec

}
+Op

(
1

NT

)
= kc +

1

2
tr

{[
Ikc

... R̃cs(I(k1−kc) − R̃ss)
−1

]
Ṽ −1

11 Ψ̂∗Ec

}
+Op

(
1

NT

)
. (A.74)

Substituting equation (A.33), we get:

kc∑
`=1

ρ̂` = kc +
1

2
tr

{[
Ikc

... R̃cs(I(k1−kc) − R̃ss)
−1

]
Ṽ −1

11

[
Ψ̂∗cc
Ψ̂∗sc

]}
+Op

(
1

NT

)
(A.75)

where:

Ψ̂∗cc =
[
−X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21

]
(11)

, (A.76)

Ψ̂∗sc =
[
−X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21

]
(21)

, (A.77)
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with M(ij) denoting the block in position (i, j) of matrix M . As matrices R̃ and B̃ have the same structure [ Ec

... ∗ ], we
have:

Ψ̂∗cc =
[
−X̂11 + X̂12 − B̃′(X̂22 − X̂21)

]
(11)

, (A.78)

Ψ̂∗sc =
[
−X̂11 + X̂12 − B̃′(X̂22 − X̂21)

]
(21)

. (A.79)

Moreover as B̃′ =

[
Ikc 0

B̃′cs B̃′ss

]
, equation (A.78) further simplifies to:

Ψ̂∗cc =
[
−X̂11 + X̂12 − X̂22 + X̂21

]
(11)

. (A.80)

Equations (A.79) and (A.80) allow to perform the asymptotic expansion of terms Ψ̂∗sc and Ψ̂∗cc, respectively. Let us compute
the asymptotic expansions of the terms X̂11, X̂12, X̂22 and X̂21. Vectors uj,t, with j = 1, 2, can be partitioned into the
kc-dimensional vector u(c)

jt and the ksj -dimensional vector u(s)
jt :

ujt =

[
u

(c)
jt

u
(s)
jt

]
, j = 1, 2 , (A.81)

and from Assumption A.5 we can express Σu,j , j = 1, 2, as: 31

Σu,j = E[ujtu
′
jt] = E

[
u

(c)
jt u

(c)′
jt u

(c)
jt u

(s)′
jt

u
(s)
jt u

(c)′
jt u

(s)
jt u

(s)′
jt

]
=

[
Σ

(cc)
u,j Σ

(cs)
u,j

Σ
(sc)
u,j Σ

(ss)
u,j

]
, j = 1, 2 . (A.82)

We also define:

Σu,12 := E[u1tu
′
2t] := E

[
u

(c)
1t u

(c)′
2t u

(c)
1t u

(s)′
2t

u
(s)
1t u

(c)′
2t u

(s)
1t u

(s)′
2t

]
=

[
Σ

(cc)
u,12 Σ

(cs)
u,12

Σ
(sc)
u,12 Σ

(ss)
u,12

]
, (A.83)

and

Σu,21 = Σ′u,12. (A.84)

From equation (A.27) we have:

X̂11 =
µN

T
√
N

T∑
t=1

(h1,tu
′
1,t + u1,th

′
1,t) +

µ2
N

TN

T∑
t=1

u1,tu
′
1,t

=
µN

T
√
N

T∑
t=1

([
f ct
fs1t

] [
u

(c)′
1t u

(s)′
1t

]
+

[
u

(c)
1t

u
(s)
1t

] [
f c′t fs′1t

])

+
µ2
N

TN

T∑
t=1

[
u

(c)
1t

u
(s)
1t

] [
u

(c)′
1t u

(s)′
1t

]
=

µN√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
1t + u

(c)
1t f

c′
t f ct u

(s)′
1t + u

(c)
1t f

s′
1t

fs1tu
(c)′
1t + u

(s)
1t f

c′
t fs1tu

(s)′
1t + u

(s)
1t f

s′
1t

])
+
µ2
N

TN

T∑
t=1

[
u

(c)
1t u

(c)′
1t u

(c)
1t u

(s)′
1t

u
(s)
1t u

(c)′
1t u

(s)
1t u

(s)′
1t

]
,

31Matrix Σu,j is the asymptotic variance of uj,t as Nj →∞. We omit the limit for expository purpose.
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and from assumption A.5 b) we have:

X̂11 =
µN√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
1t + u

(c)
1t f

c′
t f ct u

(s)′
1t + u

(c)
1t f

s′
1t

fs1tu
(c)′
1t + u

(s)
1t f

c′
t fs1tu

(s)′
1t + u

(s)
1t f

s′
1t

])
+
µ2
N

N
E

[
u

(c)
1t u

(c)′
1t u

(c)
1t u

(s)′
1t

u
(s)
1t u

(c)′
1t u

(s)
1t u

(s)′
1t

]

+
µ2
N

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
1t u

(c)′
1t − E[u

(c)
1t u

(c)′
1t ] u

(c)
1t u

(s)′
1t − E[u

(c)
1t u

(s)′
1t ]

u
(s)
1t u

(c)′
1t − E[u

(s)
1t u

(c)′
1t ] u

(s)
1t u

(s)′
1t − E[u

(s)
1t u

(s)′
1t ]

])

=
µN√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
1t + u

(c)
1t f

c′
t f ct u

(s)′
1t + u

(c)
1t f

s′
1t

fs1tu
(c)′
1t + u

(s)
1t f

c′
t fs1tu

(s)′
1t + u

(s)
1t f

s′
1t

])

+
µ2
N

N

[
Σ

(cc)
u,1 Σ

(cs)
u,1

Σ
(sc)
u,1 Σ

(ss)
u,1

]
+

µ2
N

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
1t u

(c)′
1t − Σ

(cc)
u,1 u

(c)
1t u

(s)′
1t − Σ

(cs)
u,1

u
(s)
1t u

(c)′
1t − Σ

(sc)
u,1 u

(s)
1t u

(s)′
1t − Σ

(ss)
u,1

])
. (A.85)

Analogously, from (A.28) we have:

X̂22 =
1√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
2t + u

(c)
2t f

c′
t f ct u

(s)′
2t + u

(c)
2t f

s′
2t

fs2tu
(c)′
2t + u

(s)
2t f

c′
t fs2tu

(s)′
2t + u

(s)
2t f

s′
2t

])

+
1

N

[
Σ

(cc)
u,2 Σ

(cs)
u,2

Σ
(sc)
u,2 Σ

(22)
u,2

]
+

1

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
2t u

(c)′
2t − Σ

(cc)
u,2 u

(c)
2t u

(s)′
2t − Σ

(cs)
u,2

u
(s)
2t u

(c)′
2t − Σ

(sc)
u,2 u

(s)
2t u

(s)′
2t − Σ

(ss)
u,2

])
. (A.86)

From equation (A.23), the term X̂12 results to be:

X̂12 =
1

T
√
N

T∑
t=1

(h1,tu
′
2,t + µNu1,th

′
2,t) +

µN

TN

T∑
t=1

u1,tu
′
2,t

=
1

T
√
N

T∑
t=1

([
f ct
fs1t

] [
u

(c)′
2t u

(s)′
2t

]
+ µN

[
u

(c)
1t

u
(s)
1t

] [
f c′t fs′2t

])

+
µN

TN

T∑
t=1

[
u

(c)
1t

u
(s)
1t

] [
u

(c)′
2t u

(s)′
2t

]
=

1√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
2t + µNu

(c)
1t f

c′
t f ct u

(s)′
2t + µNu

(c)
1t f

s′
2t

fs1tu
(c)′
2t + µNu

(s)
1t f

c′
t fs1tu

(s)′
2t + µNu

(s)
1t f

s′
2t

])
+
µN

N

[
Σ

(cc)
u,12 Σ

(cs)
u,12

Σ
(sc)
u,12 Σ

(ss)
u,12

]

+
µN

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
1t u

(c)′
2t − Σ

(cc)
u,12 u

(c)
1t u

(s)′
2t − Σ

(cs)
u,12

u
(s)
1t u

(c)′
2t − Σ

(sc)
u,12 u

(s)
1t u

(s)′
2t − Σ

(ss)
u,12

])
. (A.87)

Finally we have:

X̂21 = X̂ ′12

=
1√
TN

(
1√
T

T∑
t=1

[
u

(c)
2t f

c′
t + µNf

c
t u

(c)′
1t u

(c)
2t f

s′
1t + µNf

c
t u

(s)′
1t

u
(s)
2t f

c′
t + µNf

s
2tu

(c)′
1t u

(s)
2t f

s′
1t + µNf

s
2tu

(s)′
1t

])
+
µN

N

[
Σ

(cc)
u,21 Σ

(cs)
u,21

Σ
(sc)
u,21 Σ

(22)
u,21

]

+
µN

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
2t u

(c)′
1t − Σ

(cc)
u,21 u

(c)
2t u

(s)′
1t − Σ

(cs)
u,21

u
(s)
2t u

(c)′
1t − Σ

(sc)
u,21 u

(s)
2t u

(s)′
1t − Σ

(ss)
u,21

])
. (A.88)
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We can now compute directly term Ψ̂∗cc. From equation (A.80), we get:

Ψ̂∗cc (A.89)

=
[
−X̂11 + X̂12 − X̂22 + X̂21

]
(11)

,

=
1√
TN

(
1√
T

T∑
t=1

[
−µNf

c
t u

(c)′
1t − µNu

(c)
1t f

c′
t + f ct u

(c)′
2t + µNu

(c)
1t f

c′
t − f ct u

(c)′
2t − u

(c)
2t f

c′
t + u

(c)
2t f

c′
t + µNf

c
t u

(c)′
1t

])

+
1

N
[−µ2

NΣ
(cc)
u,1 − Σ

(cc)
u,2 + µNΣ

(cc)
u,12 + µNΣ

(cc)
u,21]

+
1

N
√
T

(
1√
T

T∑
t=1

[
−µ2

N [u
(c)
1t u

(c)′
1t − Σ

(cc)
u,1 ] + µN [u

(c)
1t u

(c)′
2t − Σ

(cc)
u,12]− [u

(c)
2t u

(c)′
2t − Σ

(cc)
u,2 ] + µN [u

(c)
2t u

(c)′
1t − Σ

(cc)
u,12]

])

= − 1

N
E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

])
. (A.90)

Using the limit µN → µ, we get:

Ψ̂∗cc = − 1

N
E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′]

])

+op

(
1

N
√
T

)
. (A.91)

Before computing Ψ̂∗sc and substituting it into equation (A.75), we note that some of the terms of this equation can be
further simplified. Let us consider the asymptotic expansion of the following term of equation (A.75):[

Ikc

... R̃cs(I(k1−kc) − R̃ss)
−1

]
Ṽ −1

11 .

Using equation (A.48), we get:[
Ikc

... R̃cs(Ik1−kc − R̃ss)
−1

]
Ṽ −1

11

=

[
Ikc

... R̃cs(Ik1−kc − R̃ss)
−1

] [
Σ̃−1

cc −Σ̃c1

−Σ̃1c Σ̃−1
11

]
+Op

(
1

T

)
=

[
Σ̃−1

cc − R̃cs(Ik1−kc − R̃ss)
−1Σ̃1c

... − Σ̃c1 + R̃cs(Ik1−kc − R̃ss)
−1Σ̃−1

11

]
+Op

(
1

T

)
=

[
Σ̃−1

cc

... − Σ̃c1 + R̃cs(Ik1−kc − R̃ss)
−1

]
+Op

(
1

T

)
, (A.92)

where the last equality follows form the fact that R̃cs = Op(1/
√
T ), Σ̃1c = Op(1/

√
T ) and Σ̃11 = Ik1 + Op(1/

√
T ).

Note that equation (A.92) can be further simplified, considering the asymptotic expansion of term R̃cs. Let us consider the
different terms in the equations of R̃cs and R̃ss:

R̃cs = B̃cs + ÃcsB̃ss, (A.93)
R̃ss = ÃssB̃ss, (A.94)
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where:

Ãcs = Σ̃−1
∗ Σ̃c2 − Σ̃−1

∗ Σ̃c1Σ̃−1
11 Σ̃12, (A.95)

Ãss = Σ−1
11 Σ̃12 +Op

(
1

T

)
, (A.96)

B̃cs = Σ̃−1
∗2 Σ̃c1 − Σ̃−1

∗2 Σ̃c2Σ̃−1
22 Σ̃21, (A.97)

B̃ss = Σ̃−1
22 Σ̃21 +Op

(
1

T

)
. (A.98)

Substituting equations (A.95) - (A.98) into equations (A.93) and (A.94) we get:

R̃cs = Σ̃−1
∗2 Σ̃c1 − Σ̃−1

∗2 Σ̃c2Σ̃−1
22 Σ̃21 +

[
Σ̃−1
∗ Σ̃c2 − Σ̃−1

∗ Σ̃c1Σ̃−1
11 Σ̃12

] [
Σ̃−1

22 Σ̃21 +Op

(
1

T

)]
= Σ̃c1

[
Iks

1
− Σ̃−1

11 Σ̃12Σ̃−1
22 Σ̃21

]
+Op

(
1

T

)
, (A.99)

and

R̃ss =

[
Σ̃−1

11 Σ̃12 +Op

(
1

T

)][
Σ̃−1

22 Σ̃21 +Op

(
1

T

)]
= Σ̃−1

11 Σ̃12Σ̃−1
22 Σ̃21 +Op

(
1

T

)
. (A.100)

Therefore we have:

R̃cs = Σ̃c1(Ik1−kc − R̃ss) +Op

(
1

T

)
, (A.101)

which implies :

−Σ̃c1 + R̃cs(Ik1−kc − R̃ss)
−1 = Op

(
1

T

)
. (A.102)

Equation (A.102) and Ψ̂∗sc = Op

(
1√
NT

)
, together with the assumption

√
N/T = o(1), imply:

[
−Σ̃c1 + R̃cs(Ik1−kc − R̃ss)

−1
]

Ψ̂∗sc = op

(
1

N
√
T

)
. (A.103)

Therefore, substituting results (A.90), (A.92), and (A.103) into equation (A.75), and rearranging terms, we get:

kc∑
`=1

ρ̂` = kc − 1

N

1

2
tr
{

Σ̃−1
cc E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

}
− 1

N
√
T

1

2
tr

{(
1√
T

T∑
t=1

[
(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′ − E[(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′]

])}

+op

(
1

N
√
T

)
. (A.104)

From the definition of matrix ΣU,N we have;

E[(µNu
(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′] = ΣU,N . (A.105)
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Moreover, let us define:

Ut := µu
(c)
1t − u

(c)
2t . (A.106)

Definition (A.106) together with the commutativity and linearity properties of the trace operator allow to write the fourth
term in the r.h.s. of equation (A.104) as:

tr

{
1√
T

T∑
t=1

[
(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′ − E[(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′]

]}

=
1√
T

T∑
t=1

{U ′tUt − E(U ′tUt)} . (A.107)

Equations (A.105) and (A.107) allow to write equation (A.104) as:

kc∑
`=1

ρ̂` = kc − 1

2N
tr
{

Σ̃−1
cc ΣU,N

}
− 1

2N
√
T

(
1√
T

T∑
t=1

[U ′tUt − E(U ′tUt)]

)
+ op

(
1

N
√
T

)
.

(A.108)

By a CLT for weakly dependent data we have:

1√
T

T∑
t=1

[U ′tUt − E(U ′tUt)]
d−→ N (0,ΩU ) , (A.109)

where:

ΩU = lim
T→∞

V

(
1√
T

T∑
t=1

U ′tUt

)
=

∞∑
h=−∞

Cov(U ′tUt, U
′
t−hUt−h). (A.110)

From equation (A.109) we get that the asymptotic distribution of
kc∑
`=1

ρ̂`, under the hypothesis of kc common factors in

each group is:

N
√
T

[
kc∑
`=1

ρ̂` − kc +
1

2N
tr
{

Σ̃−1
cc ΣU

}]
d−→ N

(
0,

1

4
ΩU

)
. (A.111)

To conclude the proof, let us derive the expression of matrix ΩU in equation (4.11). For this purpose, note that vector
(U ′t , U

′
t−h)′ is asymptotically Gaussian for any h:(

Ut

Ut−h

)
d→ N

(
ΣU (0) ΣU (h)
ΣU (h)′ ΣU (0)

)
. (A.112)

We use the following lemma.

LEMMA A.8. Let the (n, 1) random vector x and the (m, 1) random vector y be such that(
x
y

)
∼ N

(
Ωxx Ωxy

Ω′xy Ωyy

)
, (A.113)

and let A and B be symmetric (n, n) and (m,m) matrices, respectively. Then:

i) V [x′Ax] = 2tr
{

(AΩxx)2
}
,

ii) Cov(x′Ax, y′By) = 2tr
{
AΩxyBΩ′xy

}
.
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Proof of Lemma A.8: For point i), see Theorem 12 p. 284 in Magnus and Neudecker (2007). Point ii) is a consequence of
point i) applied to vectors x, y and (x′, y′)′, see also Theorem 10.21 in Schott (2005).

From Lemma A.8 we get (asymptotically):

Cov(U ′tUt, U
′
t−hUt−h) = 2tr {ΣU (h)ΣU (h)′} , (A.114)

and the conclusion follows.
Q.E.D.

A.6 Proof of Theorems 4 and 5

A.6.1 Asymptotic distribution of f̂ ct and f̂ c ∗t
Equation (A.70) and Ψ̂sc = Op

(
1√
NT

)
imply:

Ŵ ∗1 = Ec Û +Op

(
1√
NT

)
. (A.115)

Recall from equation (A.71) that the normalized eigenvectors corresponding to the canonical directions are:

Ŵ1 = Ŵ ∗1 D̂,

where D̂ = diag(Ŵ ∗ ′1 V̂11Ŵ
∗
1 )−1/2. Then, we get:

f̂ ct = Ŵ ′1ĥ1,t

= D̂Û ′E′c
(
h1,t +

1√
N1

u1,t

)
+Op

(
1√
NT

)
= D̂Û ′

(
f ct +

1√
N1

u
(c)
1,t

)
+Op

(
1√
NT

)
. (A.116)

Therefore the estimated factor can be written as:

f̂ ct = Ĥ−1
c

(
f ct +

1√
N1

u
(c)
1,t

)
+Op

(
1√
NT

)
, (A.117)

where Ĥ−1
c = D̂Û ′. Equation (A.117) implies:√

N1

(
Ĥcf̂

c
t − f ct

)
= u

(c)
1,t + op(1)

d−→ N
(

0,Σ
(cc)
u,1

)
.

The derivation of the asymptotic distribution of
√
N2

(
Ĥ∗c f̂ c ∗t − f ct

)
obtained from the canonical direction Ŵ2 is analo-

gous, and therefore is omitted.

A.6.2 Asymptotic distribution of λ̂cj,i
Let us derive the asymptotic expansion of the loading estimator λ̂cj,i = (F̂ c′F̂ c)−1F̂ c′yj,i, where yj,i is the i-th column of
matrix Yj . From equation (A.117) we can express F̂ c = [f̂ c1 , ..., f̂

c
T ]′ as:

F̂ c =

(
F c +

1√
N1

U
(c)
1

)(
Ĥ−1

c

)′
+Op

(
1√
NT

)
= F c

(
Ĥ−1

c

)′
+

1√
N1

U
(c)
1

(
Ĥ−1

c

)′
+Op

(
1√
NT

)
, (A.118)
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where U (c)
1 = [u

(c)
1,1, ..., u

(c)
1,T ]′. Equation (A.118) implies:

F̂ cĤ′c − F c =
1√
N1

U
(c)
1 +Op

(
1√
NT

)
. (A.119)

Then, denoting with ξj,i the i-th column of matrix Ξj , we get:

λ̂cj,i = (F̂ c′F̂ c)−1F̂ c ′yj,i

= (F̂ c′F̂ c)−1F̂ c ′ (F cλcj,i + F s
j λ

s
j,i + εj,i

)
= (F̂ c′F̂ c)−1F̂ c ′

[(
F c − F̂ cĤ′c + F̂ cĤ′c

)
λcj,i + F s

j λ
s
j,i + εj,i

]
= Ĥ′cλcj,i + (F̂ c′F̂ c)−1F̂ c ′εj,i

+(F̂ c′F̂ c)−1F̂ c ′
(
F c − F̂ cĤ′c

)
λcj,i + (F̂ c′F̂ c)−1F̂ c ′F s

j λ
s
j,i, j = 1, 2. (A.120)

We first note that

F̂ c′F̂ c

T
=

1

T
Ĥ−1

c

(
F c +

1√
N1

U
(c)
1

)′(
F c +

1√
N1

U
(c)
1

)
(Ĥ−1

c )′ +Op

(
1√
NT

)
= Ĥ−1

c

F c′F c

T
(Ĥ−1

c )′ +
1√
N1
Ĥ−1

c

U
(c)′
1 F c

t

T
(Ĥ−1

c )′

+
1√
N1
Ĥ−1

c

F c′U
(c)
1

T
(Ĥ−1

c )′ +
1

N1
Ĥ−1

c

U
(c)′
1 U

(c)
1

T
(Ĥ−1

c )′ +Op

(
1√
NT

)
= Ĥ−1

c

F c′F c

T
(Ĥ−1

c )′ +Op

(
1√
NT

)
,

where we use
1√
T
F c′U

(c)
1 = Op(1),

1

T
U

(c)′
1 U

(c)
1 = Op(1) and T/N1 = o(1). We also have:

(
F̂ c′F̂ c

T

)−1

= Ĥ′c
(
F c′F c

T

)−1

Ĥc +Op

(
1√
TN

)
. (A.121)

Equations (A.118) and (A.119) allow to compute:

1

T
F̂ c ′

(
F c − F̂ cĤ′c

)
' − 1

T
√
N1

Ĥ−1
c F c ′U

(c)
1 − 1

N1T
Ĥ−1

c U
(c) ′
1 U

(c)
1

= Op

(
1√
NT

)
, (A.122)

and:

1

T
F̂ c ′εj,i = Ĥ−1

c

(
1

T
F c′εj,i +

1

T
√
N1

U
(c)′
1 εj,i

)
= Ĥ−1

c

1

T
F c′εj,i +Op

(
1√
NT

)
. (A.123)
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We also have:

1

T
F̂ c ′F s

j = Ĥ−1
c

(
1

T
F c′F s

j +
1

T
√
N1

U
(c)′
1 F s

j

)
= Ĥ−1

c

1

T
F c′F s

j +Op

(
1√
NT

)
. (A.124)

Substituting approximations (A.121) - (A.124) into equation (A.120) we get:

λ̂cj,i ' Ĥ′cλcj,i + Ĥ′c
(
F c′F c

T

)−1
1

T
F c ′εj,i

+Ĥ′c
(
F c′F c

T

)−1
1

T
F c ′F s

j λ
s
j,i +Op

(
1√
NT

)
.

The last equation implies:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

= ϕj,i +Kjλ
s
j,i + op(1), (A.125)

where:

ϕj,i =

(
F c′F c

T

)−1
1√
T
F c ′εj,i, (A.126)

Kj =

(
F c′F c

T

)−1
1√
T
F c ′F s

j . (A.127)

Since (F c ′F c/T )−1 = Ikc + op(1), the r.h.s. of equation (A.125) can be rewritten to get:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

=
1√
T

T∑
t=1

f ct (εj,it + fs ′j,tλ
s
j,i) + op(1) ≡ wc

j,i + op(1). (A.128)

Then, since the errors and the factors are independent (Assumption A.5 a)) , a CLT for weakly dependent data yields
equation (4.19).

A.6.3 Asymptotic distribution of f̂ sj,t and λ̂sj,i
Let us now derive the asymptotic expansion of term f̂sj,t. We start by computing the asymptotic expansion of the regression
residuals yj,it − f̂ c ′t λ̂cj,i:

yj,it − f̂ c ′t λ̂cj,i = fs ′j,tλ
s
j,i + εj,it −

(
f̂ c ′t λ̂cj,i − f c ′t λcj,i

)
= fs ′j,tλ

s
j,i + εj,it −

[(
f ct +

1√
N1

u
(c)
1,t

)′(
λcj,i +

1√
T
ϕj,i +

1√
T
Kjλ

s
j,i

)
− f c ′t λcj,i

]
' g′j,tλ

s
j,i + ej,it, (A.129)

where:

gj,t := fsj,t −
1√
T
K ′jf

c
t = fsj,t − (F s ′

j F c)(F c ′F c)−1f ct , (A.130)

ej,it := εj,it −
1√
T
f c′t ϕj,i. (A.131)
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Then, the residuals yj,it− f̂ c ′t λ̂cj,i satisfy an approximate factor structure with factors gj,t and errors ej,it. From asymptotic
theory of the PC estimators in large panels, we know that:

√
N
[
Ĥs,j f̂

s
j,t − gj,t

]
= v∗sj,t + op(1), j = 1, 2, (A.132)

where Ĥs,j , j = 1, 2, is a non-singular matrix and:

v∗sj,t =

(
Λs′
j Λs

j

Nj

)−1
1√
Nj

Λs′
j ej,t

=

(
Λs′
j Λs

j

Nj

)−1
1√
Nj

Nj∑
i=1

λsj,iεj,it −
(

Λs′
j Λs

j

Nj

)−1
1√
NT

Nj∑
i=1

λsj,if
c′
t

(
1√
T

T∑
r=1

f cr εj,ir

)

=

(
Λs′
j Λs

j

Nj

)−1
1√
Nj

Nj∑
i=1

λsj,iεj,it + op (1) .

Therefore we have
√
N
[
Ĥs,j f̂

s
j,t − (fsj,t − (F s ′

j F c)(F c ′F c)−1f ct )
]

= vsj,t + op(1), j = 1, 2, (A.133)

where vsj,t =

(
Λs′
j Λs

j

Nj

)−1
1√
Nj

Nj∑
i=1

λsj,iεj,it, which proves equation (4.16).

From asymptotic theory of the PC estimators in large panels, we also know that the following result must hold for the
loadings estimator of factor model (A.129):

√
T

[(
Ĥ′s,j

)−1

λ̂sj,i − λsj,i
]

= w∗sj,i + op(1), j = 1, 2 (A.134)

where Ĥs,j , j = 1, 2 are the same non-singular matrices in equation (A.132), and

w∗sj,i =
1√
T

T∑
t=1

(
fsj,t +

1√
T
K ′jf

c
t

)
ej,it,

=
1√
T

T∑
t=1

(
fsj,t +

1√
T
K ′jf

c
t

)(
εj,it −

1√
T
f c′t ϕj,i

)
,

=
1√
T

T∑
t=1

fsj,tεj,it −
1

T

T∑
t=1

fsj,tf
c′
t ϕj,i

+K ′j
1

T

T∑
t=1

f c′t εj,it −K ′j
1

T
√
T

T∑
t=1

f ct f
c′
t ϕj,i

=
1√
T

T∑
t=1

fsj,tεj,it + op(1), (A.135)

since
1

T

T∑
t=1

fsj,tf
c′
t = op(1). Therefore, we get:

√
T

[(
Ĥ′s,j

)−1

λ̂sj,i − λsj,i
]

=
1√
T

T∑
t=1

fsj,tεj,it + op(1) ≡ ws
j,i + op(1), (A.136)

which yields equation (4.20).
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Q.E.D.

A.7 Proof of Theorem 6
Theorem 6 follows from Theorem 3 since we have:

tr
{

Σ̂−1
cc Σ̂U

}
= tr

{
Σ̃−1

cc ΣU,N

}
+ op(1/

√
T ), (A.137)

tr
{

Σ̂2
U

}
= tr

{
ΣU (0)2

}
+ op(1). (A.138)

These expansions are proved next.

A.7.1 Asymptotic expansion of Σ̂−1
cc

Substituting the expression of f̂ ct from equation (A.117) into Σ̂cc =
1

T

T∑
t=1

f̂ ct f̂
c′
t we get:

Σ̂cc =
1

T

T∑
t=1

Ĥ−1
c

(
f ct +

1√
N1

u
(c)
j,t

)(
f ct +

1√
N1

u
(c)
j,t

)′ (
Ĥ−1

c

)′
+Op

(
1√
NT

)
= Ĥ−1

c Σ̃cc

(
Ĥ−1

c

)′
+Op

(
1√
NT

)
.

This implies:

Σ̂−1
cc = Ĥ′cΣ̃−1

cc Ĥc +Op

(
1√
NT

)
. (A.139)

A.7.2 Asymptotic expansion of Σ̂U

i) Asymptotic expansion of
Λ̂′jΛ̂j

Nj

To derive the asymptotic expansion of matrix Λ̂′jΛ̂j/Nj , it is useful to write the matrix versions of the quantities defined in
equations (A.128) and (A.136). Stacking the loadings λ̂cj,i in matrix Λ̂c

j = [λ̂cj,1, ..., λ̂
c
j,N ]′ we get:

Λ̂c
j =

[
Λc
j +

1√
T
Gc

j

]
Ĥc + op

(
1√
T

)
,

where

Gc
j =

1√
T
ε′jF

c + Λs
j

(
1√
T
F s′
j F

c

)
(A.140)

=
1√
T
ε′jF

c + Λs
j

(
1√
T

T∑
t=1

fsj,tf
c′
t

)
. (A.141)

Similarly, stacking the loadings λ̂sj,i in matrix Λ̂s
j = [λ̂sj,1, ..., λ̂

s
j,N ]′ we get:

Λ̂s
j =

[
Λc
j +

1√
T
Gs

j

]
Ĥj,s + op

(
1√
T

)
,
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where

Gs
j =

1√
T
ε′jF

s
j . (A.142)

By gathering these expansions, we get:

Λ̂j '
(

Λj +
1√
T
Gj

)
Ûj , j = 1, 2, (A.143)

where

Gj =
[
Gc

j

... Gs
j

]
, (A.144)

Ûj =

[
Ĥc 0

0 Ĥs,j

]
. (A.145)

We start by computing the asymptotic expansion of
Λ̂′

jΛ̂j

Nj
. From Assumptions A.1, A.2 and A.5 we get:

1

Nj

[
Λj +

1√
T
Gj

]′ [
Λj +

1√
T
Gj

]
' 1

Nj
Λ′jΛj +

1

N
√
T

(
Λ′jGj +G′jΛj

)
+

1

NT
G′jGj .

(A.146)

Let us compute the asymptotic expansion of
1

N
√
T

Λ′jGj :

1

Nj

√
T

Λ′jGj =
1

Nj

√
T

[
Λc′
j G

c
j Λc′

j G
s
j

Λs′
j G

c
j Λs′

j G
s
j

]
. (A.147)

Using equation (A.140) we get:

1

Nj

√
T

Λc′
j G

c
j =

1

Nj

√
T

Λc′
j

[
1√
T
ε′jF

c + Λs
j

(
1√
T
F s′
j F

c

)]
=

1

NjT
Λc′
j ε
′
jF

c +
1

NjT
Λc′
j Λs

j

(
F s′
j F

c
)

=

(
Λc′
j Λs

j

Nj

)
1

T

T∑
t=1

fsj,tf
c′
t +Op

(
1√
NjT

)
, (A.148)

Using analogous arguments and equation (A.142), we get:

1

Nj

√
T

Λs′
j G

c
j =

(
Λs′
j Λs

j

Nj

)
1

T

T∑
t=1

fsj,tf
c′
t +Op

(
1√
NjT

)
, (A.149)

1

Nj

√
T

Λc′
j G

s
j =

1

Nj

√
T

Λc′
j ε
′
jF

s = Op

(
1√
NjT

)
, (A.150)

1

Nj

√
T

Λs′
j G

s
j =

1

Nj

√
T

Λs′
j ε
′
jF

s = Op

(
1√
NjT

)
. (A.151)
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The last four equations imply:

1

Nj

√
T

Λ′jGj =


(

Λc′
j Λs

j

Nj

)
1

T

T∑
t=1

fsj,tf
c′
t 0(

Λs′
j Λs

j

Nj

)
1

T

T∑
t=1

fsj,tf
c′
t 0

+Op

(
1√
NjT

)

=

[ (
Λ′jΛ

s
j

Nj

)
1

T

T∑
t=1

fsj,tf
c′
t

... 0(kj×ks
j )

]
+Op

(
1√
NjT

)
. (A.152)

Using analogous arguments, we have:

1

NjT
Gc′

j G
c
j =

1

NjT

[
1√
T
ε′jF

c + Λs
j

(
1√
T
F s′
j F

c

)]′ [
1√
T
ε′jF

c + Λs
j

(
1√
T
F s′
j F

c

)]
= op

(
1√
T

)
(A.153)

and

1

NjT
G′jGj = op

(
1√
T

)
. (A.154)

Substituting (A.152) and (A.154) into equation (A.146) we get:

1

Nj

[
Λj +

1√
T
Gj

]′ [
Λj +

1√
T
Gj

]
' ΣΛ,j +

1√
T

(
L1,j + L′1,j

)
+Op

(
1√
N

)
(A.155)

where

L1,j =

[ (
Λ′jΛ

s
j

Nj

)(
1√
T
F s′
j F

c

)
... 0(kj×ks

j )

]
. (A.156)

Therefore we have:

Λ̂′jΛ̂j

Nj
= Û ′j

[
ΣΛ,j +

1√
T

(
L1,j + L′1,j

)]
Ûj + op

(
1√
T

)
. (A.157)

ii) Asymptotic expansion of Γ̂j

The approximations in Propositions 4 and 5 allow to compute the asymptotic expansion of ε̂j,it:

ε̂j,it = yj,it − λ̂c ′j,if̂ ct − λ̂s ′j,if̂sj,t
= εj,it −

[
λ̂c ′j,if̂

c
t − λc ′j,if ct

]
−
[
λ̂s ′j,if̂

s
j,t − λs ′j,ifsj,t

]
' εj,it −

[(
λcj,i +

1√
T
wc

j,i

)′(
f ct +

1√
N1

u
(c)
1,t

)
− λc ′j,if ct

]

−

[(
λsj,i +

1√
T
ws

j,i

)′(
fsj,t −

1√
T
K ′jf

c
t +

1√
Nj

vsj,t

)
− λs ′j,ifsj,t

]

' εj,it −
(

1√
N1

λc ′j,iu
(c)
1,t +

1√
T
wc′

j,if
c
t

)
−

(
1√
Nj

λs ′j,iv
s
j,t +

1√
T
ws′

j,if
s
j,t

)

+λs ′j,i
1√
T
K ′jf

c
t . (A.158)
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Since T/Nj = o(1), we keep only the terms of order 1/
√
T in equation (A.158), and we get:

ε̂j,it = εj,it −
1√
T

(
wc′

j,if
c
t + ws′

j,if
s
j,t

)
+ λs ′j,i

1√
T
K ′jf

c
t + op

(
1√
T

)
. (A.159)

From the definition of wc
j,i in Proposition 5 we get:

wc′
j,if

c
t =

1√
T

(
T∑

r=1

εj,irf
c′
r

)
f ct + λs′j,iK

′
jf

c
t , (A.160)

which implies:

ε̂j,it = εj,it −
1√
T

(
w̃c′

j,if
c
t + ws′

j,if
s
j,t

)
+ op

(
1√
T

)
, (A.161)

where:

w̃c
j,i =

1√
T

T∑
r=1

f cr εj,ir. (A.162)

Equation (A.159) allows us to compute:

γ̂j,ii =
1

T

T∑
t=1

ε̂2
j,it

' 1

T

T∑
t=1

[
εj,it −

1√
T

(
w̃c′
j,if

c
t + ws′

j,if
s
j,t

)]2

=
1

T

T∑
t=1

ε2
j,it −

2

T
√
T

T∑
t=1

εj,it
(
w̃c ′
j,if

c
t + ws ′

j,if
s
j,t

)
+

1

T 2

T∑
t=1

(
w̃c ′
j,if

c
t + ws ′

j,if
s
j,t

)2
. (A.163)

Using
1√
T

T∑
t=1

εj,itf
c
t = Op(1) and

1√
T

T∑
t=1

εj,itf
s
j,t = Op(1) we get:

γ̂j,ii =
1

T

T∑
t=1

ε2
j,it +Op

(
1

T

)
, (A.164)

which implies:

γ̂j,ii =
1

T

T∑
t=1

ε2
j,it + op

(
1√
T

)
= γj,ii +

1√
T
wj,i + op

(
1√
T

)
, (A.165)

where

wj,i =
1√
T

T∑
t=1

(ε2
j,it − γj,ii) = Op(1), (A.166)
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from Assumptions A.4 and A.7. Therefore, we have:

Γ̂j ' Γj +
1√
T
Wj . (A.167)

where Γj = diag(γj,ii, i = 1, ..., N) and Wj = diag(wj,i, i = 1, ..., N), for j = 1, 2.

iii) Asymptotic expansion of
1

Nj

Λ̂′jΓ̂jΛ̂j

Let us define

Ω̂∗j :=
1

Nj

(
Λj +

1√
T
Gj

)′
Γ̂

(
Λj +

1√
T
Gj

)
=

1

Nj

(
Λj +

1√
T
Gj

)′(
Γj +

1√
T
Wj

)(
Λj +

1√
T
Gj

)
=

1

Nj
Λ′jΓjΛj + Ω̂∗j,I + Ω̂∗j,II + Ω̂∗j,III + Ω̂∗ ′j,II + Ω̂∗ ′j,III + Ω̂∗j,IV + Ω̂∗j,V , (A.168)

where

Ω̂∗j,I =
1

Nj

√
T

Λ′jWjΛj = Op

(
1√
NT

)
, (A.169)

Ω̂∗j,III =
1

NjT
Λ′jWjGj = Op

(
1

T

)
, (A.170)

Ω̂∗j,IV =
1

NjT
G′jΓjGj = Op

(
1

T

)
, (A.171)

Ω̂∗j,V =
1

NjT
√
T
G′jWjGj = Op

(
1

T
√
T

)
. (A.172)

Moreover, similarly as for (A.152) we have:

Ω̂∗j,II =
1

Nj

√
T

Λ′jΓjGj

=

[
1

Nj
Λ′jΓjΛ

s
j

(
1

T

T∑
t=1

fsj,tf
c′
t

)
... 0(kj×ks

j )

]
+ op

(
1√
T

)
, (A.173)

=
1√
T

[ (
1

Nj
Λ′jΓjΛ

s
j

)(
1√
T
F s ′
j Fc

)
... 0(kj×ks

j )

]
+ op

(
1√
T

)
, (A.174)

=
1√
T
L2,j + op

(
1√
T

)
, (A.175)

(A.176)

where

L2,j =

[ (
1

N
Λ′jΓjΛ

s
j

)(
1√
T
F s ′
j Fc

)
... 0(kj×ks

j )

]
.
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Collecting the previous results, using T/N = op(1), and defining Ω∗j = limN→∞
1
N Λ′jΓjΛj we get:

Ω̂∗j =
1

N
Λ′jΓjΛj +

1√
T

(
L2,j + L′2,j

)
+ op

(
1√
T

)
= Ω∗j +

1√
T

(
L2,j + L′2,j

)
+ op

(
1√
T

)
. (A.177)

Substituting equation (A.143) into
1

Nj
Λ̂′jΓ̂jΛ̂j , and using equation (A.177) we get:

Ω̂j = Û ′jΩ̂∗j Ûj

= Û ′j
[
Ω∗j +

1√
T

(
L2,j + L′2,j

)]
Ûj + op

(
1√
T

)
, j = 1, 2. (A.178)

iv) Asymptotic expansion of Σ̂U

The estimator of Σu,j is given in equation (4.22). Equation (A.157) allows to compute the asymptotic approximation of(
Λ̂′jΛ̂j

Nj

)−1

:

(
Λ̂′jΛ̂j

Nj

)−1

' Û−1
j

[
Σ−1

Λ,j −
1√
T

Σ−1
Λ,j

(
L1,j + L′1,j

)
Σ−1

Λ,j

](
Û ′j
)−1

. (A.179)

Substituting equations (A.179) and (A.178) into equation (4.22), we get:

Σ̂u,j ' Û−1
j

[
Σ−1

Λ,j −
1√
T

Σ−1
Λ,j

(
L1,j + L′1,j

)
Σ−1

Λ,j

] [
Ω∗j +

1√
T

(
L2,j + L′2,j

)]
×
[
Σ−1

Λ,j −
1√
T

Σ−1
Λ,j

(
L1,j + L′1,j

)
Σ−1

Λ,j

](
Û ′j
)−1

' Û−1
j Σ−1

Λ,j

[
I − 1√

T

(
L1,j + L′1,j

)
Σ−1

Λ,j

] [
Ω∗j +

1√
T

(
L2,j + L′2,j

)]
×
[
I − 1√

T
Σ−1

Λ,j

(
L1,j + L′1,j

)]
Σ−1

Λ,j

(
Û ′j
)−1

' Û−1
j Σ−1

Λ,j

[
Ω∗j +

1√
T

(
L2,j + L′2,j

)
− 1√

T
Ω∗jΣ−1

Λ,j

(
L1,j + L′1,j

)
− 1√

T

(
L1,j + L′1,j

)
Σ−1

Λ,jΩ
∗
j

]
×Σ−1

Λ,j

(
Û ′j
)−1

,

which implies:

Σ̂u,j = Û−1
j Σu,j

(
Û ′j
)−1

+
1√
T
Û−1
j L3,j

(
Û ′j
)−1

+ op

(
1√
T

)
,

where

L3,j = Σ−1
Λ,j

[(
L2,j + L′2,j

)
− Ω∗jΣ−1

Λ,j

(
L1,j + L′1,j

)
−
(
L1,j + L′1,j

)
Σ−1

Λ,jΩ
∗
j

]
Σ−1

Λ,j . (A.180)
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From equation (A.145) we have:

Σ̂U = µ2
N Σ̂

(cc)
u,1 + Σ̂

(cc)
u,2

= Ĥ−1
c

[
µ2
NΣu,1 + Σu,2

](cc) (Ĥ′c)−1

+
1√
T
Ĥ−1

c

(
µ2
NL3,1 + L3,2

)(cc) (Ĥ′c)−1

+ op

(
1√
T

)
= Ĥ−1

c ΣU,N

(
Ĥ′c
)−1

+
1√
T
Ĥ−1

c

(
µ2
NL3,1 + L3,2

)(cc) (Ĥ′c)−1

+ op

(
1√
T

)
. (A.181)

This expansion, the convergence ΣU,N → ΣU (0) and the commutative property of the trace, imply equation (A.138).

A.7.3 Asymptotic expansion of tr
{

Σ̃−1
cc Σ̂U

}
Results (A.139) and (A.181), and the commutative property of the trace, imply:

tr
{

Σ̂−1
cc Σ̂U

}
= tr

{
Σ̃−1

cc ΣU,N

}
+

1√
T
tr
{

Σ̃−1
cc

(
µ2
NL3,1 + L3,2

)(cc)}
+ op

(
1√
T

)
.

Noting that L3,j = Op(1), for j = 1, 2, and recalling that Σ̃cc = Ikc + Op(1/
√
T ) and µN = µ+ o(1), the last equation

can be further simplified to

tr
{

Σ̂−1
cc Σ̂U

}
= tr

{
Σ̃−1

cc ΣU,N

}
+

1√
T
tr
{(
µ2L3,1 + L3,2

)(cc)}
+ op

(
1√
T

)
. (A.182)

Let us compute L3,j explicitly. From equation (A.156) we get:

L1,j =


(

Λc′
j Λs

j

N

)(
1√
T
F s ′
j F c

)
0(kc×ks

j )(
Λs′
j Λs

j

N

)(
1√
T
F s ′
j F c

)
0(ks

j×ks
j )


=

 ΣΛ,j,cs

(
1√
T
F s ′
j F c

)
0

ΣΛ,j,ss

(
1√
T
F s ′
j F c

)
0

+Op

(
1√
N

)

= ΣΛ,j

[
0(kc×kc) 0(kc×ks

j )

K ′j 0(ks
j×ks

j )

]
+Op

(
1√
N

)
. (A.183)

Equation (A.183) implies:

Ω∗jΣ−1
Λ,jL1,j = L2,j +Op

(
1√
N

)
. (A.184)

Substituting results (A.183) and (A.184) into equation (A.180) we get:

L3,j = −Σ−1
Λ,j

[
Ω∗jΣ−1

Λ,jL
′
1,j + L1,jΣ

−1
Λ,jΩ

∗
j

]
Σ−1

Λ,j

= −Σu,jL
′
1,jΣ

−1
Λ,j − Σ−1

Λ,jL1,jΣu,j +Op

(
1√
N

)
. (A.185)

Moreover, noting that:

Σ−1
Λ,jL1,j =

[
0(kc×kc) 0(kc×ks

j )(
1√
T
F s ′
j F c

)
0(ks

j×ks
j )

]
+Op

(
1√
N

)
, (A.186)
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we get:

Σ−1
Λ,jL1,jΣu,j =

[
0(kc×kc) 0(kc×ks

j )

∗ ∗

]
+Op

(
1√
N

)
. (A.187)

Equation (A.187) implies:

(L3,j)
(cc) = Op

(
1√
N

)
. (A.188)

Finally, substituting result (A.188) into equation (A.182), equation (A.137) follows.
Q.E.D.

A.8 Proof of Theorem 7
Let us re-write the model for the high frequency observables xHm,t, where m = 1, ...,M , and t = 1, ..., T in equation (2.1)
as:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t,

= Λ1gm,t + eHm,t,

= Λ̂1Û−1
1 gm,t −

(
Λ̂1Û−1

1 − Λ1

)
gm,t + eHm,t, (A.189)

where gm,t = [ gC ′m,t

... gH ′m,t ]′, Λ1 = [ΛHC

... ΛH ] = [Λc
1

... Λs
1], Λ̂1 = [Λ̂HC

... Λ̂H ] = [Λ̂c
1

... Λ̂s
1], and Û1 has been defined in

equation (A.145). Let us also define the estimator ĝm,t = [ ĝC ′m,t

... ĝH ′m,t ]′ as in equation (3.6):

ĝm,t =

[
ĝCm,t

ĝHm,t

]
=
(

Λ̂′1Λ̂1

)−1

Λ̂′1x
H
m,t, m = 1, ...,M, t = 1, ..., T. (A.190)

Substituting equation (A.189) into equation (A.190), and rearranging terms, we get:

ĝm,t = Û−1
1 gm,t −

(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
gm,t +

(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1e

H
m,t. (A.191)

From equations (A.156) and (A.157) we have:

Λ̂′1Λ̂1

NH
= Û ′1ΣΛ,1Û1 +Op

(
1√
T

)
,

which implies: (
Λ̂′1Λ̂1

NH

)−1

= Û−1
1 Σ−1

Λ,1

(
Û ′1
)−1

+Op

(
1√
T

)
. (A.192)

From equations (A.140) - (A.144) we get:

Λ̂1Û−1
1 − Λ1 ' 1√

T
G1, (A.193)

where

G1 =

[
Gc

1

... Gs
1

]
, (A.194)
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with

Gc
1 =

1√
T
ēH′ḡC + ΛH

(
1√
T
ḡH′ḡC

)
, (A.195)

Gs
1 =

1√
T
ēH′ḡH , (A.196)

ēH =
[
ēH1 , ..., ē

H
T

]′
, ḡC =

[
ḡC1 , ..., ḡ

C
T

]′
and ḡH =

[
ḡH1 , ..., ḡ

H
T

]′
. Moreover, we have:

Λ̂1 ' Λ1Û1 +
1√
T
G1Û1. (A.197)

From equations (A.193) and (A.197) it follows:

1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
' 1

NH

(
Λ1Û1 +

1√
T
G1Û1

)′
1√
T
G1

=
1

NH

√
T
Û ′1Λ′1G1 +

1

NHT
Û ′1G′1G1. (A.198)

Equations (A.192) and (A.198) allow to express the second term in the r.h.s. of equation (A.191) as:(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂′1Û−1

1 − Λ1

)
gm,t ' Û−1

1 Σ−1
Λ,1

1

NH

√
T

Λ′1G1gm,t + Û−1
1 Σ−1

Λ,1

1

NHT
G′1G1gm,t.(A.199)

From equation (A.152) we have:

1

NH

√
T

Λ′1G1 =

[ (
Λ′1ΛH

NH

)
1

T

T∑
t=1

ḡHt ḡ
C′
t

... 0(k1×kH)

]
+Op

(
1√
NHT

)
, (A.200)

where k1 = kC + kH . From equation (A.194) we have:

1

NHT
G′1G1 =

1

NHT

[
Gc′

1 G
c
1 Gc′

1 G
s
1

Gs′
1 G

c
1 Gs′

1 G
s
1

]
. (A.201)

Equation (A.195) implies:

1

NHT
Gc′

1 G
c
1 =

1

NHT

[
1√
T
ēH′ḡC + ΛH

(
1√
T
ḡH′ḡC

)]′ [
1√
T
ēH′ḡC + ΛH

(
1√
T
ḡH′ḡC

)]
=

1

NHT 2
ḡC′ēH ēH′ḡC +

1

NHT
√
T
ḡC′ēHΛH

(
1√
T
ḡH′ḡC

)
+

1

NHT
√
T

(
1√
T
ḡH′ḡC

)′
Λ′H ē

H′ḡC +
1

NHT

(
1√
T
ḡH′ḡC

)′
Λ′HΛH

(
1√
T
ḡH′ḡC

)
= Op

(
1

T

)
, (A.202)

where the last equality follows from the assumption T/NH = o(1). Equation (A.202) and the assumption
√
NH/T = o(1)

imply:

1

NHT
Gc′

1 G
c
1 = op

(
1√
NH

)
. (A.203)
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Similar arguments applied to the other blocks of the matrix in the r.h.s. of (A.201) yield:

1

NHT
G′1G1 = op

(
1√
NH

)
. (A.204)

Substituting equations (A.200) and (A.204) into equation (A.199) we get:(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
gm,t ' Û−1

1 Σ−1
Λ,1

(
Λ′1ΛH

NH

)(
1

T

T∑
t=1

ḡHt ḡ
C′
t

)
gCm,t + op

(
1√
NH

)
.

(A.205)

Let us now focus on the third term in the r.h.s. of equation (A.191). From equation (A.197) we have:

1

NH
Λ̂′1e

H
m,t ' 1

NH

(
Λ1Û1 +

1√
T
G1Û1

)′
eHm,t

= Û ′1
1

NH
Λ′1e

H
m,t + Û ′1

1

NH

√
T
G′1e

H
m,t. (A.206)

The second term in the r.h.s. of equation (A.206) can be written as:

1

NH

√
T
G′1e

H
m,t =

1

NH

√
T

[
Gc′

1 e
H
m,t

Gs′
1 e

H
m,t

]
. (A.207)

Using equation (A.195) we get:

1

NH

√
T
G′1e

H
m,t =

1

NHT
ḡC′ēHeHm,t +

1

NH

√
T

(
1√
T
ḡC′ḡH

)
Λ′He

H
m,t

= Op

(
1√
NHT

)
. (A.208)

Equation (A.196) implies:

1

NH

√
T
Gs′

1 e
H
m,t =

1

NHT
ḡH′ēHeHm,t = Op

(
1√
NHT

)
. (A.209)

Substituting results (A.208) and (A.209) into equations (A.207) and (A.206) we get:

1

NH
Λ̂′1e

H
m,t = Û ′1

1

NH
Λ′1e

H
m,t +Op

(
1√
NHT

)
. (A.210)

Substituting results (A.192), (A.205), and (A.210) into equation (A.191), and rearranging terms we get:

Û1ĝm,t − gm,t = −Σ−1
Λ,1

(
Λ′1ΛH

NH

)(
1

T
ḡH′ḡC

)
gCm,t + Σ−1

Λ,1

1

NH
Λ′1e

H
m,t + op

(
1√
NH

)
. (A.211)

Let us denote the last kH columns of matrix ΣΛ,1 as Σ
(· s)
Λ,1 . The term

Λ′1ΛH

NH
in equation (A.211) can be written as:

Λ′1ΛH

NH
= Σ

(· s)
Λ,1 +

1

NH

NH∑
i=1

λ1,iλ
′
H,i − Σ

(· s)
Λ,1

= Σ
(· s)
Λ,1 +Op

(
1√
NH

)
, (A.212)
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where the last equality follows from Assumption A.2. Equation (A.212) implies:

Σ−1
Λ,1

(
Λ′1ΛH

NH

)
=

[
0(kC×kH)

IkH

]
+Op

(
1√
NH

)
. (A.213)

Substituting equation (A.213) into equation (A.211) we have:

Û1ĝm,t − gm,t = −

[
0(kC×kH)

IkH

](
1

T
ḡH′ḡC

)
gCm,t + Σ−1

Λ,1

1

NH
Λ′1e

H
m,t + op

(
1√
NH

)
. (A.214)

Recalling the expression of Û1 from equation (A.145):

Û1 =

[
Ĥc 0

0 Ĥs,1

]
, (A.215)

from equation (A.214) we get the asymptotic expansions:

Ĥcĝ
C
m,t − gCm,t '

[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](C)

, (A.216)

Ĥ1,sĝ
H
m,t − gHm,t ' −

(
1

T
ḡH′ḡC

)
gCm,t +

[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](H)

, (A.217)

where
[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](C)

and
[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](H)

denote the upper kC rows, resp. the lower kH rows, of vector

Σ−1
Λ,1

1

NH
Λ′1e

H
m,t. Since ḡC′ḡC/T = IkC + op(1), we can rewrite equation (A.217) as:

Ĥ1,sĝ
H
m,t − (gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1gCm,t) ' [Σ−1

Λ,1

1

NH
Λ′1e

H
m,t]

(H). (A.218)

From Assumption A.8 we have:

1√
NH

Λ′1e
H
m,t

d−→ N(0,Ω∗Λ,m), (A.219)

where

Ω∗Λ,m = lim
NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(ei,Hm,t, e

`,H
m,t). (A.220)

Equations (A.216) and (A.219) imply:√
NH

(
Ĥcĝ

C
m,t − gCm,t

)
d−→ N

(
0,
[
Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1

](CC)
)
.

Similarly, equation (A.218) and (A.219) imply:√
NH

[
Ĥ1,sĝ

H
m,t − (gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1)gCm,t

]
d−→ N

(
0,
[
Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1

](HH)
)
. (A.221)

Q.E.D.
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