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Abstract

We study the contribution of industrial production (IP) to the decomposition of US output. While the
use of factor models has been found convenient, the challenge one faces is that sectoral data beyond IP
is only available annually. This imbalance of sampling frequencies poses serious technical problems. We
propose a new class of mixed frequency data approximate factor models which enable us to study the full
spectrum of quarterly IP sector data combined with the annual non-IP sectors of the economy. We derive the
large sample properties of the estimators for the new class of approximate factor models involving mixed
frequency data. Using our new approximate factor model, we find that a single common factor explains
around 90% of the variability in the aggregate IP output growth index and 60 % of total GDP output growth
fluctuations. A single low frequency factor unrelated to manufacturing explains around 14 % of GDP growth
fluctuations. The picture with a structural factor model featuring technological innovations is quite different.
A factor specific to technological innovations in IP sectors is more important for the IP sector shocks and a
low frequency factor which appears to explain variation in information industry as well as professional and

business services innovations plays relatively speaking a more important role.



1 Introduction

In the public arena it is often claimed that manufacturing has been in decline in the US and most
jobs have migrated overseas to lower wage countries. First, we would like to nuance this observation
somewhat. It is true, as the figure below clearly shows, that the share of the industrial production
sector has been in decline since the late 70’s, which is the beginning of our sample period.! However,
does size matter? The fact that the size shrank does not necessarily exclude the possibility that the
industrial production sector still is a key factor, or even the dominant factor, of total US output. We
study the validity of this question using novel econometric methods designed to deal with some of the

challenging data issues one encounters when trying to address the problem.

Figure 1: Sectoral decomposition of US nominal GDP.
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When studying the role of the industrial production sector we face a conundrum. On the one hand,
we have fairly extensive data on industrial production (IP) which consists of 117 sectors that make up

aggregate IP, each sector roughly corresponding to a four-digit industry classification using NAICS.

I'The figure displays the evolution from 1977 to 2011 of the sectoral decomposition of US nominal GDP. We aggregate
the shares of different sectors available from the website of the US Bureau of Economic Analysis, according to their North
American Industry Classification System (NAICS) codes, in 5 different macro sectors: Industrial Production (yellow),
Services (red), Government (green), Construction (white), Others (grey).



These data are published monthly, and therefore cover a rich time series and cross-section. In our
analysis we use the data sampled at quarterly frequency, for reasons explained later in the paper, and
consists of over 16,000 data points counting all quarters from 1977 until 2011 (end of our data set)
across all sectors. On the other hand, contrary to IP, we do not have monthly or quarterly data about
the cross-section of US output across non-IP sectors, but we do so on an annual basis. Indeed, the US
Bureau of Economic Analysis provides Gross Domestic Product (GDP) and Gross Output by industry
- not only IP sectors - annually. In our empirical analysis we use data on 42 non-IP sectors. If we were
to study all sectors annually, we would be left with roughly 4000 data points for IP - a substantial loss
of information.

Economists have proposed different models about how various sectors in the economy interact.
Some rely on aggregate shocks which affect all sectors at once. Foerster, Sarte, and Watson (2011),
who use an approximate factor model estimated with quarterly data, find that nearly all of IP vari-
ability is associated with (a small number of) common factors - even a single common factor suffices
according to their findings. Does the single common factor which drives IP sectors also affect the rest
of the economy, in particular in light of the fact that the services sector grew in relative size? To put
it differently, can we maintain a common factor view if we expand beyond IP sectors? Or should we
think about sector-specific shocks affecting aggregate US output? If so, are these IP sector shocks, or
rather services sector ones?

We propose a new class of factor models able to address these key questions of interest using all
the data - despite the mixed sampling frequency setting. Empirical research generally avoids the direct
use of mixed frequency data by either first aggregating higher frequency series and then performing
estimation and testing at the low frequency common across the series, or neglecting the low frequency
data and working only on the high frequency series. The literature on large scale factor models is no
exception to this practice, see e.g. Forni and Reichlin (1998), Stock and Watson (2002a,b) and Stock
and Watson (2010). Using the terminology of the approximate factor model literature, we have a panel
consisting of Ny cross-sectional IP sector growth series sampled across M T time periods, where M =
4 for quarterly data and M = 12 for monthly data, with 7' the number of years. Moreover, we also have
a panel of Ny non-IP sectors - such as services and construction for example - which is only observed
over 1" periods. Hence, generically speaking we have a high frequency panel data set of size Ny X

M and a corresponding low frequency panel data set of size N;, x T'. The issue we are interested in



can be thought of as follows. There are three types of factors: (1) those which explain variations in
both panels - say ¢, and therefore are economy-wide factors, (2) those exclusively pertaining to IP
sector movements - say ¢g*/, and finally (3) those exclusively affecting non-IP, denoted by g%. Hence,
we have (1) common, (2) high frequency and (3) low frequency factors. We use superscripts C', H and
L because the theory we develop is generic and pertains to common (C), high frequency (H) and low
frequency (L) factors. The question how to extract common factors from a mixed frequency panel data
set is of general interest and has many applications in economics and other fields. In fact our analysis
covers an even broader class of group factor models, as will be explained shortly, which is of general
interest beyond the mixed frequency setting considered in the empirical application.

The purpose of this paper is to propose large scale approximate factor models in the spirit of Bai
and Ng (2002), Stock and Watson (2002a), Bai (2003), Bai and Ng (2006), and extend their analysis to
mixed frequency data settings. A number of mixed frequency factor models have been proposed in the
literature, although they almost exclusively rely on small cross-sections.? Stock and Watson (2002b) in
their Appendix A, propose a modification of the EM algorithm of Dempster, Laird, and Rubin (1977)
to estimate high frequency factors from potentially large unbalanced panels, with mixed-frequency
being a special case.

We approach the problem from a different angle. We start with a setup which identifies factors
common to both high and low frequency data panels, the aforementioned ¢, and factors specific to the
high and low frequency data. Our approach amounts to writing the model as a grouped factor model.
The idea to apply grouped factor analysis to mixed frequency data is novel and has many advantages in
terms of identification and estimation. In the proposed identification strategy, the groups correspond to
panels observed at different sampling frequencies. While there is a literature on how to estimate factors
in a grouped model setting, there does not exist a general unifying asymptotic theory for large panel
data.> We propose estimators for the common and group specific factors, and an inference procedure
for the number of common and group specific factors based on canonical correlation analysis of the
principal components estimators on each subgroup. One may wonder why we do not apply canonical

correlation analysis directly to the high and low frequency data - avoiding the first step of computing

2See for example, Mariano and Murasawa (2003), Nunes (2005), Aruoba, Diebold, and Scotti (2009) Frale and Monte-
forte (2010), Marcellino and Schumacher (2010) and Banbura and Riinstler (2011), among others.

3For grouped factor models, see for example Krzanowski (1979), Flury (1984), Kose, Otrok, and Whiteman (2008),
Goyal, Pérignon, and Villa (2008), Bekaert, Hodrick, and Zhang (2009), Wang (2012), Hallin and Liska (2011), Moench
and Ng (2011), Moench, Ng, and Potter (2013), Ando and Bai (2013) and Breitung and Eickmeier (2014), among others.



principal components since the extra step considerably complicates the asymptotics and actually entails

a novel contribution of the paper.*

What makes the first step of computing principal components
necessary is the fact that canonical correlations applied to the raw data may not necessarily uncover
pervasive factors.’ The procedure is therefore general in scope and also of interest in many applications
other than the one considered in the current paper.

Our empirical application revisits the analysis of Foerster, Sarte, and Watson (2011) who use factor
analytic methods to decompose industrial production (IP) into components arising from aggregate
shocks and idiosyncratic sector-specific shocks. They focus exclusively on the industrial production
sectors of the US economy. We find that a single common factor explains around 90% of the variability
in the aggregate IP output growth index, and a factor specific to IP has very little additional explanatory
power. This implies that the single common factor can be interpreted as an Industrial Production
factor. Moreover, more than 60% of the variability of GDP output growth in service sectors, such
as Transportation and Warehousing services, is also explained by the common factor. A single low
frequency factor unrelated to manufacturing, explaining around 14 % of GDP growth fluctuations,
drives the comovement of non-IP sectors such as Construction and Government.

We re-examine whether the common factor reflects sectoral shocks that have propagated by way of
input-output linkages between service sectors and manufacturing. A structural factor analysis indicates
that both low and high frequency aggregate shocks continue to be the dominant source of variation in
the US economy. The propagation mechanisms are very different, however, from those identified
by Foerster, Sarte, and Watson (2011). Looking at technology shocks instead of output growth, it
does not appear that a common factor explaining IP fluctuations is a dominant one for the entire
economy. A factor specific to technological innovations in IP sectors is more important for the IP
sector shocks and a low frequency factor which appears to explain variation in information industry as
well as professional and business services innovations plays relatively speaking a more important role.
Hence, when it comes to innovation shocks, IP is no longer the dominant factor.

The rest of the paper is organized as follows. In section 2 we introduce the formal model and

4Our work is most closely related to Wang (2012) and Chen (2010, 2012). Yet, there is no comprehensive asymptotic
treatment of grouped factor models in a large dimension setting. For example, Wang (2012) proposes an iterative solution
from a Least Square (LS) problem. Their procedure is not operational as the resulting equations do not have a unique
solution.

A simple example would be to add an anomalous series to one panel and repeat the series to the other one. The
canonical correlation analysis applied to the raw data will uncover the presence of the anomalous series in both panels.



discuss identification. In section 3 we study estimation and inference on the number of common
factors. The large sample theory appears in section 4. Section 5 covers the empirical application.
Section 6 concludes the paper.

Readers who are only interested in the empirical applications can go directly to section 5 which

starts with a summary of the novel econometric procedure.

2 Model Specification and Identification

We consider a setting where both low and high frequency data are available. Lett =1,2, ..., T be the
low frequency (LF) time units. Each period (¢ — 1, t] is divided into M subperiods with high frequency
(HF) dates t — 1 +m/M, with m =1, ..., M. Moreover, we assume a panel data structure with a
cross-section of size Ny of high frequency data and Ny, of low frequency data. It will be convenient
to use a double time index to differentiate low and high frequency data. Specifically, we let ngt, for ¢
=1, ..., Ny, be the high frequency data observation ¢ during subperiod m of low frequency period ¢.

Likewise, we let Z‘tLi, withi=1, ..., N, be the observation of the ith low-frequency series at t. These

H

1> ¥V m, and the N -dimensional vector

observations are gathered into the /Ny-dimensional vectors x
xL, respectively.

We have a latent factor structure in mind to explain the panel data variation for both the low and
high frequency data. To that end, we assume that there are three types of factors, which we denote
by respectively g, ,, g/, and gl ,. The former represents factors which affect both high and low
frequency data (throughout we use superscript C' for common), whereas the other two types of factors

affect exclusively high (superscript /) and low (marked by L) frequency data. We denote by k¢, k7

and k%, the dimensions of these factors. The latent factor model with high frequency data sampling is:

ern,t = AHngL,t + AHgnI{,t + erfrIL,ﬂ @2.1)
err:t = ALCg7§7,7t + ALgﬁz,t + ean,t’

wherem =1,...,. M andt =1,...,T, and Agc, Ay, Arc and A are matrices of factor loadings. The
vector a:an*t is not observable for each high frequency subperiod and the measurements, denoted by
xl, depend on the observation scheme, which can be either flow sampling or stock sampling (or some

general linear scheme). In the remainder of this section we study identification of the model for the



case of flow sampling, corresponding to the empirical application covered later in the paper.

In the case of flow sampling, the low frequency observations are the sum (or average) of all xﬁjt in

each high frequency subperiod m, that is: - = Zi\f:l fot. Then, model (2.1) implies:

m

"E'r}r{,t = AHng,t+AHgg,t+eg,t’ m = 17"'7M7 (2 2)
L M M L M L '
Ty = Arcd oo It T ALY Imi + > =1 Cm,t:
Let us define the aggregated variables and innovations z!7 := "N ol &V = S0 U U =
H, L, and the aggregated factors:
M
o = > gb, U=CHL
m=1
Then we can stack the observations x and 2 and write:
=C
9t
H SH
Ty Ayc Ay 0 B €y
L= gl | + |- (2.3)
l‘t ALC 0 AL _I et
9t

The last equation corresponds to a group factor model, with common factor g© and “group-specific”
factors g, gl.

To further generalize the setup, and draw directly upon the group-factor structure, we will consider
the generic specification. To separate the specific from the generic case, we will change notation
slightly. Namely, we keep the notation introduced so far with high and low frequency data, temporal
aggregation, etc. for the mixed frequency setting further used in the empirical application and use the

following for the generic grouped factor model setting:

ff
n A A5 0 e
S I T (2.4)
Yot Ag 0 A; s Eat

f2,t

%The identification with stock sampling is discussed in Appendix A.1. It is worth noting though that any sampling
scheme leading to a representation of the model analogous to the group-factor model in equation (2.3) or (2.4) - discussed
shortly - is compatible with the identification and estimation strategies of this paper.



where y;; = [yj1, ---,Z/j,th]/, A; = [A;l, ...,)\;NJ_]’, Aj? = [)‘}9',17 ...,)\j’Nj]’ and €;; = [gj 11, ...,gj,th]’,
with j = 1,2. The dimensions of the common factor f{ and the group-specific factors f7,, f3, are
k¢, ki and k3, respectively. In the case of no common factors, we set k¢ = 0, while in the case of no
group-specific factors we set k5 = 0, j =1, 2.7 The group-specific factors Ji, and f3, are orthogonal

to the common factor f;. Since the unobservable factors can be standardized, we assume:

fe 0
E|f, |=|o0]. (2.5)
f34 0
and
fe Lie 0 0
VIl =10 L @ |, (2.6)
fs, 0 @ Iy

where @ is the covariance between the group-specific factors.

2.1 Separation of common and group-specific factors

In standard linear latent factor models, the normalization induced by an identity factor variance-
covariance matrix identifies the factor process up to a rotation (and change of signs). Let us now
show that, under suitable identification conditions, the rotational invariance of model (2.4) - (2.6) al-
lows only for separate rotations among the components of f7,, among those of f3,, and among those
of f7. The rotation invariance of model (2.4) - (2.6) therefore maintains the interpretation of common
factor and specific factors. More formally, let us consider the following transformation of the stacked

factor process:

If A A Agg ff
I = Agi Ay Ao fit 2.7
15, Ay A Ag | | 3,

"The case of more than two groups is a relatively straightforward generalization. Note that would also handle situations
with more than two sampling frequencies. In the interest of conciseness, we do not consider this type of generalization in
the current paper.



Fs 1

where (f¢/, T ;ﬁ{ )’ is the transformed stacked factor vector, and the block matrix A = (A;;) is

nonsingular.

DEFINITION 1. The model is identifiable if: the data y,, and ys, satisfy a factor model of the
same type as (2.4) - (2.6) with (f¢', fi/, f5{) replaced by ( fe!, Nis,t/7 Nég,{)/ only when matrix A is a

block-diagonal orthogonal matrix.

The following proposition gives a sufficient condition for the identification of the model with common

and group-specific factors.®

PROPOSITION 1. If matrices A\, = {A‘{ DA ] and Ny = {A; DA ] are full column-rank (for

N large enough), then the model is identifiable in the sense of Definition 1.

Proof: See Appendix A.4.1.

Therefore the common factor f; and the group-specific factors f7,, f5, and the factor loadings Af,
A%, are identifiable up to a linear transformation, since the variables y;; are observable. By the same
token in the mixed frequency setting of equation (2.3), the aggregated factors g, g, g, and the
factor loadings Apyc, Ao, Ay, A, are identified. Once the factor loadings are identified from (2.3),
the values of the common and high frequency factors for subperiods m = 1,..., M are identifiable
by cross-sectional regression of the high frequency data on loadings Ay and Ay in (2.1). More
precisely, g, , and g7 , are identified by regressing 1%, on Agc,; and Ay across i = 1,2, ..., for any

m = 1,..., M and any ¢. Hence, with flow sampling, we can identify the common factor g%t and the

M
high frequency factor g,{it at all high frequency subperiods. On the other hand, only g~ = Z gﬁl,ta
m=1

1.e. the within-period sum of the low frequency factor, is identifiable by the paired panel d;ta set
consisting of /7 combined with z”. This is not surprising, since we have no HF observation available
for the LF process. Note the great advantage of the mixed frequency setting - compared to the single
frequency one - in the context of our IP and GDP sector application. The mixed frequency panel
setting allows us to identify and estimate the high frequency observations of factors common to IP and
non-IP sectors. With IP (i.e. high frequency) data only we cannot assess what is common with non-IP.

With low frequency data only, we cannot estimate the high frequency common factors.

8See also results in e.g. Schott (1999), Wang (2012), Chen (2010, 2012). Proposition 1 is implied by Proposition 1 in
Wang (2012).



2.2 Identification of the (common) factor space from canonical correlations

and directions

In the interest of generality, let us again consider the generic setting of equation (2.4) and let k; = k¢ +
k2, for j = 1,2, be the dimensions of the factor spaces for the two groups, and define k = min(ky, k).

We collect the factors of each group in the k;-dimensional vectors A ;:

hjy = Ji . j=12  t=1,..T (2.8)
7,t

and the loadings in the £;-dimensional vectors J; ;:

e | 9 i =1,2 i =1,..,N,
750 T ) j & L= )ty J°
AL

Using these definitions, model (2.4) can equivalently be written as:
Yjit = )\;‘7ihj,t+5j,it7 j: 1,2, 1= 1,...7Nj, t= 1,...,T,

We also stack the factors h;;, j = 1,2, into the K-dimensional vector h; = (hf, h),)’, with K =

k1 + ko. Moreover, let us express the (K, K)-dimensional matrix V' (h;) as:

Vi, Vi
V(h) = e (2.9)
Vor Vg

where:
Vie = E(hj7th27t), 5,0=1,2. (2.10)

Let us first recall a few basic results from canonical analysis (see e.g. Anderson (2003) and Magnus

and Neudecker (2007)). Let p;, £ = 1, ..., k denote the canonical correlations between h;; and hg ;.



The largest £ eigenvalues of matrices
R = Vi 'VigViy ' Vi, and R* = Vi3 Va1 ViT Wi,

are the same, and are equal to the squared canonical correlations p?, ¢ =1,..., kbetween h;, and hy .
The associated eigenvectors w; ¢ (resp. wq ), with £ = 1, ..., k, of matrix R (resp. R*) standardized
such that w} ,Vijwy ¢ = 1 (resp. wy ,Vagwy ¢ = 1) are the canonical directions which allow to construct
the canonical variables from vector hy; (resp. hs;). The matrices w; = (wj1,...,w;x), j = 1,2, are

such that w};Vjw; = Iy, j = 1,2. Moreover, if p, # 0, then

1

Wy = p—Vﬁlewu,

16 (2.11)
Wyy = — Vi Varwyy.

Pr

PROPOSITION 2. The following hold:

i) If k¢ > O, the largest k° canonical correlations between h; ; and hay are equal to 1, and the remain-
ing k — k¢ canonical correlations are strictly smaller than 1.

ii) Let W; be the (k;, k®) matrix whose columns are the canonical directions for h;, associated with
the k¢ canonical correlations equal to 1, with 7 = 1,2. Then, we have ff = W;hj,t (up to a rotation
matrix), for j = 1, 2.

iii) If k¢ = O, all canonical correlations between h, ; and hy, are strictly smaller than 1.

iv) Let W7 (resp. W3) be the (ky,k3) (resp. (k2, k3)) matrix whose columns are the eigenvectors of
matrix R (resp. R*) associated with the smallest ki (resp. k3) eigenvalues. Then [, = W:'h;; (up to

a rotation matrix) for j = 1,2.

Proof: See Appendix A.4.2.

Proposition 2 shows that the number of common factors k¢, the common factor space spanned by f,
and the spaces spanned by group specific factors, can be identified from the canonical correlations and
canonical variables of h;; and hy,. Therefore, the dimension £¢, and factors f; and fjs’t, j=1,2, (up
to a rotation) are identifiable from information that can be inferred by disjoint principal component
analysis (PCA) on the two subgroups. Note that disjoint PCA on the two subgroups allows us to

identify hy; and hg, up to linear transformations. This fact does not prevent identifiability of the

10



common and group-specific factors from Proposition 2. More precisely, from the subpanel j we can
identify the vector /;; up to a non-singular matrix Uj, say, j = 1, 2. Under the transformation h;; —
Ujhj,, the matrices R and R* are transformed such that R — (U7)"'RU| and R* — (U})"'R*US.
Therefore, the matrices of canonical directions W, and W are transformed such as W; — (U ]’ )_1Wj
j = 1, 2. Therefore, the quantities W;hj,t, j = 1,2, are invariant under such transformations.

Last, but certainly not least, we provide in the Online Appendix to the paper an alternative way for
the identification of the common factor space from variance-covariance matrix of stacked factors (see

Section OA.1).

3 Estimation and inference on the number of common factors

In Section 3.1 we provide estimators of the common and group-specific factors, based on canonical
correlations and canonical directions, when the true number of group-specific and common factors
are known. In Section 3.2 we propose a sequential testing procedure for determining the number of
common factors when only the dimensions %k, and k, are known. The test statistic is based on the
canonical correlations between the estimated factors in each subgroup of observables. In Section 3.3
we explain why the asymptotic results concerning the test statistic and the factors estimators obtained
under the assumption that the number of pervasive factors k; and ks in each group is known, remain
unchanged when the number of pervasive factors is consistently estimated. Finally, in Section 3.4 we

use these results to define estimators and test statistics for the mixed frequency factor model.

3.1 Estimation of common and group-specific factors when the number of com-

mon and group-specific factors is known

Let us assume that the true number of factors k; > 0 in each subgroup, j = 1, 2 is known, and also that
the true number of common factors £ > 0, is known. Proposition 2 suggests the following estimation
procedure for the common factor. Let h;, and he; be estimated (up to a rotation) by extracting the
first £; Principal Components (PCs) from each subpanel j, and denote by BN these PC estimates of
the factors, j = 1,2. Let H; = [h;1, ..., h; 7]’ be the (T k;) matrix of estimated PCs extracted from

panel Y; = [y;1, ..., yjr]’ associated with the largest k; eigenvalues of matrix Y}Y]’ ,j=1,2.Let

1
N,T

11



f/jg denote the empirical covariance matrix of the estimated vectors iAth and izw with 5,0 =1,2:

. HH 1. . .
gt = j71 == f Zhj,th27ta jag = 1a 27 (31)
t=1

and let matrices 1 and R* be defined as:

R = ‘7111‘712‘7251‘7217 and R* := ‘7251‘721‘7111‘712 (3.2)
Matrices R and R* have the same non-zero eigenvalues. From Anderson (2003) and Magnus and
Neudecker (2007), we know that the largest k£ eigenvalues of R (resp. R*), denoted by pz, 0 =1,..., k"
are the first k¢ squared sample canonical correlation between le,t and lAzg,t. We also know that the
associated k° canonical directions, collected in the (ky, k¢) (resp. (ks, k) matrix W, (resp. W), are
the eigenvectors associated with the largest £¢ eigenvalues of matrix R (resp. R*), normalized to have

length 1 w.r.t. matrix VH (resp. \722). It also holds:
W{VHVM = [kc, and WQI%QWQ = Ikc.

DEFINITION 2. Two estimators of the common factors vector are ftc = W{ill,t and ftc* = Wéﬁgvt.

Let matrix Wf (resp. W;) be the (ki1, k) (resp. (kq, k5)) matrix collecting & (resp. k3) eigenvectors
associated with the k7§ (resp. k3) smallest eigenvalues of matrix R (resp. R*), normalized to have length

1 w.r.t. matrix VH (resp. ‘722). It also holds:
Wls /‘711{;[/15 = [k;, and WQS ,%QWS = [k§

The estimators of the group-specific factors can be defined analogously to the definition of the common

factors.

DEFINITION 3. Two estimators of the specific factors vector are fit = Wf ! iLLt and f;yt = WQS ! }Azzt.

Let ¢ = [f¢/, ..., f¢') and Fe* = [f¢*' .., f&*'] be the (T, k°) matrices of estimated common
factors, and ]:}S = [Ujl’ e UJST’]’ be the (7', k5), for j = 1,2, be the matrices of estimated group-

specific factors. Then, Fe (resp. Fe*) and Ff (resp. ﬁ’;) are orthogonal in sample.

12



An alternative estimator for the group-specific factors f7, (resp. f3,) is obtained by computing the
first k§ (resp. k3) principal components of the variance-covariance matrix of the residuals of the regres-
sion of y; ; (resp. ya) on the estimated common factors.” More specifically, let A; = [5\511, ey 5\5 Nj]’

be the (V;, k°) matrix collecting the loadings estimators:
c _ e e ! ey —1 .
Ae = YIE(FCE)N, j=1,2 (3.3)

Let&u = yj,it— 5\5; ftc be the residuals of the regression of y;; on the estimated common factor ff, and

let {5 = [t o &Gvye)s for j = 1,2 Let Z5 = [§51, ..., & )" be the (T', N;) matrix of the regression

residuals, for j = 1, 2.

DEFINITION 4. An alternative estimator of the specific factor vector is fft (resp. f;t ), defined as

the first ki (resp. k3) Principal Components of subpanel =, (resp. =5).

We denote by Fj = A;’ Ly Aj%]’ the (7', k%) matrix of estimated group-specific factors, corresponding
to the PCs extracted from panel =; associated with the largest k7 eigenvalues of matrix N TE]-E;,
J
for j = 1,2. Then, F* is orthogonal in sample both to F} and to F3. Moreover, we define A} =
[S\j’l, - ;\j ~,) as the (N;, k) matrix collecting the loadings estimators:
N = R = SEEE. -1 a

where the second equality follows from the in-sample orthogonality of Fe and ﬁ’f ,forj=1,2.

3.2 Inference on the number of common factors based on canonical correla-
tions
Suppose that the number of factors k; and ks in each subpanel is known, and hence & = min(ky, k2) as

well, and let us consider the problem of inferring the dimension £¢ of the common factor space. From

Proposition 2, this dimension is the number of unit canonical correlations between h; , and hy ;. We

°This alternative estimation method for the group-specific factors corresponds to the method proposed by Chen (2012).
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consider the following set of hypotheses:

H(0) = {1>p>..>p},

H(EY) = {p1= .= pre =1> preq1 > ... > pi},

Hk) = {p=..=px=1},

where p1, ..., p, are the canonical correlations of h;; and hy,. Hypothesis H(0) corresponds to the
case of no common factor in the two groups of observables Y7 and Y5. Generically, H (k°) corresponds
to the case of k¢ common factor and k; — k¢ and ky — k¢ group-specific factors in each group. The
largest possible number of common factors is the minimum between k; and ko, i.e. k, and corresponds
to hypothesis H (k). In order to select the number of common factors, let us consider the following

sequence of tests:

Hy = H(k°) against H, = U H(r),

0<r<kec

for each k¢ = k. k — 1, ..., 1. We propose the following statistic to test H, against Hy, for any given
k¢=k, kE—1, .., 1

k) = D hr (3.5)
The statistic é (k¢) corresponds to the sum of the k¢ largest sample canonical correlations. We reject

the null Hy = H (k) when &(k®) — k¢ is negative and large. The critical value is deduced by the large

sample distribution provided in Section 4.
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3.3 Inference on the number of common factors when £; and k> are unknown

The tests defined in Section 3.2 require the knowledge of the true number of pervasive factors k; > 0
in each subgroup, ; = 1,2. When the true number of pervasive factors is not known, but consistent
estimators k; and ks, say, are available, the asymptotic distributions and rates of convergence for the
test statistic & (k°) based on ki and k; are the same as those of the test based on the true number of
factors. Intuitively, this holds because the consistency of estimators ki, implies that P (/%] =k;) =1
for 7 = 1,2, which means that the error due to the estimation of the number of pervasive factors is
(asymptotically) negligible.'°

The estimators based on the penalized information criteria of Bai and Ng (2002) applied on the two
subgroups, are examples of consistent estimators for the numbers of pervasive factors. Therefore, in
the next Section 4, the asymptotic distributions and rates of convergence of the test statistic and factors
estimators are derived assuming that the true numbers of factors k; > 0 in each subgroup, j = 1, 2,

are known.

3.4 Estimation and inference in the mixed frequency factor model

The estimators and test statistics defined in Sections 3.1 - 3.3 for the group factor model (2.4) allow
to define estimators for the loadings matrices Ay, Ay, Ao, Ar, the aggregated factor values ﬁff ,
U = C, H, L and the test statistic for the common factor space dimension k¢ in equation (2.3). We
denote these estimators AHC, AH, ALC, AL, ﬁf , and the test statistic f (kc) The estimators of the

common and high frequency factor values are:

A A -1 .
g,;t _ (A’1A1> Mgl om=1,.,M,  t=1,..T, (3.6)
gmt

where A, = [AHO : /A\H}

19This argument is formalized using similar arguments as, for instance, in footnote 5 of Bai (2003).
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4 Large sample theory

In this section we derive the large sample distributions of the estimators of factor spaces and factor
loadings, and of the test statistic for the dimension of the common factor space. We consider the joint
asymptotics Ny, Ny, T" — oo under Assumptions A.1-A.8 provided in Appendices A.2 and A.3. From
the asymptotic theory of principal component analysis (PCA) estimators in large panels (see e.g. Bai
and Ng (2002), Stock and Watson (2002a), Bai (2003), Bai and Ng (2006)) we know that:

. . 1 1 .

hje > Hj | hje + —Wjuj’t + Tbj,t , J1=12, 4.1
where b, is a deterministic bias term, the matrix 7:[j converges to a non-singular matrix as N;,T" — oo,

and:

-1

1 1 U
it = E;Am‘)\}i WZM@,@%

J =1

ATA N L 1
777 A/
( Nj ) \/Nj Jgj’t ( )

Note that the terms u;; depend also from the cross-sectional dimension N;, but for notational con-

g
|

venience, we omit the index /V; in u;,. From Assumptions A.2 and A.5 d) the error terms u;, are

asymptotically Gaussian as N; — oo:
i == N (0,%0,), (4.3)
where the asymptotic variance is:

Suj = ZpiER5 (4.4)
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and

Yrg = NthOO—ZA“ i 4.5)
G = JJ@OOFZZMMCOU €t Ejat)y  J=1,2. (4.6)

=1 (=1

Without loss of generality, let Ny < N;. We assume +/ N1 /T = o(1) (Assumption A.6), which allows
to neglect the bias terms b;;/7" in the asymptotic expansion (4.1). We also assume 7'/N, = o(1),

which further simplifies the asymptotic distributions derived in the next section.

4.1 Main asymptotic results for the group factor model

In this section we collect the main results concerning the asymptotic distributions of estimators and

test statistics for the group factor model. Define the matrices:

N, N,
Q.p(h) = NjiXg Cov(gjit, e 4.7

2w N; Nkaoo\/N—]\szlg 3,i Nk COV (it Ektt—n), 4.7)

Suge(h) = SxQn(h)I5 5, (4.8)

for j,k = 1,2, and h = ...,—1,0,1,... Matrix X, ;,(h) is the asymptotic covariance between wu;,

and uy,_,. Moreover, we have Q; = Q,,(0) and ¥, ; = X, ;;(0), and similarly we define ¥, 12 =
Yu12(0) = ¥, 5. Let us denote N = min{/N;, No} = N, the minimal cross-sectional dimension
among the two groups, and p%, = No/N; < 1. Let uy — i, with g € [0,1]. The boundary value

4 = 0 accounts for the possibility that N; grows faster than Ns.

THEOREM 3. Under Assumptions A.1 - A.6, and the null hypothesis Hy = H (k) of k¢ common

factors, we have:

. . 1 -1 d 1
Nﬁ f(k ) k¢ + ﬁtr {ch ZU,N}:| — N (0, ZQU) R (49)
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where

T
3 1 c ro
S = O SF (4.10)
t=1
Qu = 2 Y tr{Su(h)Su(h)'}, (4.11)
h=—00
Sp(h) = W25 (h) + S5 (h) — puish(h) — puis) (h), (4.12)
Son = RS+ 505 — pv ST — avE, (4.13)

and the upper index (c, c¢) denotes the upper-left (k¢, k) block of a matrix.

Proof: See Appendix A.5S.

The asymptotic distribution of é (k¢) — k© after appropriate recentering and rescaling is Gaussian. The
convergence rate is [V VT. The asymptotic expansion of é (k¢) — k° involves a time series average
of squared estimation errors on group factors. Since these estimation errors are of order 1/ V'N, the
expected value of their square will be of order 1/N, originating a recentering term of the second order
analogous to an error-in-variable bias adjustment. Moreover, the averaging over time of the recen-
tered squared estimation errors allows to apply a root-7" central limit theorem for weakly dependent

processes, originating a total estimation uncertainty for the test statistic of order 1/(N VT).

THEOREM 4. Under Assumptions A.1 - A.6 we have:

VNI(Rfe = f) = N (0207), (4.14)
VN(Hfe = £ < N (0,20). (4.15)

] s s e c!e\—1 re d $8)\ — ss 88)\ —
VN, [Hj s = (f2, — (F}'FO)(F'F) 1]@)} 4 N (0, (Z09) 100 (56 1) (4.16)
for any j, t, where H., H: and H ; are non-singular matrices, F° = [f¢, ..., f&], Fe=[fs1, o fir]

and the upper index (ss) denotes the lower-right (k, k3) block of a matrix.

Proof: See Appendix A.6.
From Theorem 4 a linear transformation of vector ff (resp. ff*) estimates the common factor f; at
a rate 1/4/ Ny (resp. 1/4/N3). The variance of the asymptotic Gaussian distribution is the upper-

left (c, ¢) block of matrix 3, (resp. ¥,2), i.e. the asymptotic variance of the estimation error u ;
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(resp. ug,) for the PC vector in group 1 (resp. group 2). The estimation error for recovering the
common factors from the group PC’s is of order 1/ V/NT, and therefore asymptotically negligible.
The estimator fjt approximates the residual of the sample projection of the group-; specific factor on
the common factor, up to a linear transformation, at rate 1/ \/ﬁ] .

Let us now derive the asymptotic distribution of the factor loadings estimators.!! Define the matri-

CcesS.
1 T T
B = i 3 B deon(Eian S5ar) @17
1 T T
Y= lim =) > B[fL S0 ] 4.18)
t=1 r=1

THEOREM 5. Under Assumptions A.1 - A.6 we have:
A\ L.
VT {(’H’) Ay — Ajl} L N (0,080 + (0 @ L)W, 0 1), (@19)

j?

VT {(ﬁ;,j)_l - )\;i] 4 N (0,007), (4.20)

for any j, i, where H. and 7:[%-, j = 1,2, are the same non-singular matrices of Theorem 4.

Proof: See Appendix A.6.

The factor loadings are estimated at rate VT. To get a feasible distributional result for the statistic
é (k°), we need consistent estimators for the unknown matrices Yoo Yy~ and Qg in Theorem 3. To
simplify the analysis, we assume at this stage that the errors ¢, ;; are uncorrelated across subpanels 7,
individuals 7 and dates ¢ (Assumption A.7). > Then, we have:

Son = p4E00 + 28, Bp(0) = 122 + 29, Qu = 2tr {S0(0)2). 4.21)

u,

In Theorem 6 below, we replace ‘ZCC, Yy~ and Xy (0) by consistent estimators, such that the estimation

error for tr(X_! Xy ) in the bias adjustment is 0,(1/v/T). Therefore, the asymptotic distribution of

"'We assume that ff is used for the estimation of the factor loadings. The distribution of the loadings estimators is
analogous when using ff * as common factor estimator.

12If the errors are weakly correlated across series and/or time, consistent estimation of X;; y and {;; requires threshold-
ing of estimated cross-sectional covariances and/or HAC-type estimators.
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the statistic is unchanged.

THEOREM 6. Let 5y = (No /NS + 55, with

A A —1 A A —1
X AA; 1 AA;
Yu; = I —ANTA. £ i=1.2 4.22
J (Nj> (Nj]]]><Nj> ) J ) 4s ( )

where f‘j = diag(¥;, © = 1,...,N;), and f\j = [A; : Aﬂ, where Aj and A;’ with j = 1,2, are the

loadings estimators defined in equations (3.3) and (3.4), and

Vigi = —Z £ty (4.23)

where €1 = Yji — /\c ! ft )\S’ S . Moreover, let .. = Z ft " be the estimator of 3. Then,

under Assumptions A.1 - A.7, and the null hypothesis Hy = H (k:c) of k¢ common factors, we have:

E(k) == NVT < tr{32 })1/2 [é(k) l{:c+%tr{ic‘;i(]}} LN (0,1). (424

Proof: See Appendix A.7.
The feasible asymptotic distribution in Theorem 6 is the basis for a one-sided test of the null hypothesis
of k¢ common factors. If é (k) < —1.64, this null hypothesis is rejected at 5% level against the

alternative hypothesis of less than £° common factors.

4.2 Main asymptotic results for the mixed frequency factor model

In this section we give the asymptotic distribution for estimators of factor values in the mixed frequency
factor model. The asymptotics is for Ny, Ny, T' — oo, such that N, < Ny, /Ny /T = o(1), N /T =

o(1). Define the matrices:

H H
Q,, = lim ZZAM 1 Cov(enli e, m=1,.., M, (4.25)

Ni=oo Nig i=1 =1

where \ ; is the i-th row of the (Ny, k¢ + k) matrix Ay = [ Apc i Ag .
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THEOREM 7. Under Assumptions A.1 - A.8 we have:

VNE(Heil, — 950 —5 N (0,[23194,,57519) | @.26)
N CHI—CN f—C1 —C\ — d
vV Nu [Hl,sgg,t - (gg,t - (QH/QC)(QC/QC) 1)9271:] — N (0 [ZA 1QA mZA 1] HH)) 4.27)

for any m, t, where H,. and 7:[175 are the same non-singular matrices of Theorem 4, g¢ =[5, ..., 5],
Ny

1
g? =g, ...,g%], Za1 = lim E A1\ and indices (CC') and (H H) denote the upper-left
’ NH—>OO NH

(K, k) block and lower-right (k. kH ) block of a matrix, respectively.

Proof: See Appendix A.8.

From Theorem 7, a linear transformation of vector gfw, resp. ggt, estimates the common factor ggvt,
resp. the residual of the sample projection of the high-frequency factor on the common factor. The
estimation rate is v/Ng. There is no asymptotic effect from the error-in-variable problem induced by
using estimated factor loadings in the cross-sectional regression when 7'/Ny = o(1). The asymptotic

distribution of the estimator g of the aggregated low-frequency factor is deduced from Theorem 4.

S Empirical application

It is worth summarizing the procedure underpinning the empirical analysis, for the benefit of the

readers who skipped the previous sections. This is done in a first subsection.

5.1 Practical implementation of the procedure

We first assume that k¢, k¥, k., the number of respectively common, high and low frequency factors
in equation (2.1), are known and all strictly larger than zero. The identification strategy presented in
Section 2 directly implies a simple estimation procedure for the factor values and the factor loadings,

which consists of the three following steps:

1. PCA performed on the HF and LF panels separately
Define the (7', Ny) matrix of temporally aggregated (in our application flow-sampled) HF ob-
servables as X = [z ... z1!), and the (T, N1 ) matrix of LF observables as X* = [z}, ... xL].
The estimated pervasive factors of the HF data, which are collected in (7, k% + k') matrix

21



hy = [ﬁ Hlyeos h ur), are obtained performing PCA on the HF data:

1 . .
<_TNH XHXH’> bt = it Vi, (5.1)

where Vj; is the diagonal matrix of the eigenvalues of (TN ) X7 X', Analogously, the
estimated pervasive factors of the LF data, which are collected in the (T, kC + k) matrix hy =
|hpa, ..., hp 7], are obtained performing PCA on the LF data:

1 R . A
(TNLXLXD>hL:meL (5.2)

where V, is the diagonal matrix of the eigenvalues of (TN, )" ' XEX1,

. Canonical correlation analysis performed on estimated principal components
Let WS be the (k¢ + kY, k“) matrix whose columns are the canonical directions for Ay, as-

sociated with the k€ largest canonical correlations between h z and h 1, for U = H, L. Then,
the estimator of the (in our application flow sampled) common factor is §tc = WUC ! fAzUJ, for
U=H,Landt =1,...,T, and the estimated loadings matrices Apc and A are obtained from
the least squares regressions of 7 and x on estimated factor g¢'. Collect the residuals of these
regressions:

cH . _H i  =2C
& = x) — Apcgy
L L A _=2C

gt = Ty — ALCgt )

in the following (7', Ny ), with U = H, L, matrices:

Y

~ A /
=U _ cU 1 cU 1 o
Z _[1.ﬂT], U=H,L.

Then the estimators of the HF-specific and LF-specific factors, collected in the (T, kY), U =
H, L, matrices:

GU = [§1U/7"'7§7q/:|,7 U:HJLJ

are obtained extracting the first k7 and k¥ PCs from the matrices:

I ~pzv)\ AU NUTU
== G = G°V U=HL
(TNU ) S T

where VSU, with U = H, L are the diagonal matrices of the associated eigenvalues. Next, the
estimated loadings matrices Az and A¢ are obtained from the least squares regression of £/ and
¢l on respectively the estimated factors g and g-.

. Reconstruction of the common and high frequency-specific factors
The estimates of the common and HF-specific factors for each HF subperiod, denoted by f}%t
and Qn}it, foranym = 1,...,M and ¢t = 1,...,T, are obtained by cross-sectional regression of
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Zm+ on the estimated loadings [A mo A 1] obtained from the second step.

Inference on the number of common, low and high-frequency specific factors proceeds as follows:

e Suppose that kx := k% + k!l and ky := k + k', i.e. the numbers of pervasive factors in panels
X and Y, are known (consistent estimators: /C; and IC) criteria of Bai and Ng(2002)).

e Let k* := min(ky, ky ), we develop a test for:
Hy: k=7 against Hy k¢ <,
for any givenr = k*, k* — 1, ..., 1.

e We use the statistic defined in equation (3.5), namely: é(r) =Yy, Pe, Where po, 0 =1,...,r, are
the r largest canonical correlations between hy; and iy, (i.e. the empirical analogs of hf, and

hi).

5.2 Data description

The data consists of a combination of IP and non-IP sectors. For industrial production we use the same
data on 117 IP sectoral indices considered by Foerster, Sarte, and Watson (2011), sampled at quarterly
frequency from 1977.Q1 to 2011.Q4.!3 These indices correspond to the finest level of disaggregation
for the sectoral components of the IP aggregate index which can be matched with the available sectors
in the Input-Output and Capital Use tables used in the structural analysis in Section 5.4. The data for
all the remaining non-IP sectors consist of the annual growth rates of real GDP for the following 42
sectors: 35 services, Construction, Farms, Forestry-Fishing and related activities, General government
(federal), Government enterprises (federal), General government (state and local) and Government
enterprises (state and local). These LF data are available from 1977 until 2011 and are published
by the Bureau of Economic Analysis (BEA).!* Moreover, as IP is a Gross Output measure, in the
structural analysis it is convenient to consider the yearly growth rates of real Gross Output (GO) for
the non-IP sectors. These data are available from 1988 until 2011 and are also published by the BEA.
Following the sectoral productivity literature, in the structural analysis we focus exclusively on the

private sectors, and therefore exclude four Government Gross Output indices, reducing the sample

13The IP data are available also at monthly frequency. Following Foerster, Sarte, and Watson (2011), we focus only on
quarterly IP data, as they share the main feature of the monthly ones, but are less noisy.

1“GDP data are available at quarterly frequency for the aggregate index, but not for sectoral ones. As in the remaining
part of the paper we study comovements among different sectors, we consider the panel of yearly GDP sectoral data.
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size to 38 non-IP sectors indices. All growth rates refer to seasonally adjusted real output indices, and
are expressed in percentage points. !

Figure 2: Growth rates of the Industrial Production and Gross Domestic Product indices
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Figure 2 displays the growth rates of the aggregate Industrial Production (dotted (blue) quarterly data)
and Gross Domestic Product (solid line (red) annual data) indices over the sample period from 1977
until 2011. The objective of this empirical application is to use our mixed frequency factor model to
capture the major sources of comovement among the sectoral constituents of these two indices, which

are the most reliable measures of US economic activity.

5.3 Factors common to all US sectors

We assume that our dataset follows the factor structure for flow sampling as in equation (2.2), with z}} ,

and xl corresponding to respectively quarterly IP and annual non-IP data. Let X = [ .. 2!,

with 2/ = anzl 2l be the (T, Ny) panel of the yearly observations of the IP indices growth

m,t°

rates (computed as the sum of the quarterly growth rates ﬂ?an,t’ m = 1, ..., 4 for year t), and let X* =

ISA detailed description of the dataset is provided in the Online Appendix OA.2.
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[z, ..., xL]" be the (T, N1) panel of the yearly growth rates of the non-IP indices. Let also Xpp =

[l a2kl i) be the (4T, Np) panel of IP indices quarterly growth rates.
We start by selecting the number of factors in each subpanel, which are of dimensions kx =
k¢ + kM and ky = k¢ + k", respectively. We use the /C,; information criteria of Bai and Ng (2002),

and report the results in Table 1. Results for other criteria are in the Online Appendix OA.4.

Table 1: Estimated number of factors

Xyr XH  XP [ XH XL

IP data: 1977.Q1-2011.Q. Non-IP data: Gross Domestic Product, 1977-2011
IC)y 1 2 1 1

IP data: 1988.Q1-2011.Q4. Non-IP data: Gross Output, 1988-2011
ICy, 1 1 2 2

The number of latent pervasive factors selected by the IC), information criteria is reported for different subpanels. Sub-
panels Xy and X ¥ correspond to IP data sampled at quarterly and yearly frequency, respectively. Panels X* and
[ XH# XTI ] correspond to non-IP data, and the stacked panels of IP and non-IP data, respectively. We use kynqz = 15 as
maximum number of factors when computing IC)s.

Table 1 corroborates the evidence in Foerster, Sarte, and Watson (2011) suggesting that there is either
one or perhaps two pervasive factors in the IP data (kx = 1 or kx = 2). Likewise, for the non-IP data,

we also find evidence in favor of either one or two pervasive factors (ky = 1 or ky = 2).

Table 2: Canonical Correlations and Tests for Common Factors

~

P1 P2 5(2) 5(1)
0.84 0.06 -3.56 -1.56
0.80 0.11 - -

Top panel: 1P data: 1977.Q1-2011.Q4, Non-IP data: GDP, 1977-2011. Lower panel: IP data: 1988.Q1-2011.Q4, Non-IP
data: Gross Output, 1988-2011. In rows 1 and 2 we report the canonical correlations of the first two PCs computed in each
subpanel of IP and non-IP data, and the values of & (), the feasible standardized value of the test statistic £ (r), for the null
hypothesis of » = 2 or r = 1 common factors, respectively.

In order to select the number of common and frequency-specific factors, we follow the procedure
detailed in Section 5.1. In Table 2 we report the estimated canonical correlations of the first two PC’s

estimated in each subpanel X " and X, which are used to compute the value of the test statistic é (r),
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for the null hypothesis of 7 = 2 or r = 1 common factors.!® We note that the first canonical correlation
is close to one for both datasets, which is consistent with the presence of one common factor in each
of the two mixed frequency datasets considered. The tests reject the null hypotheses r = 2, i.e. the
presence of two common factors, for any significance level, while we cannot reject the null of one
common factor with a 5% significance level. In light of the results in Tables 1 and 2 we select a model
with k¢ = k# = k% = 1, for both the panel where the LF data are GDP non-IP indices as well as for
the panel in which the LF data are Gross Output non-IP indices. The factors for both datasets are then
obtained using the estimation procedure of Section 5.1.

In Figure 3 we plot the estimated factors from the panels of 42 GDP sectors and 117 IP indices on
the entire sample going from 1977 to 2011. All factors are standardized to have zero mean and unit
variance, and their sign is chosen so that the majority of the associated loadings are positive. A visual
inspection of the plots in Figure 3 reveals that the common factor in Panel (a) resembles the IP index
of Figure 2, with a large decline corresponding to the Great Recession following the financial crisis
of 2007-2008 and the positive spike associated to the recent economic recovery. On the other hand,
the LF-specific factor features a less dramatic fall during the Great Recession and actually features
a positive spike in 2008, followed by large negative values in the following years. This constitutes
preliminary evidence suggesting that some non-IP sectors could feature different responses to the
financial crisis of 2007-2008.

The interpretation of factors is easier when they are used as explanatory variables in standard
regression analysis. We start with a disaggregated analysis, and look at the relative importance of the
common and frequency specific factors in explaining the variability across all sectoral growth rates.
For each sector in the panel, we regress the index growth rates on (i) the common factor only, (ii) on the
specific factor only, and (ii1) on both common and specific factors. In Table 3 we report the quantiles of
the empirical distribution of the adjusted R? (denoted R?) of these regressions. In the first and fourth
rows of Panels A and B we report the quantiles of R? of the regressions involving as explanatory
variable the common factor only, in the second and fifth rows we report the quantiles of R? when the
explanatory variables are the common and frequency-specific factors. Finally, the quantiles of R? in

the third and sixth rows refer to regressions where the explanatory variable is the frequency-specific

16We extract the first two PC’s in each subgroup, compute the matrix R as defined in equation 3.2 and compute the
canonical correlations as the square root of its two largest eigenvalues.
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Figure 3: Sample paths of the estimated common and specific factors
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Panel (a) displays the time series plot of the estimated common factor. Panel (b) displays that of the HF-specific factor and
finally Panel (c) that of the LF-specific factor. The factors are estimated from the panels of 42 non-IP GDP sectors and 117
IP indices using a mixed frequency factor model with k¢ = k¥ = k¥ = 1. The sample period is 1977.Q1-2011.Q4.

factor only.!”

From the first three lines of Panel A we observe that adding the LF specific factor to the common
factor regressions for the non-IP indices yields an increment of the median R? around 14%, going from
11.5% to 25.4%, and for more than 10% of the sectors the R? increases at least by 17%. On the other

hand, the HF-specific factor, when added to the common factor, contributes less to the increments in

"The regressions in the second and third rows are restricted MIDAS regressions. The regressions in fourth, fifth and
sixth rows impose the estimated coefficients of the common and HF-specific factors to be the same for each quarter, as they
are estimated as HF regressions.
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Table 3: Adjusted R? of regressions on common factors from indices growth rates

Panel A Panel B
R?: Quantile R2: Quantile

Factors 10% 25% 50% 75% 90% Factors 10% 25% 50% 75% 90%
Observables: Gross Domestic Product, 1977-2011 Observables: Gross Output, 1988-2011

common 2.2 -0.5 11.5 289 429 common -2.0 6.6 282 456 645
common, LF-spec. 0.1 9.2 254 34.5 60.3 common, LF-spec. 2.8 152 450 63.7 70.8
LF-spec. 2.8 -2.3 5.7 157 224 LF-spec. -4.5 -3.8 3.2 13.4  40.7
Observables: IP, 1977.Q1-2011.04 Observables: IP, 1988.Q01-2011.04

common 0.3 4.8 203  36.0 60.0 common 0.1 3.5 105 29.8 482
common, HF-spec. 1.1 6.8 287 453 634 common, HF-spec. 0.8 79 282 432 654
HF-spec. -0.7 -0.1 3.0 112 235 HF-spec. -0.8 2.0 10.0 219 339

Panel A. The regressions in the first three lines involve the growth rates of the 42 non-IP sectors as dependent variables,
while those in the last tree lines involve the growth rates of the 117 IP indices as dependent variables. The explanatory
variables are factors estimated from the same indices using a mixed frequency factor model with k¢ = kf = kL = 1.
The sample period for the estimation of both the factor model and the regressions is 1977-2011. Panel B. The regressions
in the first three lines involve the Gross Output growth rates growth of the 38 non-IP as dependent variables, while those
in the last tree lines involve the growth of the 117 IP indices as dependent variables. The explanatory variables are factors
estimated from the same indices using a mixed frequency factor model with k¢ = k¥ = kL = 1. The sample period for
the estimation of both the factor model and the regressions is 1988-2011.

R? for the IP sectors. In Panel B we note that for at least 50% of both the IP and non-IP Gross Output
sectoral indices, the frequency-specific factors contribute to an increase in R? of at least 15% when
added to the common factor. Overall, Table 3 confirms that the common and frequency-specific factors
explain a significant part of the variability of output growth for the majority of the sectors of the US
economy. Moreover, the common factor is pervasive for most of the IP and non-IP sectors alike.

In order to give economic interpretation to the estimated factors, we list in Table 4 the top and
bottom ten GDP non-IP sectors in terms of ? when regressed on the common factor only, and both
the common and LF-specific factors. We also report the top and bottom ten GDP non-IP sectors with
the highest and lowest absolute increments in 22 when the LF-specific factor is added to the common
one.'® From Panel A we first note that the common factor explains most of the variability of service
sectors with direct economic links to industrial production sectors like Transportation and Warehous-
ing: for instance, Truck Transportation, Other Transportation & Support Activities, and Warehousing
& Storage have an R? of 63%, 43% and 41%, respectively, when regressed on the common factor only.

This is a clear indication that the common factor could be interpreted as IP factor.

8The entire lists of ordered non-IP sectors for the three panels in Table 4 is available in Tables OA.7-OA.9 in the Online
Appendix.
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On the other hand, the common factor is completely unrelated to Agriculture, forestry, fishing &
hunting, most of the Financial and Information services sectors.

Turning to Panel C, we note that the LF-specific factor explains more than 20% of the variability of
output for very heterogeneous services sectors like Miscellaneous professional, scientific, & technical
services, Administrative & support services, Legal services, Real Estate, some important financial ser-
vices like Credit intermediation, & Related activities, Rental & Leasing Services but also Government
(state & local). Interpreting these results, we can conclude that the LF-specific factor is completely
unrelated to service sectors which depend almost exclusively on IP output, and is a common factor
driving the comovement of non-IP sectors such as some Services, Construction and Government.

In Table 4 we highlight further differences in the dynamics of output growth between the two sub-
sectors of the financial services industry which are particularly revealing: “Securities” and “Credit
intermediation”, extensively studied by Greenwood and Scharfstein (2013). We find that the subsec-
tors “Funds, trusts, & other financial vehicles” and “Securities, commodity contracts, & investments”
are unrelated to both the common and LF-specific factors, indicating that their output growth is uncor-
related with the common component of real output growth across the other sectors of the US economy.
In contrast, the “credit intermediation” industry comoves with the other IP and non-IP sectors.!?

Up to this point, we looked at the explanatory power of the factors for sectoral output indices. For
both the non-IP GDP and Gross Output, these indices correspond to the finest level of disaggregation of
output growth by sector. In Table 5 we report the results of regressions with aggregated indices instead.
In particular, we regress the output of each aggregate index either on the estimated common factor or
the common and frequency specific factors, and focus on the adjusted R?s of these regressions. It is
also important to note that we also include the GDP Manufacturing aggregate index which is not used
in the estimation of the factors. This will help us with the interpretation of the factors - common and

frequency-specific - which we obtained.

19See also Tables OA.7 and OA.8 in the Online Appendix.
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Table 5: Adj. R? of aggregate IP and selected GDP indices growth rates on estimated factors

Panel A Quarterly observations, 1977.Q1-2011.04

e B ®-0
Sector R*(C) R%*(H) R?(C+H)
Industrial Production 89.06 5.02 90.26 1.20
Panel B Yearly observations, 1977-2011

e B B0
Sector R*(C) R%*(L) R*C+L)
GDP 60.54 8.59 74.21 13.67
GDP - Manufacturing 81.88 -3.03 81.53 -0.35
GDP - Agriculture, forestry, fishing, and hunting 1.43 -2.52 -1.26 -2.69
GDP - Construction 44.05 11.22 59.75 15.70
GDP - Wholesale trade 20.35 7.90 30.83 10.48
GDP - Retail trade 30.70 -2.86 28.56 -2.15
GDP - Transportation and warehousing 62.14 -2.95 60.97 -1.17
GDP - Information 12.14 22.28 37.57 2543
GDP - Finance, insurance, real estate, rental, and leasing  -1.42 21.22 21.11 22.53
GDP - Professional and business serv. 30.02 30.21 65.61 35.59
GDP - Educational serv., health care, and social assist. -1.38 18.38 18.18 19.56
GDP - Arts, entert., recreat., accomm., and food serv. 53.51 -2.23 53.70 0.18
GDP - Government -2.12 22.37 20.47 22.59

In the table we report the adjusted R?, denoted R?, of the regression of growth rates of the aggregate IP index and selected
aggregated sectoral GDP non-IP output indices on the common factor (column R?(C)), the specific HF and LF factors
(columns R? (H) and R? (L)) only, and the common and frequency-specific factors together (column (3)). The last column
displays the difference between the values in the third and first columns. The factors are estimated from the panel of 42
GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with k¢ = kH = k% = 1. The sample
period for the estimation of both factor model and regressions is 1977-2011.

Panel A of Table 5 shows that the common factor explains around 90% of the variability in the
aggregate IP index. This implies that the common factor can be interpreted as an Industrial Production
factor. This is further corroborated in Panel B where we find an R? around 82% for the regression
of the GDP Manufacturing Index on the common factor only. As most of the sectors included in the
Industrial Production index are Manufacturing sectors, this result is not surprising, but is still worth
noting because, as noted earlier, the GDP data on Manufacturing have not been used in the factor
estimation, in order not to double-count these sectors in our mixed frequency sectoral panel.?’ As

expected from the results in Table 4, more than 60% of the variability of GDP of Transportation and

20A detailed discussion of the difference in the sectoral components of the IP index and the GDP Manufacturing index
is provided in Appendix OA.2.
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Warehousing services index is explained by the common factor only, and the LF-specific factor has no
explanatory power. On the other hand, the HF-specific factor seems not to be important in explaining
the aggregate IP index, as the R? increases only by 1% when it is added as a regressor to the common
factor.?! This suggests that the HF-specific factor is pervasive only for a subgroup of IP sectors which
have relatively low weights in the index, meaning that their aggregate output is a negligible part of the
output of the entire IP sector and, consequently, also the entire US economy.?

Looking at the aggregate GDP index, we first note that even if the weight of Industrial Production
sectors in the aggregate nominal GDP index has always been below 30%, as evident from Figure 1,
still 60% of its total variability can be explained exclusively by the common factor which - as shown
in Panel A - is primarily an IP factor. This implies that there must be substantial comovement between
IP and some important service sectors. Moreover, it appears from the first entry in Panel B that a
relevant part of the variability of the aggregate GDP index not due to the common factor is explained
by the LF-specific factor (the R? increases by about 14% to 74%).%* This indicates that significant
comovements are present among the most important sectors of the US economy which are not related
to manufacturing. Indeed, Panel B in Table 5 indicates that some services sectors such as Professional
& Business Services and Information and Construction load significantly both on the common and
the LF-specific factor, while some other sectors like Finance and Government load exclusively on the

LF-specific factor.?*

5.4 Structural model and productivity shocks

The macroeconomics literature, with the works of Long and Plosser (1983), Horvath (1998) and Car-
valho (2007), among many others, has recognized that input-output linkages in both intermediate
materials and capital goods lead to propagation of sector-specific shocks in a way that generates co-
movements across sectors. An important contribution of the work of Foerster, Sarte, and Watson

(2011) was to describe the conditions under which an approximate linear factor structure for sectoral

21See also Table OA.10 in Appendix OA.4 for the R? of the regression of all GDP indices on the HF factor only, and all
the 3 factors together.

22These results corroborate the findings of Foerster, Sarte, and Watson (2011), who claim that the main results of their
paper are qualitatively the same when considering either one or two common factors extracted from the same 117 IP indices
of our study.

23See the results in Table OA.10 in the Online Appendix.

24The results change when we look at Finance sector disaggregated in Credit Intermediation, “Securities”, Insurance
and Real estate, as evident in Table 4.
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output growth arises from standard neoclassical multisector models including those linkages. In par-
ticular, they develop a generalized version of the multisector growth model of Horvath (1998), which
allows them to filter out the effects of these linkages and reconstruct the time series of productivity
shocks of each of the sectors for which data on output growth and input-output tables for intermediate
materials and capital goods are available. We can characterize this as statistical versus structural factor
analysis.

The main objective of this section is to verify the presence of a common factor in the innovations
of productivity for all the sectors (not just IP) of the US economy by means of our mixed frequency
factor model. If a common factor is present also in the productivity shocks, then the factor structure
uncovered by the reduced form analysis of output growth in Section 5.3 is not only due to interlinkages
in materials and capital use among different sectors.

We rely on the same multi-industry real business cycle model described in Section IV of Foerster,
Sarte, and Watson (2011) to extract productivity shocks from the time series of the growth rates of
the same 117 IP indices considered in the previous section, and the growth rates of 38 non-IP Gross
Output of private sectors, therefore excluding the 4 Government indices considered previously.”® One
challenge due to the mixed frequency nature of our output growth dataset consists in the extraction
of mixed frequency technological shocks. In the Online Appendix OA.3 we explain how to adapt
the algorithms proposed by Foerster, Sarte, and Watson (2011), and based on the work of King and
Watson (2002), to estimate technological shocks for our mixed frequency output series. Specifically,
the multi-sector business cycle model that we use to filter out the technological shocks correspond to
the “Benchmark™ model considered by Foerster, Sarte, and Watson (2011) in their Section IV, while the
data on input-output and capital use matrices necessary to estimate the model are built from the BEA’s
1997 “use table” and “capital flow table”, respectively.?® Using the extracted productivity shocks for
the IP and non-IP sectors, denoted éfgi and £, respectively, we estimate our mixed frequency factor
model with these productivity shock series. The sample period for the estimation of both the factor
model and the regressions is 1989-2011, because the productivity shocks can not be computed for the
first year of the sample (see Foerster, Sarte, and Watson (2011), especially their equation (B38) on

page 10 of their Appendix B). For a direct comparison between the statistical factor model covered

23The exclusion of the public sector from the analysis is a standard choice in the sectoral productivity literature.
26The last year for which sectoral capital use tables have been constructed by the BEA is 1997.
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in the previous subsection and the structural factor analysis, we need to first re-estimate our model
with one common, one HF-specific and one LF-specific factors on the panels of growth rates of annual
Gross Output non-IP indices (as opposed to the GDP growth indices in Table 5) and the same 117
quarterly sectoral IP indices. The results are reported in Table 6. We expect some difference with the
previous results for at least two reasons. First, the dataset in which the non-IP data are Gross Output
indices, refers to shorter time period going from 1988, instead of 1977, to the end of 2011, as Gross
Output indices are not available before 1988. Second, as the panel in Table 6 does not include the four
governmental sectors, we expect that the common and frequency-specific factors may have different

dynamics when compared to those extracted from the panel with GDP non-IP sectors.

Table 6: Adj. R? of aggregate IP and selected Gross Output indices growth rates on estimated factors

Panel A Quarterly observations, 1988.Q1-2011.04

FOE O IO RO B¢
Sector R*(C) R?*(H) R?*(C+H)
Industrial Production 63.71 38.32 89.48 25.78
Panel B Yearly observations, 1988-2011

FO e O RO RO
Sector R*C) R*(L) R*(C+L)
GO (all sectors) 68.54 12.20 89.66 21.12
GO - Manufacturing 86.08 -3.05 88.94 2.86
GO - Agriculture, forestry, fishing, and hunting -3.21 3.35 -0.25 2.96
GO - Construction 25.30 34.16 67.15 41.84
GO - Wholesale trade 80.82 -3.85 79.97 -0.85
GO - Retail trade 64.72 -4.50 63.15 -1.57
GO - Transportation and warehousing 83.82 -4.51 83.22 -0.60
GO - Information 33.70 38.59 81.54 47.84
GO - Finance, insurance, real estate, rental, and leasing 3.37 50.30 59.29 55.92
GO - Professional and business services 45.13 21.97 75.48 30.36
GO - Educational serv., health care, and social assist. -4.19 -1.58 -6.17 -1.98
GO - Arts, entert., recreat., accomm., and food serv. 71.06 -3.74 71.90 0.84

In the table we display the adjusted B2, denoted R?, of the regressions of growth rates of the aggregate IP index and selected
aggregated sectoral Gross Output non-IP output indices on the common factor (column R?(C)), the specific HF and LF
factors (columns R2(H) and R?(L))only, and the common and frequency-specific factor together (column (3)). The last
column displays the difference between the values in the third and first columns. The factors are estimated from the panel
of 38 Gross Output non-IP sectors and 117 IP indices using a mixed frequency factor model with k¢ = kf = kL = 1.
The sample period for the estimation of both factor model and regressions is 1988-2011.
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We obtain qualitatively similar results, as shown in Table 6. There appear to be only two notable
differences with the results reported in Table 5. We see an increased importance of the HF-specific
factor in explaining the variability of the IP aggregate index (see Panel A in Table 6), at the expense
of a lower explanatory power for the common factor. Moreover, there is also an increased importance
of both the common and LF-specific factors in explaining the total variability of total aggregate output
(measured as total Gross Output, in the first line of Panel B in Table 6). Still the common factor
explains roughly 65 % of the variation in the panel of IP data.

What do we learn from the structural analysis with common and frequency-specific factors of pro-
ductivity shocks? First, it is remarkable to find that again there is one common factor in productivity
shocks. Indeed, the selection of the number of common factors is performed as in the previous section,
and our testing methodology suggests the presence of one common factor. Therefore we estimate a
model for the productivity innovations with k¢ = k¥ = k™ = 1.%7 As in the previous section, we start
with a disaggregated analysis and look at the relative importance of the new common and frequency
specific factors in explaining the variability of the constituents of the panel of productivity innova-
tions, and the panels of all output growth rates used for the extraction of the productivity innovation
themselves. For each sector, we regress both the productivity innovations and the index growth rates
on the common factor only, on the specific factor only, and on both common and specific factors. In
Table 7 we report the quantiles of the empirical distribution of the adjusted R? (denoted R?) of these
regressions.?® Panel A of Table 7 confirms that both the common and the frequency-specific factors are
pervasive for the panels of productivity innovations. From the first two rows we note that the common
factor alone explains at least 11% of the variability of half of the non-IP series considered, and this
fraction increases to more than 26 % when the LF-specific factor is added as regressor to the common
one. On the other hand, from the last three rows of we note that for the panels of IP the high frequency
specific factor seems to explain the majority of the variability of the productivity indices, while the
explanatory power of the common factor only seem to be significant only for 50% of the IP sectors.
Panel B reports the R? of the regressions of the GO indices growth rates on the factors estimated on

the panels of productivity shocks themselves. Therefore, they give an indication of the fraction of

2'The values of the penalized selection criteria of Bai and Ng (2002) performed on different subpanels and the test for
the number of common factors are available in Tables OA.12 and OA.13 in the Online Appendix OA.4.

28The regressions in the second and third rows are restricted MIDAS regressions. The regressions in fourth, fifth and
sixth rows impose the estimated coefficients of the common and HF-specific factors to be the same at each quarter, as they
are estimated as HF regressions.
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Table 7: Adjusted R? of regressions on common factors from productivity innovations

Panel A Panel B
Adjusted R?: Quantile Adjusted R?: Quantile

Factors 10% 25% 50% 75% 90% Factors 10% 25% S50% 75%  90%
Observables: Gross Output productivity innovations, 1989-2011 Observables: Gross Output, 1988-2011

common -33 -0.3 11.0 33.6 46.1 common 2.4 3.7 212 315 558
common, LF-spec. -2.6 4.8 26.3 45.0 60.7 common, LF-spec. -0.9 7.8 28.2 56.9 68.0
LF-spec. -4.2 3.6 -0.1 17.7 33.1 LF-spec. -4.6 -3.3 1.3 20.6 438
Observables: IP productivity innovations, 1989.01-2011.04 Observables: IP,1988.Q1-2011.04

common -1.0 -0.4 1.5 12.1 224 common -0.8 0.2 4.5 17.7 347
common, HF-spec.  -0.6 3.1 13.1 284 40.1 common, HF-spec. 1.2 59 25.7 408 638
HF-spec. -0.7 0.6 6.2 18.7 28.2 HF-spec. -0.3 22 147 292 378

Panel A: The regressions in the first three lines involve the productivity innovations of the 38 non-IP sectors as dependent
variables, while the regressions in the last tree lines involve the productivity innovations of the 117 IP indices as dependent
variables. Productivity innovations are computed using the panel of Gross Output growth rates for the LF observables.
The explanatory variables are factors estimated from a mixed frequency factor model with k¢ = k¥ = kI = 1, on the
panels of productivity innovations filtered adapting the procedure of Foerster, Sarte, and Watson (2011). The sample period
for the estimation of both the factor model and the regressions is 1989.Q1-2011.Q4. Panel B: The regressions in the first
three lines involve the Gross Output growth rates of the 38 non-IP sectors as dependent variables, while the regressions
in the last tree lines involve the growth of the 117 IP indices as dependent variables. The explanatory variables are the
same factors used in the regressions of Panel A. The sample period for the estimation of both the factor model and the
regressions is 1989.Q1-2011.Q4. Productivity innovations are computed using the panel of Gross Output growth rates for
the LF observables.

variability of the indices explained by the common components of the output growth which is not due
to input-output linkages between sectors, as captured by the structural “Benchmark” of Foerster, Sarte,
and Watson (2011). Panel B of Table 7 can be compared with Panel B of Table 3. As expected, as part
of the comovement among different sectors is due to input-output and capital use linkages, all the 22
in Panel B of Table 7 are strictly lower than those in Table 3, if we exclude the negative ones and those
very close to zero. For instance the median R? of regressions including the common only factor for the
non-IP sectors decrease from 28% to 21%, and median R? of regressions including the common and
LF-specific factors decreases from 45% to 28%. A similar pattern is observed for the higher quantiles,
and for the IP indices. Overall, Panel B gives a first indication of the presence of commonality in the
comovement on the majority of the sectors of the US economy even when the output growth rates are
purged of the input-output linkages in both intermediate materials and capital goods.

We conclude the analysis repeating the same exercise of Table 6, and regress the Industrial Pro-
duction and aggregate (mostly non-IP) Gross Output indices growth on the factors extracted from

productivity innovations and look at the adjusted R?s in Table 8.
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Table 8: Adj. R* aggregate IP and selected Gross Output indices on the estimated factors from pro-
ductivity innovations

Panel A Quarterly observations, 1988.Q1-2011.04

m e B ®-
Sector R?(C) R?*(H) R:C+H)
Industrial Production (Q) 31.21 50.15 77.25 46.05
Panel B Yearly observations, 1989-2011

m e 3 B
Sector R*C) R*L) R!C+L)
GO (all sectors) 42.17 13.97 57.60 15.43
GO - Manufacturing 62.29 -0.20 64.42 2.13
GO - Agriculture, forestry, fishing, and hunting 0.96 -4.23 -3.35 -4.31
GO - Construction 6.64 20.55 27.78 21.14
GO - Wholesale trade 74.73 -3.08 74.74 0.01
GO - Retail trade 47.02 -4.35 45.04 -1.98
GO - Transportation and warehousing 70.42 -2.69 70.58 0.15
GO - Information 17.78 42.45 61.76 43.98
GO - Finance, insurance, real estate, rental, and leasing -4.09 17.55 13.96 18.05
GO - Professional and business services 25.17 44.89 71.81 46.64
GO - Educational services, health care, and social assistance  -4.73 -4.48 -9.66 -4.93
GO - Arts, entert., recreat., accommodation, and food serv. 55.64 -2.29 55.49 -0.16

In the table we report the adjusted R2, denoted RR?, of the regressions of growth rates of the aggregate IP index and selected
aggregated sectoral Gross Output non-IP output indices on the common factor (column R?(C)), the specific HF and LF
factors (columns R2(H) and R?(L))only, and the common and frequency-specific factor together (column (3)). The last
column displays the difference between the values in the third and first columns. The factors are estimated from the panels
of productivity innovations filtered adapting the procedure of Foerster, Sarte, and Watson (2011), using a mixed frequency
factor model with k¢ = &k = k¥ = 1. The sample period for the estimation of both the factor model and the regressions
is 1989.Q1-2011.Q4.

From Panel A we observe that the common extracted from productivity innovations explains around
31% of the variability of the aggregate IP index, i.e. around half of the variability explained by the
common factor extracted directly from the output series. Moreover, when the high frequency-specific
productivity factor is added as explanatory variable, the 2 increases to 77% which is also significantly
smaller than the 89% R? obtained using as regressors the factors extracted from the output series.”
Hence, the case of a common pervasive factor in innovation shocks across the entire economy mainly

related to IP sector technology shocks is less compelling. From Panel B we observe that 42% of the

2See in particular Panel A of Table 6. This result is in line with the findings of Foerster, Sarte, and Watson (2011) in
their Section IV C.
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variability of the aggregate Gross Output of the US economy can be explained by the common factor
of productivity shocks, and when the factor specific to non-IP sector is added, the R? grows to 57%.
From this analysis we learn something interesting which Foerster, Sarte, and Watson (2011) were
not able to address since they exclusively examined IP sectors. Overall there is a difference in the
explanatory power of factors in structural versus non-structural factor models - as they found. How-
ever, it seems that looking at technology shocks instead of output, it does not appear that a common
factor explaining IP fluctuations is a dominant factor for the entire economy. A factor specific to tech-
nological innovations in IP sectors is more important for the IP sector shocks and a low frequency
factor which appears to explain variation in information industry as well as professional and business

services innovations plays, relatively speaking, a more important role.

5.5 Subsample analysis

Our sample covers what is known as the Great Moderation, which refers to a reduction in the volatility
of business cycle fluctuations starting in the mid-1980s. We turn therefore to analyzing subsamples.
We start by selecting the number of pervasive factors in each subpanel, using the /C),; information cri-
teria, and report the results in Table 9. We consider two subsample configurations: 1984.Q1-2007.Q4
and 1984.Q1-2011.Q4. The former is the Great Moderation sample considered by Foerster, Sarte, and
Watson (2011) whereas the second is an augmented subsample including the Great Depression. In
light of the results in Tables 9 and 10 we select a model with k¢ = k* = k¥ = 1, for both subsamples.
The factors for both datasets are obtained using the estimation procedure described in Section 5.1. 3
In Table 11 we report the results of regressions of aggregated version of the indices used for the
estimation on the same factors considered in the full samples. This allows us to understand if, and
to what extent, the most important sectors of the US economy comoved over the different subsam-
ples. Again, we regress the output of each aggregate index on the estimated common factor only, the

common and frequency specific factors, and concentrate our attention on the adjusted R?s of these

regressions.

39For the shorter sample 1984.Q1-2007.Q4, selecting a model with k; = ky = 3 pervasive factors in each subpanel, we
reject the null hypotheses of 3 and 2 common factor, while we cannot reject the null of 1 common factor. Regression results
for k¢ = 1 and k¥ = k¥ = 2 are very similar than those presented in Table 11, i.e. for a model with k¢ = k7 = kL =1
factors, and therefore are omitted.
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Table 9: Estimated number of factors for different subsamples

Xyr XH  XE [ XH XL

IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007

1Cy 1 2 1 1

IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011

IC,s 1 2 1 1

The number of latent pervasive factors selected by the IC),2 information criteria is reported for different subpanels and
different sample periods. Subpanels Xz and X ¥ correspond to IP data sampled at quarterly and yearly frequency,
respectively. Panels X% and [ X X' ] correspond to non-IP data, and the stacked panels of IP and non-IP data,
respectively. We use K4, = 15 as maximum number of factors when computing 1C)po.

Table 10: Canonical Correlations and Tests for Common Factors

oo Py EB) &) £(1)
IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007
0.81 0.13 - - -6.61 -2.98
0.87 0.57 045 -3.15 -2.74 -1.03

IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011

0.70 033 - - -1.67 -1.28

We report the canonical correlations of the first two PCs computed in each subpanel of IP and non-IP data, and the values
of £(r), the estimated value of the test statistic £(), for the null hypothesis of » = 3,2, 1 common factors, respectively.

The results in Table 11 indicate that in general there is a deterioration of the overall fit of approximate
factor models during the Great Moderation, i.e. during the sample starting in 1984 and ending 2007
— a finding also reported by Foerster, Sarte, and Watson (2011) — and that the common factor plays
a lesser role during the Great Moderation. According to the results in Panel A, the common factor
only explains roughly 72 % of the variation across IP sectors, but interestingly when the financial
crisis is added to the Great Moderation subsample, we see again a pattern closer to the full sample
results reported in the previous subsection. This also transpires from Panels B and C, when examining
the total GDP variations projected on the common factor. During the Great Moderation the common
factor only explained around 30 %, which goes to 56 % when we add the Great Depression. The other

patterns, i.e. the exposure of the various subindices, appear to be similar to those in the full sample.

39



Table 11: Adj. R? of aggregate IP and selected GDP indices growth rates on estimated factors

m 3 3
Sector R*(C) R?(H) R*C+H)
Panel A Quarterly observations IP
IP 1984.Q1-2007.Q4 72.48 10.58 80.02 7.54
IP 1984.Q1-2011.Q4 80.11 16.83 88.87 8.76

e B B

Sector R*C) R*L) R!C+L)
Panel B Yearly observations, 1984-2007
GDP 29.22 39.24 76.71 47.49
GDP - Manufacturing 70.69 -3.85 71.18 0.50
GDP - Agriculture, forestry, fishing, and hunting 0.81 -0.87 0.51 -0.30
GDP - Construction 13.02 50.30 70.39 57.37
GDP - Wholesale trade -4.40 21.36 18.09 22.49
GDP - Retail trade -0.44 58.14 62.65 63.09
GDP - Transportation and warehousing 41.43 11.16 52.02 10.59
GDP - Information -4.37 -4.10 -8.83 -4.46
GDP - Finance, insurance, real estate, rental, and leasing  -3.78 -0.60 -4.78 -1.00
GDP - Professional and business services 4.89 56.09 67.06 62.18
GDP - Educational serv., health care, and social assist. -3.81 3.31 -0.20 3.61
GDP - Arts, entert., recreat., accomm., and food serv. 13.66 37.32 57.01 43.35
GDP - Government 0.74 14.51 14.83 14.09
Panel C Yearly observations, 1984-2011
GDP 56.33 14.88 77.87 21.55
GDP - Manufacturing 83.78 -3.85 83.37 -0.41
GDP - Agriculture, forestry, fishing, and hunting -3.64 -2.65 -6.59 -2.95
GDP - Construction 40.54 21.76 68.61 28.07
GDP - Wholesale trade 23.62 10.48 37.71 14.09
GDP - Retail trade 20.70 6.76 30.39 9.69
GDP - Transportation and warehousing 65.17 1.10 67.14 1.97
GDP - Information 6.20 9.23 17.35 11.14
GDP - Finance, insurance, real estate, rental, and leasing  -1.95 5.04 3.68 5.64
GDP - Professional and business services 27.59 30.75 64.39 36.80
GDP - Educational serv., health care, and social assist. -0.73 -0.90 -2.00 -1.27
GDP - Arts, entert., recreat., accomm., and food serv. 56.94 1.56 62.97 6.03
GDP - Government 0.50 18.75 19.03 18.53

In the table we report the adjusted R?, denoted R?, of the regression of growth rates of the aggregate IP index and selected
aggregated sectoral GDP non-IP output indices on the common factor (column R?(C)), the specific HF and LF factors
(columns R?(H) and R?(L)) only, and the common and frequency-specific factor together(column (3)). The last column
displays the difference between the values in the third and first columns. The factors are estimated from the panel of 42
GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with k¢ = k¥ = kL = 1. The sample
periods for the estimation of both factor model and regressions are 1984-2007 (Great Moderation), and 1984-2011.
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6 Conclusions

Panels with data sampled at different frequencies are the rule rather than the exception in economic
applications. We develop a novel approximate factor modeling approach which allows us to estimate
factors which are common across all data regardless of their sample frequency, versus factors which are
specific to subpanels stratified by sampling frequency. To develop the generic theoretical framework,
we cast our analysis into a group factor structure and develop a unified asymptotic theory for the
identification of common and group- or frequency-specific factors, for the determination of the number
of common and specific factors, for the estimation of loadings and the factors via principal component
analysis in a setting with large dimensional data sets, using asymptotic expansions both in the cross-
sections and the time series.

There are a plethora of applications to which our theoretical analysis applies. We selected a spe-
cific example based on the work of Foerster, Sarte, and Watson (2011) who analyzed the dynamics
of comovements across 117 industrial production sectors using both statistical and structural factor
models. We revisit their analysis and incorporate the rest, and most dominant part of the US economy,
namely the non-IP sectors which we only observe annually.

Despite the generality of our analysis, we can think of many possible extensions, such as models
with loadings which change across subperiods (i.e. periodic loadings) or loading which vary stochas-

tically or feature structural breaks. All these extensions are left for future research.
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Technical Appendices

A.1 Identification: stock sampling

In the case of stock sampling, the low frequency observations of m,";L*t in the factor model (2.1) are the values of xﬁ/}“ 4 1.€e.
xl = yL7,. Then, the model for the observable variables becomes:

H c H H
‘/E’rn,t = AHcgm}t—"_AHgm,t—i_em,t’ m = 17...7]\47
L _ c L L
ry = Apcgns + ALgnre + ey

We stack the observations z,, ; and y; of the last high frequency subperiod and write:

I}
H It H
Ty Agc Am O H’ Mt
— 4 Lo, A.l
[ xt } [ Are 0 Ag } e ek, A
M.t

This equation corresponds to a group factor model, with common factor g%t and “group-specific” factors gﬁ’t, gﬁu.
Therefore, the factor values ng, f Zl\f[’t, f }\L“, and the factor loadings Agc, Arc, Ag, Ar, are identifiable up to a sign as
proved in Section 2.1 (see also results in e.g. Schott (1999), Wang (2012), Chen (2010, 2012)).

Once the factor loadings are identified from (A.1), the values of the common and high frequency factors for subperiods
m = 1,...,M — 1 are identifiable by cross-sectional regression of the high frequency data on loadings Ag¢ and Ay in
(2.1). More precisely, g,(;;’t and gfht are identified by regressing azglt on Agc,; and Ag; across ¢ = 1,2, ..., Ny, for any
m = 1,..., M — 1 and any t. To summarize, with stock sampling, we can identify the common factor g,(;;yt and the high
frequency factor g,’,{’t at all high frequency subperiods. We cannot estimate gﬁb’t, form < M, as only gfu is identified by
the last paired panel data set consisting of 15“ combined with z. This is not surprising, since we have no HF observation
available for the LF process.

A.2 Assumptions: group factor model

Let ||A| = /tr(A’A) denote the Frobenius norm of matrix A. Let k¥ = k¢ + k§ + k3, and define the kp-dimensional
vector of factors: Fy = [ ff', fi{, f5/], and the (T,kp) matrix F' = [ F{, ..., F;. ]'. We make the following
assumptions:

Assumption A.1. The unobservable factor process is such that F'F|/T = Y + O,(1/V/T) as T — oo, where S is a
positive definite (k' x kI") matrix defined as:

Iie 0 0
Sp=| 0 Ly @ |. (A.2)
0 @ Iy

Assumption A.2. The loadings matrices A1 = [Af D A3 } and Ny = [Ag A3 } are full column-rank, for N1, Ny

large enough. The loadings \; ; are such that:

Y I R (A3)
. AAGN . ,
where ¥y ; = valinoo ) ap.d. (kj, k;) matrix, for j =1, 2.
i J
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Assumption A.3. The error terms (1,;; €24)" are weakly dependent across i and t, and such that Ele; ;1] = 0.
Assumption A.4. There exists a constant C such that E[¢* €5it) < Cc forall j, iandt.

Assumption A.5. a) The variables F; and ¢ ; ;5 are independent, for all i, j,t and s.
b) The processes {¢; ;1 } are stationary, for all j, 1.

¢) The process { F;} is stationary and weakly dependent over time.

d) For each j and t, as Nj — oo, it holds:

N;
ZAJ it 2 N(0,9,), (A4)
\% J i=1
L NN
where Q; = lim —ZZA“)\ME[,EJ €50t
J—>OO
=1 4=1

Assumption A.6. The asymptotic analysis is for N1, No, T — 00 such that No < N1, T/No = o(1), /N1 /T = o(1).

The following Assumption A.7 simplifies the derivation of the feasible asymptotic distribution of the statistic used to test
the dimension of the common factor space k°.

Assumption A.7. The error terms € ;; are uncorrelated across j, i and t, and € ~ (0, ;).
Assumption A.7 is a stronger condition than Assumptions A.3 and A.5 b). Moreover, under Assumption A.7, the matrix

N;
1
2; in Assumption A.5 d) simplifies to ; = N?gloo— Z Aji J iViii -

A.3 Assumptions: mixed frequency factor model

Let A} ; be the i-th row of the (N, k¢ + k) matrix Ay = [ Apc : : Ay |. We make the following assumption:

Assumption A.8. The variables \, ; and e t are such that:

L e
—— Y e S N(©0.Q3 ), (A.5)
H =
where
Ny Ny
. B : 0,H _
U = NBQOON—H;;AMAMCOU( el en, m=1,.. M. (A.6)

A.4 Proofs of Theorems and Lemmas

A.4.1 Proof of Proposition 1
By replacing equation (2.7) into model (2.4), we get

{ Y1t ] _ { AfAL +ATAs AfA1s +ATAx AfA13 + AfAgs } 2 n { €1t ]
Yot ASA1L + ASA31 ASA19+ ASA3y ASA13+ ASA3s €ap |

(A7)
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This factor model satisfies the restrictions in the loading matrix appearing in equation (2.4) if, and only if,

ASAs + ASAys = 0, (A.8)
ASApy + ASAs = 0. (A.9)

Equations (A.8) and (A.9) can be written as linear homogeneous systems of equations for the elements of matrices
[Al3 Ajs]" and [Af, Aj]":
AiAs| | A3 20, ana Ayl | A2 | 2o
1 1 A23 ’ ! 2 A32
Since {A‘{ Ai} and [Ag A;] are full column rank, it follows that

A3 =0, A3 =0, (A.10)
Ay =0, Asy = 0. (A11)

Therefore, the transformation of the factors that is compatible with the restrictions on the loading matrix in equation (2.4)
is:

It A;n 0 0 Ji:c
e | = | Az Az 0 Il
I54 Az 0 Ass I3,

We can invert this transformation and write:
fio= AR
ff,t = Az_zlfls,t - A2_21A21A1_11ff,
f;,t = A???)lf;,t - A§31A31Af11 ftc'

The transformed factors satisfy the normalization restrictions in (2.6) if, and only if,

Covo(fi, [Y) = —An AnAf (ALY =0, (A.12)
Cov(f;t, tp) = _A§31A31A1_11(A1_11)/: ) (A.13)
V() = AR AL = L, (A.14)
V( Nf,t) = Agzl (Agzl)/ + A;21A21Af11 (Afll)/Aél(AE;)/ = kaa (A.15)
V(50 = An(Az) + Am An AL (ALY A5 (A5 = Iy, (A.16)

Since the matrices A11, Ags and A3z are nonsingular, equations (A.12) and (A.13) imply
A21 = 0, and A31 =0. (Al7)

Then, from equations (A.14) - (A.16), we get that matrices A;1, A2o and Asg are orthogonal.
Q.E.D.

A.4.2 Proof of Proposition 2

From equation (2.6) we have
_ Ikc 0 * Ikc O
R—( 0 <I><I>’> andR-( 0 <I>/Q>)'

Matrix R is block diagonal, and the upper-left block Iy has eigenvalue 1 with multiplicity k°. The associated eigenspace
is {(¢/,0"), & € R¥"}. The lower-right block ®®’ is a positive semi-definite matrix, and its largest eigenvalue is 5%, where
p? = sup {{@P'E & € RF &) = 1} < 1is the first squared canonical correlation of vectors f§, and f3,. There-
fore, we deduce that the largest eigenvalue of matrix R is equal to 1, with multiplicity k¢, and the associated eigenspace,
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denoted by &, is spanned by vectors (¢/,0'), with £ € R¥". Let S; be an orthogonal (k¢, k¢) matrix, then the columns of

the (k1, k¢) matrix
S1
Wi =
' ( Okg x ke )

are an orthonormal basis of the eigenspace £.. We have:
Wihy s = S1ff. (A.18)

Analogous arguments allow to show that the largest eigenvalue of matrix R* is equal to 1, with multiplicity £¢ and that the
associated eigenspace , denoted by £, is spanned by vectors (£*”,0')’, with £* € R*". Let S, be an orthogonal (k°, k¢)
matrix. Then, the columns of the (k2, &) matrix
Sa
W =
’ ( Ok e )

are an orthonormal basis of the eigenspace £;. We have:
Waha s = S3f7, (A.19)

which yields parts i) and ii).

When there is no common factor, the matrix R becomes R = ®®’, and matrix R* becomes R* = ®’®. By the above
arguments, the largest eigenvalue of matrix R, which is equal to the largest eigenvalue of matrix R*, is not larger than /2,
where 52 < 1 is the first squared canonical correlation between the two group-specific factors. This yields part iii).

Finally, we prove part iv). We showed that the lower-right block ®®’ of matrix R is a positive semi-definite matrix
and all its k7 = k1 — k° eigenvalues are strictly smaller than one. These are also eigenvalues of matrix R. Let us denote
the space spanned by the associated kj eigenvectors of matrix R by & 1. This space is spanned by vectors (0, ") with
€ € R¥1. We note that, by construction, the vectors (0', ') are linearly independent of the vectors (£’,0')’ spanning the
eigenspace &.. Let (1 be an orthogonal (k$, k§) matrix, then the columns of matrix

Wi = ( gkai' )

are an orthonormal basis of the eigenspace &, ;. We have:
Wi'hie = Q1 fi s (A.20)

Analogously, we have that the lower-right block ®'® of matrix R* is a positive semi-definite matrix and all its k5 = ko — k°©
eigenvalues are strictly smaller than one. These are also eigenvalues of matrix R*. Let us denote the space spanned by the
associated k3 eigenvectors of matrix R* by & ». This space is spanned by vectors (0', £*') with £* € R¥2. We note that,

by construction, the vectors (0, £*')’ are linearly independent of the vectors (€*/,0')’ spanning the eigenspace £*. Let Qo
be an orthogonal (k3, k5) matrix, then the columns of matrix

WS = < gykz )

are an orthonormal basis of the eigenspace &, 2. We have:
W3'hay = Q’ijt. (A.21)

Q.E.D.
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A.5 Proof of Theorem 3
A.5.1 Asymptotic expansion of R

In order to derive the asymptotic distribution of the test statistic é (k¢) defined in equation (3.5), and common factor
estimator introduced in Definition 2, we consider a perturbation of matrix R and its eigenvalues and eigenvectors. More
precisely, the perturbation of the eigenvalues will allow us to derive the asymptotic distribution of the test statistic é (k°),
while the perturbation of the eigenvectors will allow us to derive the asymptotic distribution of the common factor estimator.

The canonical correlations and the canonical directions are invariant to one-to-one transformations of the vectors le t
and h2 ¢ (see, among others, Anderson (2003)). Therefore, without loss of generallty, for the asymptotic analysis of the
estimator of the dimension of the common factor space statistic { (k©), we can set 7—[] = Ix,;, j = 1,2, in approximation
(4.1). Moreover, under Assumption A.6 the bias term is negligible, and we get:

hji = hj+ —— j=1,2. (A.22)

1

By using approximation (A.22), and Ny = N, Ny = N/ux?, we have:

I~ -
Vie = = b
t=1
T /
1 1 1
>~ = h1,t+uNU1,t) <h2,t+uz,t)
F 2 (et 7 7
= ‘712-1-)212,
where:
. 1 E
Vie = = iy,
t=1
T
X = 72 (hi gt + pnu el ) + 2u1 (. (A23)
TVN —
Similarly:
1~ -
Vi = Tzhjthz,f
t=1

[2
N =
-
—

mD‘

+
3

&
-~
—

b

+
3

m:
~

= Vj;+ Xy (A.24)

J
= v, Id+f/i1ij), j=1,2, (A.25)
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where:

Vi = Zhg hy G=1,2, (A.26)
R = T 12 &
X = T\—ﬁ Z (ha gl +un el ) + TJXZ ;ul,tuﬁ’t, (A.27)
A oz T
Xoy = Vi ;(hz,tué,t +ughh ) + N ;u27tug7t. (A.28)

Therefore, we get:

. ~ A - - A - A -1 . - -
R (Ta+ Vi X ) Vit (Vao o+ X ) (1d+ Vi Xan) Vit (Vo + %)
Let us expand R at first order in the ijk =0, (ﬁ) By using (Id + X)~! ~ Id — X for X ~ 0, we have:

R

R

(Id - ‘71_11)211) ‘N/ﬁl (‘712 + XlQ) (Id — ‘7251X22) ‘7251 (‘721 + X21>
~ V' ViV Vi
*‘71_11)%11‘71_11‘712‘7251‘721 + ‘71_11)212‘7251‘721 — ‘71;1‘712‘7251)222‘7251‘721 + ‘71;1‘712‘7251X21~

Defining the following quantities:

A = V'V, (A.29)

B = Vy'Va, (A.30)

R = V'ViaVyy'Vay = AB, (A31)

U* = —X\ R+ X12B— B'X0oB + B Xo1, (A32)

I Vi, (A.33)

we get the asymptotic expansion of matrix R:
R=R+i+o0, (-1 (A.34)
N PANT )" :

A.5.2 Matrix R and its eigenvalues and eigenvectors

Let us now compute matrix R and its eigenvalues, that are . ﬁil, i.e. the squared sample canonical correlations of
vectors hj 4 and hs;, under the null hypothesis of k° > 0 common factors among the 2 groups of observables. Since
the vectors iy ; and ho; have a common component of dimension k¢, we know that p; = ... = pre = 1 a.s.. Using the
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notation:

1 T
3 _ E c el
ch - T = ft t

T
v 1 cps 5 3 .
ch = Tz.ft j’lt7 ch = Z/Cju ]:1727
t=1
T
S = lZfs v j=1,2
i T gttits I =144
t=1
. 1 <&
Yip = fof,t 2t
t=1

we can write matrices I7jj, with 7 = 1,2, and 1712 as:

.. = ~ ~ =1.2 A
Vj‘] ( Zj,c E]] ) b j ) b ( 35)
7 i:cc i:c2 7l
= ~ ~ = . A.
V12 ( S ) Vo1 (A.36)
By matrix algebra we get:
- »t S Y D e
vl = - TE - e melmL A.37
M { T YD SRUE D VP VIS Ve DD Div ( )
where
Y = Yee— YaXi ie. (A.38)
From assumption A.1, we have:
Ya = 0,(1/VT), (A.39)
See = Ine+0,(1/VT), (A.40)
Siio= I +0,(1/VT), (A.41)
S92 = Ing + O0p(1/VT), (A.42)
S = ®+0,1/VT), (A.43)
which imply:
;b= v o,(1/7), (A.45)
—SUEaS = SEUSaR 4+ 0,(1/T),
= -3+ 0,(1/T7), (A.46)
SITEIRAY T = 0,(1/7). (A47)
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Substituting results (A.44) - (A.47) into equation (A.37) we get:

- D
—1 _ cc ~ cl
Vgl o= {—215 5o }+op(1/T). (A48)

Equation (A.37) allows to compute A:

A = Vﬁlffu
= |: ~ Zi‘_ ~ _Z 1261211 _ :| |: gcc Z:DCZ :|
N IO T SmE D vee +21112102 1SS Yie Y12
Ikc A
_ A A4
ot o
where:
- - C e e e 1
A = S8-S0 5 0181 =0, <\/T) (A.50)
12155 = E ElcE 1202+il_11212+i1_1lilci;1icli1_11212
1
= 211 2124-0;,, <T)
_ %40 (1) (A51)
— 77 ) .

REMARK 1. Matrices ‘712 and f/u have the same first k° columns, therefore also matrices f/ﬁlfflg and Vﬁlffu = I,
have the first k¢ columns, which implies:

11 Ikc *
ViV = [ [ }
Let us compute:
- P B I Dt
| Vi - L x2 *2 c2 22 } (A.52)
2 DI R D s 98 S ) phvy
where
S>f<2 = icc - i:c2§:272122c~
Equation (A.52) allows to compute B:
B = V'V
_ |: 2:21 _2*212622 :| |: icc icl :|
Lo el S5 + 35 Pac i Sels || S Za
Ikc B
= A.53
{ 0 B, } (A.33)
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where:

Bes = Y550 2330550 =0, ( , (A.54)
* * \/T
Bss = _22_212202;21201 + z~:2_21221 + i]2_212202;120222_21221

= ¥ +0, <1> : (A.55)

R = AB (A.56)
_ Tge Acs Iye Bcs
B 0 Ags 0  Bags
Ikc Rcs
= . A.57
( 0 R ) ’ (A-57)
where
Rcs = Bcs + AcsBss = Op(l/\/f% (ASS)
Rss = Asséss
= S5y T + 0, (1/T)
= 33 +0,(1/VT). (A.59)
The eigenvalues of matrix R are pr=..=pr.=1>ps. 1122 [)il. The eigenvectors associated with the first k¢

eigenvalues are spanned by the columns of matrix:

B = [ Te } _ (A.60)
(k1 x k) 0
Define:
B, _ [ 0 } . (A.61)
(k1 x (k1 — k<)) a—
‘We note:
Ty = [ E. i E, }

so that the columns of matrices F. and E, span the space R*'. The estimators of the first k¢ canonical correlations are
such that p7, with £ = 1, ..., k¢ are the k¢ largest eigenvalues of matrix R. We derive their asymptotic expansion using
perturbations arguments.

A.5.3 Perturbation of the eigenvalues and eigenvectors of matrix R

Under the null hypothesis H (k°), let W7 be a (ki , k¢) matrix whose columns are eigenvectors of matrix R associated with
the eigenvalues p7, with £ = 1, ..., k°. We have:

RW; = WA, (A.62)
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where:

A:

dzag(ﬁ?,é = ]-7 ) kc)a

is the (k¢, k) diagonal matrix containing the k¢ largest eigenvalues of R. We know from the previous subsection that the

(A.63)
eigenspace associated with the largest eigenvalue of R (equal to 1) has dimension k¢ and is spanned by the columns of
matrix .. Since the columns of E, and E, span R¥', we can write the following expansions:

Wy =

= E.U+ E,a, (A.64)
A = Le+ M, (A.65)
where E. and F are defined in equations (A.60) and (A.61), Uisa (k¢, k°) nonsingular matrix, M= diag (i1, ..., fige)s
and «is a (k1 — k°, k°) matrix, with o, fig, ..., fige converging to zero as N1, No, T — co. Substituting the expansions in
equations (A.34) and (A.62) we get:
(R+V)(E.U+ Eya) ~ (B.U+ Ey)(Iye + M),
which implies:
RE.U+ RE,a+VE. U+ VE,a ~ E.U+ Esa+ E.UM + Esal.
By using RE,=E,, and keeping only the terms at first order, we get:
RE,a+VE. U ~ E,a+ E.UM. (A.66)
Pre-multiplying equation (A.66) by E’, we get:
E'RE,a+ E.VE.U ~UM
o M ~g! (Rcsa . u) , (A.67)
where we use the fact that I/ is non-singular and
V.. = E,VE,
Pre-multiplying equation (A.66) by E’, we get:
E'RE.a+ EVE.U~a
Sa~ Rga+ Ve U, (A.68)
where
This implies:

V,.=FE'VE,.

o~ (I _pe — Ry, U. (A.69)
Substituting the first order approximation of « from equation (A.69) into equation (A.64) we get:
W~ (E 4 By (L e — RSS)‘lxi/sc) u. (A.70)
The normalized eigenvectors corresponding to the canonical directions are:
Wy = Wy - diag(W; 'ViaWwy)~1/2. (A71)
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Substituting the first order approximation of « from equation (A.69) into (A.67), we get the first order approximation of
matrix M:

Mo~ ! (\If ¥ Res(Tny—pe — RSS)*@SC) u. (A72)
Substituting the first order approximation of M from equation (A.72) into (A.65), matrix A can be approximated as:

Ao Bt U (Do Res Ty — Ros) 0 ) U,

Note that this first order approximation holds for the terms in the main diagonal, as matrix A has been defined to be
diagonal, and the out-of-diagonal terms are of higher order. Up to higher order terms we have:

A1/2 =~ ka + Z/{ |: cc + Rcs(Ikl ke — Rss)_l‘i/sc:| Z/A{a

which implies:

!
sz = tr(AY?)
=1
- e (b Rt - R 0] 0, (7).
s e ] (5r)

by the commutative property of the trace.

A.5.4 Asymptotic distribution of ), /.

Equation (A.73) can be written as:

—
_|_
S
Y
3I-
N~—

1 .o~ ~ A
Zﬁz = k°+ it’f’ { |:Ikc . RCS(I(kl—k-C) — Rss)_1:| VE,

1 - . -1 1
kc+2tr{{lkc : RCS(I(kl_kc)—RSS)_l} V'V E, ¢t + O, () (A.74)

Substituting equation (A.33), we get:

y , o ) ~ O+ 1
She - kcw”ﬂfk“ ; Rch(klkC)—Rss)_l} Vﬁl[\iic}}w” (NT>

=1 sc
(A.75)
where:
\PZC = {*XMR + X198 — B' X0 B + B/Xm} an’ (A.76)
U, = [—Xuﬁ +X12B — B'X0sB + B’le} - (A7)
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with M(; ;) denoting the block in position (4, j) of matrix M. As matrices R and B have the same structure [E. :

have:
\i/zc = [—Xn + X12 — é/(Xzz - le)} a1’
\i’:c = [—Xu + X12 — B/(Xzz - Xm)} @’
Moreover as B = [ ék,c BO/ ], equation (A.78) further simplifies to:
‘i’zc = [—Xu + X12 - X22 + X21} an’

Equations (A.79) and (A.80) allow to perform the asymptotic expansion of terms \Il* and U*

ce?

(A.78)

(A.79)

(A.80)

respectively. Let us compute

the asymptotic expansions of the terms X 11, X 12, ng and X21 Vectors u; ., w1th J = 1,2, can be partitioned into the

5‘? and the k$-dimensional vector uﬁ):

(C)
Uit = () ) j:152a

31

k¢-dimensional vector u

and from Assumption A.5 we can express 3, j, j = 1,2, as:

(c), (c) (c), (s) wlee)  s(es)
Sug = Blug] = B| 5N, “%2)“%9),] = | Cwd | i=1,2
Wiy Wiy Uy Uy Eu,j Eu,j
We also define:
c c s (ce) (es)
» = Elu u’] — E ugt)ugt) uit)UQt) _ 2u,12 Eu,lQ
w12 = 1e%at] = (s), () (s) (8) n(se)  sa(ss) |0
Uy Ugp Uy U u,12 12
and
Yu21 = X0
From equation (A.27) we have:
I < 1 <
X, = A hys , +up bl ) + =X Uy U
11 T N;( 1ttt 1,t l,t) TN; 1%t

c (c)
C S U C S

(5] Lo ]| o 0 )

1t lt

2 T ()

:U’N U c s
TN 2 [ uﬁ) 1 L |

(C)

Ie Ul(?)/ + ult)f If ul(t : 1t 15
c)r / s
Tirug, + “u f fltult + ult f '

31Matrix ¥, ; is the asymptotic variance of u;; as N; — co. We omit the limit for expository purpose.

56

112 T C) (C (C) (S)
KN Uy
> Z [ (3) (C)' (9) ( )’

(A.81)

(A.82)

(A.83)

(A.84)
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and from assumption A.5 b) we have:

T S C C C
Xu = w/ﬂN (12 ftul(t )/+ ul( )f ft“lt)”r“g(t))f : > Lk [ uét;uét;
TN T =1 Jivuy o I fltult ¢ fit N Uqy Uyy
i (S - e~
K K c)! S s)/ s
NVT T | wiguwy — Bluyyuy, | ugy ugy E[ult Uy ]
T s
_ (1 S fuﬁ(?)' <°>f )l g )
s s)! S s
VTN T =1 fltult f Jieuiy +ugy it
cc cs T (e) (c cc c s cs
35 | (4] s
SsSc SS c)! SsSC S s)/ SSs
N Zu,l Zu,l ‘/> Zu,1 Uy Uyy — Eu,1
Analogously, from (A.28) we have:
. Z ug?' <(C> )f gug(?) + uéf)) S
S s)/
\f f2tu " uy 2o + Uzt I3
cc cs T c c cc c s cs
+1 S T ], 1 (L
2128;) 2( ) N\F \f s S) ( Z(SC) ug)ugi)/ . 21(18’;)
From equation (A.23), the term X 19 results to be:
1 T p T
X12 = —= Z(hl,tUQ ++ punur hy ) + Ll Z Ul,tulzyt
TVN i TN t=1
T ¢
1 ftc ] [ (e)! (s)! ] Ugt / %
f— [— s Jr C S
e (PR IR
+MN XT: Ug? ] [ (e (s) }
— K u U
TN e u(lt) 2t 2t
T s cc
I S B U I 27 N i i ugt)’ + uNuﬁ?f P s
TN it fltugt) + .UNult)f fltu L MNUu f N 21(5?2
T c c cc c s cs
L MN 1 Z “gt) ét)/ - thl)Q Ugt)“gt) - E18,1)2
NVT T (s),, () _ y(s0) (8),,(8) _ s(s9) :
=1 | Uit Yoy u, 12 Uiy Ugy u,12
Finally we have:
Xy = X,
T c s s
= N Z “2t)fCI +uN fcult)/ uzt)f ¢+ unff U1t)/ + Nl thcg)l
TN = Uzt f + NNfzt“(c) Uzt)f + NNfztUu Zq(j);)l
T C C cC C S cS
e (L [l s - st
NT T (s), () E(SC) (S) ( )' _ E(SS) :
=1 | Uot Uiy u,21 u,21
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C s)/
s

S s)!
Upy Uy

(A.85)

) . (A.86)

&
Eusi2

(A.87)

o
Eu ,21

(A.88)



We can now compute directly term \ilzc. From equation (A.80), we get:

* (A.89)
= {—X11+X12—X22+X21} )
(11)
T
1 1 Z c c c c c c c c C c c
- \/TN< T [_Mthu§t _NNU§t)f +ft“2f +MNU() tugt)l_ () —l—u() t/"‘Uthugt)/})

1 cc cc cc cc
i AT B+ S v E]

1 C c cc c ¢ ce c ¢ ¢
N\/} <\/> ; [ ult Ugt) — Eq(h )] + MN[Ugt)ugt) 22,1)2} [uét)ugt) 218,2)} + MN[ugt)ugt)/ o 27("1)2]}>
= Bl — ) vy —

T

1 1 (¢) (¢) (c) (e)y (¢) (c) (¢) (e)yr

— E Uy, — U Uy, — U —F Uy, — U Uy, — U . A.90
NVT < /T s {(MN 1t 2t ) (N 1t 2t) (N 1t 2t )N 1t 2t ) ]} ( )

Using the limit puy — p, we get:

T % 1 c c c c
v, = _NE[(MNUgt) - uét))(MNU§t) - Ugt))/]
T
L L © _, (© © _, (©)y (© _ (), (€ _ (e)y
- —= Uy, — U Ui, — U — El(puy, —u uy, — U
NVT (\/T tz:; [(MN 1t 2t ) (N 1t 2t ) [(p 1t 2t ) (1 1t 2t ) ]}
1
+o, | ——= | . A91
\ (N ﬁT) (A1)

Before computing \i!jc and substituting it into equation (A.75), we note that some of the terms of this equation can be
further simplified. Let us consider the asymptotic expansion of the following term of equation (A.75):

[Ikc D Res(Igy—key — Rss)l} Vit
Using equation (A.48), we get:

Iye Rcs(lkl—kc _Rss)_l] ‘71_11

[ 5 - DI 5 1
_ o L -1 cc
- _IkC . Rcs(Ikl—k Rss) :| |: _Zlc 211 :| +O <T>
M . } ) ) } } ) ~ 1
= Ec_c1 - RCS(Iklfkc - RSS)_lzlc = Ecl + Rcs(Iklka - Rss)_12111:| + Op (T)
:~ . 3 3 ) ]
= |8 ¢ =S+ Res(Ipy—pe — Rss)l} + 0, (T> , (A.92)

where the last equality follows form the fact that R., = O,(1/v/T), £1. = O,(1/v/T) and 5311 = Iy, + O0,(1/VT).
Note that equation (A.92) can be further simplified, considering the asymptotic expansion of term Res. Let us consider the
different terms in the equations of RCS and R,,:

Bes + AcsBss, (A.93)
A5

RCS
R sBss (A.94)
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where:

Ay = B85 - 271845 80, (A.95)
A = TS +0, (;) (A.96)
By = Y550 -3 80350 Y, (A.97)
Bys = 35,3591 40, (;) (A.98)

Substituting equations (A.95) - (A.98) into equations (A.93) and (A.94) we get:

. - U _ c e alle - 1
Ry = 5550 - 558085 0n + 50180 - 57845115, }[2221221+Op <T)]
- e e 1
= ch [ka - E1112122221221} +Op <T> s (A99)
and
_ e 1 - 1
Rss == E11 Z12+Op f 222 221+Op f
e e 1
= S50 8 + 0, <T> . (A.100)

Therefore we have:

~ =~ ~ 1
Res = Yoa(Ig,—ke — Rss) + Oy <T> , (A.101)
which implies :
~ - . 1
_ch + Rcs(lkl—k:C - Rss) - Op T . (A102)

Equation (A.102) and ¥*, = O, (ﬁ), together with the assumption v/N /T = o(1), imply:

L 1 1
[fzcl ¥ Res(In,—ke — Ryy) 1} ¥t = o, <M> (A.103)

Therefore, substituting results (A.90), (A.92), and (A.103) into equation (A.75), and rearranging terms, we get:

kC

~ c 11 S c c c
Sohe = ko= otr {2 Bl —ul) )l - uf))1}
/=1

T
1 ]. C C C Cc c
_N\/T§ { ( VT Z { :“uu uzt))mugt) - “gt))/ - E[(Nugt) - u;t))(:u’ugt) - uéQ)’]}) }

+0op (Niﬁ) . (A.104)

From the definition of matrix ¥y 5 we have;

El(unus? — ul)) vy = ul))] = Su .. (A.105)
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Moreover, let us define:
U o=l —ul?. (A.106)

Definition (A.106) together with the commutativity and linearity properties of the trace operator allow to write the fourth
term in the r.h.s. of equation (A.104) as:

T
3 o o) 87~ i -5 |

= Z {UlU, — E(UIU,)}. (A.107)
1

Equations (A.105) and (A.107) allow to write equation (A.104) as:

k¢ T

1 (- 1 1
She = k- ootr ST - N[0 — BUUL] | + o ()
2 pe IN { U’N} 2N\/ ( VT & T t”) "\ NVT

(A.108)
By a CLT for weakly dependent data we have:
1 I
Z [U/U, — E(UIU,)] =% N (0,Q0), (A.109)
VT t=1
where:
1 T 0o
T il / = / ! ). A1l
Qu Jim v (ﬁ ;UtUt) h;m Cov(UlU, Ul _ Ui_p) (A.110)
ke
From equation (A.109) we get that the asymptotic distribution of Z pe, under the hypothesis of k¢ common factors in
=1
each group is:
NVT iﬁ@—kwltr{i—lz } AN olﬂU (A.111)
s oN " \Tee 7Y ) ‘

To conclude the proof, let us derive the expression of matrix {2y in equation (4.11). For this purpose, note that vector
(U{,U]_,,) is asymptotically Gaussian for any h:

()40 (50 18)

We use the following lemma.

LEMMA A.8. Let the (n,1) random vector x and the (m, 1) random vector y be such that

T Q Q
~N( oo o), A113
< Y ) < Dy Qyy > ( )

and let A and B be symmetric (n,n) and (m, m) matrices, respectively. Then:

i) Viz'Az] = 2tr {(AQy,)?},
ii) Cov(z' Ax,y By) = 2tr { AQ,, B, } .
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Proof of Lemma A.8: For point i), see Theorem 12 p. 284 in Magnus and Neudecker (2007). Point ii) is a consequence of
point i) applied to vectors x, y and (z',y’)’, see also Theorem 10.21 in Schott (2005).

From Lemma A.8 we get (asymptotically):
Cov(U[U, U!_,Up_p) = 2tr {Sy(R) Xy (h)'}, (A.114)

and the conclusion follows.
Q.E.D.

A.6 Proof of Theorems 4 and 5

A.6.1 Asymptotic distribution of ff and ff *

Equation (A.70) and ¥, = O, < ) imply:

1
VvVNT
. N 1
W =E.U+0,| —|. A.115
=i (1) i

Recall from equation (A.71) that the normalized eigenvectors corresponding to the canonical directions are:

W, = Wb,
where D = diag(W; 'Vi;W;)~1/2. Then, we get:
ftc = Wllﬁl,t
= DU'E! (h T—— )+0 (1>
- c\THTT A "\VNT
NS 1 1
= DU (ff+ u(c)>+0 () A.116
(7 + i) + 00 ( oz (116

Therefore the estimated factor can be written as:

. ol e 1 1
fe = Hcl(ft‘+mu§,2)+0p (W) (A.117)

where 7—1;1 = DUt Equation (A.117) implies:

VNI (Reff = ) = i)+ 0p(1) <5 N (0.207).

The derivation of the asymptotic distribution of /N (7—2? Af *— ff) obtained from the canonical direction W, is analo-
gous, and therefore is omitted.

A.6.2 Asymptotic distribution of S\Q,i

Let us derive the asymptotic expansion of the loading estimator 5\51 = (F’C’ F’C)’lﬁ' “y; i, where y; ; is the i-th column of

matrix Y;. From equation (A.117) we can express Fe= [ff, ey ff«}’ as:
: L @) (g-1) ( 1 )
F¢ = F° U H +0,| ——
< +\/N11><C) P\VNT
_ e (g-1) 1 o) (g-1) 1
= Fo(H) v (1) +0, ) (A.118)
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(c) (e)

where U™ = [uy7, ...

(e)

,uy 7|". Equation (A.118) implies:

. 1 1
FeH! — F© = U o () .
c /;Nl 1 p /7NT

Then, denoting with £; ; the i-th column of matrix Z;, we get:

NG
Aj.i

We first note that

Fchc
T

1 c
where we use — F“'U; ) = 0,(1),

VT

(Fclﬁac)—lﬁuc /yj,i

(FYFO) TR (FOXS 4+ FEAS +€5,4)

(B F) e | (F2 = BB+ FHL) X+ FEXS s+ 25
BN+ (P F) e,

+(FC/FC)_1FC / (FC o Fcﬁé) )‘j,z + (FC/FC)—IFC /Fjs)\s

Se j=12

%7%;1 (FC + &U@)I (FC+ \/%Ul(c)> (HY + 0, (\/]1\77T>
ﬂle;Fc<7%;1>’+ \/%ﬁglUl(C;Ftc(“Ft?)’

+ \/%7201 chl(C) (HoYY + ]élﬁclUl(C);, 7 (H) +0p (\/]IV—T>
N cpe .

H?FTF (H:') + 0y <¢11va) :

1
T

~ ~ —1
fret fre . e e -1 1
(55) = w(55) o ().

U1(C)/U1c) = O,(1) and T/N; = o(1). We also have:

Equations (A.118) and (A.119) allow to compute:

and:

1 A A~ 1 N N
*FC, (Fc _ fe /) ~ _ 71Fc/ () —177(c) 177(c)
0 H, i m}zc U, —NITHC U oy
PA\VNT)’
1., (1, 1
TF l€j1 = H(‘ ! <TF /sjl + T /7N1 Ul(C)/ ]'L)
o1 1
— 717FC/ ; O
e 7' Gt VNT
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‘We also have:

1. ~ 1
—felps — Fc/Fs (L)/FS
T e (T TWU J
.~ 1 1
= H'_F'Fi 40, —].
Het O\ UNT

Substituting approximations (A.121) - (A.124) into equation (A.120) we get:

c/
—F €ji

T

e e N Fe e
Aji H/c)\j,iJFH/c( T >

R ¢/ e
+7_[/C<F F) *FC/F‘S)\S +Op(

T

The last equation implies:

AN L.
ﬁ{(Hé) )‘51 )\51] - (pj’r’_KJ)‘w
where:

FeFe 1 .

Pii = <T> ﬁF /53',1',
FIFe\"! 1

K, = —F°'F3,

o= () mm

1

VNT

).

+ Op(l)a

Since (F¢'F¢/T)~! = I + 0,(1), the r.h.s. of equation (A.125) can be rewritten to get:

VT [(H) e - A‘;J} ~

|
ﬂ‘“
s

Then, since the errors and the factors are independent (Assumption A.5 a)) ,
equation (4.19).

A.6.3 Asymptotic distribution of fjﬁt and /A\jZ

fi(egie + £7{05) Fop(1) =w

(A.124)

(A.125)

(A.126)

(A.127)

(A.128)

a CLT for weakly dependent data yields

Let us now derive the asymptotic expansion of term fj .. We start by computing the asymptotic expansion of the regression

. Ac /AC .
residuals y; ;¢ — fi'Aj ;0
e 7 S Ivs AN C/ c
Yiit — ft )\j,i — f] t)\] i T &t — (f )\ )‘j,i)

. CRAY
- f",t )\Jﬂz + c"':j,it -

! S
= G T et

where:
S 1 C S C C Cc\— C
it = fj‘,t_\/TK;‘ft‘— o= (F) "FO)FFO) T,
1 C.
ejit = Ej,it—fﬁft"%w
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<ft + Wluﬁi) (/\j,i + JT ¥ fK A > - I /)‘j,i‘|

(A.129)
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Then, the residuals y; ;; — f e/ >\° ; satisfy an approximate factor structure with factors g; ; and errors e; ;;. From asymptotic
theory of the PC estimators in large panels, we know that:

\/N[H] A;,t—gj,t} — vto,(1), =12, (A.132)

where H; ;, 7 = 1,2, is a non-singular matrix and:

ASAS 1
it = (J J) Aejq
J,t ]\/"7 /Nj 7 7
AYAS AYANTY 1 &
— J )\ ; J ]) )\9 c/ CE’ir
( Nj ) 2: 3,i€4,it ( Nj \/ﬁ} : gyidt \/T‘;:lfr Js

=1
ASTASN ~
- (;vj) Zxﬂgﬂﬁop 1).
J Jz 1

Therefore we have

VN [ﬁs,jf;;tf(;,f(Ff’FC)(F“FC)*fD = vl +o(1), j=12 (A.133)

ASAS 1 U
where v§, = < 5\73* J ) \ﬁ Z A3 i€5,it» Which proves equation (4.16).

From asymptotic theory of the PC estimators in large panels, we also know that the following result must hold for the
loadings estimator of factor model (A.129):

N -1
\/T[(H;,j) AjJ—Ajﬂ} = wiito,(1), j=1,2 (A.134)

where 7:15, j» 4 = 1,2 are the same non-singular matrices in equation (A.132), and
T
o = 2 (e s ) s
S 1 ! pc 1 c/
et ﬁKjft Ej,it — ﬁft Pji )
fi €5t — Zf e
t

1
K’.—E De.s E i
+ JTt:1ft €j,it — T\/> Tife <PJ

S-Sl §l-
Mﬂ\IM%H

Il
—

T
1
= =D [hEii+op(1), (A.135)
VT =™

since — Z fi1ff" = op(1). Therefore, we get:

T
-1 1
VT {(H’j) P ] = = Friega + op(1) = w4 0,(1), (A.136)

which yields equation (4.20).
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O.E.D.

A.7 Proof of Theorem 6

Theorem 6 follows from Theorem 3 since we have:
tr {050}

tr{f}%}

tr{ic_chUJv} +0,(1/VT), (A.137)

tr {Zu(0)%} + 0,(1). (A.138)
These expansions are proved next.

. . o |
A.7.1 Asymptotic expansion of >__

T
. . 1 o
Substituting the expression of ff from equation (A.117) into .. = T E LY we get:
=1
T /
. 1 - 1 . 1 . ~ ! 1
See = 7D 7—[.1( ¢ u(»(’)>< C+u<.‘>) (#:1) +o <)

This implies:
b= HIIMH.+O (1> (A.139)
cc c“cc c p /NT

A.7.2 Asymptotic expansion of Sy

A A

A,

i) Asymptotic expansion of
J

To derive the asymptotic expansion of matrix A; f\j /N, it is useful to write the matrix versions of the quantities defined in

equations (A.128) and (A.136). Stacking the loadings ;\51 in matrix A‘ = [/\; Iseeos 5\§’N]’ we get:

Ac c 1 c| 4 1
where
c c s 1 s/ e
— T&:jFCJrAS ( ijt C’) . (A.141)

Similarly, stacking the loadings ;\jl in matrix f&j = [5\21, vty 5‘?,1\1]/ we get:

As c 1 s | 45 1
A; = {Aj + ﬁGj] Hjs + 0p <ﬁ) ;

65



where

By gathering these expansions, we get:

o 1 .
Aj ~ (AJ+\/TGJ> Uj, 7 =12,

where
G; = [ GS Gs }
N He 0
U = [ 0 Hiy } .

We start by computing the asymptotic expansion of A

. From Assumptions A.1, A.2 and A.5 we get:

1

1
Let us compute the asymptotic expansion of ——A'G
p ymp p NT
S )
NVT N;VT [ AJGG AJGS

Using equation (A.140) we get:

e = sl e

— 7TA§/ ;Fc + TTAleS (FS/FC)

AYAS 1
_ )7 s c/ -
B < N; ) Z Ti ( NjT> ’

Using analogous arguments and equation (A.142), we get:

AS'AS 1 T
As/Gc — < J J) _ s CI+O
N; ﬁ ! N; T;f]’t ¢ r

—_

=z
=

1 1
AYGE = AYELFS = O :
N\/T ! NNT 77 ”( NjT>
1 1 1
AYGE = AYE S = 0O, :
NT 7 NNT 7 p( NjT>
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IR 1 1 1
— A+ =G| |Aj+ =G| = A’A N.Gj + GiA)) + —— GGy
N, [ ﬁﬁGJ [ﬁﬁGJ +N\F( 3G+ GiA) + 766

(A.142)

(A.143)

(A.144)

(A.145)

(A.146)

(A.147)

(A.148)

(A.149)

(A.150)

(A.151)



The last four equations imply:

AC/AS 1 a S C
1 ( ;V'J>sz’t i 1
— NG = ! =1 +0
NVT 7 AYASY 1 & P\ V/N,T
N] T Z f] tf 0
L t=1
i AASN 1 T 1
— J"J s /
- ( Nj ) T; gt tc O(k xk*) +O:D ( NjT> : (A.152)
Using analogous arguments, we have:
!/
Gc/Gc — 1 Fc + As_ LF.:Q/FC /Fc + AS - /Fc
W wr [+ 8 (77 i 77
_ A.153
T> ( )
and
1 . 1

Substituting (A.152) and (A.154) into equation (A.146) we get:

1 1 ! 1 1 , 1
N, [Aj + \/TGj] {Aj - ﬁaj] ~ Yp;+ N (L1 + Ly )+ Op (m) (A.155)

where
AAY (1
Ll,j = Nj ﬁFJ F . O(kJXk;) . (A156)
Therefore we have:
NA ! : |
777 _
N, = L[J’» {ZAJ + T (Ll,j + L'Lj)} U; +op (ﬁ) . (A.157)

ii) Asymptotic expansion of fj
The approximations in Propositions 4 and 5 allow to compute the asymptotic expansion of &; ;;:
N c/ s’ fs
Ejit =  Yjit — )\ ft At
= = ife—acire] - [Noifs - xsim]
1 ! 1 (
giit — | | A + —=ws, C+ ——=u | — XS
5 g (5 i) ]

1 ! 1 1
[ - )
l( VT & J N \/JTJ Y3, 35

€j,it — (\/7)\;; gcz +\/nguzft) - (\/>)‘;zl gst+ JT jz ;t>

A ;TK’ft . (A.158)

i

12
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Since T'/N; = o(1), we keep only the terms of order 1/v/7 in equation (A.158), and we get:

2 1 C (& s/ S 1 1
St = ST = (Wi fi +wiiffe) + A5 /TK/ft +op <ﬁ> :
From the definition of wj ; in Proposition 5 we get:
c/ — (Z €5, erpl> ft + )\;’/ZKJ/ftC,
which implies:

2 _ 1 ~c/
€4t =  Ejit — ﬁ (wj

where:

Equation (A.159) allows us to compute:

T

Viii = 2t

2
Z[]lt (~c/ft_|_ws/ ]St):|

12

T T
1 2 .
- TZ% VT E ej,it (W5, ff +wiif5, E: £+ ws! jt)z
t=1 t=1 —

T
1 s
Usmgﬁ E gj.itfi = Op(1) and f E ejitfir = Op(1) we get:
t=1

1 & 1
“ _ 2
’7‘],“ - T ; Ej,it + Op <T> 5

which implies:

1 & 1
Iy _ 2
Yii = o7 ?:1: €jit T Op (ﬁ)

1 1
= Yjii T ﬁwj,i +0op <\/T> .
where
s
Wji = TZ Git — Vi) = Op(1),

t=1
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(A.159)

(A.160)

(A.161)

(A.162)

(A.163)

(A.164)

(A.165)

(A.166)



from Assumptions A.4 and A.7. Therefore, we have:

A 1
Fj >~ F]‘ + ﬁWj
where I'; = diag(v;4i, i = 1,..., N) and W = diag(wj,;, i =1,...,N),for j = 1,2.
. . 1 5a 2
iii) Asymptotic expansion of ﬁAijAj
J
Let us define
. 1 1 ' 1
QF = — A+ —=G <A+ >
7 Nj ( J T J J \/T J

= FA;FJAJ + S+ Qi+ Q;}I + U+ v+ Qv
J
where
O, = — AW, =0 (1)
]aI_Nj\/T]JJ_P 'NT )’
1 1
= Awe =0 ()
III )
7 NJT A ) p T
AL 1 1
. 1 1
p = ——G'W;G; =0 <>
v N,TyT T TP\ T
Moreover, similarly as for (A.152) we have:
A% 1 /
QG = WAJTJG]»
1 1 & 1
= | —A;AS | = SFEl T Opgxasy | o ()
N; JtJ J<T§ J,tt> (kj xk3) P /T
1 1 s 1 : 1
= 7| (pama) (G0 7e) + 0w | +on (7
1 1
- ()

where

1 s 1 s :
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(A.167)

(A.168)

(A.169)

(A.170)

(A.171)

(A.172)

(A.173)

(A.174)

(A.175)
(A.176)



Collecting the previous results, using T'/N = o0,(1), and defining QF = limy 0 %A;I‘jAj we get:

. 1 1 1

Q= NA}FjAj+ﬁ(L2,j+L§,j)+0p<ﬁ)
I T Y 1 A1T7
= j+ﬁ(2,j+ 2,5) + 0 VT)' e

1 ~ ~ =
Substituting equation (A.143) into EA;FjAj, and using equation (A.177) we get:

0, = wo,

~ N 1 . 1 )
Ui | + W (L2, + LIQ,j)} Uj + op (ﬁ) . =12 (A.178)

iv) Asymptotic expansion of Sy

The estimator of XJ,, ; is given in equation (4.22). Equation (A.157) allows to compute the asymptotic approximation of
NS |
AN
N;

N |
AjA; - 1 N
J=J ~ -1 -1 -1 ) / -1 /
( N, ) ~ U [EAJ TN (L17]+L1»j)EA,j] ( j) : (A.179)
Substituting equations (A.179) and (A.178) into equation (4.22), we get:
1

Eg}j (Lij+ Ly ;) EA}j] [Q; + Nia (Lo + L’Zj)}

1
VT

_ 1 - N\ 7L
x {EA}J. ﬁz,\}j (Lij+ L) ZA}]} (@)

1 ~ .1
. [I— — (L1 + LY ;) EA}]} {Qj + Nz (Lo +L’2,j)}

Suj = U [ZA,lj_

R
Q|>
=1

T
| ’ 1 (7!

x| 1= —=330 (g + L) | 575 ()

1

1 A
2= RS (L + 1) = = (B + 1) B3

1
5
vl
zL
=
+

-
=
N
_|_

~
5

which implies:

S, = ajflzuyj(A;)‘%%a;mg,j(A;)‘lﬂp (;T)
where

Loy = B |(Lag+Log) = QR) (Lo + L) = (Lo + L) 595 2 (A.180)
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From equation (A.145) we have:

cc ~ -1 1 cc ~ -1 1
= /H; [:U'NZ“ 1 + Eu 2]( ) (H(.) + ﬁ%c 1 (N?\/L&l + L372)( ) (H0> + Op <\/T)

_ -1 N o (ce) (" 1
= Hc ZU,N (HC) +\/THC (MNL3,1+L3,2) (Hc) +OP<\/T)'

This expansion, the convergence Xy ;v — X17(0) and the commutative property of the trace, imply equation (A.138).

(A.181)

A.7.3 Asymptotic expansion of ¢r {chlZU}
Results (A.139) and (A.181), and the commutative property of the trace, imply:

~ ~ ~ 1 ~. cc 1
w{Ese} = e {Samun e (52 AL + 1)} o, ().

Noting that Lz j = O,(1), for j = 1,2, and recalling that .. = I + O,(1/v/T) and pn = u + o(1), the last equation
can be further simplified to

~ A ~ 1 ccC 1
r{Si%) = tr{z;;zU,N}+ﬁtr{(u2L3,l+L3,2)< o, (ﬁ) (A.182)

Let us compute L3 ; explicitly. From equation (A.156) we get:

[/ ASAS
(2 J)(Fs,p)
S/ AS
(5°) (Gr) o
|\ N
0
0

EA,j,cs 7F9 'Fe 1
+0, ( )
VN

Ly; =

_ VT
EA,j,ss \/*FS 'F°

Okesckey  Okexks) ( 1 )
YA I +0,| —= ). A.183
A l K Ocks xk2) PA\VN ( )
Equation (A.183) implies:
xe—1 ]-
QjEA,jLLj = Ly; +0, \/—N . (A.184)
Substituting results (A.183) and (A.184) into equation (A.180) we get:
Ly; = —Zih |9R5L4, + LuSihe | o7l
_ _ 1
= —Xu LS = a5 S + Oy (W) . (A.185)
Moreover, noting that:
O(ke xke) O(kexk2) 1
Yty “l+o0 () (A.186)
A [ (ﬁFf 'FC) Oz xks) "\VN
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we get:

Okexre)  O(rexrs 1
-1 ) S (ke xke) (kexk?)
EA,jL17.7Zu7.7 = { " " } "‘Op (\/N) .

Equation (A.187) implies:

cc 1
(Ls;) = O, (\W) :
Finally, substituting result (A.188) into equation (A.182), equation (A.137) follows.

A.8 Proof of Theorem 7

(A.187)

(A.188)

Q.E.D.

Let us re-write the model for the high frequency observables m%t, wherem = 1,...,M,and t = 1,...,T in equation (2.1)
as:
x'an,t = AHng,t —+ AHg'rIi,t + ean,t7

H
== Algm,t + em,ta

- Alal_lgm,t - (AIZ/?l_1 - Al) Im.,t + ean,ta

(A.189)

where g+ = [ g5} : gH 1V, A = [Agc CAg] = [AS T AS], Ay = [Apc i Ay] = [AS i As], and Uy has been defined in

equation (A.145). Let us also define the estimator gy, ; = [ §5, 5 : grr ;| as in equation (3.6):
~ gght ra YTy H
Jmt = o = (A1A1> AN 4 m=1,..,M, t=1,..T.
m,t

Substituting equation (A.189) into equation (A.190), and rearranging terms, we get:

Ny Ny

A A —1 ~A A —1
. -l AA 1+, /2 o~ AA 1 .
Ime = U 19m:t—< Y 1) ~- M (Alull_Al) 9m7t+< . 1) 7HA/1€g,t~

From equations (A.156) and (A.157) we have:

A,
Ny

= Z/A{{EAJZ/L + Op () R

which implies:

Aa -1
A/Al ~_ _ ~ -1 1
(@) = asy (i) vo, (=)

From equations (A.140) - (A.144) we get:

~ 1
AUt — A~ —=G4,
147 1 \/T 1
where
G = {G‘{fGi},

(A.190)

(A.191)

(A.192)

(A.193)

(A.194)



with

1 1
G¢ = ~H!-C +A < —H/ C’> ,
1
G = —H/—H,
1 7ﬁT g
et = [ef!, ,éﬂ/, g% =[g¢,....g%] and g (g, ...,g%] . Moreover, we have

N 1 ~
A1 ~ A1U1 + 7G1U1.

VT
From equations (A.193) and (A.197) it follows:
12, (5 1 1 -\ 1
v (A1u1 —Al) ~ N <A1LI1+ \/TGlm) N
1
— A/ !/
NH\/>Z/{1 G]_“F N TulG G]_

Equations (A.192) and (A.198) allow to express the second term in the r.h.s. of equation (A.191) as:

~A A —1

ANA, o L -

i —A’(A’ul—A>m ~ UL —— A\ Gigms + UTETY
<NH> NH 1“1 1 g7t 1 ALl H\/> 19 t+ 1 AINT

From equation (A.152) we have:

——ANG; =

NH\/>

where k1 = k¢ + k. From equation (A.194) we have:

AA . 1
< H) Z tI{gtC/ : klka) +O;D(\/m>7

GI Gl — 1 G?Gf GE/GT ] .
N T NyT | GYGS GYGS |
Equation (A.195) implies:
1 1 1 "T1 1
Gc/Gc _ —H/ C +A <—H/—C>:| |:éH/—C +A <—HI—C):|
s Mﬁ{ﬁ‘ vt )L et T
1 —CI-H_H!-C 1 ~C'-H < 1 —H/—C)
= e'e + e A —
NHT2g g NHT\/—Q H Tg g

1 1 _H/—C)/ ! -H1-C 1 1 —H/—C>/ ! (
+F— —= He + | —= HA
NuTVT <\FT9 g S T Ngr \v7? Y "

- o3).

(A.195)

(A.196)

(A.197)

(A.198)

G1G19m 1 (A.199)

(A.200)

(A.201)

(A.202)

where the last equality follows from the assumption /Ny = o(1). Equation (A.202) and the assumption /Ny /T = o(1)

imply:

c/ C . 1
wr®e = ()
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Similar arguments applied to the other blocks of the matrix in the r.h.s. of (A.201) yield:

, 1
= — . A.204
NHTG Go= o (m) (A-209

Substituting equations (A.200) and (A.204) into equation (A.199) we get:

PN —1
A A, oo ey (N 1
( ]ifH ) THA/ (A1L{1 - Al) gme = Ur'SRY ( ) < thHgtC/> it + 0p <m> :

(A.205)
Let us now focus on the third term in the r.h.s. of equation (A.191). From equation (A.197) we have:
1 1 . 1 A\
NiHAlleg’t ~ NiH <A1M1 + \/7G1U1> eﬁt
a1
= U —NMNel, +ul Glell, (A.206)
LN, 1emat 1 H\F
The second term in the r.h.s. of equation (A.206) can be written as:
1 1 Gcl H
Glell . = . A.207
NH\/T 1 ,t NH\/i g, H ‘| ( )
Using equation (A.195) we get:
1 1 1 1 _
mGieg,t = NHTQC'GH fi T = NH\f (\FQC'QH> hefi,t
1
= 0,| —). A.208
P ( NHT) ( )
Equation (A.196) implies:
1 1 1
Gyell , = ——gheflel, = O () : A.209
NH\/T 1 5m,t NHTg m,t p NHT ( )
Substituting results (A.208) and (A.209) into equations (A.207) and (A.206) we get:
L et U, —~Ne , +0, 1 (A.210)
—Ae = . .
Ny 16mit 1 N t N, T
Substituting results (A.192), (A.205), and (A.210) into equation (A.191), and rearranging terms we get:
N A A 1 1
N -1 14H _HI-C
ulg'rmt —9mt = _ZAJ ( Ny ) (Tg ,g ) It + ZA lN A t + 0p (m> . (A.211)

s AN Ay . . .
Let us denote the last k£ columns of matrix 3 A1 as 25\7‘1). The term ——~ in equation (A.211) can be written as:

A Ay s 1 s
7]1\,}1 = 25\,1) + Ny Z ALiNg L — 25\,1)

(A212)

|
™
NN
_l’_
Q
iS]
A/~
—
3
~—

74



where the last equality follows from Assumption A.2. Equation (A.212) implies:

A A O(ke xrH) 1
O H) = +0 <) A213
Al ( NH IkH P /NH ( )

Substituting equation (A.213) into equation (A.211) we have:

O(kCXkH) ]. _ _C C _ ]. ].
(TQH/Q ) It T 204 NiHA/ﬂfﬁ,t +0p (\/E) : (A214)

Recalling the expression of Uy from equation (A.145):

Z;llgm,t —9mgt = - [ IkH

U = H{ 0 ] (A.215)

from equation (A.214) we get the asymptotic expansions:

©)
T 1
Herne = I = [EA,llNA’leﬁ,t} 7 (A216)
H
2 H H 1 H!-C C —1 1 ! _H ()
Hisdme = 9me = — (799 ) Gme T |Zxi gy Mlme| (A217)
T Ny

(©) (H)
1 1
where {Ex}l Z\G;Alle’H”’t} and [EX,11 ]\]HAlle,HM} denote the upper k€ rows, resp. the lower k¥ rows, of vector

D] —HA’leit. Since g%’g /T = I;c + 0,(1), we can rewrite equation (A.217) as:

N
N CH OO —Cn — 4 1
Hl,sgrg}t_(gg,t_(gmgc)(gc,gc) 192,0 = [ZA}lN—HAIIeZJ](H). (A.218)
From Assumption A.8 we have:
1 d *
ﬁAaeﬁ,t = N0, ), (A.219)
where
Ny Ny )
D = lm == NN Covlenh enl)). (A.220)

Nu—eo NH 215

Equations (A.216) and (A.219) imply:
. (cco)
Vi (Fedl = 50) =5 N(o, Pty )
Similarly, equation (A.218) and (A.219) imply:
o ~H H _HI-C\(~C1=C\—1\ C d -1 * _HH)
VNI [Fsdlt, — (ol — (79959 NG -5 N (o [shen.sii] ). @2

Q.E.D.
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