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Abstract

Standard empirical models of international trade (i.e., gravity type models) predict that
trade flows increase with both importer and exporter total income, but ignore how total income
is divided into income per capita and population. Bilateral trade data, however, show that trade
grows strongly with income per capita but is largely unresponsive to population.

I develop a general equilibrium, Ricardian model of international trade that allows for the
elasticities of trade with respect to these two variables to diverge. Goods in the model are sub-
divided into types, which may differ in two respects: income elasticity of demand and the extend
of heterogeneity in production technologies. In equilibrium, low income countries consume rel-
atively more goods of the low income elasticity types, and they have a comparative advantage
in producing goods with low levels of heterogeneity in production technologies. Conversely,
high income countries consume relatively more income-elastic goods and have a comparative
advantage in producing goods with high levels of heterogeneity in production technologies.

I calibrate the model, with two types of goods, to data on the bilateral trade flows of
144 countries and compare its quantitative implications to those of a special case in which
the model delivers the gravity equation (i.e., with no distinction between income per capita and
population). The general model improves the restricted model’s predictions regarding variations
in trade due to a country’s size and income per capita. For example, the effect from doubling
a country’s income per capita on the share of trade in that country’s GDP is a 2.1% increase
according to the data, a 2.1% increase according to the general model, and a 5.7% decrease
according to the restricted model.

I use the model to analyze counterfactuals. A technology shock in China increases the welfare
of rich countries, decreases that of middle income countries, and leaves poor countries indifferent.
A shock that quadruples China’s income increases wages in the 50 richest countries by 0.5%
relative to the rest of the world. In contrast, the restricted model implies that a technology
shock in one country increases the welfare of all countries, and preserves their relative wages
(except with respect to the country experiencing the shock).
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1 Introduction

So great are the differences between rich and poor countries in their trading practices that in

1999 transactions to and from the twelve Western European countries alone accounted for 49%

of international merchandize trade, 38% of which was intra Western European. The fifty-seven

African economies, in contrast, accounted for only 3.8% of world trade, and intra African trade, a

meager 0.1%.1 These intra Western European trade flows account for 13% of Western European

GDP, while intra African trade accounts for only 1.4% of African GDP. Doubling a country’s

income per capita increases trade (average between imports and exports) as a share in that same

country’s GDP by 2.1% on average, while doubling a country’s population decreases trade as

share of its GDP by 2.4%. In spite of these clear relationships, standard models of international

trade, which typically yield a gravity relationship, predict that trade increases in proportion with

both importer and exporter total income, and ignore how total income is divided into income

per capita and population.

This paper proposes a Ricardian model of trade that allows for the elasticity of trade with

respect to income per capita and population to diverge. Other trade models with non-homothetic

preferences–e.g., Flam and Helpmann (1987), Markusen (1986), Matsuyama (2000), and Stokey

(1991)–also allow for this distinction between income per capita and population, but these models

are highly stylized and often rely heavily on the assumption of a two-country or a two-good world.

My model relaxes these assumptions, and by admitting a continuum of goods and an arbitrary

number of countries, it is amenable to analyzing data.

Goods in my model are subdivided into types, which may differ in two respects: demand and

technology. Poor households concentrate their expenditures in types with low income elasticity,

and rich ones, in types with high income elasticity. The supply side set up is Ricardian: All goods

are homogeneous, markets are perfectly competitive, and comparative advantage arises from

differences in technologies across goods and countries. Labor is the unique factor of production,

and the distribution of its efficiency may be more variable for some types of goods than for

1Belgium and Luxembourg report trade jointly so that trade between these two countries is excluded
from the data set. Likewise, trade between the five members of the South African Customs Union–South
Africa, Botswana, Lesotho, Swaziland and Namibia–is not reported. Only their trade with other countries
is included in the database.
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others. In general equilibrium, countries where overall productivity is low have low wages,

and consequently specialize in less differentiated goods. Technologically advanced countries, in

contrast, have high wages and a comparative advantage in goods whose production technologies

are more variable across countries.

Although the purpose of the model is to explain macro-level trade data (i.e., total trade

flow for each importer-exporter country pair), the set up above may be interpreted through

micro-level evidence. The demand specification accords with previous empirical papers which,

rejecting the hypothesis of homothetic preferences, find large variations in the income elasticity

of demand across goods. The example of food is the most stark: Deaton (1975), Grigg (1994),

Hunter (1991), and Hunter and Markusen (1988) all find that spending on food as a fraction

of total expenditures decreases systematically with countries’ income per capita. According to

Grigg (1994), this fraction ranged in the early 1980s from 64% in Tanzania to less than 15% in

Australia and North America. On the supply side, while the model is static, the configuration

could be seen as driven by a product cycle. When a good is first invented, the technology to

produce it differs greatly across countries (most of which do not even know how to make it).

At this stage, the good is generally produced in the, typically high income, country where it

was invented. As the product matures, methods to produce it become standardized and can

then be applied similarly to any country, including those where labor is cheap. Evidence of this

cross-country process of technology diffusion is found, for example, in Nabseth and Ray (1974),

and Comin and Hobijn (2006).

If there is only one type of good, the model delivers the gravity equation, or more specifically,

it reduces to Eaton and Kortum (2002, EK henceforth). This special case thus makes the same

predictions for trade flows as other gravity type models–e.g., Anderson and van Wincoop (2003),

Redding and Venables (2004). None of these models allow for non-homotheticity in demand or

supply, and they all imply an elasticity of trade with respect to income per capita and to

population of one. My empirical analysis allows me to compare the quantitative implications of

the restricted to the general model, and thereby quantify the importance of non-homotheticity

(as modelled here) in explaining features of the data on bilateral trade flows.

Among theoretical models of international trade that deliver the gravity equation, EK is the
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only one with a truly Ricardian framework, in which all countries can potentially produce all

goods but differences in comparative advantages prevent them from doing so. (Other models

generally assume that goods are differentiated by country.) Since comparative advantage plays

a crucial role in my argument, I use the modelling techniques developed by EK to construct

my model. And since the EK model is nested in mine, comparing the two models’ empirical

implications is straightforward. But the purpose of doing so, I emphasize, is not to criticize the

EK model exclusively. Rather, it is to underscore some limitations of gravity type models in

replicating patterns of trade in the data, and to show that non-homotheticity in demand and

supply, both supported by micro-level evidence, can mend these limitations.

I estimate the model, with one type (EK model) and with two types of goods, using the

1999 data on bilateral merchandize trade flows of 144 countries. The regression approach typ-

ically used in gravity models is not applicable to my model because the introduction of non-

homotheticity modifies the gravity-type framework in a non-linear fashion. I suggest an alterna-

tive methodology that makes full use of the general equilibrium feature of the model (see section

3). This methodology contributes to previous papers that also estimate the EK model–e.g.,

Eaton and Kortum (2002), and Alvarez and Lucas (2007), and its application extends the work

of EK to a larger data set–EK estimate their model using a data set containing only manufactures

trade among nineteen OECD countries (because their paper had different objectives).

The EK special case explains well trade among large and wealthy countries, but not among

countries of different sizes and income levels. To substantiate this point, I estimate each model

twice–once with the full 144-country sample and once with a sub-sample containing only the

OECD countries used by EK. The EK special case explains trade among the large and wealthy

OECD countries just as well as the general model–the explanatory power (formally defined in

section 3) of both cases is 84%. Under the full sample, in contrast, the EK special case explains

only 30% of the data, while the general model explains 49%.

One important limitation of the EK model in explaining the full sample is its failure to

reconcile the large volumes of trade observed among wealthy countries to the paucity of trade

in poor regions. Two types of goods suffice for my model to simultaneously account for these

moments in the data. The estimated parameters are such that the type of good that is more
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elastic coincides with the type whose production technologies are more variable across countries.

Hence, wealthy countries tend to consume and produce these goods more intensively. In addition,

the variability in their production technologies generates large price dispersions, which in turn

give wealthy countries large incentives to trade. Poor countries, by contrast, produce and

consume more goods whose production technologies are similar across countries. As a result,

they trade little.

The model with this configuration recovers some moments in the data that contradict the

predictions of the EK special case. For example, the share of trade in a country’s income

increases with its income per capita, but not with its total income. The data show that doubling

a country’s income per capita increases its trade share by 2.1%. My model, similarly, predicts a

2.1% increase while the EK model predicts a 5.7% decrease. Doubling a country’s total income,

in turn, has a statistically insignificant and economically minor effect on trade share in the data

(it causes a 0.3% decrease). My model, again similarly, predicts a small 0.7% decrease while

the EK model predicts a 7.4% decrease. Another key moment is the number of trade flows

too small to be recorded in the data. (The data do not record trade flows under US$100,000.)

Of all possible importer-exporter country pairs, 10,816 (52%) have no registered trade in the

data. While my model predicts 6,254 trade flows with values under US$100,000, the EK model

predicts only 24.

My model differs from EK not only in its predictions regarding trade flows, but also in its

welfare implications. If the rate of growth China has experienced since the early 1980s persists,

China’s income will roughly quadruple every 15 years. The EK model’s predictions on welfare

due to these changes in China are simple: A technology shock in one country benefits all other

countries. To analyze this type of question with my model, I simulate counterfactual situations

numerically using the parameter estimates. I experiment with a technology shock in China that

causes its total income to quadruple. The shock decreases the price of goods that China and

other poor countries produce. As a result, wages in the 50 richest countries in the sample increase

by 0.5% relative to the rest of the world. The shock accordingly benefits rich countries, and hurts

the welfare of low-middle income countries. Poor countries, in turn, are left nearly indifferent.

Although their wages decrease relative to rich countries’, they do not consume enough of the
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high elasticity goods produced in rich countries to be significantly affected by the change.

A technology shock in the USA has the opposite effects as the shock in China. It decreases

the price of goods rich countries produce, and consequently decreases these countries’ relative

wages. A shock that causes a 30% increase in American wages, decreases wages in the 30 richest

countries in the world by 1.6% relative to the rest of the world. Most of these rich countries are

made worse off with the shock while the rest of the world benefits.

I also experiment with a move to autarky and to frictionless trade by letting transportation

costs tend to infinity in the first case and zero in the second. A move to autarky has a relatively

small impact in the price indices of low and high income countries because industries in these

regions have comparative advantages in the goods their consumers demand most intensively.

Middle income countries are therefore the ones to suffer the largest welfare losses when moving

to autarky. Likewise, they are also the ones to experience the largest price decreases, and

consequently welfare improvements when trade barriers are eliminated.

The paper is organized as follows. In section 2, I present the theoretical model. The empirical

analysis of both models is done in section 3. I exploit counterfactuals in section 4. The appendix

discusses alternative set ups for the model, and presents robustness checks.

2 A New Model: Theory

This section is organized as follows. In subsections 2.1 and 2.2, I present the theoretical model.

I solve the model in section 2.3, and explain its workings in section 2.4. I conclude by showing

that the EK model, a gravity-type model, is a special case of mine in subsection 2.5.

2.1 The Environment

There are N countries, and goods are subdivided into S types, each with a continuum of goods.

Goods of type τ ∈ {1, 2, ..., S} are denoted by jτ ∈ [0, 1]. I use throughout the terms sec-

tor and type interchangeably. All consumers in the world choose the quantities of goods jτ ,

{x(jτ )}jτ∈[0,1] of all types τ to maximize the same utility function:
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S∑
τ=1

{
ατ

(
στ

στ − 1

)∫ 1

0

[
x(jτ )στ−1/στ

]
djτ

}
(1)

where ατ ∈ [0, 1] is the weight of sector τ on preferences, with
∑S

τ=1 ατ = 1, and στ > 1 for all

τ = 1, ..., S.

Parameter στ is typically associated with its role as the elasticity of substitution across goods

within type τ . Here, however, it also governs the income elasticities of goods of type τ . To see

this, let {p(jτ )}jτ∈[0,1] and {p(jτ ′
)}jτ ′∈[0,1] be the set of prices of goods in any two sectors τ and

τ ′, respectively. Then, from the first order conditions, the total expenditures in goods of type

τ , xτ , and in goods of type τ ′, xτ ′
, satisfy

xτ

xτ ′ = λστ ′−στ

[
(ατ )στ

(ατ ′)στ ′

∫ 1
0 p(jτ )1−στ

djτ∫ 1
0 p(jτ ′)1−στ ′djτ ′

]
, (2)

where λ the Lagrangean multiplier associated to the consumer’s problem. This multiplier, it

can be easily shown, is strictly decreasing in the consumer’s total expenditure.

In equation (2), the term in square brackets governs the level of the ratio xτ/xτ ′
. A greater

ατ or a smaller set of prices {p(jτ )}jτ∈[0,1] increases expenditures in sector τ relative to those in

sector τ ′. The term (λστ ′−στ
) governs the rate at which xτ/xτ ′

changes with consumer income.

If στ > στ ′
, the ratio xτ/xτ ′

is decreasing in λ and consequently increasing in consumer wealth.

Therefore, the utility function in equation (1) captures the notion that consumers with different

income levels concentrate their spending in different types of goods in a simple manner: στ > στ ′

implies that goods of type τ are more income elastic, and consequently rich countries demand

relatively more of these goods than poor countries do.2

2.2 Technologies

Labor is the unique factor of production; it is perfectly mobile across sectors and immobile

across countries.3 Countries have different access to technologies, so that labor efficiency varies

2Appendix 6.1 further justifies the choice of the utility function in equation 1 by showing that it is
isomorphic in its predictions to a more general functional form.

3Labor can be interpreted more generally in the theoretical model as an input bundle, if capital is
assumed to be perfectly mobile across countries. I maintain the term labor throughout, however, because
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across countries and across goods. Let zi(jτ ) be the efficiency of labor to produce good jτ of

type τ in country i. Assuming constant returns to scale and denoting country i’s wage by wi,

the unit cost of producing each unit of good jτ in country i is wi/zi(jτ ).

Geographic barriers take the form of Samuelson’s “iceberg costs”: Delivering one unit of a

good from country i to country n requires the production of dni units. Transportation costs are

positive if dni > 1. Let dii = 1 for all i, and assume trade barriers obey the triangle inequality,

dni ≤ dnkdki for all i, k and n.

Taking these barriers into account, the total cost of delivering one unit of good jτ from

country i to country n becomes

pni(jτ ) =
dniwi

zi(jτ )
.

Assuming perfect competition, the price of good jτ faced by consumers in country n is

pn(jτ ) = min{pni(jτ ) : i = 1, ..., N}.

Following EK, in order to obtain the distribution of prices in the economy, I employ a

probabilistic representation of technologies. I also use the same functional form they do. For

any z ≥ 0, the measure of the set of goods jτ ∈ [0, 1] such that zi(jτ ) ≤ z is equal to the

cumulative distribution function of a Fréchet random variable:

F τ
i (z) = exp

(
−Tiz

−θτ
)

, (3)

where the parameter Ti > 0 for all countries i = 1, ..., N , and θτ > 1 for all sectors τ = 1, ..., S.

These distributions are treated as independent across countries and sectors.

Figure 1 illustrates four examples of the densities of Fréchet distributions with different sets of

parameters. Given θτ , the country-specific parameter Ti determines the level of the distribution

in equation (3)–a larger Ti increases the measure of goods with large, efficient technologies zi(jτ ).

Thus, the assumption that Ti does not depend on the type of good τ , made just for parsimony,

implies that a country that is generally good at making goods in one sector will also be good at

that is the interpretation used in the empirical analysis of section 3 below.
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making goods in other sectors.

Parameters θτ are common to all countries, but may differ across sectors. These parameters

govern the spread of the distribution–the larger the θτ , the smaller the variability in labor

efficiencies across goods and countries. A decrease in θ from 20 to 5 increases the dispersion of

the distribution of technologies across goods for a fixed T . But importantly, it also increases

the dispersion of technologies across countries–it shifts the density with T = 100 away from the

one with T = 10.

This property of the Fréchet distribution gives a dual role to the parameters θτ in the model.

First, the variability of technologies across goods governs comparative advantages within sectors.

A greater dispersion in labor efficiencies (smaller θτ ) generate greater price dispersions, and thus

a greater volume of trade. Hence, trade will be more intense in sectors where θτ is small.

Second, the variability of labor efficiencies across countries governs countries’ comparative

advantages across sectors. The mean of the Fréchet distribution helps illustrate this point. The

cost of delivering one unit of good jτ from country i to country n relative to the cost of producing

it domestically is pni(j
τ )

pnn(jτ ) = zn(jτ )
zi(jτ )

dniwi
wn

. Taking the expectance over jτ , we get

E(pni(jτ ))
E(pnn(jτ ))

=
(

Ti

Tn

)−1/θτ

dniwi

wn
. (4)

Two factors control the cost of producing goods in country i relative to producing them in

country n: The ratio of their effective wages
(

dniwi
wn

)
and the ratio of technology parameters(

Ti
Tn

)
. Parameter θτ controls the relative importance of these two factors. As θτ increases,

the exponent −1/θτ gets closer to zero, and wages become more important than technology

parameters in determining costs. So poor countries tend to specialize in sectors where θτ is

large because they have low wages. Rich countries, in turn, specialize in sectors where θτ

is small because, in general equilibrium, these countries coincide with those with high labor

efficiencies–i.e., high Ti’s.

Although the model is static, this production set up can be seen as arising from a product

cycle if parameter θτ is interpreted as the age of goods of type τ . When a good is first invented, θτ

is small, methods to produce it vary greatly across countries. Goods at this stage are produced in
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the, typically high income, country where it was invented. As θτ increases, methods to produce

goods of type τ become standardized (i.e., less variable across countries), and production tends

to shift to countries with low labor costs. In the limit, as θτ tends to infinity, the Fréchet

distribution collapses to a discrete random variable with all its mass at 1, irrespective of the

country-specific parameter Ti. This is the end of the learning process: All countries’ technology

parameters zi(jτ ) get arbitrarily close to 1; costs are exclusively determined by wages, and

production occurs in the country with the lowest effective cost of labor, dniwi.

2.3 Equilibrium

All countries have a continuum of individuals, who supply inelastically the one unit of labor

with which they are endowed. Denote by Li the measure of country i’s population and labor

supply.

Assume that (θτ +1) > στ for all τ = 1, ..., S, the well-known necessary condition for a finite

solution (see Eaton and Kortum (2002)). Given a set of wages wi, technology parameters Ti,

and iceberg costs dni, we can derive the distribution of prices faced by consumers in any country

n = 1, ..., N from the distribution of technologies (equation (3)). These prices, together with

the utility function, allow us to calculate the demand function.4 The expenditures of a typical

consumer in country n on goods of type τ is

xτ
n = (λn)−στ

[
(Φτ

n)(σ
τ−1)/θτ

ξτ
]
, (5)

where Φτ
n =

N∑
i=1

Ti (dniwi)
−θτ

,

ξτ = (ατ )στ
Γ

(
θτ + 1 − στ

θτ

)
,

Γ is the gamma function, and λn is the Lagrangean multiplier associated with the consumer’s

problem. This multiplier, λn > 0, is implicitly defined through the budget constraint (
∑T

τ=1 xτ
n =

wn) as a continuous and strictly decreasing function of income wn.

4I do not provide a detailed, step by step, derivation of the solution because the procedure is extremely
close to that in Eaton and Kortum (2002).
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Within sector τ , the expenditures of this consumer in country n in goods from country i is

xτ
ni =

Ti(dniwi)−θτ

Φτ
n

xτ
n. (6)

Finally, country n’s imports from country i total

Xni = Ln

(
S∑

τ=1

xτ
ni

)
. (7)

By equating supply to demand, we obtain country i’s labor market clearing conditions:

N∑
n=1

Xni = Liwi. (8)

This completes the solution to the model. To summarize, an economy is defined by a set of

N countries, each with its population Li and technology parameter Ti; a set of types {1, ..., S},
each with its technology parameter θτ , weight on preferences ατ and elasticity of substitution στ ,

and a matrix of trade barriers {dni}n,i≤N . Given wages, w, the matrix of trade flows {Xni}n,i≤N

can be obtained with equations (5) through (7). An equilibrium is a set of wages w ∈ Δ(N − 1)

such that the labor market clearing condition (8) is satisfied for all countries i ∈ {1, ..., N}.

2.4 Income per Capita and Trade Patterns

Having solved the model, we can now analyze how the parameters of the model affect the role

income per capita on trade. I consider, for simplicity, only the case analyzed empirically in

section 3 below, where there are only two types of goods, A and B. (Estimating the model with

more than two types of goods yield the same predictions regarding trade flows as the case with

two types. So restricting ourselves to two types does not hamper our analysis of the workings

of the model.)

If consumers’ preferences were homothetic, they would distribute their resources across goods

independently of their income levels. But by equation (5), country n’s spending in sector A

relative to sector B satisfies
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XA
n

XB
n

= (λn)σB−σA

⎡
⎣(

ΦA
n

)−(1−σA)/θA

ξA

(ΦB
n )−(1−σB)/θB

ξB

⎤
⎦ . (9)

Equation (9) is the same as equation (2), except that now the price terms
∫ 1
0 p(jτ )1−στ

djτ

are solved for according to the market structure and technology set up–i.e.,
∫ 1
0 p(jτ )1−στ

djτ =

Γ
(

θτ+1−στ

θ

)
(Φτ

n)−(1−στ )/θτ

for τ = A,B. Assuming σA > σB, rich households spend a larger

fraction of their incomes in type A goods than poor households do. The ratio XA
n

XB
n

is decreasing

in λn, and hence increasing in wealth.

Ultimately, however, we are interested on how this ratio affects trade, how it affects the

consumer’s allocation of income across potential exporters. Let Xτ
ni be country n’s spending on

goods of type τ ∈ {A,B} from country i. Since σA > σB, country n’s imports from country i

relative to its domestic consumption, Xni
Xnn

, is mostly determined by XA
ni

XA
nn

if country n is rich, and

by XB
ni

XB
nn

if it is poor. From equation (6), these ratios equal

XA
ni

XA
nn

=
Ti

Tn

(
dniwi

wn

)−θA

and
XB

ni

XB
nn

=
Ti

Tn

(
dniwi

wn

)−θB

. (10)

These are the same expressions as the RHS of equation (4), except that they are raised to

the power (−θA) and (−θB), respectively. Hence, the conclusions drawn there follow: A higher

θτ implies a lower variability in production technologies, and therefore a larger emphasis by

consumers on the effective cost of labor
(

dniwi
wn

)
than on the technology parameters

(
Ti
Tn

)
.

To make this point clearer, consider the case, consistent with the empirical results of section

3 below, where θA < θB. Suppose further that country n is poor. Then,
(

dniwi
wn

)
> 1 in

general, because wn is low and dni > 1. A large negative exponent will then make
(

dniwi
wn

)−θB

close to zero, and therefore country n’s expenditures abroad, Xni
Xnn

≈ XB
ni

XB
nn

, small. In words, the

low heterogeneity in production technologies of goods of type B, typically consumed by poor

countries, dampen the incentives for these countries to trade: If products are not sufficiently

differentiated, consumers in poor countries will prefer their domestic version, avoiding transport

costs.

This scenario is reversed if country n’s income per capita is high and Xni
Xnn

≈ XA
ni

XA
nn

. Since
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θA is small, the term
(

dniwi
wn

)−θA

will be relatively close to 1 irrespective of whether
(

dniwi
wn

)
is smaller than or greater than 1. Therefore, XA

ni

XA
nn

will be largely determined by the technology

parameters Ti
Tn

, instead of
(

dniwi
wn

)
as XB

ni

XB
nn

was. The effect of this result is twofold. First, rich

countries will tend to trade more than their poor counterparts because their consumers place a

smaller emphasis on trade barriers and wages (dniwi). Second, they will tend to trade more with

other high income countries, whose technology parameters Ti are large. So in accordance to the

empirical evidence mentioned in the introduction, depending on the values of the parameters,

the model predicts trade to be more intense among high income countries.

2.5 A Special Case: The Gravity Model

Eaton and Kortum (2002) show that their model delivers the gravity equation. That is, that the

flow of goods from country i to country n in their model take the form Xni = δniXnXi, where

Xn and Xi are the total incomes of country’s i and n, respectively, and δni is a measure of the

trade costs between countries n and i, which depends both on geographic barriers dni and on

the importing country’s price index.5

In this subsection, I show two special cases of my model under which its solution reduces to

the EK model. The most straightforward case is to suppose there exists only one type of good

(i.e., ατ = 1 for some τ). Production efficiencies are then distributed as per EK (equation (3)),

and the utility function becomes

στ

στ − 1

∫ 1

0

[
x(jτ )στ−1/στ

]
djτ ,

which represents standard homothetic, CES preferences. The flow of trade from country i to

country n is then given by

Xni = Xτ
ni =

Ti (dniwi)
−θτ

Φτ
n

Xn, (11)

where Xn = wnLn is country n’s total income. This is the solution to the EK model. Aside

5Eaton and Kortum (2002) consider only trade in manufacturing products. Thus, instead of country
n’s total income, Xn, they have its manufacturing absorption.
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from iceberg costs, it does not depend on countries’ income per capita.

An alternative way to recover the EK model from mine is to modify the supply side of the

economy. If θτ = θ for all τ ∈ {1, ..., S}, then country i exports to country n, Xni, is again given

by equation (11). This example is interesting because it shows that non-homothetic preferences

alone are not sufficient to modify trade patterns. If the distribution of technologies were equal

across the two types of goods, then different consumers would demand goods from exactly the

same sources–only the names (or types) of the goods would change.

The converse, however, is not true. One way to make preferences homothetic, while preserv-

ing the two-sector technology distribution is to assume στ = σ for all τ = 1, ..., T . Trade flows

as predicted under this restriction differ from the EK model (see equations (5) and (6)). And

although I do not present the results, I did estimate the proposed model with this restriction.

The explanatory power of this restricted model (formally defined in section 3 below) is closer

to the full model than to the gravity special case. Hence, technologies play a larger role in the

empirical results presented in section 3 below than preferences do. Notwithstanding, the model

with στ = σ does not explain any of the stylized facts I discussed above. So I continue to use the

interaction between non-homotheticity of preferences and variability in production technologies

to explain the workings of the model in replicating the data.6

3 Empirical Analysis

I use data on 1999 trade flows from the NBER-UN data set compiled by Feenstra et al. (2005).

Data on population and income are from the World Bank (2006). I downloaded from the Centre

d’Etudes Prospectives et d’Informations Internationales (2005) webpage data specific to country

pairs–distance between their most populated cities, common official language, and border. The

6It is not immediately apparent from equations (5) and (6) how trade flows depend on countries’
income per capita when preferences are homothetic (στ = σ) and the variability in production technologies
differ across types of goods (θτ varies by type). Poor countries specialize in sectors where production
technologies are less variable across countries. In general equilibrium, for markets to clear, the prices
of goods in these sectors must be similar across these poor countries. Thus, these countries face tight
exporting markets. And again because of general equilibrium, if poor countries export little, they must
also import little, even if their consumers would like to purchase more goods of other types. This
restricted model, therefore, partially explains why poor countries tend to trade less than rich ones–the
main empirical finding I discuss in section 3 below.
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data, containing 144 countries, are summarized in table 1. The rest of the world is treated as

non-existent throughout this paper, which leads me to neglect 10.6% of world trade. Table 1

shows, for each country, the percentage of its imports coming from countries within the sample.

This number is somewhat lower for Asian countries because Taiwan is not in the sample, and it

is significantly lower for South Africa’s neighbors due to its absence from the sample.

My objective in the empirical analysis is to match the bilateral trade flows observed in the

data to those predicted by the model. Eaton and Kortum (2002) show that their model provides

a theoretical foundation for the gravity equation, the most widely used empirical model of trade.

The general predictions of their model therefore coincide with those of other gravity-type models

such as Anderson and van Wincoop (2003) and Redding and Venables (2004). This makes the

EK model a convenient benchmark for mine. In order to make the two models comparable,

however, I cannot employ the usual regression approach to estimate the EK model, because it is

not applicable to my model–the non-homotheticity of preferences introduced here modifies the

prediction of trade flows in the gravity equation in a non-linear form. I propose, alternatively,

a methodology that takes advantage of the general equilibrium set up in both models. In the

case of the proposed model, I focus exclusively in the special case with only two types, denoted

A and B.7

In subsection 3.1 below, I present the methodology, and in subsection 3.2, I present the

results.

3.1 Empirical Analysis: Methodology

The theoretical model presented in section 2 above implies that country n’s imports from country

i satisfy (equations (5), (6), and (7)):

7As a robustness check, I also estimated the model with more than two types, but the predictions of
the model regarding trade flows remained unchanged and the type specific parameters ατ and θτ were
not identified.

15



Xni = Ln

(
xA

ni + xB
ni

)
where, for τ = A,B, (12)

xτ
ni =

Ti(dniwi)−θτ

Φτ
n

xτ
n,

xτ
n = (λn)−στ

[
(Φτ

n)(σ
τ−1)/θτ

ξτ
]
,

Φτ
n =

N∑
i=1

Ti (dniwi)
−θτ

,

ξτ = (ατ )στ
Γ

(
θτ + 1 − στ

θ

)
,

αB = 1 − αA, and the Lagrangean multiplier λn is implicitly defined through the budget con-

straint of a typical consumer in country n, xA
n + xB

n = wn.

Trade flows are therefore a function of the set of N countries, each with its population

Li, wages wi and technology parameter Ti; the set of iceberg costs dni; parameters θA and θB

controlling the spread of the distribution of technologies; the elasticities of substitution σA and

σB, and the weight of type A goods in the utility function α. From the data, I will take the set of

N = 144 countries, the population of each country Li and their wages wi. In order to calculate

bilateral trade flows, I need to estimate the set of iceberg costs dni, utility parameters α, σA and

σB, and technology parameters Ti, θA and θB. (I do not consider the Lagrangean multipliers

as additional parameters because, given all other variables, one can compute the unique set of

multipliers {λn}N
n=1 that satisfies the budget constraints.)

Iceberg costs. Assume the following functional form for the iceberg costs:

dni = 1 +
{
(γ0 + γ1Dni + γ2D

2
ni) ∗ γborder ∗ γlanguage ∗ γEU ∗ γNAFTA

}
, (13)

for all n �= i, and dnn = 1. The expression in brackets is the proxy for geographic barriers, and

the number 1 added to it is the production cost. Dni is the distance (in thousands of kilometers)

between countries n and i. So, the term in parenthesis represents the impact of distance in

trade costs. Parameter γborder equals 1 if countries n and i do not share a border, and it is a

parameter to be calibrated otherwise. If γborder is, for example, 0.8, sharing a border reduces
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trade costs by 20%, but has no impact on production costs; if γborder > 1, sharing a border

increases trade barriers. Similarly, parameters γlanguage, γEU and γNAFTA refer, respectively,

to whether countries n and i share a common language, or if they are both members of the

European Union (EU) or the North American Free Trade Agreement (NAFTA).8

Empirical work on trade often uses other variables, such as colonial links and other trade

agreements, in its specification of iceberg costs. I refrained from using these here because

preliminary analyses indicated that they were not altering my results, and by keeping the number

of parameters to a minimum, I gained computational time in estimating the model.

Henceforth, I refer to the set of iceberg cost parameters as

Υ = {γ0, γ1, γ2, γborder, γlanguage, γEU, γNAFTA}.

Technology parameters Ti. The equilibrium conditions in equation (8) pin down a one-

to-one relation between the set of technology parameters {Ti}N
i=1 and the market clearing wages

{wi}N
i=1. That is, given a set of parameters {Υ, αA, σA, σB, θA, θB}, data on population {Li}N

i=1,

geographic characteristics and trade agreements, one could either use the technology parameters

{Ti}N
i=1 to find the market clearing wages {wi}N

i=1, or conversely, use the wages to find the

technology parameters. I use the latter approach. I take income per capita from the data as

a proxy for wages.9 Then, for each guess of parameters {Υ, αA, σA, σB, θA, θB}, I simulate the

whole economy generating all trade flows Xni until I find the technology parameters {Ti}N
i=1

that satisfy the system of equations (8):
∑N

n=1 Xni = wiLi for i = 1, ..., N .10

This procedure reduces the number of parameters in the model from (N + 12) to 12: The

8Usually, an exponential functional form is assumed for iceberg costs, e.g., dni =
exp

(
γ0 + γ1Dni + γ2D

2
ni + γborder + γlanguage + γEU + γNAFTA

)
, which facilitates log-linearizing regres-

sion models. In my estimation procedure this convenience is useless, and the choice between these two
functional forms make no difference in my empirical results. I chose equation (13) because, unlike the
exponential function, its parameters are easily interpretable.

9I use income per capita as a proxy for wages. As presented in section 2, the model does not distinguish
between population and labor force, or income per capita and wages. From a theoretical viewpoint, it
is easy to introduce this distinction by making the labor endowment of individuals in country i equal
to some fraction βi < 1, where βi corresponds to the labor force participation in country i. While this
modification complicates the notation, its impact on the empirical results is nil.

10Alvarez and Lucas (2007) prove uniqueness of equilibrium in the EK model, but their proof is not
applicable to my model. Although I do not prove uniqueness of equilibrium, I did not encounter any cases
where the relation between wi and Ti in the market clearing conditions was many-to-one or one-to-many.
The United States’s technology parameter Ti is normalized to 100. All Fortran programs are available
upon request to the author.
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seven parameters in Υ, and αA, σA, σB, θA and θB. These, together with the data, are sufficient

to estimate the whole matrix of trade flows Xni.

Identification. In their paper, EK are not able to identify parameters θA and σA from the

trade data. Here I face the same problem.

Parameters θA and θB are not separately identifiable from the iceberg cost parameters Υ.

A decrease in θA and θB increases the variance of the distribution of technologies in equation

(3), which in turn increases trade across all country pairs. This effect can equally be attained

by decreasing the iceberg cost parameters. So, data on bilateral trade flows do not distinguish

between these two changes–i.e., a decrease in θA or in iceberg costs dni. Moreover, in order to

obtain values for and to interpret the remaining parameters of the model, I must choose a value

for θA or, by symmetry, for θB. I fix θA to 8.28, the median of the values found by Eaton and

Kortum (2002).

Parameters σA and σB are not separately identifiable either. These parameters, together,

govern how the allocation of expenditures across goods of type A and B varies with a country’s

per capita income, but they play no role individually. Just as with θA, I need to assume a

specific value for σA (or σB) in order to estimate and interpret the remaining parameters of the

model. Broda and Weinstein (2006) estimate the elasticity of substitution across goods within

each industry, where an industry is defined by the set of products with the same three-digit

Standard International Trade Classification (SITC) code. I fix σA = 4.0, the mean of their

estimates.11

In appendix 6.2, I experiment with other values of θA and σA. Although estimates for the

remaining parameters (Υ, αA, θB, σB) vary, predictions on trade flows barely change. (If it were

not so, parameters θA and σA would be identifiable.) For all values of θA and σA tried in the

appendix, the interpretation of the parameter estimates and of the results presented below–for

both EK and my model–remain absolutely unaltered.

11Broda and Weinstein (2006) estimate the elasticity of substitution across goods within industries,
when industries are defined at ten-, five-, and three-digit classification codes. I chose the broadest de-
finition of an industry, because my model contemplates only two sectors (or two “industries”). Hence,
presumably, goods within each one of these sectors should be very different, and their elasticity of sub-
stitution consequently be low.
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Having fixed the values of θA and σA, ten parameters–the seven elements in Υ, αA, σB and

θB–are sufficient to estimate the set of technology parameters {Ti}N
i=1, and thereby the matrix

of trade flows {X̂ni(Υ)}n,i≤N . I choose {Υ, αA, σB, θB} to minimize the distance between the

actual trade flows in the data and the estimated ones:

Ψ(Υ, αA, σB, θB) = (Xni − X̂ni(Υ, αA, σB, θB))′W (Xni − X̂ni(Υ, αA, σB, θB)) (14)

where W is a weighting matrix (specified below), Xni here is a vector containing trade flows for

all possible importer-exporter country pairs–i.e., all n and i with n �= i and n, i ∈ {1, ..., N}–and

X̂ni(Υ, αA, σB, θB) is the equivalent vector for the flows predicted by the model. Each of these

vectors thus contain (N2 − N) = 20, 592 observations.

I normalize the objective function in equation (14) by dividing it by X ′
niWXni, and refer to

1 −
(

Ψ(Υ, αA, σB, θB)
X ′

niWXni

)
(15)

as the model’s explanatory power. If X̂ni(Υ, αA, σB, θB) = Xni, then the explanatory power is

100%, and if X̂ni(Υ, αA, σB, θB) = 0, which is always feasible to predict by making iceberg costs

arbitrarily large, then the explanatory power is 0.

Since I cannot observe the variance of the observations Xni, I assume a functional form for

the weighting matrix W . I assume it is a diagonal matrix, and that the entry corresponding

to country n’s imports from country i, Xni, equals (XnXi)−κ, where Xn and Xi are the total

incomes of countries n and i, respectively, and κ is a constant. Depending on κ, trade among

large countries receives a greater or smaller weight in the objective function with respect to trade

among small countries. Appendix 6.4 experiments with different values for κ ∈ [0, 2]. From the

results there, when κ = 0 and W is the identity matrix, the optimization algorithm disregards

trade among small countries, and focuses almost exclusively on the large values of trade flows in

Xni, which occurs among large, rich countries. On the other extreme, when κ = 2, the algorithm

captures only observations corresponding to trade among small countries because (XnXi)−2 is

very small whenever countries n and i are large.

The thrust of the present paper is that the gravity model fails to reconcile the large volumes
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of trade among rich countries with the small volumes observed among small, poor countries.

Non-homotheticity in demand and supply, I argue, can simultaneously account for these two

moments. So, in order to make this point, it is convenient to pick an intermediary value for κ,

where neither poor nor rich countries are over represented in the objective function. I choose

κ = 1.0 and summarize in appendix 6.4 the results for κ ∈ [0, 2]. My model outperforms EK’s

in explaining the data for all values of κ ∈ [0, 2], and the direction of the changes between the

two models is the same as the one presented in this section.12 13

3.1.1 EK Model: Estimation Methodology

According to the EK model, trade flows from country i to country n are given by equation (11):

Xni =
Ti (dniwi)

−θA

ΦA
n

Lnwn. (16)

They are a function of the same variables as those in the general model except for parameters

αA, σA, σB and θB, which either do not exist or do not affect trade flows in this special case.

The estimation methodology described above can thus be seamlessly applied to the EK

model: I use data on population and income per capita as proxies for Li and wi, respectively;

assume the functional form in equation (13) for iceberg costs dni; recover the country-specific

technologies Ti through the set of N market clearing conditions, and fix θA = 8.28. This

procedure reduces the parameters of the model to the seven elements of Υ. I choose these

parameters to minimize function (14), the distance between trade flows in the data Xni and

those estimated by the model X̂ni(Υ). I again focus on the case where the weighting matrix

12The case where κ = 2 is interesting because the gravity model provides a theoretical justification for
it. The gravity equation postulates that trade flows from country i to country n equals Xni = δniXnXi,
where δni is a measure of trade barriers between countries n and i–typically a function of geographic and
economic barriers and the price indices of the two countries. So, if κ = 2, we can write the objective
function as (δni − δ̂ni(Υ))′(δni − δ̂ni(Υ)), where δ̂ni(Υ) = Xni(Υ)

XnXi
is the model’s theoretical measure of the

barrier between countries n and i, and δni is the real one. From an applied viewpoint imposing this as a
limiting case makes sense because the EK model predicts such small values for trade when κ = 2 that its
explanatory power is only 1%.

13Santos Silva and Tenreyro (2006) discuss extensively the problem of weighting observations in the
gravity model in trade. It is neither desirable, they argue, to give excessive weight to trade among
poor countries, whose data are of lower quality, nor to large countries, whose observations present larger
variances. As I do here, they also propose the use of the size of the importer and of the exporter to
weight observations.
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parameter κ equals 1.0 and relegate to the appendix the results for other values κ ∈ [0, 2]. I also

continue to refer to expression (15) as the model’s explanatory power.

All supplementary empirical results are in the appendix. In appendix 6.2, I re-estimate both

models using different values for parameters θA and σA. I derive confidence intervals for the

parameter estimates in appendix 6.3, and I present a synthesis of the results for all values of the

weighting matrix parameter κ in {0, 0.1, 0.2, ..., 1.9, 2.0} in appendix 6.4.

3.2 Results

I estimate both the EK and the new model using two different samples–the first includes only

the nineteen OECD countries used by EK (marked with an asterisk on table 1) and the second

includes all 144 countries in the data set. Table 2 displays the estimated parameters. Both

models explain trade among OECD countries equally well–their explanatory power is 84%.

Under the full sample, in contrast, the new model significantly improves the explanatory power

of EK from 30% to 49%. This makes clear the contribution of the new model. It lies not in

explaining trade among countries with similar characteristics (as in the OECD sample), but

rather in reconciling some features of the data observed across countries of different sizes and

income levels.

Table 3 summarizes the distribution of residuals of the full sample estimation. It displays

the contribution of each importing country n in the objective function (14). The values are

divided by X ′
niWXni so that the sum of residuals across importers equals 70% (= 100%− 30%)

for the EK model, and 51% for the new model. A significant fraction of the residuals in both

models correspond to Hong Kong and Singapore, the countries in the sample that trade the

largest fraction of their incomes. But even if these countries are removed from the sample, all

results remain qualitatively unchanged.14

14If Hong Kong and China, and Malaysia and Singapore are merged into a single country, the explana-
tory power of the EK model increases to 41%, and that of the new model decreases to 47%. The estimates
of the parameters that distinguish the new model from EK’s become (αA, σB , θB) = (0.85, 1.23, 11.1).
They thus satisfy the inequalities required for my explanation linking income per capita to trade to follow
through: αA ∈ (0, 1), σA > σB , and θA < θB . The patterns depicted in figures 3 and 2 discussed below
likewise hold.
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EK model. The data present large volumes of trade among large, rich countries and small

volumes among small, poor countries. Unable to reconcile these facts, the EK model simply

underestimates trade among rich countries and overestimates that of poor countries. Evidence

of the first part of this assertion is found in the comparison between the EK estimates under

the OECD and the full sample. As (γ1, γ2, γ3) changes from (1.49, 0.34,−0.06) in the OECD to

(1.72, 0.28,−0.02) in the full sample, trade among all OECD importer-exporter country pairs

decrease. Thus trade among these large and rich countries is underestimated when the full

sample is used. Further evidence is found in the EU and NAFTA parameters. In the estimation

with the full sample, these parameters are used as proxies for wealth since members of the EU

and NAFTA have on average higher income per capita than the remaining countries in the

sample. By decreasing (γ̂EU, γ̂NAFTA) from (0.90, 0.64) in the OECD to (0.75, 0.52) in the full

sample, the optimization algorithm increases trade among the participants of these agreements

without significantly affecting trade in the rest of the world. A γ̂EU = 0.75 and γ̂NAFTA = 0.52

in the full sample implies implausibly that participating in the EU and the NAFTA decreases

trade barriers by 25% and 48%, respectively.

But more obvious is EK model’s overestimation of trade among small countries, illustrated

in figure 2. Each of the graphs in the figure plot countries’ trade share (i.e., imports + exports
2∗GDP ) as

a function of the logarithm of their total GDP. Graph 2(a) refers to the data and 2(b) to the EK

model. Recall from the estimation methodology used here that there is no difference between

countries’ real and predicted incomes. So, the position of countries on the x-axes is the same in

all graphs. The graphs diverge only because of differences between the real and the estimated

trade shares, plotted on the y-axes. The EK model predicts a clear, strong negative correlation

between countries’ total income and trade share (figure 2(b)), which does not exist in the data.

It estimates, for example, that the ten smallest countries in the sample trade on average 90% of

their incomes, while the ten largest countries trade only 14%. These same numbers are 37% and

18%, respectively, according to the data. The pattern in figure 2(b) ensues from a tendency in

general equilibrium models for large countries to trade less. In a two-country world, for example,

because imports and exports must be the same in the two countries, the smaller one necessarily
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trades a larger fraction of its income.15

Figure 3 is analogous to figure 2, except that the logarithm of total income on the x-axes is

substituted for the logarithm of income per capita. Trade shares still appear on the y-axes, and

graphs 3(a) and 3(b) refer to the data and the EK model, respectively. While the data show that

trade share increases with income per capita, the EK model predicts that it decreases. (This

prediction of the EK model stems from the decreasing effect size has on trade share in the model

and the positive correlation between countries’ size and income per capita.)

New model. Through the mechanisms described in section 2.4, the new model amends the

shortcomings of the EK model described above. Three parameters distinguish the new model

from EK: αA, σB, θB. Parameters αA = 0.63, σA = 4.00 and σB = 2.43 define the consumers’

utility function. Sectors A and B coexist in the economy (αA ∈ (0, 1)), and since σA > σB, rich

consumers allocate a larger fraction of their incomes in goods of type A than poor consumers

do. To be specific, the non-homotheticity in demand is so acute that spending in sector A

ranges from 87% of Japan’s GDP to only 5% of the Democratic Republic of Congo’s. Sector A

also presents a greater heterogeneity in production technologies since θA < θB (θA = 8.28 and

θB = 14.28). Hence, rich countries have a comparative advantage in producing goods of type A.

These goods constitute 96% of Switzerland’s production, and only 5× 10−13 of the Democratic

Republic of Congo’s. Rich countries thus produce and consume more goods in sector A, the

sector whose production technologies are more heterogeneous across countries. As a result,

international trade is most intense among wealthy countries; poor countries trade little (recall

the explanation in section 2.4).

Figures 2(c) and 3(c) revisit the plots of trade share on size, and trade share on income per

capita using the predictions of the new model. They are analogous to figures 2(b) and 3(b)

for the EK model. Recall from figure 2(b) that the EK model predicts a decreasing effect of

size on trade share because of its general equilibrium set up. The new model counterpoises this

15An alternative way to look at this correlation in the EK model is through the gravity equation.
According to gravity models, the flow of trade from country i to country n equals Xni = δniXnXi, where
δni is a measure of trade barriers between countries n and i. Rearranging, we get that country n’s trade
share is equal to Xni

Xn
=

∑
i�=n δniXi. It is decreasing in the size of country n, the country excluded from

the sum.
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effect with a tendency for rich (often large) countries to trade less. As a result, its predictions

are much closer to the data than those of the EK model: The regression lines in figure 2 imply

that doubling a country’s total income decreases its trade share by 0.3% according to the data,

0.8% according to the new model, and 7.4% according to the EK model. Figures 2(a) and

2(c) present large variances among observations corresponding to medium-sized countries. This

pattern emerges in the data and the new model because medium-sized countries with small

populations and high income per capita have the largest trade shares, and those with large

populations and low income trade little.

The new model also correctly predicts that trade share increases with income per capita. The

slopes of the regression lines in all three graphs of figure 3 are not only statistically significant

at 1%, but also economically significant. Take, for example, the richest and poorest countries

in the sample–Switzerland and the Democratic Republic of Congo (DRC). The ratio of their

incomes per capita equals 380. Thus, the slopes in figure 3 imply that Switzerland’s trade share

is expected to be 18% larger than that of the DRC according to both the data and the new

model (0.18 = 0.031 log(380)), and 49% smaller according to the EK model!

Another key moment of the data is the number of bilateral trade flows whose values are too

small to be recorded. The data are classified into approximately 1,400 commodity categories. In

each of these categories, whenever the trade flow between two countries is less than US$100,000,

it is excluded from the data set. As a result, the data entail 10,816 (52%) country pairs with

no registered trade. The new model, similarly, predicts 6,254 bilateral trade flows of less than

US$100,000 while the EK model predicts only 24, clearly overestimating trade among small,

poor countries.16 17

16This comparison is, in some sense, unfair to the EK model. A country pair may trade several
commodity categories, but as long as the value of trade in each category is less than US$100,000, the
data record zero trade flows for that particular country pair. Thus, the total value of trade between two
countries may exceed US$100,000 and still appear as zero in the data. Notwithstanding, the difference
between the model and the data is so stark, that the model would fail even more lenient comparison
criteria.

17This last result is important in its contribution to a recent paper by Helpman, Melitz and Rubinstein
(2005) which addresses the question of zero bilateral flows observed in trade data. The paper introduces
two modifications to a monopolistic competition model of the gravity type: bounded technology spaces,
and fixed entry costs. A zero trade flow is generated if the most productive firm of a potential exporting
country does not find it profitable to incur in the fixed cost necessary to enter a particular importing
market–a possible scenario given that the technology space is bounded.
Although the rational is clear, my results indicate that Helpman et al. (2005) probably overestimate the
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4 Counterfactuals

Having estimated the model, we can now analyze counterfactuals. Since the model is highly

stylized, the purpose of this exercise is not to pursue policy recommendations, but a better

understanding of the model itself.

The methodology used here is as follows. From the data, we have the population of each

country, and from the calibration in section 3, we have the estimates of countries’ technology

parameters {Ti}N
i=1, of parameters αA, θA, θB and of the matrix of iceberg costs {dni}n,i≤N

through the estimate of Γ. So we have all the elements defining an economy. Initially, the wages

w that clear the market coincide with the real ones observed from the data. An analysis of

counterfactuals consists of changing the parameters defining the economy, solving the system of

equations (8) to obtain a new set of market clearing wages, and recalculating the utility function

of individuals in every country.

In section 4.1, I experiment with changes in trade costs, dni, and in section 4.2, I experiment

with changes in technology parameters, Ti.

4.1 Trade Barriers

to be completed

4.2 Technology Shocks

I experiment in this subsection with a technology shock in one country, i.e., a unilateral increase

in its parameter Ti. Looking at this change at a theoretical level first will help us understand

the counterfactual results.

Technology Shocks: Theory. The effects of a technology shock depend on both the supply

and the demand sides of the economy. To separate the two, I consider three cases: (i) σA > σB

magnitude of entry costs. By using a gravity type model, they neglect the diminished incentives that
small, typically poor, countries have for consuming goods abroad. The comparison between the number
of bilateral trade flows of less than US$100,000 estimated by the new model–6,254–to that estimated by
the EK model–24–makes this point evident.

25



and θA = θB, (ii) σA = σB and θA < θB, and (iii) σA > σB and θA < θB. I suppose there are

no transportation costs (i.e., dni = 1).

In case (i), preferences are non-homothetic, but supply is not. The model then reduces to EK

(see section 2.5): A technology shock in one country must benefit all other countries in the world,

and preserve their relative wages. (Before and after the shock, expenditures of all countries n in

goods from country j relative to those from country j′ must equal Xnj

Xnj′
= Tj

Tj′

(
wj

wj′

)−θ
.) If, on

the other hand, preferences are homothetic, but supply is not (case (ii)), a technology shock may

hurt some countries. To study this case and case (iii), I use simulations in a fictitious economy

with 100 countries, population vector L = 1 and technology parameters T = 1, 2−1, ..., 2−99.

Figure 4 summarizes the welfare results from a technology shock in the world’s poorest

country. The left graph refers to case (ii), and the right, to case (iii). On the x-axis is the

logarithm of initial wages. On the y-axis, the dots are the share of type A goods in supply (S),

and the triangles are the share of type A goods demand (D). In both graphs, poor countries

supply mostly type B goods, and rich ones, type A. In case (ii), the demand curve is horizontal

because preferences are homothetic, and in case (iii), it is upward sloping–rich countries consume

relatively more type A goods. The net supply of type A goods (S − D) is plotted in diamonds

and crosses. The diamonds are the countries which are made better off with the shock, and the

crosses those that are made worse off.

The economy’s poorest country produces practically only type B goods. Hence, its technol-

ogy shock decreases the price of these goods relative to those of type A, and consequently, it also

decreases wages in poor countries–type B producers–relative to rich ones. The result of case (ii)

thus follows: Poor countries are made worse off with the shock, and rich ones better off. In case

(iii), these same price and wage changes occur. But now the poorest countries in the economy

are made better off with the shock. The decrease in the price of type B goods hurts these

countries are hurt as producers, but benefit them as consumers. They are hardly affected by

the decrease in their wages relative to rich countries’ because they consume few goods produced

in rich countries. Only middle income countries, the major net importers of type A goods, are

hurt with the shock.
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Technology Shocks: Counterfactuals. Now return to the economy estimated in section

3. To define it, take from the data the set of N = 144 countries and their population, and from

the estimation procedure, the parameters {Ti}N
i=1, Υ, αA, σA, σB, θA, θB. Initially, the wages

that clear the market are equal to those in the data. I experiment here with unilateral increases

in China’s and in the U.S.A.’s technology parameters TChina and TUSA. I then recalculate

equilibrium wages and utility levels.

Between 1984 and 1999 (the year of the data), China grew nearly four times relative to

the rest of the world. To view the model’s predictions of a continued growth in China, I

experiment with a technology shock in China that increases its wages by 300% relative to the

rest of the world. Figure 5 summarizes the results. The figure follows the same pattern as

figure 4 explained above: The logarithm of initial wages are on the x-axis, and on the y-axis,

the dots are share of type A goods in production, the triangles are the share of type A goods

in demand, and the diamonds and crosses are the net supply of type A goods. The shock in

China makes the 36 richest countries in the world better off (diamonds), and the vast majority

of the remaining countries, worse off (crosses). As in the theoretical cases above, a technology

shock in China decreases the relative price of type B goods, and consequently decreases wages in

poor countries relative to rich ones. More specifically, wages in the world’s 50 richest countries

increase by 0.5% relative to the rest of the world. The largest wages increases are experienced

by China’s rich neighbors–Macao (6.7%), Hong Kong (5.8%), Singapore (1.9%)–and the largest

wage decreases are experienced by some of its poor neighbors–Mongolia (-4.0%), Tajikistan (-

1.9%), Kyrgyztan (-1.5%). Yet, for the same rationale of case (iii) above, welfare in the last

three countries improves with the shock. The biggest utility losses are experienced by middle

income countries–e.g., Malaysia, the Philippines, Thailand–the largest net importers of type A

goods.

The effects of a technology shock in the U.S.A. have the opposite direction of those of the

shock in China. As figure 6 shows, the shock makes most rich countries worse off, and all poor

countries better off. (Figure 6 is analogous to figure 5.) A shock in the U.S.A. decreases the

price of type A goods, and consequently decreases wages in rich countries relative to wages poor

countries. A shock that increases American wages by 30% relative to the rest of the world
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decreases wages in the 30 richest countries in the sample by 1.6% relative to the rest of the

world. The largest net exporters of type A goods are generally rich countries with neighbors

poorer than themselves–e.g., Singapore, Japan, and Switzerland. These countries experience

the largest utility losses with the shock in the U.S.A.

5 Conclusion

An integrated trade model, one that provides a single framework for trade among rich coun-

tries as well as trade among countries of differing income levels, has concerned economists at

least since Markusen (1986). Generally speaking, North-North trade is explained through the

differentiation of goods and services, while North-South trade is explained through comparative

advantage in technology or factor endowments. The model I have proposed delivers both these

N-N and N-S patterns. Trade among rich countries occurs primarily within a sector whose goods

are highly differentiated, while trade of rich with poor occurs across sectors.

A comparison of the quantitative trade flows of this integrated model to those of a gravity

type model show the benefits of the integrated approach. Theoretical foundations of the gravity

relationship are typically based on intra-industry trade of differentiated goods. So the EK gravity

model does a good job of explaining trade among the rich OECD countries but not trade among

countries at very different income levels. My integrated model, in turn, explains the N-N trade

of OECD countries just as well as EK, and explains the N-N and N-S trade in the full sample

much better than EK. My model, for example, correctly predicts that trade share increases with

income per capita, and is largely unresponsive to total income. It also correctly predicts small

volumes of trade among small, poor countries, and large volumes among rich countries.

Although I focused on macro-level trade data, my model has implications at the micro-level.

Specifically, the parameter estimates imply that goods with high income elasticity of demand

coincide with goods of high production heterogeneity. As a result, the model predicts that

rich countries have a comparative advantage in producing the same goods that their consumers

demand more intensely and that these goods are different from those produced and consumed

more intensely in poor countries. I use micro-level trade data to verify this prediction in Fieler
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(2007).

Adding dynamics is the most natural extension of my model. Throughout this paper, I have

emphasized the connection between product cycles and the variability in production technologies

in my model. A dynamic version of my model should be useful in studying the effects of non-

homothetic preferences on technology diffusion, the evolution of trade, and growth.
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6 Appendix

6.1 An Alternative Form for the Utility Function

The purpose of this appendix is to discuss the chosen form for the utility function in equation (1).

The division of goods into types is designed to capture the empirical finding that poor households

spend most of their income on food, while rich ones spend more on luxuries. The main text

explains how equation (1) captures this phenomenon (see equation (2) and its explanation).

Despite its simplicity, the reader may feel uncomfortable with the role of στ in demand having

little to do with its original interpretation as the elasticity of substitution across goods. One

way to solve this issue is to assume a more general form:

S∑
τ=1

{
ατ στ

γτ (στ − 1)

[∫ 1

0
x(jτ )στ−1/στ

djτ

]γτ }
.

Denote by p(jτ ) be the price of good jτ ∈ [0, 1] of type τ = 1, ..., S. I consider two (not

exhaustive, but instructive) cases.

Case 1: γτ = στ/(στ − 1) for all τ . Assuming first order conditions hold with equality,

the Lagrangean multiplier corresponding to the consumer’s problem satisfies

λ = ατ

[∫ 1

0
p(jτ )1−στ

djτ

]1/(1−στ )

for all τ . Since these conditions cannot hold simultaneously for arbitrary prices, the consumer

will only demand products from the sector with lowest price index. More importantly, the

Lagrangean multiplier and hence consumer demand do not depend on income. This leads us

back to the homotheticity assumption: whenever consumers are faced with the same price, their

demand for all goods are proportional to their income.

Case 2: γτ �= στ/(στ − 1) for all τ . The ratio of expenditures in any two types of goods,

τ and τ ′, equals

xτ

xτ ′ = λξτ
1−ξτ ′

1

⎡
⎢⎢⎣ (ατ )ξτ

1

(∫ 1
0 p(jτ )1−στ

dj
)ξτ

2

(ατ ′)ξτ ′
1

(∫ 1
0 p(jτ ′)1−στ ′djτ ′

)ξτ ′
2

⎤
⎥⎥⎦ ,
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where λ is the consumer’s Lagrangean multiplier, ξτ
1 = −στ+στ (1−στ )(γτ−1)

στ+γτ−στ γτ and ξτ
2 = γτ

στ+γτ−στ γτ .

As in the main text (equation (2)), the term in brackets determines the level of xτ/xτ ′ , and

(λξτ
1−ξτ ′

1 ) determines how it changes with consumer income. Note, however, that this new

functional form complicates the algebra without adding anything to the analysis. In the case

considered in the empirical analysis where sectors A and B are the only two sectors, γA and

γB are not separately identifiable from σA, σB and α. For any set of prices p and parameters

(σA, σB, γA, γB), the parameter α can be judiciously chosen to match any desirable level of the

ratio xA/xB. The rate of change of xA/xB, in turn, is ultimately determined by the the expo-

nent of the Lagrangean multiplier, (ξA
1 − ξB

1 ). Parameters (σA, σB, γA, γB), therefore, all play

the same role and thus only one of them is sufficient to determine the value of (ξA
1 − ξB

1 ) – the

rest can be normalized. In our chosen functional form, equation (1), γA and γB are set to 1.18

6.2 Normalization of parameters θA and σA

In section 3, I estimated the EK model by fixing the value of θA to 8.28. Table 4 shows the

parameter estimates for θA = 3.60, 8.28 and 12.86, the three estimates found by Eaton and

Kortum (2002). An increase in θA decreases the variance of the distribution of technologies in

equation 3, which decreases trade across all country pairs. So, in order to compensate for this

change, parameters γ1 and γ2, capturing the effect of distance on transportation costs, must

decrease as θA increases from 3.60 to 12.86. Apart from this change, the observations made in

section 3 persist: The explanatory power of the model is the same for all values of θA, and the

estimates for the EU and the NAFTA parameters are all implausibly low–they range from 0.47

to 0.70 implying that these agreements decrease trade barriers by some factor between 53% to

30%. The latter result is important because, as previously explained, it is indicative of the EK

model’s inability to reconcile the large volumes of trade among rich nations to the small volumes

observed for poor economies.

Table 5 shows the results of the new model, when the values of θA and σA change. The

18The fact that the term
[∫ 1

0
p(jτ )1−στ

]
has an exponent in case 2 but not in the original text does not

change the analysis either. In the same way that γA and γB are confounded with other parameters of the
utility function, the exponent ξA

2 is not be separately identifiable from the parameters in the production
side of the economy.
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newly chosen values for σA, 2.20 and 6.60, were both taken from Broda and Weinstein’s (2006)

estimates for the elasticity of substitution across goods. (Their estimates vary depending on the

level of aggregation of products and on whether the mean or the median is picked.) And the

conclusions drawn in section 3.2 again persist. The explanatory power of the new model changes

only slightly as θA and σA vary. For all values of θA and σA, the parameter estimates satisfy

α ∈ (0, 1), σA > σB and θA < θB, thus indicating that the previously given explanation for the

effects of non-homotheticity of preferences on trade patterns remains the same.

One way to pin down the values of θA or σA in both models is to compare the iceberg costs

implied in the parameter estimates to direct measures of transportation costs. Anderson and

Wincoop (2004), for example, estimate that trade costs in OECD countries are equivalent to

an ad-valorem tax of approximately 74%. Of all the values of θA or σA shown on tables 4 and

5, the selected ones, θA = 8.28 and σA = 4.00, are the ones that best approximate Anderson

and Wincoop’s figure in both models. In the EK model, transportation costs (dni − 1) between

U.S. and Germany are estimated to 110% and those between the U.S. and Canada, to 49%;

in the new model, estimates for these same costs are 133% and 49%, respectively. The other

parameter estimates on tables 4 and 5 generate either much higher or much lower iceberg costs.

The conclusions from this exercise, however, should not be stretched because measurement errors

in transportation costs are extremely large, and estimates vary tremendously across goods and

countries.

6.3 Confidence intervals

to be completed

6.4 Estimates with different weighting matrices, W

In estimating the EK and the new model, I chose the parameters that minimized (Xni −
X̂ni)′W (Xni − X̂ni) on equation (14), where W was parameterized to be a diagonal matrix

with the element corresponding to country n’s imports from country i equal to (XnXi)−κ. In

the main text, I focused exclusively on the case where κ = 1.0. In this appendix, I present a
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summary of the results from estimating both the EK and the new model for several values of

κ ∈ [0.2]. Or more specifically, for all κ ∈ {0, 0.1, 0.2, ..., 1.9, 2.0}.
The most straightforward comparison between the performance of my model and EK’s is

through the objective function. Using the same normalization of section 3, I refer to

1 −
{

(Xni − X̂ni)′W (Xni − X̂ni)
X ′

niWXni

}

as the model’s explanatory power. Figure 7 plots the explanatory power of the new model

and of the EK model as a function of κ. The new model explains the data better than the

EK model for all values of κ ∈ [0, 2]. An additional comparison of interest in figure 7 is that

between the EK model with the full sample to the one with the reduced sample, containing

only OECD countries. This comparison confirms that the EK model predicts well trade among

wealthy countries, but performs poorly when a lot of small, poor economies are added to the

sample–the curve of the EK model with the full sample lies everywhere well below the one for

the reduced sample. Note also that when κ = 0 all three curves lie close together. By definition,

the weight in the objective function of trade among large economies with respect to trade among

small ones is decreasing in κ. When κ = 0, the observations that receive the greatest weight in

the objective function are precisely the ones where both the importer and the exporters are the

large, OECD countries. So, the finding that the explanatory power of the proposed model (83%)

is only marginally greater than that of the EK model (82%) shows that the true contribution

of the proposed model occurs only when the sample contains a combination of small and poor,

with large and wealthy countries.

On the other extreme, when κ = 2, the objective function places a lot of weight on the zero

trade flows observed among small countries. As a result, both models grossly underestimate

trade–the explanatory power of the EK is only 1% and that of the new model, 9%.

Figure 2 discussed in section 3 depicts the relation between trade share (i.e., imports + exports
2∗GDP )

and income, comparing the data to the predictions of the two models. Figure 8 summarizes the

equivalent figure for all values of κ ∈ [0, 2] by plotting κ against the coefficient on GDP per

capita in the regression of trade share on a constant and on the logarithm of GDP (i.e., the
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slope of the regression line illustrated in figure 2). Analogously, figure 9 plots the slope of the

regression line illustrated in figure 3, obtained from regressing trade share on a constant and

on the logarithm of total GDP. In both figures 8 and 9, the horizontal line represents the slope

as observed in the data; the curve marked by diamonds refer to the proposed model, and that

marked by asterisks refer to the EK model.

Unquestionably, the curves corresponding to the proposed model are persistently closer to

the line of the data than the curves of the EK model are. According to the data, the correlation

between a country’s trade share and its total income is approximately zero, while the correlation

between trade share and income per capita is positive and statistically significant–the slopes in

figures 2(a) and 3(a) equal 0.004 and 0.030, respectively, and their standard errors are 0.007 and

0.009. The new model captures the first of these trends for all values of κ ≥ 1.1 (figure 8) and

the second for all κ ≥ 0.8 (figure 9). When κ ≤ 0.7, both models fail to reproduce these two

trends in the data, predicting instead large, negative and statistically significant correlations

between trade share and income, and trade share and income per capita. For these low values

of κ, the contribution of trade to and from small poor countries in the objective function is very

small, and consequently these countries are largely ignored in the estimation of both models,

especially of the EK model.19

In section 3, I discussed how, contradicting the evidence in the data, the EK model predicts

a negative or near zero correlation between income per capita and trade share, and a strong

negative correlation between total income and trade share. While this assertion clearly holds for

all values of κ ≤ 1.3, figures 8 and 9 can give the misleading impression that the EK model is able

to capture the trends in the data for κ ≥ 1.4. It is not so. The slopes plotted in these figures are

distorted because of the EU and NAFTA parameters. For κ ∈ [1.4, 2], the EU parameter in the

EK model ranges from 0.46 to 0.31, and the NAFTA parameter ranges from 0.29 to 0.21, which

implies implausibly that these trade agreements decrease iceberg costs across its participants

by at least 54% and up to 79%. The model, in this fashion, estimates large trade shares for

the participants of the the EU and the NAFTA, a prediction which increases the values of the

19To give a concrete example, when κ = 0, the trade share of the 43 smallest economies in the sample
are all greater than 95% according to the EK model, and they average 79% in my model. By contrast,
the data show that the trade share of these economies never exceeds 73% and is only 27% on average.
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slopes plotted in figures 8 and 9, because the participants of these agreements are on average

larger and wealthier than most countries in the sample. If, however, EU and NAFTA countries

are excluded from the sample in the calculation of the slopes in figures 8 and 9, the conclusions

drawn in the main text hold for all values of κ ≥ 1.4: In both the data and the predictions of

the new model, there is a positive and statistically significant at a 1% level correlation between

a country’s trade share and its income per capita, and a small and insignificant correlation

between trade share and total income; in the EK model, the relation between a country’s trade

share and its income per capita is negative or close to zero, while that between trade share and

income is strong, negative and statistically significant at a 1% level.

The last point I make in the empirical analysis concerns the amount of trade flows too small

to be captured in the data. Trade flows whose values are US$100,000 are not registered, and

10,816 country pairs have no registered trade. Figure 10 compares 10,816 to the number of trade

flows predicted in the EK and in the new model, whose values are smaller than US$100,000. As

before, the curve marked with diamonds refer to the new model, and that with asterisks to the

EK model. As I have insisted throughout the paper, the EK model, in its inability to conciliate

the small trade flows observed across small, poor economies with the large flows observed across

large, wealthy economies, tends to overestimate trade among small, poor countries. One of the

consequences of this overestimation is that, for all κ ≤ 1.5, the EK model predicts less than

1,000 bilateral trade flows valuing less than US$100,000, which is inexpressible compared to the

10,816 zero bilateral flows found in the data (see figure 10). When κ ≥ 1.6, on the other hand,

the entry of the weighting matrix Wni = (XnXi)−κ is so large when both the importing and

exporting countries are small that the EK and the new model focus almost exclusively on these

country pairs. By trying to predict the small volumes of trade observed across these pairs, the

models underestimate trade for virtually all countries. When κ = 2, for example, the number

of countries trading less than 1% of their incomes is 122 according to the EK model and 10

according to the new model; in the data, the smallest trade share in the world is Rwanda’s and

it is equal to 4%.
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Table 1: summary of country data   (1/3)

Country

Imports from the 
sample as a % of 

total imports
GDP          

(1999 US$ BI)
GDP per capita   

(1999 US$)

Institutional 
infrastructure 

index

Albania 100 3.4 1,112 -0.6
Algeria 99 48 1,589 -1.1
Angola 90 6.2 511 -1.8
Argentina 98 284 7,789 0.2
Armenia 100 1.85 587 -0.7
Australia* 93 404 21,295 1.6
Austria* 98 210 26,271 1.6
Azerbaijan 100 4.6 574 -0.9
Bahamas 100 4.6 15,275 0.9
Bahrain 100 6.6 10,093 0.2
Bangladesh 100 44 344 -0.5
Barbados 100 2.5 9,277 -
Belarus 100 10.9 1,090 -1.1
Belgium, Luxembourg* 98 271 25,436 1.2
Belize 100 0.73 3,021 0.2
Benin 98 2.4 394 0.0
Bolivia 100 8.3 1,016 -0.2
Brazil 97 529 3,151 0.1
Bulgaria 99 13 1,578 0.0
Burkina Faso 100 2.8 256 -0.4
Burundi 96 0.71 107 -1.4
Cambodia 100 3.5 278 -0.6
Cameroon 99 9.2 621 -0.8
Canada* 98 651 21,352 1.6
Central African Rep. 99 1.05 286 -0.7
Chad 100 1.53 201 -0.7
Chile 97 73 4,864 1.1
China 84 991 791 -0.4
Colombia 98 86 2,075 -0.6
Congo 96 2.4 705 -1.4
Costa Rica 100 16 4,235 0.9
Cote d'Ivorie 99 13 812 -0.8
Croatia 100 20 4,375 0.2
Cyprus 100 9.6 12,752 0.9
Czech Rep. 99 59 5,743 0.6
Dem. Rep. Congo 65 4.7 98 -2.2
Denmark* 98 173 32,548 1.7
Dep. of Reunion 89 0.22 410 -
Djibouti 99 0.54 824 -
Dominican Rep. 100 17 2,114 0.0
Ecuador 98 17 1,364 -0.8
Egypt 100 89 1,419 -0.2
El Salvador 100 12.5 2,038 0.1
Equatorial Guinea 98 0.87 1,954 -
Estonia 100 5.6 4,038 0.9
Finland* 96 128 24,750 1.9
France, Monaco* 97 1,444 24,629 1.2
Gabon 98 4.4 3,540 -0.6

* OECD country

Table 1: List of countries in the sample
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Table 1: summary of country data   (2/3)

Country

Imports from the 
sample as a % of 

total imports
GDP          

(1999 US$ BI)
GDP per capita   

(1999 US$)

Institutional 
infrastructure 

index

Gambia 99 0.43 341 -0.3
Georgia 100 2.8 586 -0.7
Germany* 98 2,108 25,680 1.5
Ghana 96 7.7 400 -0.1
Greece* 97 120 11,032 0.8
Guatemala 100 18 1,652 -0.5
Guinea 98 3.5 477 -0.8
Guyana 100 0.68 897 -0.1
Haiti 100 4.2 532 -1.2
Honduras 100 5.4 862 -0.3
Hong Kong 92 161 24,313 1.0
Hungary 99 48 4,772 0.8
Iceland 100 8.4 30,362 1.8
India 83 447 447 -0.1
Indonesia 88 140 688 -0.9
Iran 91 93 1,481 -0.7
Ireland 98 95 25,376 1.6
Israel 97 104 16,955 0.7
Italy* 97 1,180 20,478 0.8
Jamaica 100 7.2 2,813 0.1
Japan* 88 4,453 35,160 1.1
Jordan 100 8.1 1,716 0.2
Kazakhstan 99 17 1,103 -0.6
Kenya 89 10.6 359 -0.9
Korea 89 445 9,549 0.5
Kuwait 88 29 13,851 0.3
Kyrgyzstan 100 1.25 257 -0.7
Latvia 100 7.2 3,021 0.4
Lebanon 100 17 3,951 -0.3
Libya 100 30 5,935 -1.3
Lithuania 100 10.8 3,070 0.4
Macau 100 6.1 14,265 -
Macedonia 100 3.7 1,821 -0.4
Madagascar 94 3.7 247 -0.3
Malawi 37 1.78 176 -0.3
Malaysia 93 79 3,485 0.2
Mali 96 2.6 243 -0.2
Malta 100 3.6 9,396 0.7
Mauritania 100 0.96 373 -0.6
Mauritius 87 4.2 3,555 0.8
Mexico 99 481 4,982 -0.1
Mongolia 100 0.91 381 0.3
Morocco 93 35 1,248 0.0
Mozambique 42 4.0 230 -0.4
Nepal 100 5.0 224 -0.6
Netherlands* 96 399 25,216 1.8
New Zealand* 95 57 14,982 1.6
Nicaragua 100 3.7 757 -0.4

* OECD country
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Table 1: summary of country data   (3/3)

Country

Imports from the 
sample as a % of 

total imports
GDP          

(1999 US$ BI)
GDP per capita   

(1999 US$)

Institutional 
infrastructure 

index

Niger 100 2.0 194 -0.6
Nigeria 96 35 281 -1.0
Norway* 98 158 35,448 1.5
Oman 67 16 6,691 0.6
Pakistan 81 63 467 -0.9
Panama 100 11.5 4,076 0.2
Papua New Guinea 100 3.4 682 -0.6
Paraguay 100 7.7 1,503 -0.9
Peru 99 51 2,009 -0.2
Philippines 90 76 1,017 -0.2
Poland 98 164 4,254 0.6
Portugal* 98 115 11,313 1.2
Qatar 83 12.4 21,930 0.5
Rep. Moldova 99 1.17 273 -0.7
Romania 98 36 1,585 -0.3
Russian Fed. 98 196 1,339 -0.9
Rwanda 95 1.93 258 -0.8
Senegal 99 4.8 512 -0.3
Seychelles 89 0.62 7,747 -
Singapore 91 81 20,592 1.6
Slovakia 98 20 3,783 0.4
Slovenia 99 21 10,689 0.8
Spain* 97 602 14,984 1.3
Sri Lanka 99 16 860 -0.5
Sudan 100 10.7 349 -1.5
Suriname 100 0.89 2,109 -0.2
Sweden* 99 251 28,374 1.7
Switzerland, Liechtenstein 99 265 37,097 1.8
Syria 100 16 1,005 -0.9
Tajikistan 99 1.09 179 -1.3
Tanzania 84 8.6 262 -0.4
Thailand 90 122 2,031 0.2
Togo 99 1.58 360 -0.9
Trindad Tobago 100 6.8 5,310 0.5
Tunisia 98 21 2,200 0.3
Turkey 96 184 2,773 -0.3
Turkmenistan 100 2.5 537 -1.3
U. S. A.* 95 9,216 33,028 1.5
Uganda 89 6.0 264 -0.7
Ukraine 100 32 633 -0.8
United Kingdom* 97 1,462 24,898 1.6
Uruguay 100 21 6,332 0.8
Uzbekistan 100 17 700 -1.2
Venezuela 97 98 4,105 -0.7
Yemen 100 7.5 439 -0.8
Yugoslavia 89 10.2 961 -0.9
Zambia 36 3.1 323 -0.5
Zimbabwe 42 5.5 443 -1.2

* OECD country
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OECD only Full sample

EK = New model EK model New model

Explanatory power 84% 30% 49%

Normalized parameters

σA 4.00

θA 8.28 8.28 8.28

Estimated parameters

γ1 1.49 1.72 1.74

γ2 0.34 0.28 0.19

γ3 -0.06 -0.05 -0.02

border 0.92 0.78 0.80

language 0.88 0.90 0.74

EU 0.90 0.75 0.75

NAFTA 0.64 0.52 0.72

αA 0.63

σB 2.43

θB 14.28

Table 2: Estimation Results
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Table 3: Distribution of residuals by importer   (1/3)

Country EK model New model Δ = EK - New model

Albania 0.1 0.0 0.0
Algeria 0.2 0.1 0.1
Angola 0.1 0.0 0.0
Argentina 0.2 0.1 0.1
Armenia 0.0 0.0 0.0
Australia 0.4 0.4 0.0
Austria 0.2 0.8 -0.6
Azerbaijan 0.1 0.0 0.0
Bahamas 0.1 0.1 0.0
Bahrain 0.1 0.1 0.0
Bangladesh 0.1 0.1 0.0
Barbados 0.0 0.0 0.0
Belarus 2.0 2.2 -0.2
Belgium, Luxembourg 1.3 1.3 0.0
Belize 0.0 0.1 0.0
Benin 0.1 0.0 0.1
Bolivia 0.1 0.0 0.0
Brazil 0.1 0.1 0.0
Bulgaria 0.3 0.2 0.0
Burkina Faso 0.1 0.0 0.1
Burundi 0.0 0.0 0.0
Cambodia 0.2 0.2 0.0
Cameroon 0.1 0.1 0.0
Canada 0.2 0.1 0.1
Central African Rep 0.0 0.0 0.0
Chad 0.0 0.0 0.0
Chile 0.1 0.1 0.0
China 0.5 0.9 -0.4
Colombia 0.1 0.1 0.1
Congo 0.1 0.0 0.1
Costa_Rica 0.2 0.1 0.1
Cote d'Ivorie 0.5 0.5 0.0
Croatia 0.3 0.3 0.0
Cyprus 0.1 0.1 0.0
Czech Rep. 0.8 1.1 -0.3
Dem. Rep. Congo 0.1 0.0 0.1
Denmark 0.1 0.4 -0.2
Dep. of Reunion 0.0 0.0 0.0
Djibouti 0.0 0.0 0.0
Dominican Rep 0.1 0.1 0.1
Ecuador 0.1 0.0 0.0
Egypt 0.2 0.2 0.0
El Salvador 0.2 0.0 0.2
Eq_Guinea 0.0 0.0 0.0
Estonia 0.8 0.8 0.0
Finland 0.3 0.6 -0.4
France, Monaco 0.3 0.4 -0.1
Gabon 0.1 0.0 0.1
Gambia 0.0 0.0 0.0
Georgia 0.0 0.0 0.0

Table 3: Distribution of residuals by importing country
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Table 3: Distribution of residuals by importer   (2/3)

Country EK model New model Δ = EK - New model

Germany 1.1 1.2 -0.1
Ghana 0.2 0.2 0.0
Greece 0.1 0.1 0.0
Guatemala 0.2 0.0 0.2
Guinea 0.1 0.0 0.1
Guyana 0.0 0.0 0.0
Haiti 0.1 0.0 0.1
Honduras 0.2 0.1 0.1
Hong Kong 15.1 8.5 6.6
Hungary 0.5 0.4 0.0
Iceland 0.1 0.0 0.0
India 0.5 0.5 0.0
Indonesia 0.2 0.2 0.1
Iran 0.1 0.2 0.0
Ireland 0.3 0.3 0.0
Israel 0.5 0.7 -0.2
Italy 0.5 0.6 -0.1
Jamaica 0.1 0.0 0.0
Japan 0.6 0.5 0.1
Jordan 0.2 0.1 0.1
Kazakhstan 0.2 0.2 0.0
Kenya 0.1 0.0 0.1
Korea 0.6 0.7 -0.1
Kuwait 0.1 0.1 0.0
Kyrgyzstan 0.0 0.0 0.0
Latvia 0.2 0.2 0.0
Lebanon 0.2 0.1 0.1
Libya 0.1 0.1 0.1
Lithuania 0.2 0.2 0.0
Macau 0.1 0.1 -0.1
Macedonia 0.2 0.3 0.0
Madagascar 0.0 0.0 0.0
Malawi 0.0 0.0 0.0
Malaysia 4.2 1.5 2.7
Mali 0.1 0.0 0.0
Malta 0.2 0.2 0.0
Mauritania 0.0 0.0 0.0
Mauritius 0.0 0.0 0.0
Mexico 0.2 0.1 0.1
Mongolia 0.0 0.0 0.0
Morocco 0.1 0.1 0.1
Mozambique 0.0 0.0 0.0
Nepal 0.0 0.0 0.0
Netherlands 0.5 0.5 0.0
New Zealand 0.2 0.1 0.1
Nicaragua 0.1 0.0 0.1
Niger 0.1 0.0 0.0
Nigeria 0.2 0.1 0.1
Norway 0.2 0.8 -0.6
Oman 0.1 0.1 0.045



Table 3: Distribution of residuals by importer   (3/3)

Country EK model New model Δ = EK - New model

Pakistan 0.3 0.2 0.1
Panama 0.8 0.8 0.0
Papua New Guinea 0.1 0.1 0.0
Paraguay 0.1 0.1 0.0
Peru 0.1 0.1 0.0
Philippines 0.4 0.4 0.1
Poland 0.2 0.3 -0.1
Portugal 0.1 0.2 0.0
Qatar 0.1 0.7 -0.6
Rep. Moldova 0.1 0.1 0.0
Romania 0.1 0.1 0.0
Russian Fed. 2.1 2.9 -0.8
Rwanda 0.1 0.0 0.0
Senegal 0.2 0.1 0.0
Seychelles 0.0 0.0 0.0
Singapore 17.0 5.4 11.6
Slovakia 0.9 1.2 -0.3
Slovenia 0.1 0.2 -0.1
Spain 0.3 0.3 0.0
Sri Lanka 0.1 0.1 0.0
Sudan 0.1 0.0 0.1
Suriname 0.0 0.0 0.0
Sweden 0.3 0.6 -0.3
Switzerland, Liechtenstein 0.2 1.3 -1.0
Syria 0.3 0.1 0.2
Tajikistan 0.1 0.0 0.0
Tanzania 0.1 0.0 0.1
Thailand 1.0 1.0 0.0
Togo 0.1 0.0 0.0
Trindad Tobago 0.1 0.0 0.0
Tunisia 0.1 0.1 0.1
Turkey 0.2 0.4 -0.2
Turkmenistan 0.0 0.0 0.0
Uganda 0.1 0.0 0.1
UK 0.5 0.6 0.0
Ukraine 1.0 1.3 -0.2
Uruguay 0.1 0.0 0.1
USA 1.4 1.6 -0.2
Uzbekistan 0.1 0.0 0.1
Venezuela 0.1 0.1 0.0
Yemen 0.1 0.0 0.0
Yugoslavia 0.2 0.2 0.0
Zambia 0.1 0.0 0.1
Zimbabwe 0.1 0.0 0.1
Σ 70 51 19
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original

θA 8.28 3.60 12.86

explanatory power 30% 30% 30%

γ1 1.72 3.73 1.42

γ2 0.28 0.74 0.12

γ3 −0.05 −0.07 −0.02

border 0.78 0.71 0.81

language 0.90 0.89 0.92

EU 0.75 0.70 0.78

NAFTA 0.52 0.47 0.55

Table 4: Estimates of the EK model with different values for θA

original

θA 8.28 3.60 12.86 8.28 8.28

σA 4.00 4.00 4.00 2.20 6.60

explanatory power 49% 47% 49% 50% 47%

γ1 1.74 3.18 1.46 1.71 1.65

γ2 0.19 0.22 0.08 0.18 0.10

γ3 −0.02 −0.01 −0.01 −0.01 −0.01

border 0.80 0.72 0.77 0.77 0.79

language 0.74 0.69 0.82 0.78 0.78

EU 0.75 0.92 0.73 0.72 0.89

NAFTA 0.72 0.77 0.69 0.67 0.78

αA 0.63 0.60 0.55 0.56 0.57

σB 2.43 1.88 2.82 1.41 6.09

θB 14.28 10.52 18.29 13.34 19.97

Table 5: Estimates of the new model with different values for θA and σA
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Figure 1: Examples of Fréchet Distributions
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Figure 2: Total income × trade share
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Figure 3: Income per capita × trade share
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Figure 4: Simulation of a technology shock in the poorest country
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Figure 5: Technology shock in China
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Figure 6: Technology shock in the U.S.A.
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Figure 7: Explanatory Power of the EK and New Model
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Figure 8: Coefficient of GDP on trade share
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Figure 9: Coefficient of GDP per capita on trade share

57



0 0.5 1 1.5 2
0

2000

4000

6000

8000

10000

12000

14000

κ

N
um

be
r 

of
 tr

ad
ef

lo
w

s 
X

ni
 <

=
 U

S
$1

00
,0

00

data
EK
New model

Figure 10: Small Numbers
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