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Abstract

This paper develops a framework for the analysis of bankruptcy in an in�nite time setting.
With a market structure that is both anonymous and competitive, the model takes seriously
the question of how a household�s access to credit is endogenously determined following a bank-
ruptcy declaration. Intended to model the realistic unsecured credit markets, any household
can be a creditor and in the presence of bankruptcy, the asset payouts for these creditors must
be appropriately diluted. To compensate, the market will set asset prices for the borrowers
based on their expected repayment rates. Borrowers�expected repayment rates depend on their
idiosyncratic income realizations. All borrowers are divided into pools based solely on their
bankruptcy histories. The market does not know the optimal asset choices of borrowers, so
can only set asset prices that vary across pools, but are linear in assets. Asset prices set in
this manner are such that households will self select into bankruptcy pools and the resulting
repayment rates of the pools will di¤er.

In this paper, the general existence of the described bankruptcy equilibrium is proven. Fur-
ther, a theoretical result for a simple economy provides conditions such that households with
di¤erent persistences of income states will self-select into di¤erent bankruptcy pools. This leads
to an ordering in which the repayments rates are smaller for the pool of households with a more
recent bankruptcy. Finally, for the same simple economy, normative impacts of a multi-asset
structure are examined.

1 Introduction

The convergence of lack of commitment models from the macroeconomics literature and the default
models from the general equilibrium literature (as pioneered by Dubey, Geanakoplos, and Shubik
(2005)) o¤ers the potential of models that are both competitive with incentives endogenously deter-
mined and tractable with obvious gains for both positive and normative quantitative analysis. This
work is another step toward that potential. The model will capture the key features of chapter 7
bankruptcy by individuals holding debt in the unsecured credit markets. This model is not one of
default (as in Dubey et. al. (2005)) in which a household chooses how much of its debt to repay
on an asset-by-asset basis. Rather, this work considers bankruptcy, which results from a binary

�The author wishes to thank his advisors, Prof. Felix Kubler at the ISB at the University of Zürich and both Prof.
Dirk Krueger and Prof. Andrew Postlewaite at the University of Pennsylvania. The author further acknowledges the
support received while visiting at the ISB. Comments are welcome at mhoelle@econ.upenn.edu.
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decision by the household not to repay debt over its entire portfolio of assets. With this binary
decision, a continuum of households must be assumed in order to circumvent any non-convexity
issues.

Several papers in the general equilibrium literature (Araujo and Pascoa (2002), Sabarwal (2003),
and Hoelle (2009)) have addressed the question of bankruptcy in a 2-period general �nancial model.
Sabarwal even extended the analysis to a longer, �nite time horizon and suggested that investment
constraints be set based on a household�s repayment history. This only captures the "backward
looking" e¤ects of bankruptcy: how a prior bankruptcy declaration a¤ects a household�s access to
credit in the current period. Faced with the binary bankruptcy decision in the current period,
a successful model must incorporate the "forward looking" e¤ects of bankruptcy: how a current
bankruptcy declaration will a¤ect future access to credit. With a �nite time horizon, these "forward
looking" e¤ects would unravel from the �nal period. This necessitates the use of a discrete, in�nite
time process. Already working with a continuum of households, the natural model to develop will
be an adaptation from the class of Bewley models (Bewley, 1986).1

In the anonymous setting, the terms of lending are set by the market rather than by individual
creditors (though I will employ the general term "creditors" to refer to the market). All potential
borrowers know their repayment possibilities, but the creditors can distinguish borrowers using only
their credit scores. The FICO credit score is used by more than 75% of lending institutions and
contains 5 components: payment history (35%), amounts owed (30%), length of credit history (15%),
mix of credit (10%), and new credit (10%).2 The credit score does not include a household�s current
income, so in my model I do not allow potential borrowers to be distinguished by income. However,
this assumption is only to simplify the setup. All results in this paper remain valid if the market can
distinguish households by current income. Concerning the second component of the credit score,
the model considered here is not a model of debt holding. As assets can be traded every period
without transaction costs, households would never choose to hold debt, preferring instead to pay o¤
any negative dividend returns with the sale of new assets. In the basic model, a household�s credit
score will only depend on its payment (bankruptcy) history.

Households are ex-ante identical with heterogeneity resulting from the idiosyncratic realizations
from a common Markov process over income states. I use the term "states" to encompass both the
pecuniary income level as well as the persistence of that state. This process over states rather than
over only levels prevents creditors for the most part from using borrowers�income levels to forecast
their repayment rates. This is obvious because two households with identical income levels but
di¤erence persistences will optimize di¤erently. With only borrowers�bankruptcy histories being
used by creditors to forecast repayment rates, it is equivalent for creditors to face pools of borrowers,
rather than individual borrowers. These pools are equivalence classes over borrowers�bankruptcy
histories.

With a continuum of households, there are a continuum of creditors. The asset payouts for
the creditors will be based on the repayment rates of the households to which the creditors lend.
The creditors will set asset prices for each pool of borrowers and since all creditors have identical
preferences, their collective actions match their individual ones. When setting asset prices, the
creditors do not know the persistence of a potential borrower�s income state. More importantly,
creditors do not know the optimal asset choices of a potential borrower. Even if a potential borrower
interacted with a single creditor and submitted a loan request, the creditor cannot verify that the
same borrower did not submit a similar request to each of the continuum of other creditors. Thus,
while a single creditor can set asset prices that are nonlinear in the size of the loan request, it is
never optimal to do so without observing the total loan request of a borrower across all creditors.

1Bewley (1986) contains frequent references to his earlier works in this extended line of his research.
2FICO stands for Fair Isaac and Company and the information was lifted from the website: www.my�co.com.
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A borrower will therefore face linear asset prices that di¤er by pools, that is, the prices are only
conditioned on the borrower�s bankruptcy history. For the same reason as above (borrowers can
take out loans from a continuum of creditors), no investment constraints enter the household�s
optimization problem.

The bankruptcy history of a potential borrower appears to be an important indicator since
the linear asset prices faced by borrowers can di¤er only based on this indicator. The bankruptcy
history will be subject to 2 restrictions from the legal code with an immediate implication. The �rst
restriction forbids households from declaring bankruptcy two periods in a row (in reality, twice in any
6-year period). The immediate implication is that households�repayment rates immediately after a
bankruptcy declaration will be complete. With guaranteed full repayment, this is a desirable pool
of borrowers for the creditors to lend to. The second restriction requires that a prior bankruptcy
declaration must be removed from a household�s credit report after 2 periods (in reality, 10 years).
Thus, the bankruptcy history embodies both reputation losses and restrictions on future bankruptcy
declarations, dynamic costs of bankruptcy that are endogenously determined in equilibrium.

In this setup, the repayment rates of pools will likely di¤er in equilibrium. This result is
obtained mainly because creditors set linear asset prices and do not observe the optimal asset choices
of borrowers. Borrowers will then self-select into pools through their bankruptcy decisions. These
decisions will be based on how low their current income level is and how persistent that level will
be. Creditors will set the asset prices using perfect foresight of the repayment rates of the pools.
Thus di¤erent repayment rates imply di¤erent asset prices faced across pools. This anonymous
framework di¤ers noticeably from the macroeconomic literature in which creditors use the size of a
borrower�s loan request to forecast its repayment likelihood.

Without observing the optimal asset choices of borrowers, creditors must set identical asset prices
for all borrowers with the same bankruptcy history. In a model with a single asset available for trade,
this limited ability of prices to screen borrowers leads to the following natural ine¢ ciency. Borrowers
likely to declare bankruptcy face better (higher) asset prices than their repayment likelihoods suggest
because they are being pooled together with households unlikely to declare bankruptcy. Those
unlikely to declare bankruptcy face worse (lower) asset prices than their repayment likelihoods
suggest and are subsidizing the borrowing of those households likely to declare bankruptcy. I
formulate a general asset structure in which households can trade multiple assets in order to hedge
against their idiosyncratic risk. The portfolio choices of the households with multiple assets then
allows for prices to play a role in screening borrowers. This logic suggests that increasing the number
of assets available for trade will lead to a Pareto improvement, a result that I prove in section 4.

While primary emphasis in this in�nite-time model has been placed on the dynamic costs of
bankruptcy, static costs are needed as well and these are written to re�ect the legal code. Re-
cent 2005 legislation3 requires a household to pass the "means test" in order to declare bankruptcy.
Roughly speaking, unless a large number of statutorily allowed expenses can be deducted, a house-
hold will fail the "means test" if its average monthly income is above the state median. Thus, if
the transition over income states is such that a household�s income next period is above the median
for some state, then the �nancial decisions must incorporate the fact that the household cannot
declare bankruptcy in that state. Additionally, when declaring bankruptcy, the household must
pay a cost that is strictly increasing in the value of its asset purchases. This is a proxy for the cost
of submitting (or hiring a lawyer to submit) detailed records to the bankruptcy court in order to
take advantage of bankruptcy exemptions.

I would be remiss if I did not mention the key pieces of the large macroeconomic literature
on bankruptcy. The standard may have been set by Chatterjee, Corbae, Nakajima, and Rios-
Rull (2007) in which zero-pro�t intermediaries set the price for loans conditional on a borrower�s

311 U.S.C. §707(b)(1) and the Bankruptcy Abuse Prevention and Consumer Protection Act of 2005
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bankruptcy history and the size of its loan request. Following this, Chatterjee et. al. (2008)
model similar intermediaries that use a household�s bankruptcy history to update its beliefs about
a household�s private information. Finally, Krueger and Perri (2006) should be mentioned as the
asset structure employed in their work (Arrow securities) is a special case of the asset structure
introduced in this work.

This paper makes three contributions. First, the general model is introduced and the existence
of a bankruptcy equilibrium is proven (section 2 with existence proofs in appendix A). Next, to
justify the partition of borrowers into pools, I use theoretical results for a simple economy to show
that the repayment rates di¤er across pools and further discuss how the repayment rates change
with parameters (section 3 with proofs in appendix B). Finally, this framework allows for a multi-
asset structure, so the normative impacts of increasing the number of assets available for trade are
considered (section 4 with proof in appendix C). Section 5 concludes and discusses the next steps
for this line of research.

2 The Model

Let the length of the model be described by an in�nite-dimensional, discrete time process t 2
f0; 1; ::; Tg where T !1: Let there be a continuum (with unit measure) of in�nite-lived households
h 2 H~[0; 1]: As described by Judd (1985), there is a problem with this speci�cation whereby a
continuum of households draws realizations from an iid random process. The problem is that the
set of sample realizations satisfying the property that the expectation of the sample function is equal
to the theoretical one has outer measure one and inner measure zero (not measurable). Thus, I
would not be able to apply the law of large numbers to state that the sample distribution is equal
to the theoretical distribution of the process. As suggested by Judd and formally analyzed by Sun
(1998), the solution lies in modeling the set of households as a hyper�nite process. The reasons
to use this process are twofold. First, the asymptotic properties of �nite processes are embedded
in the limit setting. In particular, the exact law of large numbers applies. Second, the external
cardinality of the index sets of a hyper�nite process is the same as the cardinality of the continuum.
From this second point, my proof of lemma 2 (based on Aumann (1966)) remains valid. To avoid
technical complexities, I will continue to refer to the set of households as a continuum and will apply
the law of large numbers. In the back of one�s mind, recall that the set of households is actually a
hyper�nite process.

For simplicity, there is only one physical commodity (labor income) at each time period. Each
household faces idiosyncratic risk in the form of an iid process over income states. The income
states belong to the �nite index set E = f1; :::; Eg : I use the term "states" because the state will
include both the income level and the persistence of that state. Let the income level for any given
state e be denoted as !e: I assume that !e > 0 8e 2 E : Thus, at any given time period t; upon the
realization of state e; household h has state eh(t) = e and income level !h(t) = !e: The sequence
of state realizations up to and including time period t is given by

�
eh
�t
=
�
eh(0); :::; eh(t)

�
:

The process over income states is a Markov process governed by the transition matrix � 2ME;E :
The terms of this transition matrix are �(e0je): Given realized state e; the probability that the
realized income state is e0 next period is given by �(e0je): I will employ the exact law of large
numbers to state that the transition matrix is stationary and that not only is �(e0je) the probability
of moving from state e to e0; but also the fraction of households who make such a move in the
sample (in any time period). The stationary measure across income states is given by � 2 �E�1:
By stationarity, �(e0) =

P
e � (e

0je) is the fraction of households at any time period with income
state e0: For consistency of �; the sum

P
e0 � (e

0je) = 1: Due to the stationarity, the aggregate
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endowment (and the mean endowment since the set of households has unit measure) is given by

�! =
P

e �(e)!e:

Further, the median endowment is given by !med = !e� where
P

e �(e)1 f!e � !e�g =
P

e �(e)1 f!e � !e�g =
0:5: As neither the aggregate, mean, nor median endowment vary over time, there is no aggregate
uncertainty in the model.

Apart from the iid Markov process, the households will be assumed to be identical in all other
aspects. Given the realizations of endowments f!h(t)gt�0 and the choices of the household in the
�nancial markets (to be introduced shortly), the household consumption is ch(t) at time period t
and the entire sequence of consumption is given by ch = fch(t)gt�0: Each household has identical,
smooth preferences characterized by the utility function U : l1 ! R

U(ch) = E0

1X
t=0

�tu
�
ch(t)

�
:

Here, � 2 (0; 1) is the time-preference parameter. I could have assumed that the Bernoulli utility
function u : R+ ! R depends on the realized income state i and the results would go through
with the only change being the added notation. I assume that u : R+ ! R is C1; di¤erentiably
strictly increasing, di¤erentiably strictly concave, and satis�es the Inada condition (u0

�
ch(t)

�
!1

as ch(t)! 0).

2.1 The asset structure

In order to hedge against the idiosyncratic risk, there will be an assortment of one-period lived
�nancial instruments available to the households. The same �nancial instruments will be available
in every time period. These instruments will be numeraire assets in zero net supply as I seek to
model the modern bond markets. The asset structure will make use of the stationarity of the model.
It is more general than the setup of Krueger and Perri (2006) in which only Arrow securities are
considered.

Subsection 2.1.1 introduces the asset structure to be used throughout this paper. On the
�rst pass, the reader may be worried that the asset structure is not consistent in the aggregate.
Subsection 2.1.2 partially eases this worry by showing that with complete asset markets without
bankruptcy, the equilibrium allocation is optimal. Subsection 2.1.3 completely eases this worry
as it proves that even though the asset payouts di¤er by household, the aggregate asset payout is
identical to standard GEI models.

2.1.1 Introduction of the asset structure

For any household h : eh(t) = e; the risk faced by the household is a function of the total number
of di¤erent income states that could be realized in the next time period. Thus, de�ne N(e) =
#fe0 : � (e0je) > 0g as this number. To hedge against this risk, the household has a vector of assets
(zj(e))j2J (e) to choose from. This vector has length J(e) = #J (e) � N(e)� 1: Given the current
state of the household, the assets (zj(e; t))j2J (e) allow the household to transfer wealth from time
period t to some of the possible states e0 : � (e0je) > 0 that may occur in the next time period t+1:
The payout of the asset zj(e; t) for the state realization eh(t+1) = e0 is given by rj (e0je) : I assume
that rj (e0je) are nonnegative and nontrivial (that is, rj (e0je) > 0 for some (e; e0) s.t. � (e0je) > 0).
This setup allows not only for the Arrow securities as modeled in Krueger and Perri (2006), but
additionally any and all �nancial assets with linear payouts. The assumption that J(e) � N(e)� 1
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is made without loss of generality as is the assumption that the assets j 2 J (e) are not redundant
(linearly independent payouts). Thus, the household h receives payout

P
j2J (e) rj (e

0je) zj(e; t) in
time period t+ 1 from holding the vector of assets (zj(e; t))j2J (e) given that e

h(t+ 1) = e0:4

Now consider a di¤erent household k with ek(t) 6= e: Though this household cannot hedge
its own idiosyncratic risk by trading the assets (zj(e; t))j2J (e) ; it can still be the counterparty to

transactions made by households h : eh(t) = e: This is in line with the way modern bond markets
pool insurance contracts over a large number of households. Thus, the household k can trade the
assets (zj(e; t))j2J (e) : Since it is not using these assets to hedge its own idiosyncratic risk, the

payout of each asset zj(e; t) will be weighted by the measure of households h : eh(t) = e: Further,
the realization of income state e0 next period given state e this period does not mean anything to k
as these realizations are for households h : (eh(t); eh(t+ 1)) = (e; e0): Therefore, the payout will be
risk-free (independent of e0). De�ne

rj(e) =
P

e0 � (e
0je) rj (e0je) :

Then household k will receive the risk-free return
P

j2J (e) rj (e) zj(e; t) from holding the vector of
assets (zj(e; t))j2J (e) :

5

Consider the simplest asset structure that can be imposed: the monetary equilibrium model
espoused by Bewley (1986) and many others. Suppose J(e) = 1 8e and that r1 (e0je) = 1 8(e; e0)
such that � (e0je) > 0: Households with any income state e 2 E only have access to a risk-free bond.
Any household k : ek(t) 6= e is indi¤erent between trading in asset z1(e; t) and z1(ek(t); t) as these
assets are identical.

Now suppose that for e = 1 with J(1) = 1 as above, the bond is now risky. In other words,
r1 (e

0j1) 6= r1 (e00j1) for some e0 6= e00 : � (e0je)� (e00je) > 0: Households k : ek(t) 6= 1 still only have
access to a risk-free bond, but households h : eh(t) = 1 can trade in the risky bond z1(1; t) as well
as any of the risk-free bonds (z1(e; t))e 6=1 : Thus, when setting the number of independent assets
J(e) � N(e)� 1; I have implicitly assumed that no linear combination of the assets (zj(e; t))j2J (e)
replicates a risk-free bond.

The total number of assets that can be traded in each time period t is given by J =
P

e J(e):
Obviously with so many assets, there will be a continuum of asset choices by a household that will
return the same value. A continuum of possible equilibrium asset choices is not a concern of mine
so long as the aggregate asset payouts remain unchanged (no real consequences) and this will be the
case.6 I make the following two assumptions in order to endogenously bound the assets (as required
for my �xed point argument).

A.1 8e; no linear combination of the asset payouts for (zj(e))8j2J (e) will replicate a risk-free bond.

Assumption (A:1) dictates that a household h : eh(t) = e will have a total of
P

ê 6=e J(ê) assets�
zhj (ê)

�
8ê 6=e;j2J (ê) that are each a risk-free bond. I assume next that the household can only have

4 I assume throughout this work that households cannot be distinguished by their realized income state. Thus,
the timing of the model is as follows. A household reports to the market with its state realizations and receives its
due asset payouts. The market instantaneously forgets the state realizations of the household (not a stretch with
a continuum of households). When the household returns to sell assets, the market cannot observe the household�s
income state.

5As all households can transact in all the
P
e J(e) assets, a creditor gains no information about the realized state

of a borrower by his choice of assets to trade.
6Additionally, I could have formulated the model to include a �nancial intermediary. The sole job of the inter-

mediary would be to bundle all risk-free bonds for a household into a single asset. The intermediary would have to
decide how the asset claims by one household for the single, combined risk-free asset would be split up amongst the
asset markets for households using the particular assets to hedge risk. The resulting equilibrium would not change
upon introducing such an intermediary.
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asset purchases of one risk-free bond if it has asset purchases of all risk-free bonds (and identically
for asset sales).

A.2 8e and 8h : eh(t) = e; if zhj (ê; t) � 0 for some ê 6= e and j 2 J (ê); then zhj0(ê0; t) � 0 8ê0 6= e
and 8j0 2 J (ê0): Likewise, if zhj (ê; t) � 0 for some ê 6= e and j 2 J (ê); then zhj0(ê0; t) � 0
8ê0 6= e and 8j0 2 J (ê0):

2.1.2 Complete markets

Markets are complete (all states of uncertainty are spanned) when for all income states e 2 E ;
J(e) = N(e)� 1 and no linear combination of the assets

�
zhj (e; t)

�
j2J (e) replicates a risk-free bond.

I will denote qj(e; t) as the asset price of zhj (e; t): The Lagrange multipliers of the household optimiza-

tion problem are given by �h
��
eh
�t�

> 0: Using dynamic programming, the in�nite-dimensional

household optimization problem can be reduced to a recursive structure (this is standard and dis-
cussed in a later subsection).

Complete markets and no aggregate uncertainty imply that the optimal consumption plan is

stationary, ch
��
eh
�t�

= c 8t and all realizations
�
eh
�t
: Take any e 2 E : For h : eh(t) = e; the �rst

order conditions with respect to zhj (e; t) for some j are given by:

�
�h
��
eh
�t�

; �h
��
eh
�t
; 1
�
; :::; �h

��
eh
�t�

; E
�0BB@

�qj(e; t)
rj (1je)
:

rj (Eje)

1CCA = 0: (2.1)

Facing a recursive problem, at each time period t; the household makes a contingency plan not
knowing if eh(t + 1) = 1; ::E � 1; or E: Consider now the �rst order conditions with respect to

ch
��
eh
�t�

; ch
��
eh
�t
; 1
�
; :::and ch

��
eh
�t
; E
�
:

�t
1

ch
�
(eh)

t
� � �h ��eh�t� = 0

�t+1
� (nje)

ch
�
(eh)

t
; n
� � �h ��eh�t ; n� = 0 8n 2 E :

Then with the stationary consumption plan, I can rewrite equation (2:1) as:

qj(e; t) = � (� (1je) ; :::; � (Eje))

0@ rj (1je)
:

rj (Eje)

1A :
By the de�nition of rj(e) =

P
e0 � (e

0je) rj (e0je) ; the asset price qj(e) = �rj(e):
For k : ek(t) 6= e; the �rst order conditions with respect to zj(e) for the same j are given by:

�
�k
��
ek
�t�

; �k
��
ek
�t
; 1
�
; :::; �k

��
ek
�t�

; E
�0BB@

�qj(e; t)
rj(e)
:

rj(e)

1CCA = 0: (2.2)
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As above, the �rst order condition with respect to consumption yield that
�k
�
(ek)

t
;n
�

�k((ek)t)
= ��

�
njek(t)

�
:

Thus, equation (2:2) can be rewritten as:

qj(e; t) = �
�
�
�
1jek(t)

�
; :::; �

�
Ejek(t)

��0@ rj(e)
:

rj(e)

1A :
This is equivalent to qj(e) = �rj(e)

P
e0 �

�
e0jek(t)

�
and by de�nition

P
e0 �

�
e0jek(t)

�
= 1:

This result is equivalent to that known to hold for GEI models and so the equilibrium allocation
with complete markets is Pareto optimal.

2.1.3 Aggregate asset payouts

Consider the asset payoutsZ
h2H

nP
ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê; t)

�
+
P

j2J (e) rj(e
0je)zhj (e; t)

o
d�

where � is the measure of households to be de�ned shortly. Choose any e 2 E and any j 2 J (e):
I can rewrite the equation for this asset (e; j) as:

rj(e)

Z
h:eh(t) 6=e

zhj (e; t)d�+
P
e0
rj(e

0je)
Z

h:(eh(t);eh(t+1))=(e;e0)

zhj (e; t)d�:

From the exact law of large numbers, � (e0je) =

Z
h:(eh(t);eh(t+1))=(e;e0)

d�Z
h:eh(t)=e

d�

and since the integration is

a linear operation, the above equation is equivalent to:

rj(e)

Z
h:eh(t) 6=e

zhj (e; t)d�+
P
e0
rj(e

0je)� (e0je)
Z
h:eh(t)=e

zhj (e; t)d�:

By de�nition, rj(e) =
P

e0 � (e
0je) rj (e0je) and thus the asset payouts for zj(e) are reduced to:

rj(e)

Z
zhj (e; t)d�:

Thus, this general asset structure in which the assets are written to hedge against independent,
idiosyncratic risk is consistent with the asset structure of GEI models. Moreover, it is actually easier
to price assets in an incomplete markets model without bankruptcy as compared to GEI models.
Once I know the asset price qj(e) for one asset j 2 J (e); then all other assets are priced by no
arbitrage:

qj0(e
0; t) = qj(e; t)

rj0(e
0)

rj(e)
8e0 and 8j0 2 J (e0):

I will remove bankruptcy from consideration in the next subsection and will prove the existence of
a general �nancial equilibria with this asset structure.
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2.2 Existence without bankruptcy

At every time period t � 0; each household must select a vector of assets (zj(e; t))j2J (e);8e2E : As
mentioned above, assumptions (A:1) � (A:2) are required so that the asset choices are bounded.
In the recursive formulation using dynamic programming, it su¢ ces to have the �nancial wealth
(payouts from the �nancial markets only and not including endowments) as a state variable rather
than the entire portfolio. As discussed shortly, the endogenous investment constraints will place a
lower bound on the amount of wealth that can be transferred. De�ne the setW = [�b;1) as the set
of potential wealth transfers where �b < 0 is the lower bound. Let B(W) be the Borel ��algebra
ofW and P(E) to be the power set of the �nite set E : ThenM is the set of all probability measures
on the measurable space M = (E �W;P(E)� B(W)) :

Thus, the measure across all households characterized by income state e and �nancial wealth w
will be given by � 2 M: The equilibrium prices will depend on the distribution � and therefore
the optimal decisions will also. I will use primed variables to denote the variables in the next time
period (and unprimed for the current time period).

The recursive formulation is given by:

V (e; w; �) = max
c;z;w0

u(c) + �
X

e0
� (e0je)V (e0; w0; �0) (2.3)

s:t: c (e; w; �) + q (�) � z (e; w; �) = !e + w

w0(e0) =
P

ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê)

�
+
P

j2J (e) rj(e
0je)zhj (e):

The initial wealth condition is w0 = 0:
I will de�ne the general �nancial equilibrium (without bankruptcy) and then prove its existence

by (i) truncating the in�nite-time equilibrium and proving the existence of the �nite-length version
and (ii) taking limits as the �nal time period of the truncated model becomes unbounded.

De�nition 1 A general �nancial equilibrium is a collection of mappings c : E �W �M! R+
(consumption), z : E �W �M! RJ (assets), and w0 : E �W �M!W (next period wealth)
identical across all households, and q :M! RJ+ (asset prices) such that the dynamic problem (2:3)
is satis�ed and 8� 2M :

1.
Z
c (e; w; �) d� = !:

2.
Z
z (e; w; �) d� =

�!
0 for all J assets.

3.
Z
w0 (e; w; �) d� = 0:

4. Given Q ((e; w) ; (E 0;W 0)) =
X

e02E0

�
� (e0je) if w0 (e; w) 2 W 0

0 otherwise

�
; then

�0 (E 0;W 0) =

Z
Q ((e; w) ; (E 0;W 0))� (de� dw) :

Let the time horizon be discrete with t 2 f0; :::; �Tg and �T <1: I will show in theorem 1 that a
general �nancial equilibrium exists for this �nite time horizon. The proof is contained in appendix
A.
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Theorem 1 Under assumptions (A:1)� (A:2); the truncated general �nancial equilibrium exists for
all parameters E ; �; �; u(�); and asset payouts (rj(e0je))8e;j2J (e) :

Now, I will consider the steps required to show that an equilibrium with the discrete, in�nite-
length time horizon exists and that this in�nite-length equilibrium is actually the limit of the ap-
propriately de�ned truncated equilibrium as �T !1:

The following two conditions are seemingly unrelated as they are derived from distinct lines of
economic analysis, yet surprisingly equivalent. First, the debt constraint is a fundamental feature
of applied work. Ideally, the debt constraint should be such that it is nonbinding in equilibrium so
as not to introduce any additional ine¢ ciencies into the model. It is written as:

inf
t

P
e

P
j2J (e) qj(e; t)z

h
j (e; t) > �1: (2.4)

This condition requires that the value of a portfolio remains bounded for all possible realizations of
the random Markov process.

Second, the transversality condition is a necessary condition of the household�s optimization
problem and is natural in theoretical work. Consider the household�s spot budget constraints
written for the realization

�
eh
�t
=
�
eh(0); :::; eh(t)

�
:

c (e; w; �) + q (�) � z (e; w; �) = !e + w: (2.5)

The Lagrange multiplier associated with each of the budget constraints in the household�s problem
(2:3) (and intuitively, the relative price speci�c to that household of transferring wealth into the

potential state
�
eh
�t
) is de�ned as �h

��
eh
�t�

: To write down a single budget constraint with the

household making contingent transactions over the entire length of the model, I would multiply each

budget constraint (2:5) by �h
��
eh
�t�

and sum. From the household�s �rst-order conditions with

respect to assets (necessary conditions for solutions to (2:3)), terms cancel and I am left with:X �T

t=0

X
(eh)t

�h
��
eh
�t��

ch
��
eh
�t�� !eh(t)�+ (2.6)X

(eh)
�T
�h
��
eh
� �T��P

e

P
j2J (e) qj(e;

�T )zhj (e; �T )
�
= 0:

With a �nite time horizon ( �T < 1), in the �nal period, the assets
�
zhj (e;

�T )
�
8e;j2J (e) are not

available for trade. Thus equation (2:6) is equivalent to the Arrow-Debreu budget constraint. With-

out a �nal time period ( �T !1), in the limit, the term
P

(eh)
�T �

h
��
eh
� �T�P

e

P
j2J (e) qj(e;

�T )zhj (e;
�T )

must vanish. This is necessary for household optimization (equivalence with Arrow-Debreu budget
constraint and the necessary condition of optimality that does not allow the optimal portfolio to
"leave value" at in�nity). Thus, the transversality condition can be written as:

lim
t!1

X
(eh)t�1

X
e
�h
��
eh
�t�1

; e
�P

j2J (e) qj(e; t)z
h
j (e; t) = 0: (2.7)

Magill and Quinzii prove the equivalence of the debt constraint (2:4) and the transversality
condition (2:7) (though the proof of (2:4) =) (2:7) requires the hard-to-justify assumption of com-
petitive perceptions [the idea originally from Grossman and Hart, 1979]). I will use the transversality
condition (a necessary condition for household optimization in this in�nite-time, incomplete markets
setup) to rule out Ponzi schemes and guarantee that the limits as �T ! 1 are well-de�ned. The
proof of theorem 2 is contained in appendix A.

Theorem 2 If a truncated general �nancial equilibrium exists for any �nite length �T ; then the limit
as �T ! 1 is well de�ned (all equilibrium variables are uniformly bounded) and the equilibrium at
the limit is the desired general �nancial equilibrium for the in�nite-time horizon.
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2.3 Existence of bankruptcy equilibria

In the subsection 2.3.1, I will detail how the opportunity to declare bankruptcy (and the costs of
doing so) are incorporated into the household budget set. Next, in subsection 2.3.2, I will discuss the
aggregate consistency conditions required so that markets clear in the presence of bankruptcy. Then,
in subsection 2.3.3, I will discuss how the creditors set the asset prices across pools of borrowers.
Finally, in subsection 2.3.4, I will de�ne a bankruptcy equilibrium and state the theorem of existence
for this equilibrium. The proofs for this existence result will be contained in appendix A.

2.3.1 Bankruptcy budget set

As discussed in the introduction, I will be modeling the chapter 7 bankruptcy decisions of households
in the unsecured credit markets. The bankruptcy problem is inherently a nonconvex one: either
a household is or is not bankrupt. To circumvent this nonconvexity, I require a continuum of
households. This �ts perfectly into the framework of the Bewley model in which a continuum of
agents face idiosyncratic endowment risk.

I wish to incorporate the following bankruptcy restrictions into the model:

1. A household cannot declare bankruptcy twice in any 6-year period.

2. According to recent legislation7 , households that fail the "means test" (roughly speaking, the
income level is above the state median) cannot declare bankruptcy.

3. A bankruptcy declaration remains on a household�s credit report for 10 years.

With these restrictions, it seems simplest to model a time period in my model as lasting for 5
years. As de�ned in section 2, the median income is given by !med: Thus, a household h cannot
declare bankruptcy in time period t if !h(t) > !med:

The following two assumptions are required to obtain an endogenous bound on the asset sales
of households:

A.3 8e; rj(e0je) > 0 8 (j; e) with j 2 J (e) and e0 : � (e0je) > 0:

A.4 8e; 9e0 s.t. !e0 > !med and � (e0je) > 0:

Assumption (A:3) says that all the relevant asset payouts are strictly positive. Assumption
(A:4) says that with strictly positive probability, all households may realize an income state in the
next time period that will prevent them from declaring bankruptcy (!h(t) > !med).

I will introduce the bankruptcy indicator variable bh(t) 2 B =f0; 1; 2g such that bh(t) = 0
if a household declares bankruptcy at time period t: According to restriction 1, if bh(t) = 0;
the household h cannot declare bankruptcy again in time period t + 1: Thus, bh(t) = 0 implies
bh(t+ 1) = 1: In time period t+ 2; if the household declares bankruptcy, the bankruptcy indicator
resets bh(t+2) = 0 and otherwise, bh(t+2) = 2: When bh(t+2) = 2; the bankruptcy �ag has been
removed from the household�s credit history and so household h is indistinguishable from another
household who has never declared bankruptcy. If bh(t + 2) = 2 and household h again decides to
remain solvent in time period t+ 3; the bankruptcy indicator remains bh(t+ 3) = 2:

Summarizing, the set T �h will be the set of time periods (endogenous) at which household h is
legally barred from declaring bankruptcy. The set is de�ned as T �h =

�
t : !h(t) > !med or bh(t� 1) = 0

	
:

The next step is to introduce the costs and bene�ts of bankruptcy to decide if a household would
want to declare bankruptcy.

7Bankruptcy Abuse Prevention and Consumer Protection Act of 2005.
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The declaration of bankruptcy forces the household to forfeit all of its nonexempt assets. I
assume for simplicity that there are no bankruptcy exemptions, so a bankruptcy declaration would
force a household to forfeit its entire portfolio of assets. Realistic legal exemptions can be included
as an extension of my setup without changing the qualitative results.8

De�ne the set of bankrupt households as H0
t = fh 2 H : bh(t) = 0g: The �nancial payout to

bankrupt households is given by the negative cost of bankruptcy. The cost of bankruptcy at time
period t � 1 with

�
eh(t� 1); eh(t)

�
= (e; e0) is parameterized by � >> 0 and given by:

� � r � zh =
P

ê 6=e

�P
j2J (ê) �j(ê)rj(ê)

�
zhj (ê; t� 1)

�+�
+
P

j2J (e) �j(e)rj(e
0je)
�
zhj (e; t� 1)

�+
:

A.5 The �nancial payout of a household h 2 H0
t is given by �� � r � zh with � >> 0:

Thus, a household only pays a bankruptcy cost if it has long positions (asset purchases) in its
portfolio at the time of the bankruptcy declaration. To receive a bankruptcy discharge, a household
must submit a detailed listing of all assets with positive value that it maintains. In an actual
bankruptcy proceeding with exemptions, a bankrupt household would typically hire a lawyer to �le
the necessary legal documents. The cost for the legal help would be proportional to the vale of the
household�s asset purchases. Thus, the assumption that the cost of bankruptcy is strictly increasing
in asset purchases is in keeping with the actual workings of the bankruptcy process.

Based on the bankruptcy history (as given by the bankruptcy indicator bh(t)), borrowers may
be screened into credit groups by lenders. If a household h with bankruptcy history bh(t) seeks to

sell an asset zhj (e; t) < 0 in time period t; the asset price is q
bh(t)
j (e; t): If the same household seeks

to buy an asset zhj (e; t) � 0; the price is the market-clearing price qj(e; t); which does not depend on
bh(t): Thus, I will de�ne the household-speci�c asset prices qhj (e; t) 8e; 8j 2 J (e); and 8t � 1 as:

qhj (e; t) = qj(e; t) if zhj (e; t) � 0
qhj (e; t) = q

bh(t)
j (e; t) if zhj (e; t) < 0

:9 (2.8)

In the presence of bankruptcy, in order for markets to clear, the payouts to creditors must be
appropriately diluted. The overall repayment rate �j(e; t) � 0 will be the fraction of the total asset
payout in period t that is expected given an asset purchase zhj (e; t � 1) in t � 1: This repayment
rate is endogenously determined. Recalling that all solvent households must completely ful�ll their
commitment, I de�ne the household-speci�c divident payouts rh as:

rhj (e
0je; t) = rj(e0je) if zhj (e; t� 1) < 0

rhj (e
0je; t) = �j(e; t)rj(e0je) if zhj (e; t� 1) � 0

:

As before, rhj (e; t) =
P

e0 � (e
0je) rj (e0je) = rj(e) if zhj (e; t�1) < 0 and rhj (e; t) =

P
e0 � (e

0je) rhj (e0je; t) =
�j(e; t)rj(e) if z

h
j (e; t� 1) � 0:

Let P(B) be the power set of the �nite set B =f0; 1; 2g: Then M is the set of all probability
measures on the measurable space M = (E �W � B;P(E)� B(W)� P(B)) :

8Quantitatively, one would expect the addition of bankruptcy exemptions to increase the number of bankruptcy
declarations. This is exactly the case, but as with Zame (1993), the welfare e¤ects of introducing exemptions is
ambiguous.

9Setting asset prices by pools is equivalent to the price-spread assumption of Bisin and Gottardi (1999) that is a
necessary condition for existence of equilibria under asymmetric information.
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Thus, the measure across all households characterized by income state e; �nancial wealth w;
and bankruptcy history b will be given by � 2 M: The recursive formulation of the bankruptcy
equilibria is given by:

V (e; w; b; �) = max
c;z;w0;b0

u(c) + �
X

e0
� (e0je)V (e0; w0; b0; �0) (2.9)

s:t: c (e; w; b; �) + qh (�) � z (e; w; b; �) = !e + w
Solvent (b0 > 0):

w0(e0) =
P

ê 6=e

�P
j2J (ê) r

h
j (ê)z

h
j (ê)

�
+
P

j2J (e) r
h
j (e

0je)zhj (e)

Bankrupt (b0 = 0):

w0(e0) = max
�
rh � zh;�� � r � zh

	
where rh � zh =

P
ê 6=e

�P
j2J (ê) r

h
j (ê)z

h
j (ê)

�
+
P

j2J (e) r
h
j (e

0je)zhj (e)

and � � r � zh =
P̂
e 6=e

 P
j2J (ê)

�j(ê)rj(ê)
�
zhj (ê)

�+!
+

P
j2J (e)

�j(e)rj(e
0je)
�
zhj (e)

�+
:

Recall, that a household can only legally declare bankruptcy if t =2 T �h : The �nancial wealth of
a bankrupt household is de�ned such that the household can never be forced to repay more than it
initially owed.10

2.3.2 Aggregate consistency

Choose any time period t � 1: There are two types of bankrupt households h 2 H0
t to consider:

those such that w0(e0) = rh � zh and those such that w0(e0) = �� � r � zh: I consider the latter case
�rst (the household repays less than what is owed). Assume that for a bankrupt household h 2 H0

t

with
�
eh(t� 1); eh(t)

�
= (e; e0); the total value

num =
P̂
e 6=e

P
j2J (ê)

�
rhj (ê; t) + �j(ê)rj(ê)

� �
zhj (ê; t� 1)

�+
+ :::

:::
P

j2J (e)

�
rhj (e

0je; t) + �j(e)rj(e0je)
� �
zhj (e; t� 1)

�+ � 0
is split up among the J asset pools. De�ne

den =
P̂
e 6=e

P
j2J (ê)

rj(ê)
�
zhj (ê; t� 1)

��
+

P
j2J (e)

rj(e
0je)
�
zhj (e; t� 1)

��
:

Then the fraction
rj(ê)

�
zhj (ê; t� 1)

��
den

of the positive value num will be returned to asset pool (ê; j) with ê 6= e and j 2 J (ê) and the
fraction

rj(e
0je)
�
zhj (e; t� 1)

��
den

10The question of why a household would choose to declare bankruptcy even though the wealth from bankruptcy is
less than the wealth from solvency will be discussed later (intuitively, it must be that the access to credit is actually
enhanced by having a bankruptcy �ag on a household�s credit report).

13



of the positive value num will be returned to asset pool (e; j) with j 2 J (e): The sum of these
fractions over all J assets equals 1:

De�ne the individual repayment rate �h(t) � 0 as

�h(t) = �num
den

for h 2 H0
t where num and den are de�ned above. The variable satis�es �h(t) � 0 trivially. For

this type of bankrupt household, �� � r � zh � rh � zh and thus �h(t) � 1:
Now consider bankrupt households such that w0(e0) = rh � zh: For these households, the

individual repayment rate �h(t) = 1 as the households pay back exactly the amount owed. Likewise,
the individual repayment rate �h(t) = 1 for solvent households h =2 H0

t:
Necessary and su¢ cient conditions for existence of equilibria are the aggregate consistency (AC)

conditions. These conditions state that the expectations held by creditors about the overall repay-
ment rates � must be equal to the actual weighted individual repayment rates across all borrowers:

�j(e; t)

Z
h2H

�
zhj (e; t� 1)

�+
d� = �

Z
h2H

�h(t)
�
zhj (e; t� 1)

��
d� (2.10)

8t � 1;8e; and 8j 2 J (e): From (2:10); the overall repayment rate �j(e; t) � 0: If
Z
h2H

�
zhj (e; t� 1)

�+
d� =

0 (no trade in this asset), the rate �j(e; t) can be anything. This keeps open the possibility that
undue pessimism about the creditor payouts can be self-ful�lling in equilibrium (as in Dubey et. al.

(2005)).11 However, if
Z
h2H

�
zhj (e; t� 1)

�+
d� > 0; the overall repayment rate �j(e; t) � 1: This is

best seen by using the market clearing condition
Z
h2H

zhj (e; t� 1)d� = 0 to rewrite equation (2:10)
as:

�j(e; t) = 1 +

Z
h2H0

t

(1� �h(t))
�
zhj (e; t� 1)

��
d�Z

h2H

�
zhj (e; t� 1)

�+
d�

: (2.11)

2.3.3 Asset prices by pools

By no arbitrage, the market clearing asset price qj(e; t � 1) is some positive scalar of the expected
payout �j(e; t)rj(e): Choose any element b 2 B = f0; 1; 2g: Consider the resulting equilibrium
prices when creditors only lend to h : bh(t� 1) = b: For bh(t� 1) = 0; the creditors know that these
households will repay the entire amount because they cannot (by law) declare bankruptcy in period
t: Thus, we only need to consider b 2 f1; 2g: De�ne H(b) as the set of households with bh(t) = b
(where the time period is known given the context). The repayment rate for pool b; �bj(e; t); is
de�ned by:

�bj(e; t)

Z
h2H(b)

�
�
zhj (e; t� 1)

��
d� = �

Z
h2H(b)

�h(t)
�
zhj (e; t� 1)

��
d�: (2.12)

As with the overall repayment rate, the repayment rate for pool b is nonnegative, �bj(e; t) � 0: IfR
h2H(b)�

�
zhj (e; t� 1)

��
d� = 0 (that is, there are no debtors in pool b), then the repayment rate for

11This undue pessimism is in fact irrational (though still possible as an equilibrium). With the iid Markov process,
there will always exist some realization of the endowment process in the next time period such that a subset of
households cannot declare bankruptcy (by assumption (A:4)). This subset will have unity repayment rates and keep
the overall repayment rate � bounded above 0:
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pool b; �bj(e; t); can take on any value (in particular, �
b
j(e; t) = 0 meaning that this pool of borowers

cannot obtain loans).
The asset price qbj(e; t� 1) faced by the pool b is calculated as:

qbj(e; t� 1) = qj(e; t� 1) � Et�1

 
�bj(e; t)

�j(e; t)

!
8t � 1;8b;8e; and 8j 2 J (e) (2.13)

where �0j (e; t) = 1 8t;8e; and 8j 2 J (e) as discussed above.12
Adding up (2:12) over all pools b 2 B and using market clearing shows how the overall repayment

rate �j(e; t) is related to the repayment rates across pools �
b
j(e; t) :

�j(e; t) =

X
b2B

�bj(e; t)

Z
h2H(b)

�
zhj (e; t� 1)

��
d�Z

h2H

�
zhj (e; t� 1)

��
d�

:

From (2:13); the same relation will hold for the market clearing price qj(e; t � 1) and the pool
asset prices qbj(e; t� 1) :

qj(e; t� 1) =

X
b2B

qbj(e; t� 1)
Z
h2H(b)

�
zhj (e; t� 1)

��
d�Z

h2H

�
zhj (e; t� 1)

��
d�

: (2.14)

Equation (2:14) is essential in the proof of existence. This is because equation (2:14) impliesZ
h2H

qhj (e; t� 1)zhj (e; t� 1)d� = qj(e; t� 1)
Z
h2H

zhj (e; t� 1)d�: (2.15)

The term
Z
h2H

qhj (e; t�1)zhj (e; t�1)d� n the left-hand side of (2:15) comes from the summed budget

constraints of households (Walras� law). The summed budget constraints must be used to show

that the equilibrium price qj(e; t� 1) will be such that markets clear:
Z
h2H

zhj (e; t� 1)d� = 0: The

equality of (2:15) maintains this connection between Walras�law and market clearing that is required
in the proof of existence.

2.3.4 Existence of bankruptcy equilibria

I am now prepared to de�ne a bankruptcy equilibrium. The distribution � of households across
labor endowment e; wealth w; and bankruptcy history b is allowed to vary over time.

De�nition 2 A bankruptcy equilibrium is a collection of mappings c : E �W � B �M! R+ (con-
sumption), z : E �W � B �M! RJ(assets), w0 : E �W � B �M!W (next period wealth),
and b0 : E �W � B �M! B (bankruptcy) identical across all households, and q :M! RJ+ (asset
prices) and � : M! RJ+ (repayment rates) such that the dynamic problem (2:9) is satis�ed and
8� 2M :

12The expectation at t� 1 is equal to the realized repayment rates at t in equilibrium.
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1.
Z
c (e; w; b; �) d� = !:

2.
Z
z (e; w; b; �) d� =

�!
0 for all J assets.

3.
Z
w0 (e; w; b; �) d� = 0:

4. �j(e; t) satis�es (2:10) 8t;8e; and 8j 2 J (e):

5. qbj(e; t� 1) is related to qj(e; t� 1) using (2:13) and (2:12) 8b 2 f1; 2g;8t;8e; and 8j 2 J (e):

6. Given Q ((e; w; b) ; (E 0;W 0;B0)) =X
e02E0

�
� (e0je) if w0 (e; w; b) 2 W 0 and b0 (e; w; b) 2 B0
0 otherwise

�
; then

�0 (E 0;W 0;B0) =
Z
Q ((e; w; b) ; (E 0;W 0;B0))� (de� dw � db) :

Let the time horizon be discrete with t 2 f0; :::; �Tg and �T <1: I will show in theorem 3 that
a bankruptcy equilibrium exists for this time horizon. The proof is contained in appendix A.

Theorem 3 Under assumptions (A:1) � (A:5); the truncated bankruptcy equilibrium exists for all
parameters E ; �; �; u(�); �; and asset payouts (rj(e0je))8e;j2J (e) :

The transversality condition for the �no-bankruptcy�model needs to be updated since the value
of a household�s portfolio depends on the asset prices of each asset and the prices depend on whether
a household is a creditor or a debtor on a particular asset. Recall the de�nition of household-speci�c
asset prices in equations (2:8) :

qhj (e; t) = qj(e; t) if zhj (e; t) � 0
qhj (e; t) = q

bh(t)
j (e; t) if zhj (e; t) < 0

: (2.8)

The transversality condition, which is a necessary condition for the household optimization problem
(2:9); will thus be given as:

lim
t!1

X
(eh)t�1

X
e
�h
��
eh
�t�1

; e
�P

j2J (e) q
h
j (e; t)z

h
j (e; t) = 0: (2.16)

In the general �nancial model without bankruptcy, the transversality served to rule out Ponzi
schemes. In this bankruptcy model, one may wonder if households will run up unbounded debt
as in a Ponzi scheme and then simply declare bankruptcy to unload this debt. The assump-
tion (A:4) plays an important role in ruling out this possibility. This assumption keeps open
the possibility that the household will realize an unending sequence of income states with an in-
come level above the median level in all of them. As the summation in the transversality condi-
tion (2:16) is over all possible realizations of the Markov process, even one realization

�
eh
�t
with

�h
��
eh
�t�P

j2J (e) q
h
j (e; t)z

h
j (e; t) < 0 would prevent the necessary condition (2:16) from binding.

I will use the transversality condition (a necessary condition for household optimization in this
in�nite-time, incomplete markets setup) to rule out Ponzi schemes and guarantee that the limits
as �T ! 1 are well-de�ned. The proof of theorem 4 is identical to the proof of theorem 2 and is
therefore omitted.
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Theorem 4 If a truncated bankruptcy equilibrium exists for any �nite length �T ; then the limit as
�T ! 1 is well de�ned (all equilibrium variables are uniformly bounded) and the equilibrium at the
limit is the desired bankruptcy equilibrium for the in�nite-time horizon.

3 The Ordering of Repayment Rates by Pools

This section will give conditions on the parameters (mostly the transition matrix) such that the
repayment rates will be ordered by the bankruptcy indicator bh(t): That is, the pool of households
with indicator bh(t) = 1 will have a lower expected repayment rate (and thus face lower asset prices)
than the pool of households with indicator bh(t) = 2: This result will then be extended for a
bankruptcy model in which bh(t) 2 f0; 1; 2; :::; Ig and in which a household�s bankruptcy �ag is not
removed until I periods have elapsed since the bankruptcy was declared.

3.1 Two period bankruptcy e¤ects

In the standard model, bh(t) 2 f0; 1; 2g: Let there be 3 income states, E = 3: To illustrate the
key point that a creditor�s observation of a borrower�s pecuniary income does not imply that it can
forecast its repayment likelihood, consider !1 = !2 � !med < !3: Income states e = 1 and e = 2
di¤er only in the persistence of that low income level. Households with current income state e = 1
and e = 2 can declare bankruptcy, while households with current income state e = 3 cannot (from
assumption (A:4)).

The ordering of repayment rates will be di¤erent for each asset that is traded. To obtain a
precise result, I must limit the model so that only one asset, a risk-free bond, is traded in every
period. The parameters under consideration for this simple economy are E = f!1; !2; !3g; �; �;
and u(�): To obtain the result requires joint conditions on all these parameters. However, I am
able to write the conditions so that they directly depend on � and implicitly on the rest.13 Let the
transition matrix � be sparse with terms given by:24 �(1j1) = 1 �(3j1) = 1� 1

�(2j2) = 2 �(3j2) = 1� 2
�(1j3) = 1�

2 �(2j3) = 1�
2 �(3j3) = 

35 : (3.1)

The parameters 1; 2;  2 (0; 1): The �rst income state will be more persistent than the second:
1 > 2:

Recall the household�s maximization problem as given in (2:9): In each time period t; the
household enters with income state eh(t) and wealth wh(t): Suppose that eh(t) = 1 or eh(t) = 2:
For either state, the household has the following binary decision to make. It can either make the
optimal asset choice while planning to remain solvent in the following period or it can make the
optimal asset choice while planning to declare bankruptcy given a realization of a state in the next
period that allows for bankruptcy. For eh(t) = 1; the only one (of two) state realizations allowing
for bankruptcy is eh(t + 1) = 1 (and analogously for eh(t) = 2). The decision about whether to
plan to declare bankruptcy or not is conditional on the household�s current wealth level wh(t) and
the persistence of its income state (either 1 or 2). I will de�ne the bankruptcy cuto¤ �(w) as
a function of wealth so that a household will plan to declare bankruptcy at time period t + 1 i¤
i � �(wh(t)) where i = eh(t): This bankruptcy cuto¤ �(w) is a strictly increasing function of
wealth w: To see this, notice that for a �xed persistence, a larger wealth will decrease the chances
of a bankruptcy declaration.
13Obviously, the endogenous �nancing and bankruptcy decisions of households are functions of all parameters, but

I will be able to write the conditions for the result in terms of the transition matrix �:
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A household having just declared bankruptcy (bh(t � 1) = 0) will have wealth wh(t � 1) = 0:
Suppose that eh(t � 1) = eh(t) = 1: From the bankruptcy setup, the household cannot declare
bankruptcy in time period t (bh(t) = 1). The wealth brought into the period t will be denoted as
w(1) = w (t : e(t� 1) = e(t) = 1; w(t� 1) = 0; b(t) = 1) : The �rst condition to obtain the ordering
of repayment rates is that:

1 > �(w(1)) > 2: (3.2)

This condition states that a household with eh(t� 1) = 1 and bh(t� 1) = 0 will declare bankruptcy
in time period t + 1 if eh(t) = eh(t + 1) = 1; while a household with bh(t � 1) = 0 and eh(t � 1) =
eh(t) = eh(t+ 1) = 2 will not declare in time period t+ 1:

The second condition places an additional restriction of (1; 2) : This condition states that the
weighted repayment rates of all households that declare from pool bh(t) = 1 (the households declaring
from this pool are only households with eh(t� 1) = eh(t) = eh(t+ 1) = 1) will be strictly less than
the expected repayment rates of all households that declare from pool bh(t) = 2: The description
of the households that declare from pool bh(t) = 2 will be any household with eh(t + 1) = 1 or
eh(t + 1) = 2; but further speci�cation requires a detailed accounting of households�possible state
realizations. The endogenous bankruptcy decisions of households from pool b(t) = 2 are governed
by the (potentially) in�nite history of income state realizations up to that time period. The second
condition is given as:

(1� 2) (1)
4

(1� 2) (1)
3
+ (1� 1) (2)

3 >
(2)

3
+ 1

2(1�2)
(2)

2+2(1�2)

(2)
2
+ 1

22 +
1
3 +

2(1�2)
(2)

2+2(1�2)

: (3.3)

The values for (1; 2) that satisfy both 1 > 2 and condition (3:3) are plotted in �gure 1 below
(only the values for 2 � 0:6 are displayed in order to focus on values of interest for the persistence
parameters).
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Figure 1: Values of (1; 2) satisfying (3:3) and 1 > 2:
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The proof of theorem 5 is contained in appendix B.

Theorem 5 Under the simple economy presented with E = 3; !1 = !2 � !med < !3; and � given
by (3:1); then if (1; 2) such that 1 > 2 additionally satisfy

� 1 > �(w(1)) > 2 and

� (1�2)(1)4
(1�2)(1)3+(1�1)(2)3

>
(2)

3+1
2(1�2)

(2)
2+2(1�2)

(2)
2+ 1

22+
1
3+

2(1�2)
(2)

2+2(1�2)

;

the repayment rates are ordered by pools: �1(t) < �2(t) 8t:

From equation (2:13); this theorem in particular implies that q1(t�1) < q2(t�1) 8t: Therefore,
households in pool bh(t) = 1 face lower asset prices when borrowing than households in pool bh(t) =
2:

3.2 Finite period bankruptcy e¤ects

Now consider an extension of the model in which the bankruptcy indicator bh(t) can take on I + 1
values bh(t) 2 f0; 1; :::; Ig: If a household declares bankruptcy in time period t, the indicator takes
value bh(t) = 0: For every period thereafter at which the household does not declare bankruptcy, the
indicator bh(t+�) = bh(t+��1)+1fbh(t+��1) < Ig: When bh(t+��1) = I; the bankruptcy �ag
has been removed and the household is indistinguishable from any household who has never declared
bankruptcy. As in the standard model, a household may not declare bankruptcy two periods in a
row. As a result, the repayment rates can only be less than unity for pools bh(t) 2 f1; :::; Ig:

There will now be I+1 income states, E = I+1: To highlight the point that the observation of
a household�s income level is immateral without also observing the persistence of that income level,
set !1 = !2 = ::: = !I � !med < !E : Let the transition matrix � be sparse with terms given by:2664

::: 0 0
0 �(iji) = i 0
0 0 :::

:::
�(Eji) = 1� i

:::

::: �(ijE) = 1�
I ::: �(EjE) = 

3775 : (3.4)

The persistence of the income states is ordered as (without loss of generality): 1 > 2 > ::: > I :
As above, I will de�ne w(i) as the amount of wealth that a household with a string of realizations

e(�) = i (where i 2 f1; :::; Ig) will bring into period t given that the household is planning to declare
bankruptcy in time period t+ 1 upon realization e(t+ 1) = i: Therefore,

w(i) = w (t : (e(t� i) = :: = e(t) = i) ; (w(t� i) = 0) ; (b(t� i) = 0; ::b(t) = i))

for all i 2 f1; :::; Ig: As above, the bankruptcy cuto¤ �(w) is a function of wealth so that a household
will plan to declare bankruptcy at time period t+ 1 i¤ i � �(w(t)) where i = eh(t):

With these de�nitions, the following theorem is a generalization of theorem 5 for the case of any
�nite number of bankruptcy pools bh(t) 2 f0; 1; :::; Ig: The proof of this theorem 6 is contained in
appendix B.

Theorem 6 Under the extended economy presented with E = I + 1; !1 = !2 = ::: = !I � !med <
!E ; and � given by (3:4); then if (1; :::; I) such that 1 > :: > I additionally satisfy

� 1 > �(w(1)) > 2 > �(w(2)) > ::: > I and
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� (1�I)(I�1)
2I

(1�I)(I�1)
2I�1

+(1�I�1)(I)2I�1
>

(I)
2I+1

I +(1�I)
�
1+
PI

i=2
(i)

i+1
�

(I)
2I

I +(1�I)
�
1+
PI

i=2

Pi

j=0
1

j+1 (i)
i�j

� ;
the repayment rates are ordered by pools: �1(t) < �2(t) < ::: < �I(t) 8t:

From equation (2:13); this theorem in particular implies that q1(t � 1) < q2(t � 1) < :::: <
qI(t� 1) 8t: Therefore, households in a lower pool bh(t) = i face lower asset prices when borrowing
than households in a higher pool bh(t) = j for all i < j:

4 Multiple Assets and Normative Predictions

[to be completed]

5 Conclusion

This work has contributed a framework for the analysis of bankruptcy in the class of Bewley models.
If creditors observed the asset choices of potential borrowers, then the asset prices could be condi-
tioned on the expected repayment rate of each borrower. However, in this anonymous and competi-
tive setting, creditors can only set asset prices conditioned on the pool to which a borrower belongs,
where the pools are distinguished only by bankruptcy history. In this setup, general existence of a
bankruptcy equilibrium was shown and theoretical results for a simple economy demonstrated that
the di¤erent pools would be subject to di¤erent endogenous asset prices for borrowing.

The next steps in this line of research are �rst quantitative and then theoretical (again). On
the quantitative side, the asset structure of the model allows for equilibria to be computed using
standard dynamic programming techniques for any set of calibrated parameters. The normative
impacts of bankruptcy, both allowing for its possibility and then regulating its consequences, can then
be studied. Can the introduction of bankruptcy lead to a welfare gain for most/all households?
Is screening borrowers into pools by bankruptcy history ine¢ cient and would creditors prefer to
eliminate credit reports? Though the intuitive answer to both of these questions is "no", a complete
answer is only possible with a rigorous quantitative exercise.

On the theoretical side, it is natural to ask how the bankruptcy e¤ects translate to the set of
secured credit markets. As developed by Geanakoplos and Zame (2002), any asset sales in these
markets must be backed by some speci�ed amount of the durable good (collateral). Creditors have
a claim on the collateral of any bankrupt households that they lend to. This will be referred to as
the primary repayment market. Following this, if still owed funds, creditors can �le claims on the
secondary repayment markets, an unsecured credit market. Finally, quite novel will be the setup
in which pools of borrowers do not face di¤erent asset prices when borrowing, but di¤erent collat-
eral requirements. Thus, the collateral levels can be endogenized without the insurance/collateral
intertemporal trade-o¤ of Araujo et. al. (2000).
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Appendix A

Proof of Theorem 1

Over the truncated horizon t 2 f0; :::; �Tg with �T <1; de�ne the sequence of asset prices qj(e) =
fqj(e; t)g0�t< �T and q = (qj(e))8e;8j2J (e) : Likewise, de�ne the sequence of household consumption
and asset choices as ch =

�
ch(t)

	
0�t� �T and z

h
j (e) =

�
zhj (e; t)

	
0�t< �T with z

h =
�
zhj (e)

�
8e;8j2J (e) :

De�ne the upper bound �c = 2maxf!1; ::; !Eg: De�ne the bounded budget set for each household
h 2 H as:

�Bh(q) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�
ch; zh

�
2 R �T+1

+ � RJ �T : ch(t) � �c 8t
!h(0)� ch(0)�

P
e

P
j2J (e) qj(e; 0)z

h
j (e; 0) � 0;

!h(t)� ch(t) +
P̂
e 6=e

 P
j2J (ê)

rj(ê)z
h
j (ê; t� 1)

!
+ ::

:::+
P

j2J (e)
rj(e

0je)zhj (e; t� 1)�
P
e

P
j2J (e)

qj(e; t)z
h
j (e; t) � 0;

!h( �T )� ch( �T ) +
P̂
e6=e

 P
j2J (ê)

rj(ê)z
h
j (ê;

�T � 1)
!
+ :::

:::+
P

j2J (e)
rj(e

0je)zhj (e; �T � 1) � 0

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

: (a.1)

The realized income states (e; e0) =
�
eh(t� 1); eh(t)

�
where the time period t is understood from

context. The middle budget constraint holds 8t : 0 < t < �T :
In equilibrium, the constraints ch(t) � �c will be nonbinding. Since the objective function is

quasi-concave and continuous, it is innocuous to add the constraints to the budget set as the optimal
solutions to the household problem will not be a¤ected. �Bh(q) is nonempty. The proofs of both
the following lemmas are contained at the completion of the proof of theorem 1.

Lemma 1 With qj(e; t) > 0 8t � 0;8e; and 8j 2 J (e); then �Bh(q) is compact.

Though qj(e; t) > 0 8t;8e; and 8j 2 J (e) is an assumption in lemma 1, it will be shown that
this is a necessary condition of equilibrium.

Although the set �Bh(q) as written is convex, when introducing bankruptcy the convexity will
not be preserved. Even so, lemma 2 will still hold.

Lemma 2
Z
�Bh(q)d� is convex.

De�ne the price space as:

�� =
n
(p; q) : p(t) +

P
e

P
j2J (e) qj(e; t) = 1 8t

o
:

Since all the payouts are nonnegative, the equilibrium asset prices qj(e; t) � 0: The price p(t) will
be the price of the physical commodity in each time period t: In equilibrium, it is normalized to 1,

but when de�ning the price space, it is more convenient to restrict
�
p(t); (qj(e; t))8e;8j2J (e)

�
2 �J

8t � 0: �� is nonempty, convex, and compact.
Next, I will write down the household�s truncated optimization problem and de�ne the household

demand. The household problem (H) is given by

max
ch;zh

E0

�TX
t=0

�tu
�
ch(t)

�
(H)
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subj to
�
ch; zh

�
2 �Bh(q):

I will de�ne the household demand correspondence as

�h : �� � �Bh(q)

such that given q 2 ��;
�
~ch; ~zh

�
2 �h(q) i¤

�
~ch; ~zh

�
solves (H): As u(�) is continuous and �Bh(q) is

compact, the demand correspondence �h is well-de�ned. From lemma 1, since
Z
�Bh(q)d� is convex

and all households face the same objective function, the overall household demand correspondence

�; de�ned such that �(q) =
Z
�h(q)d� 8q 2 ��; is convex-valued. The proof of the following

lemma is located at the completion of the proof of theorem 1.

Lemma 3 �h is an upper hemicontinuous (uhc) correspondence.

I will now write down the price correspondence

	 :

Z
�Bhd�� ��:

Given
�
ch; zh

�
h2H ; then (p; q) 2 	

��
ch; zh

�
h2H

�
i¤

(p; q) 2 argmax

8>>>>>>>>><>>>>>>>>>:

p(0)

�Z
ch (0) d�� !

�
+
P
e

P
j2J (e)

qj(e; 0)

Z
zhj (e; 0)d�+

�TX
t=1

p(t)

�Z
ch (t) d�� !

�
+

�T�1X
t=1

P
e

P
j2J (e)

qj(e; t)

Z
zhj (e; t)d��

�TX
t=1

Z
h2H

"P̂
e 6=e

P
j2J (ê)

rj(ê)z
h
j (ê; t�1) +

P
j2J (e)

rj(e
0je)zhj (e; t�1)

#
d�

9>>>>>>>>>=>>>>>>>>>;
: (a.2)

As the objective function is continuous and �� is compact, 	 is well-de�ned. As the objective
function is quasi-concave and �� is convex, 	 is convex-valued. Finally, since the constraint set
�� is independent of

�
ch; zh

�
h2H and is compact, it can be viewed as the values of a continuous

correspondence. Using the maximum principle, the correspondence 	 is uhc.
De�ne the overall equilibrium correspondence as the Cartesian product � � 	: The over-

all correspondence is well-de�ned, convex-valued, and uhc. It maps from the Cartesian productZ
�Bhd� � �� into itself. The set

Z
�Bhd� � �� is nonempty, convex, and compact. Applying

Kakutani�s �xed point theorem yields a �xed point of this overall equilibrium correspondence. By
de�nition, the �xed points is such that

�
ch; zh

�
satis�es the household optimization problem (H)

8h 2 H:
In equilibrium, since rj(e) =

P
e0 � (e

0je) rj (e0je) > 0 holds 8e and 8j 2 J (e) by de�nition, no
arbitrage conditions (necessary conditions of household optimization) imply qj(e; t) > 0 8t;8e; and
8j 2 J (e): All that remains to complete the proof of theorem 1 is to verify that the markets clear
(both commodity and asset markets) for the �xed point given by Kakutani.

Lemma 4 Markets clear.
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Proof. From Walras�law:

p(0)

�Z
ch (0) d�� !

�
+
P

e

P
j2J (e) qj(e; 0)

Z
zhj (e; 0)d� = 0

p(t)

�Z
ch (t) d�� !

�
+
P
e

P
j2J (e)

qj(e; t)

Z
zhj (e; t)d�� ::

:::�
Z

h2H

(P̂
e 6=e

 P
j2J (ê)

rj(ê)z
h
j (ê; t� 1)

!
+

P
j2J (e)

rj(e
0je)zhj (e; t� 1)

)
d� = 0

p( �T )

�Z
ch
�
�T
�
d�� !

�
� :::

::�
Z

h2H

(P̂
e 6=e

 P
j2J (ê)

rj(ê)z
h
j (ê;

�T � 1)
!
+

P
j2J (e)

rj(e
0je)zhj (e; �T � 1)

)
d� = 0

: (a.3)

The convention is that the middle equality holds for all t : 0 < t < �T :
I will �rst prove a general property about the asset payouts and then show that markets clear

using an induction argument.
Consider the asset payoutsZ

h2H

nP
ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê; t)

�
+
P

j2J (e) rj(e
0je)zhj (e; t)

o
d�:

Choose any e 2 E and any j 2 J (e): I can rewrite the equation for this asset (e; j) as:

rj(e)

Z
h:eh(t) 6=e

zhj (e; t)d�+
P
e0
rj(e

0je)
Z

h:(eh(t);eh(t+1))=(e;e0)

zhj (e; t)d�:

By de�nition, � (e0je) =

Z
h:(eh(t);eh(t+1))=(e;e0)

d�Z
h:eh(t)=e

d�

and since the integration is a linear operation, the

equation is equivalent to:

rj(e)

Z
h:eh(t) 6=e

zhj (e; t)d�+
P
e0
rj(e

0je)� (e0je)
Z
h:eh(t)=e

zhj (e; t)d�:

By de�nition, rj(e) =
P

e0 � (e
0je) rj (e0je) and thus the asset payouts for zj(e) are reduced to:

rj(e)

Z
zhj (e; t)d�:

Initialization: t = 0

If
�Z

ch (0) d�� !
�
> 0; the de�nition of the price correspondence 	 requires p(0) = 1 and

(qj(e; 0))8e;8j2J (e) =
�!
0 : The �rst of the equalities of (a:3) is violated. Thus

�Z
ch (0) d�� !

�
� 0:

If
�Z

zhj (e; 0)d�

�
> 0 for some e and some j 2 J (e); then qj(e; 0) = 1 for that (e; j)

and
�
p(0); (qj0(e

0; 0))8(e0;j0) 6=(e;j)

�
=
�!
0 : This is a violation of the �rst equality of (a:3): Thus�Z

zhj (e; 0)d�

�
� 0 8e and 8j 2 J (e):
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In order for the �rst equality of (a:3) to hold, it must be that�Z
ch (0) d�� !

�
= 0: (a.4)�Z

zhj (e; 0)d�

�
= 0 8e and 8j 2 J (e):

where the equalities follows since p(0) > 0 and qj(e; 0) > 0 8e and 8j 2 J (e):
Induction: t : 0 < t � �T
Suppose that the following equations (a:5) hold for some time period t� 1 :�Z

ch (t� 1) d�� !
�

= 0: (a.5)�Z
zhj (e; t� 1)d�

�
= 0 8e and 8j 2 J (e):

The aggregate asset payouts de�ned simply as rj(e)
Z
zhj (e; t � 1)d� from the analysis above

would have value rj(e)
Z
zhj (e; t� 1)d� = 0 8e and 8j 2 J (e):

If
�Z

ch (t) d�� !
�
> 0; the de�nition of the price correspondence 	 requires p(t) = 1 and

(qj(e; t))8e;8j2J (e) =
�!
0 : One of the equalities of (a:3) is violated. Thus

�Z
ch (t) d�� !

�
� 0:

If
�Z

zhj (e; t)d�

�
> 0 for some e and some j 2 J (e); then qj(e; t) = 1 for that (e; j) and�

p(t); (qj0(e
0; t))8(e0;j0) 6=(e;j)

�
=
�!
0 : This is a violation of one of the equalities of (a:3): Thus�Z

zhj (e; t)d�

�
� 0 8e and 8j 2 J (e):

For the equalities in (a:3) to hold, it must be that (since p(t) > 0 and qj(e; t) > 0 8e and
8j 2 J (e)): �Z

ch (t) d�� !
�

= 0:�Z
zhj (e; t)d�

�
= 0 8e; and 8j 2 J (e):

Proceeding by induction, I have veri�ed that the market clearing conditions are satis�ed.

Proof of Lemma 1

To show this result, I recognize that the vector of consumption ch is bounded (by de�nition).
Then, beginning in time period �T and working by backwards induction, I will prove that the assets
are bounded as well (relying on assumptions (A:1) and (A:2)).

Final period: t = �T
The term P

ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê; �T � 1)

�
+
P

j2J (e) rj(e
0je)zhj (e; �T � 1) (a.6)
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is bounded according to the budget constraint at time period t = �T : Normalizing r� = 1; then there

exists zh�( �T � 1) 2 R s.t. r�zh�( �T � 1) =
P

ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê;

�T � 1)
�
(zh�( �T � 1) will be a

cumulative risk-free bond with payo¤ r� = 1). Therefore, the sum

r�zh�( �T � 1) +
P

j2J (e) rj(e
0je)zhj (e; �T � 1)

is bounded and by assumption (A:1); the vector
�
zh�( �T � 1);

�
zhj (e;

�T � 1)
�
8j2J (e)

�
is bounded.

Thus, r�zh�( �T�1) is bounded and so is the equivalent expression
P

ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê;

�T � 1)
�
:

Suppose without loss of generality that
P

ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê;

�T � 1)
�
� 0: By assumption

(A:2); the assets zhj (ê; �T � 1) � 0 8ê 6= e and 8j 2 J (ê): As
P

ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê;

�T � 1)
�
is

bounded and rj(ê) is �xed, then each of the assets
�
zhj (ê;

�T � 1)
�
8ê 6=e;8j2J (ê) is bounded as well.

Backward induction: t < �T

With
��
zhj (e; t)

�
8j2J (e) ;

�
zhj (ê

0; t)
�
8ê 6=e;j2J (ê)

�T
bounded (this is the inductive hypothesis), the

budget constraint at time period t < �T dictates that the following term is bounded:

P̂
e 6=e

 P
j2J (ê)

rj(ê)z
h
j (ê; t� 1)

!
+

P
j2J (e)

rj(e
0je)zhj (e; t� 1): (a.7)

Exactly as above, de�ne r� = 1 and zh�(t�1) 2 R s.t. r�zh�(t�1) =
P

ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê; t� 1)

�
:

Therefore, the sum
r�zh�(t� 1) +

P
j2J (e) rj(e

0je)zhj (e; t� 1)

is bounded and by assumption (A:1); the vector
�
zh�(t� 1);

�
zhj (e; t� 1)

�
8j2J (e)

�
is bounded.

Thus,
P

ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê; t� 1)

�
is bounded. Suppose without loss of generality that

P
ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê; t� 1)

�
�

0: By assumption (A:2); the assets zhj (ê; t�1) � 0 8ê 6= e and 8j 2 J (ê): As
P

ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê; t� 1)

�
is bounded, then each of the assets in the vector

�
zhj (ê; t� 1)

�
8ê 6=e;8j2J (ê) is bounded as well.

This completes the backward induction argument and the proof of the lemma.

Proof of Lemma 2

�Bh(q) is a set-valued function (terminology of Aumann, 1966) or correspondence. From Aumann

(1966),
Z
�Bh(q)d� is convex provided that �Bh(q) is a set-valued function de�ned on the set of

households H~ [0; 1] (recall that the set of households is actually a hyper�nite process in order to be
able to apply the law of large numbers) and the values of �Bh(q) are subsets of R �T+1

+ � RJ �T :

Proof of Lemma 3

I will de�ne the budget correspondence

�Bh : �� � �Bh(q)

such that given q 2 ��; the values of the correspondence �Bh are the entire budget set �Bh(q): This
correspondence is trivially uhc. The following proof will show that �Bh is also lhc. Using the
maximum principle (with the continuous utility function from the household optimization problem),
�h is a uhc correspondence.
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Claim 1 �Bh is an lhc correspondence.

Proof. Consider a sequence q� ! q with
�
ch; zh

�
2 �Bh(q) for some h (I will drop the superscript

now). I will de�ne a scaling factor (��(t))0�t� �T such that for the scaled consumption and assets

c�(t) =

�
min
0�t� �T

��(t)

�
c(t) 8t

z�j (e; t) =

�
min
0�t� �T

��(t)

�
zj(e; t) 8t;8e; and 8j 2 J (e);

9N s.t. 8� � N; (c� ; z�) 2 �Bh(q�) and (c� ; z�)! (c; z) : For simplicity, de�ne �� =
�
min
0�t� �T

��(t)

�
:

The budget set �Bh(q) has the so-called scaling propety (so called by Dubey et. al. (2005))
meaning that it is fairly straightforward to de�ne the sequence of scaling fractions ��(t) 2 [0; 1] for
0 � t � �T : This is done by induction.

Initialization: t = 0
If !h(0)� c(0)�

P
e

P
j2J (e) qj(e; 0)zj(e; 0) > 0; then 9N s.t.

!h(0)� c(0)�
P

e

P
j2J (e) q

�
j (e; 0)zj(e; 0) > 0

holds 8� � N: De�ne ��(0) = 1 for this case.
Otherwise, !h(0)�c(0)�

P
e

P
j2J (e) qj(e; 0)zj(e; 0) = 0 and thus c(0)+

P
e

P
j2J (e) qj(e; 0)zj(e; 0) >

0 using the assumption that !h(0) > 0:
De�ne ��(0) 2 [0; 1] 8� as:

��(0) =

!h(0)

c(0)+
P

e

P
j2J (e)

q�j (e;0)zj(e;0)
if num < den and den 6= 0

1 otherwise

where num = !h(0) and den = c(0) +
P

e

P
j2J (e) q

�
j (e; 0)zj(e; 0): With num! den and knowing

that for some N0; 8� � N0; den > 0; then ��(0)! 1: The following equations verify that the scaled�
c�(0);

�
z�j (e; 0)

�
8e;j2J (e)

�
satisfy the budget constraint 8� � N0 at time period t = 0 :

c�(0) +
P

e

P
j2J (e) q

�
j (e; 0)z

�
j (e; 0) =

��c(0) + ��
P

e

P
j2J (e) q

�
j (e; 0)zj(e; 0) �

��(0)
h
c(0) +

P
e

P
j2J (e) q

�
j (e; 0)zj(e; 0)

i
� !h(0):

Induction: 0 < t � �T
Pick any time period t : 0 < t � �T and suppose that the budget constraints are satis�ed for all

prior time periods (induction hypothesis). De�ne the asset payouts for this time period as

ap(t) =
P

ê 6=e

�P
j2J (ê) rj(ê)zj(ê; t� 1)

�
+
P

j2J (e) rj(e
0je)zj(e; t� 1):

If !h(t)� c(t)�
P

e

P
j2J (e) qj(e; t)zj(e; t) + ap(t) > 0; then 9N s.t.

!h(t)� c(t)�
P

e

P
j2J (e) q

�
j (e; t)zj(e; t) + ap(t) > 0

26



holds 8� � N: De�ne ��(t) = 1 for this case.
Otherwise, !h(t)�c(t)�

P
e

P
j2J (e) qj(e; t)zj(e; t)+ap(t) = 0 and thus c(t)+

P
e

P
j2J (e) qj(e; t)zj(e; t)�

ap(t) > 0 using the assumption that !h(t) > 0:
De�ne ��(t) 2 [0; 1] 8� as:

��(t) =

!h(t)

c(t)+
P

e

P
j2J (e)

q�j (e;t)zj(e;t)�ap(t)
if num < den and den 6= 0

1 otherwise

where num = !h(t) and den = c(t) +
P

e

P
j2J (e) q

�
j (e; t)zj(e; t) � ap(t): With num ! den and

knowing that for some Nt; 8� � Nt; den > 0; then ��(t) ! 1: The following equations verify

that the scaled
�
c�(t);

�
z�j (e; t� 1); z�j (e; t)

�
8e;j2J (e)

�
satisfy the budget constraint 8� � Nt at time

period t :

c�(t) +
P

e

P
j2J (e) q

�
j (e; t)z

�
j (e; t)� ::

::�
P

ê 6=e

�P
j2J (ê) rj(ê)z

�
j (ê; t� 1)

�
+
P

j2J (e) rj(e
0je)z�j (e; t� 1) =

��c(t) + ��
P

e

P
j2J (e) q

�
j (e; t)zj(e; t)� �

�ap(t) �
��(t)

h
c(t) +

P
e

P
j2J (e) q

�
j (e; t)zj(e; t)� ap(t)

i
� !h(t):

Thus, 9N = maxfN0; :::; NT g s.t. 8� � N; (c� ; z�) 2 �Bh(q�) and also (c� ; z�) ! (c; z): This
completes the proof.
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Proof of Theorem 2

The proof of this result should follow from Magill and Quinzii (1994), Bewley (1972), and
possibly Bewley (1986). [to be completed]

Proof of Theorem 3

Over the truncated horizon t 2 f0; :::; Tg with T < 1; de�ne the sequence of asset prices
qj(e) = fqj(e; t)g0�t< �T and q = (qj(e))8e;8j2J (e) and the sequence of repayment rates �j(e) =�
�j(e; t)

	
0<t� �T and � =

�
�j(e)

�
8e;8j2J (e) : Further, for each bankruptcy history b 2 B; there exists a

sequence of asset prices qbj(e) =
�
qbj(e; t)

	
0�t< �T and q

b =
�
qbj(e)

�
8e;8j2J (e) : De�ne q

� =
�
q; (qb)b2B

�
as the vector containing all asset price sequences. De�ne the sequence of household consumption
and asset choices as ch =

�
ch(t)

	
0�t� �T and z

h
j (e) =

�
zhj (e; t)

	
0�t< �T with z

h =
�
zhj (e)

�
8e;8j2J (e) :

De�ne the upper bound �c = 2maxf!1; ::; !Eg: Unless speci�ed, the simple notation (e; e0) will
replace

�
eh(t� 1); eh(t)

�
where the time period t is clear from context. It is also clear from context

that the second set of middle equations is for a household declaring bankruptcy. De�ne the bounded
budget set for each household h 2 H as:

�Bh(q�; �) =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

�
ch; zh; bh

�
2 R �T+1

+ � RJ �T � B �T : ch(t) � �c 8t
!h(0)� ch(0)�

P
e

P
j2J (e)

qj(e; 0)z
h
j (e; 0) � 0;

!h(t)� ch(t)�
P
e

P
j2J (e)

qhj (e; t)z
h
j (e; t) + maxfSh(t); Bh(t)g � 0;

where Sh(t) =
P̂
e 6=e

P
j2J (ê)

rhj (ê; t)z
h
j (ê; t�1) +

P
j2J (e)

rhj (e
0je; t)zhj (e; t�1)

and Bh(t) = �
P

ê 6=e

�P
j2J (ê) �j(ê)rj(ê)

�
zhj (ê; t� 1)

�+�� :::
:::�

P
j2J (e) �j(e)rj(e

0je)
�
zhj (e; t� 1)

�+
!h( �T )� ch( �T ) +

P
ê 6=e

�P
j2J (ê) rj(ê)z

h
j (ê;

�T � 1)
�
+ :::

:::+
P

j2J (e) rj(e
0je)zhj (e; �T � 1) � 0

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

: (a.8)

Notice that in the truncated budget set given in (a:8); it is not permissible for a household to
declare bankruptcy in the �nal period �T : As a result, overall repayment rate at �T 2 T �h is unity.
That is, rhj (ê; �T ) = rj(ê) 8ê 6= e;8j 2 J (ê) and rhj (e0je; �T ) = rj(e0je) 8j 2 J (e): As there is no �nal
period in the limit, this restriction is innocuous in the in�nite horizon equilibrium.

In equilibrium, the constraints ch(t) � �c will be nonbinding. As the objective function is quasi-
concave and continuous, it is innocuous to add the constraints to the budget set as the optimal
solutions to the household problem will not be a¤ected. �Bh(q�; �) is nonempty and from lemma 2,Z
�Bh(q�; �)d� is convex. The proof of the following lemma is located after the proof of theorem 2.

Lemma 5 If qbj(e; t) > 0 8b 2 B; 8t � 0; 8e; and 8j 2 J (e); then �Bh(q�; �) is compact.

Though qbj(e; t) > 0 8b 2 B; 8t � 0; 8e; and 8j 2 J (e) is an assumption in lemma 5, it will be
shown that this is a necessary condition of equilibrium.
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De�ne the price space as:

�� =

8>>>>>>>><>>>>>>>>:

(p; q�; �) : p(t) +
P
e

P
j2J (e)

qj(e; t) = 1 8t:

�bj(e; t+ 1)
R
h2H(b) �

�
zhj (e; t)

��
d� = �

R
h2H(b)�

h(t+ 1)
�
zhj (e; t)

��
d�:

qbj(e; t) = qj(e; t) � Et
�
�bj(e;t+1)

�j(e;t+1)

�
8t;8b;8e; and 8j 2 J (e):

0 � �j(e; t+ 1) � 1 where 8t;8e; and 8j 2 J (e) :
�j(e; t+ 1)

R
h2H

�
zhj (e; t)

�+
d� = �

R
h2H�

h(t+ 1)
�
zhj (e; t)

��
d�:

9>>>>>>>>=>>>>>>>>;
:

Since all the asset payouts are nonnegative, qj(e; t) � 0 in equilibrium. The price p(t) will be the
price of the single commodity in each time period t: In equilibrium, it is normalized to 1; but when

de�ning the price space, it is more convenient to restrict
�
p(t); (qj(e; t))8e;j2J (e)

�
2 �J : Since

qj(e; t) is bounded, then qbj(e; t) is bounded 8b: Finally, by de�nition, when
R

h2H

�
zhj (e; t)

�+
d� > 0;

the repayment rate �h(t+1) � 1 8h 2 H implying that �j(e; t+1) � 1: However, if
R

h2H

�
zhj (e; t)

�+
d� =

0; then any value for �j(e; t + 1) will solve the conditions (AC): The upper bound 1 is added to
bound �j(e; t + 1) and it is clear that this upper bound is only hit if the determination of prices is
irrelevant for market clearing (since markets are closed anyway). The price space �� is nonempty,
convex, and compact.

Next, I will write down the household�s truncated optimization problem and de�ne the household
demand. The household problem (H) is given by

max
ch;zh;bh

E0

�TX
t=0

�tu
�
ch(t)

�
(H)

subj to
�
ch; zh; bh

�
2 �Bh(q�; �):

I will de�ne the household demand correspondence as

�h : �� � �Bh(q�; �)

such that given (q�; �) 2 ��;
�
~ch; ~zh;~bh

�
2 �h(q) i¤

�
~ch; ~zh;~bh

�
solves (H): �h is well-de�ned and

�; de�ned such that �(q�; �) =
Z
�h(q�; �)d� 8(q�; �) 2 ��(!); is convex-valued. The proof of

the following lemma is contained after the proof of theorem 2.

Lemma 6 �h is an upper hemicontinuous (uhc) correspondence.

Recall what Walras�law yielded for the "no-bankruptcy" model as given in the set of equations
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(a:3) from the proof of theorem 1: (where the middle equations hold for all t : 0 < t < �T ):�Z
ch (0) d�� �!

�
+
P

e

P
j2J (e) qj(e; 0)

Z
zhj (e; 0)d� = 0�Z

ch (t) d�� �!
�
+
P
e

P
j2J (e)

qj(e; t)

Z
zhj (e; t)d�� ::

:::�
Z

h2H

(P̂
e 6=e

 P
j2J (ê)

rj(ê)z
h
j (ê; t� 1)

!
+

P
j2J (e)

rj(e
0je)zhj (e; t� 1)

)
d� = 0�Z

ch
�
�T
�
d�� �!

�
� :::

::�
Z

h2H

(P̂
e 6=e

 P
j2J (ê)

rj(ê)z
h
j (ê;

�T � 1)
!
+

P
j2J (e)

rj(e
0je)zhj (e; �T � 1)

)
d� = 0

: (a.3)

For the bankruptcy model, Walras�law now yields the more complicated set of equations (again,
the middle equations hold for all t : 0 < t < �T ):�Z

ch (0) d�� �!
�
+
P

e

P
j2J (e) qj(e; 0)

Z
zhj (e; 0)d� = 0�Z

ch (t) d�� �!
�
+
P
e

P
j2J (e)

Z
qhj (e; t)z

h
j (e; t)d�� :::

::�
Z

h:�h(t)=1

(P̂
e 6=e

 P
j2J (ê)

rhj (ê; t)z
h
j (ê; t� 1)

!
+

P
j2J (e)

rhj (e
0je; t)zhj (e; t� 1)

)
d�+ ::

:::+

Z
h:�h(t)<1

P
ê 6=e

�P
j2J (ê) �j(ê)rj(ê)

�
zhj (ê; t� 1)

�+�
d�+ :::

:::+

Z
h:�h(t)<1

P
j2J (e) �j(e)rj(e

0je)
�
zhj (e; t� 1)

�+
d� = 0

�Z
ch
�
�T
�
d�� �!

�
� :::

::�
Z

h2H

(P̂
e 6=e

 P
j2J (ê)

rj(ê)z
h
j (ê;

�T � 1)
!
+

P
j2J (e)

rj(e
0je)zhj (e; �T � 1)

)
d� = 0

: (a.9)

The distinction between �h(t) = 1 and �h(t) < 1 is meant as a means to separate all households
(both bankrupt and solvent) who repay the entire amount of what is owed (�h(t) = 1) from the
remaining group of households (�h(t) < 1) that declare bankruptcy (bh(t) = 0) and Bh(t) > Sh(t)
(terms de�ned in (a:8)).

Lemma 7 The aggregate consistency conditions are such that for all time periods t : 0 < t < �T ; the
equalities given in (a:9) are equivalent to the equalities given in (a:3):

The proof of lemma 7 is located after the conclusion of the proof of theorem 2.
I will now write down the price correspondence

	 :

Z
�Bhd�� ��:

30



Given
�
ch; zh; bh

�
h2H ; by de�nition (q

�; �) 2 	
��
ch; zh; bh

�
h2H

�
i¤ the dilution variables � =�

�j(e)
�
8e;8j2J (e) are de�ned as in (2:10) and the asset prices q

b =
�
qbj(e)

�
8e;8j2J (e) are de�ned as in

(2:12) and (2:13) and the remaining price vector (p; q) =
�
p; (qj(e))8e;8j2J (e)

�
satis�es the following

maximization problem:

(p; q) 2 argmax

8>>><>>>:
p(0)

�Z
ch (0) d�� �!

�
+
P
e

P
j2J (e)

qj(e; 0)

Z
zhj (e; 0)d�

+

�TX
t=1

p(t)

�Z
ch (t) d�� �!

�
+

�T�1X
t=1

P
e

P
j2J (e)

qj(e; t)

Z
zhj (e; t)d�

9>>>=>>>; : (a.10)

Notice, the prices (p(t))0�t� �T are the prices of the numeraire commodity. In equilibrium, they are
normalized to 1; but for the price correspondence, they are a variable to be determined. Notice
further that the price correspondence is the same as that given in the proof of theorem 1 (only that
the aggregate payouts from the price correspondence in (a:3) have been removed as they have value
0).

The correspondence 	 is well-de�ned, convex-valued, and uhc. Take any time period t and any

asset (e; j): If
Z
h2H

�
zhj (e; t)

��
= 0; then

Z
h2H

�Bh(q�; �) is trivially compact. In such a case, it is

possible that undue pessimism about credit payouts (though irrational as discussed in the footnote
following (2:10)) causes qj(e; t) = 0 or qbj(e; t) = 0 for some b 2 B:

In all other equilibria, no arbitrage conditions (necessary conditions of equilibria) imply that
the asset prices (both qj(e; t) and qbj(e; t)) are strictly positive. Therefore, the conditions for lemma

5 are met and
Z
h2H

�Bh(q�; �) is compact.

De�ne the overall equilibrium correspondence as the Cartesian product � � 	: The over-
all correspondence is well-de�ned, convex-valued, and uhc. It maps from the Cartesian productZ
�Bhd� � �� into itself. The set

Z
�Bhd� � �� is nonempty, convex, and compact. Applying

Kakutani�s �xed point theorem yields a �xed point of this overall equilibrium correspondence. By
de�nition, the �xed points is such that

�
ch; zh; bh

�
satis�es the household optimization problem (H)

8h 2 H:
Given lemma 7, markets clear. This is because (a:9) is equivalent to (a:3) from the proof of

lemma 4 (where the aggregate dividend payouts in (a:3) have value equal to 0). I can directly apply
the proof of lemma 4 to obtain the result and complete the proof of theorem 2.

Proof of Lemma 5

To show this result, I recognize that the consumptions are bounded (by de�nition). Then,
beginning in time period �T ; I will prove that the assets are bounded by backward induction.

Final period: t = �T
By the setup of the truncated equilibrium, no household may declare bankruptcy in time period

�T : Thus, from the proof of lemma 1, in the �nal period t = �T ; the payouts with bankruptcy exactly
equal those in the general �nancial model (without bankruptcy). The same argument as in the proof

of lemma 1 yields the result that the assets
��
zhj (e;

�T � 1)
�
8j2J (e) ;

�
zhj (ê

0; �T � 1)
�
8ê 6=e;j2J (ê)

�T
are

bounded.
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Backward induction: t < �T

With
��
zhj (e; t)

�
8j2J (e) ;

�
zhj (ê

0; t)
�
8ê 6=e;j2J (ê)

�T
bounded (this is the inductive hypothesis), the

budget constraint at time period t < �T dictates that the following terms are bounded, both Sh(t)
and Bh(t) where

Sh(t) =
P̂
e 6=e

 P
j2J (ê)

rhj (ê; t)z
h
j (ê; t� 1)

!
+

P
j2J (e)

rhj (e
0je; t)zhj (e; t� 1):

and Bh(t) = �
P

ê 6=e

�P
j2J (ê) �j(ê)rj(ê)

�
zhj (ê; t� 1)

�+�� :::
�
P

j2J (e) �j(e)rj(e
0je)
�
zhj (e; t� 1)

�+
:

(a.11)

By observing (a:11); it is clear how to partition the households at this time period t: I will �rst
consider those households such that �h(t) < 1 (bankrupt households by de�nition) and then consider
those households such that �h(t) = 1 (either solvent households or bankrupt households such that
maxfSh(t); Bh(t)g = Sh(t)).

Part I: Households h : �h(t) < 1
Given the realized sequence

�
eh
�t�1

=
�
eh(0); :::; eh(t� 1)

�
; household h must choose a portfolio

of assets ��
zhj (e; t� 1)

�
8j2J (e) ;

�
zhj (ê

0; t� 1)
�
8ê 6=e;j2J (ê)

�T
to hedge against its idiosyncratic risk. The idiosyncratic risk stems from the fact that the income
state eh(t) can be any e0 : �(e0jeh(t�1)) > 0: By the de�nition of the bankruptcy problem, household
h cannot declare bankruptcy at time period t if !h(t) > !med or if bh(t�1) = 0: For the part under
consideration, �h(t) < 1 implies that for some income state realization eh(t); the household h prefers
declaring bankruptcy bh(t) = 0 (and is legally allowed to do so).

Thus, for the realized sequence
�
eh
�t
=
��
eh
�t�1

; eh(t)
�
at which �h(t) < 1; the inequality

Bh(t) > Sh(t) holds. Suppose that there exists a sequence
�
z�j (e; t� 1)

�
s.t. z�j (e; t� 1)! �1 as

� !1 for any asset (e; j): Under assumption (A:5); which says that � >> 0; and assumption (A:3);
which says that rj(e0je) > 0 and rj(ê) > 0; the term Bh(t) becomes unbounded. This contradiction

proves that the assets
��
zhj (e; t� 1)

�
8j2J (e) ;

�
zhj (ê

0; t� 1)
�
8ê 6=e;j2J (ê)

�T
are bounded above.

With the assets bounded above, suppose that for some asset (e; j); there exists a sequence�
z�j (e; t� 1)

�
s.t. z�j (e; t � 1) ! �1 as � ! 1: By assumption (A:4); with strictly positive

probability the income state at period t will be such that !h(t) > !med and the household cannot
declare bankruptcy (by law). Thus, the household has �nancial wealth equal to

Sh(t) =
P̂
e 6=e

 P
j2J (ê)

rhj (ê; t)z
h
j (ê; t� 1)

!
+

P
j2J (e)

rhj (e
0je; t)zhj (e; t� 1):

With rhj (e
0je; t) = rj(e

0je) > 0 if zhj (e; t � 1) < 0 and rhj (ê; t) = rj(ê) > 0 if zhj (ê; t � 1) < 0 from
assumption (A:3); the unbounded sequence of assets z�j (e; t) ! �1 leads to the unbounded term
Sh(t); a contradiction.

Part II: Households h : �h(t) = 1
Given the realized sequence

�
eh
�t�1

=
�
eh(0); :::; eh(t� 1)

�
; household h must choose a portfolio

of assets ��
zhj (e; t� 1)

�
8j2J (e) ;

�
zhj (ê

0; t� 1)
�
8ê 6=e;j2J (ê)

�T
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to hedge against its idiosyncratic risk. No matter which income state eh(t) appears, the term (a:12)
must remain bounded. For the households h : �h(t) = 1; no matter which income state eh(t) is
realized, the household will always prefer �h(t) = 1 (either remain solvent or declare bankruptcy
with maxfSh(t); Bh(t)g = Sh(t)).

From part I, I already know that��
zhj (e; t� 1)

�
8j2J (e) ;

�
zhj (ê

0; t� 1)
�
8ê6=e;j2J (ê)

�T
are bounded for any and all households that such that �h(t) < 1 for some realization eh(t):

Impose an arti�cial bound on the assets of some household h : �h(t) = 1; zhj (e; t�1) � �Kj(e) 8t;

8e; and 8j 2 J (e): De�ne the vector K = (Kj(e))8e;j2J (e) 2 RJ+: Then
Z
h2H

�Bh(q�; �) is compact,

markets clear, and the aggregate consistency (AC) conditions hold. Consider what happens as
K !1: If the constraints cease to bind, then the assets are bounded. I will assume that some of
the constraints continue to bind as K !1 (that is,

Z
h2H

�Bh(q�; �) becomes unbounded) and show

that this leads to a contradiction.
If some of the constraints continue to bind, it must be the case that the markets are open,Z

h2H

�
zhj (e; t� 1)

��
d� < 0: From the no arbitrage conditions as well as equations (2:11)� (2:13);

the asset prices satisfy qj(e; t � 1) > 0 and qbj(e; t � 1) > 0 8b 2 f1; 2g and the dilutions satisfy
�j(e; t) � 1; and �bj(e; t) � 1 8b 2 f1; 2g over all assets e and j 2 J (e): Recall, in particular,
equation (2:11) :

�j(e; t) = 1 +

Z
h2H0

t

(1� �h(t))
�
zhj (e; t� 1)

��
d�Z

h2H

�
zhj (e; t� 1)

�+
d�

:

As the assets zhj (e; t � 1) for any potential households h : �
h(t) < 1 are bounded, then �j(e; t) ! 1

8e;8j 2 J (e) as
Z
h2H

�Bh(q�; �) becomes unbounded: Thus rhj (ê)! rj(ê) and rhj (e
0je)! rj(e

0je) asZ
h2H

�Bh(q�; �) becomes unbounded: Repeating the same argument for the repayment rates �bj(e; t)

speci�c to households h : bh(t) = b; then �bj(e; t)! 1 8b 2 f1; 2g; 8e; and 8j 2 J (e) as
Z
h2H

�Bh(q�; �)

becomes unbounded: From (2:13) :

qbj(e; t� 1) = qj(e; t� 1) � Et�1

 
�bj(e; t)

�j(e; t)

!

all households face the same asset prices in the limit
�
qhj (e; t� 1)

�
8e;j2J (e) ! (qj(e; t� 1))8e;j2J (e) :

The asset prices at the limit are the market-clearing prices for the general �nancial model (without
bankruptcy). Therefore, at the limit, the bankruptcy equilibrium prices are identical to those of
the general �nancial equilibrium and the term (a:11) is equivalent to (a:7):

Making use of what was previously shown in the proof of lemma 1 for the general �nancial
model (without bankruptcy), the assets��

zhj (e; t)
�
8j2J (e) ;

�
zhj (ê

0; t)
�
8ê 6=e;j2J (ê)

�T
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are bounded (in the limit as
Z
h2H

�Bh(q�; �) becomes unbounded). This contradicts that the con-

straints zhj (e; t� 1) � �Kj(e) 8t; 8e; and 8j 2 J (e) will continue to bind as K !1:

Proof of Lemma 6

I will de�ne the budget correspondence

�Bh : ��(!)� �Bh(q�; �)

such that given (q�; �) 2 ��(!); the values of the correspondence �Bh are the entire budget set
�Bh(q�; �): This correspondence is trivially uhc. The following proof will show that �Bh is also lhc.
Using the maximum principle (with a continuous utility function in the household optimization
problem), �h is a uhc correspondence.

Claim 2 �Bh is an lhc correspondence.

Proof. Consider a sequence
�
q� ;
�
qb�
�
b2B ; �

�
�
!
�
q;
�
qb
�
b2B ; �

�
with

�
ch; zh; bh

�
2 �Bh

�
q;
�
qb
�
b2B ; �

�
for some h (I will drop the superscript now). I will �nd some scaling factor (��(t))0�t� �T such that
the scaled consumption and scaled assets:

c�(t) =

�
min
0�t� �T

��(t)

�
c(t) 8t

z�j (e; t) =

�
min
0�t� �T

��(t)

�
zj(e; t) 8t;8e; and 8j 2 J (e)

b�(t) = b(t);

9N s.t. 8� � N; (c� ; z� ; b�) 2 �Bh
�
q� ;
�
qb�
�
b2B ; �

�
�
and (c� ; z� ; b�) ! (c; z; b) : For simplicity,

de�ne �� =
�
min
0�t� �T

��(t)

�
:

The budget set �Bh
�
q;
�
qb
�
b2B ; �

�
has the so-called scaling propety (so called by Dubey et.

al. (2005)) meaning that it is fairly straightforward to de�ne the sequence of scaling fractions
��(t) 2 [0; 1] for 0 � t � �T : This is done by induction.

Initialization: t = 0
Since the bankruptcy variables do not play a role in the budget constraint at t = 0; this proof

follows exactly as in the proof of lemma 3.

Induction: 0 < t � �T
Pick any time period t : 0 < t � �T and suppose that the budget constraints are satis�ed for

all prior time periods (induction hypothesis). De�ne the asset payouts for this time period as
ap(t) = Sh(t) (the situation when �h(t) = 1) or ap(t) = Bh(t) (the situation when �h(t) = 1) where

Sh(t) =
P̂
e 6=e

 P
j2J (ê)

rhj (ê; t)z
h
j (ê; t� 1)

!
+

P
j2J (e)

rhj (e
0je; t)zhj (e; t� 1):

and Bh(t) = �
P

ê 6=e

�P
j2J (ê) �j(ê)rj(ê)

�
zhj (ê; t� 1)

�+�� :::
�
P

j2J (e) �j(e)rj(e
0je)
�
zhj (e; t� 1)

�+
:
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If !h(t)� c(t)�
P

e

P
j2J (e) q

h
j (e; t)zj(e; t) + ap(t) > 0; then 9N s.t.

!h(t)� c(t)�
P

e

P
j2J (e)

�
qhj
��
(e; t)zj(e; t) + ap(t) > 0

holds 8� � N: De�ne ��(t) = 1 for this case.
Otherwise, !h(t)�c(t)�

P
e

P
j2J (e) q

h
j (e; t)zj(e; t)+ap(t) = 0 and thus c(t)+

P
e

P
j2J (e) q

h
j (e; t)zj(e; t)�

ap(t) > 0 using the assumption that !h(t) > 0:
De�ne ��(t) 2 [0; 1] 8� as:

��(t) =

!h(t)

c(t)+
P

e

P
j2J (e)(q

h
j )

�
(e;t)zj(e;t)�ap(t)

if num < den and den 6= 0

1 otherwise

where num = !h(t) and den = c(t)+
P

e

P
j2J (e)

�
qhj
��
(e; t)zj(e; t)� ap(t): With num! den and

knowing that for some Nt; 8� � Nt; den > 0; then ��(t)! 1:
Notice that both Sh(t) and Bh(t) are linear expressions of

�
zhj (e; t� 1)

�
8e;j2J (e) : As a result,

scaling the vector of assets by a fraction �� is equivalent to scaling the entire term Sh(t) or Bh(t)
by the same fraction �� : By holding the bankruptcy variable �xed, b�(t) = b(t); then the household
will have either the asset payouts ap(t) = Sh(t) or the asset payouts ap(t) = Bh(t) 8� � 0: The
following equations verify that the scaled

�
c�(t);

�
z�j (e; t� 1); z�j (e; t)

�
8e;j2J (e) ; b

�(t) = b(t)
�
satisfy

the budget constraint 8� � Nt at time period t :

c�(t) +
P

e

P
j2J (e)

�
qhj
��
(e; t)z�j (e; t)� ap(t) =

��c(t) + ��
P

e

P
j2J (e)

�
qhj
��
(e; t)zj(e; t)� ��ap(t) �

��(t)
h
c(t) +

P
e

P
j2J (e)

�
qhj
��
(e; t)zj(e; t)� ap(t)

i
� !h(t):

Thus, 9N = maxfN0; :::; NT g s.t. 8� � N; (c� ; z� ; b�) 2 �Bh
�
q� ;
�
qb�
�
b2B ; �

�
�
and also

(c� ; z� ; b�)! (c; z; b) : This completes the proof.

Proof of Lemma 7

Take any time period t : 0 < t < �T : First note that the following term from equations (a:3) can
be removed by aggregating asset payouts:Z

h2H

(P̂
e 6=e

 P
j2J (ê)

rj(ê)z
h
j (ê; t� 1)

!
+

P
j2J (e)

rj(e
0je)zhj (e; t� 1)

)
d� = 0:

This leaves the equation of (a:3) for this given time period t as:�Z
ch (t) d�� �!

�
+
P
e

P
j2J (e)

qj(e; t)

Z
zhj (e; t)d� = 0: (a.12)

Add and subtract the following termZ
h:bh(t)=0

P
ê 6=e

�P
j2J (ê) �j(ê; t)rj(ê)

�
zhj (ê; t� 1)

�+�
d�+ ::

::+

Z
h:bh(t)=0

P
j2J (e) �j(e; t)rj(e

0je)
�
zhj (e; t� 1)

�+
d�:

35



from the set of equations (a:9) yields the simpli�ed set of equations:�Z
ch (t) d�� �!

�
+
P
e

P
j2J (e)

Z
qhj (e; t)z

h
j (e; t)d�� :::

:::�
Z

h2H

P̂
e 6=e

 P
j2J (ê)

�j(ê; t)rj(ê)
�
zhj (ê; t� 1)

�+!
d�� :::

:::�
Z

h2H

P
j2J (e)

�j(e; t)rj(e
0je)
�
zhj (e; t� 1)

�+
d�� ::

:::�
Z

h2H

�h(t)
P̂
e 6=e

 P
j2J (ê)

rj(ê; t)
�
zhj (ê; t� 1)

��!
d�� ::

:::�
Z

h2H

�h(t)
P

j2J (e)
rj(e

0je)
�
zhj (e; t� 1)

��
d� = 0:

(a.13)

after using the de�nition of �h(t) = �num
den for h : �h(t) < 1: Recall that

num =
P̂
e 6=e

P
j2J (ê)

�
rhj (ê; t) + �j(ê)

� �
zhj (ê; t�1)

�+
+

P
j2J (e)

�
rhj (e

0je; t) + �j(e)
� �
zhj (e; t�1)

�+
:

den =
P̂
e 6=e

P
j2J (ê)

rj(ê)
�
zhj (ê; t� 1)

��
+

P
j2J (e)

rj(e
0je)
�
zhj (e; t� 1)

��
:

By de�nition, � (e0je) =

Z
h:(eh(t);eh(t+1))=(e;e0)

d�Z
h:eh(t)=e

d�

and since the integration is a linear operation,

the equation (a:13) is equivalent to:�Z
ch (t) d�� �!

�
+
P
e

P
j2J (e)

Z
qhj (e; t)z

h
j (e; t)d�� :::

:::�
P
e

P
j2J (e)

�j(e; t)rj(e)

Z
h2H

�
zhj (e; t� 1)

�+
d�� ::

:::�
P
e

P
j2J (e)

rj(e)

Z
h2H

�h(t)
�
zhj (e; t� 1)

��
d� = 0:

(a.14)

after using the de�nition rj(e) =
P
e0
� (e0je) rj(e0je): Recall the aggregate consistency (AC) condition

for asset e and j 2 J (e) as de�ned in (2:10) :

�j(e; t)

Z
h2H

�
zhj (e; t� 1)

�+
d� = �

Z
h2H

�h(t)
�
zhj (e; t� 1)

��
d�:

Thus, multiplying each (AC) condition by rj(e) and summing up over all assets (e; j) yields:P
e

P
j2J (e)

�j(e; t)rj(e)

Z
h2H

�
zhj (e; t� 1)

�+
d�+ ::

::+
P
e

P
j2J (e)

rj(e)

Z
h2H

�h(t)
�
zhj (e; t� 1)

��
d� = 0:
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After using this equation to simplify (a:14); what remains is�Z
ch (t) d�� �!

�
+
P
e

P
j2J (e)

Z
qhj (e; t)z

h
j (e; t)d� = 0:

The equation (2:15) :Z
h2H

qhj (e; t)z
h
j (e; t)d� = qj(e; t)

Z
h2H

zhj (e; t)d� 8e;8j 2 J (e)

allows me to simplify (a:14) even further:�Z
ch (t) d�� �!

�
+
P
e

P
j2J (e)

qj(e; t)

Z
zhj (e; t)d� = 0: (a.15)

As the simpli�ed set of equations (a:15) (recall this holds 8t : 0 < t < T ) derived from (a:9) is
equivalent to set of equations (a:13) derived from (a:3); then the set of equations (a:9) are equivalent
to the set (a:3): This completes the proof.
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Appendix B

Proof of Theorem 5

The proof breaks down into two basic analyses: a partial equilibrium analysis and a general
equilibrium analysis.

First, I will consider the partial equilibrium analysis. Let�s analyze the bankruptcy decision
of two households, h and k: Both households bring �nancial wealth w(t) into the period and have
bankrutpcy indicator bh(t) = bk(t) = 1: Household h has income state 1; eh(t) = 1 and household
k has income state 2; ek(t) = 2: Recall that the optimization for both households is given as:

max
c;z;w0;b0

u(c) + �
X

e0
� (e0je)V (e0; w0; b0; �0)

subj: to c (e; w; b; �) + qh (�) � z (e; w; b; �) = !e + w
(b.1)

where w0 (e; w; b; �) = 0 if b0 (e; w; b; �) = 0 and w0 (e; w; b; �) = rh(�)zh (e; w; b; �) otherwise. De-
�ne the optimal consumption and asset choice of household h as

�
ch(t); wh1 (t+ 1); w

h
3 (t+ 1)

�
if house-

hold h is planning to declare bankruptcy given realization eh(t+1) = 1 and as
�
]ch(t); ^wh1 (t+ 1); ^wh3 (t+ 1)

�
if h is planning on solvency. Likewise, de�ne the optimal consumption and asset choice of household

k as
�
ck(t); wk2 (t+ 1); w

k
3 (t+ 1)

�
for bankruptcy and

�
]ck(t); ^wk2 (t+ 1); ^wk3 (t+ 1)

�
for solvency.

I will now de�ne a wealth parameter that will serve as the lower bound on wealth w(t): Let w
be such that for any wk(t) � w; household k will still choose to declare bankruptcy even if 2 = � for
� > 0 small. The proof of the following lemma is located at the completion of the proof of theorem
5.

Lemma 8 For any wealth w(t) > w; the following strict inequalities hold:

� u
�
ch(t)

�
+ �V

�
1; wh1 (t+ 1); 0

�
> u

�
ck(t)

�
+ �V

�
2; wk2 (t+ 1); 0

�
:

� u
�
]ck(t)

�
+ �V

�
2; ^wk2 (t+ 1); 2

�
> u

�
]ch(t)

�
+ �V

�
1; ^wh1 (t+ 1); 2

�
:

� u
�
ch(t)

�
+ �V

�
3; wh3 (t+ 1); 2

�
< u

�
ck(t)

�
+ �V

�
3; wk3 (t+ 1); 2

�
< :::

...u
�
]ck(t)

�
+ �V

�
3; ^wk3 (t+ 1); 2

�
< u

�
]ch(t)

�
+ �V

�
3; ^wh3 (t+ 1); 2

�
:

The following fact is important. If 1 = 1; then trivially

u
�
ch(t)

�
+ �V

�
1; wh1 (t+ 1); 0

�
> u

�
]ch(t)

�
+ �V

�
1; ^wh1 (t+ 1); 2

�
:

By continuity, this strict inequality holds in some open set containing 1 < 1:
From lemma 8 and the above fact, 91 2 (0; 1) s.t.

�
ch(t); wh1 (t+ 1); w

h
3 (t+ 1)

�
is the optimal

solution to (b:1) for household h 81 � 1:14 Likewise, 92 2 (0; 1) s.t. the consumption and wealth

14 In other words, u
�
ch(t)

�
+ �1V

�
e1; wh1 (t+ 1); 0

�
+ �(1 � 1)V

�
e3; wh3 (t+ 1); 2

�
> u

�
]ch(t)

�
+

�1V

�
e1;

^wh1 (t+ 1); 2
�
+ �(1� 1)V

�
e3;

^wh3 (t+ 1); 2
�
:
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choice
�
]ck(t); ^wk2 (t+ 1); ^wk3 (t+ 1)

�
is the optimal solution to (b:1) for household k 82 � 2:15 The

proof of the following lemma is located at the completion of the proof of theorem 5.

Lemma 9 1 = 2:

De�ne � = 1 = 2: I can now summarize the bankruptcy decisions of households h and k for
any wealth w(t) > w: If 1 � � � 2; then separation occurs. That is, household h plans to declare
bankruptcy (and will declare for the state realization that allows it) and household k does not plan
to declare bankruptcy.

Second, I will consider the general equilibrium analysis. The value of �(w) found in the partial
equilibrium analysis is clearly a function of wealth w: More speci�cally, it is a strictly increasing
function of w (if a household brings less wealth w into the current period, they are more likely to
declare bankruptcy). De�ne w(1) = w (t : e(t� 1) = e(t) = 1; w(t� 1) = 0; b(t) = 1) as the wealth
brought into period t by a household with a constant realization of states e(t � 1) = e(t) = 1 who
declares bankruptcy in time period t � 1 and plans to declare in time period t + 1 (if the state
e(t+1) = 1 is realized). The separation will then actually be written as 1 > �(w(1)) > 2; which
is an assumption of theorem 5.

In order to show that the expected repayment rates
�
�1(t); �2(t)

�
satisfy �1(t) < �2(t) 8t; I will

�nd an upper bound �1(t) � �1 8t and a lower bound �2(t) � �2 8t such that �1 < �2: The proofs
of the following lemmas are located at the completion of the proof of theorem 5.

Lemma 10 �1 = 1� (1�2)(1)4
(1�2)(1)3+(1�1)(2)3

:

Lemma 11 �2 = 1�
(2)

3+1
2(1�2)

(2)
2+2(1�2)

(2)
2+ 1

22+
1
3+

2(1�2)
(2)

2+2(1�2)

:

The proof of theorem 5 is complete upon using the �nal assumption of theorem 5 to obtain
�1 < �2:

Proof of Lemma 8

The proof breaks down to showing that each of the following �ve strict inequalities holds:

u
�
ch(t)

�
+ �V

�
1; wh1 (t+ 1); 0

�
> u

�
ck(t)

�
+ �V

�
2; wk2 (t+ 1); 0

�
: (b.2)

u
�
]ck(t)

�
+ �V

�
2; ^wk2 (t+ 1); 2

�
> u

�
]ch(t)

�
+ �V

�
1; ^wh1 (t+ 1); 2

�
: (b.3)

u
�
ch(t)

�
+ �V

�
3; wh3 (t+ 1); 2

�
< u

�
ck(t)

�
+ �V

�
3; wk3 (t+ 1); 2

�
: (b.4)

u
�
ck(t)

�
+ �V

�
3; wk3 (t+ 1); 2

�
< u

�
]ck(t)

�
+ �V

�
3; ^wk3 (t+ 1); 2

�
: (b.5)

u
�
]ck(t)

�
+ �V

�
3; ^wk3 (t+ 1); 2

�
< u

�
]ch(t)

�
+ �V

�
3; ^wh3 (t+ 1); 2

�
: (b.6)

Throughout this proof, � > 0 is an arbitrarily small real number.

15That is, u
�
]ck(t)

�
+�2V

�
e2;

^wk2 (t+ 1); 2
�
+�(1�2)V

�
e3;

^wk3 (t+ 1); 2
�
> u

�
ck(t)

�
+�2V

�
e2; wk2 (t+ 1); 0

�
+

�(1� 2)V
�
e3; wk3 (t+ 1); 2

�
:
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Proof. Inequality (b.5)
(i) Since w(t) � w; household k will not declare bankruptcy if 2 = �: Thus, since the expression

u (�) + �V (3; �) is the certainty value for 2 = 0; the optimal consumption and asset choices when
2 = � (de�ned as ^ck(t; 2 = �);

^wk3 (t+ 1; 2 = �)) will satisfy:

u
�

^ck(t; 2 = �)
�
+ �V

�
3; ^wk3 (t+ 1; 2 = �); 2

�
>

u
�
ck(t)

�
+ �V

�
3; wk3 (t+ 1); 2

�
where

�
ck(t); wk3 (t+ 1)

�
are the optimal consumption and wealth choice for the true value of 2:

(ii) Now consider 2 = 1 � �: By de�nition (again since u (�) + �V (2; �) is the certainty value
for 2 = 1),

u
�

^ck(t; 2 = 1� �)
�
+ �V

�
2; ^wk2 (t+ 1; 2 = 1� �); 2

�
> (b.7)

u
�
ck(t)

�
+ �V

�
2; wk2 (t+ 1); 2

�
where

�
ck(t); wk2 (t+ 1)

�
are the optimal consumption and wealth choice for the true value of 2: I

obtain:

� V
�
3; ^wk3 (t+ 1; 2 = 1� �); 2

�
� V

�
2; ^wk2 (t+ 1; 2 = 1� �); 2

�
+ u(!3)� u(!2):

� V
�
3; wk3 (t+ 1); 2

�
� V

�
2; wk2 (t+ 1); 2

�
+ u(!3) � u(!2) where

�
wk2 (t+ 1); w

k
3 (t+ 1)

�
are the

optimal wealth choices for the true value of 2:

The �rst bullet point holds since the shock is unanticipated when 2 = 1� �: Both bullet points
rely on the fact that wk2 (t + 1) = w

k
3 (t + 1) when b

k
2(t + 1) = 2: Therefore, using the bullet points

together with inequality (b:7) yields:

u
�

^ck(t; 2 = 1� �)
�
+ �V

�
3; ^wk3 (t+ 1; 2 = 1� �); 2

�
>

u
�
ck(t)

�
+ �V

�
3; wk3 (t+ 1); 2

�
where

�
ck(t); wk3 (t+ 1)

�
are the optimal consumption and wealth choice for the true value of 2:

For future reference, the following will be referred to as the "convexity argument". The true
value of 2 lies between the two extremes (�; 1� �) : Let zk (2) = �z�+(1��)z1�� denote the optimal

asset choice at the true value of 2: Also,
�
]ck(t); ^wk3 (t+ 1)

�
will denote the optimal consumption

and wealth at the true value of 2: Then

]ck(t) = � ^ck(t; 2 = �) + (1� �) ^ck(t; 2 = 1� �)

since from the budget constraint:

c = !e + w � qh (�z� + (1� �)z1��) = �c� + (1� �)c1��:

Likewise for the wealth term:

^wk3 (t+ 1) = � ^wk3 (t+ 1; 2 = �) + (1� �) ^wk3 (t+ 1; 2 = 1� �):
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Using the concavity of u(�) and V (�) :

u
�
]ck(t)

�
+ �V

�
3; ^wk3 (t+ 1); 2

�
�

�

�
u
�

^ck(t; 2 = �)
�
+ �V

�
3; ^wk3 (t+ 1; 2 = �); 2

��
+

(1� �)
�
u
�

^ck(t; 2 = 1� �)
�
+ �V

�
3; ^wk3 (t+ 1; 2 = 1� �); 2

��
>

u
�
ck(t)

�
+ �V

�
3; wk3 (t+ 1); 2

�
where

�
ck(t); wk3 (t+ 1)

�
are the optimal consumption and wealth choice for the true value of 2:

This �nishes the proof of inequality (b:5):

Proof. Inequality (b.6)
(i) First consider 1 = �: Since the expression u(�) + �V (3; �) is the certainty value for 1 = 0 :

u
�

^ch(t; 1 = �)
�
+ �V

�
3; ^wh3 (t+ 1; 1 = �); 2

�
>

u
�
]ck(t)

�
+ �V

�
3; ^wk3 (t+ 1); 2

�
where

�
]ck(t); ^wk3 (t+ 1)

�
are the optimal consumption and wealth choices for household k for the

true value of 2:
(ii) Next consider 1 = 1 � �: By de�nition (again since u (�) + �V (1; �) is the certainty value

for 1 = 1),

u
�

^ch(t; 1 = 1� �)
�
+ �V

�
1; ^wh1 (t+ 1; 1 = 1� �); 2

�
> (b.9)

u
�
]ck(t)

�
+ �V

�
1; ^wk1 (t+ 1); 2

�
for all consumption and wealth choices

�
]ck(t); ^wk1 (t+ 1)

�
: I obtain the following two conditions:

� V
�
3; ^wh3 (t+ 1; 1 = 1� �); 2

�
� V

�
1; ^wh1 (t+ 1; 1 = 1� �); 2

�
+ u(!3)� u(!1):

� V
�
3; ^wk3 (t+ 1); 2

�
� V

�
1; ^wk1 (t+ 1); 2

�
+ u(!3) � u(!1) where

�
^wk1 (t+ 1); ^wk3 (t+ 1)

�
are

the optimal wealth choices for the true value of 2:

The �rst bullet point follows since the shock is unanticipated when 1 = 1� �: Therefore, using
the bullet points together with inequality (b:9) yields:

u
�

^ch(t; 1 = 1� �)
�
+ �V

�
3; ^wh3 (t+ 1; 1 = 1� �); 2

�
>

u
�
]ck(t)

�
+ �V

�
3; ^wk3 (t+ 1); 2

�
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where
�
]ck(t); ^wk3 (t+ 1)

�
are the optimal consumption and wealth choices for household k for the

true value of 2:
Applying the convexity argument �nishes the proof of inequality (b:6):

Proof. Inequality (b.3)
I want to show that

u
�
]ck(t)

�
+ �V

�
2; ^wk2 (t+ 1); 2

�
> u

�
]ch(t)

�
+ �V

�
1; ^wh1 (t+ 1); 2

�
:

Suppose not, then combined with inequality (b:6); I obtain:

u
�
]ch(t)

�
+ �2V

�
1; ^wh1 (t+ 1); 2

�
+ �(1� 2)V

�
3; ^wh3 (t+ 1); 2

�
> (b.10)

u
�
]ck(t)

�
+ �2V

�
2; ^wk2 (t+ 1); 2

�
+ �(1� 2)V

�
3; ^wk3 (t+ 1); 2

�
:

In the strict inequality (b:10); both households h and k are making optimal decisions expecting sol-

vency and V (2; w; 2) > V (1; w; 2) for any values of wealth w:16 The vector
�
]ch(t); ^wh1 (t+ 1); ^wh3 (t+ 1)

�
is feasible, so the inequality (b:10) contradicts that

�
]ck(t); ^wk2 (t+ 1); ^wk3 (t+ 1)

�
are optimizing de-

cisions for household k: This contradiction completes the proof of inequality (b:3):

To prove inequality (b:2); I will make an additional assumption that will make the inequality
hold trivially. Then I will show that this assumption is vacuous. De�ne the new function �(2) � 0
to be such that

u
�
ch(t)

�
+ �V

�
1; wh1 (t+ 1); 0

�
� u

�
ck(t)

�
+ �V

�
2; wk2 (t+ 1); 0

�
(b.11)

where
�
ck(t); wk2 (t+ 1)

�
are the optimal asset and wealth choice for household k at the true 2;�

ch(t); wh1 (t+ 1)
�
are the optimal asset and wealth choice for household h at the true 1; and

1 � 2 + �(2) : The strict inequality version is obtained as well. If 1 > 2 + �(2) ; then
inequality (b:11) becomes a strict inequality (and equivalent to the desired (b:2)).

Proof. �(2) = 0 82:
This proof will be conducted in two steps: (i) �(2) is a nondecreasing function of 2 and (ii)

�(2)! 0 for 2 ! 1:
(i) De�ne two persistences for household k; 2 and ̂2 with 2 > ̂2: Then de�ne 1 and ̂1 for

household h as 1 = 2 +�(2) and ̂1 = ̂2 +�(̂2) :
With 2 > ̂2; then

u
�
ck(t; 2)

�
+ �V

�
2; wk2 (t+ 1; 2); 0

�
> u

�
ck(t; ̂2)

�
+ �V

�
2; wk2 (t+ 1; ̂2); 0

�
: (b.12)

[Suppose not, then
�
ck(t; 2); w

k
2 (t+ 1; 2)

�
is not an optimal solution to the household problem

(3:1)].
By the de�nition of �(2) :

16The risk-sharing is always better for the less persistant income state e = 2:
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� u
�
ch(t; 1)

�
+ �V

�
1; wh1 (t+ 1; 1); 0

�
= u

�
ck(t; 2)

�
+ �V

�
2; wk2 (t+ 1; 2); 0

�
:

� u
�
ch(t; ̂1)

�
+ �V

�
1; wh1 (t+ 1; ̂1); 0

�
= u

�
ck(t; ̂2)

�
+ �V

�
2; wk2 (t+ 1; ̂2); 0

�
:

For any wealth, V (2; w; 0) > V (1; w; 0) (as discussed above). Thus, the �rst bullet point
implies u

�
ch(t; 1)

�
> u

�
ck(t; 2)

�
and the second implies u

�
ch(t; ̂1)

�
> u

�
ck(t; ̂2)

�
: Since utility

is strictly increasing, then

ch(t; 1) > ck(t; 2) (b.13)

ch(t; ̂1) > ck(t; ̂2):

From the equalities in the bullet points above, the inequality (b:12) implies:

u
�
ch(t; 1)

�
+ �V

�
1; wh1 (t+ 1; 1); 0

�
> u

�
ch(t; ̂1)

�
+ �V

�
1; wh1 (t+ 1; ̂1); 0

�
:

With a single asset, the decisions by households h and k to declare bankruptcy (given state
realizations e = 1 or e = 2; respectively) imply wh1 (t+ 1) = w

k
2 (t+ 1) = 0: Plugging in w

h
1 (t+ 1) =

wk2 (t+ 1) = 0; the collected equations:

u
�
ch(t; 1)

�
� u

�
ck(t; 2)

�
= �V (2; 0; 0)� �V (1; 0; 0)

u
�
ch(t; ̂1)

�
� u

�
ck(t; ̂2)

�
= �V (2; 0; 0)� �V (1; 0; 0)

u
�
ch(t; 1)

�
> u

�
ch(t; ̂1)

�
u
�
ck(t; 2)

�
> u

�
ck(t; ̂2)

�
together with the strict concavity of u(�) imply

ch(t; 1)� ck(t; 2) > ch(t; ̂1)� ck(t; ̂2): (b.14)

The consumption ch(�) is concave in 1: This is seen from the implicit function theorem applied
to the �rst order condition with respect to z :

�qDu
�
ch(t; 1)

�
+ �(1� 1)DwV

�
3; wh3 (t+ 1; 1); 2

�
= 0:

Likewise, ck(�) is concave in 2: Equation (b:14) can be rearranged to reveal:

ch(t; 1)� ch(t; ̂1) > ck(t; 2)� ck(t; ̂2):

From the inequalities in (b:13) : ch(t; 1) > ck(t; 2) and c
h(t; ̂1) > ck(t; ̂2); the concavity of

consumption implies:
1 � ̂1 > 2 � ̂2:

Thus, �(2) = 1 � 2 > ̂1 � ̂2 = �(̂2) ; so the function �(2) is nondecreasing.
(ii) As 2 ! 1; then obviously 1 ! 1: The expressions u (�) + �V (1; �) and u (�) + �V (2; �) are

the certainty values for 1 = 1 and 2 = 1; respectively. Further, V (1; �) ! V (2; �) as 2 ! 1:
Thus, inequality (b:11) is obtained for any � > 0 with 1 = 2 + �: This shows that �(2)! 0 for
2 ! 1:

Proof. Inequality (b.4)
I want to show that

u
�
ch(t)

�
+ �V

�
3; wh3 (t+ 1); 2

�
< u

�
ck(t)

�
+ �V

�
3; wk3 (t+ 1); 2

�
:
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Suppose not, then combined with inequality (b:2); I obtain:

u
�
ch(t)

�
+ �2V

�
1; wh1 (t+ 1); 0

�
+ �(1� 2)V

�
3; wh3 (t+ 1); 2

�
> (b.15)

u
�
ck(t)

�
+ �2V

�
2; wk2 (t+ 1); 0

�
+ �(1� 2)V

�
3; wk3 (t+ 1); 2

�
:

In the strict inequality (b:15); both households h and k are making optimal decisions expect-
ing to declare bankruptcy and V (2; w; 2) > V (1; w; 2) for any values of wealth w (as discussed
above). The vector

�
ch(t); wh1 (t+ 1); w

h
3 (t+ 1)

�
is feasible, so the inequality (b:15) contradicts that�

ck(t); wk2 (t+ 1); w
k
3 (t+ 1)

�
are optimizing decisions for household k: This contradiction completes

the proof of inequality (b:4):

Proof of Lemma 9

This proof will be �nished when I prove that both (i) 1 < 2 and (ii) 1 > 2 lead to contra-
dictions.

i. Suppose that 1 < 2: Then, there exists some value  2 (1; 2) such that when 1 = 2 =  :

u
�
]ck(t)

�
+ �2V

�
2; ^wk2 (t+ 1); 2

�
+ �(1� 2)V

�
3; ^wk3 (t+ 1); 2

�
> (b.16)

u
�
ck(t)

�
+ �2V

�
2; wk2 (t+ 1); 0

�
+ �(1� 2)V

�
3; wk3 (t+ 1); 2

�
and

u
�
ch(t)

�
+ �1V

�
1; wh1 (t+ 1); 0

�
+ �(1� 1)V

�
3; wh3 (t+ 1); 2

�
> (b.17)

u
�
]ch(t)

�
+ �1V

�
1; ^wh1 (t+ 1); 2

�
+ �(1� 1)V

�
3; ^wh3 (t+ 1); 2

�
:

Since the values 1 = 2; the household choices for h and k are the same. Thus
�
ch(t); wh1 (t+ 1); w

h
3 (t+ 1)

�
=�

ck(t); wk2 (t+ 1); w
k
3 (t+ 1)

�
and same for the ~ choices when the households are planning to

remain solvent. Thus, the equations (b:16) and (b:17) above read as A > B and B > A for
the appropriately de�ned terms A and B: This is a contradiction.

ii. Suppose that 1 > 2: Then, there exists some value  2 (2; 1) such that when 1 = 2 =  :

u
�
]ck(t)

�
+ �2V

�
2; ^wk2 (t+ 1); 2

�
+ �(1� 2)V

�
3; ^wk3 (t+ 1); 2

�
< (b.18)

u
�
ck(t)

�
+ �2V

�
2; wk2 (t+ 1); 0

�
+ �(1� 2)V

�
3; wk3 (t+ 1); 2

�
and

u
�
ch(t)

�
+ �1V

�
1; wh1 (t+ 1); 0

�
+ �(1� 1)V

�
3; wh3 (t+ 1); 2

�
< (b.19)

u
�
]ch(t)

�
+ �1V

�
1; ^wh1 (t+ 1); 2

�
+ �(1� 1)V

�
3; ^wh3 (t+ 1); 2

�
:

As above, since the values 1 = 2; the household choices for h and k are the same and so the
equations (b:18) and (b:19) read as A < B and B < A for the appropriately de�ned terms A
and B: This is a contradiction.
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Proof of Lemma 10

Let (�1(t); �2(t)) be variables such that �i(t) is the fraction of total households that are bankrupt
at time t with income state i (that is, b(t) = 0 and e(t) = i). This fraction is bounded above and

below by
�
�
1
; �1; �2; �2

�
such that �

1
� �1(t) � �1 and �

2
� �2(t) � �2 8t:

The households with asset sales in pool b = 1 are those households with income states e = 1 and
e = 2: As the asset sales for those households planning to declare bankruptcy from this pool (those
with states e = 1) are larger than those for households not planning to declare, an upper bound for
the expected repayment rates �1(t) is de�ned as:

�1 = 1�
�
1
(1)

2

�
1
1 + �22

: (b.20)

The numerator is the smallest fraction of households that meet the following requirements: (i)
bankrupt at time t � 1 with e(t � 1) = 1; (ii) receive the realizations e(t) = e(t + 1) = 1; and
(iii) declare bankruptcy at the �rst opportunity (in time period t + 1; from pool b(t) = 1). The
denominator contains all the households with asset sales in pool b(t) = 1 and allows for the largest
fraction of households that remain solvent (households with state e(t� 1) = 2).

Recall that the measure across income states is given by (�1; �2; �3) 2 �2: The values for�
�
1
; �2

�
are given by:

�
1
=

1

2
�1 (1)

2
: (b.21)

�2 =
1

2
�2 (2)

2
:

With the transition matrix � given in (3:1); the measure (�1; �2; �3) can be calculated in terms
of the persistence parameters (1; 2; ) :

�1 (1� 1) = �2 (1� 2) = �3
�
1� 
2

�
: (b.22)

�1 =
1� 2

(1�1)(1�2)
( 1�2 )

+ (1� 1) + (1� 2)
:

�2 =
1� 1

(1�1)(1�2)
( 1�2 )

+ (1� 1) + (1� 2)
:

Upon evaluating the equality (b:20) after replacing the variables with the expressions in (b:21)
and (b:22); the result is obtained:

�1 = 1� (1� 2) (1)
4

(1� 2) (1)
3
+ (1� 1) (2)

3 :

Proof of Lemma 11

Recall the de�nitions of (�1(t); �2(t)) from the previous proof. Suppose that household k brings
in wealth wk(t� 2) � 0 into time t� 2 with e(t� 2) = 2: This may be either a result of having just
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declared bankruptcy or having previously received the income state e(t � 3) = 3: Upon receiving
the state realizations e(t� 1) = e(t) = 2; the optimal asset choices are ordered as follows:

zk(t) > 3 � zk(t� 2):
zk(t) > 2 � zk(t� 1):

Suppose that household h brings in wealth wh(t) � 0 into time t with e(t) = 1: Then zh(t) > zk(t):
To �nd the expected repayment rate, I must consider the fractions of households with certain

asset sales and the size of those asset sales. With the inequalities above in terms of zk(t); I
can divide out the asset sale size zk(t) and obtain an expression for �2 in terms of fractions of
households. The households that may possibly declare bankruptcy out of pool b(t) = 2 are those
with three consecutive realizations of state e = 2 and those just transitioning from e = 3 to e = 1:
A lower bound �2 is de�ned as:

�2 = 1�
�3
�
1�
2

�
1 + �2 (2)

3
+ �3

�
1�
2

�
(2)

3

�3
�
1�
2

�
+
P3

n=1
1
n

�
�2 + �3

�
1�
2

��
(2)

3�n : (b.23)

Using the expressions (b:21) and (b:22); the equality (b:23) yields the result:

�2 = 1�
(2)

3
+ 1

2(1�2)
(2)

2+2(1�2)

(2)
2
+ 1

22 +
1
3 +

2(1�2)
(2)

2+2(1�2)

:

Proof of Theorem 6

The partial equilibrium analysis is identical to that considered in the proof of theorem 5. De�ne

w(i) = w (t : e(t� i) = :: = e(t) = i; w(t� i) = 0; b(t� i) = 0; ::; b(t) = i)

as the wealth brought into period t by a household with a constant realization of states e(t � i) =
:: = e(t) = i who declares bankruptcy in time period t � i and plans to declare in time period
t + 1 (if the state e(t + 1) = i is realized). The separation will then actually be written as
1 > �(w(1)) > 2 > �(w(2)) > ::: > I ; which is an assumption of theorem 6.

In order to show that the expected repayment rates
�
�i(t)

�
i=1;::;I

satisfy �i(t) < �j(t) 8i < j
and 8t; I will �rst �nd upper bounds �i such that �i(t) � �i 8i < I and 8t: The proof of the
following lemma is located at the completion of the proof of theorem 6.

Lemma 12 �i < �j 8i < j < I and �i(t)
�i

� �j(t)
�j

8i < j < I and 8t:

Taken together, the statement of lemma 12 implies that �i(t) < �j(t) 8i < j < I and 8t: I
have left only to show that the expected repayment rate of the pool b(t) = I � 1 is strictly less than
the repayment rate of the pool b(t) = I: This latter pool is the pool of all households that have
either never declared bankruptcy or have waited long enough following a bankruptcy to have the
bankruptcy �ag removed. The proof of the following lemma is located at the completion of the
proof of theorem 6.

Lemma 13 �I�1 < �I � �I(t) 8t:
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Proof of Lemma 12

Let (�1(t); �2(t); ::::; �I(t)) be variables such that �i(t) is the fraction of total households that
are bankrupt at time t with income state i (that is, b(t) = 0 and e(t) = i). This fraction is bounded

above and below by
�
�
1
; �1; :::; �I ; �I

�
such that �

i
� �i(t) � �i 8i 2 f1; :::; Ig and 8t:

Recall that the measure across income states is given by (�1; :::; �I ; �E) 2 �I :The de�nitions of�
�
i
; �i

�
are given as:

�
i
=

1

i+ 1
�i (i)

i+1 8i 2 f1; :::; I � 1g: (b.24)

�i =
1

i+ 1
�i (i)

i+1
+

1

i+ 1
�E

�
1� 
I

�
(i)

i 8i 2 f1; :::; I � 1g:

�I =
1

I
�I (I)

I
:

If I is large or if I is close to 1; then �i � �i: I will use this approximation for the remainder of
the argument (for notational simplicity).

As the asset sales for those households planning to declare bankruptcy from pool b(�) = i (those
with states e(�) = i) are larger than those for households not planning to declare, an upper bound
for the expected repayment rates �i(t) is de�ned as:

�i = 1�
�
i
(i)

i+1

�
i
(i)

i
+
PI

n=i+1 �n (n)
i
8i < I: (b.25)

This is an extension of equation (b:20):
The remainder of the proof is divided into two steps: (i) proving that �i < �j 8i < j < I and

(ii) proving that �
i(t)
�i

� �j(t)
�j

8i < j < I and 8t:

1. For I large, then �
i
� �i and I will denote this fraction as simply �i: Consider

�
�i; �j

�
for

any i < j: As I is large, then the denominator in both �i and �j contain approximately the
same number of terms.17 The expressions

�
�i; �j

�
can be rewritten as:

�i = 1� i

1 +
PI

n=i+1
�n(n)

i

�i(i)
i

:

�j = 1�
j

1 +
PI

n=j+1
�n(n)

j

�j(j)
j

:

Due to the following facts:

� i > j for i < j and

� �n(n)
i

�i(i)
i <

�n(n)
j

�j(j)
j for any �xed n where i < j < n � I;

then �i < �j :

17More speci�cally, one of the denominators will have strictly more terms than the other, but the di¤erence caused
by these additional terms is arbitrarily small for I large.
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2. To determine the upper bounds �i; I am using the result that the asset sales for those planning
to declare bankruptcy are larger than the asset sales of those planning to remain solvent.
In essence, I am taking the complete de�nition of the expected repayment rate �i(t + 1);
as given in equation (2:12); and dividing through by the asset choice of household h where
eh(t� i) = :: = eh(t) = I and bh(t� i) = 0; :::; bh(t) = i: For simplicity, de�ne the asset choice

z(e = j; b = i) = z (t : e(t� i) = j; ::; e(t) = j; b(t� i) = 0; ::; b(t) = i)

as the asset choice of a household with b(t � i) = 0; :::; b(t) = i who continues to receive the
state realizations e = j: Let�s compare the upper bound �i to the expected repayment rate:

�i = 1�
�
i
(i)

i+1

�
i
(i)

i
+
PI

n=i+1 �n (n)
i
:

�i(t+ 1) = 1� �i (i)
i+1 � z(e = i; b = i)

�i (i)
i � z(e = i; b = i) +

PI
n=i+1 �n (n)

i � z(e = n; b = i)
:

If i < j; then the di¤erence between z(e = i; b = i) and z(e = I; b = i) is larger than the

di¤erence between z(e = j; b = j) and z(e = I; b = j): This proves that the fraction �j(t)
�j

is

larger than the fraction �i(t)
�i

8t: Considering all possible i < j; the desired result obtains:

�i(t)

�i
� �j(t)

�j
8i < j < I and 8t:

Proof of Lemma 13

Combine the equations (b:24) and (b:25) for i = I � 1 :

�I�1 = 1�
�I�1

�
I�1

�2I
�I�1

�
I�1

�2I�1
+ �I (I)

2I�1 : (b.26)

The measures
�
�I�1; �I

�
can be calculated given the values of the persistence parameters (1; :::; I ; ) :

This calculation leads to the following relation:

�I�1
�I

=
1� I
1� I�1

:

Therefore, equation (b:26) is given as:

�I�1 = 1�
(1� I)

�
I�1

�2I
(1� I)

�
I�1

�2I�1
+
�
1� I�1

�
(I)

2I�1 : (b.27)

I have left to de�ne the lower bound �I such that �I � �I(t) 8t and then prove that �I�1 < �I :
Suppose that household k brings in wealth wk(t � �) � 0 into time t � � with e(t � �) = I: This
may be either a result of having just declared bankruptcy or having previously received the income
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state e(t � � � 1) = E: Upon receiving the state realizations e(t � �) = :: = e(t) = I; the optimal
asset choices are ordered as follows:

zk(t) > (� + 1) � zk(t� �):

I can repeat for any household with a sequence of state realizations e(t � �) = :: = e(t) = i < I:
Then the expected repayment rate will have a lower bound �I that is a function only of the asset
zk(t) where household k is such that e(t� �) = :: = e(t) = I: Dividing out the asset choices leaves
the lower bound �I as a function only of fractions of households.

The following lower bound can be considered an extension of equation (b:23) :

�I = 1�
�I (I)

I+1
+ �E

�
1�
I

� �
1 +

PI
i=2 (i)

i+1
�

�I (I)
I
+ �E

�
1�
I

� �
1 +

PI
i=2

Pi
j=0

1
j+1 (i)

i�j
� : (b.28)

Using (b:24) and the fact that the stationary transition matrix � forces �I (1� I) = �E
�
1�
I

�
(an

extension of (b:22)), the lower bound �I can be written as:

�I = 1�
(I)

2I+1

I + (1� I)
�
1 +

PI
i=2 (i)

i+1
�

(I)
2I

I + (1� I)
�
1 +

PI
i=2

Pi
j=0

1
j+1 (i)

i�j
� : (b.29)

The proof is now complete since �I�1 (from equation (b:27)) is strictly less than �I (from equation
(b:29)) upon using the �nal assumption of theorem 6.
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