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Abstract

Across a wide set of non-group insurance markets, applicants are rejected based on observ-
able, often high-risk, characteristics. This paper explores private information as a potential
cause. To do so, we develop and test a model in which agents have private information
about their risk. We derive a new no-trade result that can theoretically explain how private
information could cause rejections. We use the no-trade condition to generate measures of
the barrier to trade private information imposes. We develop a new empirical methodology
to estimate these measures that uses subjective probability elicitations as noisy measures of
agents’ beliefs. We apply our approach to three non-group markets: long-term care, disabil-
ity, and life insurance. Consistent with the predictions of the theory, in all three settings we
find larger barriers to trade imposed by private information for those who would be rejected
relative to those who are served by the market. For those who would be rejected, private
information imposes a barrier to trade equivalent to an implicit tax on insurance premiums
of roughly 65-75% in long-term care, 90-130% in disability, and 65-130% in life insurance.

JEL classification numbers: C51, D82
Keywords: Private Information; Adverse Selection; Insurance

1 Introduction

Not everyone can purchase insurance. Across a wide set of non-group insurance markets, compa-
nies choose to not sell insurance to potential customers with certain observable, often high-risk,
characteristics. In the non-group health insurance market, 1 in 7 applications to the four largest
insurance companies in the United States were rejected between 2007 and 2009, a figure that
excludes those who would be rejected but were deterred from even applying.1 In US long-term
∗I am very grateful to Daron Acemoglu, Amy Finkelstein, Jon Gruber, and Rob Townsend for their guidance

and support. I also thank Victor Chernozhukov, Sarah Miller, Whitney Newey, Ivan Werning, and a extensive
list of MIT graduate students for helpful comments and suggestions. Support from NSF Graduate Research
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1Figures obtained through a formal congressional investigation by the Committee on Energy and Commerce,
which requested and received this information from Aetna, Humana, UnitedHealth Group, and WellPoint. Con-
gressional report was released on October 12, 2010. The 1 in 7 figure does not subtract duplicate applications if
people applied to more than 1 of these 4 firms.
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care insurance, 12-23% of 65 year olds have health conditions that would preclude them from
being able to purchase insurance (Murtaugh et al. [1995]).2

It is surprising that a company would choose to not offer its products to a certain sub-
population. Although the rejected generally have higher expected expenditures, they still face
unrealized risk.3 Regulation does not generally prevent risk-adjusted pricing in these markets,
so why not simply offer them a higher price?

In this paper, we explore whether private information can explain rejections. We begin
by developing a model of how private information could cause rejections. Our setting is the
familiar binary loss environment introduced by Rothschild and Stiglitz [1976], which we gen-
eralize to incorporate an arbitrary distribution of privately informed types. We study the set
of implementable allocations, which satisfy resource, incentive, and participation constraints -
constraints that must hold across market structures such as monopoly or competition.

We derive a "no-trade" condition which characterizes when insurance companies would be
unwilling to sell insurance on terms that anyone in the market would accept. This condition has
an unraveling intuition similar to the one introduced in Akerlof [1970]. The market unravels when
the willingness to pay for a small amount of insurance is less than the pooled cost of providing
this insurance to those equal to, or higher than, an individuals’ own cost. When this no-trade
condition holds, an insurance company cannot offer any contract, or menu of contracts, because
they would attract an adversely selected subpopulation that would render them unprofitable.
Thus, the theory explains rejections as segments in which the no-trade condition holds.

We use the no-trade condition to generate comparative static predictions for properties of
type distributions which are more likely to lead to no trade. In particular, we characterize the
barrier to trade in terms of an equivalence to a tax rate levied on insurance premiums in a
world with no private information. The comparative statics reveal a qualitative explanation for
why it is so often the observably high-risk who are rejected: when distributions can be ordered
according to a hazard rate ordering, higher mean risk distributions impose a higher implicit
informational tax.

We then develop a new empirical methodology for studying private information to test the
predictions of theory. We use information contained in subjective probability elicitations to infer
properties of the distribution of private information. At no point do we view these elicitations as
true beliefs. Rather, we use information in the joint distribution of elicitations and the realized
events corresponding to these elicitations to deal with potential errors in elicitations.4 We
proceed with two complementary approaches. First, we make the weak assumption that agent’s
elicitations cannot contain more information about the subsequent loss than would the true

2Appendix C presents the rejection conditions from Genworth Financial (one of the largest US LTC insurers),
gathered from their underwriting guidelines provided to insurance agents for use in screening applicants.

3For example, in long-term care we estimate those who would be rejected have an average five-year nursing
home entry rate of less than 20%.

4In this sense, our approach builds on previous work using subjective probabilities in economics (e.g. Gan
et al. [2005], see Hurd [2009] for a review).
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beliefs.5 We estimate the explanatory power of the subjective probabilities on the subsequent
realized event, conditional on public information. This allows us to generate nonparametric
lower bounds on a measure of the magnitude of private information provided by the theory.
With these bounds, we provide a simple test for the presence of private information, along with
a test of whether those who would be rejected have larger estimates of this lower bound.

Our second approach moves from a nonparametric lower bound to a semiparametric point
estimate of the distribution of private information by making an additional parametric assump-
tion on the distribution of elicitation error which allows elicitations to be noisy and potentially
biased measures of agents true beliefs. We then flexibly estimate the distribution of private in-
formation. This allows us to quantify the barrier to trade in terms of the implicit informational
tax rate imposed by private information. We then test whether this quantity is larger for those
who would be rejected relative to those who are served by the market and whether it is large
(small) enough to explain (the absence of) rejections for plausible values of agents’ willingness
to pay for insurance.

We apply our approach to three non-group markets: long-term care (LTC), disability, and
life insurance. We combine two sources of data. First, we use data from the Health and
Retirement Study, which elicits subjective probabilities corresponding to losses insured in each
of these three settings and contains a rich set of demographic and health information commonly
used by insurance companies in pricing insurance. We supplement this with a detailed review of
underwriting guidelines from major insurance companies to identify those who would be rejected
(henceforth “rejectees”6) in each market.

Across all three market settings and a wide set of specifications, we find robust support for the
hypothesis that private information causes insurance rejections. We find larger nonparametric
lower bounds on a measure of the magnitude of private information for rejectees relative to those
served by the market. Our semiparametric approach reveals an informational implicit tax rates
for rejectees of 68-73% in LTC, 90-128% in Disability, and 64-127% tax in Life; in each setting we
estimate smaller barriers to trade for non-rejectees. Finally, not only can we explain rejections
in these three non-group markets, but the estimated distribution of private information about
mortality (constructed for our life insurance setting) can also explain the lack of rejections in
annuity markets. While some individuals are informed about being a relatively high mortality
risk, very few are exceptionally informed about having low mortality risk. Thus, low mortality
risks can obtain annuities without a significant number of even lower mortality risks adversely
selecting their contract.

Our paper is related to several distinct literatures. On the theoretical dimension, it is, to our
knowledge, the first paper to show that private information can lead to no gains to trade in an

5If beliefs are generated through rational expectations given some information set, this assumption is equivalent
to assuming the elicitations are a garbling of the agent’s true beliefs in the sense of Blackwell [1951, 1953].

6Throughout, we focus on those who “would be rejected”, which corresponds to those whose choice set excludes
insurance, not necessarily the same as those who actually apply and are rejected.

3



insurance market with an endogenous set of contracts. While no trade can occur in the Akerlof
[1970] lemons model, this model exogenously restricts the set of tradeable contracts, which is
unappealing in the context of insurance since insurers generally offer a menu of premiums and
deductibles. In this sense, our paper is more closely related to the large screening literature
using the binary loss environment initially proposed in Rothschild and Stiglitz [1976]. While the
Akerlof lemons model restricts the set of tradeable contracts, this literature generally restricts
the distribution of types (e.g. “two types” or a bounded support) and generally argues that
trade will always occur (Riley [1979]; Chade and Schlee [2011]). But by considering an arbitrary
distribution of types, we show this not to be the case. Indeed, the no trade condition we provide
can hold under common distributions previously not addressed. For example, with a uniform
distribution of types (over [0, 1]), trade cannot occur unless individuals are willing to pay more
than a 100% tax for insurance.

Empirically, our paper is related to a recent and growing literature on testing for the existence
and consequences of private information in insurance markets (Chiappori and Salanié [2000];
Chiappori et al. [2006]; Finkelstein and Poterba [2002, 2004]; see Einav et al. [2010a] and Cohen
and Siegelman [2010] for a review). This literature focuses on the revealed preference implications
of private information by looking for a correlation between insurance purchase and subsequent
claims. This approach can only identify private information amongst those served by the market.
In contrast, our approach can study private information for the entire population, including
rejectees. Our results suggest significant amounts of private information for the rejectees, but
less for those served by the market. Thus, our results provide a new explanation for why previous
studies using the revealed preference approach have not found evidence of significant adverse
selection in life insurance (Cawley and Philipson [1999]) and LTC insurance (Finkelstein and
McGarry [2006]). The absence of adverse selection may be the insurer’s selection.

Finally, our paper is related to the broader literature on the workings of markets under
uncertainty and private information. While many theories have pointed to potential problems
posed by private information, our paper presents, to the best of our knowledge, the first empirical
evidence that private information can lead to a complete absence of trade.

The rest of this paper proceeds as follows. Section 2 presents the theory and the no-trade
result. Section 3 presents the comparative statics and testable predictions of the model. Section
4 outlines the empirical methodology. Section 5 presents the three market settings and our data.
Section 6 presents the empirical specification and results for the nonparametric lower bounds.
Section 7 presents the empirical specification and results of the semiparametric estimation of
the distribution of private information. Section 8 concludes.
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2 Theory

This section develops a model of private information. Our primary result (Theorem 1) is a no-
trade condition which provides a theory of how private information can lead insurance companies
to not offer any contracts.

2.1 Environment

There exists a unit mass of agents endowed with non-stochastic wealth w > 0. All agents
face a potential loss of size l > 0 that occurs with privately known probability p, which is
distributed with c.d.f. F (p) in the population. We impose no restrictions on F (p); it may be
a continuous, discrete, or mixed distribution, and have full or partial support, which we denote
by Ψ ⊂ [0, 1].7 Throughout the paper, we let the uppercase P denote the random variable
representing a random draw from the population (with c.d.f. F (p)) and the lowercase p denote
a specific agent’s probability (i.e. their realization of P ). Agents have observable characteristics,
X. For now, one should assume that we have conditioned on observable information (e.g.
F (p) = F (p|X = x) where X includes all observable characteristics such as age, gender, and
observable health conditions).

Agents have a standard Von-Neumann Morgenstern preferences u (c) with expected utility
given by

pu (cL) + (1− p)u (cNL)

where cL (cNL) is the consumption in the event of a loss (no loss). We assume u (c) is continuously
differentiable, with u′ (c) > 0 and u′′ (c) < 0. An allocation A = {cL (p) , cNL (p)}p∈Ψ consists
of consumption in the event of a loss, cL (p), and in the event of no loss, cNL (p) for each type
p ∈ Ψ.

While it is common in this environment to now introduce a specific institutional structure,
such as a game of competition or monopoly, our approach is different. Instead, we abstract from
specific institutional structure and study the set of implementable allocations.

Definition 1. An allocation A = {cL (p) , cNL (p)}p∈Ψ is implementable if

1. A is resource feasible:
ˆ

[w − pl − pcL (p)− (1− p) cNL (p)] dF (p) ≥ 0

7By choosing particular distributions F (p), our environment nests many previous models of insurance. For
example, Ψ = {pL, pH} yields the classic two-type model considered initially by Rothschild and Stiglitz [1976]
and subsequently analyzed by many others. Assuming F (p) is continuous with Ψ = [a, b] ⊂ (0, 1), one obtains
an environment similar to Riley [1979]. Chade and Schlee [2011] provide arguably the most general treatment
to-date of this environment in the existing literature by considering a monopolists problem with an arbitrary F
with bounded support Ψ ⊂ [a, b] ⊂ (0, 1).
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2. A is incentive compatible:

pu (cL (p)) + (1− p)u (cNL (p)) ≥ pu (cL (p̃)) + (1− p)u (cNL (p̃)) ∀p, p̃ ∈ Ψ

3. A is individually rational:

pu (cL (p)) + (1− p)u (cNL (p)) ≥ pu (w − l) + (1− p)u (w) ∀p ∈ Ψ

Our focus on the set of implementable allocations makes our results applicable across institu-
tional settings, such as monopoly or competition. Any economy which faces the above informa-
tion and resource constraints must yield implementable allocations. Moreover, by focusing on
implementable allocations we circumvent problems arising from the potential non-existence of
competitive Nash equilibriums, as highlighted in Rothschild and Stiglitz [1976].

2.2 The No-Trade condition

Theorem 1 characterizes when the endowment is the only implementable allocation.

Theorem 1. (No Trade). The endowment, {(w − l, w)}, is the only implementable allocation
if and only if

p

1− p
u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]
1− E [P |P ≥ p]

∀p ∈ Ψ\ {1} (1)

where Ψ\ {1} denotes the support of F (p) excluding the point p = 1.
Conversely, if (1) does not hold, then there exists an implementable allocation which strictly

satisfies resource feasibility and individual rationality for a positive mass of types.

Proof. See Appendix A.18

The left-hand side of equation (1), p
1−p

u′(w−l)
u′(w) is the marginal rate of substitution between

consumption in the event of no loss and consumption in the event of a loss, evaluated at the
endowment, (w − l, w). It is a type p agent’s willingness to pay for an infinitesimal amount of
additional consumption in the event of a loss, in terms of consumption in the event of no loss.
The actuarially fair cost of this transfer to the type p agent is p

1−p . However, the right hand
side of equation (1) is the price of providing such a transfer, not at type p’s own cost of p

1−p , but

rather at the average cost if all higher-risk types P ≥ p also obtained this transfer, E[P |P≥p]
1−E[P |P≥p] .

Intuitively, if no other contracts are offered, then a contract preferred by type p will also be
preferred by all types P ≥ p, rendering the cheapest possible provision of insurance to type p to
be at a price ratio of E[P |P≥p]

1−E[P |P≥p] . If no agent is willing to pay this cost, the endowment is the
only implementable allocation.

8While Theorem 1 is straightforward, its proof is less trivial because one must show that Condition 1 rules out
not only single contracts but also any menu of contracts in which different types may receive different allocations.
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Conversely, if equation (1) does not hold, there exists an implementable allocation which
does not totally exhaust resources and provides strictly higher utility than the endowment for a
positive mass of types. So, a monopolist insurer could earn positive profits by facilitating trade.9

In this sense, the no-trade condition (1) characterizes when one would expect trade to occur.
The no-trade condition can hold for common distributions, such as the uniform distribution.

Example 1. Suppose that F (p) is uniform, F (p) = p. Then, E [P |P ≥ p] = 1+p
2 . The no-trade

condition 1 is given by
p

1− p
u′ (w − l)
u′ (w)

≤
1+p

2

1− 1+p
2

∀p ∈ [0, 1)

which holds if and only if
u′ (w − l)
u′ (w)

≤ 2

With a uniform distribution of private information, trade can only occur if agents marginal
utility of consumption is twice as large in the state where the loss occurs. So, unless agents are
willing to pay a 100% tax for insurance (which moves consumption from the state of no loss to
the state of the loss), there will be no trade.10

The no-trade condition has an unraveling intuition similar to that of Akerlof [1970]. His
model considers a given contract and shows that it will not be traded when its demand curve
lies everywhere below its average cost curve, which is in turn a function of those who demand
it. Our model is different. While Akerlof [1970] derives conditions under which a given contract
would unravel and result in no trade, our model provides conditions under which any contract
or menu of contracts would unravel.

This distinction is important since previous literature has argued that trade must always
occur environments similar to ours with no restrictions on the contract space (Riley [1979];
Chade and Schlee [2011]). The key difference in our approach is that we do not assume types
are bounded away from 1.11 In fact, the no-trade condition requires the highest risk type in the
economy have a probability of a loss arbitrarily close to p = 1. Otherwise the highest risk type,
say p̄, would be able to obtain an actuarially fair full insurance allocation, cL (p̄) = cNL (p̄) =

w − p̄l, which would not violate the incentive constraints of any other type.

Corollary 1. Suppose condition (1) holds. Then F (p) < 1 ∀p < 1.

This corollary highlights the unraveling intuition: no trade occurs when people don’t want
to subsidize risks worse than themselves; this naturally requires the perpetual existence of worse
risks.12

9Also, one can show that a competitive equilibrium, as defined in Miyazaki [1977] and Spence [1978] can be
constructed for an arbitrary type distribution F (p) and would yield trade (result available from the author upon
request).

10We discuss this tax rate analogy further in Section 3
11Both Riley [1979] and Chade and Schlee [2011] assume Ψ ⊂ [a, b] ⊂ (0, 1), so that b < 1.
12Note that we do not require any positive mass at p = 1, as highlighted in Example 1.
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At the same time, the fact that the no-trade condition requires risks arbitrarily close to 1
can be viewed as a technicality. In reality, insurance companies offer a finite set of contracts,
presumably because they incur a setup cost for creating each contract. If we require that each
allocation other than the endowment must attract a non-trivial fraction of types, then we no
longer require risks arbitrarily close to 1, as illustrated in Remark 1.

Remark 1. Suppose each consumption bundle (cL, cNL) other than the endowment must attract
a non-trivial fraction α > 0 of types. More precisely, suppose allocations A = {cL (p) , cNL (p)}p
must have the property that for all q ∈ Ψ,

µ ({p| (cL (p) , cNL (p)) = (cL (q) , cNL (q))}) ≥ α

where µ is the measure defined by F (p). Then, the no-trade condition is given by

p

1− p
u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]
1− E [P |P ≥ p]

∀p ∈ Ψ̂1−α

where Ψ̂1−α =
[
0, F−1 (1− α)

]
∩ (Ψ\ {1}).13 Therefore, the no-trade condition need only hold

for values p < F−1 (1− α).
In other words, if contracts must attract a nontrivial fraction of types, then no trade can occur

even if types are bounded away from p = 1. Going forward, we retain the benchmark assumption
of no such frictions or transactions costs, but return to this discussion in our empirical work in
Section 7.

The no-trade condition (1) provides a theory of rejections: they occur in market segments
where (1) holds and insurance is offered in segments where (1) does not hold, where market
segments are defined by observabe information. In order to derive testable implications of this
theory, the next section examines properties of distributions, F (p), which make the no-trade
condition more likely to hold.

3 Comparative Statics and Testable Predictions

Qualitatively, Theorem 1 suggests a property of distributions which lead to no trade: thick
upper tails of risks. The presence of a thicker upper tail increases the value of E [P |P ≥ p] at
given values of p. In this section, we formalize this intuition by constructing precise measures of
the barrier to trade imposed by private information which will guide our empirical tests of the
theory.

13If F−1 (1− α) is a set, we take F−1(1− α) to be the supremum of this set
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3.1 Two Measures of Private Information

We construct two measures of private information. To begin, we multiply the no-trade condition
(1) by 1−p

p yielding,

u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]
1− E [P |P ≥ p]

1− p
p

∀p ∈ Ψ\ {1}

The left-hand side is the ratio of the agents’ marginal utilities in the loss versus no loss state,
evaluated at the endowment. The right-hand side independent of the utility function, u, and is
the cost of providing an infinitesimal transfer to type p if the pool of types worse than p, P ≥ p,
also were attracted to the contract. We define this term the pooled price ratio.

Definition 2. For any p ∈ Ψ\ {1}, the pooled price ratio at p, T (p), is given by

T (p) =
E [P |P ≥ p]

1− E [P |P ≥ p]
1− p
p

(2)

Given T (p), the no-trade condition has a succinct expression.

Corollary 2. (Quantification of the barrier to trade) The no-trade condition holds if and only
if

u′ (w − l)
u′ (w)

≤ inf
p∈Ψ\{1}

T (p) (3)

Whether or not there will be trade depends on only two numbers: the agent’s underlying
valuation of insurance, u′(W−L)

u′(W ) , and the cheapest cost of providing an infinitesimal amount
of insurance, infp∈Ψ\{1} T (p). When this cost is above the underlying valuation of insurance,
there can be no trade. We call infp∈Ψ\{1} T (p) the minimum pooled price ratio. This number
characterizes the barrier to trade imposed by private information.

Equation (3) has a simple tax rate interpretation. Suppose for a moment that there were no
private information but instead a government levies a sales tax of rate t on insurance premiums
in a competitive insurance market. The value u′(w−l)

u′(w) −1 is the highest such tax rate an individual
would be willing to pay to purchase any insurance.14 Thus, infp∈Ψ\{1} T (p) − 1 is the tax rate
equivalent of the barrier to trade imposed by private information. In this sense, it quantifies the
magnitude of the barrier to trade imposed by private information.

Equation (3) leads to a simple comparative static.

Corollary 3. (Comparative static in the minimum pooled price ratio) Consider two market
segments with pooled price ratios T1 (p) and T2 (p) and common vNM preferences u. Suppose

inf
p∈Ψ\{1}

T1 (p) ≤ inf
p∈Ψ\{1}

T2 (p)

14To clarify, the equivalence is to a tax rate paid only in the state of no loss, so that it can be interpreted as a
tax on the insurance premium.
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then if the no-trade condition holds in segment 1, it must also hold in segment 2.

Higher values of the minimum pooled price ratio are more likely to lead to no trade. Be-
cause the minimum pooled price ratio characterizes the barrier to trade imposed by private
information, Corollary 3 is the key comparative static on the distribution of private information
provided by the theory.

In addition to the minimum pooled price ratio, we also provide another metric which leads
to a less precise comparative static but will be useful to guide portions of our empirical analysis.

Definition 3. For any p ∈ Ψ, define the magnitude of private information at p by m (p),
given by

m (p) = E [P |P ≥ p]− p (4)

The value m (p) is the difference between p and the average probability of everyone worse
than p. Note that m (p) ∈ [0, 1] and m (p) + p = E [P |P ≥ p]. The following comparative static
follows directly from the no-trade condition (1).

Corollary 4. (Comparative static in the magnitude of private information) Consider two market
segments with magnitudes of private information m1 (p) and m2 (p) and common support Ψ and
common vNM preferences u. Suppose

m1 (p) ≤ m2 (p) ∀p ∈ Ψ

Then if the no-trade condition holds in segment 1, it must also hold in segment 2.

Higher values of the magnitude of private information are more likely to lead to no trade.
Notice that the values of m (p) must be ordered for all p ∈ Ψ, and it is thus a less precise
statement than the comparative static provided in Corollary 3.

3.2 High-Risk Distributions

Before turning to our empirical methodology, we note that the comparative statics of the model
already provide a qualitative explanation of the fact that it is often the high (mean) risks who
are rejected. Let P1 and P2 be two continuously distributed random variables with common
support Ψ ⊂ [0, 1] and hazard rates hj (p) =

fj(p)
1−Fj(p) , where fj (p) is the p.d.f. and Fj (p) is

the c.d.f. of Pj . We say that the two random variables are ordered according to the hazard rate
ordering if either h1 (p) ≤ h2 (p) for all p or h1 (p) ≥ h2 (p) for all p.

Proposition 1. Suppose P1 and P2 are ordered according to the hazard rate ordering. Let T1

and T2 denote their associated pooled price ratios. Then

E [P1] ≤ E [P2] =⇒ inf
p∈Ψ̂

T1 (p) ≤ inf
p∈Ψ̂

T2 (p) (5)
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for any Ψ̂ ⊂ Ψ\ {1}. In particular, (5) holds for Ψ̂ = Ψ\ {1} or Ψ̂ = Ψ1−α as defined in Remark
1.

Proof. Follows immediately from the fact that the hazard rate ordering implies the mean-residual
life ordering. See Shaked and Shanthikumar [1994].

When distributions can be ordered according to their hazard rates, the higher mean risk
distribution has a larger minimum pooled price ratio.15 Therefore, it satisfies the no-trade
condition for a larger set of values of u′(w−l)

u′(w) . In this sense, higher risk distributions are more
likely to lead to no trade, which can explain why it is so often those with high (mean) risk
characteristics who are rejected.

3.3 Moving Towards Data: Testable Hypotheses

Our goal of the rest of the paper is to test the empirical predictions of the theory by estimating
properties of the distribution of private information, F (p|X), for rejectees and non-rejectees.
Assuming for the moment that F (p|X) is observable to the econometrician, our ideal tests are
as follows. Qualitatively, we test whether F (p|X) has a thicker upper tail of high risks for the
rejectees. Quantitatively, we estimate the minimum pooled price ratio for each X and conduct
two types of tests: first, we test the comparative statics given by Corollaries 3 and 4 of higher
values of the minimum pooled price ratio for rejectees versus non-rejectees. Second, we ask
whether the minimum pooled price ratio is large (small) enough to explain (the absence of)
rejections for plausible values of agents’ willingness to pay, as suggested by Corollary 2.16

Of course the execution of these tests require estimating properties of the distribution of
private information, F (p|X), to which we now turn.

4 Empirical Methodology

We develop an empirical methodology to study private information and operationalize the tests
in Section 3.3. The key feature of our approach is that we utilize information contained in
subjective probability assessments to infer properties of the distribution of private information.
Let L denote an event (e.g. dying in the next 10 years) that is commonly insured in some

15Note that the hazard rate ordering is weaker than the likelihood ratio ordering. So if distributions can be
ordered according to their likelihood ratios (e.g. they have the monotone likelihood ratio property, “MLRP”),
then higher mean risk distributions lead to larger minimum pooled price ratios.

16Our tests do not focus on potential demand side variation across values of X (i.e. how willingness-to-pay,
u′(w−l)
u′(w)

varies with X and potentially differs across rejectees and non-rejectees). Finding empirical support for
our comparative static tests would only be inconsistent with the theory if the difference in willingness-to-pay
for rejectees versus non-rejectees is larger than our estimated differences in the minimum pooled price ratio. In
contrast, if rejectees have lower willingness-to-pay than non-rejectees, our tests are too strict: they may lead us
to find evidence inconsistent with the theory when in fact the theory is correct.
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insurance market (e.g. life insurance).17 Let Z denote an individual’s subjective probability
elicitation about event L (i.e. Z is a response to the question “what do you think is the probability
that L will occur?”). A premise of our approach is that these elicitations are non-verifiable to an
insurance company. Therefore, they can be excluded from the set of public information, which
we will denote by X, and used to infer properties of the distribution of private information. But
while these elicitations are non-verifiable to insurance companies, they are arguably noisy and
potentially biased measures of true beliefs.

We develop two complementary approaches for dealing with the potential error in subjec-
tive probability elicitations. Our first approach provides a nonparametric lower bound on the
average magnitude of private information, E [m (P )] , and tests whether rejection segments have
higher values of E [m (P )]. This provides a test in the spirit of the comparative static in m (p)

(Corollary 4) while relying on very minimal assumptions on the relationship between agents’
beliefs and their probability elicitations. Our second approach adds a parametric structure to
the distribution of elicitation error, which allows us to (non-parametrically) identify the dis-
tribution of private information (so that the overall approach is semiparametric). We then
estimate the pooled price ratio, T (p), and a close analogue to the minimum pooled price ratio,
infp∈Ψ\{1} T (p), where we focus on the minimum over a compact set Ψ̂ which excludes points
in the upper quantiles of F (p) to avoid problems associated with extreme value estimation. We
then test both whether segments facing rejection have larger values of the minimum pooled price
ratio (Corollary 3) and whether these estimates are large (small) to explain (the absence of)
rejections for plausible values of u

′(w−l)
u′(w) , as suggested by Corollary 2.

In this section, we introduce these empirical approaches. We defer a discussion of the empir-
ical specification and statistical inference to Sections 6 and 7, after we have discussed our data
and settings.

4.1 Nonparametric Lower Bound Approach

To begin, we retain the assumption from the theoretical section that agents act as if they have
beliefs about the probability of the loss L.18 Moreover, as has heretofore been implicit, we
assume these beliefs are correct.

Assumption 1. Beliefs P are correct: Pr {L|X,P} = P

Assumption 1 states that if we hypothetically gathered a large group of individuals with
the same observable values X and the same beliefs P and then observed whether or not they

17Of course, individuals face more than a single binary event and insurance generally insures a combination of
many different events. Our approach is to focus on one commonly insured event and ask whether the pattern
of rejections in that market is consistent with the predictions of our theory about whether insurance could be
provided for that binary event.

18Our approach therefore follows the view of personal probability expressed in the seminal work of Savage
[1954]: Although agents may not perfectly express their beliefs through survey elicitations, they would behave
consistently in response to gambles over L (“consistently” in the sense of Savage’s axioms).
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experience the loss L, we would find that, on average, a fraction P of this group experiences the
loss. As an empirical assumption, it is relatively strong, but it provides perhaps the simplest link
between the realized loss L and beliefs.19 Note that we have now introduced public information,
X. To most closely match the theory, we assume X is the set of information that an insurance
company would use to price insurance. We discuss this important data requirement further in
Section 5.

Although agents act as if they have beliefs, they may not report these beliefs in probabilis-
tic survey questions. Our lower bound approach assumes only that Z contains no additional
information about L than would the true beliefs.

Assumption 2. Z contains no additional information than P about the loss L, so that Pr {L|X,P,Z} =

Pr {L|X,P}

Assumption 2 is very weak; it would be violated only if people could provide elicitations Z
which are informative about L even conditional on the true beliefs of those making the reports.20

For the empirical tests, we classify segments X into those in which insurance companies do
and do not sell insurance, X ∈ ΘNoReject and X ∈ ΘReject. We then proceed as follows. First,
we form the predicted value of L given the observable variables X and Z,

PZ = Pr {L|X,Z}

Loosely, our approach asks how much Z explains L, conditional on X. To assess this qualita-
tively, we plot the predicted values of PZ separately for rejectees (X ∈ ΘReject) and non-rejectees(
X ∈ ΘNoReject

)
. If Z is more informative for the rejectees, we would expect to see that the

distribution of PZ given X is more dispersed for the rejectees.
We then measure the extent to which Z explains L conditional on X using a measure of

dispersion inspired by the theory. Recall from Definition 3 that m (p) in segment X is given by
m (p) = E [P |P ≥ p,X]− p.21 We construct an analogue with PZ ,

mZ (p) = EZ|X [PZ |PZ ≥ p,X]− p
19This is a common assumption made, either implicitly or explicitly, in existing (revealed preference) approaches

to studying private information (e.g. Einav et al. [2010b]). We find some motivation for correct beliefs and our
treatment of subjective probability elicitations in existing empirical work in the forecasting literature spanning
economics, psychology, and engineering. Broadly, this literature suggests survey elicitations suffer significant
limitations as measures of beliefs, but implicit forecasts based on behavior, as in prediction markets, tend to be
more accurate (for an overview, see Sunstein [2006] and [Arrow et al. 2008]). Examples of the limitations of survey
elicitations of beliefs include Gan et al. [2005] who consider the subjective mortality probabilities we use in this
paper. Additional examples in psychology and cognitive engineering shows that simple improvements in elicitation
methods can substantially improve forecasts by reducing elicitation biases (Miller et al. [2008], Gigerenzer and
Hoffrage [1995]).

20Assumptions 1 and 2 are jointly implied by a rational expectations model in which agents know both X and
Z in formulating their beliefs P . In this case, our approach views Z as a “garbling” of the agent’s true beliefs in
the sense of Blackwell ([1951], [1953]).

21The expectation is conditional on X but for brevity we omit explicit reference to X in our notation for m (p).
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which is difference between p and the average predicted probability, PZ , of those with predicted
probabilities higher than p (note that mZ (p) is defined for any p).22 We then construct the
average magnitude of private information implied by Z in segment X, E [mZ (PZ) |X], which is
the average difference in segment X between an individual’s predicted loss, and the predicted
losses of those with higher predicted probabilities. Intuitively, E [mZ (PZ) |X] is a (nonnegative)
measure of the dispersion of the distribution of PZ .

In the spirit of the comparative statics given by Corollary 4, we test whether rejectees have
higher values of E [mZ (PZ) |X]:

∆Z = E
[
mZ (PZ) |X ∈ ΘReject

]
− E

[
mZ (PZ) |X ∈ ΘNoReject

]
> 0 (6)

which asks whether segments in which insurance companies have chosen to not sell insurance
have higher average magnitudes of private information implied by Z than segments in which
they sell insurance. Stated more loosely, equation (6) asks whether the subjective probabilities
of the rejectees better explain the realized losses than the non-rejectees, where “better explain”
is measured using E [mZ (PZ) |X]. Equation (6) is the key empirical test provided by the lower
bound approach.23

Lower Bounds Our estimable variable, PZ , is not equal to the true beliefs, P . Rather we
obtain distributional lower bounds, as illustrated in Proposition 2.

Proposition 2. (Lower bound) Suppose assumptions 1 and 2 hold. Then

1. The true beliefs, P , are a mean-preserving spread of PZ :

PZ = E [P |X,Z] (7)

2. The average magnitude of private information implied by Z is a lower bound for the true
average magnitude of private information:

E [mZ (PZ) |X] ≤ E [m (P ) |X] (8)

Proof. See Appendix B.1.

Because Z contains no additional information about L than do the true beliefs P , the true
beliefs are a mean preserving spread of PZ . Correspondingly, the average magnitude of private
information implied by Z, E [mZ (PZ) |X] is a lower bound for E [m (P ) |X].

22The subscript Z notes that the variable Z is used in its construction; it does not mean to indicate we are
conditioning on a realized value of Z in the construction of mZ (p).

23In addition to aggregating the data across all X in each rejection classification, we also conduct the test for
subgroups (e.g. conditional on age or gender).
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Statement (2) highlights that testing E [mZ (PZ) |X] = 0 provides a nonparametric test for
the presence of private information (Note E [mZ (PZ) |X] > 0 implies E [m (P ) |X] > 0). Since
E [mZ (PZ) |X] = 0 if and only if Pr {L|X,Z} = Pr {L|X}, the test for private information is
straightforward: do the subjective probabilities explain the realized loss?24

Our approach is nonparametric in the sense that we have made no parametric restrictions on
how the elicitations Z relate to the true beliefs P .25 For example, PZ and mZ (p) are invariant
to monotonic transformations in Z: PZ = Ph(Z) and mZ (p) = mh(Z) (p) for any monotonic
function h. Thus, we do not require that Z be a probability or have any cardinal interpretation.
Respondents could all change their elicitations to 1−Z or 100Z; this would not change the value
of E [mZ (PZ) |X].

But while the benefit of the lower bound approach is that we make only minimal assumptions
on how subjective probabilities relate to true beliefs, the resulting empirical test in equation (6)
suffers several limitations. First, orderings of lower bounds of E [m (P ) |X] across segments do
not necessarily imply orderings of its true magnitude.26 Second, orderings of E [m (P ) |X] does
not imply orderings of m (p) for all p, which was the statement of the comparative static in m (p)

in Corollary (4).27 Finally, in addition to having limitations as a test of the comparative static,
this approach cannot quantify the minimum pooled price ratio. These shortcomings motivate
our second approach, which imposes some structure on the relationship between Z and P and
allows us to move from lower bounds to point estimates of the distribution of private information.

4.2 Semiparametric Approach: Estimation of the Distribution of Private In-
formation

The goal of the second approach is to estimate the distribution of private information and the
minimum pooled price ratio. We then examine the distribution for the presence of thicker upper
tails for the rejectees relative to the non-rejectees. With the minimum pooled price ratio, we

24Our test for the presence of private information is different from the test used by Finkelstein and McGarry
[2006] that was initially proposed in Finkelstein and Poterba [2006]. Their approach treats subjective probabilities
as “unused observables” that are excluded from the set of variables used by insurance companies for pricing
insurance. They infer the presence of asymmetric information if two conditions are satisfied: 1) the subjective
probabilities are correlated with the realized loss (conditional on observables) and 2) the subjective probabilities are
correlated with insurance purchase (conditional on observables). In contrast, we show that the second requirement
is not necessary when using subjective probabilities for identifying private information. Indeed, it would prevent
identification of private information amongst rejectees.

25In particular, we have not imposed parametric restrictions on the distribution of Z given beliefs P , fZ|P (Z|P ).
26In Appendix (B.1.3), we provide a stylized example of elicitation error which yields conditions under which

orderings of our lower bounds do imply orderings of the true magnitude. Loosely, we require the error in the
elicitation to be similar between the two segments under comparison.

27Because E [m (P )] is a measure of dispersion, it is invariant to location shifts in the distribution of P (i.e. if
P̃ = P + η, then E [m (P )] = E

[
m
(
P̃
)]

). So, testing equation (6) is distinct from analyzing whether rejectees
have higher mean risk, as suggested by Proposition 1. Since rejectees have almost universally higher mean risks,
testing for higher values of E [m (P )] for the rejectees may a priori be an overly restrictive test of the theory.
Since this biases us against finding results consistent with the theory, we do not discuss this interaction in detail.
We discuss this further in Appendix B.1, where we show that the minimum pooled price ratio is bounded above
(using a Holder inequality) by a term increasing in both the mean, Pr {L|X}, and E [m (P ) |X].
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test whether it is larger for rejectees versus non-rejectees (Corollary 3) and whether it is large
(or small) enough to explain (the absence of) rejections for plausible values of the willingness to
pay for insurance (Corollary 2). Whereas our nonparametric lower bound approach allowed for
an arbitrary relationship between Z and P , we now restrict the way in which elicitations relate
to beliefs.

Assumption 3. Z is distributed with p.d.f./p.m.f. fZ|P (Z|P ; θ) of a known parametric family
with unknown parameters θ of finite dimension.

This restriction limits the extent to which the distribution of Z can vary with P . In our
particular specification discussed futher in Section 7.1.1, we will allow f (Z|P ; θ) to capture
noise and bias. In addition to Assumption 3, we retain Assumptions 1 and 2 which ensure that
Pr {L = 1|X,Z, P} = P .

With Assumptions 1-3, the joint p.d.f./p.m.f. of the observed variables L28 and Z (condi-
tional on X = x), denoted fL,Z (L,Z), is given by

fL,Z (L,Z) =

ˆ 1

0
fL,Z (L,Z|P = p) fP (p) dp

=

ˆ 1

0
(Pr {L = 1|Z,P = p})L (1− Pr {L = 1|Z,P = p})1−L fZ|P (Z|p; θ) fP (p) dp

=

ˆ 1

0
pL (1− p)1−L fZ|P (Z|p; θ) fP (p) dp

where fP (p) is the unobserved density of the distribution of private information (assumed to be
continuous for ease of exposition). The first equality follows by taking the conditional expecta-
tion with respect to P . The second equality follows by expanding the joint density of L and Z
given P and Assumption 3. The third equality follows from Assumptions 1 and 2.

Assumption 3 allows us to estimate θ, as opposed to an arbitrary two-dimensional continuous
function, fZ|P . This allows us to estimate both θ and fP using the observed joint distribution
of the data, fL,Z (L,Z). We discuss identification in general and for our particular functional
form choice in Appendix B.2. But the order condition is straightforward. The observed joint
distribution, fL,Z , contains two continuous functions of Z (one for L = 1 and another for
L = 0). We use one of these functions to identify fP and another to identify θ. While we
have imposed a functional form on θ, we do not impose a functional form on the distribution
of private information, fP . In practice, we flexibly approximate fP and estimate all parameters
(both θ and the approximating parameters for fP ) using maximum likelihood.

Given estimates of the distribution of private information, we translate these into measures of
the barrier to trade imposed by private information. Recall from Corollary 2 that this magnitude
is fully characterized by the minimum pooled price ratio, infp∈Ψ\{1} T (p), where T (p) can be
calculated at each p using estimates of E [P |P ≥ p] derived from the estimated distribution of

28For notational brevity, we let L also denote the binary indicator that the event L occurs, 1 {L}.
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private information. One remaining limitation is that for values of p in the upper quantiles
of F (p), E [P |P ≥ p] is an extreme value that is not well-identified, since the expectation is
taken with respect to a smaller and smaller effective sample as p increases. However, for a fixed
quantile τ , estimates of the minimum pooled price ratio over Ψ̂τ =

[
0, F−1 (τ)

]
∩ (Ψ\ {1}) are

continuously differentiable functions of the MLE parameter estimates of F (p) for p ≤ F−1 (τ).29

So, derived MLE estimates of infp∈Ψ̂τ
T (p) are consistent and asymptotically normal. Thus, our

approach is to construct the minimum pooled price ratio over Ψ̂τ for a fixed τ < 1. We then
assess robustness to the choice of τ .

While our motivation for restricting attention to Ψ̂τ as opposed to Ψ is primarily be-
cause of statistical limitations, Remark 1 in Section 2.2 provides an economic rationale for
why infp∈Ψ̂τ

T (p) may not only be a suitable substitute for infp∈Ψ\{1} T (p) but also may actu-
ally be more relevant if firms face frictions to setting up contracts. If contracts must attract a
non-trivial fraction 1 − τ of the market in order to be viable, then infp∈Ψ̂τ

T (p) characterizes
the barrier to trade imposed by private information.

In short, the semiparametric approach makes an additional parametric assumption on the
statistical relationship between elicitations Z and beliefs P which allows us to estimate the
distribution of private information and implement the tests outlined in Section (3.3).

5 Setting and Data

We employ our empirical approach to ask whether private information can explain rejections in
three non-group insurance market settings: long-term care, disability, and life insurance.

5.1 The Three Non-Group Market Settings

Long-term care (LTC) insurance insures against the financial costs of nursing home use and
professional home care. Expenditures on LTC represent one of the largest uninsured financial
burdens facing the elderly. LTC expenditures in the US totaled over $135B in 2004 (CBO
[2004]), and expenditures are heavily skewed: less than half of the population will ever enter a
nursing home in their life. Despite this, the LTC insurance market is small, with roughly 4% of
all nursing home expenses paid by private insurance, compared to 31% paid out-of-pocket (CBO
[2004]).30

The private disability insurance protects against the lost income resulting from a work-
limiting disability. It is primarily sold through group settings, such as one’s employer; more
than 30% of private workers have group-based disability policies. In contrast, the non-group
market is quite small. Only 3% of non-government workers own a private non-group disability

29Non-differentiability could hypothetically occur at points where the infimum is attained at distinct values of
p.

30Medicaid pays for nursing home stays provided one’s assets are sufficiently low and is a substantial payer of
long-term stays.
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policy, most of whom are self-employed or professionals who do not have access to employer-
based group policies (ACLI [2010]).31

Life insurance provides payments to ones’ heirs or estate upon death, insuring lost income
or other expenses. Policies either expire after a fixed length of time (term life) or cover one’s
entire life (whole life). In contrast to the non-group disability and LTC markets, the private
non-group life insurance market is quite big. More than half of the adult US population owns
life insurance. 54% of these policies are sold in the non-group market. 43% of these are term
policies, while the remaining 57% are whole life policies (ACLI [2010]).

Not everyone can purchase insurance in these three non-group markets. As mentioned in the
introduction, Murtaugh et al. [1995] estimates that 12-23% of 65 year olds have a health condi-
tion which would cause them to be rejected by LTC insurers. In life and disability insurance,
we know of no formal studies documenting the prevalence of rejections, but our review of under-
writing guidelines and conversations with underwriters in these markets establish a prevalence
of rejections based on certain pre-existing conditions that we discuss in more detail in Section
5.2.2.

Insurance companies in these markets are not legally prevented from charging higher prices
to reflect actuarial differences in risk.32 They do face some regulation. Capital levels must be
maintained to prevent policy default. Also, they are limited in the extent to which policy prices
can be raised over time after purchase, which is intended to prevent exploitative price increases
on those who have already sunk payments into a policy. But no regulation prevents insurance
companies from offering risk-adjusted prices to those who are currently rejected in these three
market settings.33

Previous research has found minimal or no evidence of private information using the revealed
preference approach in these settings. In life insurance, Cawley and Philipson [1999] find no
evidence of adverse selection. He [2009] revisits this with a different sample focusing on new
purchasers and does find evidence of small amounts of adverse selection. In long-term care,
Finkelstein and McGarry [2006] find direct evidence of private information by showing subjective
probabilities are correlated with subsequent nursing home use. However, they find no evidence
that this private information leads to adverse selection in the form of a correlation between
insurance purchase and subsequent losses in the LTC insurance market.34 To our knowledge,
there is no previous study of private information in the non-group disability market.

31In contrast to health insurance where the group market faces significant tax advantages, group disability
policies are taxed. Either the premiums are paid with after-tax income, or the benefits are taxed upon receipt.

32The Civil Rights Act does prevent purely racial discrimination in pricing.
33Interviews with underwriters in these markets also suggest that fear of regulation is not an issue in preventing

charging a higher price to those currently rejected.
34They suggest heterogeneous preferences, in which good risks also have a higher valuation of insurance, can

explain why private information doesn’t lead to adverse selection.

18



5.2 Data

Both of our approaches have the same data requirements. The ideal dataset would contain, for
each setting, four pieces of information:

1. Loss indicator, L, corresponding to a commonly insured loss

2. Agents’ subjective probability elicitation, Z, about this loss

3. The set of public information, X, which would be observed by insurance companies in
setting contract terms

4. The classification, ΘReject and ΘNoReject, of who would be rejected if they applied for
insurance

Our data source for the loss, L, subjective probabilities, Z, and public information X, come from
years 1993-2008 of the Health and Retirement Study (HRS). The HRS is an individual-level panel
survey of individuals over 55 and their spouses (included regardless of age). It contains a rich
set of health and demographic information, along with subjective probability elicitations about
future events.

To construct the rejection classification, we primarily rely on insurance company underwrit-
ing guidelines which are used by underwriters and often provided to insurance agents with the
purpose of preventing those with rejection conditions from applying. We supplement this in-
formation with interviews with insurance underwriters. We discuss each piece of our data in
further detail.

5.2.1 Loss Variables and Subjective Probability Elicitations

The HRS contains three subjective probability elicitations about future events which correspond
to a commonly insured loss in each of our settings:

Long-Term Care: "What is the percent chance (0-100) that you will move to a nursing
home in the next five years?"

Disability: "[What is the percent chance] that your health will limit your work activity
during the next 10 years?"

Life: "What is the percent chance that you will live to be AGE or more?" (where
AGE∈ {75,80,85,90,95,100} is respondent-specific and chosen to be 10-15 years from
the date of the interview)

Figures 1(a,b,c) display histograms of these responses (divided by 100 to translate into probabil-
ities).35 As has been noted in previous literature using these subjective probabilities (Gan et al.

35We use the sample selection described in Subsection (5.2.4)
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[2005]; Finkelstein and McGarry [2006]), these histograms highlight why it would be problematic
to view these as true beliefs. Many respondents report 0, 50, or 100. Taken literally, responses of
0 or 100 imply an infinite degree of certainty, which is difficult to believe. We find it more likely
that respondents who report focal point values are responding on more of an ordinal scale (e.g.
high, medium, low) as opposed to having a literal probabilistic interpretation. Our lower bound
approach remains agnostic on the way in which focal point responses relate to true beliefs.36

Our parametric approach will take explicit account of this focal point response bias, discussed
further in Section 7.1.1.

Corresponding to each subjective probability elicitation, we construct binary indicators of
the loss, L. In long-term care, L denotes the event that the respondent enters a nursing home
in the subsequent 5 years. In disability, L denotes the event that the respondent reports that
their health limits their work activity in the subsequent 10-11 years.37 In life, L denotes the
event that the respondent dies before AGE, where AGE∈ {75,80,85,90,95,100} corresponds to
the subjective probability elicitation, which is 10-15 years from the survey date.38

5.2.2 Rejection Classification

Not everyone can purchase insurance in these three non-group markets. An ideal dataset would
classify our entire samples into rejectees and non-rejectees. Practically, this requires knowing
the conditions that cause rejection and matching these conditions to those reported in the HRS.
As we discuss below, this match faces limitations which lead us to construct a third group,
"Uncertain", which allows us to be relatively confident in our classification of rejectees and
non-rejectees.

To identify conditions that lead to rejection, we obtain underwriting guidelines used by
underwriters and provided to insurance agents for use in screening applicants. An insurance
company’s underwriting guidelines provide a list of conditions for which underwriters are in-
structed to not offer insurance at any price. These guidelines are not publicly available, which
limits our ability to obtain this information. The extent of our access varies by market: In long-
term care, we obtain a set of guidelines used by an insurance broker from 18 of the 27 largest
long-term care insurance companies collectively representing over 95% of the US market.39 In
disability and life, we obtain several underwriting guidelines and supplement this information
with interviews with underwriters at several major insurance companies.

To match these conditions to our dataset, we use the detailed health and demographic
information available in the HRS to identify individuals with conditions which would lead them

36For our empirical specification, we will include indicators for focal point responses
37Our loss variable is necessarily defined as 11 years for those in the AHEAD 1993 wave 2 group because the

panel does not provide responses exactly 10 years from 1993. Our results are robust to the exclusion of this group.
38We construct the corresponding elicitation to be 100% − Zlive where Zlive is the survey elicitation for the

probability of living to AGE.
39These guidelines display broad consistency in the rejection practices across firms. We thank Amy Finkelstein

for making this broker-collected data available.
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to be rejected. While the HRS contains a relatively comprehensive picture of respondents’
health, sometimes the conditions which would lead to rejection are too precise too be accurately
matched in the HRS. For example, individuals with advanced stages of lung disease would be
unable to purchase life insurance; however, the HRS only provides information for the presence
of a lung disease.

We exercise caution in performing this match by constructing a third classification, "Uncer-
tain", to which we classify those who may be rejected, but for whom data limitations prevent a
solid assessment. This allows us to be relatively confident in our classification of rejectees and
non-rejectees. We present our lower bound estimates for all three classifications.40

Table 1 presents the list of conditions for the rejection and uncertain classification, along
with the frequency of each condition in our sample (using the sample selection outlined below
in Section 5.2.4). In long-term care, activity of daily living (ADL) restrictions (e.g. needs
assistance walking, dressing, using toilet, etc.), any previous stroke, any previous home care,
and anyone over the age of 80 would be rejected. In disability, a back condition, obesity (40+
BMI), and doctor-diagnosed psychological conditions such as depression or bi-polar would lead
to rejection. In life, individuals with a past stroke or current cancer would be rejected. We
classify individuals with these conditions as rejected in their respective markets.

Table 1 also lists the conditions leading to an uncertain classification in each market. In
addition to specific conditions for which the HRS data is too coarse, we also attempt to capture
the presence of rarer conditions not asked in the HRS (e.g. Lupus would lead to rejection in
LTC, but is not explicitly reported in the HRS). To do so, we take advantage of a question in the
HRS which asks respondents if they have any additional major health problems which were not
asked about in the survey. We classify individuals reporting yes to this question as Uncertain.

5.2.3 Public Information

Our ideal dataset would contain all information that insurance companies would use in pricing
contracts. For non-rejectees, this is a straightforward requirement which involves analyzing ex-
isting contracts. But for rejectees, we must make an assumption about how insurance companies
would price contracts to these people if they were to offer them. Our preferred approach is to
assume insurance companies price rejectees separately from those to whom they currently offer
contracts, but use a relatively similar set of public information. Thus, our primary data require-
ment is the public information currently used by insurance companies in pricing insurance.

The HRS contains an extensive set of health, demographic, and occupation information
which allows us to approximate the set of information which insurance companies use in pricing
insurance.41 The quality of this approximation varies by market. For long-term care, we replicate
the information set of the insurance company quite well. For example, perhaps the most obscure

40For brevity, we do not present results from our semiparametric approach for the uncertain group.
41We are not the first to note the ability of the HRS to replicate the information used by insurance companies

in pricing; for LTC, see Finkelstein and McGarry [2006] and for Life, see He [2009].
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piece of information that is acquired by some LTC insurance companies is an interview in
which applicants are asked to perform word recall tasks to assess memory capabilities; the HRS
conducts precisely this test with survey respondents. In disability and life, we replicate most of
the information used by insurance companies in pricing. One caveat is that insurance companies
will sometimes perform tests, such as blood and urine tests, which we will not observe in the
HRS. Conversations with underwriters in these markets suggest these tests are primarily to
confirm application information, which we can approximate quite well with the HRS. But, we
cannot rule out the potential that there is additional information which can be gathered by
insurance companies in the disability and life settings.42

In addition to our preferred specification which includes variables used in pricing, we also
assess the robustness of our estimates to alternative sets of controls.43 This is for two reasons.
First, although we have been careful in constructing the pricing controls, it may not be a
perfect representation of the set of information used in pricing. Second, we do not want our
conclusions for the amount of private information for the rejectees to depend on an assumption
of how insurance companies would hypothetically use information to price their contracts. We
therefore perform our analysis for three increasing sets of public information:

1. "Age and Gender": A baseline specification with fully saturated age-by-gender dummies

2. "Pricing Controls": Includes all variables currently used in pricing

3. "Extended Controls": Includes all Pricing Controls plus a large set of additional variables
not currently used in pricing but potentially related to the outcome

The age and gender specification provides a baseline. The pricing controls assumes insurance
companies would price similarly for those facing rejection. This is our preferred specification.
The extended controls specification adds a rich set of interactions between health conditions and
demographic variables that could be, but are not currently, used in pricing insurance.

We conduct the lower bound approach for all three sets of controls. For brevity, we focus
exclusively on our preferred specification of pricing controls for our semiparametric approach.44

The variables used in the pricing and full controls specifications for each market are presented
in Table 2. In LTC, our preferred specification includes age, age squared, and gender interactions;
indicators for various health conditions; ADL restrictions; and performance on a word recall

42In LTC, insurance companies are legally able to conduct tests, but it is not common industry practice.
43While it might seem intuitive that including more controls would reduce the amount of private information,

this need not be the case. To see why, consider the following example of a regression of quantity on price. Absent
controls, there may not exist any significant relationship. But, controlling for supply (demand) factors, price may
have predictive power for quantity as it traces out the demand (supply) curve. Thus, adding controls can increase
the predictive power of another variable (price, in this case). Of course, conditioning on additional variables X ′

which are uncorrelated with L or Z has no effect on the population value of E [m (P ) |X ∈ Θ].
44Because the extended controls specification includes a lot of variables, we risk over-fitting the data. As we

discuss in Section 6.1, this does not pose an insurmountable problem for the lower bound approach. However, it
would pose a problem for the semiparametric approach, and thus provides another reason for our exclusive focus
on the preferred pricing specification.
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test. Our extended controls specification adds full interactions for age and gender, along with
interactions of 5 year age bins with measures of health conditions, indicators for the number
of living relatives (up to 3), census region, and income deciles. For disability, our preferred
specification includes age, age squared, and gender interactions; indicators for self employment
and various health conditions; BMI; and wage decile. Our extended controls specification adds
full interactions of age and gender; full interactions of wage decile, part time status indicator,
job tenure quartile, and self-employment indicator; interactions between 5 year age bins and
various health conditions and BMI; full interactions of job characteristics (e.g. “job requires
heavy lifting”); and full interactions of 5 year age bins and census region. For life, our preferred
specification includes age, age squared, and gender interactions, smoking status, indicators for
the death of a parent before age 60, BMI, income decile, and indicators for a set of health
conditions. We also include a set of indicators for the years between the survey date and the
AGE corresponding to the loss.45 Our extended controls specification adds full interactions
of age and gender; full interactions between age and the AGE in the subjective probability
question; interactions between 5 year age bins and smoking status, income decile, census region,
and various health conditions;46 BMI; and an indicator for death of a parent before age 60.

5.2.4 Sample Selection

For each sample, we begin with years 1993-2008 of the HRS. Our selection process varies across
each of the three market settings due to data constraints. Table 3 presents the summary statistics
for each sample.

LTC For LTC, we exclude individuals for whom we cannot follow for a subsequent five years
to construct our loss indicator variable; years 2004-2008 are used but only for construction of the
loss indicator. Also, we exclude individuals who currently reside in a nursing home. Our primary
sample consists of 9,051 observations from 4,418 individuals for our no reject sample, 10,108
observations from 3,215 individuals for the reject sample, and 10,690 observations from 5,190
individuals for the uncertain sample. In each of our samples, we include multiple observations
for a given individual (which are spaced roughly two years apart) to increase power. All standard
errors will be clustered at the household level.

In addition to our primary sample, we will report results for our nonparametric lower bounds
using a sample that excludes individuals who own long-term care insurance (roughly 13% of
remaining sample) to ensure we estimate private information inherently held by the individual
which is not the effect of insurance contract choice on subsequent utilization (a.k.a. "moral

45We also include this in our age & gender and extended control specifications for life.
46Although the HRS asks whether respondents have (non-basal cell) cancer, it only asks which organ the cancer

occurs in the 2nd wave (1993/1994) of the survey. In the robustness section, we will consider an additional
extended controls specification for life insurance which uses data only from these years and includes a full set of
cancer organ indicators (50+ indicators).
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hazard").47

Rejectees differ from non-rejectees on many dimensions. They are older (average age of 79
versus 71), more likely to have health conditions such as arthritis, diabetes, and high blood
pressure, and have a 17% entry rate to a nursing home in the subsequent 5 years, compared
to an entry rate of only 4% for those not facing rejection. But while they are higher risk, on
average they still have less than a 20% chance of going to a nursing home in the next five years.
This suggests they still face significant of un-realized risk.

Disability For disability, we begin with the set of individuals up to age 60 who are currently
working and report no presence of work-limiting disabilities. To construct the corresponding
loss realization, we limit the sample to individuals who we can observe for a subsequent 10
years (years 2000-2008 are used solely for the construction of the loss indicator). Our final
sample consists of 2,540 observations from 1,480 individuals for our no reject classification,
2,216 observations from 1,280 individuals for our reject classification, and 3,757 observations
from 1,929 individuals for our uncertain classification.48

Rejectees differ from non-rejectees on many dimensions. They are more likely to have high
blood pressure, diabetes, and arthritis,49 and have a higher risk of experiencing a work-limiting
disability (44.1% versus 15.6%). But, similar to LTC, not everyone with a rejection condition
will experience a work-limiting disability in the subsequent 10 years, which again suggests they
face unrealized risk.

Life For our life sample, we restrict to individuals who we are able to follow through the age
corresponding to the subjective probability elicitation 10-15 years in the future, so that years
2000-2008 are used solely for the construction of the loss indicator. For example, if a 63 year
old is asked about the probability they will live to age 75, we require being able to see this
person for a subsequent 12 years in the survey. Our final sample consists of 2,689 observations
from 1,720 individuals for our no reject classification, 2,362 observations from 1,371 individuals
for our reject classification, and 6,800 observations from 4,270 individuals for our uncertain
classification.

Similar to LTC, we include those who own life insurance in our primary sample (64% of the
sample) but present results excluding this group for robustness. Similar to our other settings,
the rejectees are older, sicker, and more likely to experience the loss than non-rejectees.

47While one might be tempted to control for the purchase of insurance or the contract characteristics, this
would be misguided. If agents with different beliefs sort into different contracts, controlling for contract choice
could lead to a finding of no private information. Insurance purchase is a potentially endogenous response to the
presence of private information and thus should not be included as a control variable.

48Ideally, we would also test the robustness of our results using a sample of those who do not own disability
insurance, but unfortunately the HRS does not ask about disability insurance ownership.

49Diabetes and arthritis may lead to rejection, so those without a rejection condition but with one of these two
conditions are placed in the uncertain classification
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Discussion There are several broad patterns across our three samples. First, a sizable fraction
of the sample would be rejected in each setting. Because the HRS primarily surveys older
individuals, our sample is older (and therefore sicker) than the average purchaser in each market.
This is a primary benefit of the HRS; it allows us to obtain a significant sample size of rejectees.
But, it is important to understand that this fraction of rejectees is not a measure of the fraction
of the applicants in each market that would be rejected.

Second, many rejectees own insurance. These individuals could (and perhaps should) have
purchased insurance prior to being stricken with their rejection condition. Also, they may have
been able to purchase insurance in group markets through their employer, union, or other group
which has less stringent underwriting requirements.

Third, rejectees differ from non-rejectees on many dimensions; their older, sicker, and have a
higher probability of experiencing the loss. This is consistent with Proposition 1 which showed
that higher risk distributions are more likely to satisfy the no-trade condition.

5.2.5 Relation to Ideal Data

The extent to which our data resembles an ideal dataset varies by market. In general, we
approximate the ideal dataset quite well, aside from our necessity to classify a relatively large
fraction of our sample as uncertain. In disability and in life, we are able to classify a smaller
fraction of the sample as rejected or not rejected as compared with LTC. Also, for disability
and life we rely on a smaller set of underwriting guidelines (along with underwriter interviews)
to obtainn rejection conditions, as opposed to LTC where we obtain an fairly large fraction of
the underwriting guidelines used in the market. In disability and life we also do not observe
medical tests which may be used by insurance companies to price insurance (although our
conversations with underwriters suggest this is primarily to verify application information, which
we approximate quite well using the HRS). In contrast, in LTC we are able to classify a relatively
large fraction of the sample, are able to closely approximate the set of public information, and are
able to assess the robustness of our results to the exclusion of those who own insurance to remove
the potential impact of a moral hazard channel driving any findings of private information.
While re-iterating that all three of our samples approximate our ideal dataset quite well, our
LTC sample is arguably the best of our three samples.

6 Lower Bound Estimation

We now turn to the estimation of lower bounds of the average magnitude of private information,
E [mZ (PZ) |X], outlined in Section 4.1.
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6.1 Empirical Estimation

We estimate E [mZ (PZ) |X] separately for each setting (e.g. LTC), sample (e.g. Reject), and
specification (e.g. Price Controls). Implementation involves two steps. First, while the approach
is theoretically nonparametric, in practice we choose a flexible parametric approximation for
Pr {L|X,Z}. Second, we must make an assumption that allows us to reduce the dimensionality
of the way in which the distribution PZ varies with X to enable estimation of the distribution
of PZ and mZ (p) for each X.

To approximate PZ = Pr {L|X,Z} for our age/gender and price controls specifications, we
use a probit specification,

Pr {L|X,Z} = Φ (βX + Γ (age, Z))

where X are our control variables and Γ (age, Z) captures the effect of Z on Pr {L|X,Z}.50 This
form allows the affect of Z to vary with age (note that age is already included in X).51 We
approximate Γ (age, Z) using full interactions of functions of Z and functions of age. For Z, we
use second-order Chebyshev polynomials plus separate indicators for focal point responses at
Z = 0, 50, and 100. We use a linear function of age. Our approximation of Γ (age, Z) is then
given by the full set of these interactions (whose coefficients are to be estimated). All results
are robust to the inclusion of additional or fewer polynomials in Z or age, or the use of a linear
or logit specification, as opposed to the probit. For our extended controls specification, the high
dimensionality of X leads us to use a linear specification, Pr {L|X,Z} = βX + Γ (age, Z). We
use the same approximation for Γ.52

EstimatingmZ (p) = E [PZ |PZ ≥ p,X]−p requires estimating the entire distribution of PZ at
each possible value of X. To make this feasible, we adopt an assumption for how the distribution
of PZ varies with X: conditional on ones age and rejection classification, the distribution of
residual private information implied by Z, PZ − E [PZ |X], does not vary with X. This allows
observable variables affect the mean but not the shape of the distribution of PZ (conditional
on age and rejection classification).53 We then estimate the conditional expectation, mZ (p) =

E [PZ |PZ ≥ p,X]−p using the empirical distribution of PZ−E [PZ |X] within each age grouping.
After estimating mZ (p), we construct its average using the empirical distribution of PZ ,

50One could allow the the effect of Z to vary with other covariates. Our results are robust to much simpler
specifications (e.g. assuming Γ (age, Z) = γZ) and richer specifications, such as including gender in Γ. Note that
although the coefficients for the effect of Z on Pr {L|X,Z} is restricted via functional form, we are not necessarily
restricting the estimated distribution of Pr {L|X,Z}, since the distribution of Z can (and does) vary with X.

51In our LTC Reject Sample, we also include full interactions between Γ and an indicator for having a rejection
health condition; this allows Γ to vary differentially for those over age 80 with no other rejection conditions besides
age>80.

52Of course, the switch from the probit to linear specification leads Γ to have a different interpretation.
53This assumption is only required to arrive at a point estimate for E [mZ (PZ) |X ∈ Θ], and is not required to

test for the presence of private information (i.e. whether Γ = 0). Also, our results for E [mZ (PZ) |X ∈ Θ] are
robust to alternative assumptions, such as assuming the residual distribution does not vary with X within 5 year
age bins.
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yielding E [mZ (PZ) |X ∈ Θ], where Θ is a given sample (e.g. LTC rejectees). For each market,
we then construct the difference between the reject and no reject estimates,

∆Z = E
[
mZ (PZ) |X ∈ ΘReject

]
− E

[
mZ (PZ) |X ∈ ΘNoReject

]
and test whether we can reject a null hypothesis that ∆Z ≤ 0. While choosing Θ to be an entire
sample (e.g. all LTC rejectees) increases power, we will also construct estimates for subgroups
(e.g. age groupings) of the rejectees and non-rejectees.

6.2 Statistical Inference

Statistical inference for E [mZ (PZ) |X ∈ Θ] for a given sample Θ and for ∆Z is straightforward,
but requires a bit of care to cover the possibility of no private information. In any finite sample,
our estimates of E [mZ (PZ) |X ∈ Θ] will be positive (Z will always have some predictive power in
finite samples). Provided the true value of E [mZ (PZ) |X ∈ Θ] is positive, the bootstrap provides
consistent, asymptotically normal, standard errors for E [mZ (PZ) |X ∈ Θ] (Newey [1997]). But,
if the true value of E [mZ (PZ) |X ∈ Θ] is zero (as would occur if there were no private information
amongst those with X ∈ Θ), then the bootstrap distribution is not asymptotically normal and
does not provide adequate finite-sample inference.54 We therefore supplement the bootstrap with
a Wald test which restricts Γ (age, Z) = 0.55 This tests for the presence of private information.
We report results from both the Wald test and the bootstrap.

We conduct inference on ∆Z in a similar manner. To test the null hypothesis that ∆Z ≤ 0,
we construct conservative p-values by taking the maximum p-value from two tests: 1) a Wald
test of no private information held by the rejectees, E

[
mZ (PZ) |X ∈ ΘReject

]
= 0, and 2) the

p-value from the bootstrapped event of less private information held by the rejectees, ∆ ≤ 0.56

6.3 Graphical Results for PZ − E [PZ |X]

We begin with graphical evidence of the predictive power of subjective probability elicitations.
Figures 2(a,b,c) plot the estimated distribution of PZ − E [PZ |X] aggregated by rejection clas-
sification for the rejectees and non-rejectees, using our preferred pricing control specification.57

Consistent with the hypothesis that rejectees are better informed about whether or not they
would experience the loss, the distribution of PZ −E [PZ |X] is more dispersed for the rejectees
relative to those served by the market in all three market settings we consider. As we now show,

54In this case, Γ̂→ 0 in probability, so that estimates of the distribution of PZ − E [PZ |X] converge to zero in
probability (so that the bootstrap distribution converges to a point mass at zero).

55The event Γ (age, Z) = 0 in sample Θ is equivalent to both the event Pr {L|X,Z} = Pr {L|X} for all X ∈ Θ
and the event E [mZ (PZ) |X ∈ Θ] = 0.

56More precise p-values would be a weighted average of these two p-values, where the weight on the Wald test
is given by the unknown quantity Pr

{
E
[
mZ (PZ) |X ∈ ΘReject

]
= 0|∆ ≤ 0

}
. Since this weight is unknown, we

construct conservative p-values robust to any weight in [0, 1].
57Subtracting E [PZ |X] = Pr {L|X} allows for simple aggregation across X within each sample.
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this translates into higher estimates of our lower bounds on the average magnitude of private
information.

6.4 Lower Bound Results

The top row of Table 4 provides the estimates of ∆Z . Across all specifications and all market
settings, we estimate larger lower bounds on the average magnitude of private information
for the rejectees relative to those served by the market. These differences are all statistically
significant at the 1% level (third row of Table 4). Consistent with the theory, this suggests
private information imposes a greater barrier to trade for rejectees relative to those served by
the market.

The lower sets of rows in Table 4 report the estimated magnitude of private information
for each classification (No Reject, Reject, and Uncertain), along with their standard errors and
p-values for the presence of private information. We discuss these details by market.

LTC In long-term care, we find significant evidence of private information amongst the re-
jectees, with estimated magnitudes of 0.0286 (p < 0.001) in our preferred specification.58 In
contrast, we find no statistically significant evidence of private information held by the non-
rejectees (0.0041, p = 0.433 for our preferred specification). The estimates are quite similar for
different control specifications: all estimates lie within an estimated standard error (0.004).

Our finding that the subjective probabilities are significant predictors of subsequent nursing
home use is consistent with the empirical results of Finkelstein and McGarry [2006]. However,
splitting the sample by the rejection classification, our results reveal that this private information
is primarily held by those who would be rejected. This provides a new explanation for the absence
of a positive correlation found in Finkelstein and McGarry [2006] between insurance purchase and
realized claims in the long-term care market: insurance companies choose to not sell insurance
to those whose observable characteristics indicate they may have significant amounts of private
information.

Disability In disability, we find significant evidence of private information held by both the
rejectees and non-rejectees. In our preferred specification, we estimate magnitudes of 0.0512
(p < 0.01) for the rejectees and 0.0257 (p < 0.01) for non-rejectees, leading to an estimated
difference of ∆Z = .0255 (p = 0.006). The results are robust to the inclusion of additional
controls: the extended controls specification yields statistically indistinguishable results from
our preferred specification (.0234, p = .018). Our age and gender specification leads to slightly

58Because the estimated magnitudes are lower bounds, we do not focus our discussion on their absolute magni-
tudes. But the interpretation is straightforward: the estimated magnitude of 0.0286 implies that E [PZ |PZ ≥ p]
differs from p by 0.0286 on average, which implies that, on average, the average predicted probability of a loss
(given Z) for worse risks differs from ones’ own risk by 2.86pp.
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higher estimated magnitudes for the rejectees of 0.0737, but not significantly different from our
price controls specification.

To the best of our knowledge, these estimates provide the first evidence of private information
in the non-group private disability insurance market. Although many factors could be driving
this market’s small size (only 3% of private employees own a non-group private disability policy
(ACLI [2010])), private information may be a contributing factor.

Life In life, we find significant evidence of private information amongst the rejectees with
magnitudes of 0.0587 (p < 0.001) in our preferred specification. The magnitudes are quite
similar with the extended controls (0.0604, p < 0.001). In contrast, we find smaller magnitudes
for the non-rejectees (0.0250, p = 0.119) and cannot reject the null hypothesis of no private
information. Yet our point estimate of 0.025 remains similar to the statistically significant
estimate conditional on age and gender alone (0.0310, p = 0.01). So, we also cannot rule out
the presence of some private information for the non-rejectees.

Our finding of minimal evidence of private information for those served by the market is
consistent with existing empirical work in life insurance using the revealed preference approach
(Cawley and Philipson [1999], He [2009]). But, while Cawley and Philipson [1999] suggest their
results imply that there is no evidence of asymmetric information afflicts the life insurance
market, our results suggest much of agents’ private information is held by those who would be
rejected by insurance companies. So although private information may not significantly affect
the adverse selection of observed contracts, it may simply pose a barrier to the existence of the
market itself.

Uncertain Classification The estimated magnitudes for the uncertain classification generally
fall between the estimates for the rejection and no rejection groups, as indicated by the bottom
set of rows in Table 3. In general, our theory does not have a prediction for the uncertain group.
However, if E [mZ (PZ) |X] takes on similar values for all rejectees (e.g. E [mZ (PZ) |X] ≈ mR)
and non-rejectees (e.g. E [mZ (PZ) |X] ≈ mNR), then linearity of the expectation implies

E
[
mZ (PZ) |X ∈ ΘUncertain] = λmR + (1− λ)mNR (9)

where λ is the fraction in the uncertain group who would be rejected. Thus, it is perhaps
not unreasonable to have expected E

[
mZ (PZ) |X ∈ ΘUncertain] to lie in between our estimates

for the rejectees and non-rejectees, as we find. Nevertheless, we have no theoretical reason to
suppose the average magnitude of private information is constant within rejection classification;
thus this should be viewed only as a potential method for interpreting the results, not as a
robust prediction of the theory.
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6.5 Subsample Analysis

The results in Table 4 aggregate across all observables, X, within each rejection classification.
While this aggregation improves statistical power, it is important to also examine the results
within subgroups to test whether the rejectees have higher magnitudes of private information
conditional on observable variables.59 In this section, we examine age-based subgroups.

Figures 3(a,bi,bii,c) plot the estimates of E
[
mZ (PZ) |X ∈ Θage,rejectclass

]
separately for each

age and rejection classification.60 In all three settings, we find larger estimates for the rejectees
versus non-rejectees conditional on age.

In long-term care, we can also more closely examine the specific rejection practices based on
age. LTC insurers reject applicants above age 80 regardless of health conditions (such as ADL
restrictions or a past stroke). Figure 3a plots the lower bound estimates at each age, separately
reporting estimates for those with and without rejection health conditions above age 80. The
results show that the estimates for those without rejection conditions increases at ages nearing
80. Indeed, an individual at age 81 with no other rejection conditions (but who would be rejected
based on age) has a very similar magnitude of private information to a 65 year old who would
be rejected. In short, the results provide a picture of why insurance companies automatically
reject individuals beginning at age 80 as opposed to other age cutoffs.

In life (Figure 3c), we find larger estimates for the rejectees across the age spectrum. For
disability, we also generally find larger estimates (Figures 3bi and 3bii), although the difference
between the reject and no reject estimates appears to be increasing in age.61 In short, we find
larger estimates for rejectees conditional on age.

6.6 Robustness

6.6.1 Insurance Ownership Sample Selection

Our primary results in Table 4 do not exclude individuals who own insurance. If insurance
choice affects the risk of experiencing the loss, then differential insurance ownership could cause
a finding of private information. We test the robustness of our results to this potential bias by

59In addition to analyzing subgroups as a finer test of the theory, one might also worry that aggregation masks
other potential drivers of the magnitude of private information aside from the presence of rejection conditions.
In particular, the rejectees are generally older than the non-rejectees. If older people naturally, for some reason,
have more private information, irrespective of whether or not they would be rejected, then we would estimate
∆Z > 0 in aggregate, even though it may not be the case that ∆Z > 0 conditional on age.

60We use our preferred specification, which is quite flexible in age and allows Γ to vary with age. Figures
3(a,bi,bii,c) provide bootstrapped standard errors, which are consistent as long as Γ 6= 0. In general, we cannot
reject the null hypothesis that Γ = 0 on a subsample consisting of one specific age, but our results in Table 4 do
reject Γ = 0 at all ages for all but the LTC and life no reject samples.

61We present separate results for males and females in Figures 3bi and 3bii because of the changing gender
composition of the sample over time. Individuals below age 55 are included in the HRS only if they have a spouse
above age 55. Thus, we have relatively more females below age 55. But, as shown in these figures, we generally
find larger estimates for rejectees conditional on age and gender. We have also examined LTC and Life by age &
gender and the results again show larger magnitudes for the rejectees conditional on age and gender.
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restricting to those who do not own insurance in our LTC and Life samples. Table 5 presents
these results.

For LTC, our estimates of ∆Z with the restricted sample are almost identical to the preferred
specification estimates (0.0245 versus 0.0257). Across each group (reject, no reject uncertain),
our estimated results for E [mZ (PZ) |X ∈ Θ] excluding those who own insurance are also nearly
identical. In particular, we still cannot reject the null hypothesis of no private information for
the non-rejectees (p = 0.828).

For Life, our estimate of ∆Z with the restricted sample is smaller (0.011 versus 0.0328),
and no longer statistically significant. But closer inspection reveals that the drop in magnitude
is primarily driven by a larger, yet still statistically insignificant estimate for the non-rejectees
(0.0377, p = 0.233).62 For the rejectees, the estimates lie within an estimated standard error of
our preferred estimate, 0.0491 versus 0.0587, when we exclude those who own insurance. Thus
in both LTC and life, we find our results are robust to the inclusion of those with insurance.

6.6.2 Organ Controls for Life Specification

Our specifications for life insurance did not include controls for the affected organ of cancer
sufferers in the reject sample. Although later years of the survey do not specify the organ of
the cancer, it is provided in the 1993/4 wave of the survey. In Table 6, we report the results
from our primary specification (all years) and the results from a specification restricted to years
1993/1994 which includes a full set of 54 indicators for the affected organ added to our set of
extended controls. Our finding of significant private information amongst rejectees is robust
to including these additional controls. We estimate a value for E

[
mZ (PZ) |X ∈ ΘReject

]
of

0.0308 (p = .018) including these controls, as compared to 0.0338 (p < 0.001) for our primary
specification.

6.7 Summary

We estimate significantly larger lower bounds for the average magnitude of private information
for the rejectees versus non-rejectees. Our estimates are robust to a wide set of controls for
public information, are robust to excluding those who own insurance in LTC and life, and are
also consistent within age-based subsamples. Consistent with the theory in Section (2), our
results suggest private information imposes a greater barrier to trade for the rejectees.

7 Estimation of Distribution of Private Information

While the lower bound approach provides evidence that private information imposes larger
barriers to trade for the rejectees, it suffers several limitations. First, we made comparisons

62This is consistent with the much smaller sample size leading to a greater (spurious) predictive power of the
subjective probabilities
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using lower bounds, not the levels of E [m (P ) |X ∈ Θ]. Second, we made comparisons using the
average magnitude of private information, E [m (P ) |X], not m (p) ∀p or inf T (p) as suggested
by Corollaries 3 and 4. Third, we could not quantify the minimum pooled price ratio.

To overcome these limitations, we introduce additional structure to the statistical relation-
ship between elicitations and beliefs, as outlined in Section 4.2.

7.1 Empirical Specification

7.1.1 Elicitation Error Structure

Elicitations Z may differ from true beliefs P in many ways. They may be systematically biased,
with values either higher or lower than true beliefs. They may be noisy, so that two individuals
with the same beliefs may have different elicitations. Moreover, as shown in Figures 1(a,b,c) and
recognized in previous literature (e.g. Gan et al. [2005]) people may have a tendency to report
focal point values at 0, 50, and 100%.

Our model of elicitations will capture these three forms of elicitation error. To do so, we
assume that the elicitation Z is drawn from a mixture of a censored normal and an ordered
probit distribution. With probability 1−λ, agents with belief P report Z from a censored normal
distribution (censored on [0, 1]) with mean P + α (X) and variance σ2.63 With probability λ,
agents report Z ∈ {0, .5, 1} according to an ordered probit with mean P + α (X), variance σ2,
and ordered probit cutoffs of κ and 1−κ, where κ ∈ [0, .5]. The ordered probit allows a fraction
λ of agents to report their beliefs not on a scale of 0-100%, but rather on a scale of "low, medium,
and high", corresponding to elicitations of 0%, 50%, and 100%. Letting f (Z|P,X) denote the
p.d.f./p.m.f. of the distribution of elicitations, we have

f (Z|P,X) =



(1− λ) Φ
(
−P−α(X)

σ

)
+ λΦ

(
κ−P−α(X)

σ

)
if Z = 0

λ
(

Φ
(

1−κ−P−α(X)
σ

)
− Φ

(
κ−P−α(X)

σ

))
if Z = 0.5

(1− λ) Φ
(

1−P−α(X)
σ

)
+ λ

(
1− Φ

(
1−κ−P−α(X)

σ

))
if Z = 1

1
σφ
(
Z−P−α(X)

σ

)
if o.w.

where φ denotes the standard normal p.d.f. and Φ the standard normal c.d.f. We estimate four
elicitation error parameters: (σ, λ, κ, α (X)). σ captures the dispersion in the elicitation error, λ
is the fraction of focal point respondents, κ is the focal point window. We allow the elicitation
bias term, α (X), to vary with the observable variables, X.64 Throughout this section we use
our preferred pricing controls.

By modeling focal point responses as an independent ordered probit, we are assuming that
63In Appendix B.2.2, we provide Monte Carlo evidence that our estimation of the distribution of private

information, F (p), is reasonably robust to relaxing normality by introducing skewness and kurtosis.
64This allows elicitations to be biased, conditional on X; but we maintain the assumption that true beliefs are

unbiased.
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those who respond with focal point responses at 0, 50%, and 100% are drawn from the same
distribution for P as those who report non-focal point values. Ideally, one would allow this
distribution to differ; yet the focal point bias inherently limits the extent of information that
can be extracted from their responses. In practice, this independence assumption means that
most of our identification for the distribution of P will come from those reporting non-focal
point values.

7.1.2 Flexible Approximation for the Distribution of Private Information

Although we impose a restrictive parametric structure on the distribution of elicitations given
beliefs, we will flexibly estimate the distribution of private information.

Ideally, we would flexibly estimate F (p|X) separately for every possible value of X. Un-
fortunately, the dimensionality of X prevents this in practice. Instead, we adopt an index
assumption:

F (p|X) = F̃ (p|Pr {L|X}) (10)

where we assume F̃ (p|q) is continuous in q. This assumes that the distribution of private infor-
mation is the same for two segments, X and X ′, that have the same observable loss probability,
Pr {L|X} = Pr {L|X ′}. We will refer to q as an index. This assumption provides empirical
tractability while still allowing the shape of F to vary with observables. Also, recall we con-
duct estimation separately for the rejectees and non-rejectees, so that we only impose the index
assumption conditional on rejection classification.

We approximate F̃ (p|q) for q = Pr {L|X} using mixtures of beta distributions,

F̃ (p|q) = ΣiηiBeta (µi (q) , ψi)

where ηi is the weight on each beta distribution, µi (q) is the mean of the ith beta distribution
at q, and ψi is the shape parameter of the ith beta distribution.65 We allow the shape parameter
to vary for each beta distribution and we allow the mean of each beta distribution to vary as a
linear function of q, µi (q) = µ0

i + µ1
i q. Consistent beliefs (Assumption 1) imposes the restric-

tion Σiηiµi (q) = q which provide constraints on
{
µ0
i , µ

1
i

}
, reducing the number of estimated

parameters.
Beta distributions are quite flexible and well-suited for approximating arbitrary distributions.

In practice, they fit our data quite well with a small mixture; we use two beta distributions for
our preferred results in all settings except the no reject sample for LTC where we include an

65The p.d.f. of a beta distribution with parameters α and β is given by

beta (x;α, β) =
1

B(α, β)
xα−1xβ−1

The mean of a beta distribution with parameters α and β is given by µ = α
α+β

and the shape parameter is given
by ψ = α+ β.
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additional term to capture a point-mass at q.66 All of our results are robust to including a 3rd
beta distribution.

Bootstrap delivers consistent standard errors provided the true distribution, F̃ (p|q), is con-
tinuous. This assumption is violated in the event of no private information (in which case
F̃ (p|q) = 1 {p ≤ q} for all p, q). However, the Wald tests for the presence of private information
(constructed using our lower bound approach) provide a simple test of this event.67

7.1.3 Pooled Price Ratio (and its Minimum)

In principle, we can construct an estimate of the minimum pooled price ratio for any value
of X; given our index assumption, this amounts to constructing the pooled price ratio for
various values of the index q. We will often focus on results for the mean loss conditional
on rejection classification, q = Pr {L|X ∈ Θ]}, as these estimates are based on the most in-
sample information. But, we also present results for the 20th, 50th, and 80th percentiles of the
distribution of q within each sample. This allows us to assess the minimum pooled price ratio
varies with observables, X, within each sample.

As described in Section 4.2, we estimate the analogue to the minimum pooled price ratio,
infp∈Ψ̂τ

T (p) for Ψ̂τ =
[
0, F−1 (τ)

]
. Our preferred choice for τ is 0.8, as this ensures at least 20%

of the sample (conditional on q) is used to estimate E [P |P ≥ p] and produces estimates that
are quite robust to changes in the number of approximating beta distributions. For robustness,
we also present results for τ = 0.7 and τ = 0.9 along with plots of the pooled price ratio for
all p below the estimated 90th quantile, F−1 (0.9). We construct 5/95% confidence intervals for
infp∈Ψ̂τ

T (p) by combining bootstrapped confidence intervals and extending the 5% boundary
to 1 in the event that we cannot reject a null hypothesis of no private information.

66Although the beta distributions can theoretically approximate uninformed (point-mass) distributions quite
well, convergence is slow in practice. We speed up our estimation for the no reject sample for LTC by mixing a
truncated normal distribution which converts to a point mass distribution for a variance below 0.000025. This
allows the estimation to more easily capture uninformed distributions. Including this point mass term in the other
samples does not affect our results.

67Notice that F (p|q) = 1 {p ≤ q} for all p and q if and only if Pr {L|X,Z} = Pr {L|X} for all X, so that
our Wald test for the latter equality (from our lower bound approach) continues to provide a valid test for the
presence of private information in our semiparametric approach. One could also construct a test for no private
information for various sets of q values, however this suffers problems of limited power (and potential multiple
testing issues), so we choose to focus on one aggregate test for the presence of private information in each rejection
classification. In principle, imposing our restrictions on fZ|P (Z|P ) could produce a more powerful test for the
presence of private information. However, such a test faces technical hurdles since it involves testing whether
F (p|q) lies along a boundary of the set of possible distributions and must account for sample clustering (which
makes a likelihood ratio test inappropriate). Andrews [2001] provides a potential method for constructing an
appropriate test, but we leave this for future work.
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7.2 Estimation Results

7.2.1 Graphs of the Distribution of Private Information

Qualitatively, no trade requires the existence of a “thick upper tail” of high risks who prevent
the provision of insurance to lesser risks. We now assess this prediction. Figure 4(a,b,c) and
Figure 5(a,b,c) present the estimated p.d.f.s and c.d.f.s of private information F̃ (p|q), plotted
for the index equal to the mean loss in each sample, q = Pr {L|X ∈ Θ}.68 In all three market
settings, we find evidence of this pronounced upper tail for the rejectees. In contrast, we do not
find such a significant upper tail for the non-rejectees.

For the LTC non-rejectees, we estimate a relatively condensed distribution around the mean
probability of a loss of approximately 0.04 (as indicated in Figure 4a), consistent with our
results from the lower bound test of no significant evidence of private information. However,
for the rejectees, Figure 5a shows a more dispersed distribution and illustrates the presence of
a relatively thick upper tail for the rejectees: 10% of the distribution lies above 0.3.

For Disability, we estimate a fairly dispersed distribution for the rejectees, along with a thick
upper tail of risks: roughly 40% of the distribution is scattered between 0.4 and 1. In contrast,
we find a smaller upper tail for the non-rejectees with 10% of the distribution above 0.3 and
minimal mass above 0.7.

For Life, we estimate a fairly dispersed distribution for the rejectees, along with an upper
tail of risks: we find significant mass ranging from 0.2 to 1. In contrast, for the non-rejectees
we find a smaller upper tail of risks. Overall, these results are consistent with the qualitative
prediction of the theory that rejectees have a thicker upper tail of risks than non-rejectees.

7.2.2 Minimum Pooled Price Ratio

We now turn to our quantitative estimates of the minimum pooled price ratio. Table 7 presents
the estimates of the minimum pooled price ratio evaluated at several values of the index, q: the
sample mean (q = Pr {L|X ∈ Θ}), the 20th, 50th, and 80th quantiles of the distribution of q
within each sample. We let τ = 0.8 and assess robustness to this choice in Table 8, discussed
below.

LTC For the rejectees, the pooled price ratio reaches a minimum of 1.715 (5/95% CI of
[1.575,1.779]) at the mean value of the index, q = 0.175, as reported in Table 7. This implies pri-
vate information imposes an implicit tax of 71.5%. The estimates are similar for rejectees with
other values of the index, q, ranging from 1.681 to 1.730. Together, the results are consistent
with Corollary 2 provided the rejectees are unwilling to pay a 70% tax for insurance.

Our empirical approach does not attempt to estimate willingness-to-pay directly. To help
understand whether it is reasonable to expect individuals to be unwilling to pay a 70% tax for

68The results are similar for other values of the index, such as the 20th, 50th, and 80th quantiles of q.
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insurance, Table 9 presents calibrated values of u
′(w−l)
u′(w) −1 for values of the coefficient of relative

risk aversion (henceforth CRRA) of 1, 2 or 3, and the size of the uninsured drop in consumption
of 10%, 15%, and 20%.69 For example, if CRRA is 2 and the nursing home entry is equivalent to
a drop in consumption of 15%, then agents are would be willing to pay a 38.4% tax on insurance,
much less than the needed 68-72% tax to sustain trade occording to our estimates.70

For those served by the market, we cannot reject the null hypothesis of no private information,
F̃ (p|q) = 1 {p ≤ q} ∀q. We estimate a minimum pooled price ratio of 1.206 (5/95% CI of [1.00-
1.484]) at the mean value of the index q (q = 0.175); estimates range from 1.337 to 1.147 as we
vary the index between the 20th and 80th percentile of its distribution (q = 0.017 to q = 0.057).
Our point estimates are consistent with the presence of trade as long as non-rejectees are willing
to pay a 14-34% implicit tax.71 Thus, a willingness-to-pay of 38.4% generated by our example
above (with CRRA of 2 and a 15% consumption drop) would be sufficient to sustain trade.

Finally, the bottom rows of Table 7 report the estimated difference between the pooled price
ratio for the rejectees relative to the non-rejectees, suggesting we can reject a null hypothesis of
smaller minimum pooled price ratios for the rejectees relative to the non-rejectees.72

Disability For the rejectees, we estimate a minimum pooled price ratio of 1.954 (5/95% CI
of [1.884,2.032]) at the mean index (q = 0.441), which implies a tax rate equivalence of 95.4%.
The estimates are similar at the 20th and 50th quantile of q (1.900 and 1.937), and higher at the
80th quantile (2.282) of the index. Our estimates are fairly precise, with the 5/95% confidence
intervals generally yielding a range of 0.1-0.2. The results are consistent with Corollary 2 pro-
vided the rejectees are unwilling to pay a 90-130% tax for insurance. We find these magnitudes
to be quite large; indeed, if CRRA is 3 and disability leads to a 15% consumption drop, then
the stylized calculation suggests individuals would be willing to pay a 62.8% tax for insurance,
which would be insufficient to sustain trade amongst the rejectees.

For the non-rejectees, we estimate a minimum pooled price ratio of 1.611 (5/95% CI of
[1.272,2.391]), implying that the barrier to trade faced by a person with an average observable
loss probability among the rejectees is equivalent to a 61% tax on insurance premiums. This
ranges from 1.703 to 1.572 as we vary the index q from its 20th to 80th quantile of its distribution

69These calculations are of course highly stylized since we do not estimate the CRRA nor do we take a stand
on the consumption impact on the losses we study–indeed, the factors determining willingness-to-pay in these
settings may be quite complicated. We only provide these numbers to aid in interpreting the magnitude of the
results.

70Our results are also consistent with existing estimates of willingness to pay for LTC insurance provided in
Brown and Finkelstein [2008] whose calibrated model suggests individuals are willing to pay roughly a 27-62%
tax for existing LTC insurance policies (these numbers are not provided directly, but can be inferred from Figure
1 and Table 2. Figure 2 suggests the break-even point for insurance purchase is at the 60-70th percentile of the
wealth distribution. Table 2 shows this corresponds to individuals being willing to pay a tax of 27-62%).

71Note that our inability to reject a tax rate of 0% at the 5% level suggests our results are consistent with the
presence of trade for any loss size or risk aversion parameter.

72These comparisons are conditional on a given value of the percentile of q; although not reported, results are
similar for other comparisons (e.g. 80th percentile of q for the rejectees compared to the 20th percentile of q for
the non-rejectees).
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(q = 0.109 to q = 0.197). This suggests individuals must be willing to pay a 55-70% tax
on insurance premiums in order to facilitate trade in this market. Thus, our results suggest
an economically significant amount of private information in the private disability insurance
market, even for those served by the market. The fact that the market exists despite this
private information suggests a significant demand for insurance against becoming disabled.73

Using the calibration in Table 9, this suggests that risk aversion must be above 3 if the loss size
is 15% or above 2 if the loss size is 20%. However, we should note that the estimates are fairly
imprecise for the non-rejectees–they include a 25% tax rate equivalence at the lower end of the
5/95% confidence interval.

Finally, the estimated differences between the rejectees and non-rejectees are all positive, yet
statistically insignificantly different from zero, arguably a result of the imprecise estimation for
the non-rejectees.

Life For the rejectees, we estimate a minimum pooled price ratio of 1.727 (5/95% CI of
[1.527,2.193]) at the mean index, q = 0.572, indicating a tax rate equivalence of 72.7%. The
estimates for other values of the index range from 1.642 at the 20th quantile of q (q = 0.572) to
2.269 at the 80th quantile of q (q = 0.791). The results are consistent with Corollary 2 as long
as the rejectees are unwilling to pay a 65-130% tax for insurance.74

For those served by the market, we cannot reject the null hypothesis of no private information,
as in LTC. We estimate a minimum pooled price ratio of 1.361 (5/95% CI of [1.00,1.421]), which
implies a tax rate of 36.1% for a rejectee with an average observable loss probability. Our
estimates for other values of the index, q, range from 1.640 at the 20th quantile (q = 0.273) to
1.345 at the 80th quantile (q = 0.458). Although some of these point estimates are large, we
cannot reject the null hypothesis of a zero tax rate faced by the non-rejectees. The estimated
differences between the rejectees and non-rejectees are generally significant at the 5% level, aside
from the comparisons involving the point estimate of 1.640 for the 20th percentile of the index
for the non-rejectees.

Choice of τ Table 8 presents results for τ = 0.7, 0.8, 0.9 in each sample using the mean index
value, q, in each sample.. Also, Figures 6a,b,c graph the estimated pooled price ratios, T (p),
for values of p less than the estimated 90th quantile of the distribution of private information
for the mean value of the index, q, in each sample.

For LTC, the minimum of the pooled price ratio occurs at an interior point of the distribution,
73Although welfare and government policy is beyond the scope of this paper, our findings of significant amounts

of private information in the private disability market are perhaps suggestive of a rationale for government
disability insurance programs such as SSDI.

74The mapping to a willingness to pay in terms of CRRA preferences and a consumption drop is a bit more
abstract and perhaps less useful in our life insurance setting; but if death is equivalent to a 15% consumption drop
and CRRA is 3, then individuals would be willing to pay a 62.8% tax, insufficient to sustain trade and consistent
with Corollary 2.
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both for the rejectees and non-rejectees. Thus, our results are not sensitive to the choice of τ
(in the range where τ ≤ 0.9) For disability, the minimum of the pooled price ratio occurs at an
interior point for the non-rejectees, but is on the boundary for the rejectees, so the minimum
pooled price ratio for the rejectees drops as we increase τ , as reported in Table 8 and shown in
Figure 6b. Although the estimates for the rejectees fall to 1.727 for τ = 0.9 and rise to 2.350 for
τ =0.7, they remain quite large across these choices of τ . For life, the minimum of the pooled
price ratio lies at the boundary for both the rejectees and non-rejectees. For the rejectees, the
minimum pooled price ratio falls from 1.727 to 1.572 at τ = 0.9 and rises to 1.865 at τ = 0.7. For
the non-rejectees, our estimates rise to 1.444 at τ = 0.7 and fall to 1.281 at τ = 0.9. As indicated
by the bottom rows of Table 8, we can still reject the null hypothesis of a lower minimum pooled
price ratio for rejectees relative to non-rejectees at each value of τ .

In short, the values of the minimum pooled price ratio and the comparisons between rejectees
and non-rejectees are quite robust to the choice of τ .

7.2.3 Results for Elicitation Error Distribution

Table 10 presents our estimated results for the elicitation error distribution. In general, we
find considerable support for the maintained hypothesis that subjective probabilities are only
imperfect measures of agents beliefs. Estimates of the standard deviation of the elicitation
error are primarily around 0.3-0.4, with the exception of an estimate of 0.1 for the non-rejectees
in disability. Also, we estimate a sizable fraction of focal point respondents in each sample
(35-50%).75

7.2.4 Annuities

Finally, we consider one additional test of our theory that private information leads to insurance
rejections. There are no rejections in annuity markets. At first glance, it may seem odd that we
find evidence of private information about mortality that, we argue, leads to rejections in life
insurance. Yet annuities, which provide a fixed income stream regardless of one’s length of life,
insure the same (yet opposing) risk of living too long.

Our estimated distribution of private information about mortality reveals that, although
some agents know that they have a relatively higher than average mortality risk, few agents
know that they have an exceptionally lower than average mortality risk. As shown in Figure 4c,
there are relatively few people, rejected or otherwise, with probabilities below the large mass

75We omit a discussion of bias and the focal point window. We do find significant evidence of bias, α (X),
which varies with X. The mean bias by sample is already given by the difference of the first two rows of Table
3. Also, as shown in Table 10, we estimate focal windows around 0.2 in LTC (both rejectees and non-rejectees)
and the non-rejectees in Life. This suggests focal responses of 0 correspond to non-focal response ranges of
[0, 0.2], responses of 50 correspond to non-focal responses of [0.2, 0.8] and responses of 1 correspond to non-focal
responses of [0.8, 1]. For rejectees in life and for both rejectees and non-rejectees in disability, we find estimates
of the focal window close to zero. Estimates of a focal window of 0 have the simple interpretation that the focal
point responders report 50% regardless of their private information.
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around 0.15-0.2. Repeating our estimation of the pooled price ratio for 1 − P (probability of
living 10-15 years), Table 11 reports a minimum of 1.177 for the life non-rejectees sample (for
τ = 0.8 and mean index q), which occurs around 0.2. As long as individuals are willing to pay a
18% tax for an annuity, our results are consistent with the presence of trade in annuity markets
(indeed, we cannot reject the null hypothesis of a zero tax). Because there are few people with
rejection conditions that have probabilities below 0.2, providing an annuity to the relatively
healthy with probabilities around 0.2 does not require preventing the sick from being able to
purchase it. By reversing the direction of the incentive constraints, rejections no longer occur.

8 Conclusion

This paper finds evidence consistent with the hypothesis that private information leads insurance
companies to choose to not sell insurance to a subset of the population. We provide a new “no-
trade” theorem which shows why insurance companies may choose to not offer insurance at any
price acceptable to anyone in the market. We use the model to develop metrics to measure the
barrier to trade imposed by private information. And, we develop a new empirical methodology
to study private information which allows us to test whether a) those who would be rejected have
larger barriers to trade imposed by private information and b) whether this barrier, measured as
an implicit tax rate on insurance premiums, is sufficiently large to explain an absence of trade.
We apply our approach to three markets: long-term care, disability, and life insurance, each of
which have segments to whom insurance companies choose to not offer insurance. Across all
of our settings, we find evidence of more private information for the rejectees, and we find its
magnitude large enough to plausibly explain an absence of trade. In short, our results suggest
that if insurance companies were to offer any contract or set of contracts to those currently
rejected, they would be too adversely selected to yield a positive profit.

Our finding of no significant amounts private information for those who are served by the
market in LTC and life is consistent with previous literature finding no evidence of adverse
selection in these markets Finkelstein and McGarry [2006]; Cawley and Philipson [1999]). But
our results suggest a new interpretation of the role of private information in insurance markets.
The most salient impact of private information may not be the adverse selection of existing
contracts, but rather the existence of the market itself.
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A Theory Appendix

A.1 Proof of No-Trade Theorem

We prove the no-trade theorem in several steps. First, we translate the problem to a maximization
problem in utility space. Second, we prove the converse of the theorem directly by constructing an
implementable allocation other than the endowment when Condition 1 does not hold. Third, we prove the
no trade theorem for a finite type distribution. Fourth, we show finite type distributions can approximate
solutions to arbitrary distributions, proving the no trade theorem for a general type distribution.

Most of these steps are straightforward. In our opinion, the key theoretical contribution comes in step
3 (Lemma (A.5)), where we show that Condition 1 implies that a separating allocation cannot improve
over a full pooling allocation. Indeed, the ability for insurance companies to offer separating contracts is
an important ingredient in previous models of this environment (Spence, 1979; Riley, 1979; Chade and
Schlee, 2011).

A.1.1 Utility Space

First, we translate the problem to utility space. With this translation, the incentive and individual ratio-
nality constraints are linear in utility. Let c (u) = u−1 (u) denote the inverse of the utility function u (c),
which is strictly increasing, continuously differentiable, and strictly convex. We denote the endowment
allocation by E = {(cL (p) , cNL (p))}p = {(w − l, l)}p. Let us denote the endowment allocation in utility
space by EU = {u (w − l) , u (w)}p. For allocations in utility space, we normalize uNL (1) = u (w).

Given a utility allocation AU = {uL (p) , uNL (p)}p∈Ψ, let us denote the slack in the resource constraint
by

Π
(
AU
)

=

ˆ
[w − pl − pc (uL (p))− (1− p) cNL (p)] dF (p)

We begin with a useful lemma that allows us to characterize when the endowment is the only imple-
mentable allocation.
Lemma A.1 (Characterization). The endowment is the only implementable allocation if and only if EU

is the unique solution to the following constrained maximization program, P1

P1 : max
{uL(p),uNL(p)}p

ˆ
[w − pl − pc (uL (p))− (1− p) c (uNL (p))] dF (p)

s.t. puL (p) + (1− p)uNL (p) ≥ puL (p̂) + (1− p)uL (p̂) ∀p, p̂ ∈ Ψ

puL (p) + (1− p)uNL (p) ≥ pu (w − l) + (1− p)u (w) ∀p ∈ Ψ

Proof. Note that the constraint set is linear and the objective function is strictly concave. The first
constraint is the incentive constraint in utility space. The second constraint is the individual ra-
tionality constraint in utility space. The linearity of the constraints combined with strict concav-
ity of the objective function guarantees that the solutions are unique. Suppose that the endowment
is the only implementable allocation and suppose, for contradiction, that the solution to the above
program is not the endowment. Then, there exists an allocation AU = {uL (p) , uNL (p)} such that´

[w − pl − pc (uL (p))− (1− p) c (uNL (p))] dF (p) > 0 which also satisfies the IC and IR constraints.
Therefore, AU is implementable, which yields a contradiction.
Conversely, suppose that there exists an implementable allocation B such that B 6= E. Let BU denote
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the associated utility allocations to the consumption allocations in B. Then, BU satisfies the incentive
and individual rationality constraints. Since the constraints are linear, we know that the allocations
CU (t) = tBU + (1− t)EU lie in the constraint set. By strict concavity of the objective function,
Π
(
CU (t)

)
> 0 for all t ∈ (0, 1). Since Π

(
EU
)

= 0, EU cannot be the solution to the constrained
maximization program.

The lemma allows us to focus our attention on solutions to P1, a simple concave maximization
program with linear constraints.

A.1.2 Converse

We begin the proof with the converse portion of the theorem: if the no-trade condition does not hold,
then there exists an implementable allocation A 6= E which does not utilize all resources and provides a
strict utility improvement to a positive measure of types.
Lemma A.2 (Converse). Suppose Condition 1 does not hold so that there exists p̂ ∈ Ψ\ {1} such that
p̂

1−p̂
u′(w−l)
u′(w) > E[P |P≥p̂]

1−E[P |P≥p̂] . Then, there exists an allocation ÂU = {(ûL (p) , ûNL (p))}p and a positive

measure of types, Ψ̂ ⊂ Ψ, such that

pûAL (p) + (1− p) ûNL (p) > pu (w − l) + (1− p)u (w) ∀p ∈ Ψ̂

and ˆ
[W − pL− pc (ûL (p))− (1− p) c (ûNL (p))] dF (p)

Proof. The proof follows by constructing an allocation which is preferable to all types p ≥ p̂ and showing
that the violation of Condition 1 at p̂ ensures its profitability. Given p̂ ∈ Ψ, either P = p̂ occurs with
positive probability, or any open set containing p̂ has positive probability. In the case that p̂ occurs
with positive probability, let Ψ̂ = {p̂}. In the latter case, note that the function E [P |P ≥ p] is locally
continuous in p at p̂ so that WLOG the no-trade condition does not hold for a positive mass of types.
WLOG, we assume p̂ has been chosen so that there exists a positive mass of types Ψ̂ such that p ∈ Ψ̂

implies p ≥ p̂. Then, for all p ∈ Ψ̂, we have Ψ̂ ⊂ Ψ such that

p

1− p
u′ (w − l)
u′ (w)

>
E [P |P ≥ p]

1− E [P |P ≥ p]
∀p ∈ Ψ̂

Now, for ε, η > 0, consider the augmented allocation to types p ∈ Ψ̂:

uL (ε, η) = u (w − l) + ε+ η

uNL (ε, η) = u (w)− 1− p̂
p̂

ε

Note that if η = 0, ε traces out the indifference curve of individual p̂. Construct the utility allocation
AU (ε, η) defined by

(ûL (p) , ûNL (p)) =

{ (
u (w − l) + ε+ η, u (w)− p̂

1−p̂ε
)

if p ≥ p̂
(u (w − l) , u (w)) if p < p̂
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Note that for ε > 0 and η > 0 the utility allocation (ûL (p) , ûNL (p)) is strictly preferred by all types
p ≥ p̂ relative to the endowment utility allocation. Therefore, AUε is individually rational and incentive
compatible. We now only need to verify that there exists an allocation with ε > 0 and η > 0 which does
not exhaust resources. We have

Π (ε, η) =

ˆ
[w − pl − pc (ûL (p))− (1− p) c (ûNL (p))] dF (p)

Notice that this is continuously differentiable in ε and η. Differentiating with respect to ε and evaluating
at ε = 0 yields

∂Π

∂ε
|ε=0 =

ˆ [
−pc′ (u (w − l + η)) +

p̂

1− p̂
(1− p) c′ (u (w))

]
1 {p ≥ p̂} dF (p)

which is strictly positive if and only if

E [P |P ≥ p̂] c′ (u (w − l + η)) <
p̂

1− p̂
(1− E [P |P ≥ p̂]) c′ (u (w))

Notice that this is continuous in η. So, at η = 0, we have

∂Π

∂ε
|ε=0,η=0 > 0 ⇐⇒ p̂

1− p̂
u′ (w − l)
u′ (w)

>
E [P |P ≥ p̂]

1− E [P |P ≥ p̂]

and thus by continuity, the above condition holds for sufficiently small η > 0, proving the existence of an
allocation which both delivers strictly positive utility for a positive fraction of types and does not exhaust
all resources.

This shows that Condition 1 is necessary for the endowment to be the only implementable allocation.

A.1.3 Lemmas

Here, we prove two useful lemmas. First, we show that if Condition 1 holds, then the MRS is bounded
by the pooled price ratio in the relevant quadrant of allocations.
Lemma A.3. Suppose Condition 1 holds. Then for all cL, cNL ∈ [w − l, l], we have

p

1− p
u′ (cL)

u′ (cNL)
≤ E [P |P ≥ p]

1− E [P |P ≥ p]
∀p ∈ Ψ\ {1}

and if cL, cNL ∈ (w − l, l), we have

p

1− p
u′ (cL)

u′ (cNL)
<

E [P |P ≥ p]
1− E [P |P ≥ p]

∀p ∈ Ψ\ {0, 1}

Proof. Since u′ (c) is decreasing in c, we have u′(cL)
u′(cNL) ≤

u′(w−l)
u′(w) . Therefore, the result follows immediately

from Condition 1. The strict inequality follows from strict concavity of u (c).

Lemma A.4. In any solution to P1, we have cL (p) ≥ w − l and cNL (p) ≤ w.
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Proof. Suppose A = {cL (p) , cNL (p)}p is a solution to P1. First, suppose that cL (p̂) < w − l. For
this contract to be individually rational, we must have cNL (p̂) > w. Incentive compatibility requires
cL (p) ≤ cL (p) < w − l ∀p < p̂ and cNL (p) ≥ cNL (p̂) > w ∀p < p̂. Consider the new allocation
Ã = {c̃L (p) , c̃NL (p)} defined by

c̃L (p) =

cL (p) if p > p̂

w − l if p ≤ p̂

c̃NL (p) =

cNL (p) if p > p̂

w if p ≤ p̂

Then Ã is implementable (IC holds because of single crossing of the utility function). It only remains
to show that Π (A) < Π

(
Ã
)
. But this follows trivially. Notice that the IR constraint and concavity of

the utility function requires that points (cL (p) , cNL (p)) lie above the zero profit line p (w − l − cL) +

(1− p) (w − cNL). Thus, each point (cL (p) , cNL (p)) must earn negative profits at each p ≤ p̂.
Now, suppose cNL (p̂) > w. Then, the incentive compatibility constraint requires cNL (p) > w ∀p ≤ p̂.

Construct Ã as above, yielding the same contradiction.

We now prove the theorem in two steps. First, we prove the result for a finite type distribution. We
then pass to the limit to cover the case of arbitrary distributions.

A.1.4 Finite Types

To begin, suppose that Ψ = {p1, ...pN}. We first show that condition 1 implies that the solution to P1 is
a pooling allocation which provides the same allocation to all types.
Lemma A.5. Suppose Ψ = {p1, ..., pN} and that condition 1 holds (note that this requires pN = 1). Then,
the solution to P1 is a full pooling allocation: there exists ūL, ūNL such that (uL (p) , uNL (p)) = (ūL, ūNL)

for all p ∈ Ψ\ {0, 1}, uL (1) = ūL, uNL (0) = ūNL.

Proof. Let AU = {u∗L (p) , u∗NL (p)}p denote the solution to P and suppose for contradiction that the solu-
tion to P is not a full pooling allocation. Let p̂ = min {p|u∗L (p) = u∗L (1)}, let p̂− = max {p|u∗L (p) 6= u∗L (1)}.
The assumption that Ψ is finite implies that p̂ > p̂−. Let us define the pooling sets J = {p|u∗L (p) = u∗L (1)}
and K = {p|u∗L (p) = u∗L (p̂−)}. We will show that a profitable deviation exists which pools groups J and
K into the same allocation. First, notice that if p̂ = 1, then clearly it is optimal to provide group J with
the same amount of consumption in the event of a loss as group K, since otherwise the IC constraint of
the type p̂ = 1 type would be slack. So, we need only consider the case p̂ < 1.

Notice that if the IR constraint of any member of group J binds (i.e. if the IR constraint for p̂ binds),
then their IC constraint implies that the only possible allocation for the lower risk types p < p̂ is the
endowment. This standard result follows from single crossing of the utility function. Therefore, we have
two cases. Either all types p̃ ∈ Ψ\J receive their endowment, (cL, cNL) = (w − l, w), or the IR constraint
cannot bind for any member of J . We consider these two cases in turn.

Suppose u∗L (p) = u (w − l) and u∗NL (p) = u (w) for all types p̃ ∈ Ψ\J . Clearly, we must then have
that the IR constraint must bind for type p̂, since otherwise profitability could be improved by lowering
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the utility provided to types p̃ ∈ Ψ\J . We now show that the profitability of the allocation violates the
no-trade condition. The profitability of AU is

Π
(
AU
)

=

ˆ
p∈J

[w − pl − pc (u∗L (p̂))− (1− p) c (u∗NL (p̂))] dF (p)

Now, we construct the utility allocation AUt by

(
utL (p) , utNL (p)

)
=


(
u (w − l) + t, u (w)− p̂

1−p̂ t
)

if p ∈ J

(u (w − l) , u (w)) if p 66∈ J

Since the IR constraint binds for type p̂, we know that there exists t̂ such that AU
t̂

= AU . By Lemma
A.4, t̂ > 0 and AUt satisfies IC and IR for any t ∈

[
0, t̂+ η

]
for some η > 0. Since profits are maximized

at t = t̂ and since the objective function is strictly concave, it must be the case that

dΠ
(
AUt
)

dt
|t=t̂ = 0

where
dΠ
(
AUt
)

dt
|t=t̂ =

ˆ
p∈J

[
pc′ (u∗L (p))− (1− p) c′ (u∗NL (p))

p̂

1− p̂

]
dF (p)

Re-arranging and combining these two equations, we have

p̂

1− p̂
u′ (c (u∗L (p̂)))

u′ (c (u∗NL (p̂)))
=

E [P |P ≥ p̂]
1− E [P |P ≥ p̂]

which, by strict concavity of u, implies

p̂

1− p̂
u′ (w − l)
u′ (w)

>
E [P |P ≥ p̂]

1− E [P |P ≥ p̂]

which contradicts Condition 1.
Now, suppose that the IR constraint does not bind for any member of J . Then, clearly the IC

constraint for type p̂ must bind, otherwise profit could be increased by lowering the utility provided to
members of J . So, construct the utility allocation BUε to be

(uεL (p) , uεNL (p)) =

{ (
u∗L (p̂)− ε, u∗NL (p̂) + p̂

1−p̂ε
)

if p ≥ p̂
(u∗L (p) , u∗NL (p)) if p < p̂

so that BUε consists of allocations equivalent to AU except for p ∈ J . By construction, BUε , is IR for any
ε. Moreover, because of single crossing and because types are separated (finite types), BUε continues to

be IC and IR for ε ∈ (−η, η) for some η > 0 sufficiently small. Therefore, we must have
dΠ(BU

ε )
dε |ε=0 = 0,
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which implies

dΠ
(
BUε
)

dε
|ε=0 =

ˆ
p∈J

[
pc′ (u∗L (p̂))− (1− p) c′ (u∗NL (p̂))

p̂

1− p̂

]
dF (p)

= Pr {p ∈ J}
[
E [P |P ≥ p̂] 1

u′ (c (u∗L (p̂)))
− (1− E [P |P ≥ p̂]) 1

u′ (c (u∗NL (p̂)))

p̂

1− p̂

]
= Pr {p ∈ J} (1− E [P |P ≥ p̂])

u′ (c (u∗L (p̂)))

[
E [P |P ≥ p̂]

(1− E [P |P ≥ p̂])
− u′ (c (u∗L (p̂)))

u′ (c (u∗NL (p̂)))

p̂

1− p̂

]
= 0

which implies
p̂

1− p̂
u′ (c (u∗L (p̂)))

u′ (c (u∗NL (p̂)))
=

E [P |P ≥ p̂]
1− E [P |P ≥ p̂]

which, by strict concavity of u, implies

p̂

1− p̂
u′ (w − l)
u′ (w)

>
E [P |P ≥ p̂]

1− E [P |P ≥ p̂]

which contradicts Condition 1. Therefore, if Condition 1 holds, the only possible solution to P1 is a full
pooling allocation.

This lemma proves the vast majority of the proof for the finite support case. All that remains to show
is that a full pooling allocation cannot be a solution to P1.
Lemma A.6. Suppose Condition 1 holds. Then, the only possible full-pooling solution to P1 is EU .

Proof. Suppose for contradiction that AU 6= EU is a full-pooling solution to P1. Let u∗L, u
∗
NL denote the

full pooling allocations AU . Recall p1 = min Ψ is the lowest risk type. Note that the IR constraint for
the p1 = min Ψ type must bind in any solution to P1. Otherwise, profits could be increased by providing
all types with less consumption, without any consequences on the incentive constraints of types p > p1.
Consider the allocations CUt defined by(

utL, u
t
NL

)
= (u∗L + (1− t) (u (w − l)− u∗L) , u∗NL + (1− t) (u (w)− u∗NL))

so that when t = 1 these allocations correspond to AU and t = 0 corresponds to the endowment. Because
the IR constraint of the p1 type must hold, we know that these allocations must follow the iso-utility
curve of the p1 type which runs through the endowment. Differentiating with respect to t and evaluating
at t = 0 yields

dΠ
(
CUt
)

dt
|t=0 = E [P |P ≥ p1] c′ (u (w − l))− (1− E [P |P ≥ p1]) c′ (u (w))

p1

1− p1

where p1
1−p1 comes from the fact that we can parameterize the iso-utility curve of the p1 type by uL −
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τ, uNL + p1
1−p1 τ . But re-arranging the equation, we have

dΠ
(
CUt
)

dt
|t=0 = −E [P |P ≥ p1]

1

u′ (w − l)
+ (1− E [P |P ≥ p1])

1

u′ (w)

p1

1− p1

=
1− E [P |P ≥ p1]

u′ (W − L)

(
− E [P |P ≥ p1]

1− E [P |P ≥ p1]
+
u′ (w − l)
u′ (w)

p1

1− p1

)
< 0

which yields a contradiction of Condition 1 at p = p1.

Therefore, we have shown that if Ψ is finite, then if Condition 1 holds, the only possible allocation is
the endowment. It only remains to show that this property holds when Ψ is not finite.

A.1.5 Arbitrary Distribution

If F (p) is continuous or mixed and satisfies the no-trade condition, we first show that F can be ap-
proximated uniformly by a sequence Fn of finite support distributions on [0, 1], each of which satisfy the
no-trade condition.
Lemma A.7. Let P be any random variable on [0, 1] with c.d.f. F (p). Then, there exists a sequence of
random variables, PN , with c.d.f. FN (p), such that FN → F uniformly and

E [PN |PN ≥ p] ≥ E [P |P ≥ p] ∀p, ∀N

Proof. Since F is increasing, it has at most a countable number of discontinuities on [0, 1]. Let D = {δi}
denote the set of discontinuities and WLOG order these points so that limε→+0 F (δi) − limε→−0 F (δi)

is decreasing in i (so that δ1 is the point of largest discontinuity). Then, the distribution F is continuous
on Ψ\D. For any N , let ωN denote a partition of [0, 1] given by 2N + min {N, |D|}+ 1 points equal to j

2N

for j = 0, ..., 2N and {δi|i ≤ N}. We write ωN =
{
pNj
}2N+min{N,|D|}+1

j=1
. Now, define F̂N : ωN → [0, 1] by

F̂N (p) = F
(
max

{
pNj |pNj ≤ p

})
so that F̂N converges to F uniformly as N →∞.

Unfortunately, we cannot be assured that F̂N satisfies the no-trade condition. But, we can perform
the following simple modification to F̂N to arrive at a distribution that does satisfy the no-trade condition
for all N . We first describe the modification in the abstract and then apply it to our F̂N distribution. For
any λ ∈ [0, 1] and for any random variable X distributed G (x) on [0, 1] define the random variable Xλ to
be the random variable with c.d.f. λG (x). In other words, with probability λ the variable is distributed
according to X and with probability 1− λ the variable takes on a value of 1 with certainty. Notice that
E [Xλ|Xλ ≥ x] is continuously decreasing in λ and E [X0|X0 ≥ x] = 1 ∀x.

Now, given F̂N with associated random variable P̂N , we define PNλ to be the random variable with
c.d.f. λF̂N (p). We now define a sequence {λN}N by

λN = max
{
λ|E

[
PNλ |PNλ ≥ p

]
≥ E [P |P ≥ p] ∀p

}
Note that for each N fixed, the set

{
λ|E

[
PNλ |PNλ ≥ p

]
≥ E [P |P ≥ p] ∀p

}
is a compact subset of [0, 1],
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so that the maximum exists. Given λN , we define our new approximating distribution, FN (p), by

FN (p) = λNF
N (p)

which satisfies the no-trade condition for all N . The only thing that remains to show is that λN → 1 as
N →∞.

By definition of λN , for each N there exists p̃N such that

E
[
PNλN
|PNλN

≥ p̃N
]

= E [P |P ≥ p̃N ]

Moreover, because λN is bounded, it has a convergent subsequence, λNk
→ λ∗. Therefore,

E
[
PNk

λ∗ |P
Nk

λ∗ ≥ q
]
→ E [Pλ∗ |Pλ∗ ≥ q]

uniformly (over q) as k → 0, where Pλ∗ is the random variable with c.d.f. λ∗F (p). Moreover,

E
[
PNk

λNk
|PNk

λNk
≥ q
]
→ E [Pλ∗ |Pλ∗ ≥ q]

uniformly (over q) as k → 0. Therefore,

E
[
PNk

λ∗ |P
Nk

λ∗ ≥ p̃N
]
→ E [P |P ≥ p̃N ]

so that we must have λ∗ = 1.
Therefore, the distribution PNk with c.d.f. FNk (p) = λNk

FNk (p) for k ≥ 1 has the property

E
[
PNk |PNk

λ ≥ p
]
≥ E [P |P ≥ p] ∀p

and FNk (p) converges uniformly to F (p).

Now, returning to problem P1 for an arbitrary distribution F (p) which satisfies the no-trade con-
dition. Let Π (A|F ) denote the value of the objective function for allocation A under distribution F .
Suppose for contradiction that an allocation Â = (ûL (p) , ûNL (p)) 6= (W − L,W ) is the solution to P1

under distribution F , so that Π (A|F ) > 0. Let FN (p) be a sequence of finite approximating distributions
which satisfy the no-trade condition and converge uniformly to F . Let ωN =

{
pNj
}
denote the support

of each approximating distribution. For any N , define the augmented allocation ÂN =
(
ûNL (p) , ûNNL (p)

)
by choosing (ûL (p) , ûNL (p)) to be the most preferred bundle from the set

{
uL
(
pNj
)
, uNL

(
pNj
)}
j
. Since

Â is incentive compatible, clearly we will have
(
ûNL
(
pNj
)
, ûNNL

(
pNj
))

=
(
ûL
(
pNj
)
, ûNL

(
pNj
))
. By single

crossing, for p 6= pNj agents with p ∈
(
pNj−1, p

N
j

)
will prefer either allocation for type pNj−1 or pNj .

Clearly, ÂN converges uniformly to Â. Since ÂN satisfies IC and IR by construction, the no-trade
condition implies that the allocation ÂN cannot be as profitable as the endowment, so that we have

Π
(
ÂN |FN

)
≤ Π (E|FN ) = 0 ∀N

By the Lebesgue dominated convergence theorem (Π
(
ÂN |FN

)
is also bounded below by − (W + L)),
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have
Π
(
Â|F

)
≤ 0

Which yields a contradiction that Â was the optimal solution (which required Π
(
Â|F

)
> 0) and concludes

the proof.
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B Empirical Methodology Appendix

B.1 Properties of the Lower Bound Estimator

This section further examines properties of the nonparametric lower bound approach. To derive these
properties of E [mZ (PZ)], we first show P is a mean-preserving spread of PZ . We have

E [P |X,Z] = E [Pr {L|X,P} |X,Z]

= E [Pr {L|X,Z, P} |X,Z]

= Pr {L|X,Z}

= PZ

where the first equality follows from assumption 1, the second equality follows from assumption 2, the
third equality follows from the law of iterated expectations (averaging over realizations of P given X and
Z), and the fourth equality is simply the definition of PZ .

We now define the quantiles of P and PZ which will help describe how E [mZ (PZ)] relates to
E [m (P )]. Let QP (α) to be the α-quantile of P ,

QP (α) = inf
q
{q|Pr {P ≤ q} ≥ α}

and Qα (PZ) to be the α-quantile of our analogue,

QPZ
(a) = inf

q
{q|Pr {PZ ≤ q} ≥ α}

Given these two quantiles, let e (α) denote the difference between them,

e (α) = QP (α)−QPZ
(α) (11)

This function parameterizes the effect of the "noise" in Z. If e (α) > 0 (< 0), then the α-quantile of
PZ falls below (above) the true α-quantile of the distribution of private information, P . On average, the
effect of the noise is zero,

´
e (α) dα = 0, since P is a mean-preserving spread of PZ .

We now have defined the required variables to characterize the properties of E [mZ (PZ)]. Where
applicable, we let the integers 1 and 2 denote two market segments (e.g. X = x1 andX = x2). Subscripted
1 and 2 will denote each segment (e.g. P1 and P2 denote the distributions of private information in
segments 1 and 2).

Proposition. The following conditions hold

1. (Characterization of E [m (P )] and E [mZ (PZ)]) E [m (P )] and E [mZ (PZ)] can be written as

E [m (P )] =

ˆ 1

0

(QP (α)− Pr {L}) log

(
1

1− α

)
dα

and

E [mZ (PZ)] =

ˆ 1

0

(QPZ
(PZ)− Pr {L}) log

(
1

1− α

)
dα
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2. (No private information) If P is a constant, then E [m (P )] = E [mZ (PZ)] = 0

3. (Lower bound - Re-statement of Proposition 2) E [mZ (PZ)] ≤ E [mZ (PZ)] so that E [mZ (PZ)] is
a lower bound for E [m (P )]

4. (Comparisons across segments) E [m1 (P1)] − E [m2 (P2)] = E [mZ,1 (PZ,1)] − E [mZ,2 (PZ,2)] +´
[e1 (α)− e2 (α)] log

(
1

1−α

)
dα

5. (Relation to infp T (p)) infp T (p) ≤ 1 + E[m(P )]
E[P (1−P )]−E[m(P )] Pr{L}−E[(P−Pr{L})m(P )] , with equality if

T (p) is equal to a constant for all p

The first condition shows that E [m (P )] and E [mZ (PZ)] are weighted averages of the quantiles, QP (α)−
Pr {L} andQα (PZ)−Pr {L}. The term log

(
1

1−α

)
weights upper quantiles (near α = 1) more heavily than

lower quantiles and implies that E [m (P )] and E [mZ (PZ)] are positive. This weighting has an intuitive
meaning: high risks (high values of P ) are included in the calculation for the magnitude of private
information for more of the population. Therefore, the probabilities for the high risks are weighted more
heavily in E [m (P )]. In this sense, E [m (P )] is a measure of the thickness of the upper tail of P .

The second condition shows that testing E [mZ (PZ)] = 0 provides a test for the existence of pri-
vate information in a given segment. The third condition states that E [mZ (PZ)] is a lower bound
for E [m (P )], which is a re-statement of Proposition 2 (but for which we will now provide the proof).
The fourth condition shows that one can infer comparisons of E [m (P )] across market segments using
E [mZ (PZ)] provided the error,

´
[e1 (α)− e2 (α)] log

(
1

1−α

)
dα is small. In Section B.1.3 we use this

result to provide an example which illustrates when inference using E [mZ (PZ)] is valid for inference
about E [m (P )].

The fifth condition relates E [m (P )] to the quantity that characterizes the barrier to trade, infp T (p).
Using a Holder inequality, this condition shows that E [m (P )] is monotonically related to an upper bound
on infp T (p). Notice that the RHS of the expression in the fifth condition is increasing in both E [m (P )]

and Pr {L}, provided E [P (1− P )], and E [(P − Pr {L})m (P )] remain roughly constant. Thus, smaller
values of E [m (P )] lead to smaller upper bounds on the minimum pooled price ratio. But also, smaller
values of the mean risk, Pr {L}, lead to smaller upper bounds on the minimum pooled price ratio. Thus,
since rejectees have larger values of Pr {L}, it could very well be the case that this lower bound is smaller
for non-rejectees even if E [m (P )] is larger for non-rejectees. In this sense, our lower bound test is a
potentially overly restrictive test of the implications of the theory. Since we nonetheless find larger values
of E [m (P )] for rejectees, we do not discuss this potential bias in detail in the text; it only renders our
empirical findings to be even greater support for the theory that private information leads to rejections.

B.1.1 Proof of Proposition

For part (1), let QP (α) denote the α-quantile of P . P̂ denote an independent copy of P . We can write
E [m (P )] by integrating across the quantiles of P ,

E [m (P )] = Eα [EP [P |P ≥ QP (α)]]
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so that we have the expansion

E [m (P )] =

ˆ 1

0

[Eα̃ [QP (α̃)−QP (α) |α̃ ≥ α]] dα

=

ˆ 1

0

1

1− α

[ˆ
ã≥α

[QP (α̃)−QP (α) dα̃]

]
dα

=

ˆ 1

0

ˆ
ã≥α

QP (α)

1− α
dα̃dα− E [P ]

=

ˆ 1

0

QP (α̃)

ˆ α̃

0

1

1− α
dαdα̃− E [P ]

=

ˆ 1

0

[QP (α)− E [P ]] log

(
1

1− α

)
dα

where
´ 1

0
log
(

1
1−α

)
dα = 1.

Parts (2) follows from the fact that P is a mean preserving spread of PZ
Part (3) can be seen as follows. Because P is a mean-preserving spread of PZ , we know that

ˆ 1

x

QPZ
(α) dα ≤

ˆ 1

x

QP (α) dα ∀x ∈ [0, 1]

Now, using part (1), we can write

E [m (P )]− E [mZ (PZ)] =

ˆ 1

0

[QP (α)−QPZ
(α)] log

(
1

1− α

)
dα

=

ˆ 1

0

[QP (α)−QPZ
(α)]

ˆ α

0

1

1− α̃
dα̃dα

=

ˆ 1

0

ˆ α

0

[QP (α)−QPZ
(α)]

1

1− α̃
dα̃dα

=

ˆ 1

0

ˆ 1

α̃

[QP (α)−QPZ
(α)]

1

1− α̃
dαdα̃

=

ˆ 1

0

(ˆ 1

α̃

[QP (α)−QPZ
(α)] dα

)
1

1− α̃
dα̃

≥ 0

where the last inequality follows from the fact that
´ 1
α̃ [QP (α)−QPZ (α)] dα ≥ 0 for all α̃ because

P is a mean-preserving spread of PZ .
Part (4) follows from part (1) and the definition of e (α).
Part (5) can be seen as follows. Let T (p) be given by

T (p) =
p+m (p)

1− p−m (p)

1− p
p

which can be re-written as
m (p)

1

t (p)
= p (1− p)− pm (p)

54



where t (p) = T (p)− 1. Taking expectations, we have

E

[
1

t (P )
m (P )

]
= E [P (1− P )]− E [(P − E [P ])m (P )]−M ∗ E [P ]

where M = E [m (P )] is the magnitude of private information. Now using Holder’s inequality (p = 1,
q =∞),

E

[
1

t (P )
m (P )

]
≤
(

sup
1

t (P )

)
E [m (P )]

So that
E [P (1− P )]− E [(P − E [P ])m (P )]−M ∗ E [P ] ≤

(
sup

1

t (P )

)
∗ E [m (P )]

so that
inf
p
t (p) ≤ E [m (P )]

E [P (1− P )]− E [(P − E [P ])m (P )]− E [m (P )] ∗ E [P ]

and thus
inf
p
T (p) ≤ 1 +

E [m (P )]

E [P (1− P )]− E [(P − E [P ])m (P )]− E [m (P )] ∗ E [P ]

Equality when T is constant follows from the fact that the holder inequality would hold with equality (We
do not claim there exists a distribution for which T (p) is constant; we only state the fact that equality
would hold if T is constant result to give a sense of the extent to which the inequality is potentially
violated).

B.1.2 "Tight" lower bound

Here, we show that the lower bound is “tight” in the sense that there exists a joint distribution of L, P , and
Z satisfying assumptions 1 and 2 such that P = PZ . This follows relatively trivially. For any elicitation
Z, assume that P = Pr {L|X,Z}. Then let e = Z − Pr {L|X,Z}. Then agents’ report Z = P + e but
have beliefs given by Pr {L|X,Z}.

B.1.3 Measurement Error Example

When do differences in our lower bounds E [mZ (PZ)] imply differences in the actual average magnitude
of private information, E [m (P )]? Here, we consider a stylized form of elicitation error which leads
to conditions under which our lower bounds are valid for inferring comparisons for the true values.
Intuitively, as long as there is not substantial differential measurement error between rejectees and non-
rejectees, such inferences are valid.

Suppose that with probability λ agents report their true beliefs, Z = P , but with probability 1 − λ
they report a value Z which is independent of their true beliefs (i.e. random noise). It is straightforward
to show that this implies

E [mZ (PZ)] = λE [m (P )]

so that our lower bounds are a fraction λ of the true value. In this case, a finding of ∆Z > 0 implies
∆ = E

[
m (P ) |X ∈ ΘReject

]
− E

[
m (P ) |X ∈ ΘNoReject

]
> 0 as long as λNoReject ≥ λReject. Moreover,

the event that our lower bounds would be misleading (i.e. ∆Z > 0 and ∆ < 0) requires λReject

λNoReject
>

E[mZ(PZ)|X∈ΘReject]
E[mZ(PZ)|X∈ΘNoReject]

> 1. Thus, the difference in the measurement error must be larger to overturn
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inference using lower bounds if we estimate much larger values of E
[
mZ (PZ) |X ∈ ΘReject

]
relative to

E
[
mZ (PZ) |X ∈ ΘReject

]
.

B.2 Semiparametric Identification

In this section, we discuss identification of the distribution of private information, fP , and the distribution
of elicitation error parameters, θ. For simplicity, we condition on X = x and drop notation with respect
to X.

Our approach assumes the econometrician observes data on Z and L. We make the following as-
sumptions:

• L is a binary random variable (realizations in {0, 1}, indicating the event of experiencing a loss

• The joint density of Z and L is observed and given by the p.d.f./p.m.f. fL,Z (l, z) with conditional
distributions fL|Z , fZ|L, and marginal distribution fZ ∈ DZ . for some domain DZ We assume Z
is continuously distributed over [0, 1].

• The variable P is unobserved and continuously distributed with density fP (p) ∈ DP for some
domain DP , where we denote the true value by f∗P (p). We assume Dp is closed under multiplication
by p, so that fP (p) ∈ Dp implies pfP (p) ∈ Dp.

Recall we have made several assumptions. First, we have assumed agents have correct beliefs and that
Z contains no additional information about L than do agents’ true beliefs, P , which together imply

Pr {L|Z,P} = Pr {L|P} = P

and second, we have assumed that Z is distributed with p.d.f. fZ|P (z|P ; θ) where θ ∈ Σ is an unknown
parameter from a known set Σ. We denote the true θ by θ∗. Given these assumptions, the density of L
and Z can be expressed as

fL,Z (L,Z) =

ˆ 1

0

fL,Z|P (L,Z|P = p) fP (p) dp

=

ˆ 1

0

(Pr {L|Z,P = p})L (1− Pr {L|Z,P = p})1−L
fZ|P (Z|P = p; θ∗) f∗P (p) dp

=

ˆ 1

0

pL (1− p)1−L
fZ|P (Z|P = p; θ∗) f∗P (p) dp

With this expression for the observed density, our goal is to "invert" the above functional equation to
identify both θ∗ and f∗P (p). This problem is made difficult because the functional equation is nonlinear
in θ and fP .

For any θ ∈ Σ, define the operator Hθ : DP → DZ mapping densities over the space of P into
densities over the space of Z by

[Hθ (fP )] (z) =

ˆ 1

0

fP (p) fZ|P (z|p; θ) dp

and let Z (P |θ) denote the random variable distributed with p.d.f./p.m.f fZ|P (z|P ; θ). Given θ, Hθ is
linear in fP . Therefore, we can impose standard invertibility conditions on fZ|P .
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Assumption 4. Hθ∗ is injective at the true θ = θ∗ so that Hθ∗ (f1) = Hθ∗ (f2) =⇒ f1 = f2

Injectivitity of Hθ∗ assumes that if θ∗ is known, then the distribution fP is identified from the density
fZ . This is a mostly standard assumption in linear nonparametric identification (Newey and Powell, 2003
Newey and Powell [2003]; Hu and Schennach, 2008 Hu and Schennach [2008]).

Given this assumption, define the generalized inverse correspondence, H−1
θ , to map fZ to the set of

functions fP satisfying Hθ (fP ) = fZ .

H−1
θ (fZ) = argmin‖fZ (z)−

ˆ
fZ|P (Z|P = p; θ) fP (p) dp‖

where the argmin is taken with respect to densities fP ∈ DP . Our assumption of injectivity implies that
H−1
θ (fZ) is unique if fZ lies in the range of Hθ and, in particular, is unique at the true value of θ = θ∗.

H−1
θ maps p.d.f.s in the Z space to a set of p.d.f.s in the P space. We also define the corresponding

functions, Ĥθ and Ĥ−1
θ which operate on random variables, so that Ĥθ (P ) maps the random variable

with p.d.f. fP to the random variable with p.d.f. Hθ (fP ).
Now, assumptions 1 and 2 imply that we can write the joint distribution of P and L in two ways by

conditioning on L = 1,

fP |L (p|L = 1) Pr {L = 1} = fP,L (p, 1)

= Pr {L = 1|P = p} fP (p)

= pfP (p)

Since P has realizations on [0, 1], it has a moment generating function, so that we can write the above
expression in moment form,

E
[
PN |L = 1

]
Pr {L} = E

[
PN+1

]
∀N ≥ 0 (12)

which provides a simple relationship between the moments of P given L = 1 and the unconditional
distribution of P . Equation 12 provides an infinite set of moment conditions which aid in identification
of θ and fP .

At θ = θ∗, we have

E

[(
Ĥ−1
θ∗ (Z)

)N
|L = 1

]
Pr {L = 1} = E

[(
Ĥ−1
θ∗ (Z)

)N+1
]
∀N ≥ 0 (13)

The model is identified if and only if θ∗ is the only such θ to generate this equality for all N ≥ 0.
Note that once we have θ∗, we have f∗P = H−1

θ∗ (fZ).
Because θ is finite-dimensional, the model is generally over-identified. Intuitively, equation 13 for

N = 0 provides identification of the mean of the elicitation error

Pr {L} = E
[
Ĥ−1
θ (Z)

]
and the equation for N = 1 provides identification of the dispersion in the elicitation error,

E
[(
Ĥ−1
θ∗ (Z)

)
|L = 1

]
Pr {L = 1} = E

[(
Ĥ−1
θ∗ (Z)

)2
]
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so that, intuitively, the RHS of the equation varies with the dispersion in the error, holding the mean of
the error constant. We recognize that this intuition is fairly abstract because it relies on properties of the
operator H−1

θ∗ , which is a difficult object to know a priori. We proceed on two fronts. First, we provide
a formal proof that a close analogue to our specification in Section 7 for which the inverse operator has
well-known properties and is identified using only equations N = 0 and N = 1 of equation 13 (so that the
moments N > 1 provide a theoretical over-identification test). Second, since our specification in Section
7 does not have such a well-known inverse operator, we provide Monte Carlo tests of our specification.
This allows us not only to confirm identification, but also assess the robustness of our results to various
possible mis-specifications of the true elicitation error distribution, f (Z|P ).

B.2.1 Identification without censoring

Here, we consider an analogue to our model in which non-focal elicitations are not censored on [0, 1]. For
this specification, the nonlinear inverse problem has well-known properties and θ∗ and f∗P are identified
only the observed density, fZ and equation 13 for N = 0 and N = 1, leaving equations N > 1 as
over-identifying conditions.

In particular, suppose Z is distributed (1− λ)N
(
P + α, σ2

)
+λOP

(
P + α, σ2, κ

)
, whereOP

(
P + α, σ2, κ

)
is an ordered probit with variance σ2, latent mean P+α, and cutoff regions [0, κ], (κ, 1− κ), and [1− κ, 1]

corresponding to values Z = 0, 0.5, 1. Note that our specification in Section 7 is similar but assumes non-
focal values follow a censored normal, CN

(
P + α, σ2

)
, as opposed to a normal, N

(
P + α, σ2

)
, which

captures the elicitations lie in [0, 1].
We show identification as follows. First, since Z is continuously distributed for non-focal values,

responses of Z = 0, 0, 5, 1 occur (with probability 1) as draws from the ordered probit, not the normal
distribution. Moreover, because values of Z = 0, 0.5, 1 drawn from N

(
P + α, σ2

)
occur with probability

zero, we can consider identification of α and σ from the observed density of non-focal values of Z, which
is drawn from N

(
P + α, σ2

)
. Thus, we now consider this simpler elicitation error distribution and return

to the identification of λ and κ after discussing identification of α and σ.
Let Hα,σ (fP ) map the p.d.f. of a random variable P , fP , to the p.d.f. of the random variable

Z = P + e
(
α, σ2

)
where e = N

(
α, σ2

)
is independent of P . Thus, Z is a mean preserving spread of

P +α, with σ indexing the degree of the “spread”. Moreover, because the elicitation error, e, is normally
distributed, the inverse operator, H−1

α,σ, maps a p.d.f. of the random variables Z to the p.d.f. of the
random variable P̂ (Z;α, σ) with the shift in mean α and whose variance is strictly decreasing in σ.

Recall that at the true values, θ∗ = (α∗, σ∗), we have the equations

E

[(
P̂ (Z;α∗, σ∗)

)N
|L = 1

]
Pr {L = 1} = E

[(
P̂ (Z;α∗, σ∗)

)N+1
]
∀N ≥ 0

So, for N = 0, we have the equation

Pr {L = 1} = E
[
P̂ (Z;α∗, σ∗)

]
= E [Z]− α∗

so that α∗ = E [Z] − Pr {L = 1}. Intuitively, the mean bias is identified as the difference between the
average elicitation, E [Z], and the realized probability of a loss, Pr {L = 1}.
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For N = 1, we have the equation

E
[(
P̂ (Z;α∗, σ∗)

)
|L = 1

]
Pr {L = 1} = E

[(
P̂ (Z;α∗, σ∗)

)2
]

Now, notice that the LHS does not vary with σ. Moreover, the RHS is monotonically decreasing in σ,
since σ1 < σ2 implies that P̂ (Z;α, σ1) is a mean preserving spread of P̂ (Z;α, σ2). Thus, the equation
for N = 1 identifies σ∗.

Now that we have identified α and σ, we return to our original distribution with focal point responses.
First, notice that λ is identified using the fraction of responses Z which are equal to 0, 0.5, or 1. Then,
κ is identified by the relative frequency of Z = 0, Z = 0.5, and Z = 1 using the already identified values
of α and σ.

This example with uncensored non-focal point values is identical to our specification in Section 7,
except that we use a censored normal, as opposed to normal distribution, to take into account the fact
that elicitations are restricted to the interval, [0, 1]. The impact of such censoring on the quality of
our estimation is difficult to assess theoretically; we thus turn to Monte Carlo evidence to verify the
performance of our estimation strategy.

B.2.2 Monte Carlo Results

This section presents Monte Carlo analysis of our estimator for the distribution of private information.
First, we verify that our approach works well under correct model specification for the elicitation error
parameters. Second, we assess the impact of mis-specification of the distribution of elicitation error.
Throughout this section, we assume that F (p) is a censored normal distribution with mean 0.3 and
standard deviation 0.1. Our first simulation assumes Z is follows our specification. With probability
0.6, Z is drawn from a censored normal distribution with mean P + 0.03 and standard deviation 0.2.
With probability 0.4, Z is a focal point value of 0, 0.5, or 1, drawn from an ordered probit distribution
with mean P + 0.03, standard deviation 0.2, and cutoff regions [0, 0.3] , (0.3, 0.7) , [0.7, 1]. In Figure B1,
we present the true c.d.f. of private information, along with the median, 5%, and 95% estimates from
N = 100 Monte Carlo simulations (of a sample size of 2,000) where we estimate the distribution using a
mixture of 2 beta distributions, as in our empirical analysis above. As the figures show, our estimation
approach yields unbiased estimates.

Now we consider the impact of mis-specification of the elicitation error. To do so, we assume that
the latent Z is drawn from a mixture of two normals, allowing us to incorporate skewness and kurtosis
in the distribution. First, we assume with probability 0.4. the latent Z is drawn from a normal with
mean P + 0.03 and standard deviation 0.2 (as before). But with probability 0.6, the latent Z is drawn
from a normal with mean P − 0.05 and standard deviation 0.4. Focal values (again we assume 40% focal
values) are then generated from this latent Z with the same cutoff regions, [0, 0.3] , (0.3, 0.7) , [0.7, 1], and
non-focal values are generated as the censored portion of this distribution on [0, 1]. The Monte Carlo
results are presented in Figure B2. As we can see, our estimation perhaps introduces a slight median bias
towards a less dispersed distribution of private information, but performs quite well given this substantial
mis-specification.

Finally, we assess the robustness to excess kurtosis in the distribution of Z. We assume Z is again
drawn from a mixture of normals, but this time assume these normals have the same mean of 0.03. With
probability 0.5, the standard deviation is 0.2 and with probability 0.5 the standard deviation is 0.05.
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We assume 40% focal responses with the same cutoffs regions of [0, 0.3] , (0.3, 0.7) , [0.7, 1]. Figure B3
presents the Monte Carlo results. As we can see, our estimation performs quite well (better than the
skewed estimation) despite the mis-specification. In short, our estimation procedure appears robust to
alternative specifications for f (Z|P ) which relax normality by including skewness and kurtosis.

C Selected Pages from Genworth Financial Underwriting Guide-
lines

The following 4 pages contain a selection from Genworth Financial’s LTC underwriting guideline
which is provided to insurance agents for use in screening applicants. Although marked “Not for
use with consumers or to be distributed to the public”, these guidelines are commonly left in the
public domain on the websites of insurance brokers. The printed version here was found in pub-
lic circulation at http://www.nyltcb.com/brokers/pdfs/Genworth_Underwriting_Guide.pdf on
November 4, 2011. We present 4 pages of the 152 pages of the guidelines. The conditions
documented below are not exhaustive for the list of conditions which lead to rejection - they
constitute the set of conditions which solely lead to rejection (independent of other health con-
ditions); combinations of other conditions may also lead to rejections and the details for these
are provided in the remaining pages not shown here.
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Primary 
Sample

Excluding 
Insured

Primary 
Sample

Excluding 
Insured

Difference: ∆Z 0.0245*** 0.0257*** 0.0338*** 0.011
Bootstrap s.e.1 (0.004) (0.0043) (0.0109) (0.0166)
p-value2 0.0000 0.0000 0.0020 0.2960

No Reject 0.0041 0.0033 0.0249 0.0377
Bootstrap s.e. (0.0017) (0.0018) (0.0067) (0.0112)
Wald test p-value3 0.4330 0.8280 0.1187 0.2334

Reject 0.0286*** 0.029*** 0.0587*** 0.0491*
Bootstrap s.e. (0.0036) (0.0039) (0.0088) (0.0116)
Wald test p-value 0.0000 0.0000 0.0000 0.0523

Uncertain 0.0056** 0.0056 0.0294*** 0.0269
Bootstrap s.e. (0.0018) (0.0019) (0.0053) (0.008)
Wald test p-value 0.0472 0.1352 0.0001 0.1560

1Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=500 
repetitions)
2p-value is the sum of the p-value for the rejection group having no private information and the p-value for the hypothesis 
that the difference is less than or equal to zero, where the latter is computed using bootstrap (N=500 repetitions)
3p-value for the Wald test which restricts coefficients on subjective probabilities equal to zero. Standard errors clustered 
at the household level
*** p<0.01, ** p<0.05, * p<0.10

Life, Price Controls

Table 5: Robustness Checks: Sample Selection

LTC, Price Controls



Preferred 
Specification

Organ + Extended Controls 
(1993/1994 Only)

Difference: ∆Z 0.0338*** 0.0308**
Bootstrap s.e.1 (0.0109) (0.0121)
p-value2 0.0020 0.0140

No Reject 0.0249 0.0218
Bootstrap s.e. (0.0067) (0.007)
Wald test p-value3 0.1187 0.3592

Reject 0.0587*** 0.0526***
Bootstrap s.e. (0.0088) (0.01)
Wald test p-value 0.0000 0.0024

Uncertain 0.0294*** 0.0342***
Bootstrap s.e. (0.0053) (0.0061)
Wald test p-value 0.0001 0.0003

Table 6:Robustness Checks: Cancer Organ Controls (Life Setting)

1Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=500 
repetitions)

*** p<0.01, ** p<0.05, * p<0.10

2p-value is the sum of the p-value for the rejection group having no private information and the p-value for the 
hypothesis that the difference is less than or equal to zero, where the latter is computed using bootstrap (N=500 
repetitions)

3p-value for the Wald test which restricts coefficients on subjective probabilities equal to zero. Standard errors 
clustered at the household level
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Consumption drop 1 2 3

10% 11.1% 23.5% 37.2%

15% 17.6% 38.4% 62.8%

20% 25.0% 56.3% 95.3%

Table 9: Willingness to Pay Calibration

Coeff. Rel. Risk Aversion
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Quantile Region: Ψτ 0-70% 0-80% 0-90%

No Reject 1.2227 1.1770 1.1523
5% 1.0000 1.0000 1.0000
95% 1.4045 1.2651 1.2651

Reject 1.405 1.334 1.268
5% 1.248 1.221 1.227
95% 1.736 1.720 1.720

Table 11: Minimum Pooled Price Ratio (Annuities)

Annuities

Note: 5/95% CI computed using bootstrap block re-sampling at the household 
level (N=250 Reps); 5% level extended to include 1 if p-value of F-test for 
presence of private information is less than .05; Bootstrap CI is bias corrected 
using the non-accelerated procedure in Efron (1982)
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