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Abstract

We introduce and develop a framework for the study of competition between firms
who have budgets to “seed” the initial adoption of their products by consumers located
in a social network. The payoffs to the firms are the eventual number of adoptions of
their product through a competitive stochastic diffusion process in the network. This
framework yields a very rich class of competitive strategies, which depend in subtle
ways on the stochastic dynamics of adoption, the relative budgets of the players, and
the underlying structure of the social network.

We identify a general property of the adoption dynamics — namely, decreasing re-
turns to local adoption — for which the inefficiency of resource use at equilibrium (the
Price of Anarchy) is uniformly bounded above, across all equilibria and networks. We
also show that if this property is even slightly violated, the Price of Anarchy can be
unbounded, thus yielding sharp threshold behavior for a broad class of dynamics.

We also introduce a new notion, the Price of Budgets, that measures the extent
that imbalances in player budgets can be amplified at equilibrium. We again identify
a general property of the adoption dynamics — namely, proportional local adoption
between competitors — for which the (pure) Price of Budgets is uniformly bounded
above, across all equilibria and all networks. We show that even a slight departure from
this property can lead to unbounded Price of Budgets, again yielding sharp threshold
behavior for a broad class of dynamics.
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1 Introduction

The role of social networks in shaping individual choices has been brought out in a number
of studies over the years.1 In the past, the deliberate use of such social influences by external
agents was hampered by the lack of good data on social networks. In recent years, data
from on-line social networking sites along with other advances in information technology have
created interest in ways that firms and governments can use social networks to further their
goals.2

In this work, we study competition between firms who use their resources to maximize
product adoption by consumers located in a social network. 3 The social network may
transmit information about products, and adoption of products by neighbors may have direct
consumption benefits. The firms, denoted Red and Blue, know the graph which defines
the social network, and offer similar or interchangeable products or services. The two firms
simultaneously choose to allocate their resources on subsets of consumers, i.e., to seed the
network with initial adoptions. The stochastic dynamics of local adoption determine how the
influence of each player’s seeds spreads throughout the graph to create new adoptions.

A distinctive feature of our framework is the examination of a rather general class of lo-
cal influence processes. We decompose the dynamics into two parts: a switching function f ,
which specifies the probability of a consumer switching from non-adoption to adoption as a
function of the fraction of his neighbors who have adopted either of the two products Red
and Blue; and a selection function g, which specifies, conditional on switching, the probability
that the consumer adopts (say) Red as function of the fraction of adopting neighbors who
have adopted Red. Each firm seeks to maximize the total number of consumers who adopt its
product. Broadly speaking, the switching function captures “stickiness” of the (interchange-
able) products based on their local prevalence, and the selection function captures preference
for firms based on local market share.

This framework yields a very rich class of competitive strategies, which depend in subtle
ways on the dynamics, the relative budgets of the players, and the structure of the social
network (Section 4 gives some warm-up examples illustrating this point). Here we focus on
understanding two general features of equilibrium: first, the efficiency of resource use by the
players (Price of Anarchy) and second, the role of the network in amplifying ex-ante resource
differences between the players (Price of Budgets).

Our first set of results concern efficiency of resource use by the players. For a fixed graph
and fixed local dynamics (given by f and g), and budgets of KR and KB seed infections
for the players, let (SR, SB) be the sets of seed infections that maximize the joint expected

1See e.g., Coleman (1966) on doctors’ prescription of new drugs, Conley and Udry (2005) and Foster and
Rosenzweig (1995) on farmers’ decisions on crop and input choice , and Feick and Price (1987), Reingen et al.
(1984), and Godes and Mayzlin (2004) on brand choice by consumers.

2The popularity of terms such as word of mouth communication, viral marketing, seeding the network and
peer-leading interventions is an indicator of this interest.

3Our model may apply to other settings of competitive contagion, such as between two fatal viruses in a
population.
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infections (payoffs) ΠR(SR, SB) + ΠB(SR, SB) subject to |SR| = KR and |SB| = KB, and let
ΠR(σR, σB) + ΠB(σR, σB) be the smallest joint payoff across all Nash equilibrium, where σR
and σB are mixed strategies obeying the budget constraints. The Price of Anarchy (or PoA)
is then defined as the ratio of the former divided by the latter, that is,

ΠR(SR, SB) + ΠB(SR, SB)

ΠR(σR, σB) + ΠB(σR, σB)
.

Our first main result, Theorem 1, shows that if the switching function f is concave and the se-
lection function g is linear, then the PoA is uniformly bounded above by 4, across all equilibria
and across all networks. The main proof technique we employ is the construction of coupled
stochastic dynamical processes that allow us to demonstrate that, under the assumptions on
f and g, the departure of one player can only benefit the other player. This in turn lets us
argue that players can successfully defect to the maximum social welfare solution and realize
a significant fraction of its payoff, thus implying they must also do so at equilibrium.

Our next main result, Theorem 2, shows that even a small departure away from concavity
of the switching function f can lead to arbitrarily high PoA. This result is obtained by con-
structing a family of layered networks whose dynamics effectively compose f many times, thus
amplifying its convexity. Equilibrium and large PoA are enforced by the fact that despite this
amplification, the players are better off coordinating and playing near each other unilaterally,
even though they would be much better off elsewhere together. Taken together, our PoA
upper and lower bounds permit us to exhibit simple parametric classes of dynamics yielding
sharp threshold behavior. For example, if the switching function if f(x) = xr for r > 0 and
the selection function g is linear, then for all r ≤ 1 the PoA is at most 4, while for any r > 1
it can be unbounded.

Our second set of results are about the effects of networks and dynamics on budget differ-
ences across the players. We introduce and study a new quantity called the Price of Budgets
(PoB). For any fixed graph, local dynamics, and initial budgets, with KR ≥ KB, let (σR, σB)
be the Nash equilibrium that maximizes the quantity

ΠR(σR, σB)

ΠB(σR, σB)
× KB

KR

among all Nash equilibria (σR, σB); this quantity is just the ratio of the final payoffs divided
by the ratio of the initial budgets. The resulting maximized quantity is the Price of Budget,
and it measures the extent to which the larger budget player can obtain a final market share
that exceeds their share of the initial budgets.

Theorem 4 shows that if the switching function is concave and the selection function is
linear, then the (pure strategy) PoB is bounded above by 2, uniformly across all networks.
The proof imports elements of the proof for the PoA upper bound, and additionally employs
a method for attributing adoptions back to the initial seeds that generated them.

Our next result, Theorem 5, shows that even a slight departure from linearity in the
selection function can yield unbounded PoB. The proof again appeals to network structures
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that amplify the nonlinearity of g by self-composition, which has the effect of “squeezing out”
the player with smaller budget. Combining the PoB upper and lower bounds again allows us
to exhibit simple parametric forms yielding threshold behavior: for instance, if f is linear and
g is from the well-studied Tullock contest function family (discussed later), which includes
linear g and therefore bounded PoB, even an infinitesimal departure from linearity can result
in unbounded PoB.
Related Literature: Our paper contributes to the study of competitive strategy in network
environments. We build a framework which combines ideas from economics (contests, com-
petitive seeding and advertising) and computer science – uniform bounds on properties of
equilibria, as in the Price of Anarchy – to address a topical and natural question. The Tul-
lock contest function was introduced in Tullock (1980); for an axiomatic development see
Skaperdas (1996). For early and influential studies of competitive advertising, see Butters
(1977) and Grossman and Shapiro (1984). The Price of Anarchy (PoA) was introduced in
Koutsoupias and Papadimitriou (1999). The tension between equilibrium and Nash efficiency
is a recurring theme in economics; for a general result on the inefficiency of Nash equilibria,
see Dubey (1986).

More specifically, we contribute to the study of influence in networks. This has been an
active field of study in the last decade, see e.g., Ballester, Calvo-Armengol and Zenou (2006);
Bharathi, Kempe and Salek (2007); Galeotti and Goyal (2010); Kempe, Kleinberg, and Tardos
(2003, 2005); Chasparis and Shamma (2010); Vetta (2002). There are three elements in our
framework which appear to be novel: one, we consider a fairly general class of adoption rules
at the individual consumer level which correspond to different roles which social interaction
can potentially play (existing work typically considers specific local dynamics), two, we study
competition for influence in a network (existing work has mainly focused on the case of single
player seeking to maximize influence), and three, we introduce and study the notion of Price
of Budgets as a measure of how networks amplify budget differences. Finally, to the best of
our knowledge, our results on the relationship between the dynamics and qualitative features
of the strategic equilibrium are novel.

2 Model

2.1 Graph, Allocations, and Seeds

We consider a 2-player game of competitive adoption on a (possibly directed) graph G over n
vertices. G is known to the two players, whom we shall refer to as R(ed) and B(lue). We shall
also use R,B and U(ninfected) to denote the state of a vertex in G, according to whether it
is currently infected by one of the two players or uninfected. The two players simultaneously
choose some number of vertices to initially seed; after this seeding, the stochastic dynamics
of local adoption (discussed below) determine how each player’s seeds spread throughout G
to create adoptions by new nodes. Each player seeks to maximize his (expected) number of
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eventual adoptions. 4

More precisely, suppose that player p = R,B has budget Kp ∈ N+; Each player p chooses
an allocation of budget across the n vertices, ap = (ap1, ap2, ..., apn), where apj ∈ N+ and∑n

j=1 apj = Kp. Let Ap be the set of allocations for player p, which is their pure strategy space.
A mixed strategy for player p is a probability distribution σp on Ap. Let Ap denote the set
of probability distributions for player p. Prior to the contagion process on G, the two players
choose their strategies (σR, σB). Consider any realized initial allocation (aR, aB) for the two
players. Let V (aR) = {v|avR > 0}, V (aB) = {v|avB > 0} and let V (aR, aB) = V (aR)∪V (aB).
A vertex v becomes initially infected if one or more players assigns a seed to infect v. If both
players assign seeds to the same vertex, then the probability of initial infection by a player is
proportional to the seeds allocated by the player (relative to the other player). More precisely,
fix any allocation (aR, aB). For any vertex v, the initial state sv of v is in {R,B} if and only
if v ∈ V (aR, aB). Moreover, sv = R with probability avR/(avR + avB), and sv = B with
probability avB/(avR + avB).

Following the allocation of seeds, the stochastic contagion process on G determines how
these R and B infections generate new adoptions in the network. We consider a discrete time
model for this process. The state of a vertex v at time t is denoted svt ∈ {U,R,B}, where U
stands for Uninfected, R stands for infection by R, and B stands for infection by B.

2.2 Stochastic Updates: The Switching-Selection Model

We assume there is an update schedule which determines the order in which vertices are
considered for state updates. The primary simplifying assumption we shall make about this
schedule is that once a vertex is infected, it is never a candidate for updating again. 5

Within this constraint, we allow for a variety of behaviors, such as randomly choosing an
uninfected vertex to update at each time step, or updating all uninfected vertices simultane-
ously at each time step. We can also allow for an immunity property — if a vertex is exposed
once to infection and remains uninfected, it is never updated again. Update schedules may
also have finite termination times or conditions. Note that a schedule which perpetually up-
dates uninfected vertices will eventually cause any connected G to become entirely infected,
but we allow for considerably more general schedules. In cases where we need some specific
property to hold for the update schedule, we shall discuss it in the appropriate place.

For the stochastic update of an uninfected vertex v, we will primarily consider what we shall
call the switching-selection model. In this model, updating is determined by the application of
two functions to v’s local neighborhood: f(x) (the switching function), and g(y) (the selection
function). More precisely, let αR and αB be the fraction of v’s neighbors infected by R and
B, respectively, at the time of the update, and let α = αR + αB be the total fraction of
infected neighbors. The function f maps α to the interval [0, 1] and g maps αR/(αR + αB)
(the relative fraction of infections that are R) to [0, 1]. These two functions determine the

4Throughout the paper, we shall use the terms infection and adoption interchangeably.
5This assumption can be relaxed considerably, at the expense of complicating some of our proofs.
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stochastic update in the following fashion:

1. With probability f(α), v becomes infected by either R or B; with probability 1− f(α),
v remains in state U .

2. If it is determined that v becomes infected, it becomes infected by R with probability
g(αR/(αR + αB)), and infected by B with probability g(αB/(αR + αB)).

We think of the switching function as specifying how rapidly adoption increases with the
fraction of neighbors who have adopted (i.e. the stickiness of the interchangeable products or
services), regardless of their R or B value; while the selection function specifies the probability
of infection by each firm in terms of the local relative market share split. We assume f(0) = 0
(infection requires exposure), f(1) = 1 (full neighborhood infection forces infection), and f
is increasing (more exposure yields more infection); and g(0) = 0 (players need some local
market share for infection), g(1) = 1. Note that since the selection step above requires that
an infection take place, we also have g(y) + g(1 − y) = 1, which implies g(1/2) = 1/2. In
Section 4 we shall provide some economic motivation for this formulation and also illustrate
with specific parametric families of functions f and g. We also discuss more general models
for the local dynamics at a number of places in the paper. The appendix also illustrates
how these switching and selection functions f -g may arise out of optimal decisions made by
consumers located in social networks.

2.3 Payoffs and Equilibrium

Given a graph G and an initial allocation of seeds (aR, aB), the dynamics described above
yield a stochastic number of eventual infections for the two players. Let χp, p = R,B denote
this random variable for R and B, respectively, at the termination of the dynamics. Given
strategy profile (σR, σB), the payoff to player p = R,B is Πp(σR, σB) = E[χp|(σR, σB)]. Here
the expectation is over any randomization in the player strategies in the choice of initial
allocations, and the randomization in the stochastic updating dynamics. A Nash equilibrium
is a profile of strategies (σR, σB) such that σp maximizes player p’s payoff given the strategy
σ−p of the other player.

2.4 Price of Anarchy and Price of Budgets

For a fixed graph G and stochastic update dynamics, and budgets KR, KB, the maximum
payoff allocation is the allocation (a∗R, a

∗
B) obeying the budget constraints that maximizes

E[χR +χB|(aR, aB)]. For the same fixed graph, update dynamics and budgets, let (σR, σB) be
the Nash equilibrium strategies that minimize E[χR +χB|(σR, σB)] among all Nash equilibria
— that is, the Nash equilibrium with the smallest joint payoff. Then the Price of Anarchy
(or PoA) is defined to be

E[χR + χB|(a∗R, a∗B)]

E[χR + χB|(σR, σB)]
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The Price of Anarchy is a measure of the inefficiency in resource use created by competition
between the two players.

We also introduce and study a new quantity called the Price of Budgets (PoB). The PoB
measures the extent to which networks can warp or amplify inequality in the budgets. Thus
for any fixed graph G and stochastic update dynamics, and initial budgets KR, KB, with
KR ≥ KB, let (σR, σB) be the Nash equilibrium that maximizes the ratio

ΠR(σR, σB)

ΠB(σR, σB)
× bB
bR

among all Nash equilibria. Similarly, we can define the Price of Budgets when KB ≥ KR.
The resulting maximized ratio is the Price of Budget, and it measures the extent to which
the larger budget player can obtain a final market share that exceeds their share of the initial
budgets.

3 Local Dynamics: Motivation and Examples

In this section, we provide some motivation for, and examples of, the decomposition of the
local update dynamics into a switching function f and a selection function g. We view the
switching function as representing how contagious a product or service is, regardless of which
competing party provides it; and we view the selection function as representing the extent to
which a firm having majority local market share favors its selection in the case of adoption. We
illustrate the richness of this model by examining a variety of different mathematical choices
for the functions f and g, and discuss examples from the domain of technology adoption that
might qualitatively match these forms. Finally, to illustrate the scope of this formulation, we
also discuss examples of update dynamics that cannot be decomposed in this way.

Figure 1: Left: Plots of f(x) = xr for varying choices of r, including r = 1 (linear, red line), r < 1
(concave), and r > 1 (convex). Right: Plots of g(y) = 1/(1 + ((1− y)/y)s) for varying choices of s,
including s = 1 (linear, red line), r < 1 (equalizing), and r > 1 (polarizing).
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A fairly broad class of dynamics is captured in the following parametric family of functions.
Let the switching function be given by

f(x) = xr r ≥ 0

and let the selection function be given by

g(y) = 1/(1 + ((1− y)/y)s) s ≥ 0.

Regarding this form for f , for r = 1 we have linear adoption. For r < 1 we have f
concave, corresponding to cases in which the probability of adoption rises quickly with only a
small fraction of adopting neighbors, but then saturates or levels off with larger fractions of
adopting neighbors. In contrast, for r > 1 we have f convex, which at very large values of r
can begin to approximate threshold adoption behavior — the probability of adoption remains
small until some critical fraction of neighbors has adopted, then rises rapidly. See Figure 1.

Regarding this form for g, which is known as the Tullock contest function (Tullock (1980)),
for s = 1 we have a voter model in which the probability of selection is proportional to local
market share. For s < 1 we have what we shall call an equalizing g, by which we mean that
selection of the minority party in the neighborhood is favored relative to the linear voter model
g(y) = y; and for s > 1 we have a polarizing g, meaning that the minority party is disfavored
relative to the linear model. As s approaches 0, we approach the completely equalizing choice
g ≡ 1/2, and as s approaches infinity, we approach the completely polarizing winner-take-all
g. See Figure 1.

These parametric families of switching and selection functions will play an important role
in illustrating our general results. We now discuss a variety of economic examples which are
(qualitatively) covered by these families of functions.

• Online Social Networking Services (Facebook, Google+, MySpace, Friendster): Here
adoption probabilities grow slowly with a small fraction of adopting neighbors, since
there is little value in using social networking services if none of your friends are using
them; thus a convex switching function f (r > 1) might be a reasonable model. However,
given that it is currently difficult or impossible to export friends and other settings
from one service to another, there are strong platform effects in service selection, so a
polarizing or even winner-take-all selection function g (s > 1) is appropriate.

• Televisions, Desktop Computers: Televisions and computers are immediately useful
without the need for adoption by neighbors. The adoption by neighbors serves mainly
as a route for information sharing about value of the product. The information value
of more neighbors adopting a product is falling with adoption and so a concave f is ap-
propriate. Compared to social networking services, the platform effects are lower here,
and so a linear or equalizing g is appropriate.

• Mobile Phone Service Providers (Verizon, T-Mobile, AT&T): Mobile phone service was
immediately useful upon its introduction without adoption by neighbors, since one could

8



always call land lines, thus arguing for a concave f . Since telephony systems need to
be interoperable, platform effects derive mainly from marketing efforts such as “Friends
and Family” programs, and thus are extant but perhaps weak, suggesting a strongly
equalizing g.

In the proofs of some of our results, it will sometimes be convenient to use a more general
adoption function formulation with some additional technical conditions that are met by
our switching-selection formulation. We will refer to this general, single-step model as the
generalized adoption function model. In this model, if the local fractions of Red and Blue
neighbors are αR and αB, the probability that we update the vertex with an R infection is
h(αR, αB) for some adoption function h with range [0, 1], and symmetrically the probability
of B infection is thus h(αB, αR). Let us use H(αR, αB) = h(αR, αB) + h(αB, αR) to denote
the total infection probability under h. Note that we can still always decompose h into a two-
step process by defining the switching function to be f(αR, αB) = H(αR, αB) and defining
the selection function to be g(αR, αB) = h(αR, αB)/(h(αR, αB) + h(αB, αR)) (the infection-
conditional probability that R wins the infection). The switching-selection model is thus the
special case of the generalized adoption function model in which H(αR, αB) is a function of
only αR + αB, and g(αR, αB) is a function of only αR/(αR + αB).6

4 Equilibria in Networks: Some Examples

This section shows that our framework yields a very rich class of competitive strategies, which
depend in subtle ways on the dynamics, the relative budgets of the players and the structure
of the social network.

Price of Anarchy: Suppose that budgets of the firms are KR = KB = 1, and the update
rule is such that all vertices are updated only once. The network contains two connected
components with 10 vertices and 100 vertices, respectively. In each component there are 2
influential vertices, each of which is connected to the other 8 and 98 vertices, respectively. So
in component 1, there are 16 directed links while in component 2 there are 196 directed links
in all.

Suppose that the switching function and the selection function are both linear, f(x) = x
and g(y) = y. Then there is a unique equilibrium in which players place their seeds on distinct
influential vertices of component 2. The total infection is then 100 and this is the maximum
number of infections possible with 2 seeds. So here the PoA is 1.

6While the decomposition in terms of a switching function and a selection function accommodates a fairly
wide range of adoption dynamics there are some cases which are ruled out. Consider the choice h(x, y) =
x(1 − y2); it is easily verified that h(x, y) is competitive, and simple calculus reveals that the total adoption
probability of adoption H(x, y) is increasing in x and y. But H(x, y) clearly cannot be expressed as a function
of the form f(x+y). Similarly, it is easy to construct an adoption function that is not only not decomposable,
but violates monotonicity. Imagine consumers that prefer to adopt the majority choice in their neighborhood,
but will only adopt once their local neighborhood market is sufficiently settled in favor of one or the other
product. The probability of total adoption may then be higher with x = 0.2, y = 0 as compared to x = y = 0.4.
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Let us now alter the switching function such that f(1/2) = ε for some ε < 1/2 (keeping
f(1) = 1, as always), but retain the selection to be g(y) = y. Now there also exists an
equilibrium in which the firms locate on the influential vertices of component 1. In equilibrium
payoffs to each player are equal to 5. Observe that for ε < 1/25, a deviation to the other
component is not profitable: it yields an expected payoff equal to ε× 100, and this is strictly
smaller than 5. Since it is still possible to infect component 2 with 2 seeds, the PoA is 10.
Here inefficiency is created by a coordination failure of the players.

Finally, suppose there is only one component with 110 vertices, with 2 influential vertices
and 108 vertices receiving directed links. Then equilibrium under both switching functions
considered above will involve firms locating at the 2 influential vertices and this will lead to
infection of all vertices. So the PoA is 1, irrespective of whether the switching function is
linear f(x) = x or whether f(1/2) < 1/25.

We have shown for a fixed network, updating rule and selection function, variations in the
switching function can generate large variations in the PoA. Similarly, for fixed update rule
and switching and selection functions, a change in the network yields very different PoA.

Theorem 1 provides a set of sufficient conditions on switching and selection function, under
which the PoA is uniformly bounded from above. Theorem 3 shows how even small violations
of these conditions can lead to arbitrarily high PoA.

Price of Budgets: Suppose that budgets of the firms are KR = 1, KB = 2 and the
update rule is such that all vertices are updated only once. The network contains 3 influential
vertices, each of which has a directed link to all the other n−3 vertices, respectively. So there
are (n− 3)3 links in all. Let n >> 3.

Suppose the switching function and selection function are both linear, i.e., f(x) = x and
g(y) = y. There is a unique equilibrium and in this equilibrium, players will place their
resources on distinct influential vertices. The (expected) payoffs to player R are n/3, while
the payoff to player B are 2n/3. So the PoB is equal to 1.

Next, suppose the switching function is convex with f(2/3) = 1/25, and the selection
function g(y) is as in Tullock (1980). Suppose the two players place their resources on the
three influential vertices. The payoffs to R are g(1/3)n, while firm B earns g(2/3)n. Clearly
this is optimal for firm B as any deviation can only lower payoffs. And, it can be checked
that a deviation by firm R to one of the influential vertices occupied by player B will yield a
payoff of n/100 (approximately). So the configuration specified is an equilibrium so long as
g(1/3) ≥ 1/100. The PoB is now (approximately) 50.

Finally, suppose the network consists of ` equally-sized connected components. In each
component, there is 1 influential vertex which has a directed link to each of the (n/`) − 1
other vertices. In equilibrium each player locates on a distinct influential vertex, irrespective
of whether the switching function is convex or concave and whether the Tullock selection
function is linear (s = 1) or whether it is polarizing (s > 1).

These examples show that for fixed network and updating rule, variations in the switching
and selection functions generate large variations in PoB. Moreover, for fixed switching and
selection functions the payoffs depend crucially on the network.
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Theorem 4 provides a set of sufficient conditions on the switching and selection function,
under which the PoB is uniformly bounded. Theorem 5 shows how even small violations of
these conditions can lead to arbitrarily high PoB. Theorem 6 illustrates the role of concavity
of the switching function in shaping the PoB.

5 Results: Price of Anarchy

We first state and prove a theorem providing general conditions in the switching-selection
model under which the Price of Anarchy is bounded by a constant that is independent of the
size and structure of the graph G. The simplest characterization is that f being any concave
function (satisfying f(0) = 0, f(1) = 1 and f increasing), and g being the linear voter function
g(y) = y leads to bounded PoA; but we shall see the conditions allow for certain combinations
of concave f and nonlinear g as well. we then prove a lower bound showing that the concavity
of f is required for bounded PoA in a very strong sense. A slight departure from concavity
can lead to unbounded POA.

5.1 PoA: Upper Bound

We find it useful to state and prove our theorems using the generalized adoption model
formulation described in the previous section, but with some additional conditions on h that
we now discuss. If h(αR, αB) (respectively, h(αB, αR)) is the probability that a vertex with
fractions αR and αB of R and B neighbors is infected by R (respectively, B), we say that the
total infection probability H(αR, αB) = h(αR, αB)+h(αB, αR) is additive in its arguments (or
simply additive if H can be written H(αR, αB) = f(αR + αB) for some increasing function f
— in other words, h permits interpretation as a switching function. We shall say that h is
competitive if h(αR, αB) ≤ h(αR, 0) for all αR, αB ∈ [0, 1]. In other words, a player always has
equal or higher infection probability in the absence of the other player.

Observe that the switching-selection formulation always satisfies the additivity property.
Moreover, in the switching-selection formulation, if g is linear, the competitiveness condition
becomes h(x, y) = f(x + y)(x/(x + y)) ≤ f(x) = h(x, 0) or f(x + y)/(x + y) ≤ f(x)/x; this
condition is satisfied by the concavity of f . We will later see that the following theorem also
applies to certain combinations of concave f and nonlinear g.

The first theorem can now be stated.

Theorem 1 If the adoption function h(αR, αB) is competitive and H is additive in its argu-
ments, then Price of Anarchy is at most 4 for any graph G.

Proof:We establish the theorem via a series of lemmas and inequalities that can be summa-
rized as follows. Let (S∗

R, S
∗
B) be an initial allocation of infections that gives the maximum

joint payoff, and let (SR, SB) be a pure7 Nash equilibrium with SR being the larger set of seeds,

7The extension to mixed strategies is straightforward and omitted.
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so KR = |S∗
R| = |SR| ≥ KB = |S∗

B| = |SB|. We first establish a general lemma (Lemma 1) that
implies that the set S∗

R alone (without S∗
B present) must yield payoffs close to the maximum

joint payoff (Corollary 1). The proof involves the construction of a coupled stochastic process
technique we employ repeatedly in the paper. We then contemplate a unilateral defection
of the Red player to (S∗

R, SB). Another coupling argument (Lemma 2) establishes that the
total payoffs for both players under (S∗

R, SB) must be at least those for the Red player alone
under (S∗

R, ∅). This means that under (S∗
R, SB), one of the two players must be approaching

the maximum joint infections. If it is Red, we are done, since Red’s equilibrium payoff must
also be this large. If it is Blue, Lemma 1 implies that Blue could still get this large payoff
even under the departure of Red. Next we invoke Lemma 2 to show that total eventual payoff
to both players under (SR, SB) must exceed this large payoff accruing to Blue, proving the
theorem.

Lemma 1 Let AR and AB be any sets of seed vertices for the two players. Then if h is
competitive and H is additive,

E[χR|(AR, ∅)] ≥ E[χR|(AR, AB)]

and
E[χB|(∅, AB)] ≥ E[χB|(AR, AB)].

Proof:We provide the proof for the first statement involving χR; the proof for χB is identical.
We introduce a simple coupled simulation technique that we shall appeal to several times
throughout the paper. Consider the stochastic dynamical process on G under two different
initial conditions: both AR and AB are present (the joint process, denoted (AR, AB) in the
conditioning in the statement of the lemma); and only the set AR is present (the solo Red
process, denoted (AR, ∅)). Our goal is to define a new stochastic process on G, called the
coupled process , in which the state of each vertex v will be a pair < Xv, Yv >. We shall
arrange that Xv faithfully represents the state of a vertex in the joint process, and Yv the
state in the solo Red process. However, these state components will be correlated or a coupled
in a deliberate manner. More precisely, we wish to arrange the coupled process to have the
following properties:

1. At each step, and for any vertex state < Xv, Yv >, Xv ∈ {U,R,B} and Yv ∈ {U,R}.

2. Projecting the states of the coupled process onto either component faithfully yields the
respective process. Thus, if < Xv, Yv > represents the state of vertex v in the coupled
process, then the {Xv} are stochastically identical to the joint process, and the {Yv} are
stochastically identical to the solo Red process.

3. At each step, and for any vertex state < Xv, Yv >, Xv = R implies Yv = R.

Note that the first two properties are easily achieved by simply running independent joint and
solo Red processes. But this will violate the third property, which yields the lemma, and thus
we introduce the coupling.

12



For any vertex v, we define its initial coupled process state < Xv, Yv > as follows: Xv = R
if v ∈ AR, Xv = B if v ∈ AB, and Xv = U otherwise; and Yv = R if v ∈ AR, and Yv = U
otherwise. It is easily verified that these initial states satisfy Properties 1 and 3 above, thus
encoding the initial states of the two separate processes.

Now consider the first vertex v to be updated in the coupled process. Let αR
v denote the

fraction of v’s neighbors w such that Xw = R, and αB
v the fraction such that Xw = B. Note

that by the initialization of the coupled process, αR
v is also equal to the fraction of Yw = r

(which we denote α̃R
v ).

In the joint process, the probability that v is updated to R is h(αR
v , α

B
v ), and to B is

h(αB
v , α

R
v ). In the solo Red process, the probability that v is updated to R is h(αR

v , 0), which
by competitiveness is greater than or equal to h(αR

v , α
B
v ).

Figure 2: Illustration of the coupled dynamics defined in the proof of Lemma 1. In the update
dynamic for Xv (top line), the probabilities of Red and Blue updates are represented by disjoint line
segments of length h(αR

v , α
B
v ) and h(αB

v , α
R
v ) respectively. By competitiveness, the Red segment has

length less than h(αR
v , 0), which is the probability of Red update of Yv (bottom line). The dashed red

lines indicate this inequality. Thus by the arrangement of the line segments we enforce the invariant
that Xv = R implies Yv = R.

We can thus define the update dynamics of the coupled process as follows: pick a real
value z uniformly at random from [0, 1]. Update the state < Xv, Yv > of v as follows:

• Xv update: If z ∈ [0, h(αR
v , α

B
v )), update Xv to R; if z ∈ [h(αR

v , α
B
v ), h(αR

v , α
B
v ) +

h(αB
v , α

R
v )], update Xv to B; otherwise, update Xv to U . Note that the probabilities

Xv are updated to R and B exactly match those of the joint process, as required by
Property 2 above. See Figure 2.

• Yv update: If z ∈ [0, h(αR
v , 0)], update Yv to R; otherwise, update Yv to U . The proba-

bility Yv is updated to R is thus exactly h(αR
v , 0), matching that in a solo Red process.

See Figure 2.

Since by competitiveness, z ∈ [0, h(αR
v , α

B
v )) implies z ∈ [0, hR(αR

v , 0)], we ensure Property 3.
Thus in subsequent updates we shall have αR ≤ α̃R. Thus as long as h(αR, αB) ≤ h(α̃R, 0) we

13



can continue to maintain the invariant. These inequalities follow from competitiveness and
the additivity of H.

Since Properties 2 and 3 hold on an update-by-update basis in any run or sample path of
the coupled dynamics, they also hold in expectation over runs, yielding the statement of the
lemma. (Lemma 1)

Corollary 1 Let AR and AB be any sets of seeded nodes for the two players. Then if the
adoption function h(αR, αB) is competitive and H is additive,

E[χR + χB|(AR, AB)] ≤ E[χR|(AR, ∅)] + E[χB|(∅, AB)].

Proof:Follows from linearity of expectation applied to the left hand side of the inequality,
and two applications of Lemma 1. (Corollary 1)

Let (S∗
R, S

∗
B) be the maximum joint payoff seed sets. Let (SR, SB) be any (pure) Nash

equilibrium, with SR having the larger budget. Corollary 1 implies that one of E[χR|(S∗
R, ∅)]

and E[χB|(∅, S∗
B)] is at least E[χR +χB|(S∗

R, S
∗
B)]/2; so assume without loss of generality that

E[χR|(S∗
R, ∅)] ≥ E[χR + χB|(S∗

R, S
∗
B)]/2. Let us now contemplate a unilateral defection of the

Red player from SR to S∗
R, in which case the strategies are (S∗

R, SB). In the following lemma
we show that total number of eventual adoptions for the two players is larger than adoptions
accruing to a single player under solo seeding.

Lemma 2 Let AR and AB be any sets of seeded nodes for the two players. If H is additive,

E[χR + χB|(AR, AB)] ≥ E[χR|(AR, ∅)].

Proof:We employ a coupling argument similar to that in the proof of Lemma 1. We define a
stochastic process in which the state of a vertex v is a pair < Xv, Yv > in which the following
properties are obeyed:

1. At each step, and for any vertex state < Xv, Yv >, Xv ∈ {R,B,U} and Yv ∈ {R,U}.

2. Projecting the state of the coupled process onto either component faithfully yields the
respective process. Thus, if < Xv, Yv > represents the state of vertex v in the coupled
process, then the {Xv} are stochastically identical to the joint process (AR, AB), and
the {Yv} are stochastically identical to the solo Red process (AR, ∅).

3. At each step, and for any vertex state < Xv, Yv >, Yv = R implies Xv = R or Xv = B.

We initialize the coupled process in the obvious way: if v ∈ AR then Xv = R, if v ∈ AB

then Xv = B, and Xv = U otherwise; and if v ∈ AR then Yv = R, and Yv = U otherwise.
Let us fix a vertex v to update, and let αR

v , α
B
v denote the fraction of neighbors w of v with

Xw = R and Xw = B respectively, and let α̃R
v denote the fraction with Yw = R. Initially we

have αR
v = α̃R

v .

14



Figure 3: Illustration of the coupled dynamics defined in the proof of Lemma 2. In the update
dynamic for Xv (top line), the probabilities of Red and Blue updates are represented by line segments
of length h(αR

v , α
B
v ) and h(αB

v , α
R
v ) respectively. By additivity of H, together these two segments are

greater than h(αR
v , 0) which is the probability of Red update of Yv (bottom line). This inequality is

represented by the dashed black lines.

On the first update of v in the joint process (AR, AB), the total probability infection
by either R or B is H(αR

v , α
B
v ) = h(αR

v , α
B
v ) + h(αB

v , α
R
v ). In the solo process (AR, ∅), the

probability of infection by R is h(αR
v , 0) ≤ h(αR

v , 0)+h(0, αR
v ) = H(αR

v , 0) ≤ H(αR
v , α

B
v ) where

the last inequality follows by the additivity of H.
We thus define the update dynamics in the coupled process as follows: pick a real value z

uniformly at random from [0, 1]. Update < Xv, Yv > as follows:

• Xv update: If z ∈ [0, h(αR
v , α

B
v )), update Xv to R; if z ∈ [h(αR

v , α
B
v ), h(αR

v , α
B
v ) +

h(αB
v , α

R
v )] ≡ [h(αR

v , α
B
v ), H(αR

v , α
B
v )], update Xv to B; otherwise update Xv to U . See

Figure 3.

• Yv update: If r ∈ [0, h(αR
v , 0)), update Yv to R; otherwise update Yv to U . See Figure 3.

It is easily verified that at each such update, the probabilities of R and B updates of Xv are
exactly as in the joint (AR, AB) process, and the probability of an R update of Yv is exactly
as in the solo (AR, ∅) process, thus maintaining Property 2 above. Property 3 follows from
the previously established fact that h(αR

v , 0) ≤ H(αR
v , α

B
v ), so whenever Yv is updated to R,

Xv is updated to either R or B.
Notice that since h(αR

v , 0) ≥ h(αR
v , α

B
v ) by competitiveness, for the overall theorem (which

requires competitiveness of h) we cannot ensure that Yv = R is always accompanied by
Xv = R. Thus the Red infections in the solo process may exceed those in the joint process,
yielding α̃R

v > αR
v for subsequent updates. To maintain Property 3 in subsequent updates we

thus require that α̃R
v ≤ αR

v +αB
v implies h(α̃R

v , 0) ≤ H(α̃R
v , 0) ≤ H(αR

v , α
B
v ) which follows from

the additivity of H. Also, notice that since the lemma holds for every fixed AR and AB, it
also holds in expectation for mixed strategies. (Lemma 2)
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Continuing the analysis of a unilateral defection by the Red player from SR to S∗
R, we have

thus established

E[χR + χB|(S∗
R, SB)] = E[χR|(S∗

R, SB)] + E[χB|(S∗
R, SB)]

≥ E[χR|(S∗
R, ∅)]

≥ E[χR + χB|(S∗
R, S

∗
B)]/2

where the equality is by linearity of expectation, the first inequality follows from Lemma 2,
and the second inequality from Corollary 1. Thus one of E[χR|(S∗

R, SB)] and E[χB|(S∗
R, SB)]

must be at least E[χR + χB|(S∗
R, S

∗
B)]/4.

If E[χR|(S∗
R, SB)] ≥ E[χR +χB|(R∗, B∗)]/4, then since (SR, SB) is Nash, we must also have

E[χR|(SR, SB)] ≥ E[χR + χB|(S∗
R, S

∗
B)]/4, and the theorem is proved. Thus the remaining

case is where E[χB|(S∗
R, SB)] ≥ E[χR +χB|(S∗

R, S
∗
B)]/4. But Lemma 1 has already established

that E[χB|(∅, SB)] ≥ E[χB|(S∗
R, SB)], and from Lemma 2 we have E[χR + χB|(SR, SB)] ≥

E[χB|(∅, SB)]. Combining, we have the following chain of inequalities:

E[χR + χB|(SR, SB)] ≥ E[χB|(∅, SB)] ≥ E[χB|(S∗
R, SB)] ≥ E[χR + χB|(S∗

R, S
∗
B)]/4

thus establishing the theorem. (Theorem 1)

Recall that the switching-selection formulation in which f is concave and g is linear satisfies
the hypothesis of the Theorem above. But Theorem 1 also provides more general conditions for
bounded PoA in the switching-selection model. For example, suppose we consider switching
functions of the form f(x) = xr for r ≤ 1 (thus yielding concavity) and selection functions
of the Tullock contest form g(y) = 1/(1 + ((1 − y)/y)), as discussed in Section 2.2. Letting
a and b denote the local fraction of Red and Blue neighbors for notational convenience, this
leads to an adoption function of the form h(a, b) = (a + b)r/(1 + (b/a)s). The condition for
competitiveness is

h(a, 0)− h(a, b) = ar − (a+ b)r/(1 + (b/a)s) ≥ 0.

Dividing through by (a+ b)r yields

(a/(a+ b))r − 1/(1 + (b/a)s) = 1/(1 + (b/a))r − 1/(1 + (b/a)s) ≥ 0.

Making the substitution z = b/a and moving the second term to the right-hand side gives

1/(1 + z)r ≥ 1/(1 + z)s.

Thus competitiveness is equivalent to the condition 1 + zs ≥ (1 + z)r for all z ≥ 0. Consider
the choice r = 1/2. In this case the condition becomes 1 + zs ≥

√
1 + z, or (1 + zs)2 ≥ 1 + z.

Expanding gives 1 + 2zs + z2s ≥ 1 + z. It is easily seen this inequality is obeyed for all z ≥ 0
provided s ∈ [1/2, 1], since then for all z ≥ 1 we have z2s ≥ z, and for all z ≤ 1 we have
zs ≥ z. More generally, if we let r = 1/k for some natural number k, the competitiveness
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condition becomes (1 + zs)k ≥ 1 + z. The smallest power of z generated by the left-hand side
is zs and the largest is zsk. As long as sk ≥ 1, zsk ≥ z for z ≥ 1, and as long as s ≤ 1 then
zs ≥ z for z ≤ 1. Thus any s ∈ [1/k, 1] yields competitiveness. In other words, the more
concave f is (i.e. the larger k is), the more non-linearly equalizing g can be (i.e. the smaller
s can be) while maintaining competitiveness. By Theorem 1 we have thus shown:

Corollary 2 Let the switching function be f(x) = xr for r ≤ 1 and the selection function be
g(y) = 1/(1 + ((1− y)/y)s). Then as long as s ∈ [r, 1], the Price of Anarchy is at most 4 for
any graph G.

5.2 PoA: Lower Bound

We now show that concavity of the switching function is required in a very strong sense —
essentially, even a a slight departure from convexity leads to unbounded PoA. As a first step
in this demonstration, it is useful to begin with a simpler result showing that the PoA is
unbounded if the switching function is permitted to violate concavity to an arbitrary extent.

Theorem 2 Fix α∗ ∈ (0, 1), and let the switching function f be the threshold function f(x) =
0 for x < α∗, and f(x) = 1 for x ≥ α∗. Let the selection function be linear g(y) = y. Then
for any value V > 0, there exists G such that the Price of Anarchy in G is greater than V .

Proof:Let m be a large integer, and set the initial budgets of both players to be α∗m/2. The
graph G will consist of two components. The first component C1 consists of two layers; the
first layer has m vertices and the second n1 vertices, and there is a directed edge from every
vertex in the first layer to every vertex in the second layer. The second component C2 has
the same structure, but with m vertices in the first layer and n2 in the second layer. We let
n2 >> n1 >> m. For concreteness, let us choose an update schedule that updates each vertex
in the second layers of the two components exactly once in some fixed ordering (the same
result holds for many other updating schedules).

It is easy to see that the maximum joint profit solution is to place the combined α∗m
of seeds of the two players in the first layer C2, in which case the number of second-layer
infections will be n2 since f(α∗) = 1. Any configuration which places at least one infection in
each of the two components will not cause any second-layer infections, since then the threshold
of f will not be exceeding in either component.

It is also easy to see that both players placing all their infections in the first layer of C1,
which will result in n1 infections in the second layer since the threshold is exceeded, is a Nash
equilibrium. Any defection of a player to C2, or to layer 2 of C1, causes the threshold to no
longer be exceeded in either component. Thus the PoA here is n2/n1, which can be made
arbitrarily large. Note that the maximum joint infections solution is also a Nash equilibrium
— we are exploiting the worst-case (over Nash) nature of the PoA here (as will all our lower
bounds). (Theorem 2)
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Thus, a switching function strongly violating concavity can lead to unbounded PoA even
with a linear selection function. But it turns out that functions even slightly violating con-
cavity also cause unbounded PoA — as we shall see, network structure can amplify small
amounts of convexity.8

Figure 4: Illustration of convexity amplification in the Price of Anarchy lower bound of Theorem 3,
under convex switching function f(x) = x3 and linear selection function g. Left: Two-component,
directed, layered “flower” graph, with the right flower having many more petals than the left. In
one equilibrium, both players play in the first layer of the stem of the smaller flower. The convexity
of f does not enter the dynamics, since at each update an entire successive layer is infected, quickly
reaching the petals. There is also a better equilibrium (not shown), in which the players play in
the first layer of the larger flower, and again there is complete infection, but with larger payoffs.
Right: However, if the two players locate in different components, layers are not fully infected and
the convexity of f is amplified via composition in successive layers, damping out the infection rate
quickly.

Theorem 3 Let the switching function be f(x) = xr for any r > 1, and let the selection
function be linear g(y) = y. Then for any V > 0, there exists a graph G for which the Price
of Anarchy is greater than V .

Proof:The idea is to create a layered, directed graph whose dynamics rapidly amplify the
convexity of f . Taking two such amplification gadgets of differing sizes yields an equilibrium
in which the players coordinate on the smaller component, while the maximum joint payoffs
solution lies in the larger component. The construction of the proof is illustrated in Figure 4.

The amplification gadget will be a layered, directed graph with `i vertices in the ith layer
and N layers total. There are directed edges from every vertex in layer i to every vertex
in layer i + 1, and no other edges. Let the two players have equal budgets of k, and define
α = 2k/`1 — thus, α is the fraction of layer 1 the two players could jointly infect.

8The theorem which follows considers the family f(α) = αr, but can be generalized to other choices of
convex f as well.
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Let us consider what happens if indeed the two players jointly infect 2k vertices in the first
layer, and the update schedule proceeds by updating each successive layer 2, . . . , N . Since
every vertex in layer 2 has every vertex in layer 1 as a directed neighbor, and no others, the
expected fraction of layer 2 that is infected is f(α) = αr. Inductively, the expected fraction
of layer 3 that is infected is thus f(f(α)) = αr2 . In general, the expected fraction of layer i
that is infected is αri−1

, and by the linearity of g the two players will split these infections.
Here, we note that the actual path of infections will be stochastic; this stochastic path is well
approximated by the expected infections, if layers are sufficiently large. Throughout this proof
we will use this approximation (which relies on an appeal to the strong law of large numbers).

Now let α = β1 + β2, and let us instead place β1`1 seeds at layer 1 and β2`1 at layer
i. The total number of infections expected at layer i now becomes βri−1

1 `i + β2`1. By the
convexity of the function f (i−1)(x) = xr

i−1
, this will be smaller than αri−1

`i = (β1 + β2)
ri−1

`i
as long as β2`1 < βri−1

2 `i, or `i > `1/β
ri−2

2 . Also, notice that the smallest nonzero deviation
requires β2`1 ≥ 1, or β2 ≥ 1/`1. Thus as long as `i ≥ `r

i−1

1 , the total fraction of infections
generated by placing β1`1 seeds at layer 1 and β2`1 at layer i will be less than by placing all in
layer 1. Furthermore, by the linearity of g, any individual player who effects such a unilateral
deviation will suffer.

Note that we can make the final, Nth, layer arbitrarily large. In particular, if we choose
`i = `r

i−1

1 as specified above for all 2 ≤ i ≤ N − 1, and choose αrN−1
`N >>

∑N−1
i=1 αri−1

`i, the
total expected number of infections conditioned on both players playing in the first layer will
be dominated by the αrN−1

`N expected infections in the final layer.
Now consider a graph consisting of two disjoint amplification gadgets G1 and G2 that

are exactly as described above, but differ only in the sizes of their final Nth layers — `N(1)
for G1 and `N(2) for G2, where we will choose `N(2) >> `N(1). Consider a configuration
where all seeds are in the first layer of G1. We have already argued above that no deviation
to later layers of G1 can be profitable. Now let us consider a unilateral deviation of the Red
player from G1 to the first layer of G2. Since Red alone infects now only infects a fraction
α/2 of the `1 vertices in the first layer of G2, the expected final number of Red infections will
be approximately (α/2)r

N−1
`N(2), compared with αrN−1

`N(1)/2 for not deviating from G1.
Thus as long as (α/2)r

N−1
`N(2) ≤ αrN−1

`N(1)/2, or `N(2)/`N(1) ≤ 2rN−1−1, this deviation
is unprofitable for Red. More generally, if Red unilaterally divides its (α/2)`1 resources by
placing a fraction β1 of them in the first layer of G1 and a fraction β2 = 1− β of them in the
first layer of G2, its expected payoff is

[(1 + β1)(α/2)]r
N−1

`N(1)
β1

1 + β1
+ [β2(α/2)]r

N−1

`N(2).

The first term of this sum represents the share of the final layer of G1 that Red obtains
given that Blue is playing entirely in this component, while the second term represents the
uncontested infections Red wins in G2. This expression can be written as

αrN−1

[(
1 + β1

2

)rN−1

`N(1)
β1

1 + β1
+

(
1− β1

2

)rN−1

`N(2)

]
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which for the choice `N(2) = 2rN−1
`N(1)/2 becomes

αrN−1

[(
1 + β1

2

)rN−1

`N(1)
β1

1 + β1
+ (1− β1)r

N−1

`N(1)/2

]
.

For any 0 < β1 < 1, both terms inside the brackets above are exponentially damped and
result in suboptimal payoff for Red. Thus the best response choices are given by the extremes
β1 = 1 and β1 = 0, which both yield expected payoff `N(1)/2 for Red. (Note that by choosing
`N(2) slightly smaller above, we can force β1 = 1 to be a strict best response.)

However, the maximum joint payoffs solution (as well as the best, as opposed to worst
Nash equilibrium) is for both players to initially infect in the first layer of G2, in which case
the total payoff will be approximately αrN−1

`N(2). The Price of Anarchy is thus

αrN−1
`N(2)

αrN−1`N(1)
=
`N(2)

`N(1)
≥ 2rN−1−1

by the choice of `N(2) above. Thus by choosing the number of layers N as large as needed,
the Price of Anarchy exceeds any finite bound V . (Theorem 3)

Combining Theorem 1 and Theorem 3, we note that for f(x) = xr and linear g we obtain
the following sharp threshold result:

Corollary 3 Let the switching function be f(x) = xr, and let the selection function be linear,
g(y) = y. Then:

• For any r ≤ 1, the Price of Anarchy is at most 4 for any graph G;

• For any r > 1 and any V , there exists a graph G for which the Price of Anarchy is
greater than V .

6 Results: The Price of Budgets

As we did for the PoA in Section 5, in this section we derive sufficient conditions for bounded
PoB, and show that even slight violations of these conditions can lead to unbounded PoB.

6.1 PoB: Upper Bound

As in the PoA analysis, it will be technically convenient to return to the generalized adoption
function model. Recall that for PoA, competitiveness of h and additivity of H were needed to
prove upper bounds, but we didn’t require that the implied selection function be linear. Here
we introduce that additional requirement, and prove that the (pure strategy) PoB is bounded.
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Theorem 4 Suppose the adoption functions h(αR, αB) is competitive, that H is additive in its
arguments, and that implied selection function is linear: g(αR, αB) = h(αR, αB)/(h(αR, αB) +
h(αB, αB)) = αR/(αR + αB). Then the pure strategy 9 Price of Budgets is at most 2 for any
graph G.

Proof:The proof borrows elements from the proof of Theorem 1, and introduces the additional
notion of tracking or attributing indirect infections generated by the dynamics to specific
seeding strategies.

Consider any pure Nash equilibrium given by seed sets SR and SB in which |SR| =
K > |SB| = L. For our purposes the interesting case is one in which E[χR|(SR, SB)] ≥
E[χB|(SR, SB))] and so E[χR|(SR, SB)] ≥ E[χR +χB|(SR, SB)]/2. Since the adoption function
is competitive and additive, Lemma 1 implies that E[χR|(SR, ∅)] ≥ E[χR|(SR, SB)] — that is,
the Red player only benefits from the departure of the Blue player.

Let us consider the dynamics of the solo Red process given by (SR, ∅). We first introduce a
faithful simulation of these dynamics that also allows us to attribute subsequent infections to
exactly one of the seeds in SR; we shall call this process the attribution simulation of (SR, ∅).
Thus, let SR = {v1, . . . , vK} be the initial Red infections, and let us label vi by Ri, and label
all other vertices U . All infections in the process will also be assigned one of the K labels Ri in
the following manner: when updating a vertex v, we first compute the fraction αR

v of neighbors
whose current label is one of R1, . . . , RK , and with probability H(αR

v , 0) = h(αR
v , 0) +h(0, αR

v )
we decide that an infection will occur (otherwise the label of v is updated to U). If an infection
occurs, we simply choose an infected neighbor of v uniformly at random, and update v to have
the same label (which will be one of the Ri). It is easily seen that at every step, the dynamics
of the (SR, ∅) process are faithfully implemented if we drop label subscripts and simply view
any label Ri as a generic Red infection R. Furthermore, at all times every infected vertex has
only one of the labels Ri. Thus if we denote the expected number of vertices with label Ri

by E[χRi
|(SR, ∅)], we have E[χR|(SR, ∅)] =

∑K
i=1 E[χRi

|(SR, ∅)]. Let us assume without loss
of generality that the labels Ri are sorted in order of decreasing E[χRi

|(SR, ∅)].
We now consider the payoff to the Blue player under a unilateral defection from SB to the

set ŜB = {v1, . . . , vL} ⊂ SR — that is, the L “most profitable” initial infections in SR. Our
goal is to show that the Blue player must enjoy roughly the same payoff from these L seeds
as the Red player did in the solo attribution simulation.

Lemma 3 E[χB|(SR, ŜB)] ≥ 1
2

∑L
i=1 E[χRi

|(SR, ∅)] ≥ L
2K

E[χR|(SR, ∅)].

Proof:The second inequality follows simply from E[χR|(SR, ∅)] =
∑K

i=1 E[χRi
|(SR, ∅)], estab-

lished above, and fact that the vertices in SR are ordered in decreasing profitability. For the
first inequality, we introduce coupled attribution simulations for the two processes (SR, ∅)

9The theorem actually holds for any equilibrium in which the player with the larger budget plays a pure
strategy; the player with smaller budget may always play mixed. It is easy to find cases with such equilibria.
The theorem also holds for general mixed strategies under certain conditions — for instance, when both f and
g are linear and the larger budget is an integer multiple of the smaller.
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(the solo Red process) and (SR, ŜB). For simplicity, let us actually examine (SR, ∅) and
(SR − ŜB, ŜB); the latter joint process is simply the process (SR, ŜB), but in which the con-
tested seeded nodes in ŜB are all won by the Blue player. (The proof for the general (SR, ŜB)
case is the same but causes the factor of 1/2 in the lemma.)

The coupled attribution dynamics are as follows: as above, in the solo Red process, for
1 ≤ i ≤ L, the vertex vi in SR is initially labeled Ri, and all other vertices are labeled U . In
the joint process, the vertex vi is labeled Bi for i ≤ L (corresponding to the Blue invasions
of SR), while for L < i ≤ K the vertex vi is labeled Ri as before. Now at the first update
vertex v, let αR

v be the fraction of Red neighbors in the solo process, and let α̃R
v and α̃B

v be
the fraction of Red and Blue neighbors, respectively, in the joint process.

Note that initially we have αR
v = α̃R

v + α̃B
v . Thus by additivity H, the total probabilities

of infection H(αR
v , 0) and H(α̃R

v , α̃
B
v ) in the two processes must be identical. We thus flip a

common coin with this shared infection probability to determine whether infections occur in
the coupled process. If not, v is updated to U in both processes. If so, we now use a coupled
attribution step in which we pick an infected neighbor of v at random and copy its label to
v in both processes. Thus if a label with index i ≤ L is chosen, v will be updated to Ri in
the solo process, and to Bi in the joint process; whereas if L < i ≤ K is chosen, the update
will be to Ri in both processes. It is easily verified that each of the two processes faithfully
implement the dynamics of the solo and joint attribution processes, respectively.

This coupled update dynamic maintains two invariants: infections are always matched
in the two processes, thus maintaining αR

v = α̃R
v + α̃B

v for all v and every step; and for all
i ≤ L, every Ri attribution in the solo Red process is matched by a Bi attribution in the joint
process, thus establishing the lemma. (Lemma 3)

Thus, by simply imitating the strategy of the Red player in the L most profitable resources,
the Blue player can expect to infect (1/2)(L/K) proportion of infections accruing to Red in
isolation. Since (SR, SB) is an equilibrium, the payoffs of Blue in equilibrium must also respect
this inequality. (Theorem 4)

6.2 PoB: Lower Bound

We have already seen that concavity of f and linearity of g lead to bounded PoA and PoB,
and that even slight deviations from concavity can lead to unbounded PoA. We now show that
fixing f to be linear (which is concave), slight deviations from linearity of g towards polarizing
g can lead to unbounded PoB, for similar reasons as in the PoA case: graph structure can
amplify a slightly polarizing g towards arbitrarily high punishment of the minority player.

Theorem 5 Let the switching function be linear, f(x) = x, and let the selection function be
of Tullock contest form, g(y) = 1/(1 + ((1− y)/y)s), where s > 1. Then for any V > 0, there
exists a graph G for which the Price of Budgets is greater than V .
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Proof:As in the PoA lower bound, the proof relies on a layered amplification graph, this
time amplifying punishment in the selection function rather than convexity in the switching
function. The graph will consist of two components, C1 and C2.

Let us fix the budget of the Red player to be 3, and that of the Blue player to be 1 (the
proof generalizes to other unequal values). C1 is a directed, layered graph with k + 1 layers.
The first layer has 4 vertices, and layers 2 through k have n >> 4 vertices, while layer k + 1
has n1 vertices, where we shall choose n1 >> n, meaning that payoffs in C1 are dominated by
infections in the final layer.

The second component C2 is a 2-layer directed graph, with 1 vertex in the first layer and
n2 in the final layer, and all directed edges from layer 1 to 2. We will eventually choose
n2 << n1, so that C1 is the much bigger component. We choose an update rule in which each
layer is updated in succession and only once.

Consider the configuration in which Red places its 3 infections in the first layer of C1, and
Blue places its 1 infection in the first layer of C2. We shall later show that this configuration
is a Nash equilibrium. In this configuration, the expected payoff to Red is approximately∑k

i=2(3/4)n+ (3/4)n1 by linearity of f ; notice that the selection function does not enter since
the players are in disjoint components. Similarly, the expected payoff to Blue is n2. In this
configuration, the ratio of Red and Blue expected payoffs is thus at least (3/4)n1/n2, whereas
the initial budget ratio is 1/3. So the PoB for this configuration is at least n1/(4n2).

We now develop conditions under which this configuration is an equilibrium. It is easy to
verify that red is playing a best response. Moving vertices to later layers of C1 lowers Red’s
payoff, since n >> 4 and f is linear. Finally, moving infections to invade the first layer of C2

will lower Red’s payoff as long as, say, (1/4)n1 (Red’s current payoff per initial infection in
the final layer of C1) exceeds n2 (the maximum amount Red could get in C2 by full defection),
or n1 >> 4n2.

We now turn to deviations by Blue. Moving the solo Blue initial infection to the second
layer of C2 is clearly a losing proposition. So consider deviations in which Blue moves to
vertices in component 1. If he moves to the lone unoccupied vertex in layer 1 of C1, his payoff
is approximately:

k∑
i=2

g(i)(1/4)n+ g(k+1)(1/4)n1 =
k∑

i=2

(1/4)s
i

(1/4)si + (3/4)si
n+

(1/4)s
k+1

(1/4)sk+1 + (3/4)sk+1 n1

Similarly, if Blue directly invades a Red vertex, Blue’s payoff is approximately

χ =
k∑

i=2

(1/3)s
i

(1/3)si + (2/3)si
n+

(1/3)s
k+1

(1/3)sk+1 + (2/3)sk+1 n1

Since in both cases Blue’s payoff is being exponentially dampened at each successive layer, it
is easy to see that the second deviation is more profitable. Finally, Blue may choose a vertex
in a later layer of C1, but again by n >> 4 and the linearity of f , this will be suboptimal.
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Thus as long as we arrange that n2 — Blue’s payoff without deviation — exceeds χ above,
we will have ensured that no player has an incentive to deviate from the specified strategy
configuration. Let us scale n1 up as large as necessary to have χ dominated by the term
involving n1, and now set n2 to equal that term:

n2 =
(1/3)s

k+1

(1/3)sk+1 + (2/3)sk+1 n1

in order to satisfy the equilibrium condition. The ratio n1/n2, which we have already shown
above lower bounds the PoB, is thus a function that is increasing exponentially in k for any
fixed s > 1. Thus by choosing k sufficiently large, we can force the PoB larger than any chosen
value. This completes the proof. (Theorem 5)

Combining Theorem 4 and Theorem 5, we note that for linear f and Tullock g, we obtain
the following sharp threshold result, which is analogous to the PoB result in Corollary 3.

Corollary 4 Let the switching function f be linear, and let the selection function g be Tullock,
g(y) = 1/(1 + ((1− y)/y)s), where s > 1. Then:

• For s = 1, the Price of Budgets is at most 2 for any graph G;

• For any s > 1 and any V , there exists a graph G for which the Price of Budgets is
greater than V .

In fact, if we permit a slight generalization of our model, in which certain vertices in the
graph are “hard-wired” to adopt only one or the other color (so there is no use for the opposing
player to seed them), unbounded PoB also holds in the Tullock case for s < 1 (equalizing).
So in this generalization, linearity of g is required for bounded PoB.

Figure 5: Illustration of the construction in the proof of Theorem 6.

We have thus shown that even when the switching function is “nice” (linear), even slight
punishment in the selection function can lead to unbounded PoB. Recall that we require
switching and selection functions to be 0 (1, respectively) on input 0 (respectively) and in-
creasing, and additionally that g(1/2) = 1. The following theorem shows that if f is allowed to
be a sufficiently convex function, then the PoB is again unbounded for any selection function.
This establishes the importance of concavity of f for both bounded PoA and PoB.
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Theorem 6 Let the switching f satisfy f(1/2) = 0 and f(1) = 1, and let the selection
function g satisfy g(1/2) = 1. Then for any value V > 0, there exists G such that the Price
of Budgets is greater than V .

Proof:Let the Blue player have 1 initial infection and the Red player have K ≥ 2 (the proof
can be generalized to any unequal initial budgets, which we comment on below). Consider
the directed graph shown in the left panel of Figure 5, where we have arranged the 1 Blue and
K Red seeded nodes in a particular configuration. Aside from the initially infected vertices,
this graph consists of a directed chain of K vertices, whose final vertex then connects to a
large number N >> K of terminal vertices. Let us update each vertex in the chain from left
to right, followed by the terminal vertices.

Let us first compute the expected payoffs for the two players in this configuration. First,
note that since f(1) = 1, it is certain that every vertex in the chain will be infected in sequence,
followed by all of the terminal vertices; the only question is which player will win the most.
By choosing N >> K we can ignore the infections in the chain and just focus on the terminal
vertices, which will be won by whichever player infects the final chain vertex. It is easy to see
that the probability this vertex is won by Blue is 1/2K , since Blue must “beat” a competing
Red infection at every vertex in the chain. Thus the expected payoffs are approximately N/2K

for Blue and N(1− 1/2K) for Red. If this configuration were an equilibrium, the PoB would
thus be 2K/K, which can be made as large as desired by choosing K large enough.

However, this configuration is not an equilibrium — clearly, either player would be better
off by simplifying initially infecting the final vertex of the chain, thus winning all the terminal
vertices. This is fixed by the construction shown in the right panel of Figure 5, where we
have replicated the chain and terminal vertices M times, but have only the original K + 1
seeded nodes as common “inputs” to all of these replications. Notice that now if either player
defects to an uninfected vertex, neither player will receive any infections in any of the other
replications, since now there is a missing “input infection” and reaching the terminal vertices
requires all K + 1 input infections since f(1/2) = 0 (each chain vertex has two inputs, and if
either is uninfected, the chain of infections halts). Similarly, if either player attempts to defect
by invading the seeded nodes of the other player, there will be no payoff for either player in
any of the replications. Thus the most Blue can obtain by defection is N (moving its one
infection to the final chain vertex of a single replication), while the most Red can obtain is KN
(moving all of their infections to the final chain vertices of K replications. The equilibrium
requirements are thus M(N/2K) > N for Blue, and MN(1− 1/2k) > KN for Red. The Blue
requirement is the stronger one, and yields M > 2K . The PoB for this configuration is the
same as for the single replication case, and thus if we let K be as large as desired and choose
M > 2K , we can make the PoB exceed any value. (Theorem 6)

It is worth noting that even if the Blue player has L > 1 seeded nodes, and we repeat the
construction above with chain length K+L−1, but with Blue forced to play at the beginning
of the chain, followed by all the Red infections, the argument and calculations above are
unchanged: effectively, Blues L seeded nodes are no better than 1 infection, because they are
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simply causing a chain of L− 1 Blue infections before than facing the chain of K Red inputs.
In fact, even if we let L >> K, Blue’s payoff will still be a factor of 1/2K smaller than Red’s.
Thus in some sense the theorem shows that if f is sufficiently convex, not only is the PoB
unbounded, but the much smaller initial budget may yield arbitrarily higher payoffs!

7 Concluding Remarks

We have developed a general framework for the study of competition between firms who
use their resources to maximize adoption of their product by consumers located in a social
network. This framework yields a very rich class of competitive strategies, which depend
on subtle ways on the dynamics, the relative budgets of the players and the structure of
the social network. We identified properties of the dynamics of local adoption under which
resource use by players is efficient or inefficient. Similarly, we identified adoption dynamics
for which networks neutralize or accentuate ex-ante resource difference across players.

There are a number of other questions which can be fruitfully investigated within our
framework. We assumed that players’ budgets are exogenously given. In many contexts, the
budget may itself be a decision variable. It is important to understand if endogenous budgets
would aggravate or mitigate the problem of high PoA. Similarly, large network advantages
from resources (reflected in high PoB) create an incentive to increase budgets, and may be
self-neutralizing. To see how endogenous budgets can have a big impact consider the case
where switching function is concave and selection function is linear. Suppose a player can
purchase one unit of resource at cost c = 1/2. The final payoffs to a player are then equal to
the number of adoptions less the seed expenditures. When the network is a star with a single
hub, it is an equilibrium for both players to buy n/2 units and locate at the hub, thus yielding
a payoff 0. By contrast, the joint payoffs are maximized with one unit of resource and yields
total joint payoffs n− 1/2. The PoA is unbounded.

Similarly, the order of moves can have a big impact in certain networks. Suppose Red moves
first and has budget 1, while Blue moves second and has budget 2. The switching function and
selection function are linear and a consumer is perpetually active until he adopts. In the ring
network, Red will earn 1, while Blue will earn n− 2. The PoB can be made arbitrarily large
by raising the value of n. By contrast, in the star network, the PoB is equal to 1, irrespective
of the order of moves of the players.

Other interesting directions include algorithmic issues such as computing equilibria and
best responses in our framework, and how their difficulty depends on the switching and selec-
tion functions; and the multi-stage version of our game, in which the two firms may gradually
spend their seed budgets in a way that depends on the evolving state of the network.

8 Appendix: Consumer Decision Problem

In this section, we illustrate how the switching and selection functions f -g may arise out of
optimal decisions made by consumers located in social networks. Information sharing about
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products and direct advantages accruing from adopting compatible products are two important
ingredients of local social influence.

Example 1: Information Sharing: Consumers are looking for a good whose utility
depends on its quality; the quality is known or easily verified upon inspection (such products
are referred to as ‘search’ goods), but its availability may not be known. Examples of such
products are televisions and desk-top computers. Consumers search on their own and they also
get information from their friends and neighbors. Suppose for simplicity that the consumer
talks to one friend before making his decision. As he runs into friends at random, other things
being equal, the probability of adopting a product is equal to the probability of meeting
someone who has adopted it. This probability is in turn given by the fraction of neighbors
who have adopted the product. This corresponds to the case where f and g are both linear.

Example 2: Information Sharing and Payoff Externalities. Consumers are choos-
ing between goods whose utility depends on how many other consumers have adopted the
same product. Prominent examples include social networking sites. Suppose products offer
stand alone advantage v, and a adoption related reward which is equal to # Reds or # Blues.
Consumer picks neighbors at random. If neighbor is Red or Blue, then consumer becomes
aware of product market. There is a small cost (relative to v) at which he can ask all his
neighbors about their status. He then compared the adoption rates of the two products and
given the payoffs benefits to being in a larger (local) network, the consumer selects the more
popular product. This situation gives rise to an f which is increasing and concave in the
fraction of adopters, while g is polarizing (close to a winner-take-it all).

References

[1] Ballester, C., A. Calvo-Armengol, and Y. Zenou (2006), Who’s Who in Networks. Wanted:
The Key Player, Econometrica, 74, 5, 1403-1417.

[2] Bharathi, S., D. Kempe and M. Salek (2007), Competitive Influence Maximzation in
Social Networks, Internet and Network Economics Lecture Notes in Computer Science,
4858, 306-311.

[3] Butters, G. (1977), Equilibrium Distribution of Prices and Advertising, Review of Eco-
nomic Studies, 44, 465-492.

[4] Chasparis, G. and Shamma, J. (2010), Control of Preferences in Social Networks”, 49th
IEEE Conference on Decision and Control.

[5] Coleman, J. (1966), Medical Innovation: A Diffusion Study. Second Edition, Bobbs-
Merrill. New York.

[6] Conley, T. and C. Udry (2010), Learning about a New Technology: Pineapple in Ghana.
American Economic Review, .

27



[7] Dubey, P. (1986), Inefficiency of Nash Equilibria. Mathametics of Operations Research.,
11, 1, 18.

[8] Feick, L.F. and L.L. Price (1987), The Market Maven: A Diffuser of Marketplace Infor-
mation. Journal of Marketing, 51(1), 83-97.

[9] Foster, A.D. and M.R. Rosenzweig (1995), Learning by Doing and Learning from Oth-
ers: Human Capital and Technical Change in Agriculture. Journal of Political Economy,
103(6), 1176-1209.

[10] Galeotti, A., and S. Goyal (2009), Influencing the Influencers: a Theory of Strategic
Diffusion, Rand Journal of Economics, 40, 3,

[11] Godes D. and D. Mayzlin (2004), Using Online Conversations to Study Word of Mouth
Communication. Marketing Science, 23(4), 545-560.

[12] Grossman, G. and C. Shapiro (1984), Informative Advertising with Differentiated Prod-
ucts. Review of Economic Studies, 51, 63-82.

[13] Koutsoupias, E., and C. H. Papadimitriou (1999), Worst-case Equilibria, STACS.

[14] Kempe, D., J. Kleinberg, E. Tardos. (2003), Maximizing the Spread of Influence through
a Social Network. Proc. 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining.

[15] Kempe, D., J. Kleinberg, E. Tardos (2005), Influential Nodes in a Diffusion Model for
Social Networks. Proc. 32nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP).

[16] Reingen, P.H., B.L. Foster, J.J. Brown and S.B. Seidman (1984), Brand Congruence in
Interpersonal Relations: A Social Network Analysis. The Journal of Consumer Research,
11(3), 771-783.

[17] Skaperdas, S. (1996), Contest Success Functions, Economic Theory, 7, 2, 283-290.

[18] Tullock, G. (1967), The Welfare Costs of Tariffs, Monopolies, and Theft, Western Eco-
nomic Journal 5, 3, 224-232.

[19] Tullock, G. (1980), Efficient Rent Seeking, Towards a theory of the rent-seeking society,
edited by Buchanan, J., Tollison, R., and Tullock, G., Texas A&M University Press.

[20] Vetta, A. (2002), Nash Equilibria in Competitive Societies with Applications to Facility
Location, Traffic Routing and Auctions. Proceedings of the 43rd Symposium on the
Foundations of Computer Science (FOCS), 416-425.

28


