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Abstract

This paper considers nonparametric identification of a two-stage entry and
bidding model for auctions which we call the Affiliated-Signal (AS) model. This
model assumes that potential bidders have private values, observe imperfect
signals of their true values prior to entry, and choose whether to undertake a
costly entry process. The AS model is a theoretically appealing candidate for
the structural analysis of auctions with entry: it formally nests the Levin and
Smith (1994) model and approaches the Samuelson (1985) model as a limit.
Unfortunately, since pre-entry signals are not observed, the AS model is non-
parametrically non-identified. In this paper, we explore a partial identification
approach to structural analysis using the AS model. In particular, we show
how exogenous variation in entry behavior (induced by variation in factors
such as potential competition or entry costs) can be used to construct non-
parametric bounds on the fundamentals of the AS model under a general class
of second-stage bidding mechanisms, and translate these bounds into bounds
on counterfactual seller revenue corresponding to a wide variety of potential
award rules. Finally, we state conditions under which the AS model is exactly
identified.
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1 Introduction

Endogenous participation clearly matters in real-world auction markets. Studies of
auctions in a variety of economic contexts routinely find that large fractions of eligible
bidders elect not to submit bids. For example, Hendricks, Pinske, and Porter (2003)
report an overall participation rate of less than 25 percent in US Minerals Manage-
ment Service “wildcat auctions” held from 1954-1970. Li and Zheng (2009) find that
only about 28 percent of planholders in Texas Department of Transportation mowing
contracts actually submit bids. Similar results have been reported for timber auc-
tions (Athey, Levin, and Seira (2011), Li and Zhang (2009; 2010)), in online auction
markets (Bajari and Hortacsu (2003)), and in other procurement settings (Krasnokut-
skaya and Seim (2009)). Such endogenous participation can overturn core predictions
of classical auction theory: for instance, Levin and Smith (1994) show that the pos-
sibility of entry can lead to a zero optimal reserve price, and Li and Zheng (2009)
show that it can cause a seller to prefer less potential competition. Hence properly
accounting for entry is practically important in applied research.

Though the importance of endogenous participation is well-established in the auc-
tion literature, there is still no clear consensus regarding how best to account for entry
in structural analysis. To ensure identification, most applied work on auctions with
entry has been based on (variants of) two polar models: that of Samuelson (1985)
(the S model) and that of Levin and Smith (1994) (the LS model). These models
both turn on the intuition that entry involves costs (to learn about the object being
sold, prepare bids, etc), but they involve radically different assumptions about what
potential bidders know when making entry decisions. In particular, in the S model,
potential bidders are assumed to know their values exactly prior to entry, whereas in
the LS model they are assumed to have no specific information ex ante. In turn, such
strong informational assumptions translate into stark restrictions on the underlying
DGP: the S model implies that entrants are perfectly selected, while the LS model
implies that entrants are a random sample from the population. Consequently, inap-
propriately enforcing either polar model can substantially distort structural analysis,
with significant consequences for counterfactual policy results.1

In this paper, we consider one potential solution to these problems: structural
analysis based on a framework we call the Affiliated-Signal (AS) model. This model
was first proposed in Ye (2007), and has since been explored by several other authors,
most notably Marmer, Shneyerov, and Xu (2007) (henceforth MSX), who propose

1For instance, consider an independent private values (IPV) setting where the seller’s value is nor-
malized to zero. Then the optimal reserve price is zero in the LS model (see Levin and Smith (1994)),
but can be positive when entry involves selection, as shown in Li and Zheng (2007). Structural es-
timation based on an incorrect LS specification would force a researcher to the conclusion that the
optimal reserve price is zero. Marmer, Shneyerov, and Xu (2007) and Roberts and Sweeting (2010b)
discuss parameter bias and policy implications resulting from improper entry specifications; Roberts
and Sweeting (2010b) and Gentry (2010) provide simulation evidence on the potential magnitudes
of the biases involved.
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nonparametric tests of the AS, S, and LS models, and Roberts and Sweeting (2010a;
2010b), who apply a parametric variant of the model to California timber auctions.
The basic structure of the AS model is as follows: potential bidders have private
values, observe imperfect signals of their true values prior to entry, choose whether to
undertake a costly entry process, then (conditional on entry) learn their exact values
and submit bids. As noted by MSX, the AS model provides an ideal theoretical bridge
between the S and LS polar cases: it formally nests the LS model and approaches
the S model as a limit. Thus structural estimation based on the AS model would
represent a substantial improvement over structural estimation based on either the S
or LS extreme cases.

Unfortunately, as noted in MSX, the general AS model is nonparametrically non-
identified: since preliminary signals are unobservable, entry decisions depend on a
conditional distribution that cannot be recovered from the data.2 Consequently, at-
tempts to apply the AS model must adopt one of two approaches: impose parametric
restrictions such that the model is identified, or try to learn as much as possible from
the data without such restrictions. Roberts and Sweeting (2010a; 2010b) explore the
first approach, using a joint log-normal distribution (with unobserved auction hetero-
geneity) to model dependence between signals and values. In this work, we explore
the second: since the AS model is not exactly identified, we seek to obtain identified
bounds on objects of interest. We thus adopt a variant of the partial identification
approach pioneered by Manski, which has motivated a large and growing literature
in econometrics.3

In particular, this paper establishes three core results on identification in auctions
with entry. First, using exogenous variation in entry behavior (induced by variation
in, e.g., potential competition or entry costs), we derive identified bounds on funda-
mentals under endogenous and arbitrarily selective entry in a general class of auction
mechanisms considered in Riley and Samuelson (1981). Second, we translate these
bounds on fundamentals into bounds on seller revenue corresponding to a wide range
of counterfactual award rules (again accounting for endogenous and selective entry).
Finally, we explore sharpness properties of the underlying bounds and state condi-
tions under which all bounds collapse to exact identification. To our knowledge, these

2Nonparametric identification of auction models focuses on using observables such as bids to
identify model primitives such as the distribution of values. This literature was established by
Guerre, Perrigne, and Vuong (2000), who address nonparametric identification and estimation in
first-price IPV auctions, and has focused primarily on auction models without entry. See, e.g.,
Li, Perrigne, and Vuong (2002) for the affiliated private value (APV) model, Li, Perrigne, and
Vuong (2000) for the conditionally independent private information model, Krasnokutskaya (2009)
for an asymmetric auction with unobserved auction heterogeneity, Hortacsu (2002) for treasury bond
auctions, and Athey and Haile (2002) for other standard auction models/formats. Athey and Haile
(2005) provide a comprehensive survey of the literature.

3See Manski (2003) for a summary of the early partial-identification literature; recent additions
to the literature include Manski and Tamer (2002), Magnac and Maurin (2008), Molinari (2008),
Fan and Park (2009), and Tamer (2003), to name only a few.

3



are the first such results in the identification literature.4

Within the existing literature on partial identification in auctions, our work is most
similar in spirit to that of Haile and Tamer (2003), who derive identified bounds on
fundamentals in ascending auctions under weak behavioral assumptions, then trans-
late their results into bounds on the seller’s optimal reserve price. However, we focus
on a very different problem (endogenous entry, not considered in Haile and Tamer),
and relax a different set of assumptions (those governing the nature of selection).
Another related paper is Tang (2011), who provides bounds for counterfactual rev-
enue in affiliated values (AV) auction settings. Again, however, our work is set in a
different context (auctions with selective entry) and focuses on a much different set
of problems. We thus contribute both to the literature on partial identification and
to the literature on the econometrics of auctions with entry.5

The plan of the paper is as follows. Section 2 describes the IPV AS model and
outlines the entry and bidding equilibria corresponding to a general class of auction
mechanisms. Sections 3 and 4 explore identification of the AS entry model within
this general class of mechanisms and present our core partial-identification results.
Section 5 translates these core partial-identification results into bounds on seller rev-
enue corresponding to a wide range of counterfactual award rules. Finally, Section 6
concludes. Detailed proofs and a numerical example are included as appendices.

2 The AS model

We consider allocation of a single indivisible good among N potential bidders via a
two-stage auction mechanism, where bidders have indepentent private values for the
good being sold. First, in Stage 1, each of N potential bidders observes a private
signal si (to be formalized below), and all potential bidders simultaneously choose
whether to enter the auction at cost c. Then, in Stage 2, the n bidders who chose
to enter in Stage 1 learn their true values vi and submit bids for the object being
sold. Finally, auction outcomes are determined according to the rules of the Stage
2 mechanism, which are common knowledge to all participants. Consistent with
institutional features common to many official procurement lettings, we assume that
bidders observe the number of potential bidders N prior to entry, but do not observe

4It should be noted, however, that our main focus in this work is nonparametric identification, not
nonparametric inference. Consequently, while we derive nonparametric bounds on model primitives
and other quantities of policy interest, we do not develop asymptotic distribution theory for these
bounds. In this respect, we follow several prior studies, e.g. Athey and Haile (2002), Haile and
Tamer (2003) and Manski and Tamer (2002).

5Though much of the early structural auction literature focused on the no-entry case, auctions
with entry have also received substantial attention in recent years. See, e.g., Athey, Levin, and Seira
(2011), Bajari and Hortacsu (2003), Li (2005), Li and Zhang (2009; 2010), Li and Zheng (2007;
2009), Hendricks, Pinske, and Porter (2003), Krasnokutskaya and Seim (2009), MSX, and Roberts
and Sweeting (2010b; 2010a) among others.
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the number of actual entrants n prior to bidding.6

2.1 Model setup

Most existing results on identification in auctions concern recovery of Stage 2 value
distributions from Stage 2 bids; we refer readers to Athey and Haile (2005) for details.
In contrast, this work focuses on identification of the Stage 1 entry model given objects
already established as Stage 2 identified using appropriate rule-specific techniques.
To emphasize this distinction, we frame our analysis in terms of a general class of
mechanisms we call RS auctions (after the structure explored by Riley and Samuelson
(1981)):

Definition 1. A RS auction is any bidding mechanism having the following proper-
ties:

1. Mechanism rules are anonymous.

2. If award is made, it is to the bidder submitting the highest bid.

3. The probability of award depends only on the highest bid.

4. For any nondegenerate distribution of rival values, there exists a unique sym-
metric bidding equilibrium such that bids submitted are strictly increasing in
bidder values.

As noted by Riley and Sameulson (1981), this class of mechanisms includes all four
standard auctions (first-price, Vickery, English ascending, and Dutch), plus many less
common auction types. Further, and more important for current purposes, the class
of RS auctions also contains almost all bidding rules for which Stage 2 identification
results are known. Hence RS auctions represent a natural focal point for our current
investigation.

We formalize the remaining assumptions of the AS entry model as follows.

Assumption 1. The seller and all potential bidders are risk-neutral.

Assumption 2. All bidders are ex ante symmetric, and draw (unknown) signal-
value pairs (V, S) independently from a continuous joint distribution having density
f(v, s).7

(i) The marginal density of second-stage values (f(V )) has positive support
on a bounded interval [v, v̄].

6Allowing bidders to observe n prior to bidding would slightly change the details of the derivation,
but would not substantially alter any of our core results.

7We discuss how this assumption can be relaxed as an extension.
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(ii) WLOG, we normalize first-stage signals (S) to have a uniform marginal
distribution on [0, 1]: si ∼ U [0, 1].

Assumption 3. For each bidder i, the random variables Si and Vi are affiliated in
the sense of Milgrom and Weber (1982).8

Assumption 4. Information structure:

(i) The second-stage auction mechanism M , the number of potential bidders
N , and all other model fundamentals are common knowledge, but the
number of actual bidders n is not revealed until the auction concludes.

(ii) Each bidder i observes own signal si prior to entry, but does not learn
own value vi until after entry.

Finally, as noted above, we focus on RS auctions. By Definition 1, we can char-
acterize allocations resulting from such auctions by an award rule α(·), where α(y)
represents the probability of award when the maximum value among entrants is y.
This function α(·) will be the main focus of our counterfactual analysis. For current
purposes, we add two further regularity conditions on the mechanism M :

Assumption 5. The second-stage auction mechanism M is a Riley-Samuelson auc-
tion such that:

(i) The award rule α(y) is weakly increasing in the maximum entrant value
y.

(ii) A low-type bidder (entrant with value v) weakly prefers less Stage 2 com-
petition.

While one can construct theoretical mechanisms violating these conditions, they
are satisfied by almost all auctions used in practice. Hence we maintain them through
the rest of the paper.

2.2 Stage 2: Bidding equilibrium

As usual in the literature, we focus on the class of symmetric subgame perfect Bayesian
Nash equilibria. Since bidders are ex ante symmetric by hypothesis, so any such
symmetric equilibrium must involve a common Stage 1 signal threshold s̄ ∈ [0, 1] such

8Loosely speaking, that two random variables are affiliated means that a large value of one variable
makes the value of the other variable more likely to be large than small. Formally, let T ≡ (S, V )
with a density fT (T ). Let T and T´ be any two values of T . It is said that the elements of T
are affiliated if fT (T ∨ T´)fT (T ∧ T´) ≥ fT (T )fT (T´), where T ∨ T´ denotes the component-wise
maximum of T and T´, and T ∧T´ denotes the component-wise minimum of T and T´. See Milgrom
and Weber (1982) for details.
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that bidder i chooses to enter if and only if si ≥ s̄.9 Then the (selected) distribution
of values among bidders entering at equilibrium s̄ will be given by

F ∗(v; s̄) ≡ 1

1− s̄

ˆ 1

s̄

F (v|t) dt. (1)

Let wj ≡ 1[sj ≥ s̄] · vj be potential bidder j’s realized value at s̄ (so that wj ≡ 0 if
bidder i stays out and vj otherwise). Then the ex ante probability that bidder j will
draw a realized value below v given threshold s̄ is

F ∗w(v; s̄) = s̄+ (1− s̄)F ∗(v; s̄).

Further, in any symmetric, monotonic Stage 2 bidding equilibrium, b∗i > b∗j if and
only if wi > wj. Hence F ∗w(vi; s̄) can be interpreted as the probability that entering
bidder i with value vi will outbid any given potential rival j at entry equilibrium s̄.

Equilibrium bidding behavior will obviously depend on the specific rules of the
Stage 2 mechanism in question. However, via standard arguments in mechanism
design, we can characterize expected symmetric equilibrium profit for any RS mech-
anism. This is formally shown in a companion paper (Gentry and Li (2011b)); for
conciseness, we simply state the relevant proposition here.

Proposition 1. In any symmetric Stage 2 equilibrium of any RS mechanism, a bidder
with value v facing competition structure (N, s̄) earns expected profit

π(v; s̄, N) = π0(s̄, N) +

ˆ v

v
α(y) · F ∗w(y; s̄)N−1 dy, (2)

where π0(s̄, N) is a mechanism-specific intercept that does not depend on v.

Thus, conditional on competition, the award probablity function α(·) determines
bidder profits up to an additive constant.

2.3 Stage 1: Entry equilibrium

Given this symmetric Stage 2 equilibrium profit function π(v; s̄, N), we can char-
acterize the symmetric Stage 1 entry threshold s̄ as a function of model funda-
mentals and competition N . We seek to obtain a symmetric threshold function
s̄(c,N) : {R+,N} → [0, 1] such that “enter if si ≥ s̄(c,N)” is the unique Stage 1
equilibrium given the Stage 2 continuation play as in Proposition 1 above.

9Intuitively, any symmetric subgame perfect BNE must (by definition) involve a symmetric en-
try equilibrium, and given any symmetric bidding equilibrium the only possible symmetric entry
equilibrium in a game with informative signals takes the threshold form. This latter claim is shown
formally in the appendix.
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Toward this end, consider the Stage 1 decision faced by potential bidder i (with
Stage 1 signal si) facing N potential rivals who enter according to threshold s̄. Then
bidder i’s ex ante expected Stage 2 profit Π(si; s̄, N) is given by

Π(si; s̄, N) = Ev[π(v; s̄, N)|S = si]

= π0(s̄, N) +

ˆ v̄

v
f(v|si)

ˆ v

v
α(y) · F ∗w(y; s̄)N−1dy dv

= π0(s̄, N) +

ˆ v̄

v
α(y) · [1− F (y|si)] · F ∗w(y; s̄)N−1dy,

where the second line follows from Proposition 1 and the third follows from integration
by parts. The key properties of this ex ante profit function are outlined in Gentry
and Li (2011b); we restate these as a lemma below.

Lemma 1. Ex ante expected Stage 2 profit for a bidder with Stage 1 signal si facing
competition structure (s̄, N) is

Π(si; s̄, N) = π0(s̄, N) +

ˆ v̄

v
α(y) · [1− F (y|si)] · F ∗w(y; s̄)N−1dy. (3)

This function is weakly increasing in si for all (s̄, N), strictly decreasing in s̄ for all
(si, N), and strictly decreasing in N for all si and any s̄ < 1.

Bidder i will choose to enter whenever expected net profit from entry is positive;
i.e. whenever

Π(si; s̄, N) ≥ c.

For threshold s̄ ∈ (0, 1) to constitute a Stage 1 entry equilibrium, it must satisfy a
standard breakeven condition: a bidder drawing signal Si = s̄ must be indifferent to
entry when facing N potential bidders who also enter according to s̄. Proposition 2
formally outlines the properties of this equilibrium.

Proposition 2. A symmetric entry equilibrium in the AS model is characterized by
a signal threshold s̄ such that only bidders with si ≥ s̄ choose to enter. This signal
threshold is determined as follows.

� If Π(0; 0, N) > c, then s̄ = 0 and all potential bidders always enter.

� If Π(1; 1, N) < c, then s̄ = 0 and no potential bidder ever enters.

� Otherwise, the signal threshold s̄ satisfies the breakeven condition

Π(s̄; s̄, N) ≡ c, (4)

where Π(si; s̄, N) is defined as in Lemma 1.
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Further, considered as a function of (c,N), the equilibrium threshold s̄(c,N) satisfies
the following monotonicity properties:

� For any N ≥ 1, s̄(c,N) is continuous and weakly increasing in c, with strict
monotonicity whenever s̄(c,N) ∈ (0, 1).

� For any c ≥ 0, N ′ > N implies s̄(c,N ′) ≥ s̄(c,N). If in addition s̄(c,N) ∈
(0, 1), then s̄(c,N ′) > s̄(c,N) and s̄(c,N ′) ∈ (0, 1).

Taken together, Propositions 1 and 2 characterize the unique symmetric Bayesian
Nash equilibrium of the general AS model under any Stage 2 RS auction rules. Propo-
sition 2 in particular will be crucial in establishing (partial) identification of AS-model
fundamentals.

3 Econometrics: Identification and nonidentifica-

tion

Full nonparametric identification in the IPV AS model involves recovery of two fun-
damentals: the joint signal-value distribution F (v, s) and the entry cost c. Unfor-
tunately, the rich informational structure permitted by the AS model comes at a
significant practical cost: the AS model is nonparametrically nonidentified in general.
Intuitively, this is because the general AS model imposes only weak restrictions on
the mechanism by which bidders are selected. Hence there may be no one-to-one map
from characteristics of entering bidders back to fundamentals of the model.

Our key insight is that exogenous variation in the entry threshold s̄ generates
usable information on the fundamentals of the AS model. The precision of this in-
formation depends on the nature of variation in s̄: the AS model will be partially
identified in DGPs where equilbrium s̄ takes a discrete set of values, but may be
exactly identified when equilibrium s̄ takes a continuum of values. Our core contri-
bution in this paper is to derive natural identified bounds on AS-model fundamentals
that correspond to any set of identified entry thresholds.

Throughout this section, we assume that the econometrician has access to a large
sample of auctions from some AS auction process L. For each auction `, the following
variables are observed: number of potential bidders N`, number of actual bidders
n`, and a vector of submitted bids b`. This structure is standard in the literature
on auctions with entry: in applications, Nl is typically proxied by variables such as
number of planholders (e.g. Li and Zheng (2009)) or number of bidders in related
auctions (e.g. Roberts and Sweeting (2010a)) and n` is taken to be the number of
bids submitted. Our identification argument requires three additional restrictions on
the DGP L, which are formalized below.

First, our primary goal is to translate existing results on identification in auctions
without entry into partial identification results applicable to auctions with arbitrarily
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selective entry. Consequently, in this section we restrict attention to RS auction
mechanisms which are Stage 2 identified:

Definition (Stage-2 identified). RS mechanism M is Stage-2 identified if, for any
marginal distribution F ∗(v) and any n > 1, a sample of observed bids b` generated
by n bidders competing (without entry) under M based on draws from F ∗(v) would
permit consistent nonparametric estimation of F ∗(v).

Assumption 6 (Stage 2 identification). Process L involves an auction mechanism
M that is Stage 2 identified.

This focus on Stage 2 identified mechanisms is natural given our objectives: in
general, absent Stage 2 identification, the question of Stage 1 identification is not
likely to be interesting.10

Second, as noted above, our identification results turn on the presence of variation
in the entry threshold s̄: intuitively, in order for objects identified in Stage 2 to convey
meaningful information on the joint distribution F (v, s|x), at least some variation in
entry behavior must be induced by variation in factors other than F (v, s|x). We
therefore introduce a key exclusion restriction:

Assumption 7 (Exogenous entry variation). Process L involves either (i) exogenous
variation in N` for fixed (x, z), or (ii) exogenous variation in z` for fixed (N, x), or
both.

Exogenous variation in number of potential bidders has been exploited in prior
work for testing purposes: for instance, Haile, Hong, and Shum (2003) use variation
in N` to construct a test for common values, and MSX use variation in N` to test
competing entry models. Exogenous variation in cost shifters z` directly extends a
long tradition of instrumental variables in econometrics.11 Both are sources of exoge-
nous variation in entry behavior, which we in turn exploit as a source of (partially)
identifying information on the AS model.

Finally, for current purposes, we assume that process L involves no unobserved
auction-level heterogeneity:

Assumption 8. For each auction ` generated by process L, the distribution F`(v, s)
depends (at most) on an observable J×1 vector x`, the entry cost c` depends (at most)
on an observable K × 1 vector z`, and this dependence is continuous (and monotonic
for c(·)) in all continuous covariates. That is, for all `, F`(v, s) = F (v, s|x`) and
c`(·) = c(z`), where elements of x and z may overlap.

10An interesting question which we do not directly address is how to apply our method to cases
where the Stage 2 distribution is partially identified (e.g. Haile and Tamer (2003)). This should be
a relatively straightforward extension of the method, but would substantially complicate notation
and discussion.

11Recent work using instrumental variables to address identification of nonparametric models in-
cludes Chesher (2005) for nonparametric identification of models with discrete endogenous variables
and Berry and Haile (2010) for nonparametric identification of multinomial choice demand models,
to name only a few.
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This assumption is obviously strong, and warrants further discussion. Krasnokut-
skaya (2009) has established identification in auctions with unobserved heterogeneity
but without entry. Even in this case, unobserved auction-level heterogeneity intro-
duces significant challenges, and identification turns on strong additional shape re-
strictions. Introducing endogenous and selective entry would complicate Krasnokut-
skaya’s identification problem exponentially, since ex post value distributions would
then depend on both unobserved auction-level heterogeneity (via an unobserved value
shifter) and unobserved bidder-level heterogeneity (via unobserved Stage 1 signals).
Further, while auction-level heterogeneity can be modeled simply (additively or mul-
tiplicatively), entry-induced heterogeneity will typically affect observed distributions
via the complex nonlinear relationship described in Proposition 2. Consequently, even
strong shape restrictions as in Krasnokutskaya (2009) are unlikely to permit simulta-
neous identification of both auction- and entry-level unobserved heterogeneity.

Given an additional separation restriction, however, many of the identification
results outlined below will extend even to the case of unobserved auction-level het-
erogeneity. In particular, suppose that auction-level heterogeneity is realized only in
Stage 2 – a structure which we find plausible in applications where c is interpreted as
a learning cost.12 Then auction-level heterogeneity will affect bidding but not entry,
which in turn will permit distinction between entry-related and heterogeneity-related
effects on the ex post value distribution. We will return to the details of this argument
as an extension, but for now simply note that the possibility exists; for expositional
clarity, our main results will be framed under Assumption 8.

3.1 Identified objects

In principle, given a large enough sample from a process L satisfying Assumptions 1-8
above, we can always identify at least two classes of statistical object from the data.
First, using standard nonparametric regression methods, we can directly identify the
equilibrium entry threshold s̄x(z,N) corresponding to each (x, z,N) ∈ L :

s̄x(z,N) ≡ 1

N
E[n`|x, z,N ].

The set of thresholds s̄ thus identified will play a crucial role in our subsequent
analysis. Consequently, we introduce some additional notation for this identified set:
for any x, let

Sx(L) ≡ {s ∈ [0, 1]|s = s̄x(z,N) for some (z,N) ∈ L(x)}.
12For instance, in highway construction contract auctions, many features likely to be associated

with unobserved heterogeneity (e.g. specifics of the work to be performed, soil type, etc) will only
be revealed to bidders via detailed study of the plans and location for the project in question.
We interpret “entry” in this context as the decision to undertake this detailed study. Hence the
assumption that unobserved heterogeneity is revealed only after entry would seem highly consistent
with the underlying economic motivation of the model.
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Sx(L) then characterizes exogenous variation in entry behavior at fundamentals x: i.e.
all variation available to (partially) identify the ex ante joint distribution F (v, s|x).
For notational compactness, we state all subsequent identification results in terms of
properties of Sx(L).

Second, by hypothesis, the mechanism M is Stage 2 identified. We can thus
recover the value distribution F ∗(·|x, z,N) that corresponds to bids submitted at
each (x, z,N) ∈ L. Given the structure of the AS model, we interpret this as the
distribution of values among entrants at (x, z,N): i.e. the distribution of values
conditional on drawing Si ≥ s̄x(z,N) by Proposition 2. The class of distributions
directly identified by bids in process L are thus the ex post distributions

F ∗(v; s̄|x) ≡ F (v|Si ≥ s̄, x)

for each identified entry threshold s̄ ∈ Sx(L).
In what follows, we abstract from variation in distribution-related covariates x.

This is purely for notational convenience; all derivations below can be repeated condi-
tional on x. Hence all identification results stated below immediately generalize to the
case of arbitrarily many covariates, though estimation in such cases would obviously
be subject to standard curse-of-dimensionality concerns.

3.2 Nonidentified fundamentals

By definition, identification in the IPV AS model involves recovery of two fundamen-
tals: the joint signal-value distribution F (v, s) and the entry cost c. Meanwhile, as
discussed in the last subsection, the class of distributions directly identified are the
ex post distributions conditional on entry: F ∗(v; s̄) ≡ F (v|Si ≥ s̄) for all s̄ ∈ S(L).
In general, this class of distributions is related to the true joint distribution F (v, s)
by the identity

F (v, s) = F ∗(v; 0)− (1− s̄)F ∗(v; s̄). (5)

This relationship (derived in the Appendix) immediately implies our first core iden-
tification result:

Lemma 2. Under Assumptions 1-7, F (v, s) is fully identified (at x) if and only if
cl(S(L)) = [0, 1].

This lemma establishes the AS-model equivalent of a full-support condition: if
we observe data generated at every possible entry threshold s̄ ∈ [0, 1), we can fully
recover F (v, s). Unfortunately, in many applications of interest, there may be no
plausible excludable cost shifter z`. In such cases, all informative variation in s̄ will
be driven by variation in N`, so S(L) will necessarily be a finite set and the joint
distribution F (v, s) will not be point-identified.

In turn, non-identification of F (v, s) implies non-identification of c. As outlined
in Lemma 1, each (nontrivial) entry equilibrium s̄ ∈ S(L) will involve a breakeven
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condition of the form
Ev[π(v; s̄, N)|Si = s̄] ≡ c.

If the conditional distribution F (v|s̄) were known, the expectation on the left could be
calculated, and c would be identified. By definition, however, F (v|s̄) ≡ ∂F (v, s̄)/∂s̄
depends on local properties of F (v, s), and such local properties will not be identified
when Sx(L) is a finite set. Hence in many cases c also will not be identified.

Having thus outlined the fundamental nonidentification problem in the general AS
model, it is interesting to return to the question of identification in the LS and S polar
cases. The LS model assumes that potential bidders have no specific information
about their values prior to entry, which is equivalent to setting si ⊥ vi in the AS
model. We then have F ∗(v; s) = F (v|s) = Fv(v) for any s, so the LS model is
identified. On the other hand, the S model assumes that potential bidders know
their values exactly prior to entry, which is heuristically equivalent to assuming that
vi is a deterministic function of si.

13 The identified distribution F ∗(v; s) will then
be a truncation of the true distribution Fv(v), so we can use the known functional
relationship between a true distribution and its truncated counterpart to recover Fv(v)
above the truncation point. Thus, in essence, the LS model obtains identification by
assuming away selection, while the S model obtains identification by assuming perfect
selection. Meanwhile, the AS model permits much more general selection behavior,
but this flexibility comes at the cost of exact identification.

4 Bounds on fundamentals in the AS model

Subsection 3.1 outlined the objects directly identified by a sample from AS process
L, and Subsection 3.2 outlined why these objects may not point-identify the funda-
mentals of interest in the general AS model. This section focuses on a more positive
question: what do the objects we can identify tell us about the underlying auction
process? In the spirit of Haile and Tamer (2003), our answer to this question is based
on the principle of partial identification: since exact identification is often impossible,
we instead seek to obtain the best available bounds on the fundamentals of interest.
As above, the objects of interest are the joint signal-value distribution F (v, s) and
the entry cost c.

4.1 Bounds on distributions: F (v|s) and F (v, s)

As noted in Subsection 3.1, a sample from process L will directly identify two classes
of object: a set of equilibrium entry thresholds S, and an ex post distribution F ∗(v; s̄)
for each s̄ ∈ S.

13In particular, to preserve the normalization S ∼ U [0, 1], we would set si = F−1
v (vi).
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To establish the main results in this section, we will need some additional notation.
Define functions s+(t) and s−(t) as follows:

s+(t) = inf {s̄ ∈ S ∪ {1}|s̄ > t}
s−(t) = sup {s̄ ∈ S ∪ {0}|s̄ < t} .

The construction here is somewhat involved, but the underlying idea is actually very
simple: given any t ∈ [0, 1], return the nearest upper and lower neighbors of t in the
identified set S. The specific forms chosen are intended to compactly summarize three
important special cases: if S is a set of discrete points, then s+(t) returns the nearest
identified threshold strictly greater than t; if S contains an interval and t ∈ int(S),
then s+(t) ≡ t; and if t ≥ max{S}, then s+(t) ≡ 1 (and conversely for s−(t)).

The next lemma establishes bounds on F (v|s̄) for each threshold s̄ in the identified
set S.

Lemma 3. Choose any s̄ ∈ S, let s+(·) and s−(·) be as above, and define F̌+(v|s̄)
and F̌−(v|s̄) as follows.

F̌+(v|s̄) =

{
limt↑s−(s̄)

{
(1−t)F ∗(v;t)−(1−s̄)F ∗(v;s̄)

s̄−t

}
if s−(s̄) ∈ S;

1 otherwise.

F̌−(v|s̄) =

{
limt↓s+(s̄)

{
(1−s̄)F ∗(v;s̄)−(1−t)F ∗(v;t)

t−s̄

}
if s+(s̄) ∈ S;

0 otherwise.

Then F̌+(v|s̄) and F̌−(v|s̄) are identified for all v, represent distributions over [v, v̄],
and bound the conditional distribution F (v|s̄):

F̌+(v|s̄) ≥ F (v|s̄) ≥ F̌−(v|s̄)∀v,

with equality whenever s̄ ∈ int(S).

To explore the intuition behind this lemma, consider a heuristic derivation of
F̌+(v|s̄) and F̌−(v|s̄). By definition, the distribution of values identified by bids sub-
mitted at threshold s̄ is F ∗(v; s̄) ≡ F (v|Si ≥ s̄). Given the normalization Si ∼ U [0, 1],
this observed distribution can be written in terms of the conditional distribution
F (v|s) as follows:

F ∗(v; s) =
1

1− s̄

ˆ 1

s̄

F (v|t)dt.

Rearranging this identity gives (1 − s̄)F ∗(v; s) =
´ 1

s̄
F (v|t)dt, which immediately

implies that

F (v|s̄) = − ∂

∂s̄
[(1− s̄)F ∗(v; s̄)].
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We can then approximate the RHS derivative via a small finite difference ∆s̄:

F (v|s̄) ≈ −∆[(1− s̄)F ∗(v; s̄)]

∆s̄

In practice, the smallest differences ∆s̄ we can recover will be ∆s̄ = [s+(s̄) − s̄] and
∆s̄ = [s̄ − s−(s̄)]. These approximations yield F̌+(v|s̄) and F̌−(v|s̄) defined above.
F̌+(v|s̄) ≥ F (v|s) ≥ F̌−(v|s̄) follows from affiliation, and if s̄ ∈ int(S) we can let
∆s̄ → 0 and the corresponding approximations become exact. Hence F̌+(v|s̄) and
F̌−(v|s̄) represent natural bounds on the true conditional distribution F (v|s̄), and
the statement in Lemma 3 follows.

As defined in Lemma 3, however, F̌+(v|s̄) and F̌−(v|s̄) bound F (v|s̄) only for
s̄ ∈ S. The next proposition extends these functions into bounds on F (v|s) for any
s ∈ [0, 1].

Proposition 3. Choose any v ∈ [v, v̄], and define functions F+(v|·) and F−(v|·) as
follows:

F+(v|t) =

{
F̌+(v|t) if t ∈ S;

F̌+[v|s−(t)] if t /∈ S.

F−(v|t) =

{
F̌−(v|t) if t ∈ S;

F̌−[v|s+(t)] if t /∈ S.

Then for any s ∈ [0, 1], F+(v|s) and F−(v|s) are identified, represent distributions
over [v, v̄], and bound F (v|s):

F+(v|s) ≥ F (v|s) ≥ F−(v|s),

with equality whenever s ∈ int(S).

This proposition naturally extends the logic above: given any s ∈ [0, 1], find the
nearest identified neighbors s̄ ∈ S. By Lemma 3, we can obtain identified bounds on
F (v|·) at these neighbors, and by affiliation these bounds will also apply to F (v|s).
When local variation in s̄ is available, the derivative approximations become exact,
and exact identification follows. For clarity, we restate this latter fact as a corollary:

Corollary 1. F (v|s̄) is exactly identified for any s̄ ∈ int(S(L)).

Finally, since the conditional distribution F (v|s) is directly related to the joint
density F (v, s), the identified bounds F+(v|s) and F−(v|s) immediately imply iden-
tified bounds on F (v, s):

Corollary 2. Define F+(v, s) and F−(v, s) as follows:

F+(v, s) =

ˆ s

0

F+(v|t)dt
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F−(v, s) =

ˆ s

0

F−(v|t)dt.

Then F+(v, s) and F−(v, s) are identified and F+(v, s) ≥ F (v, s) ≥ F−(v, s).14

We can thus construct nonparametric bounds on F (v|s) and F (v, s) under any
Stage 2 identified RS auction mechanism.

4.2 Bounds on c(z)

We translate bounds on F (v|s̄) into bounds on c(z) using the characterization of Stage
1 equilibrium given in Proposition 2. In particular, given any z and any nontrivial
equilibrium threshold s̄N(z), we know c(z) must satisfy a breakeven condition of the
form

c(z) ≡ Ev[π(v; s̄N(z), N)|Si = s̄N(z)]

= π0(s̄(z,N), N) +

ˆ v̄

v
α(y) · [1− F (y|s̄(z,N))] · F ∗w(y; s̄(z,N))N−1dy. (6)

The only unknown on the RHS of (6) is F (v|s): the distribution F ∗w(·; s̄) ≡ is identified
directly from observed entry and bidding decisions for any s̄ ∈ S and knowledge of
the Stage 2 mechanism implies knowledge of π0(·) and α(·). Further, by inspection,
the RHS integral is decreasing in F (y|s). Consequently identified bounds on F (y|s)
immediately imply identified bounds on c(z) for any N :

Proposition 4. Choose any (N, z) ∈ L, let s̄N(z) be the (identified) entry threshold
at (N, z), and define c+

N(z) and c−N(z) as follows:

c+
N(z) = π0(s̄N(z), N) +

ˆ v̄

v
α(y) · [1− F−(y|s̄N(z))] · F ∗w(y; s̄N(z))N−1dy.

c−N(z) = π0(s̄N(z), N) +

ˆ v̄

v
α(y) · [1− F+(y|s̄N(z))] · F ∗w(y; s̄N(z))N−1dy.

Then c+
N(z) and c−N(z) are identified and c+

N(z) ≥ c(z) ≥ c−N(z), with equality if
s̄N(z) ∈ int(S(L)).

14If desired, we could extend this proposition to incorporate the Frechet-Hoeffding bounds (see
Nelsen (1999)):

Fv(v) + s− 1 ≤ F (v, s) ≤ min{Fv(v), s}.

In practice, Fv(v) may be unknown, but can be bounded as follows:

F ∗(v; minS) ≤ Fv(v) ≤ minS + (1−minS)F ∗(v; minS).

Combining these results yields alternative bounds on F (v, s), which in some cases might be tighter
than those above.
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In turn, pooling these bounds across N will imply sharper bounds on c:

Corollary 3. For any z, we can pool identified bounds across N to obtain sharper
bounds on c(z):

c+(z) ≡ min
N∈N

c+
N(z) ≥ c(z) ≥ max

N∈N
c−N(z) ≡ c−(z).

Finally, from Corollary 1 above, we know that F (v|s̄) is exactly identified when-
ever s̄ ∈ int(S(L)). Equation (6) then implies an analogous condition for exact
identification of entry costs:

Corollary 4. For any z such that s̄N(z) ∈ int(S(L)) for some N , c(z) is exactly
identified.

4.3 Full identification

Taken together, Corollaries 1, 2, and 4 reinforce the conclusion of Lemma 2: the
AS model is exactly identified (almost) everywhere if and only if we observe data
generated at (almost) every s̄ ∈ [0, 1]. The conditions under which this will occur will
depend on the nature of the underlying fundamentals, but (roughly) will require an
excluded instrument z that induces sufficient variation in entry cost c(z). The next
proposition formalizes this intuition.

Proposition 5. Suppose the econometrician observes a cost shifter z satisfying As-
sumptions 8 and 7 above, which has positive support on a set Z ⊂ Rk. Then the
following statements hold:

1. If z ∈ int(Z), then c(z) is identified and F (v|s̄) is locally identified at each
s̄ ∈ S(L(z)).

2. If Z = Rk and the range of c(·) is unbounded in R+, then F (v|s), F (v, s), and
c(·) are fully identified.

The sufficient Condition 2 can probably be relaxed somewhat in many appli-
cations: as noted above, the fundamental property needed for full identification is
cl(S(L)) = [0, 1]. Condition 2 merely ensures that this property will hold absent
further restrictions on N and F (v, s).

4.4 Sharp bounds

One key message of Proposition 5 is that full identification in the general AS model
depends on strong conditions: we require both an excludable cost shifter z and a
sufficiently variable cost function c(·), either or both of which can easily fail in practice.
In such cases, nonparametric analysis must fall back on bounds like those we derive
in subsections 4.1 and 4.2. As defined above, however, these bounds may not be
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sharp: they represent natural, intuitive, and directly estimable approximations to the
fundamentals of interest, but may not fully exhaust all variation in the data. This
subsection formally characterize sharp bounds in the AS model.

Begin by defining a candidate model corresponding to process L as follows:

Definition 2 (Candidate model). A candidate model for process L is any pair
{F̃ (·|·), c̃(·)} satisfying the following conditions for all z ∈ L:

1. Distribution: for all s ∈ [0, 1], F̃ (·|s) defines a distribution over [v , v̄].

2. Selection: F̃ (·|·) implies the set of distributions identified by sub-process L(z):

(1− s)F ∗(v; s) =
´ 1

s
F (v|t)dt for all v, for all s ∈ S(z).

3. Affiliation: F̃ (·|·) implies a joint distribution F̃ (v, s) ≡
´ s

0
F̃ (v|t)dt satisfying

affiliation.

4. Entry: Π∗(s,Ns(z); F̃ ) ≡ c̃(z) for all s ∈ S(z), where Ns(z) denotes the com-
petition level N corresponding to s under L(z) and

Π∗(s,N, F̃ ) ≡
ˆ
V

π(v; s,N)dF̃ (v|s). (7)

Taken together, the conditions in Definition 2 exhaust the restrictions generated
by the AS model. We thus use Definition 2 to illustrate the two main conclusions of
this section: why the bounds derived above may not be sharp, and how (in principle)
sharp bounds might be obtained.

To see why the bounds in Propositions 3 and 4 may not be sharp, note that
F+(v|s) and F−(v|s) directly exploit only the distribution and selection conditions
of Definition 2.15 Hence it is concievable that there could exist a (v, s) pair such
that no candidate F̃ (·|·) attaining (say) the upper bound F+(v|s) at (v, s) could
simultaneously satisfy the entry condition (4) for all other s ∈ S(z). In this case, the
bounds given in sections 4.1 and 4.2 would not be sharp.

Extending this intuition, we can conceptually characterize sharp bounds in the AS
model as follows. LetM(L) be the set of all candidate models {F̃ (·|·), c̃(·)} satisfying
Definition 2. By assumption, the true model {F (v|s), c(·)} satisfies Definition 2, so
M(L) is nonempty. Further, since Definition 2 can be evaluated for each {F̃ (·|·), c̃(·)}
given objects identified by L, the set M(L) is (in principle) identified. Then sharp
bounds on AS fundamentals will be given by the upper and lower envelopes ofM(L):

15More precisely, we incorporate a slightly weaker “differences” version of the selection condition
(2):

(1− s)F ∗(v; s)− (1− s′)F ∗(v; s′) =

ˆ s′

s

F+(v|t)dt

for s′ > s, with F− substituted for F+ when s′ < s.
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Lemma 4. Let M(L) be the set of all candidate models at L. Then M(L) is the
sharp identified set at L, and implies sharp bounds {c̃+, c̃−} and {F̃+, F̃−} as follows:

c̃+(z) = sup{c̃(z) s.t. c̃(·) ∈M(L)}
c̃−(z) = inf{c̃(z) s.t. c̃(·) ∈M(L)}

and for each (v, s)

F̃+(v|s) = sup{F̃ (v|s) s.t. F̃ (v|s) ∈M(L)}
F̃−(v|s) = inf{F̃ (v|s) s.t. F̃ (v|s) ∈M(L)}.

This statement follows immediately from construction of M(L); it is intended to
illustrate how the bounds derived in sections 4.1 and 4.2 differ from the conceptually
identified sharp bounds. Direct implementation of Lemma 4 would involve evaluating
Definition 2 at each member of an infinite functional set, and hence would be im-
possible in practice. Indirect implementation could perhaps be attempted using sieve
or other functional approximation methods, but this is well outside the scope of the
current investigation.

Finally, note that our discussion in this section parallels that of Ciliberto and
Tamer (2009) on sharpness in oligopoly entry models. In particular, at any t ∈ S, our
bounds on F (v|t) exploits information generated by the nearest-neighbors s+(t) and
s−(t), but not that potentially generated by more distant entry equilibria. Meanwhile,
Ciliberto and Tamer (2009) exploit zero-one bounds on probability magnitudes, but
not the condition that probabilities must sum to one. In both cases the condition
omitted is a cross-equation restriction which, though potentially informative, would
very difficult to implement.16 Hence in what follows we focus on the directly identified
(and directly implementable) bounds in sections 4.1 and 4.2, but note that in principle
sharper bounds might exist.

4.5 Bounds in the S and LS special cases

To conclude this section, we explore how our proposed bounds would behave when
applied to data generated by the S and LS polar cases. As noted above, the S model
is roughly equivalent to the limit case in which Stage 2 values are a deterministic
function of Stage 1 signals. In particular, to preserve the normalization Si ∼ U [0, 1],
we would set vi = F−1

v (si). In this case, the true conditional distribution F (v|s̄)
is degenerate, with all mass at v∗ ≡ F−1

v (s̄). Meanwhile, the bounds F+(v|s̄) and
F−(v|s̄) will in general be well-defined distributions. Hence F+(v|s̄) and F−(v|s̄) do
not collapse to F (v|s̄), and consequently the (derived) bounds on c and F (v, s) also
do not collapse.

16In particular, in our case, sharp bounds on the distribution function F (·|s) can be characterized
only through the integral condition (7), which does not have a tractable functional inverse.
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Results for the LS special case are more favorable. Recall that the LS model can
be formally nested in the AS model by assuming that Stage 2 values are independent
of Stage 1 signals. For any (v, s) independence implies

F ∗(v; s) = F (v|s) = Fv(v).

In turn, this equality implies that F+(v|s) and F−(v|s) collapse to the true marginal
distribution Fv(v) for non-extremum s ∈ S(L). Consequently, c(·) is identified, the
lower bound F−(v, s) collapses to F (v, s) for s < maxS, and differences F+(v, s′) −
F+(v, s) collapse to true values F (v, s′) − F (v, s) for s, s′ > minS.17 Thus, at least
in terms of identification, estimation based on the general AS model entails only
marginal losses relative to estimation based on the more restrictive LS special case.

5 Bounds on counterfactual revenue

Counterfactual policy simulations are a leading motivation for structural analysis.
In the context of RS auctions, one key policy variable is the seller’s award rule,
which specifies under what circumstances (and with what probabilities) any particular
auction will result in a sale. The best-known example of such an award rule is a public
reserve price, which represents a particularly interesting application of our results:
structural analysis based on the IPV LS model will always find a zero optimal reserve
price (see Levin and Smith (1994)) and structural analysis based on the IPV S model
will typically find a positive reserve price (see Li and Zheng (2007)), but the AS
model does not predetermine policy outcomes. However, several other types of award
rules (such as secret reserve prices) are also frequently used in practice. Hence we
frame our analysis in terms of a general award rule α(·), but note that all results can
trivially be specialized to the (much simpler) case of a public reserve price.

In particular, we start from the set of entry thresholds S(L) identified by process
L, and seek to derive bounds on expected seller revenue Rα corresponding to counter-
factual award rule α(·). This problem is complicated considerably by the very general
nature of the AS entry model: in the presence of endogenous and selective entry, the
award rule α(·) will affect seller revenue directly, through the Stage 1 entry threshold
s̄, and through the selected Stage 2 distribution F ∗(·; s̄). Valid counterfactual revenue
bounds need to account for all three effects. As typical in the literature, we assume
that the no-sale outcome yields value v0 ≤ v to the seller.

The argument in this section proceeds as follows. First, using theoretical results in
our companion paper (Gentry and Li (2011b)), we characterize seller revenue Rα(N, s̄)
for any s̄. Second, using the breakeven condition (6) and bounds on fundamentals
established in Section 4, we establish bounds on the counterfactual entry threshold
s̄α characterizing equilibrium play under award rule α(·). Finally, using the fact that

17Since we have no definite upper bound on F (v|s) for s < minS, the upper bound F+(v, s) may
not collapse.
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Rα(N, s̄) is decreasing in s̄, we translate bounds on s̄α into bounds on true expected
revenue Rα for any (N, z). We thus obtain identified bounds on counterfactual revenue
corresponding to a wide range of award rules in a general class of auctions with
endogenous and arbitrarily selective entry.

For current purposes, we restrict attention to counterfactual mechanisms satisfying
two additional properties:

Assumption 9 (Counterfactual award rule). The counterfactual mechanism is such
that

1. The seller never awards inefficiently: α(y) = 0 for y ≤ v0.

2. Low-type profits πα0 (s,N) take the form

πα0 (s,N) = sN−1

ˆ v̄

v0

α(y)dy − ρ (8)

for some constant ρ ≥ 0.

Condition 1 is standard in the literature: it pins down seller preferences over sale
outcomes. Condition 2 looks slightly more obscure, but is satisfied by the vast ma-
jority of mechanisms used in practice. For instance, in a standard first-price auction,
Condition 2 supports any public reserve price r ∈ [v0, v̄], any secret reserve price, and
a wide range of other stochastic award rules. Thus, though apparently restrictive,
Assumption 9 actually involves minimal loss of generality. The constant ρ can be
interpreted as an entry fee.

Given Assumption 9, we can proceed with the argument sketched above. First,
building on results in Gentry and Li (2011b), we characterize seller revenue under
award rule α(·) at arbitrary entry threshold s̄:

Lemma 5. Under Assumptions 1-5 and 9, expected seller revenue corresponding to
award rule α(·) at competition structure (s̄, N) is given by

Rα(s̄;N) =

ˆ v̄

v0

{α(y)[y − λα(y; s̄, N)] + [1− α(y)]v0} dG∗1:N (y; s̄) +N(1− s̄)ρ (9)

where

λα(v; s,N) ≡

{
0 if α(v) = 0;´ v
v0

α(t)
α(v)
· F

∗
w(t;s)N−1

F ∗
w(v;s)N−1dt otherwise.

Further, considered as a function of s̄, Rα(s̄;N) satisfies the following properties:

1. Rα(s̄;N) is decreasing in s̄ for all α(·) and N .

2. Rα(s̄;N) is identified for any s̄ ∈ S(L).
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When entry is endogenous, the equilibrium threshold s̄α will depend on α(·), and
when F (v|s) and c(·) are not identified, we typically will not be able to pin down
this dependence exactly. However, we can use the bounds on fundamentals derived
in Section 4 to bound the relationship between s̄α and α(·):
Lemma 6. Choose any (z,N) and let c+(z) and c−(z) be identified bounds on c(z),
F+(v|s̄) and F−(v|s̄) be identified bounds on F (v|s), and s̄α(z,N) be the (unknown)
equilibrium entry threshold under counterfactual award rule α(·). Define s+

α (z,N) and
s−α (z,N) as follows:

s+
α (z,N) =

{
inf{s ∈ S|Πα(s,N ;F+) > c+(z)} if ∃such s;

1 otherwise

s−α (z,N) =

{
sup{s ∈ S|Πα(s,N ;F−) < c−(z)} if ∃such s;

0 otherwise

where Πα(·; F̃ ) denotes expected breakeven profit at α(·) implied by conditional distri-
bution F̃ :

Πα(s,N ; F̃ ) =

ˆ v̄

v0

[1− F̃ (y|s)]α(y)F ∗w(y; s)N−1dy − ρ.

Then s+
α (z,N) and s−α (z,N) are identified and s+

α (z,N) ≥ s̄α(z,N) ≥ s−α (z,N), with
equality if sα(z,N) ∈ int(S(L)).

Finally, taken together, Lemmas 5 and 6 imply identified bounds on true expected
seller revenue Rα(z,N) corresponding to counterfactual award rule α(·):
Proposition 6. Choose any (z,N), define s+

α (z,N) and s−α (z,N) as in Lemma 6, and
let Rα(z,N) be (unknown) expected revenue under α(·) at (z,N). Define R+

α (z,N)
and R−α (z,N) as follows:

R−α (z,N) =

{
Rα(s+

α (z,N);N) if s+
α (z,N) ∈ S(L)

0 otherwise

R+
α (z,N) =

{
Rα(s−α (z,N);N) if s−α (z,N) ∈ S(L)

Řα(0;N) otherwise,

where

Řα(0;N) =

ˆ v̄

v0

{
α(y)[y −

ˆ y

v0

α(t)

α(y)
· F
∗
w(t; minS)N−1

F ∗w(y; minS)N−1
]dt+ [1− α(y)]v0

}
dG∗1:N (y; minS) +Nρ

is a semi-informative upper bound applicable when s−α (z,N) ≡ 0.18

Then R+
α (z,N) and R−α (z,N) are identified and R+

α (z,N) ≥ Rα(z,N) ≥ R−α (z,N),
with equality if sα(z,N) ∈ int(S(L)).

18In particular, Řα(0;N) is the revenue that would result if all potential bidders always enter but
draw values from distribution F ∗(·; minS). Since minS ≥ 0, we know F ∗(v; minS) ≤ F ∗(v; 0), so
Řα(0;N) ≥ Rα(0;N) ≥ Rα(sα;N). Further, since minS ∈ S, Ř(0;N) is identified.
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The intuition behind this result is straightforward: Lemma 5 establishes that
conditional revenue is decreasing in s̄ for any α(·), Lemma 6 establishes bounds s+

α

and s−α on the counterfactual entry threshold s̄α, and we know Rα(s̄, N) is identified
for any s̄ ∈ S(L). Hence when s+

α ∈ S(L), Rα(s+
α ;N) gives an identified lower bound

on Rα(s̄α;N) (and conversely for s−α ). When either s+
α /∈ S(L) or s−α /∈ S(L), the

corresponding Rα(s±α ;N) is not identified, so we fall back on less informative bounds
0 and Řα respectively. We thus obtain identified bounds on expected revenue under
a wide range of counterfactual award rules α(·).

Revenue bounds applicable to the special case of a public reserve price can easily
be obtained by setting α(y) ≡ 1[y ≥ r] in Proposition 6. In some applications,
however, researchers may wish to characterize not just expected seller revenue but
also the seller’s optimal reserve price (ORP). Consequently, following Haile and Tamer
(2003), we translate the revenue bounds above into bounds on the seller’s ORP:

Corollary 5 (Bounds on Seller’s ORP). Let R+(r; z,N) and R−(r; z,N) be revenue
bounds derived from Proposition 6 (with αr(y) ≡ 1[y ≥ r]), R∗− ≡ supr R

−(r; z,N) be
the maximum value attained by the lower revenue bound, and r∗(z,N) = arg maxR(r; z,N)
be the seller’s true optimal reserve price at (z,N). Define r∗+(z,N) and r∗−(z,N) as
follows:

r∗+(z,N) = sup{r|R+(r; z,N) ≥ R∗−}
r∗−(z,N) = inf{r|R+(r; z,N) ≥ R∗−}.

Then r∗+ and r∗− are identified and r∗+(z,N) ≥ r∗(z,N) ≥ r∗−(z,N), with equality if
sr∗(z,N) ∈ int(S(L)).

Thus, to summarize: we obtain identified bounds on expected revenue under a
wide range of counterfactual award rules α(·), which apply to the general class of RS
auctions and account for endogenous and arbitrarily selective entry. To our knowl-
edge, these are the first such results reported in the literature. Further, in the special
case of a public reserve price, these revenue bounds can be translated into bounds on
the seller’s optimal reserve price following Haile and Tamer (2003). We thus establish
that the general AS model can support a rich variety of counterfactual and policy
analyses under relatively weak assumptions on the nature of entry and selection.

6 Conclusion

Though entry is clearly an important feature of many real-world auction markets,
there is still no clear consensus in the literature regarding how to account for entry in
the structural analysis of auction data. Most applied research seeking to incorporate
entry does so via strong informational assumptions: bidders either know nothing
about their values prior to entry (LS model) or know their values exactly prior to
entry (S model). Recognizing the limitations of these polar-case approaches, several
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recent papers explore a more general framework in which bidders observe signals
affiliated with their true values prior to entry, which we call the AS model. This more
general AS framework is theoretically attractive: it imposes few a priori restrictions
on information structure, serves as a natural bridge between the S and LS models, and
does not constrain policy parameters such as the optimal reserve price. Unfortunately,
however, the AS model is nonparametrically non-identified. Thus the few existing
applications of the AS model obtain identification via parametric functional-form
restrictions.

In this paper, we explore an alternative approach: rather than obtain identifica-
tion via parametric restrictions, we exploit exogenous variation in entry behavior to
construct bounds on quantities of interest in the general AS model. In the process,
we make three core contributions to the related literature. First, we develop nonpara-
metric bounds on AS model fundamentals applicable to a general class of auctions
with endogenous and arbitrarily selective entry. Second, we translate these bounds
on fundamentals into bounds on expected revenue corresponding to a wide range of
counterfactual award rules, again accounting for endogenous and selective entry. Fi-
nally, we outline conditions under which all bounds collapse to exact identification.
To our knowledge, these are the first formal (partial) identification results applicable
to the general AS model, and represent the most general treatment of identification
in auctions with entry to date.

For expositional clarity, our results thus far have been presented for the case of
symmetric bidders. However, the underlying logic extends readily to environments
with asymmetric bidders. In particular, suppose process L involves a set T of po-
tential bidder types, where a bidder of type τi ∈ T draws from affiliated joint distri-
bution Fτi(v, s|·) and has entry cost cτi(·).19 For any any competition set τ and any
type-symmetric, monotonic Stage 2 equilibrium, there will exist at least one type-
symmetric Stage 1 equilibrium s̄(τ) = {s̄1(τ), ..., s̄N(τ)} such that a bidder with type
τi will optimally enter whenever si ≥ s̄i(τ) and rivals enter according to s̄−i(τ). Given
an equilibrium selection rule, observed entry decisions will permit identification of the
threshold set s̄(τ) for any competition set τ , and pooling across auctions involving
type τi will generate a set of type-specific identified thresholds Sτi(L). Results in
Section 4 can then be applied to obtain bounds on Fτi(·) and cτi(·) for each type τi,
and partial identification follows. The key additional complication in the asymmetric
case is the potential presence of multiple Stage 1 equilibria, and the consequent need
to specify an equilibrium selection rule. Insofar as bidder asymmetries induce greater
variation in identified threshold sets Sτi(L), however, they may actually improve iden-
tification.20

19These types can be either discrete or continuous; we require only that continuous types affect
model fundamentals continuously.

20In particular, if bidder types are continuous, the set of identified threshold sets Sτi(L) should
also be continuous for any τi, and the possibility of exact identification follows by Corollaries 1 and
4.
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A second potentially important extension of our results is to environments with
unobserved heterogeneity. As noted in our discussion of Assumption 8, this exten-
sion requires two additional restrictions. First, following Krasnokutskaya (2009), we
assume auction-level unobserved heterogeneity u enters the value distribution either
additively or multiplicatively: that is, vi = uεi or vi = u + εi, where εi is IID across
bidders.21 Second, we assume the realization of u is revealed to bidders only after
Stage 1 entry is complete. This second assumption seems plausible in applications
where c is interpreted as a cost of learning, and permits us to separate heterogeneity
induced by the unobserved latent variable u from that induced by unobserved sig-
nals si.

22 The identification argument can then proceed as follows. First, following
Subsection 3.1, we know we can identify the set of equilibrium entry thresholds S(L)
corresponding to process L. For each s̄ ∈ S(L), the observed bid distribution will
depend on two components: the ex-post selected distribution F ∗(εi; s̄) and the distri-
bution of unobserved heterogeneity Fu(u). Second, following Krasnokutskaya (2009),
each of these components can be recovered using deconvolution methods on an ap-
propriate sample of observed bids. It follows that the ex-post distribution F ∗(εi; s̄) is
identified for any s̄ ∈ S(L). Finally, we can apply results in Section 4 to the identified
ex post distribution F ∗(εi; s̄) to obtain bounds on remaining model fundamentals, and
partial identification of the overall model follows immediately.

21Krasnokutskaya (2009) assumes u enters multiplicatively, but her argument can easily be adapted
to the additive case as well.

22For instance, in highway construction auctions, many features likely to generate project-level
heterogeneity (e.g. exact location, specifics of work to be performed, soil type, etc) are observable
only to bidders obtaining detailed project plans (the outcome typically taken to represent entry).
Hence the assumption that u is revealed following entry seems reasonable. Without this separating
restriction, identification would require us to successfully disentangle distribution effects directly
attributable to heterogeneity (u) from those attributable to changes in endogenous selection (includ-
ing those induced by shifts in u). In a fully nonparametric model with endogenous and arbitrarily
selective entry, this is likely to prove impossible in practice.
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Appendix 1: Numerical example

Sections 4 and 5 develop identified bounds for model fundamentals and seller revenue
in auctions with arbitrarily selective entry. In this appendix, we explore a simple nu-
meric example designed to illustrate what these theoretical identified bounds might
look like in practice. Consistent with our emphasis in the rest of the paper, this
example focuses on identification, not estimation: the figures that follow illustrate
the bounds that would obtain in an infinite auction sample. Nevertheless, this sim-
ple exercise should help to indicate what kind of information could in principle be
recovered using the methods developed above.

Details of this example are as follows. We model the joint distribution F (v, s)
using a Gaussian copula Cρ(Fv, Fs), where the marginal distribution Fv(·) ∼ N(µ =
100, σ = 10) and as above we normalize Fs(·) ∼ U [0, 1]. The correlation parame-
ter ρ measures the degree of affiliation between s and v, with ρ = 0 generating the
no-information LS case and ρ → 1 approaching the full-information S case. In what
follows, we take ρ = 0.75 unless noted otherwise; other values of ρ yield quite sim-
ilar results. Entry involves cost c = 2, and we assume potential competition varies
exogenously on the set N = {4, 5, ..., 16}. These parameter values are chosen to be
quanlitatively similar to existing findings in the literature.23

Given this parametric specification, it is straightforward to calculate the set of
equilibrium entry thresholds S = {s̄4, ..., s̄16} satisfying the the breakeven condition
(4). From subsection 3.1, we know these thresholds (and the corresponding value
distributions F ∗(v; s̄) are the objects identified by a standard (N, n,b) sample. We
can then use results in Sections 4 and 5 to obtain identified bounds on quantities of
interest as follows.

First, Proposition 3 implies identified bounds on F (v|s) for any (v, s). Figures 1
and 2 illustrate these bounds (across s) for two values of v.

Second, based on Proposition 4, we can translate identified bounds on F (v|s) into
identified bounds on c. Applying this proposition to our numeric example and pooling
results across N yields identified bounds c+ = 2.026 and c− = 1.971, where (as noted
above) true c = 2.

Third, following Section 5, we can translate these bounds on F (v|s) and c into
identified bounds on counterfactual seller revenue. Results in Section 5 are framed in
terms of an arbitrary award rule α(·), but for simplicity we here restrict attention to
the special case of a counterfactual public reserve price r. As in Section 5, the first
step in this process is to obtain identified bounds on the counterfactual entry threshold
s̄r corresponding to each candidate reserve price r. These bounds are illustrated for
N = 6 and N = 9 in Figures 3 and 4 below.

Finally, using Proposition 6, we can translate bounds on s̄r to bounds on counter-
factual revenue Rr at any (N, r). These bounds are illustrated for N = 6 and N = 9
in Figures 5 and 6 below. In both cases, the seller’s value is assumed to be v0 = 60.

23See, e.g., Roberts and Sweeting (2010a; 2010b) and Li and Zheng (2009) for examples.
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If so desired, we could also adapt the argument of Haile and Tamer (2003) to
translate bound on counterfactual revenue to bounds on the optimal reserve price r
as in Corrolary 5. In this example, the implied bounds on optimal r would be rather
wide: an upper bound of roughly 90 when N = 6, and of roughly 100 when N = 9
(with uninformative lower bound v0 = 60 in each case). However, in both cases the
identified bounds on counterfactual revenue are surprisingly tight.

Figure 1: IDed bounds on F (v|s), v = 95

Figure 2: IDed bounds on F (v|s), v = 105
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Figure 3: IDed bounds on s̄r at N = 6, ρ = 0.75

Figure 4: IDed bounds on s̄r at N = 9, ρ = 0.75
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Figure 5: IDed bounds on CF revenue at N = 6, ρ = 0.75

Figure 6: IDed bounds on CF revenue at N = 9, ρ = 0.75
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Appendix 2: Proofs

Proof of Proposition 1 (following Krisha 2002). By the Revelation Principle, any
symmetric equilibrium in any mechanism is payoff-equivalent to the truthful equi-
librium in some symmetric direct mechanism. Thus WLOG we restrict attention
to direct mechanisms in which entrants truthfully report values. In particular, let
M be an arbitrary direct mechanism involving allocation rule Q(v;E) and payment
rule P (v;E), where v is a vector of (realized) bidder values and E ≡ (s̄, N) is an
entry structure, and let q(vi;E) ≡

´
V−i

Q(vi,v−i, E)f(v−i|E)dv−i and p(vi;E) ≡´
V−i

P (vi,v−i, E)f(v−i|E)dv−i be the corresponding (expected) allocation and pay-
ment functions facing bidder i. For truth-telling to be an equilibrium, we must have

q(vi;E) · vi − p(vi;E) = max
z
{q(z;E) · vi − p(z;E)}, ∀vi ∈ [v , v̄].

By the Integral Form Envelope Theorem (see Milgrom (2004)), this restriction in
turn implies that any incentive-compatible direct mechanism must yield equilibrium
bidder profit π(·;E) of the form

π(v;E) = π0(E) +

ˆ v

v
q(y;E) dy,

where π0(E) is the (mechanism-determined) profit of the lowest entering bidder.
We now return to RS auctions. By Definition 1, the probability of allocation to

an entering bidder with value y is

q(y;E) = α(y) · Pr(Wj ≤ y ∀j)
= α(y) ·

∏
j 6=i

Pr(Wj ≤ y)

= α(y) · F ∗w(y; s̄)N−1.

Equation 2 of Proposition 1 follows immediately.

Proof of Lemma 1. By definition, a bidder with signal si facing competition s̄, N will
earn expected profit

Π(si; s̄, N) ≡ Ev[π(v; s̄, N)|S = si]

=

ˆ v̄

v
π(v; s̄, N)f(v|si)dv

= π0(s̄, N) +

ˆ v̄

v

ˆ v

v
α(y) · F ∗w(y; s̄)N−1dydv

= π0(s̄, N) +

ˆ v̄

v
α(y) · [1− F (y|si)] · F ∗w(y; s̄)N−1dy,
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where line 3 follows from Proposition 1 and line 4 follows from changing order of
integration.

Affiliation implies that F (y|si) is decreasing in si , so Π(si; s̄, N) is increasing in
si (see Milgrom and Weber (1982)).

F ∗w(y; s̄) = s̄ +
´ 1

s̄
F (v|t)dt, so ∂F ∗w(y; s̄)/∂s̄ = 1 − F (v|s̄) ≥ 0 and Π(si; s̄, N) is

increasing in s̄.
Finally, F ∗w(y; s̄) ∈ [0, 1], so F ∗w(y; s̄)N−1 is decreasing in N and Π(si; s̄, N) is

decreasing in N (strictly for F ∗w(y; s̄) < 1).

Proof of Proposition 2. Assume symmetric continuation play as in Proposition 1. By
definition, in a symmetric entry equilibrium characterized by threshold s̄, “enter if
and only if si ≥ s̄” must be a best response to itself. Since Π(si, s̄, N) is increasing in
si, it will be a best respose to enter for all si > s′ if it is also a best response to enter
for si = s′. We can thus establish the first part of the proposition case by case:

� If Π(0; 0, N) > c, then Π(si; 0, N) > c for all si and it is always a best response
to enter. Hence Π(0; 0, N) > c implies s̄ = 0 is a symmetric equilibrium.

� If Π(1; 1, N) < c, then Π(si; 0, N) < c for all si and it is never a best response
to enter. Hence Π(1; 1, N) < c implies s̄ = 1 is a symmetric equilibrium.

� Otherwise, “enter if and only if si ≥ s̄” will be a best response to itself when
the following breakeven condition is satisfied:

Π(s̄, s̄, N) ≡ c.

By Lemma 1, Π(s̄, s̄, N) is strictly increasing in both s̄ arguments. Further, since
all component distributions are assumed continuous, Π(s̄, s̄, N) is continuous in
s̄. Hence if Π(0; 0, N) ≤ c ≤ Π(1; 1, N), there will exist a unique s̄ such that
Π(s̄, s̄, N) ≡ c.

The cases above are mutually exclusive and exhaustive. Hence there will exist a
unique threshold equilibrium s̄. We now argue that no other symmetric pure strategy
entry equilibrium can exist if signals are informative. To see this, let S ⊂ [0, 1] be an
arbitrary signal set, and suppose “enter if si ∈ S” is a symmetric entry equilibrium.
Then ex ante profit corresponding to signal si will be

Π(si;S,N) = π0(S,N) +

ˆ
V

α(y)[1− F (y|si)]F ∗(y;S)N−1dy.

Now suppose s ∈ S, and consider s′ > s. Then by affiliation we must have

Π(s′;S,N) ≥ Π(s;S,N) ≥ c,

If F (y|s′) < F (y|s) for some y and some s ∈ S, this inequality will be strict, so
“enter at s′” will be the unique best response to S at s′ and we must have s′ ∈
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S. Hence if signals are strictly informative, any symmetric equilibrium must be a
threshold equilibrium. The only exception occurs when signals are uninformative
(F (y|s′) = F (y|s)) for some s, s′. In this case, only the measure of S will matter for
characterizing equilibrium, but focusing on the threshold equilibrium still involves no
loss of generality.

Finally, we establish the stated monotonicity results:

� We know Π(s̄, s̄, N) is strictly increasing in s̄ for s̄ ∈ (0, 1). Hence c′ > c implies
Π(s̄′, s̄′, N) > Π(s̄, s̄, N) and consequently s̄′ > s̄. However, in the boundary
case s̄ = 0 (or s̄ = 1), we could have c < c′ < Π(s̄, s̄, N ′) (or vice versa), which
would imply s̄′ = s̄ = 0 (or s̄′ = s̄ = 1). Hence s̄(c,N) is increasing in c, strictly
when s̄ ∈ (0, 1).

� We know Π(s̄, s̄, N) is strictly increasing in s̄ and strictly decreasing in N for
s̄ ∈ (0, 1). Suppose s′ is equilibrium at N ′ and s is equilibrium at N . Then
if s̄ ∈ (0, 1) we must have Π(s̄′, s̄′, N ′) = c = Π(s̄, s̄, N), which implies s̄′ > s̄.
However, in the boundary cases s̄ = 0 (or s̄ = 1), we could have Π(s̄′, s̄′, N ′) >
Π(s̄, s̄, N) > c (or vice versa), which would imply s̄′ = s̄ = 0 (or s̄′ = s̄ = 1).
Hence s̄(c,N) is increasing in N , strictly when s̄ ∈ (0, 1).

Proof of Lemma 2. By definition,

F (v, s) =

ˆ v

v

ˆ s

0

f(v, s)dsdv

=

ˆ v

v

ˆ 1

0

f(v, s)dsdv −
ˆ v

v

ˆ 1

s

f(v, s)dsdv

= Fv(v)− (1− s)
[

1

1− s

ˆ 1

s

ˆ v

v
f(v|s)dvds

]
= Fv(v)− (1− s)

[
1

1− s

ˆ 1

s

F (v|s)ds
]

≡ F ∗(v; 0)− (1− s)F ∗(v; s).

Comparing the first and last lines of this identity establishes the “if” result: observing
data at (almost) all s ∈ [0, 1] permits exact identification of F (v, s). The “only if”
result follows from noting that cl(Sx(L)) 6= [0, 1] implies ∃ set SC(L) of positive
measure such that F ∗(v; s) is not identified (in general) for s ∈ SC(L). Hence we
have no direct information about F (v, s) on SC(L). Hence absent further assumptions
F (v, s) is not fully identified.

Proof of Lemma 3. We establish claims for F̌+(v|s̄); the argument for F̌−(v|s̄) is
analogous.
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By construction, if s−(s̄) /∈ S then s−(s̄) ≡ 0, and if s−(s̄) = 0 and 0 /∈ S then
F̌+(v|s̄) ≡ 1 ≥ F (v|s̄). Hence we focus on the case s−(s̄) ∈ S.

When s−(s̄) ∈ S, there are two possible subcases:

� s̄ = s−(s̄): By construction of s−(s̄), this occurs when s̄ ∈ int(S), which implies
that there exists an open neighborhood of identified thresholds t ∈ S around
s̄. Consequently, we can identify the function (1− t)F ∗(v; t) at points arbitrar-
ily close to s̄, and the limit defining F̌+(v|s̄) converges to the corresponding
derivative:

lim
t↑s−(s̄)

{
(1− t)F ∗(v; t)− (1− s̄)F ∗(v; s̄)

s̄− t

}
= − ∂

∂s̄
(1− s̄)F ∗(v; s̄) ≡ F (v|s).

Hence F̌+(v|s̄) = F (v|s), so F̌+(v|s̄) is a distribution and F (v|s) is exactly
identified.

� s̄ > s−(s̄): By construction, s−(s̄) is then the nearest lower neighbor of s̄ in S
(but separated by an open interval). In this case,

lim
t↑s−(s̄)

{
(1− t)F ∗(v; t)− (1− s̄)F ∗(v; s̄)

s̄− t

}
=

[1− s−(s̄)]F ∗(v; s−(s̄))− (1− s̄)F ∗(v; s̄)

s̄− s−(s̄)

=
1

s̄− s−(s̄)

{
F ∗(v; s−(s̄))− F ∗(v; s̄)

}
=

1

s̄− s−(s̄)

{ˆ 1

s−(s̄)

F (v|t)dt−
ˆ 1

s̄

F (v|t)dt
}

=
1

s̄− s−(s̄)

ˆ s̄

s−(s̄)

F (v|t)dt

= F (v|Si ∈ [s−(s̄), s̄]).

Line 1 implies F̌+(v|s̄) is identified (since it depends only on identified compo-
nents), Line 5 implies that F̌+(v|s̄) is a distribution, and Line 4 implies that
F̌+(v|s̄) bounds F (v|s):

1

s̄− s−(s̄)

ˆ s̄

s−(s̄)

F (v|t)dt ≥ 1

s̄− s−(s̄)

ˆ s̄

s−(s̄)

F (v|s̄)dt

=
s̄− s−(s̄)

s̄− s−(s̄)
F (v|s̄) = F (v|s̄),

where the first inequality follows since affiliation implies F (v|s′) ≤ F (v|s) for
s′ ≥ s (see Milgrom and Weber (1982)).

Taken together, the cases above establish all claims in Lemma 3.
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Proof of Proposition 3. We establish claims for F+(v|s); the argument for F−(v|s) is
analogous.

Identification of F+(v|t) follows from (i) s−(t) ∈ {S, 1} by construction, (ii) iden-
tification of F̌+(v|s) for s ∈ S, and (iii) F̌+(v|s) ≡ 1 for s = 0 if s 6= S. Hence
F+(v|t) depends only on objects recoverable from process L.

The distribution and exact identification properties of F+(v|t) are inherited di-
rectly from the corresponding properties of F̌+(v|t).

Finally, to establish bounds, we consider cases:

� If t ∈ S, then F+(v|t) ≡ F̌+(v|t) ≥ F (v|t).

� Otherwise, F+(v|t) ≡ F̌+(v|s−(t)) ≥ F (v|s−(t)) ≥ F (v|t), where the last in-
equality follows by the stochastic-dominance property of affiliation.

Taken together, the cases above establish all claims in Proposition 3.

Proof of 4. Identification of c+(z) and c−(z) and the inequalities c+(z) ≥ c(z) ≥
c−(z) follow immediately from identification of F−(y|s̄N(z)) and F+(y|s̄N(z)) and
F+(y|s̄N(z)) ≥ F (y|s̄N(z) ≥ F−(y|s̄N(z)), with exact equality obtaining when F±(y|s̄N(z)) =
F (y|s̄N(z)).

Proof of Proposition 5. To establish Statement 1, suppose z ∈ int(Z) and s̄ ∈ (0, 1).
Then there exists an open ε-ball Bε(z) ⊂ Z around z. By Assumption 8, c(·) is
continuous and monotonic in continuous components of z, and hence maps open
sets to open sets. Thus L involves an open ε-ball Bε(c(z)) ⊂ R+ of costs around
c(z). Finally, by Proposition 2, the equilibrium threshold s̄(·, N) is continuous and
monotonic in c(·) for s̄ ∈ (0, 1). Hence s̄(·, N) also maps open sets to open sets, so
s̄(c(z), N) ∈ int(S(L)). Exact local identification then follows from Propositions 3
and 4.

To establish Statement 2, suppose Z = Rk and the range of c(·) is unbounded in
R+. Then z ∈ int(Z) by definition, and for an appropriate choice of z we can produce
any c(z) ∈ [0,∞). Hence we can sustain any s ∈ [0, 1] as an equilibrium for some z,
so S(L) = [0, 1] and full identification follows from Lemma 2.

Proof of revenue characterization in Lemma 5 (from Gentry-Li 2011b) . For any (s;N)
pair, expected seller revenue at allocation rule α is given by

Rα(s̄;N) = AVα(s;N)−NΠ∗α(s;N),

where AVα(·) is ex ante expected allocation value of the object being auctioned and
Π∗(s;N) is expected ex ante equilibrium profit for an arbitrary bidder.

To obtain AVα(·), let Y1:N be max realized value among N potential bidders. Then
net value created isY1:N if sale, v0 if no sale. Conditional on Y1:N , expected allocation
value is thus

α(Y1:N)Y1:N + [1− α(Y1:N)]v0.

34



Integrating with respect to Y1:N , we obtain ex ante expected allocation value:

AVα(s;N) = sNv0 +

ˆ v̄

v
{α(y)y + [1− α(y)]v0} g∗1:N(y; s)dy

=

ˆ v̄

v0

{α(y)y + [1− α(y)]v0} dG∗1:N(y; s),

where g∗1:N(y; s) ≡ NF ∗w(y; s)N−1f ∗w(y; s) is the density of Y1:N on [v , v̄] given entry
threshold s, G∗1:N(y; s) = F ∗w(y; s)N is the corresponding distribution on [v0, v̄], and
α(v0) ≡ 0 by Assumption 9.

To obtain Π∗(s;N), we start from the result in Proposition 1:

πα(v; s,N) = πα0 (s,N) +

ˆ v

v
α(t) · F ∗w(t; s)N−1dt

=

ˆ v

v0

α(t)sN−1dt+

ˆ v

v
α(t) · F ∗w(t; s)N−1dt− ρ

=

ˆ v

v0

α(t) · F ∗w(t; s)N−1dt− ρ

= λα(v; s,N) · α(v)Fw(v; s)N−1 − ρ,

where the second equation follows from Assumption 9 and

λα(v; s,N) ≡

{
0 if α(v) = 0;´ v
v0

α(t)
α(v)
· F

∗
w(t;s)N−1

F ∗
w(v;s)N−1dt otherwise.

gives the average incremental profit (above −ρ) a bidder of type v recieves per win.
Integrating over the distribution F ∗w(y; s) then gives Π∗(s;N)

Π∗(s;N) =

ˆ v̄

v
λα(y; s,N) · α(y)F ∗w(y; s)N−1f ∗w(y; s)dy − (1− s)ρ

and multiplying by N yields

NΠ∗(s;N) =

ˆ v̄

v
λα(y; s,N)α(y) ·NF ∗w(y; s)N−1f ∗w(y; s)dy −N(1− s)ρ

=

ˆ v̄

v
λα(y; s,N)α(y) · g∗1:N(y; s)dy −N(1− s)ρ

=

ˆ v̄

v
λα(y; s,N)α(y) dG∗1:N(y; s)dy −N(1− s)ρ.
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Combining the results above gives a final expression for seller revenue:

Rα(s;N) =

ˆ v̄

v0

{α(y)y + [1− α(y)]v0} g∗1:N(y; s)dy

−
ˆ v̄

v
λα(y; s,N)α(y) dG∗1:N(y; s) +N(1− s)ρ

=

ˆ v̄

v0

{α(y)[y − λα(y; s,N)] + [1− α(y)]v0} dG∗1:N(y; s)dy +N(1− s)ρ.

where the second equality follows because
´ v
v0
λα(y; s,N) dG∗1:N(y; s) = 0: λα(v0; s,N) ≡

0 and g∗1:N(y; s) ≡ 0 for y ∈ (v0, v).

Proof of Lemma 5. Identification of Rα(s;N) for s ∈ S follows directly from Equa-
tion 9: Rα(·) depends only on mechanism components (α, ρ, v0) (known by hypothesis)
and distributions F ∗w(·; s) and G∗1:N(·; s) (identified for s ∈ S). Thus it only remains
to show Rα(s;N) is decreasing in s. Equation (9) implies that s affects seller rev-
enue through (at most) three channels: the per-win profit function λα(v; s,N), the
distribution G∗1:N(·; s), and the residual term N(1− s)ρ. We show that each of these
partial effects is negative.

First, consider effects through the per-win profit function λα(v; s,N). Note that

∂

∂s
λα(v; s,N) =

ˆ v

v0

α(t)

α(v)
· ∂
∂s

{
F ∗w(t; s)N−1

F ∗w(v; s)N−1

}
dt.

By algebra,

∂

∂s

{
F ∗w(t; s)N−1

F ∗w(v; s)N−1

}
=

(N − 1)F ∗w(t; s)N−2 ∂
∂s
F ∗w(t; s)

F ∗w(v; s)N−1
−

(N − 1)F ∗w(t; s)N−1 ∂
∂s
F ∗w(v; s)

F ∗w(v; s)N

= (N − 1)
F ∗w(t; s)N−2

F ∗w(v; s)N−1

{
[1− F (t|s)]− F ∗w(t; s)

F ∗w(v; s)
[1− F (v|s)]

}
≥ 0 ∀t ≤ v,

since t ≤ v means F ∗w(t; s) ≤ F ∗w(v; s) and F (t|s) ≤ F (v|s) ∀s. Thus λα(v; s,N) is
increasing in s for all v, so the effect of s on R through λα(v; s,N) is negative.

Next, consider effects through the distribution G∗1:N(·; s). It is easy to show that
G∗1:N(v; s) is increasing in s for any v, hence s′ ≥ s means G∗1:N(·; s) first-order stochas-
tically dominates G∗1:N(·; s′). Thus if the integrand

{α(y)[y − λα(y; s,N)] + [1− α(y)]v0} (10)

is increasing in y, an increase in s will involve taking the expectation of an increasing
function with respect to a stochastically dominated distribution, which must imply
a decrease in revenue. It is therefore is sufficient to show that the integrand (10) is
increasing in y.
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� First, note that [y − λα(y; s,N)] is increasing in y:

∂

∂y
[y − λα(y; s,N)] ≡ 1− ∂

∂y

ˆ y

v0

α(t)

α(y)
· F

∗
w(t; s)N−1

F ∗w(y; s)N−1
dt

= 1− ∂

∂y

1

α(y)F ∗w(y; s)N−1
+ 1

= − ∂

∂y

1

α(y)F ∗w(y; s)N−1
≥ 0

since α(y)F ∗w(y; s)N−1 is increasing in y by construction.

� Second, note that [y − λα(y; s,N)] ≥ v0 for y ≥ v0:

[y − λα(y; s,N)] ≡ [y − λα(y; s,N)]|v0 +

ˆ y

v0

∂

∂t
[t− λα(t; s,N)]dt

= v0 +

ˆ y

v0

∂

∂t
[t− λα(t; s,N)]dt

≥ v0

since we know ∂
∂y

[y − λα(y; s,N)] ≥ 0.

� Finally, note that (by construction) α(y) is increasing in y.

Hence increasing y has two effects on the function (10): it increases [y − λα(y; s,N)]
and shifts weight from v0 to [y−λα(y; s,N)] (through α(y)). Since [y−λα(y; s,N)] ≥
v0, both these effects are positive, so (10) is increasing in y. It follows that increasing s
leads to taking an expectation of an increasing function with respect to a stochastically
dominated distribution. Hence the effect of s on R through the distribution G∗1:N(y; s)
is negative.

Finally, note that ρα ≥ 0 by construction. Hence an increase in s implies a decrease
in (1− s)Nρ.

Combining these observations, we conclude that seller revenue Rα(s;N) is de-
creasing in s for any N .

Proof of Lemma 6. We establish claims for s+
α (z,N); the argument for s−α (z,N) is

analogous. Suppose s̄ is an equilibrium at (z,N, α). Then Proposition 2 implies
Πα(s̄, N ;F ) ≡ c(z). Since Πα(s,N ; F̃ ) is increasing in s and decreasing in F , it
follows that

c+(z) ≥ c(z) ≡ Πα(s̄, N ;F ) ≥ Πα(s̄, N ;F+)

Hence Πα(s′, N ;F+) > c+(z) implies s′ 6= s̄α(z,N) and (in particular, by monotonic-
ity of Πα(·) in s) s′ > s̄α(z,N). Taking the smallest such s′ identified by L (or the
uninformative bound 1 if no such s′ exists) yields s+

α (z,N) defined above.

Proof of Corollary 5. See Haile and Tamer (2003) for proof that r∗+(z,N) and r∗−(z,N)
bound r∗(z,N). The final equality statement follows from exact identification of coun-
terfactual revenue when sr∗(z,N) ∈ int(S(L)).
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