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Abstract

Many variables of interest to economists take the form of time varying distribu-

tions or functions. This high-dimensional ‘functional’ data can be interpreted in the

context of economic models with function valued endogenous variables, but deriving

the implications of these models requires solving a nonlinear system for a potentially

infinite-dimensional function of infinite-dimensional objects. To overcome this difficulty,

I provide methods for characterizing and numerically approximating the equilibria of

dynamic, stochastic, general equilibrium models with function-valued state variables by

linearization in function space and representation using basis functions. These meth-

ods permit arbitrary infinite-dimensional variation in the state variables, do not impose

exclusion restrictions on the relationship between variables or limit their impact to a

finite-dimensional sufficient statistic, and, most importantly, come with demonstrable

guarantees of consistency and polynomial time computational complexity. I demon-

strate the applicability of the theory by providing an analytical characterization and

computing the solution to a dynamic model of trade, migration, and economic geogra-

phy.
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1 Introduction

In order to understand and evaluate the causes and consequences of economic heterogeneity,
it is helpful to have an analytical framework in which the distribution of heterogeneity can
change over time and can both affect and be affected by other variables. A perspective in
which some of the state variables of an economic model are endogenous random functions
allows distributions, as well as objects like demand and supply curves or policy or value
functions, to be treated as data. While descriptive models and methods for function-valued
time series are undergoing rapid development,1 interpreting this data requires formulating
economic models capable of generating the observed functional data and deriving their im-
plications. For models featuring forward looking decision making and endogenous aggregate
variables, this derivation typically requires solving a computationally intractable infinite-
dimensional system of nonlinear expectational difference equations. Although heuristic or
strongly model dependent methods have been proposed, to date there appears to be no gen-
eral purpose algorithm which provides a formal guarantee of even an approximate solution
to rational expectations models with stochastic function-valued states.

This paper provides such an algorithm. In particular, it demonstrates how the equilib-
rium conditions for a general class of function-valued rational expectations models, including
but not limited to heterogeneous agent dynamic stochastic general equilibrium models, can
be linearized directly in function space, with solutions characterized locally by a functional
linear process, a tractable empirical model for function-valued time series (Bosq, 2000).
Construction of a local solution requires introducing a novel infinite-dimensional extension
of the generalized Schur decomposition used to solve finite-dimensional rational expecta-
tions models (Klein, 2000) and developing perturbation theory for this object, which may
be contributions of independent mathematical interest. The solution can be implemented
numerically by a procedure based on finite-dimensional projection approximations which
converges to the local solution under mild regularity conditions. I analyze in detail a par-
ticular approximation algorithm in this class, a wavelet transform based procedure which
yields an approximate solution accurate to within any desired degree in polynomial time.

To demonstrate and evaluate the method, I develop a dynamic spatial model of trade,
migration, and economic geography which introduces forward looking migration decisions
and spatial shocks into the economic geography model of Krugman (1996). In the model,
the spatial distribution of population, wages, and welfare over a continuum of locations is
allowed to vary nonparametrically in response to persistent spatially correlated shocks to

1See Horváth & Kokoszka (2012); Bosq (2000); Morris (2014); Ferraty & Romain (2011) for surveys of
the rapidly expanding field of functional data analysis, which focuses on modeling, estimation, and inference
for series of observed or estimated functions.
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the desirability of different locations. Due to the spatial structure of trade and production,
the spatial distribution of economic activity is a determined by the distribution of popula-
tion across locations, while the distribution of population is determined by forward looking
migration decisions which take into account the expected distribution of economic activity.
In this setting, the relationship between these two functions is not easily reduced to low-
dimensional summaries or split into “local” and “global” components, but is well characterized
by a functional linear model representation. By exploiting an analytical characterization of
the solution to (certain parameterizations of) this model, the speed and numerical accuracy
of the algorithm are evaluated in practice and shown to be in line with the strong theoretical
guarantees.

The core idea behind the solution method is functional linearization. By taking the
functional derivatives of the equations defining an equilibrium, it is possible to construct a
system of equations which can be solved for the functional derivatives at a fixed point in
function space of the policy operator, a map from function-valued states to function-valued
endogenous variables. In this way, it is possible to recover local information about the
solutions, which can then be used to construct a functional Taylor expansion of the policy
operator which provides an accurate solution for all functions not too far from the function
around which the model is linearized.

Constructing this linear approximation of the policy operators from the functional deriva-
tives of the model equations requires solving a system of quadratic equations in linear op-
erators. In the case of linear or linearized finite-dimensional rational expectations models,
the analogous quadratic equation can be solved using matrix decomposition. In particular,
Klein (2000) demonstrated that a solution can be found using the generalized Schur (or QZ)
decomposition of the matrices of derivatives. In infinite dimensions, an analogous decompo-
sition appears to be absent from the literature, in part because the finite-dimensional version
is constructed by induction using eigenvalues, which may fail to exist or have countable car-
dinality in infinite-dimensional space. Nevertheless, it is possible to construct an analogous
decomposition by other methods, described in detail in Appendix A. Under the conditions
required for such a decomposition to exist and under further conditions analogous to the well
known criterion of Blanchard & Kahn (1980) ensuring that the model has a linear solution,
it is possible to solve for the first order expansion of the policy operator.

Calculating this local solution numerically requires representing it in a form that can be
evaluated on a computer. A standard procedure for reducing problems in function spaces
to finite-dimensional objects is to approximate the functions by projecting the space onto
the span of a set of basis functions, such as wavelets, splines, or trigonometric or Chebyshev
polynomials, and representing operators on function space in terms of their behavior with
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respect to the basis functions. These approaches are referred to as spectral methods and
are commonly applied to solve integral and differential equations: see Boyd (2000), Chatelin
(2011). If any function we are interested in can be represented reasonably accurately by a
finite set of basis functions, the loss from the use of a finite set of functions may be small.
The caveat here is that, unlike in classical function approximation problems where the class
of functions is known, ‘the set of functions we are interested in’ is not explicitly assumed,
but must be determined by the properties of the model.

The issue that projection methods must overcome is that the class of functions well ap-
proximated by finite projection is in fact small in the class of all possible functions which
could conceivably arise endogenously as outcomes of an implicitly defined model with func-
tion valued variables. To handle this concern, conditions must be imposed on the model
which ensure both that the solutions themselves are continuous with respect to projection
approximations and that the solutions are operators which have the property that they map
functions which are well approximated by basis functions to functions which are well approx-
imated by basis functions. Continuity properties of the generalized Schur decomposition are
derived in Appendix B, and a set of restrictions on the model which ensure that basis function
approximation is valid is described in Section 5.2.

While the precise statements of the sufficient conditions on a model for projection to
be valid are somewhat technical, the conditions themselves are rather mild. Essentially,
they rule out certain kinds of maps which take well-behaved smooth functions as input and
produce jagged, noisy, or discontinuous functions as output. Many economic models can be
represented in forms which satisfy these conditions, and many of those that do not can be
modified slightly so that they do, for example by smoothing discontinuous cost functions or
adding a small amount of noise to ensure that a distribution remains smooth.

Provided that the regularity conditions hold, implementing the solution is simple and
fast. The linearized equilibrium equations can be approximated by projection, either analyt-
ically or numerically by quadrature, to produce two pairs of matrices, to which one can apply
the finite-dimensional QZ decomposition, solve and combine to form a matrix approximation
to the infinite dimensional policy operator. The accuracy of the approximation is then deter-
mined by the number of basis functions used and the smoothness of the functions that they
are used to approximate. If all the equilibrium conditions are defined using Hölder continuous
functions, wavelets provide the smallest and fastest feasible representation. Implementing
approximate projection using the Discrete Wavelet Transform, the method converges in a
number of operations polynomial in the degree of accuracy of the solution and in numerical
experiments gives demonstrably accurate results at high speed. High level conditions are
also provided for more general procedures, including for the case when parts of the model
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are estimated directly from data.
The dynamics of economic heterogeneity have been considered from a variety of perspec-

tives. Surveys of heterogeneous agent models are available in Krusell & Smith (2006); Heath-
cote et al. (2009); Guvenen (2011); Ljungqvist & Sargent (2004). A canonical framework
is the Bewley model (Bewley, 1986), sometimes referred to as the Bewley-Huggett-Aiyagari
model after the models and algorithms of Huggett (1993) and Aiyagari (1994). These mod-
els produce a time invariant cross-sectional distribution of income and wealth given by the
stationary distribution endogenously induced by individual decisions which are themselves
determined by the distribution. While not permitting any stochastic variation over time in
distributions, the algorithms introduced to solve these nonstochastic models can be used as
the first step in the linearization procedure I will provide, to find the point in the space of
distributions around which to construct a linearized solution to a model with a stochastic
distribution of heterogeneity.

To accommodate the setting where the distribution may evolve stochastically over time,
Krusell & Smith (1998) introduce aggregate uncertainty into the Bewley model and pro-
vide a procedure to calculate approximate decision rules and generate dynamics of distribu-
tions jointly by simulation and representation of the impact of the distribution on decisions
through a small set of moments. This method is particularly well suited to the model in
that it takes advantage of a feature the authors refer to as ‘approximate aggregation.’ In the
Krusell-Smith model, due to the use of a one-dimensional source of aggregate variation, an
economic structure in which the impact of the distribution on the decision problem occurs
only indirectly through its impact on prices in a centralized market, and a set of preferences
and constraints that yields a decision rule which appears close to linear in individual states
over most of the state space, a low-dimensional set of statistics of the wealth distribution
suffices to describe its dynamics with a high level of accuracy. As a result, the decision
problem can be reduced to a low-dimensional nonlinear decision problem in these statistics
with apparently minimal loss of accuracy.

However, many of the features which make the Krusell-Smith method well suited to
their model and similar models are far from universal. In particular, the finite-dimensional
set of aggregate shocks limits variation in the shape of the functions of interest, and may
create difficulty in matching estimates of the functions from cross-sectional data. Unless
variation over time in the function lies exactly on the same low-dimensional space along
which the model implies the functions move, observed functions may not be consistent with
any possible values of the aggregate shocks, and so full information statistical methods will
reject the specification completely. The low-dimensional set of aggregate shocks may also
prevent consideration of economically important features, whether they affect the shape of
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the functions directly, such as shocks to uncertainty, skewness, and higher moments of a
distribution, as documented by Guvenen et al. (2012) for income distributions, or enter the
model via other variables, such as the variety of sources uncertainty included in medium
scale DSGE models. While procedures like the Krusell-Smith method can handle some
increase in the dimensionality of the space of aggregate shocks by adding more statistics,
increasing the dimension of the state space in the intertemporal decision problem can be
computationally costly, with naive approaches based on discretization or tensor product
function representations scaling exponentially in the number of state variables, and more
sophisticated approaches, such as the Smolyak method of Gordon (2011), requiring some
degree of difficult to verify regularity in the induced distribution.

Moreover, the restriction of the impact of the distribution to acting only on a finite
set of market prices is less tenable in situations where interactions are decentralized, or the
distribution enters the decision problem directly. This can be the case, for example, in spatial
models, like the one considered in Section 3, where market outcomes differ across locations
due to costs of trade or other economic interactions over distance, and in which decisions
depend on the entire spatial distribution of economic activity due to both local and long
distance interactions.

Many extensions and alternatives to the Krusell-Smith method are available: a Journal
of Economic Dynamics and Control symposium (Den Haan, 2010) compares a variety of
methods. Methods based on linearization or perturbation are not new, and are explored in,
among others, Reiter (2009), Chung (2007), Winberry (2014) and Veracierto (2014). Pertur-
bation approaches, which build on the class of linear rational expectations solution methods
introduced by Blanchard & Kahn (1980) and extended by Klein (2000) and others, describe
variability locally, and are much more amenable to including high-dimensional aggregate
shocks than global, fully nonlinear approaches. Reiter (2009) developed the approach of
linearizing models around nonlinear functions and distributions, and noted that by doing so,
local methods can capture differences of large magnitude in the heterogeneous state between
individuals and completely nonlinear responses to those differences while maintaining the
tractability of linear methods for aggregate variables.

All of the considered perturbation approaches differ from the one advocated here because
they do not consider linearization in function space. Instead, they replace functions by finite-
dimensional approximations, either by projection or discretization, and then linearize and
construct a solution based on applying algorithms applicable to finite-dimensional expecta-
tions models. The difference between linearizing and solving in infinite-dimensional space
before taking a finite-dimensional approximation and taking a finite-dimensional approx-
imation before linearizing and solving may seem minor, but the first approach is key to
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ensuring that the resulting solution is well defined in terms of the true solution of the model
and that the algorithm produces an answer which is provably close to this solution. These
approaches also fail to consider that, except under certain regularity conditions, applying
a finite-dimensional solution method to the approximated equilibrium conditions need not
guarantee that the solution is accurate, even if the approximation of the conditions is, be-
cause the solution is not in general continuous with respect to the approximation error.

More generally, none of the methods described, including Krusell-Smith, provide or at-
tempt to provide any formal proof that the approximation converges to a true solution.
Although numerical demonstrations may be used to assess features consistent with the ac-
curacy of the methods and so diagnose certain inaccuracies in an approximated solution,
they cannot certify that the output of the algorithm is valid. Because it comes with for-
mal guarantees, the functional linearization approach introduced here provides for the first
time a benchmark which can be used to characterize a solution to dynamic models with
heterogeneous agents which can be assured to be accurate.

Outline

The structure of this paper is as follows. I describe the setting of rational expectations mod-
els with function valued states in Section 2. Section 3 describes an illustrative application,
a dynamic model of trade, migration and economic geography. Section 4 characterizes and
gives necessary conditions for the existence of solution to the linearized model, while Sec-
tion 5 introduces projection algorithms for calculating this solution and describes conditions
for their consistency. Section 6 illustrate the procedure by applying it to solve the geog-
raphy model from Section 3, and evaluates its performance by comparing to an analytical
characterization of the solution. Section 7 concludes. Several appendices contain technical
results: Appendix A describes conditions for existence of an infinite-dimensional version of
the generalized Schur decomposition, and Appendix B gives conditions under which it is
continuous. Appendix C collects all proofs, and Appendix D contains additional figures. An
online supplementary appendix provides high level sufficient conditions for the existence of
recursive equilibria in function-valued dynamic models.

Notation

H, with any subscript, is assumed to be a complete separable Hilbert space. B, with any
subscript, is Banach space. The notation k k is overloaded: if the object a is an element of B,
kak is the norm of a in B, and if a is in a Hilbert space H, kak = ha, ai 12 is the norm of a in
H, where h , i is the associated inner product. If a 2 Ha but it is not clear from context the
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space on which a lives, the norm may be denoted kakH
a

. L(Ha ! Hb) is the space of bounded
linear operators from Ha to Hb, equipped with the operator norm: for A 2 L(Ha ! Hb),
kAk = sup

kxkH
a

=1
kAxkH

b

. If clarification is required, this norm may be denoted kAkop. A⇤

denotes the (Hermitian) adjoint of A: 8x 2 Ha, y 2 Hb, hAx, yi = hx, A⇤yi. A sequence
of operators Ai 2 L(Ha ! Hb), i 2 N is said to converge in operator norm topology, or
‘in norm’ to A if kAi � Ak ! 0. For � a Cauchy contour in the extended complex plane
C1 (see Conway (1978, Ch. 1 S. 6)) and f(�) : C1 ! L(Ha ! Hb) a function from one
complex variable to a linear operator,

´
� f(�)d� is the path integral of f(�) over the curve

�, as defined in Gohberg et al. (1990, Ch. I). I is the identity operator: if the space Ba on
which it acts needs to be specified, it is written IB

a

. For A 2 L(Ha ! Hb), Im(A) is the
image of A and Ker(A) is the kernel of A. For a pair of bounded operators (B, A) each in
L(Ha ! Hb), following Gohberg et al. (1990), define the spectrum �(B, A) as those � 2 C
such that �A�B is not invertible, accompanied by the point1 if and only if A does not have
bounded inverse, and the resolvent set ⇢(B, A) as C1\�(B, A). An operator pair is said to be
�-regular if for some nonempty subset � ⇢ C1, � ⇢ ⇢(B, A). Brackets A[h] may optionally
be used to denote that h is an argument of linear operator A, parentheses A(h) generally
denote that h is an argument of (possibly) nonlinear operator A. For nonlinear functions
and operators, F (a, b), Fa and Fb are the partial derivatives with respect to arguments a and
b respectively. For a variable x, which may be a function, x0 denotes the variable in the next
time period, not the derivative. The Fourier transform of a function f(x) is denoted with
the scale convention ˆf(!) := F [f(x)](!):=

´
exp(�2⇡◆!x)f(x)dx.

2 Function-Valued Models and Linearization in Function

Space

The class of dynamic economic models which may be placed in a framework amenable to
linearization in function space is large. Many economic models define objects of interest,
explicitly or implicitly, as functions which solve a set of equations representing conditions
such as optimization, market clearing, self-consistency, feasibility, or accounting identities.
For example, a consumption function is often represented implicitly as the solution to an
Euler equation, or a value function as the fixed point of a Bellman operator. Most trivially,
when economic variables take values in Euclidean space, all of the theory developed in
this paper will continue to apply. To see how random functions may naturally enter the
description of an economic model, let us first consider a simple and illustrative case, before
providing a general characterization.
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It is common in microeconometric study of the dynamics of income and consumption
by consumers or production by firms to model individual behavior by a linear dynamic
panel model. A simplified version of this model is given by the assumption that, for each
agent i, the variable of interest ⇣it follows the autoregressive process ⇣it+1 = ⇢⇣it + ✏it+1,
where ✏it+1 is independent of ⇣it and across agents and |⇢| < 1. While it is conventional to
take an interest in the individual persistence parameter ⇢, for the purposes of analysis of
aggregates and welfare we may also be interested in the cross sectional distribution of the
attribute ⇣it, which may be represented by pdf ft(⇣). Given a measure 1 continuum of agents
following this rule, the evolution of this distribution can be determined from its past value
and the distribution of the shock ✏it+1. To model time varying effects such as aggregate
shocks, we may let ✏it+1

i.i.d.⇠ pt+1(✏) across agents, where the density function pt+1(.) may be
taken as a function-valued random variable for each t. This models not only mean shifts,
as would be captured by time fixed or random effects, but also distributional changes such
as the changes in polarization or tail behavior of income risk as documented, for example,
in Guvenen et al. (2012). Under this assumption, we have a dynamic equation for the
evolution of the distribution of ⇣, given by the convolution of the past distribution and the
shock distribution

ft+1(⇣) =

ˆ
pt+1(⇣ � ⇢u)ft(u)du (2.1)

which provides a recursive representation for a function-valued economic variable of interest,
ft(.), in terms of current and past values of the state, an operator mapping between them,
and an exogenous shock which is also function valued, pt+1(.).

To formalize the linearization procedure for this and other models, and to provide a
framework which permits both variables which are predetermined and those determined by
forward looking expectations, we provide a notational framework for a general class of models.
The notation and structure to be used follows closely that of Schmitt-Grohe & Uribe (2004),
who described perturbation procedures for finite-dimensional rational expectations models,
with the difference that we now allow state variables to be elements of an infinite-dimensional
space. We consider in particular models with a recursive representation described by a set of
equilibrium conditions which may be expressed as differentiable operators between separable
Banach spaces. A solution to the model defines a recursive law of motion for the endogenous
variables in the system in terms of the exogenous variables and past values of endogenous
variables. The law is determined implicitly as the solution of a nonlinear expectational
difference equation

EF (x, y, x0, y0,�) = 0B2 (2.2)
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where x 2 Bx is a set of predetermined variables, y 2 By is a set of endogenous or ‘jump’
variables, a superscript x0, y0 indicates the values of these elements in the next time period
t + 1 and the absence thereof indicates values of variables known at time t, � 2 R is a
scalar scaling parameter determining the size of fluctuations. The function F (x, y, x0, y0,�) :

Bx⇥By ⇥Bx⇥By ⇥R! B2 , which we refer to as the equilibrium operator, is a map taking
the values of the state variables today and tomorrow and the scaling parameter to a space
B2, and E is the (Bochner) expectation with respect to the law of motion induced by the
solution of the model, to be made explicit shortly.2

Uncertainty in the model is incorporated solely via exogenous Banach random elements
z0 on probability space (Bz, ⌃z, µz

), which enter into the exogenous law of motion generating
a subset of the predetermined variables x2, with (x1, x2) 2 Bx1 ⇥ Bx2 = Bx, by the equation
x02 = h2(x2) + �z0 for h2 : Bx2 ! Bx2 a given function describing the dependence of future
values of x2 on current values. The shocks z0 are normalized to have zero mean E[z0] = 0.
As a result, F contains as one subcomponent the formula x02 � h2(x2).

While this form may appear somewhat restrictive, many apparent limitations may be
addressed through inclusion of appropriate auxiliary variables and equations. For example,
while only variables in two time periods are included, by including lags and leads as separate
variables, systems dependent on more time periods may be brought into this recursive form.
Likewise, while function-valued uncertainty z0 is restricted to enter additively in the model,
nonlinear effects of shocks may be included by adding an additional predetermined variable
which is a function of the shock: e.g., if zk enters nonlinearly in F , replacing zk with x2k

and incorporating the equation x02k = Ez0k + �(z0k � Ez0k) can recover the nonlinear effects.
Overall, beyond imposing a recursive structure, the form provides a consistent notation but
imposes only modest restrictions on the form of the economic model.

A (recursive) solution is given by a set of policy operators which solve the equilibrium
equation for any value of the initial predetermined state x and the exogenous shocks z. In
each period, y is given by the endogenously determined map g(x, �) from predetermined state
x to endogenous state y (or x0 to y0), and x0 is given by the transition operator h(x, �)+�⌘z0

mapping the current predetermined state and shocks to next period’s predetermined state,
where ⌘ denotes the imbedding Bx2 ! Bx, i.e. for z 2 Bx2 , ⌘[z] = (0, z) 2 Bx1 ⇥ Bx2 , and
h(x, �) = (h1(x, �), h2(x2)) includes both an endogenously determined transition component
h1 and an exogenous component h2.

2The Bochner integral of a B-valued random variable g on probability space (⌦,⌃, µ) is given by an
element Eg 2 B defined for simple functions g =

P
n

i=1 f

i

{! 2 A

i

} for f

i

in B, A

i

2 ⌃ as Eg =
P

n

i=1 f

i

µ[A
i

]
and for more general random variables g as the strong limit of the Bochner integral of a sequence of simple
functions g

n

such that µ kg � g

n

kB ! 0. A measurable random element is Bochner integrable if and only if
µkgkB <1.
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Definition 1. A recursive solution is a set of maps g(x, �) : Bx ⇥ R ! By, h1(x, �) :

Bx ⇥ R! Bx1 , h2(x2) : Bx2 ! Bx2 such that the equilibrium conditions hold:

EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0,�),�) = 0B2 (2.3)

for all x, �, where the expectation E may now be defined, for each x, � as the expec-
tation with respect to the pushforward measure of µz on B2 generated by the function
F (x, g(x, �), h(x, �)+�⌘z0, g(h(x, �)+�⌘z0,�),�) : (x, z0,�) 2 Bx⇥Bx2⇥R! B2 evaluated
at fixed x, �.

It can be shown that this pointwise in x definition of a solution generates a stochastic
process for (xt, yt) under mild measurability conditions on the functions chosen.

Condition 1. (i) Let {zt}1t=0 be an i.i.d. sequence on the infinite product of independent
copies of (Bz, ⌃z, µz

) and initial value x0 be defined on (Bx, ⌃x) with distribution µx
0 , where

⌃x is a sigma field containing ⌃z. (ii) Fix � 2 R. Suppose h(x, �) is (Bx, ⌃x) ! (Bx, ⌃x)

measurable, g(x, �) is (Bx, ⌃x) ! (By, ⌃y) measurable for some ⌃y, and F is measurable
with respect to the product sigma field ⌃x ⌦ ⌃y ⌦ ⌃x ⌦ ⌃y on Bx ⇥ By ⇥ Bx ⇥ By

The measurability restrictions on h and g do impose some nontrivial limitations on the
class of solutions to be considered by ruling out auxiliary randomness in the policy functions
for aggregate variables beyond that included in z. For certain classes of models, random-
ization may be necessary to ensure existence of a solution, see Miao (2006). If this can
be incorporated in z by expanding the state space, this poses no difficulty, but because the
model will be solved by approximating near a point with no aggregate variability, the method
cannot accommodate models which have no solution without aggregate randomness.

Proposition 1. The series defined recursively by x0 ⇠ µx
0, x2,t+1 = h2(x2,t)+�zt+1, x1t+1 =

h1(xt,�), yt = g(xt,�) 8t � 0, where h, g are a recursive solution satisfying Condition
1, is measurable with respect to the infinite product sigma field and EF (x, g(x, �), h(x, �) +

�⌘z0, g(h(x, �)+�⌘z0,�),�) coincides with the conditional expectation of F (xt, g(xt,�), h(xt,�)+

�⌘zt+1, g(h(xt,�) + �⌘zt+1,�),�) at time t given xt = x.

Proof. See Appendix.

In order to ensure computation of a stationary solution, the point around which the model
is linearized is a nonstochastic steady state, which allows construction of a solution which is
both local and recursive, by ensuring that the point around which the rule is calculated is
the same in all periods.
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Definition 2. A nonstochastic steady state is a set of values (x⇤, y⇤) 2 Bx ⇥ By such that
when � = 0 and so function-valued uncertainty disappears, F satisfies

F (x⇤, y⇤, x⇤, y⇤, 0) = 0

Many recursive models will have such a point, at which all aggregate variables are un-
changing over time. This is the equilibrium concept used in Bewley-Huggett-Aiyagari models,
in which the distribution of heterogeneity is given by an invariant distribution generated by
individual decision rules, and its existence can often be guaranteed by fixed point theorem.
It may also be calculated consistently by standard methods, such as the iterative algorithms
proposed by Huggett (1993) and Aiyagari (1994). In general, determining the nonstochastic
steady state of a model involves solving a functional equation, which will differ depending
on the details of the model. However, the problem involves determining only a single set of
functions rather than an operator valid for any function, and is often quite feasible using
standard methods. For example, in models where the decision rule is a function-valued state
variable, recursive solutions are often available by dynamic programming, for which there
are many feasible approximation algorithms with exponential or similarly fast convergence
rates. Calculation of invariant distributions of Markov processes is also often achievable by
iterative methods with exponential convergence. More broadly, in the absence of infinite-
dimensional uncertainty, the problem usually reduces to a set of integral equations, for which
a broad variety of standard numerical integral equation methods may be used.

A linearized solution of the model is given by first order Taylor expansion of g(.) and h(.)

with respect to their arguments at the steady state. In order to solve for this, g(.) and h(.)

and the operator F : Bx ⇥ Bx ⇥ By ⇥ By ! B2 must be differentiable with respect to their
arguments. In Banach space, the appropriate notion of derivative for linearization is (usually)
the Fréchet derivative, which is defined analogously to the Fréchet derivative in Euclidean
space.3 If F (x) is operator between Banach spaces B1 ! B2, the Fréchet derivative, if it

3For operators defined or differentiable only on subsets (not necessarily subspaces) of infinite-dimensional
Banach spaces, such as the positive cone of non-negative measures, it may sometimes be desirable to consider
the Hadamard derivative (see Flett (1980)) tangential to a set, which requires a derivative to be defined
uniformly only over compact sets and so is weaker than the Fréchet derivative, which requires uniformity
over closed balls, which in infinite dimensions are not compact. While the chain rule and a version of the
implicit function theorem also apply for this class of derivatives, and so a linear approximation may be
defined by the same equations with the Hadamard in place of the Fréchet derivative (and the derivatives
exactly coincide on finite-dimensional spaces), the Taylor expansion will in be defined only over the subset
on which a Hadamard derivative exists, and have a remainder with size dependent on the direction of the
path of the approach, rather than just the norm. The domain restriction may not be a problem in practice,
as in most cases the derivatives may be extended by the Hahn-Banach theorem to a larger space in a
canonical way, for example, by removing positivity restrictions. If a solution does exist and is Hadamard
differentiable, the Hadamard derivatives of the operators of interest will coincide on their domain with the
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exists, is the continuous linear operator DF satisfying

lim

khk1!0

kF (x + h)� F (x)�DF [h]k2
khk1

= 0. (2.4)

In practice, calculation of Fréchet derivatives of Banach space-valued operators is not
difficult: they obey many of the standard rules of Euclidean-valued derivatives including
linearity, additivity, and the product rule, and many standard operators have known deriva-
tives: see e.g. Kesavan (2004). Most importantly, the Fréchet derivative follows a version
of the chain rule: for two Fréchet differentiable operators F , G, D(F �G)[h] = DF [DG[h]].
Fréchet differentiability is strictly stronger than directional, or Gateaux differentiability,
which requires only the existence of a limit in the direction of a fixed element h. As the
Gateaux derivatives of F in any direction h 2 B may be calculated as the scalar derivative
d
d⌧

F (x + ⌧h) at ⌧ = 0 and must coincide with the Fréchet derivative when the latter ex-
ists, the form of the Fréchet derivative is easily determined. The Fréchet derivative preserves
linear operators, so integration, differentiation, multiplication by a function, and any compo-
sition thereof have derivatives equal to themselves. A special class of operators which arises
frequently in economic models is the composition of one function with another, referred to
as a Nemytskii operator. Under appropriate boundedness, differentiability, and integrability
conditions on f(s1, s2), the composition f(g(x), s2), viewed as a map from the function g(.)

of x to the function f(g(x), s2) of x, s2 is a Fréchet differentiable function of g(.) at the point
g⇤(.) with derivative fs1(g

⇤
(x), s2) · [h(.)]: that is, the derivative is given by multiplication of

the direction in which g changes by the partial derivative of f with respect to the element
with which it is composed (Kesavan, 2004). In Banach space, Taylor’s theorem for Fréchet
derivatives gives a linear approximation of a differentiable operator F (x) : B1 ! B2 as
F (x + h) = F (x) + DF [h] + o(khk1).

It is important to contrast a Taylor expansion in function space with a local solution
for finite-dimensional models. The point at which the linearization is constructed is the
stationary state of the model in the situation where the variance of function-valued shocks
is taken to 0. This is not the same as shutting down all variability in the model. In
most heterogeneous agent models, individuals face a distribution of idiosyncratic uncertainty
which may be arbitrarily dispersed and induces a nondegenerate stationary distribution of
heterogeneity, in which the state of each individual evolves stochastically over time. In
these models, the steady state function is the stationary distribution of heterogeneity, in
the absence of aggregate shocks. For example, the unemployment rate can be constant

extended operators on the total space. When this is the case, the same first order approximation may be
constructed and approximated by the algorithm provided, but will be valid only for directions in which
Hadamard differentiability holds.
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over time while each individual faces employment risk, with the number of people entering
and leaving unemployment equal. Similarly, linearization of the policy operator does not
imply all decision rules are linear: decisions with respect to individual characteristics may
be arbitrarily nonlinear. Instead, the relationship between function-valued state variables is
expressed in terms of linear operators. Loosely, the value of one nonlinear function at each
point can be thought of as approximated by a linear function of the values of each other
function at each point.4 As a result, a first order functional Taylor expansion can describe
rather complicated patterns of behavior.

To illustrate the process of linearization, consider the law of motion for the distribution
provided by the panel model in (2.1): a linear approximation will describe the law of motion
in the case of ‘small’ changes in the distribution. To consider the model in the case of small
i.i.d. over time aggregate shocks to the cross sectional distribution pt+1(✏) of idiosyncratic
shocks, write the law deviations from the mean as pt+1(✏)� p⇤(✏) = �zt+1(✏), for zt+1(✏) an
i.i.d. over time Bochner mean 0 random function so that at � = 0 the distribution of ✏ is
constant over time at a fixed distribution p⇤(✏). In the above notation x02 = pt+1(✏)� p⇤(✏),
z0 = zt+1(✏) and h2(x2) = 0 because we have assumed that the exogenous aggregate shocks
are not persistent.5 To complete the description of the model, we may take as the endogenous
predetermined variables x1 = ft, x01 = ft+1, and

F (x1, x2, x
0
1, x

0
2) =

"
ft+1(⇣)�

´
pt+1(⇣ � ⇢u)ft(u)du

pt+1(✏)� p⇤(✏)

#

as the equilibrium operator defining the model. In this case, all variables are predetermined
or exogenous, so there is no y variable. A linear approximation with respect to f and p

is given by taking the functional derivative of F with respect to pt,ft, pt+1, ft+1 around
a nonstochastic steady state f ⇤, p⇤ satisfying p(✏) = p⇤(✏), f ⇤(⇣) =

´
p⇤(⇣ � ⇢u)f ⇤(u)du,

which exists whenever |⇢| < 1 under mild conditions on the density p⇤ of the error term: see
Christensen (2014). Applying the chain rule and the product rule, a Taylor expansion of the

4This description is accurate for discrete functions: for general functions, the proper statement is that
each linear functional of the output function is equal to a different linear functional of the input function.

5Allowing h2(x2) in the model to be nonzero would represent persistence in the aggregate shock to the
distribution of error terms. After linearization, the cross sectional distribution of ⇣, the observable individual
characteristic, would then be approximated by a functional ARMA(1,1) process, instead of a functional
AR(1).
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law of motion for ft+1 in pt+1 and ft is given by

ft+1(⇣) =

ˆ
p⇤(⇣ � ⇢u)f ⇤(u)du +

ˆ
p⇤(⇣ � ⇢u)[ft(u)� f ⇤(u)]du

+

ˆ
[pt+1(⇣ � ⇢u)� p⇤(⇣ � ⇢u)]f ⇤(u)du + o(k(ft � f ⇤, pt+1 � p⇤)k).

Substituting in the (already linear) law of motion pt+1 = p⇤ + �zt+1 and the steady state
relation, obtain

ft+1(⇣)�f ⇤(⇣) =

ˆ
p⇤(⇣�⇢u)[ft(u)�f ⇤(u)]du+�

ˆ
zt+1(⇣�⇢u)f ⇤(u)du+o(k(ft�f ⇤, pt+1�p⇤)k)

which expresses the deviation from the steady state in time t+1 as given by a linear operator
applied to the deviation from steady state in time t plus, by linearity of the expectation and
of the integral operator applied to zt+1(.), a mean 0 exogenous Banach random element.
That is, it may be written as

f 0 � f ⇤ ⇡ B[f � f ⇤] + �"0

for some linear operator B and some mean zero noise "0, a linear functional autoregression
as in Bosq (2000), so long as both the noise and the deviation from a steady state are small.
As similar procedures may be applied to more general dynamic panel data models, one sees
that a functional linear process may provide a local approximation to the law of motion
for distributions of cross-sectional aggregates for a wide range of commonly used empirical
models of individual and aggregate behavior.6

In what follows, I will show how to take a linearization of a much broader class of models,
and use it to solve for the dynamics and responses of the state variables of the models to
endogenous and exogenous changes.

3 Example: Trade, Migration, and Economic Geography

The following is a dynamic model of economic geography based on the spatial model of
Krugman (1996). In particular, it borrows whole cloth the static spatial equilibrium of
that model, which determines wages, output, production, and prices at a continuum of
locations given a distribution of population, and replaces the dynamic structure, which was

6For models as simple as in 2.1, it is possible to characterize the behavior without approximations: the
random linear operator model generalizes the random coefficients model to infinite dimensions, and has been
analyzed in Skorohod (1984).
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given by an ad hoc behavioral rule chosen purely for tractability, with an intertemporally
optimizing dynamic stochastic model of location choice. The economic phenomena one
hopes to understand by making such a substitution are the dynamics of regional economies
in response to aggregate shocks which may be global or asymmetric across regions. To
capture the temporal structure of the dynamics, the model imposes adjustment costs on
the movement of population, so that adjustment to regional shocks must take place in the
short run by movements of prices and quantities and only gradually by shifts in population.
This feature, along with explicit modeling of preferences, also has the advantage of allowing
evaluation of the welfare implications of regional shocks. This is a feature which is relatively
uncommon in equilibrium models with spatial structure, which tend to assume immediate
adjustment of populations to equalize welfare across regions, complete markets in insurance
for regional uncertainty, or complete labor immobility. An exception is provided by Caliendo
et al. (2015), which is descriptively quite rich, and from which the model incorporates the
structure of the intertemporal migration problem, as introduced originally by Artuç et al.
(2010).

The proposed model differs from Caliendo et al. (2015) in market structure and in
allowing a continuum of locations. As will be shown, the use of a continuum provides
several advantages. Beyond the greater generality and ability to fit to arbitrary resolution,
the continuum allows substantially greater tractability and analytical insight under certain
parameterizations of the model. Most importantly, in the special case, also considered by
Krugman (1996), of a completely spatially homogeneous geography with a continuum of
locations where no location differs ex ante from any other, the linearized solution to the
model can be described analytically. This makes the model a useful test case for numerical
algorithms that attempt to approximate this solution numerically.

We begin with the intertemporal decision problem, which can be analyzed independently
of the static equilibrium structure. Notation follows Krugman (1996). Individuals working
in the tradeables sector at location x in geography G, a set of locations with a distance
metric which for now we take to be a subset of Euclidean space, receive in each period t a
real wage !t(x) and a value of regional amenities ⌫t(x), both taken as given by the worker.
A worker in location x at time t may decide to move to location x0 in period t + 1 at a
cost c(x0 � x) which is a convex function of distance traveled (this could be relaxed to be
non-translation invariant, but this simplifies some results). Workers are risk neutral with
time-separable additive utility and discount the future at rate �. In each period they also
receive independent and identically distributed across time and worker shocks ✏t(x0) to their
utility for each potential choice of location x0, distributed according to a Gumbel process
(Maddison et al. , 2014), whose finite-dimensional marginal distributions are independent
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Type I extreme value random variables. The Bellman equation for the decision problem is
therefore given by

˜Vt(x) = max

x0
{!t(x) + ⌫t(x) + c(x0 � x) + ✏t(x

0
) + �Et

˜Vt+1(x
0
)}

For reasons of tractability, it is easier to work with the conditional expectation of this
equation: denoting Vt(x) := Et

˜Vt+1(x), we obtain

Vt(x) = Etmax

x0
{!t+1(x) + ⌫t+1(x) + c(x0 � x) + ✏t+1(x

0
) + �Vt+1(x

0
)}

As a result, the location decision satisfies a continuous analogue of a multinomial logit
decision rule: the conditional density of choices at location x0 given current location x is
given by

p(x0|x, V ) = exp(c(x0 � x) + �V (x0))/
ˆ

exp(c(x0 � x) + �V (x0))dx0.

The use of extreme value shocks to generate a logit formulation for the policy function is
similar to that used in Caliendo et al. (2015), with the difference that here the decision rule
is defined over a continuum. To simplify notation, we will write the partition function of
this conditional density as

f(x, V ) :=

ˆ
exp(c(x0 � x) + �V (x0))dx0.

Using the closed form characterization for the expectation of the maximum of a Gumbel
process, it is possible to write the expectation over the maximum in terms of the partition
function, allowing the Bellman equation to be simplified to

Vt(x) = Et!t+1(x) + ⌫t+1(x) + log f(x, Vt+1) + � (3.1)

where � is the Euler-Mascheroni constant (⇡ 0.577). Due to this explicit form, no numerical
optimization is needed to compute the value function. Since it can be shown that Blackwell’s
conditions hold, the Bellman operator is a contraction and the steady state value can be found
by iteration of the contraction mapping.

The above constitutes the forward looking component of the model. To determine the
implications of the chosen policy for dynamics of the equilibrium, assume that at each location
there is a continuum of workers, who each receive independent and identically distributed
preference shocks, and that the total mass of workers has measure 1 and is distributed across
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locations at time t with density at location x given by �t(x). Since the conditional density
over locations given an initial state x is given by p(x0|x, V ), the time evolution of the density
of workers across regions is given by the (adjoint) Markov transition operator

�t+1(x
0
) =

ˆ
G

p(x0|x, Vt)�t(x)dx (3.2)

taking the current distribution of population �t(x) to the next period distribution �t+1(x).
Together, �t and ˜Vt constitute the endogenous function-valued state variables of the

model. To complete the model, one computes a static spatial equilibrium which generates a
value of real wages at each location !t(x) given a distribution of population across places. A
number of assumptions on market structure, trade, and geographical spillovers are possible
here, with many models of trade and geography taking similar functional forms as discussed
by Allen & Arkolakis (2014). A simple benchmark choice is the model of increasing returns,
monopolistic competition, and iceberg trade costs of Krugman (1996), whose static struc-
ture can be borrowed without change. Specifically, we copy exactly the block of equations
(A.24)-(A.27) of that model to determine wages given population. See Krugman (1996) for
derivation and more detailed explanation.

Variables included in these equations are Y (x), output at location x, T (x), the price
index at location x, and w(x), the nominal wage in terms of the nontraded good. Parameters
used are �, the elasticity of substitution of the CES aggregator across varieties, µ, the Cobb-
Douglas expenditure share on traded goods, and ⌧ , the scale factor in the proportional iceberg
trade costs 1� e�⌧ |x�y| of shipping a good from point x to point y. Given a predetermined
distribution of population �t(x), a static equilibrium of the model is given by functions
{Yt(x), Tt(x), wt(x),!t(x)} satisfying the system of nonlinear integral equations

Yt(x) = 1� µ + µ�t(x)wt(x) (3.3)

Tt(x) =


⌧(� � 1)

2

ˆ
G

�t(z)wt(z)

1��e⌧(1��)|x�z|dz

� 1
1��

(3.4)

wt(x) =


⌧(� � 1)

2

ˆ
G

Yt(z)Tt(z)

��1e�⌧(��1)|x�z|dz

� 1
�

(3.5)

!t(x) = wt(x)Tt(x)

�µ (3.6)

This system of equations is not analytically tractable, and has no explicit solution for
!t in terms of �t. However, a solution in general exists and under certain conditions on
parameters one may be able to calculate an implicit solution.

The dynamic specification of the model is completed by the inclusion of aggregate un-
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certainty. As described above, while agents take into consideration the expectation of real
wages, in the absence of additional inputs, these evolve deterministically. A number of po-
tential sources of aggregate uncertainty can arise which affect the evolution of population
across regions. For the purpose of the decision problem over locations, however, any source
of uncertainty which affects the static equilibrium of the model exerts its effect only through
its impact on the real living standards at different locations, !t(x) + ⌫t(x). Amenity value
is exogenous in this specification of the model, and shocks to amenities across locations can
reflect natural mechanisms like patterns of weather or natural disasters, or outcomes of (ex-
ogenous) local policies. Disturbances to variables determined within the static equilibrium
of the model, such as changes in productivity (which may vary by location) in traded or
nontraded sectors, changes in trade costs, or relative preferences for different varieties of
good, will all show up in real wages. Further, because these are determined as the outcome
of a purely static process, any persistence in these deviations (aside from that transmitted
through the dynamics of population, described above), must come from outside the model.
As a result, for the purposes of deriving the dynamics of economic activity and population,
it is equivalent to model all shocks as changes to the exogenous value of amenities ⌫t(x) at
time t, and to provide exogenously specified dynamics for these shocks.

While many forms are possible, because the model will end up being linearized, it is suffi-
cient to consider a linear specification for the dynamics of ⌫t(x). For simplicity of illustration
and, later, computation, I consider a first order functional autoregression specification with
translation invariant transition operator, thereby restricting to shocks which do not diffuse
differently from ex-ante identical locations:

⌫t+1(x) =

ˆ
G

�(x� z)⌫t(z)dz + "t+1(x) (3.7)

In the above, �(.) is some bounded, smooth, square-integrable function parameterizing
the degree of spatial diffusion of shocks, and "t(x) is an i.i.d. function-valued Banach random
element with covariance operator ⌃. Note that the additive formulation of the shock ⌫t is
without loss of generality even when interpreted as shocks to the trade component of the
model, as subsequent to linearization, up to appropriate reparameterization of � and ⌃, all
specifications lead to a representation in the linearized Bellman equation as an additive shock
to !t(x). While this is without loss of generality for the purpose of determining dynamic
properties of the model, specification of the particular form in which shocks enter could be
used to aid identification of the effects of these particular shocks, by specifying � and ⌃

as results of the composite effects of multiple shocks. However, since all static variables
are determined jointly and contemporaneously, identification requires the aid of functional
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form assumptions on the covariance of shocks or the validity of external instruments, and
so no conclusions can be drawn without additional assumptions. The additive structure
does have implications for identification of the model in the case where amenities are not
directly observed, as the impact of shocks to real wages and amenities must be disentangled
to identify the effects of each, but given the dynamics of the sum, the division has no effect
on the dynamics of the other model variables, at least to first order. Similarly, as in Caliendo
et al. (2015), the idiosyncratic valuation shocks which induce diffusion of population may
be divided between real income and amenities, affecting interpretation but not the dynamics
of the model.

While one may consider parameterizations under which it is necessary to solve numeri-
cally for many components of linearized model, for this model, it is possible to construct a
particularly tractable special case in which the steady state and projections of derivatives
can be computed exactly. If we assume that the geography is spatially homogeneous, such
as the case of a circle, a sphere, an infinite line or plane, or higher-dimensional analogues
of the preceding, the steady state of the system has a closed form solution. In particular,
set ⌫t(x) to 0 in all periods and conjecture that the initial distribution of population is
uniform over the real line, in the sense that population measure over any interval is given
by Lebesgue measure over the interval. Then it can be seen that a solution of the static
equilibrium component of the model is given by {Yt(x), Tt(x), wt(x),!t(x)} which are all
constant over x and equal to 1. Plugging this into the Bellman equation under the as-
sumption that !t = 1 is constant over time, shows that, because c(x0 � x) is translation
invariant, V (x) =

¯V constant is the unique solution of the Bellman equation. Placing this
in p(x0|x, V ), we obtain that p(x0|x, ¯V ) / exp(c(x0 � x)) and so is also translation invariant,
and in particular if c(x0�x) = log g(x0�x) for any nonnegative function g(.), the transition
equation for �t is given by a convolution with a density proportional to g(.). For example, if
c(x0 � x) = � 1

2c
(x0 � x)

2, quadratic adjustment costs, equation (3.2) is given by convolution
with a Gaussian with standard deviation c, and if c(x0 � x) = �1

c
|x0 � x|, equation (3.2)

is given by convolution with a Laplace distribution with dispersion parameter c. Because
convolution is spatially invariant, the unique steady state of this transition equation on a
translation-invariant domain is the uniform distribution, thus verifying the initial conjecture.
For convenience, note that in steady state the partition function f(x, ¯V ) is a constant, ¯f .

Given the existence of a steady state, the dynamics of the model local to this point
can be expressed by taking functional derivatives of the operators. To express this model
in format appropriate for solution by a functional linear rational expectations algorithm,
express the model recursively in terms of jump variable V (x) and predetermined variables
�(x) and ⌫(x) and their next period values V 0,�0, ⌫ 0, solving out the static variables, which
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may be expressed at each time as a deterministic function of these three states, which are
completely sufficient to solve for the dynamics of the model. We consider perturbations
of V and ⌫ as elements of L2

(R) and perturbations of �, a probability distribution, as an
element of L2

0(R), the space of square integrable functions on R integrating to 0, ensuring
that densities integrate to 1.

First, the transition equation is linear with respect to � with derivative given by a convo-
lution of the argument with density proportional to exp(c(x0�x)), an operator which we can
denote as P [.] :=

´
1
f̄

exp(c(x0 � x) + � ¯V )[.]dx0. This can be interpreted as convolution with
Gibbs distribution with potential given by the cost of moving: in the absence of disturbances
to the value of a different locations, given a current population at each location, next period
population spreads out by an amount proportional to the cost of distance. The Bellman
equation is linear in V with derivative equal to the identity and has functional derivative
with respect to V 0 given by �

f̄

´
exp(c(x0 � x) + � ¯V )[.]dx0 = �P [.]. The transition equation

has derivative equal to the identity with respect to �0 and has derivative with respect to V

given by �
´

G
1
f̄

exp(c(x0�x)+� ¯V )[.]� 1
f̄

exp(c(x0�x)+� ¯V )

�
f̄

´
exp(c(z0�x)+� ¯V )[.]dz0dx,

which equals �P � �PP . The transition equation for ⌫ is linear in ⌫ and ⌫ 0, with derivative
with respect to ⌫ given by �[.] :=

´
�(x, z)[.]dz and ⌫ 0 by the identity. Finally, although

no closed form expression exists for !(x) in terms of �(x), its functional derivative d!
d�

with
respect to �(x), which is all that is needed, can be determined by implicit differentiation
of equations (3.3),(3.4), (3.5), and (3.6): the exact formula is derived in Appendix C.2 as
equation (C.1).

Together these calculations fully characterize the derivatives of the model’s equilibrium
conditions with respect to the state variables. Arranging these derivatives into blocks with
elements given by linear operators, the linearization of the equilibrium conditions of this
model can be expressed in a form suitable for application of our solution methods, as a pair
of linear operators representing the derivatives of the equilibrium conditions of the model
with respect to today’s state variables (�, ⌫, V ) and tomorrow’s state variables (�0, ⌫ 0, V 0

).

0

B@

2

64
0 0 I

P 0 �P � �PP

0 � 0

3

75 ,

2

64

d!
d�

I �P

I 0 0

0 I 0

3

75

1

CA (3.8)

In this pair of operators, the columns correspond to function-valued state variables, while
the rows correspond to the linearized equations defining the equilibrium. In order, these
are the Bellman equation, the transition law for the population distribution, and the law of
motion for the function-valued shock to the distribution of amenities.

In what follows, I will show how to take the derivatives of a model expressed in this form
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and use them to solve for the linearized dynamics and responses of the state variables of the
model to endogenous and exogenous changes.

4 Characterization of Equilibrium Solution

While simple models with a high degree of structure may have linear approximations to
solutions which can be found easily by heuristic methods, for larger or more complicated
systems, and especially those where components are mutually determined, a more systematic
approach is required. Fortunately, the steps involved in finding a linear solution may be
described explicitly and so reduced to an algorithm which automates construction. The idea
behind the method is to use a decomposition of the equilibrium conditions into components
which may be solved separately and recursively, by taking a component whose evolution may
be expressed as a function of past variables and a component which is solved by iterating
forward expectations of future variables. While in some models, the components which are
solved by looking backwards and the components which are solved by looking forwards may
be identified with separate variables in the system, this is not true in general. Instead,
this separation must be determined endogenously in such a way that initial and end-point
conditions of the system are satisfied. What this often consists of is the requirement that
some choice variables or other endogenous variables must be chosen to affect the expected
evolution of other variables so that they satisfy an endpoint condition.

This is the source of the logic behind the cross-equation restrictions implied by many
classical rational expectations models: the path of the endogenous variables must be de-
termined jointly, and so expectations regarding one variable possibly far in the future may
cause another variable to move far in advance. For example, in the Krugman (1979) model
of balance-of-payments crises (and more recent models of the same), foreign exchange in-
vestor behavior is tied down by expected future optimality conditions at the point when the
sovereign runs out of reserves. In the Dornbusch (1976) overshooting model, the nominal
exchange rate follows a nonmonotonic path to ensure consistency with both short run price
rigidity and a long run purchasing power parity anchor. In infinite-horizon settings, the role
of an end-point condition which coordinates expectations is played by analogous long-run
optimality or consistency conditions. For example, in the fiscal theory of the price level,
the price adjusts to ensure consistency of long run expectations of the government budget
deficit. Most commonly (at least in real models: see Cochrane (2011) for a discussion of
complications in nominal models), long-run behavior is determined by a condition, such as
transversality, which is satisfied when variables follow a dynamic path which is stationar-
ity. While many types of long run restrictions are possible in models with function-valued
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state variables, we will provide an algorithm for this most common case, in which the speci-
fied model takes recursive form over an infinite horizon and endpoint conditions require (or
permit) a stationary solution. Although some modification is possible, including requiring
asymptotic convergence (or slow divergence) at a particular rate possibly above or below 1,
due to the infinite-dimensional nature of the parameter space, arbitrary endpoint conditions
introduce substantial complications and so these will not be discussed further.

The requirement that it is possible to separate into solvable components also imposes
one more technical limitation: to ensure orthogonality of projections, in what follows, we
specialize from the setting of arbitrary separable Banach spaces to require all variables to
live on separable Hilbert spaces: H1 = Hx ⇥ Hy and H2 replace B1 = Bx ⇥ By and B2,
respectively. This will also be helpful in the numerical implementation. For models defined
on spaces which can be densely embedded into a Hilbert space, it is often possible to extend
the derivatives to the full Hilbert space by completion. However, norm convergence results
must then be taken with respect to the Hilbert space norm.

For an economic model with recursive solution which is differentiable and generates a
stationary stochastic process, we describe conditions that the functional derivatives of the
solution operators g(.) and h(.) must satisfy, which will allow these derivatives to be calcu-
lated numerically.

Let the equilibrium conditions for the model of interest be given by 2.3 on page 11

G(x, �) := EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0,�),�) = 0

for all x, � and assume G(x, �) is Fréchet differentiable with respect to x, �.
Take the derivative with respect to x (evaluated at (x⇤, x⇤, y⇤, y⇤, 0)) to obtain

Fx + Fx0hx + Fygx + Fy0gxhx = 0

In matrix form

h
Fx0 Fy0

i " I 0

0 gx

#"
hx

hx

#
= �

h
Fx Fy

i " I

gx

#
(4.1)

Define A =

h
Fx0 Fy0

i
, B = �

h
Fx Fy

i
mapping H1 := Hx ⇥Hy ! H2.

We seek to partially characterize the policy operators h(x, �) and g(x, �) by solving for
their first derivatives with respect to the ‘predetermined’ state variable x, hx and gx. Written
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as

A

"
I 0

0 gx

#"
hx

hx

#
= B

"
I

gx

#

this can be seen as an equation in terms of a pair of linear operators (B, A) which may be
solved in terms of a joint decomposition of the pair. In general, multiple solutions to this
system are possible: however, additional considerations provide some constraint as to the
nature of acceptable solutions. In particular, conditions such as transversality conditions in
optimization and No Ponzi Game conditions often rule out equilibria in which (some) state
variables explode. More generally, a local solution method is attractive largely to the extent
that the system remains with high probability in a neighborhood of the state around which
the linearization applies.

For these reasons, we seek a solution to these equilibrium conditions which also induces
stable, or stationary, dynamics. For finite-dimensional deterministic dynamical systems, suf-
ficient conditions for the local stability around the steady state may be characterized by
the eigenvalues of the linearized transition rule: in discrete time, eigenvalues less than one
in modulus imply stability, in continuous time, eigenvalues must have real part less than 0.
For infinite-dimensional dynamical systems, analogous conditions apply (see Gohberg et al.
(1990, Ch. IV.3)). For rational expectations models characterized in terms of expectations,
dynamics of state variables may be characterized not only by past values, but also by expec-
tations of future values, and, in particular, certain variables may be allowed to ‘jump,’ which
is to say that in response to a stochastic change in the current state, some variables may
change discontinuously in order to satisfy the equilibrium conditions. As a result, stability
conditions for this class of models differ from those for deterministic dynamical systems.
Most notably, they may exhibit ‘saddle-path stability,’ in which the system evolves toward
the steady state only along a lower-dimensional manifold and so only a (possibly null) subset
of eigenvalues satisfy the stability conditions. A stable solution exists in such a case if the
jump variables may adjust to ensure that the system stays on this stable manifold.

In the finite-dimensional case, stable solutions to this matrix pair equation may be charac-
terized in terms of the Jordan decomposition of the pair, as in the seminal work of Blanchard
& Kahn (1980), or in the case where singularity may be possible or numerical stability is
desired, in terms of the generalized Schur decomposition as in Klein (2000). In the infinite-
dimensional case, one may, under certain regularity conditions, apply analogues of these
decompositions. To provide robustness to singularity and ensure numerical stability, this
paper applies an analogue of the generalized Schur decomposition. As such a decomposition
appears to be absent from the literature, Appendix A provides a detailed characterization
and a proof of existence under a mild set of regularity conditions. The key idea of the proof is
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to use the generalized resolvent operator to construct potentially non-orthogonal subspaces
on which the operator pair acts corresponding to elements of the spectrum outside and inside
the unit circle, and then show that orthogonalizing the subspaces to ensure unitarity of the
transform preserves the spectrum.

For the purpose of characterizing the equilibrium conditions of the model, the following
description suffices. If (B, A) satisfy the regularity conditions of Lemma(4) in Appendix A,
among which are that (B, A) are bounded operators and that (B, A) are �-regular on the
unit circle: �A � B has bounded inverse for any complex � satisfying |�| = 1, i.e. the unit
circle is in the resolvent set, there exists a decomposition

(B, A) = (Q⇤TU,Q⇤SU)

in which U and Q are unitary operators and S and T may be decomposed as

(T, S) =

 "
T11 T12

0 T22

#
,

"
S11 S12

0 S22

#!

conformable with the decomposition Q =

"
Q1

Q2

#
and U =

"
U1

U2

#
such that the images

of U⇤
1 and U⇤

2 respectively decompose H1 into two orthogonal subspaces H11 and H12 and
the spectrum of (T11, S11) lies inside the unit circle, so S11 has bounded inverse. We may
further decompose U1, U2 by considering their actions on Hy and Hx. Write U11 := U1'X ,
U12 := U1'Y , U21 := U2'X , U22 := U2'Y where 'X

: Hx ! Hx ⇥ {0} ✓ H1 and 'Y
: Hy !

{0}⇥Hy ✓ H1 are imbeddings.

Remark. The assumption of boundedness of the operator pair is not fundamental. Rather,
it reflects the choice of space on which the operators are defined. See Kurbatova (2009) for a
way in which to define the domain on which the pair acts so that boundedness holds and the
above decomposition may be constructed for operator pairs unbounded with respect to the
original choice of space HX by restriction to a subspace. The use of potentially unbounded
operators may be useful if equilibrium conditions are defined in terms of differential operators,
as is common in continuous time versions of the models studied in this paper, as in Achdou
et al. (2013). In discrete time, the conditions of interest are generally defined in terms of
integral equations and so boundedness usually holds without restrictions.

In contrast, �-regularity imposes nontrivial restrictions. By requiring existence of a
bounded operator with bounded inverse between the two spaces, it requires that HX and
HY be isomorphic, reflecting the traditional condition that to have a unique set of solutions,
it is necessary that there be as many equations as unknowns. In addition to ruling out unit
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roots, invertibility on the unit circle also rules out long memory behavior. To see this, note
that because the resolvent set of an operator pair is open, invertibility must also hold in an
open neighborhood of the unit circle, and so it cannot be the case that the spectrum has a
limit point in the unit circle, as occurs in certain processes with long memory.

In terms of classes of operators which this assumption excludes, it rules out the presence
of a continuous spectrum in the neighborhood of the unit circle. A prominent example of
an operator pair with a continuous spectrum is an identity paired with a multiplication
operator (which can arise as the functional derivative of a composition operator), i.e. (F, I)

with F [g(x)] = f(x) · g(x), which has continuous spectrum taking all values attained by
f(x). If |f(x)| has a limit point equal to 1, this operator pair is not �-regular. In this case
a spectral decomposition can be constructed analytically, and a solution will exist with long
memory or unit root behavior (depending on the behavior of f(x) as it approaches 1), but
for general models which fail to be �-regular with no closed form spectral decomposition,
numerical approximations of the decomposition based on projection methods will be highly
unstable.

The generalized Schur decomposition allows us to rewrite our decomposition as

Q⇤
"

S11 S12

0 S22

#"
U11 U12

U21 U22

#"
I 0

0 gx

#"
hx

hx

#

= Q⇤
"

T11 T12

0 T22

#"
U11 U12

U21 U22

#"
I

gx

#
(4.2)

Unitarity of Q allows it to cancel on both sides, leaving, after simplification,
"

S11 S12

0 S22

#"
(U11 + U12gx)hx

(U21 + U22gx)hx

#
=

"
T11 T12

0 T22

#"
U11 + U12gx

U21 + U22gx

#
.

To find a stable solution, first solve for gx, which determines the jump variables in terms
of the predetermined variables, and then use this to find the value of hx. To ensure that the
second line holds trivially, it is sufficient to find gx : Hx ! Hy such that

U21 + U22gx = 0 (4.3)

always. In principle, there may be many solutions, one solution, or no solution to this
problem. In the case that U22U⇤

22 has bounded inverse on the space Im(U2), at least one
solution exists, given by what is referred to in numerical analysis as the ‘minimum norm
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solution’ (Golub & van Loan, 1996, Ch. 4) to the linear equation (4.3),

gx = �U⇤
22(U22U

⇤
22)

�1U21. (4.4)

It is worth noting how the condition that U22U⇤
22 has bounded inverse relates to the

eigenvalue criteria in Blanchard & Kahn (1980) and subsequent rational expectations solution
procedures. The existence of a bounded inverse implies U22U⇤

22 is bijective, and so U22 is
surjective onto Im(U2), which is mapped isometrically toH12 by the continuous and invertible
linear transformation U⇤

2 . Therefore, there exists a linear surjection from Hy ! H12. In
finite dimensions, this requires that the dimension of the space of ‘jump variables’ y is at
least as large as the dimension of the eigenspace corresponding to the ‘unstable’ generalized
eigenvalues. Note however that in infinite dimensions, both of these spaces are infinite
dimensional and the spectrum is generally uncountable, so this criterion cannot be expressed
in terms of a relationship between the ‘number of eigenvalues greater than one’ and the
‘number of jump variables’.

There is also an analogous condition characterizing uniqueness of the solution. Consider
the case in which U22 has nontrivial null space. Then if gx is a solution and g̃ is an operator
whose range is a subset of Ker U22, gx + g̃ is also satisfies U21 + U22(gx + g̃) = 0. Thus, a
solution is unique only if U22 has trivial null space. Formally, a solution is unique if and only
if U22 is Hy-complete: 8y 2 Hy, U22y = 0 implies y = 0. If U22 is complete and surjective,
then it is bijective, and so, by the bounded inverse theorem has a bounded inverse and so

gx = �U22
�1U21 (4.5)

is the unique solution.7 In finite dimensions, a necessary condition for a linear operator
to have trivial null space is that the domain and range spaces are of the same dimension.
This therefore corresponds to the case in which the number of jump variables and unsta-
ble eigenvalues is exactly equal. Note that while there is a burgeoning literature on the
characterization and implications of completeness in econometric models (see, e.g., Andrews
(2011)), this is generally in the context of operators which are not surjective and do not have
bounded inverse.

If U22 is surjective but not complete, the system is said to be underdetermined, and
there may be many solutions, of which �U⇤

22(U22U⇤
22)

�1U21, the minimum norm solution is
one. In this case, any solution to the system must be equal to �U⇤

22(U22U⇤
22)

�1U21 plus an
operator g̃ whose range is in the kernel of U22, which is the complement of the range of U⇤

22,
7If you don’t like the axiom of choice, this will still be the unique solution but may or may not be a

bounded operator.
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and so for all x 2 Hx k � U⇤
22(U22U⇤

22)
�1U21x + g̃xk = k � U⇤

22(U22U⇤
22)

�1U21xk + kg̃xk �
k � U⇤

22(U22U⇤
22)

�1U21xk hence the description ‘minimum norm’. This corresponds to the
case in finite dimensions in which there are more jump variables than unstable eigenvalues.
In this case, one may calculate a canonical solution with minimum norm, but there are also
a continuum of other solutions in which arbitrary terms may be added in the eigenspaces
corresponding to the jump variables so long as these terms are sent to zero by the expectation
operator. This situation corresponds to the partial identification result when completeness
fails in nonparametric instrumental variables estimation described in Santos (2012). While
indeterminacy in the finite-dimensional case has received extensive study, for brevity and to
avoid technical complications, I will consider only cases in which the solution is unique, in
which case U�1

22 is bounded and well defined.
Given a solution for gx, the evolution equation for the predetermined variables may

be expressed in terms of this solution. Imposing 4.3, the equilibrium conditions hold if
S11(U11 + U12gx)hx = T11(U11 + U12gx). Since S11 has bounded inverse by construction, this
gives

hx = (U11 + U12gx)
�1S�1

11 T11(U11 + U12gx) (4.6)

is a solution so long as U11 + U12gx has bounded inverse. Moreover, this operator is similar
to S�1

11 T11 and so has identical spectrum. In particular, by the construction of S11 and T11

the spectrum of this operator is inside the complex unit circle. So, by Gohberg et al. (1990,
Thm IV.3.1), the difference equation xt+1 = hxxt, x0 = x 2 Hx has a unique solution for
any given x, given by xt = (hx)

tx, which converges to 0. Thus, we say that hx is a stable
solution. Moreover, under these conditions, Bosq (2000, Thm 3.1) implies that the Hilbert
AR(1) functional linear process given by xt+1 = hXxt + ⇠t, where ⇠t is a Hx random element
uncorrelated over t has a unique covariance stationary solution, and so we are justified in
referring to hx as a stationary solution.

For purposes of numerical approximation, we would like to write hx in a more convenient
form.

Lemma 1. Let (U22U⇤
22)

�1 be bounded and let gx solve (4.3). Then

hx = (U11 + U12gx)
�1S�1

11 T11(U11 + U12gx)

= ('X⇤'X
+ g⇤xgx)

�1
(g⇤xU

⇤
12 + U⇤

11)S
�1
11 T11(U11 + U12gx) (4.7)

Proof. See Appendix C.

As a corollary, note that 'X⇤'X
+ g⇤xgx is a quadratic form satisfying inf

kxkH
x

=1
k('X⇤'X

+

g⇤xgx)xk � inf

kxkH
x

=1
k'X⇤'Xxk = 1 and so this inverse always exists and is bounded. Therefore,
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if (U22U⇤
22)

�1 is bounded, a stable solution exists for hx, and if U�1
22 is bounded, this solution

is unique.
Note that existence of a solution to the operator equation (4.1) is a necessary condition

for the existence of a differentiable solution consistent with the equilibrium conditions of the
model but is not sufficient. For an overview of high level conditions that might be used to
ensure existence of a solution, see the online supplementary materials.

5 Algorithm

Having a formula for the functional derivatives of the policy operators in terms of the func-
tional derivatives of the equilibrium conditions is not sufficient to implement the formula
unless the components of that formula, defined in terms of the generalized Schur decompo-
sition can be found. While there are some cases where this can be done analytically, these
require a high degree of structure to be imposed, often requiring, for example, the model
to take a partial equilibrium structure where aggregate variables are taken as exogenous,
or the opposite, require individual decisions not to depend on the aggregate state. Beyond
these and some other idiosyncratic cases, a numerical procedure is needed to construct the
solution. This can be done using projection of the equilibrium conditions onto a finite set of
basis functions, so long as the model takes a structure where the approximation error this
introduces can be controlled. Conditions under which this holds can often be verified easily,
and in particular hold for the economic geography model described in Section 5.

5.1 Cases in which a known decomposition exists

To compute the functional derivatives of the equilibrium policy operators of a rational ex-
pectations model with Hilbert-valued states, it is generally necessary to separate the state
space into forward looking and backward-looking, or ’unstable’ and ’stable’ components. In
some special cases, these components correspond to known or analytically identifiable state
variables. This generally requires that certain derivatives equal 0: a type of exclusion restric-
tion which ensures that backward-looking variables are not influenced by forward looking
variables or vice versa. Exclusion restrictions of these sort are prevalent in partial equilib-
rium models, in which a forward looking decision may be made given a persistent and purely
exogenous state variable. For example, if the feedback between population and economic
activity were to be removed from the geography model described in Section 3, the migration
decision problem given an exogenous distribution of wages would fall into this class. Similar
exclusion restrictions may also arise in cases where the equilibrium environment and decision
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problem are carefully tailored so that a persistent backward looking state has no impact on
forward looking decisions which do affect the state. A special case of this structure is when
decision making is purely myopic, either due to a carefully tailored incentive structure or
due to behavioral constraints on the decision makers. Models with these kinds of exclusion
restrictions may be described as triangular. While the restrictions required to ensure that
such a condition holds are often stringent, the computational and analytical tractability that
they allow makes them an important special case.

Let us consider two kinds of triangular models, roughly corresponding to the cases de-
scribed above where forward-looking decisions are not influenced by a persistent state and
where a persistent state is not influenced by a forward looking decision. I will call such cases
upper triangular and lower triangular, respectively, for reasons that will become apparent.
In the upper triangular case, the partial derivative of the equilibrium conditions with respect
to the predetermined state variables x is 0 in the equations describing the forward looking
decision. This can occur in models with myopic decision making, either due to behavioral
constraints or due to a structure of preferences, production or technology designed to pro-
duce the knife-edge condition that the optimal decision is independent of the state of the
world. In the notation from above, in such cases, the derivatives may be decomposed as

(B, A) = [�Fx � Fy, Fx0 Fy0 ] =

"
T11 T12

0 T22

,
S11 S12

0 S22

#

without any (additional) unitary transformation, so Q = U = I, and the forward and
backward looking state variables may be identified with y and x, respectively. Applying
previous results on the derivatives of the policy functions, obtain gX = 0 and hX = S�1

11 T11

. This says that, consistent with the intuition, the forward looking state has 0 derivative
with respect to the persistent backward-looking one, and the backward looking state evolves
autonomously. This is a locally stable solution if the spectrum of S�1

11 T11 lies within the unit
circle.

The lower triangular case occurs when the derivative of the equilibrium conditions with
respect to the jump state variable y is 0 in the equations describing the backward looking
persistent state variable. This can occur in partial equilibrium or small open economy type
settings, in which aggregate states or distributions are determined completely exogenously.
In this case, the derivatives are decomposed as

(B, A) = [�Fx � Fy, Fx0 Fy0 ] =

"
T11 0

T21 T22

,
S11 0

S21 S22

#

without any unitary transform, so again y and x may be identified with forward and
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backward-looking state variables. In this case, a slightly different calculation may be applied
to obtain the derivatives of the policy operators. Applying the condition

"
S11 0

S21 S22

#"
hx

gxhx

#
=

"
T11 0

T21 T22

#"
I

gx

#

obtain the solution hx = S�1
11 T11, which is to say that x evolves according to a law of motion

which does not depend on the forward looking jump state y. The derivative gX of the policy
function giving y in terms of x, satisfies the equation

T22gx = S21hx � T21 + S22gxhx

which may either be expressed recursively as an infinite sum, or by treating gx as an element
of the Banach space of bounded linear operators, in terms the inverse of the linear operator
T22[.]� S22[.]S

�1
11 T11, if it exists, as gx = (T22[.]� S22[.]S

�1
11 T11)

�1
(S21S

�1
11 T11 � T21). 8 While

neither of these formulas is particularly straightforward to apply, often inverses may be
computable in closed form, allowing simple evaluation of the effect of a state variable of
interest on an intertemporal decision problem.

5.2 Numerical Evaluation by Projection

In practice, one often finds that the restrictions required to ensure that a system takes
triangular form are not economically sensible. Especially in general equilibrium problems,
forward looking decisions both influence and are influenced by the evolution of persistent
states. In such cases, it becomes necessary to apply a method which can separate the for-
ward and backward looking subspaces under general conditions. Unfortunately, closed form
solutions are rarely available for the generalized Schur decomposition of systems of operator
equations, and one must instead turn to numerics. For an algorithm to be useful, it must
take data which are computable from representations of the derivatives of the equilibrium
conditions and output an approximate decomposition. This suggests application of methods
based on sampling, where the derivative operators are approximated by finite-dimensional
objects to which a decomposition may be applied numerically.

A particularly simple way to perform this approximation is to approximate any infinite-
dimensional Hilbert space by an increasing sequence of subspaces, possibly spanned by a

8If we may use the familiar notation vec(g
x

) to denote the map from the space of operators to an
isomorphic Banach space, viewed as a vector space, we may write this formula suggestively as vec(g

x

) =
(I⌦T22�(S�1

11 T11)⇤⌦S22)�1vec(S21S
�1
11 T11�T21), which gives the solution in terms of the finite-dimensional

vec operator and the Kronecker product when H
x

and H
y

are finite dimensional.
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standard set of basis functions. On such spaces, the derivative operators of interest are finite-
dimensional matrices. As the number of basis functions grows, representation of any function
in the space becomes increasingly accurate, and one may hope that at a sufficient level of
detail, the finite-dimensional system accurately approximates the infinite-dimensional one. If
this is the case, it may be possible to simply apply solution algorithms for finite-dimensional
linear rational expectations algorithms to produce finite-dimensional approximations of the
policy functions.

While intuitively appealing, there is an important step missing in the above logic. In order
for the finite-dimensional solutions to be accurate, at least asymptotically, it is necessary that
when the input of the finite-dimensional rational expectation algorithm is sufficiently close
to the truth, that the output also be close: the solution must be continuous with respect
to some topology. It turns out that the difficult step to show here is the continuity of the
generalized Schur decomposition. While the generalized Schur decomposition is known to be
stable in finite dimensions (Golub & Van Loan, 1996), only limited results are available for
the infinite-dimensional case. In infinite dimensions, different topologies are not equivalent,
and so one must choose a topology with respect to which the approximation converges. The
results of Stewart (1973) ensuring continuity of the generalized Schur subspaces and the
Rayleigh components ((Sij, Tij) in previous notation) apply in infinite-dimensional spaces,
demonstrating, under certain conditions, the continuity of these objects with respect to the
Hilbert-Schmidt norm. In infinite dimensions, the use of this norm imposes unduly strong
summability conditions on most operators of interest, to the point that many operators used
in practice, such as the identity, do not have finite norm. As a result, in the appendix, I have
demonstrated a generalization of this result to the operator norm. If a sampling procedure
converges to the true derivatives in operator norm, the generalized Schur decomposition will
also converge in the same norm.

While reassuring, continuity in operator norm is in fact of limited applicability without
some important auxiliary hypotheses. In particular, it is known that a finite-dimensional
matrix may approximate an infinite-dimensional operator in operator norm only if that op-
erator is compact. This presents something of a difficulty, as essentially no economic models
with function-valued states have derivatives which are compact operators. However, there
exists a limited but far from trivial subclass of models in which it is nevertheless possible to
construct the generalized Schur decomposition of a set of operators which consistently ap-
proximates the true equilibrium derivatives in operator norm, and so to which the continuity
result applies. I refer to models which satisfy this condition as asymptotically diagonal.

Definition 3. The operator pair (B, A) is asymptotically diagonal if there exists a known
linear isometry such that H1 is isometrically isomorphic to H2, and the representation of
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the operator pair with respect to this isometry (which will also be denoted (B, A)) satisfies
the decomposition (B, A) = (BI , AI) + (BC , AC) such that BC and AC are compact and
there exist known finite partitions of Hx,Hy ⇢ H1

⇠
=

H2 into orthogonal subspaces {Hj}J
j=1

conformable with the partition into Hx and Hy, usually corresponding to variables making
up X and Y , such that for each pair (i, j) 2 {1 . . . J}2, AI

ij

:= ProjH
i

AIProjH
j

and BI
ij

:=

ProjH
i

BIProjH
j

satisfy AI
ij

and BI
ij

are each either equal either to the zero operator or to
a scalar multiple of the identity Iij, where Iij is defined for i = j as the identity operator on
Hi and for i 6= j is defined as the identity from Hj to Hi if Hi

⇠
=

Hj.

Informally, this statement says that asymptotically diagonal systems can be broken up
into a compact part and a part for which all subcomponents are equal to the identity. The
typical form for an asymptotically diagonal operator pair is a set of square block operators
acting on a space of J functions, where each block contains an identity operator, a compact
operator, or a sum of a compact operator and an identity operator. For example if J = 2,
(B, A) may take the form

 "
c1I11 + C1 c2I12 + C2

c3I21 + C3 c4I22 + C4

#
,

"
c5I11 + C5 c6I12 + C6

c7I21 + C7 c8I22 + C8

#!
(5.1)

where c1 through c8 are real scalars (possibly 0) and C1 through C8 are compact operators, for
example integral operators of the form

´
K(x, z)[f(z)]dz for some bounded smooth function

K(x, z) : [0, 1)

2 ! R1 in the case where Hj is L2
[0, 1). Here (BC , AC) collects the C

components, and (BI , AI) collects the cI components.
Asymptotic diagonality ensures that the model has a tractable form ‘up to a compact

perturbation.’ In particular, it can be seen that (BI , AI) is block diagonal with respect to any
orthonormal basis of H1 conformable with the partition into subspaces {Hj}J

j=1 with blocks
which are J-dimensional square pencils which are, importantly, all identical. For example,
for a pair in the form of (5.1), for any orthonormal basis {�i1}1i=1 of Hj=1, which must have
a corresponding basis {�i2}1i=1 for Hj=2 if Hj=1

⇠
=

Hj=2, (if not, the off-diagonal components
c2, c3, c6, and c7 must all be 0, as no identity can be defined), the action of (BI , AI) on the
coefficients corresponding to functions (�i1,�i2) is given by the pair of 2⇥ 2 matrices

 "
c1 c2

c3 c4

#
,

"
c5 c6

c7 c8

#!

for any i = 1 . . .1. This provides a representation of (BI , AI) as block diagonal with
respect to the the orthonormal basis {{eij}1i=1}2

j=1 of H = Hj=1 ⇥Hj=2 with ei1 = (�i1,0),
ei2 = (0,�i2), with blocks corresponding to pairs identified by common index i. As a result,
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to construct the generalized Schur decomposition of (BI , AI), it suffices to calculate a single
J-dimensional decomposition of the matrix pencil representing any particular block and to
concatenate the identical and orthogonal blocks.

Generally speaking, the isometry condition will be fulfilled by any model which uniquely
determines an equilibrium, as it generalizes the familiar requirement that a model have
an identical number of equations and unknowns, so the space into which the equilibrium
conditions map will generally have a canonical isomorphism to the space of unknown states.
This holds similarly for the J subspaces, which usually correspond to interpretable variables
in the context of the model, with isomorphisms between spaces of variables likewise defined
canonically. For example, in the example model of economic geography, the distribution
of wages and the distribution of amenities may be defined as functions on the same space
defined in the same units (such as dollars, or utils).

The use of a restriction of this kind is that identity components are common components
of the derivative operators of many models, because many conditions take the form of defining
a variable or assigning it a value, but are not compact, and so cannot be approximated
directly by finite-dimensional approximations. The remainder of (BI , AI) after projection
onto any subspace does not go to 0, but because it takes a tractable diagonal form, it is known.
In contrast, for the compact component, the remainder when projecting onto an increasing
sequence of subspaces does go to 0 and so is asymptotically negligible. By combining these
two components, it is possible to use a finite-dimensional projection to approximate the
operator pencil on a finite-dimensional subspace and leave a remainder on the orthogonal
complement space a which is known up to an asymptotically negligible perturbation. In this
way, one can use a finite set of computations to compute a generalized Schur decomposition
corresponding to an operator pencil which is close in norm to the true infinite-dimensional
pencil, and so by the continuity in norm of the decomposition, yields a decomposition which
is close to the true one.

The disadvantage of such a restriction is that requiring all components of the derivatives
to either be compact or to be composed of identity operators restricts the functional forms
of allowable models, potentially in ways which rule out economically meaningful effects. For
example, in a model with a distribution of characteristics which evolve independently across
individuals driven by a Markov process, the distribution is a state variable and its evolution
is described by an adjoint Markov operator. When the conditional density of the process
given any initial state is sufficiently smooth, the operator mapping the density today to the
density tomorrow will be compact and the density tomorrow enters via an identity. However,
when there is a point mass in the conditional density, the transition operator need not be
compact. Point masses can describe inertia, such as that induced by fixed costs (Stokey,
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2008) or indexation, or mass movement along a discontinuous path. Similarly, decision
problems where the object chosen is a function, ubiquitous in economics in the form of best-
response policies, can yield first order conditions in which the function which is a choice
variable enters into a nonlinear utility function, resulting in a functional derivative which is
a multiplication operator, which may be noncompact. In some cases, it may be possible to
transform the condition into one where the noncompact operator is an identity by applying
its inverse to the equation, but this can eliminate only one non-identity operator from the
equation. In the case where this decision problem over functions faces a state variable which
is also a function, as in games or contracting problems, or government choosing nonlinear
policies over a continuum of agents, goods, or locations, there may be multiple nonlinear
operators in the decision problem which may prevent reducing to an asymptotically diagonal
form.

When possible, applying an invertible transformation to both sides of an equilibrium
equation can ensure that the asymptotically diagonal form holds without making changes to
the model itself. In other cases, it may be possible to construct a modified model which is
close to the original but which satisfies the condition that its derivatives are asymptotically
diagonal. For example, if compactness fails due to a law of motion with discrete jumps to a
fixed value, creating a discontinuity in the distribution at that value, the discontinuity may
be removed if the discrete jump is accompanied by a small amount of continuously distributed
noise, thereby smoothing out the conditional distribution, though the shape of the resulting
distribution may be very close if the noise is small enough. Similarly, discrete actions induced
by hard constraints can be made to vary continuously by replacing hard constraints with
smooth but sharply growing penalties which induce similar but smooth behavior. These sorts
of smoothing transformations are commonly used to employ numerical methods which rely
on smoothness (see Den Haan (2010) for commentary), though it should be noted that these
changes in the model may not be innocuous. While the resulting behavior at the individual
level may be extremely similar, the resulting operator describing the law of motion for the
distribution across individuals, which is now compact, as desired, must be far away from the
true operator for some input functions. As a result, this approach does not guarantee that
the resulting aggregate behavior will be close. Instead, it provides a solution to a different
model, with similar individual level behavior. However, if the additional noise or smoothing
of the constraint is empirically justified, this is not necessarily a concern. For example,
the extreme value heterogeneity in location preference in the model of migration decisions
not only ensures a smooth law of motion for the population distribution, it also reflects
the believable feature that there is idiosyncratic preference heterogeneity which ensures that
individuals do not all move to the same place.
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When the derivatives of the equilibrium conditions of a model are asymptotically diagonal
(and a unique stable equilibrium exists local to the steady state), computation of the first
order approximation of the policy operators is both straightforward and computationally
fast, in the sense that a consistent approximation can be computed to any desired precision
in time polynomial in the number of basis functions used in the approximation. The pro-
cedure consists of projecting the equilibrium derivative operators onto a finite-dimensional
orthogonal subspace, computing the policy operators on that subspace by applying directly
a standard first order rational expectations solution algorithm for finite-dimensional models,
and computing the policy operator on the orthogonal complement of that subspace analyt-
ically using (BI , AI). The operator norm precision of the resulting approximation is then
asymptotically of no higher order than the operator norm error in the projection approxi-
mation of (BC , AC). While compactness alone ensures only that this projection error goes
to 0 as the number of basis functions increases, when the compact component takes the
form of integral operators

´
K(x, z)[f(z)]dz, mild smoothness conditions (or other limited

complexity conditions) on the kernel, can be used to ensure a rate of convergence. Moreover,
in the case where projections cannot be calculated analytically, for example because the
kernel function can only be accessed by point evaluation and so integrals must be computed
approximately by quadrature, similar smoothness conditions ensure that the additional error
induced is controllable.

As a very wide variety of schemes for approximating such an operator may be applied, I
first provide a general purpose bound in terms of operator norm error, then offer an example
of a set of conditions and an approximation scheme which ensure that this bound goes to
0. Specifically, under a Hölder continuity and compact support condition on the kernel, I
demonstrate convergence rates for a Coiflet representation and 1-point quadrature scheme
derived from Beylkin et al. (1991) which justify the high speed and accuracy that this
method has exhibited in numerical experimentation relative to a wide variety of other basis
function choices and quadrature schemes. Results in Beylkin et al. (1991) may easily be
used to extend to the case of singular kernels and other wavelet classes. One particular
alternative which may be attractive in some cases is to use an operator calibrated to data.
In this case, plugging in any matrix-valued operator norm consistent estimator (as in Guillas
(2001) for functional autoregressions, or Park & Qian (2012) or Benatia et al. (2015) for
functional regression) produces a consistent estimator of the policy functions.

Formally, sufficient conditions for consistent approximation are given by

Condition 2. (i) (B, A) H1 ! H2 is an asymptotically diagonal pair of bounded operators,
�-regular with respect to closed Cauchy curve � (i.e., per Definition (4), �A�B is invertible
for all � in a closed curve � ⇢ C1 separating the extended complex plane into an interior
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and exterior subsets), with generalized Schur decomposition with respect to � given by

(B, A) = [Q⇤
1, Q

⇤
2]

"
T11 T12

0 T22

,
S11 S12

0 S22

#"
U1

U2

#

(ii) dif(
T11 S11

T22 S22

) > 0, where the dif operator is defined in B.4 on page 79 in Appendix B as

a measure of continuity of the generalized Schur decomposition with respect to perturbations
(iii) U22 = U2'X is invertible

These conditions on the derivatives of the model are not entirely general but apply
to fairly broad classes of models. As mentioned before, asymptotic diagonality rules out
certain classes of models which display excessive ‘frequency mixing’. The general property
of operators which this rules out is a transfer of energy between frequencies which fails
to dissipate as frequency increases to infinity. In these cases, input functions with a high
degree of regularity are passed to outputs which may be irregular, impeding the ability to
represent the system uniformly in time with respect to classes of regular functions which
can be well approximated by standard function approximation. This transfer of energy to
higher and higher frequencies is commonly described in models of physical systems as an
aspect of (weak) turbulence, and generally requires numerical methods different from those
described here. �-regularity ensures that forward and backward looking components of the
system can be distinguished. In the typical case where � is the complex unit circle, it rules
out unit roots and continuous spectra around unity, and so imposes some restriction on the
time series properties of the systems which can be analyzed by this method.

Condition (ii) on the dif operator of the pair similarly imposes that the forward and
backward looking components are well-separated, ensuring their continuity with respect to
small perturbations in the operators: see Appendix B for an exact definition and further
discussion. Heuristically speaking, the dif constant is a measure of the separation between the
forward and backward subspaces which depends on the spectral gap between the subspaces
and the degree of nonnormality (or deviation from a diagonalizable pair) of the operator
pair. In the case where the operator pair (B, A) is diagonalizable, it is equal to the minimum
distance between the spectra of (T11, S11) and (T22, S22) and so positivity is implied by �-
regularity. �-regularity is also sufficient in the case that (B, A) is finite dimensional (see
Stewart & Sun (1990) Thm VI.1.11) or in the case in which either B or A is invertible,
in which case it follows from the Sylvester-Rosenblum theorem for operators (Bhatia &
Rosenthal, 1997), though the exact size will depend on the degree of nonnormality.9

9I conjecture that there may exist an analogue of the Sylvester-Rosenblum theorem for the operator
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Condition (iii) is necessary for existence and uniqueness of derivatives of a policy function
which are consistent with the equilibrium conditions: it ensures that there is a correct model
to be approximated.

To provide a consistent approximation, it is necessary to choose a sequence of finite-
dimensional orthogonal subspaces which converge to H. Generally these will be defined as
the closed linear span of an increasing sequence of functions in a set of complete orthonormal
bases of {Hj}J

j=1, though orthonormality is mainly a computational and notational conve-
nience. As one often does not have access to an exact projection, it is sufficient to request a
consistent approximation to one instead. For consistency, we require approximations satis-
fying the following properties

Condition 3. (i) Let {⇡K
j

j }J
j=1 be J orthogonal projections onto Kj-dimensional orthogonal

subspaces of {Hj}J
j=1 respectively such that Im ⇡K

i

i
⇠
=

Im ⇡
K

j

j if Hi
⇠
=

Hj (i.e., ⇡K
j and

⇡K
i

i map to subspaces which are identified of elements of the partition which are themselves
identified), and let ⇡K

=

PJ
j=1 ⇡

K
j

j project onto the K =

PJ
j=1 Kj -dimensional union of

these subspaces. Define (BK , AK
) := ⇡K

(B, A)⇡K , and (BK
C , AK

C ) := ⇡K
(BC , AC)⇡K . Let

max{��BK
C �BC

��
op

,
��AK

C � AC

��
op
}  ⌘K

for some sequence ⌘K decreasing to 0 as K !1.
(ii) Let (

˜BK , ˜AK
) be a sequence of matrix approximations of (BK , AK

) on a Euclidean
space isomorphic to Im ⇡K satisfying

max{
��� ˜BK �BK

���
op

,
��� ˜AK � AK

���
op
}  ⇣K

for some sequence ⇣K decreasing to 0 as K !1.

In practice, as the J subspaces of H represent distinct functions used as state variables
(for example, a value function and a distribution over agents), these approximations are
given by first choosing an appropriate complete series basis for each function of interest
and representing each function with respect to an increasing number of terms in that series.
The numerical representation of the operators with respect to the series (

˜BK , ˜AK
) is then

calculated by interpolation, quadrature, exact sampling in some special cases, or estimation.
Note that we require only consistency of the projections over (BC , AC). Both on and off
the projected space (BI , AI) has exact representation as a set of scalar multiples of identity
matrices on Im ⇡K and as identity operators on the orthogonal complement of that space.

defining the dif constant, in which case condition (ii) is entirely redundant. However, the method of proof
does not straightforwardly generalize.
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Given a choice of spaces onto which to project and a consistent approximation of the
projected operators, we can define our approximate operators by calculating policy opera-
tors g̃K

x , ˜hK
x and gK?

x , hK?
x from (B, A) separately on Im ⇡K and Ker ⇡K , respectively and

composing them. We may define these operators as follows.
Denote the generalized Schur decomposition with respect to � of the finite-dimensional

matrix representation of (

˜BK , ˜AK
) as

[

˜Q⇤K
1 , ˜Q⇤K

2 ]

"
˜TK
11

˜TK
12

0

˜TK
22

,
˜SK
11

˜SK
12

0

˜SK
22

#"
˜UK

11
˜UK

12

˜UK
21

˜UK
22

#
.

Note that because this is a finite-dimensional matrix pair, this may be calculated in O(K3
)

time by the QZ algorithm: see Golub & Van Loan (1996). Applying the formulas for
the policy operators to this restricted space, define g̃K

x = �(

˜UK
22)

�1
˜UK

21 , ˜hK
x = (

˜UK
11 +

˜UK
12 g̃

K
X )

�1
(

˜SK
11)

�1
˜TK
11(

˜UK
11 +

˜UK
12 g̃

K
X ). These define an approximation of gx and hx respectively

on the space Im ⇡K .
As the restriction of the policy function to this space need not, in general, consistently

approximate the policy functions on H as a whole, we supplement by an approximation on
the orthogonal complement space, gK?

x , hK?
x . To do this, we approximate by considering only

(BI , AI) on this space: this is a reasonable approximation because for K large enough, the
contribution of (BC , AC) on the remainder becomes negligible. Consider a set of complete
orthonormal bases of Hj, {eij}J

j=1, i = 1 . . .1, where esj and etk are identified if s = t

and Hj
⇠
=

Hk. Then, by construction, for all i, (BI , AI) maps the closure of their span
Span{eij}J

j=1 to itself and moreover, the representation of this map is identical for all i.
Informally, (BI , AI) is (H-equivalent to by Parseval’s identity) a block diagonal matrix pair
over this complete orthonormal basis with identical J⇥J blocks. Further, because an identity
matrix has identity representation with respect to any choice of basis, we may choose a basis
such that {eij}J

j=1, i = K + 1 . . .1 are a complete orthonormal basis of Ker ⇡K (these may
or may not be the remaining elements of an orthonormal basis the projection onto the span
of which defines ⇡K , though this representation is convenient). By the orthogonality of the
blocks, it is sufficient to define the policy function separately on each block. This can be
done by applying the solution formula to any J-dimensional block i, regarded as a pair of
J ⇥ J matrices, (Bi

I , A
i
I). These have generalized Schur decomposition

(Bi
I , A

i
I) = [Qi⇤

1 , Qi⇤
2 ]

"
T i

11 T i
12

0 T i
22

,
Si

11 Si
12

0 Si
22

#"
U i

11

U i
21

U i
12

U i
22

#

on each block i, where U i
11 and U i

21 acts on the J1 elements contained in Hx and U i
12 and U i

22
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act on the J�J1 elements contained in Hy. The corresponding block of the policy operators
are given by gi

x = �(U i
22)

�1U i
21, hi

x = (U i
11 + U i

12g
i
x)
�1

(Si
11)

�1T i
11(U

i
11 + U i

12g
i
x). To define our

approximation on the orthogonal complement of Im ⇡K , we simply concatenate the blocks,
giving sequential representations

gK?
x =

1X

i=K+1

JX

j=J1+1

J1X

k=1

(gi
x)(j�J1)k heik, [.]i eij

and

hK?
x =

1X

i=K+1

J1X

j=1

J1X

k=1

(hi
x)jk heik, [.]i eij.

Note that since each block is identical, calculation of the policy function needs be performed
for only one representative block, with running time dominated by the QZ algorithm, of
order O(J3

) typically negligible.
The approximation to the policy operators on H are given by gK := g̃K

x + gK?
x and

hK :=

˜hK
x + hK?

x . A summary of the steps leading to their construction is provided as
Algorithm 1. Under the conditions given, these aproximations are consistent in operator
norm. We have the result

Theorem 1. Let (B, A) and their approximations (

˜BK , ˜AK
) satisfy Conditions (2) and (3).

Then kgK � gxkop ! 0 and khK �hxkop ! 0 as K !1. In particular, there exists some ¯K

and some constant C such that for K > ¯K, kgK � gxkop  C(⇣K + ⌘K) and khK � hxkop 
C(⇣K + ⌘K).

Proof. See Appendix.

The idea behind the consistency argument is to show that the generalized Schur decompo-
sition of the combined approximation on and off Im ⇡K converges in operator norm and then
apply perturbation theorems ensuring continuity in operator norm for the Schur projectors
and Rayleigh components. Then by applying orthogonality, show that the policy functions
corresponding to the generalized Schur decompositions on and off Im ⇡K are equivalent to
the policy functions corresponding to the Schur decomposition of the approximate operator
as a whole. The exact constant C and ¯K are both decreasing functions of the dif constant of
(B, A). While the rate of convergence is unaffected, for highly non-normal operators or those
with a small gap between the spectrum of the forward and backward looking components,
the constant on the rate may be large.
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Algorithm 1 Construction of gK , hK

Inputs: An equilibrium operator F (x, y, x0, y0,�) satisfying Condition 2, Im ⇡K a K-
dimensional subspace satisfying Condition 3, and {{eij}J

j=1}1i=K+1 a conformable orthonormal
basis for the orthogonal complement of Im ⇡K

Output: gK , hK approximate functional derivatives of recursive solution with respect to x

1. Compute steady state (x⇤, y⇤) s.t. F (x⇤, y⇤, x⇤, y⇤, 0) = 0

2. (B, A) �� ⇥ Fx Fy

⇤
,
⇥

Fx0 Fy0
⇤�

Calculate functional derivatives at steady state

3. Decompose (B, A) into (BI , AI) + (BC , AC) compact and identity components as per
Definition 3

4. Construct (

˜BK , ˜AK
), a K-dimensional approximate projection of (B, A) onto Im ⇡K ,

satisfying Condition 3, using Algorithm 2 or other method

5. Build components of policy operator on Im ⇡K and Ker ⇡K

(a) Build policy operators on Im ⇡K using approximate projections

i. [

˜Q⇤K
1 , ˜Q⇤K

2 ]


˜TK
11

˜TK
12

0

˜TK
22

,
˜SK
11

˜SK
12

0

˜SK
22

� 
˜UK

11
˜UK

12
˜UK

21
˜UK

22

�
 QZ(

˜BK , ˜AK
) Apply QZ

algorithm to obtain generalized Schur decomposition of (

˜BK , ˜AK
)

ii. g̃K
x  �(

˜UK
22)

�1
˜UK

21 , ˜hK
x  (

˜UK
11 +

˜UK
12 g̃

K
X )

�1
(

˜SK
11)

�1
˜TK
11(

˜UK
11 +

˜UK
12 g̃

K
X )

(b) Build policy operators on Ker ⇡K by analytical decomposition of (BI , AI)

i. [(Bi
I , A

i
I)]jk  hBIeij, eiki , hAIeij, eiki 8j, k = 1 . . . J Construct (Bi

I , A
i
I)

(identical for all i) using {eij}J
j=1 for some i

ii. [Qi⇤
1 , Qi⇤

2 ]


T i

11 T i
12

0 T i
22

,
Si

11 Si
12

0 Si
22

� 
U i

11

U i
21

U i
12

U i
22

�
 QZ(Bi

I , A
i
I) Apply QZ al-

gorithm to (Bi
I , A

i
I)

iii. gi
x  �(U i

22)
�1U i

21, hi
x  (U i

11 +U i
12g

i
x)
�1

(Si
11)

�1T i
11(U

i
11 +U i

12g
i
x) Build policy

functions over Span{eij}J
j=1

iv. Add identical components for all i = K + 1 . . .1

gK?
x =

1X

i=K+1

JX

j=J1+1

J1X

k=1

(gi
x)(j�J1)k heik, [.]i eij

hK?
x =

1X

i=K+1

J1X

j=1

J1X

k=1

(hi
x)jk heik, [.]i eij

for J1 blocks in Hx, J � J1 in Hy.

6. gK  g̃K
x + gK?

x , hK  ˜hK
x + hK?

x Add components
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5.3 Implementation: Wavelet Transform

Overall, the computational effort needed to obtain ✏-close approximations is driven by the
rates ⌘K and ⇣K . If efficient (or exact) evaluation schemes are used, the projection error
⌘K tends to dominate: this may not be the case if the value of the projection coefficients is
determined by estimation, in which case the accuracy of ⇣K is limited by the quantity of data
available. To more precisely quantify the size of these errors, we provide an example of a
set of conditions on (B, A), the approximating subspace Im ⇡K , and the evaluation method
for the projections which provides precise rates. In more general situations, where these
conditions don’t hold or other approximation methods are desired, similar approaches can
guarantee the high level conditions of the preceding theorem.

In particular, I cover the example of Coiflet sampling and representation as in Beylkin
et al. (1991) for Fredholm integral operators with Hölder-continuous kernel. Fredholm in-
tegral operators are a canonical example of operators which are given by a compact compo-
nent and potentially a component given by an identity, and appear frequently in examples.
Wavelet sampling methods provide a particularly fast and accurate method for approxi-
mating these operators even when the kernel can only be accessed by pointwise evaluation,
perhaps because it is a complicated function which has itself been numerically approximated,
such as a function of a steady state calculated numerically by fixed point iteration.

Condition 4. (i) Let {Hj}J
j=1 be given by the spaces of square integrable periodic functions

of dimension dj with domain normalizable to [0, 1)

d
j , Hj = L2

per[0, 1)

d
j . Let (BC , AC) consist

on each block (i, j) of r = B or r = A of integral operators mapping f(y) 2 Hj to f(x) 2 Hi

f(x) =

´
[0,1)d

j

Kr,ij(x, y)[f(y)]dy such that for all r, i, j sup

x,y2[0,1)d

i⇥[0,1)d

j

|Kr,ij(x, y)|<1 and

Kr,ij(x, y) 2⇤

↵
r,ij

([0, 1)

d
i ⇥ [0, 1)

d
j

), the space of ↵r,ij-Hölder continuous periodic functions
on [0, 1)

d
i ⇥ [0, 1)

d
j for some ↵r,ij > 0.10

(ii) Let Im ⇡K
j be the subspace spanned for each j by a tensor product of dj one-

dimensional orthonormal Coiflet wavelet multiresolution analyses with mother wavelet  
and scaling function � with each bounded, having support which is a compact interval,
and a number of vanishing moments greater than or equal to min

r,i,j
↵r,ij. Let the matrix

representation of (

˜BK , ˜AK
) on this space be given by ⇡K

(BI , AI)⇡K plus a matrix where the
i, j block is given by the discrete wavelet transforms over rows then columns of the Ki ⇥Kj

matrix whose (s, t) entry is 1p
K

i

K
j

Kr,ij(xs, yt), where {xs}K
i

s=1 and {yt}K
j

t=1 are dyadic grids

10A function f(x) is Hölder continuous on domain I of order ↵ 2 (0, 1] if sup
x,y2I

|f(x) � f(x)|  K|x � y|↵

and is Hölder continuous of non-integer order ↵ > 1 if it is b↵c times continuously differentiable with b↵cth
derivatives Hölder continuous of order ↵� b↵c. .
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over [0, 1)

d
i and [0, 1)

d
j respectively.

Remark. On (i): These assumptions can be slightly relaxed through different choices of
wavelet basis. Periodicity is convenient for proofs because it does not require any special
treatment of boundaries: it also fits the example model presented. Depending on the prob-
lem, this may be relaxed by one of a number of boundary extension methods: see Mallat
(2008). Compact support can be replaced by a tail condition by sampling an increasing spa-
tial domain. Boundedness of the kernel can likewise be dispensed with provided the operator
remains compact and some knowledge of the singularity is available: Beylkin et al. (1991)
provides methods and convergence results for many singular integral operators. It is likely
that Hölder regularity could be replaced with more general Besov classes which may exhibit
less uniform regularity, at the expense of more difficult analysis of the quadrature approxi-
mation. In both of these cases, speed of the algorithm may be enhanced by pruning away
those basis functions whose inner product with the kernel is below a small threshold. As the
wavelet representation is often sparse, one may incur minimal error in the approximation
of (B, A) while substantially reducing the size K of the matrix for which one calculates the
generalized Schur decomposition, an order K3 operation which dominates the quadratic time
to evaluate and threshold a higher order wavelet representation.

On (ii): As described, the procedure represents each kernel in terms of a tensor product
of multiresolution wavelet bases instead of a single multidimensional multiresolution analysis
as advocated in Beylkin et al. (1991): while such a representation has desirable features for
thresholding procedures, a tensor product representation of the operator ensures that func-
tions in the domain and range space are represented in terms of the original dj-dimensional
orthonormal wavelet basis. For j with dj > 1, either a tensor product wavelet basis or
a multidimensional wavelet multiresolution analysis may be used in calculating the basis
functions: the space spanned by a finite representation is identical. In practice, the multi-
dimensional MRA is preferred computationally. The moment condition is assumed to hold
for the one-dimensional wavelets generating the tensor product or multiresolution basis.

The requirement that both wavelet and scaling function have compact support, ↵ van-
ishing moments, and generate an orthonormal basis strongly restricts the choice of wavelet
class. The use of Coiflets (Beylkin et al. , 1991) (or certain mild generalizations, as in Wei
(1998), which also maintain these properties) is in fact required to achieve optimal rates via
the procedure described. The purpose of this assumption is to ensure that the operator can
be represented directly in terms of the discrete wavelet transform of its evaluations at a set of
points, effecting a ‘one-point quadrature’ scheme for the calculation of the coefficients of the
representation. For more general classes of wavelets, the use of the discrete wavelet transform
of the evaluation points of a smooth function to substitute for the projection onto a wavelet
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basis results in an error which is of higher order than the error induced by restricting to a
projection onto a finite basis.

Other classes of wavelets may be used if the projection is approximated by a multipoint
quadrature scheme, as described in Beylkin et al. (1991) or Sweldens & Piessens (1994),
at the cost of additional preprocessing before applying the discrete wavelet transform. If
neither multipoint quadrature nor the use of Coiflets is acceptable, it is also possible to use
interpolating wavelets, which do not form an orthogonal basis and result in a more compli-
cated representation of ⇡K

(BI , AI)⇡K . General considerations regarding wavelet sampling
are discussed in Mallat (2008). One case in which specialized classes of wavelets may be
necessary is when the domain is not rectangular or is a subset of a non-Euclidean manifold,
as may occur with geographic data restricted to an irregularly shaped geographic unit or on
the surface of the Earth. In this case, a variety of alternative bases and sampling methods
are available.

The procedure for constructing approximate projections (

˜BK , ˜AK
) using the Coiflet basis

is laid out in Algorithm 2. Under the above conditions, it can easily be shown that one obtains
rapid convergence of the approximation algorithm:

Theorem 2. Let (B,A) and (

˜BK , ˜AK
) satisfy (2),(3), and (4). If ↵̄ = min

r,i,j

2↵
r,ij

d
i

+d
j

and
¯d = max

j
2dj, there exists C > 0 such that ⌘K = O(Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)
) and ⇣K =

O(C d̄Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)
). As a result, operator norm ✏-approximations of hx and

gx such that khK � hxkop  ✏ and kgK � gxkop  ✏ can be calculated using a basis of
K = O(J(

JCd̄

✏
)

1
↵̄

) functions in O(J3+ 3
↵̄ C

3d̄

↵̄ ✏�
3
↵̄

) operations.

This result shows that a polynomial time approximation scheme is feasible for this class
of models. Due to the accurate quadrature properties of compactly supported wavelet mul-
tiresolution analyses, the error from projection and the error from quadrature are of the
same order in K, up to constants. While a curse of dimensionality exists with respect to
the number of variables entering as arguments of the functions used as state variables, the
fact that the functions are themselves infinite-dimensional objects does not impede impede
approximation. Further, when the operators are reasonably smooth, as measured by Hölder
exponent of the integral kernels, the rate of convergence can be quite rapid. If one is inter-
ested in the policy operators as a whole, rather than just their derivatives, this approach
only provides a first order Taylor expansion. As a result, it provides accurate approximations
within a local neighborhood of the nonstochastic steady state. In the case where the policy
operators are continuously Fréchet differentiable, operator norm approximation of the first
derivative ensures that the approximated Taylor expansions of the operators are ✏-close to
the true operators uniformly over an open neighborhood of this steady state.
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Algorithm 2 Construction of (

˜BK , ˜AK
) using wavelet quadrature

Inputs: Block operators (B, A) = (BI , AI) + (BC , AC) s.t. (BC , AC) is composed of integral
operators

´
[0,1)d

j

Kr,ij(x, y)[.]dy 8i, j 2 1 . . . J, r 2 {B, A} satisfying Condition 4(i), {Kj}J
j=1

number of evaluation points for each block
Output: (

˜BK , ˜AK
) satisfying Condition 3

1. [Kr,ij]s,t  1p
K

i

K
j

Kr,ij(xs, yt) for xs, yt on evenly spaced grids of size Ki, Kj over

[0, 1)

d
i , [0, 1)

d
j respectively, 8i, j, r. Construct matrices to represent kernels of integral

operators

2. (

˜BK
C , ˜AK

C )r,ij  (DWT[(DWT[Kr,ij])
⇤
])

⇤ 8i, j, r Construct approximate projection co-
efficients by discrete wavelet transform of rows then columns of Kr,ij, using Coiflet
wavelets basis satisfying Condition 4(ii)

3. (

˜BK
I , ˜AK

I ) ⇡K
(BI , AI)⇡K Represent identity operators by Ki⇥Kj identity matrices

4. (

˜BK , ˜AK
) (

˜BK
I , ˜AK

I ) + (

˜BK
C , ˜AK

C ) Add components

Remark. The dependence on J , which in most applications has the interpretation of the
number of independent functions which constitute the equilibrium objects (e.g., a value
function, a distribution of individual states, and so on) and is usually a fixed feature of
the model, will in general be conservative, as it is based on the worst case that all blocks
of (BC , AC) contain an integral operator and that the difficulty of approximation of each
operator, measured by 2↵

r,ij

d
i

+d
j

, is roughly equal. If the row and column corresponding to
subspace j for all but a subset S of subspaces do not contain an integral operator or contain
only operators which are substantially smoother and so require fewer basis functions to
approximate to ✏ accuracy, and only K = O(S(

JCd̄

✏
)

1
↵̄

) basis functions will be needed. This
may be the case, for example, if one block contains an operator which is substantially harder
to approximate than others (due to being higher-dimensional, less smooth, or both), in
which case S = 1. In most applications, J is fixed and very small, though it could grow, for
example, if some components are represented by a functional autoregressive model of high
order.

6 Application, continued: Implementation and Evalua-

tion

The above procedures may be applied to construct a linearized solution to the model of
trade, migration, and economic geography of Section 3.
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6.1 Steady State and Exact Projections

To go from the functional derivatives of the equilibrium conditions to a linear solution, it
suffices to find projections onto a complete set of basis functions. The structure of the
model makes that task particularly simple, because when the basis used is the standard
Fourier basis of trigonometric polynomials, the projections can be calculated exactly without
numerical integration. The structure can also be used to verify the conditions which ensure
that projection approximations are valid. In fact, the structure allows even more to be said
about the solution than can be inferred from (1). Because the model is block diagonal with
respect to the Fourier basis, the solution operator can be calculated exactly for any input
given by a Fourier basis function, and so for any bandlimited function.

Recalling from Section 3, the linearized equilibrium conditions in this model are given by

(B, A) =

0

B@�

2

64
0 0 I

P 0 �P � �PP

0 � 0

3

75 ,

2

64

d!
d�

I �P

I 0 0

0 I 0

3

75

1

CA

in which P [.] =

1
f̄

´
exp(c(x0�x)+� ¯V )[.]dx0, � is likewise an integral operator, and d!

d�
can be

shown to be defined in terms of the composition of a number of convolution operators with
respect to a Laplace distribution and their inverses. As can therefore be seen, the model is
composed of identity and integral operators, exactly the structure needed for the projection
approaches developed here to be valid. Moreover, examining the expressions for the deriva-
tives of the economic geography model it can be seen that all of the integral operators are
expressed in terms of convolution operators. By the convolution theorem, all convolution
operators (and their inverses, as well as the identity) are diagonal in a Fourier basis, and
so all operators can be expressed as a convolution with distributions, or equivalently, as
multiplication of the Fourier transform of the input by a known function.

Because each functional derivative in the model is diagonal with respect to the Fourier
transform, the model can be broken down into blocks corresponding to individual frequencies:
there is no interaction across frequencies. Within a frequency, the linearized model can
be written in terms of 3 ⇥ 3 matrices of derivatives of each component with respect to
perturbations at that frequency. The exception is at frequency 0, where only derivatives with
respect to V and ⌫ are taken, as, by Parseval’s theorem, functions L2

0(R) can be represented
in the Fourier domain as sequences of Fourier coefficients with the coefficient at frequency 0
equal to 0.

Among other things, this block diagonal structure implies that Condition 1.(ii) regarding
the modulus of continuity of the Schur decomposition holds so long as Condition 1.(i) holds.
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Conditions 1.(i) and 1.(iii), requiring existence and uniqueness of a Schur decomposition
into components inside and outside the unit circle with unstable subspace isomorphic to the
space spanned by the jump variable (in this case V ), may also be verified for any given
set of parameters by ensuring the conditions hold for each finite-dimensional subsystem. In
order for the system to have a locally stable rational expectations equilibrium, it must be
the case that at each frequency, the system has two generalized eigenvalues inside the unit
circle, corresponding to the predetermined variables ⌫ and �, and one generalized eigenvalue
outside, corresponding to the jump variable V . Such a condition is not general: it requires
restrictions on the parameter values to ensure that such a solution exists.

Impressionistically, because the value of a location is a weighted average of future wages
(a function of population), and because the current population is a weighted average of
past values, the system remains stable only if this mutual reinforcement is not too strong.
Otherwise, at certain frequencies, at which more than one eigenvalue is unstable, the lin-
earized model implies that value grows without bound and population does as well: this is
the conclusion of Krugman (1996), which does not derive dynamics from forward-looking
decisions. However, the stability condition on the eigenvalues is substantially weaker than
the condition imposed by Krugman, that the impact of population on wages be negative
for all frequencies. Positive feedback is consistent with stability of a rational expectations
equilibrium so long as the effect on wages is expected to be temporary. Moreover, if the
feedback is temporary, the population response is damped, and so the degree of mutual re-
inforcement is even lower. As a result, only frequencies where the parameterization implies
that the feedback from population to wages is so large that no policy rule which eventually
returns to steady state can be constructed are a problem for calculating a forward looking
solution.

To consider which frequencies might be problematic, note that at extremely high fre-
quencies, because convolution with a smooth density dampens high frequency fluctuations,
the mutual reinforcement phenomenon is dampened and eventually disappears, so these fre-
quencies are stable. Similarly, due to the dispersive forces in the geographic equilibrium
model, at extremely low frequencies, increasing population actually reduces wages, ensuring
stability. It is at intermediate frequencies where population growth and real wage growth are
complementary, and parameters must be chosen so that at these frequencies the degree of
complementarity is not so great as to prevent the mean-reversion induced by the dispersion
of population due to idiosyncratic tastes from ensuring eventual return to uniformity after a
temporary shock. This suggests that a parameterization of adjustment costs which ensures
that medium to high frequency fluctuations are rapidly smoothed out is needed. However,
degree of smoothing and size of adjustment costs have a nontrivial relationship. For quadratic
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costs, a higher scale is equivalent to a smaller variance of the Gaussian flows and so results
in less smoothing. However, while changing from quadratic to linear (in absolute distance)
costs results in Laplace flows with substantially more movement to long distances as it lowers
costs of moving large distances, it raises costs of moving short distances and so decreases
mean reversion at medium to high frequencies. In practice, stability holds for a very broad
range of parameter values.

Formally, at each frequency not equal to 0, the model is represented by a 3⇥ 3 block of
the Bellman equation, the population transition, and the shock transition at that frequency.
At a representative frequency �, the model can be taken as a set of matrix equations in
Fourier transform of the vector of endogenous functions at that frequency. The matrix of
derivatives with respect to (

ˆ��, ⌫̂�, ˆV�) is

B� =

2

64
0 0 1

ˆP� 0 � ˆP� � � ˆP 2
�

0

ˆ

�� 0

3

75

where ˆP� is the Fourier transform of 1
f̄

exp(c(x)+� ¯V ) evaluated at frequency � and ˆ

�� is the
Fourier transform of �(x) evaluated at frequency �. The matrix of derivatives with respect
to (

ˆ�0�, ⌫̂
0
�, ˆV 0

�) is

A� =

2

664

ˆd!
d� �

1 � ˆP�

1 0 0

0 1 0

3

775

where ˆd!
d� �

the Fourier transform of d!
d�

at frequency �, is derived in Appendix C.
Finally, at frequency 0, by dropping the transition equation which does not act over

this frequency because perturbations of � are restricted to lie in L2
0, the space of functions

integrating to 0, to ensure that the density � integrates to 1, the system is represented by
2⇥ 2 blocks of derivatives with respect to (⌫̂�, ˆV�) and (⌫̂ 0�, ˆV 0

�) given by

(B0, A0) =

 "
0 1

ˆ

�0 0

#
,

"
1 � ˆP0

1 0

#!

To construct an approximate solution from these projections, note that because the
operator pairs are block diagonal, a fully upper triangular infinite-dimensional system can
be constructed so long as each block can be placed in upper triangular form. Together, each
pair of matrices forms a finite-dimensional linear rational expectations system which can be
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evaluated by standard algorithms for calculating perturbative expansions of such systems,
such as the Schmitt-Grohe & Uribe (2004) procedure, based on the algorithm of Klein (2000).
Here, no changes need to be made to the finite-dimensional procedure: it is simply applied
independently at each integer frequency �. The derivatives of the policy functions are then
given by the collection of derivatives at each frequency. For each � 6= 0, the policy functions
ˆh� : (

ˆ��, ⌫̂�)! (

ˆ�0�, ⌫̂
0
�) and ĝ� : (

ˆ��, ⌫̂�)! ˆV� are given by 2⇥2 and 1⇥2 matrices. The first
order approximate policy operators are then represented with respect to the Fourier basis
as block-diagonal infinite matrices ˆh and ĝ, with ˆh� and ĝ� on the diagonals, respectively,
so that for general inputs in L2

0(R) ⇥ L2
(R), they may be represented as h = F�1

ˆhF and
g = F�1ĝF where F is the Fourier transform and F�1 is the inverse Fourier transform.

For bandlimited perturbations, a finite representation hK
x , gK

x given by concatenating the
first K frequencies is exact. More generally, the functional derivatives generated by taking an
increasing finite collection of frequencies converge in the strong operator topology, and for any
components which are compact, in the operator norm topology. Operator norm convergence
follows from application of (1). To see that the conditions are met, note that for smooth
adjustment costs and transition functions, ˆP�, ˆ

��, and ˆd!
d� �

converge to 0, and so compactness
and convergence of the projected derivatives in operator norm follows. Moreover, as �!1,
(B�, A�) converges to

(Bi
I , A

i
I) =

0

B@

2

64
0 0 1

0 0 0

0 0 0

3

75 ,

2

64
0 1 0

1 0 0

0 1 0

3

75

1

CA ,

and by the continuity of the generalized Schur decomposition with respect to perturbations,
so do the policy functions at each frequency. It can be shown that the first derivatives of the
policy functions gi

x = ĝ1 : (

ˆ�1, ⌫̂1) ! ˆV1 and hi
x =

ˆh1 : (

ˆ�1, ⌫̂1) ! (

ˆ�01, ⌫̂ 01) generated
by calculating the finite-dimensional linear rational expectations solution for this pair are
given by matrices which are identically 0, and so hK = hK

x and gK = gK
x . As a result, by

taking an increasing set of frequencies, the finite representation can be used to compute a
response which is accurate uniformly over all input functions, and not just bandlimited ones.

It is possible to determine the rate of convergence, directly from the exact representa-
tions rather than by applying the rate results from (1). Note that perturbation results for
generalized eigenvectors and eigenvalues imply a linear rate of convergence in the Frobenius
norm of the perturbation (see Stewart & Sun (1990)), while sufficiently smooth functional
forms for adjustment costs and for the transition operator for the exogenous shocks, and
the exponential form chosen for trade costs, generate rates of convergence for the entries
which are faster than linear in �. As a result, given sufficiently smooth parameterizations,
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the blocks of the policy function corresponding to each frequency converge at a rate com-
parable to the slowest rate of each of the components. So long as this converges to 0, this
implies that the policy operators are compact (and if this rate is faster than linear, they are
Hilbert-Schmidt), and so the policy operators given by taking an increasing finite sequence
of blocks converge to the true policy functions in operator norm. One note regarding the
form of this convergence is that the perturbation theorem for the Schur subspaces applies
only under a separation condition on the generalized eigenvalues, while (Bi

I , A
i
I) has the gen-

eralized eigenvalues (0,1,1). This implies that the blocks corresponding to forward and
backward looking components are well separated, while within the block of backward look-
ing components the eigenvalues are not asymptotically well separated and the generalized
Schur vectors are not stable. However, the block itself is stable in the sense that the span of
the Schur vectors converges, and so the policy functions, which are determined only by the
sub-blocks of the Schur matrices, also converge.

Formally, this may be stated as

Lemma 2. (i) gi
x = ĝ1 = (0, 0), hi

x =

ˆh1 =

 
0 0

0 0

!
Suppose

�� :=

��
(B�, A�)� (Bi

I , A
i
I)

��
F
! 0

as |�| ! 1. Then kĝ� � ĝ1kF = O(�
1
2
� ) and

���ˆh� � ˆh1
���

F
= O(�

1
2
� ) for large |�|, and so

converge to 0 and

h[�(x), ⌫(x)] =

ˆh0[

ˆ
⌫(x)dx] +

X

�2Z\{0}
(

ˆh�

"´
exp(�2⇡i�x)�(x)dx´
exp(�2⇡i�x)⌫(x)dx

#
) �
"
exp(�2⇡i�x)

exp(�2⇡i�x)

#

and

g[�(x), ⌫(x)] = ĝ0[

ˆ
⌫(x)dx] +

X

�2Z\{0}
(ĝ�

"´
exp(�2⇡i�x)�(x)dx´
exp(�2⇡i�x)⌫(x)dx

#
) · exp(�2⇡i�x)

are compact. (ii) Suppose in addition that �� = O(|�|�(1+✏)
) for some ✏ > 0. Then

h[�(x), ⌫(x)] and g[�(x), ⌫(x)] are Hilbert-Schmidt.

Proof. See appendix.

This result not only gives compactness and rates of convergence, it also implies that
the approximated policy operators converge in a stronger norm, the Hilbert Schmidt norm.
The demonstration that these operators are compact and Hilbert-Schmidt implies that in
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principle, the policy function in this model could be consistently estimated from a time series
of observations of (�, ⌫) by procedures such as those described in Bosq (2000); Guillas (2001).

6.2 Calibration and Numerical Evaluation

To characterize the dynamics of population and values in the model, I calculate the first
derivatives of the policy operators for a fixed set of parameters. For the adjustment cost
function c(x), in order to generate a Gaussian conditional distribution of population move-
ments in steady state, I adopt a quadratic specification c(x) =

1
2�

c

x2, where �c parameterizes
the cost of moving and is also the standard deviation of the conditional Gaussian distribu-
tion. For the kernel describing the persistence of the exogenous shocks �(x), in order to
ensure both stationarity and decay of coefficients to represent smooth diffusion of shocks
from their initial locations, I choose a rescaled Gaussian pdf, �(x) =

k�p
2⇡��

exp(� 1
2�2

�
x2

),
where |k�| < 1 ensures stationarity at all frequencies and �� measures the speed at which
shocks spread, or, more directly, how rapidly the autoregressive coefficient on each frequency
goes to 0 as the frequency increases.

For the static equilibrium of the model, I borrow parameterizations from Krugman (1996),
who considers the ranges � 2 {4, 5, 6}, µ 2 {0.2, 0.3, 0.4}. As within this range the qualitative
behavior of the model is similar, all experiments reported are carried out with � = 4, µ = 0.4.
While the trade cost parameter ⌧ is left unspecified in the parameterization as it merely
normalizes the unit of distance in the model, the relative values of ⌧ , ��, and �c determine
the characteristic length scales at which trade, productivity (or other shock) diffusion, and
migration operate. Note however that because trade costs are specified as exponential, while
migration and productivity diffusion follow a Gaussian and so squared exponential rate of
increase in distance, that the numbers are not directly comparable. This specification implies
that trade at long distances is relatively less costly than migration or diffusion of changes
in the economic environment. While difficult to place on a comparable scale, this seems
to be qualitatively reasonable for a global or national scale, with long-distance exchange
relatively common while long distance migration is comparatively rare. For the purposes of
simulations, and without any claim to represent empirically reasonable values, simulations
set ⌧ = 0.2, �� = 0.04, and �c = 0.05, representing again fairly small trade costs and fairly
slow diffusion of population and amenity value from an initial location. Along with a value
of k� = 0.98 and discount rate � = 0.96, these are designed to ensure that fluctuations in
the spatial distribution of population and amenity values are persistent and that the model
generates substantial variation in the expectations of future distributions.

While in principle a closed form is available for the policy functions at each frequency
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for arbitrary parameter values, it is an unintuitive nonlinear function of the roots of a
cubic polynomial, so instead we verify the stability conditions at each frequency numerically.
By the stability of the system at (Bi

I , A
i
I) and the convergence of (B�, A�) to (Bi

I , A
i
I), it

is sufficient to verify the eigenvalue condition for the finite set of frequencies where the
derivatives differ by more than some small constant from (Bi

I , A
i
I).

In practice, and in contrast to the generically explosive limit generated by the ad-hoc
dynamics imposed in Krugman (1996), only for relatively extreme parameterizations does
the model with forward-looking decision making lack an equilibrium which is locally stable.
The complementarity between wages and population at intermediate frequencies generated
by agglomerative forces in the model and the substitutability at low frequencies generated
by the dispersive forces are reflected in the cross-derivatives of the transition operator ˆh

mapping shocks to living standards and population this period to those next period. The
complementarity and substitutability manifest as a positive coefficient in the map from the
shock ⌫̂� to amenity value today to population tomorrow at intermediate frequencies and
a negative coefficient at low frequencies, respectively. However, the presence of a positive
coefficient does not generate explosive behavior if the shock itself is mean-reverting, as as-
sumed, and the autonomous dynamics of population are also stable. Here, except when the
elasticity of substitution across varieties � is extremely low so the benefits of agglomeration
in a region with large population and a large variety of goods is high, the natural smooth-
ing of population across regions generated by heterogeneous idiosyncratic preferences is the
dominant determinant of the speed of adjustment of population at a given frequency. As a
result, even for very strong agglomerative forces, it is also necessary for adjustment costs of
moving to be quite large before complementarities at some frequency dominate and generate
dynamics which are locally unstable.

In part, this expresses an important difference between the myopic and forward-looking
models. In the myopic case, even small complementarities result in a cumulative process
which continues without bound, while in a forward looking setup, if the effects of such
complementarities are transient, their impact on value and so on decisions is bounded and so
is attenuated. From an economic perspective, forward-looking decisions respond less strongly
to changes perceived as temporary, and so even in the presence of complementarities, regional
shocks need not be destabilizing. To be fair, however, some of the difference also reflects the
additional dispersive force provided by idiosyncratic preference shocks, though it’s not clear
how one would generate a smooth transition law as in Krugman (1996) even with myopic
decision making without some other smoothing force.
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6.2.1 Finite Domain

While solving the model on an infinite domain ensures a great deal of tractability, it has some
disadvantages, of which lack of realism is a minor but nontrivial one. From the perspective of
demonstrating existence, compactness of the domain permits the use of standard existence
theorems which are unavailable on unbounded space. Further, when approximating the
integrals via an expansion in basis functions other than trigonometric polynomials, as may be
needed for nonperiodic variations of the model, it permits use of compactly-supported basis
functions, such as B-splines or (certain classes of) wavelets, without requiring an unbounded
number to cover the entire domain.

In the symmetric case, the loss of tractability is rather minor: by setting G to be a circle
of circumference 1 with coordinates x 2 [0, 1) parameterizing the location11 and changing the
normalizing constant ⌧(��1)

2 to ⌧(��1)
2�2e�⌧(��1)/2 in formulas (3.4) and (3.5), it can be easily seen

that the steady state equilibrium remains uniformly distributed with ¯�(x) = !̄(x) =

¯W (x) =

¯T (x) = 1 8x 2 G, and ¯V (x) constant. The only material difference to the dynamics is that
now instead of convolution with a Laplace or Gaussian distribution as the representation of
the effect of population on wages or the dynamics of ⌫(x) or �(x) respectively, these operators
are replaced by convolution with truncated (and recentered and renormalized) Laplace or
Gaussian distributions, e.g. �(x) =

1
1�2�( 1

2 )
k�p
2⇡��

exp(� 1
2�2

�
(x � 1

2)
2
)1[0  x < 1] . This

reflects the economic structure of the problem: in a finite space, there is a finite maximum
trade cost and finite maximum migration cost, and so a minimum impact of one location on
another. Truncation does not change the ability to represent the operators as diagonal with
respect to a Fourier basis, though now the result holds by the circular convolution theorem.
The Fourier transform of a product is given by the convolution of the Fourier transforms,
and so, by a change of variables, in the derivation of d!

d�
, H(�) is replaced by H(�) ⇤Sinc(�),

where Sinc(�)= sin ⇡�
⇡�

is the Fourier transform of 1[�1
2  x < 1

2 ]. While this convolution has
no simple closed form expression, it is easily calculated numerically by quadrature.

For parameterizations with rapid increase in trade or migration costs over distance, this
transformation has minimal effect, as the truncation only affects the far tails. For small
trade or migration costs, it increases impact at some frequencies and decreases it at others,
reflecting the periodicity induced by the circular shape. Numerical experiments suggest
that even for relatively small costs, the impact of this change is limited. As a result, the
main impact is on ensuring proper scaling and allowing testing approximate equilibrium
computation using a wavelet basis.

To represent the circular convolutions with respect to a wavelet basis, the operators are
11By symmetry, the initial point 0 can be assigned to any arbitrary location.

53



first written in terms of the distance on a circle with x0 � x replaced with arc length along
the diameter of the circle: d(x0, x) = mod(x0 � x +

1
2 , 1) � 1

2 is the distance between points
x0, x2 [0, 1) on the circumference. For example �[⌫](x0) =

´ 1

0 �(d(x0, x))[⌫(x)]dx describes
the value of the amenity value ⌫ 0(x0) next period at each point x0 2 [0, 1) given an initial
distribution ⌫(x). Construction of wavelet approximations consists of sampling the kernels
(e.g. �(d(x0, x))) at an evenly spaced grid of K ⇥ K points on [0, 1) ⇥ [0, 1) and applying
the discrete wavelet transform to the rows and columns of the resulting matrix. The kernels
used in this model are infinitely differentiable at most values of x, y but nondifferentiable
at d(x, y) = 0.5 due to the finite domain creating a maximal possible level of trade or
migration costs at the antipodal location on the circle where counterclockwise or clockwise
movements meet. For the exponential trade costs, there is also a point of nondifferentiability
at d(x, y) = 0. For wavelet representations, there is a tradeoff between vanishing moments to
represent the smooth parts parsimoniously and width of the scaling function which creates
distortions at nonsmooth points. Although higher order Coiflets will achieve faster rates
asymptotically, for finite values of K, lower order Coiflets may yield better performance,
which is borne out in numerical experiments. As a compromise, level 3 Coiflets are used in
all simulations and evaluations.

Two additional sets of approximations are made beyond those described in (2). To ensure
that perturbations to the population distribution �(x) remain in the space of mean 0 func-
tions, the wavelet representations of operators acting on this space are orthogonalized with
respect to the the wavelet representation of the constant function. While for Haar wavelets
this demeaning is exact, for other bases it yields a representation which is approximately or-
thogonal to constants. Rather than defining the exact kernel for d!

d�
and applying the wavelet

transform to it directly, because it is composed of convolutions with a Laplace distribution
and identity operators, it may be constructed by applying the products and inverses of the
wavelet representations of these operators. Because all applications are continuous (note
that the inverse is applied to a sum of identity and convolution operators and so is well
posed), so long as the convolution operators themselves are consistently approximated, d!

d�
is

as well.

6.3 Results

To evaluate the approximation algorithm, several numerical comparisons are performed us-
ing both the Fourier and the wavelet representations of the model, at different levels of K.
Accuracy can be compared for impulse responses to function-valued shocks, as well as for
simulations. Although the Fourier representation is exact in principle, at least for bandlim-
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ited functions, when restricted to a finite domain, the value of the Fourier coefficient at each
frequency must be computed by quadrature due to the convolution with the sinc function.
Nevertheless, the Fourier and wavelet methods appear to exhibit a high degree of agreement,
whether expressed in squared error norm over the grid points (a proxy for L2 norm, con-
trolled by the theory) or in maximum norm over grid points (not controlled by the theory).
Error is largest for components which are strongly impacted by the finite diameter of the
geography, and declines for parameter values which ensure that the cutoff has limited effect
on the representation, suggesting that the numerical error induced by quadrature may be
a non-negligible factor contributing to the discrepancy between Fourier and wavelet repre-
sentations. For the Fourier representations, integer frequencies �K

2 to K
2 are used for each

of J = 3 functions ⌫(x), �(x), and V (x), giving 3 ⇥ (K + 1) basis functions, for symmetry,
while for wavelets K grid points are used to represent the scaling function coefficients for
each function, with K given by a power of 2.

To describe the behavior of the model, first consider the impulse response to a smooth
but spatially localized shock "(x) to the amenity value of locations, a scaled Gaussian spike
centered at location 0.5, with functional form exp(50000(x � 0.5)

2
). This may represent a

nearly exactly localized improvement, as might occur in response to a local policy initiative
or favorable productivity shock. As can be seen in Figure (6.1), the response of amenity
value over time and space, calculated from K = 1024 using the Fourier representation, in
spite of the high persistence parameter k� and the relatively small standard deviation of the
diffusion kernel ��, this shock spreads out rapidly from the initial location and diffuses from
a local region to an eventually larger and larger area. Note that while the space coordinate is
represented on a line segment, the model is defined over a circle, so the edges are connected.

The population response, displayed in Figure (6.2), follows the amenity shock but is
much more dispersed, and responds slowly, peaking over 10 periods later and then declining
gradually. The population in regions far from the center declines, as people move towards the
more desirable area, with a nadir over 20 periods later. Despite the slow speed of adjustment,
movements begin the first period after the shock, as individuals anticipate the spread of the
amenity over space and the possibility of moving in the future to more desirable areas,
which are desirable in part because they provide the option value of moving even close to the
center in future at lower cost and so taking advantage of the improved amenity there. This is
displayed clearly in the plot of welfare, Vt(x) in Figure (6.2), which jumps immediately, with
peak at the location of the shock but high values substantially more broadly dispersed, with
a nontrivial jump in welfare over the entire domain, as even regions for which the value of
the shock immediately and in the first few periods is essentially negligible face the prospect
of higher welfare in the future as the amenity spreads out and population moves to regions
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Figure 6.1: Impulse Response of ⌫t(x) to "0(x) = exp(50000(x� 0.5)

2
)

positively affected by the shock.
Relative accuracy of the Fourier and wavelet representations of the model for the above

shock are measured in Table (1), for K = 256, 512, and 1024, for the maximum error at
any grid point over 80 periods of the impulse response. Figures (D.1) and (D.2) represent
the Euclidean norm difference (over an evenly spaced grid) at each time point between the
wavelet and Fourier representations at the different values of K, a proxy for the L2 norm.
Note that even for K = 512, the errors are already extremely small, with maximum pointwise
error on the order of 10

�7 or smaller for ⌫t(x) a function with values ranging from 0 to 1, and
10

�8 for �t(x) and Vt(x), functions with range of about 0.1. The order of this error decreases
significantly for K = 1024, both for maximum and squared average error.

The clock time to compute the wavelet solutions, also displayed in Table (1), is relatively
fast and increases roughly in cubic proportion to K, taking under two minutes for K = 512,
including producing all figures and evaluation metrics, coded in Matlab using the default QZ
function on a 2011 Macbook Pro with 2.8 GHz Intel i7 processor and 2 GB RAM. This level
of speed and accuracy on a far from state of the art setup suggests that the procedure may
be useful in applications where it is applied repeatedly, for example to estimate parameters.
The Fourier representation takes only a few seconds for any K, which should be expected
as it allows calculating solutions for each frequency separately and so takes time linear in
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Figure 6.2: Impulse Responses of �t(x) & Vt(x) to "0(x) = exp(50000(x� 0.5)

2
)
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Table 1: Numerical IRF Discrepancy, Fourier vs. Wavelet Representations
K max pointwise, ⌫t max pointwise, �t max pointwise, Vt Running Time (seconds)

256 0.0107 3.9549e-07 1.9362e-06 11.607549
512 3.4594e-07 5.0737e-08 7.6597e-08 96.187571
1024 8.9301e-11 1.2976e-08 1.9643e-08 376.833220

K. This feature is only a result of the special structure of this model and is not likely to
generalize.

To consider the behavior of the model in response to more complex patterns of input,
I use it to produce simulated time paths. The shocks "t(x) are drawn from a spatially
correlated Gaussian process, a simulated fractional Brownian motion (started at 0) with
Hurst parameter 0.7 and so a degree of Hölder regularity no greater than 0.7. Wavelet
quadrature is easily capable of representing functions with this degree of regularity and so
the simulations are drawn from the representation of the model with respect to a wavelet
basis, with K = 512. Time paths are displayed in Figures (6.3) and (6.4).

One feature which stands out is the low degree of smoothness of ⌫t(x), the persistent
shock process, and Vt(x), the welfare of residents at each location x, in contrast to the fairly
high degree of smoothness of population movements �t(x). This contrast is as should be
expected, because Vt(x) is a jump variable, and so adjusts immediately to reflect changes
in the state, while population is a predetermined variable, and so changes only in response
to expected future changes in welfare, which, because shocks to amenity value are expected
to be smoothed out over time, substantially discounts the high frequency variations which
impart roughness to the spatial distribution of current welfare. This is in line with standard
reasoning for rational expectations decision problems: because moving is costly, transitory
variation, expressed by the rough local movements in amenity values, has minimal effect
on forward looking decisions. In contrast, low frequency changes, which are expected to be
more persistent, do induce population movements, and the simulation does show periods
of time where there are large population movements between regions. The simulation also
exemplifies the expressive power of functional methods, as it allows description of the welfare
and behavioral consequences of extremely finely detailed patterns of aggregate shocks, which
would be difficult to express even with smooth nonparametric function representations, let
alone low-dimensional parametric approximations.
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Figure 6.3: Simulated Geographic Equilibrium: Amenities and Welfare
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Figure 6.4: Simulated Geographic Equilibrium: Population

7 Conclusion

The idea that heterogeneity matters for economic outcomes, not only at the individual level
but through the set of interdependencies linking behavior at the individual level to the
environment faced by others, is a core principle in economics. Function-valued stochastic
processes, by describing how patterns of heterogeneity change over time and relate to other
variables, provide an analytical framework in which these interdependencies can be modeled
and evaluated directly rather than considering only aggregate variables. While describing
economic decision making in these environments can be challenging due to the high dimension
of the relevant variables, a substantial amount of information can be recovered by describing
the problem locally near a point where infinite-dimensional uncertainty disappears. A lin-
earized solution allows consideration of responses to any possible pattern or shape that can
be considered, accurately representing the behavior of the system in an infinite-dimensional
set of possible inputs. Moreover, for many systems, this response can be calculated quickly
and accurately, uniformly over all possible directions by projection representations of the
functional derivatives of the system.

The dynamics of economic interactions over space, typically challenging to describe due to
the fact that people in different locations must respond differently to the geographic patterns
of economic activity induced by trade and spatially inhomogeneous regional disturbances,
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provide a demonstration of the rich patterns of relationships that can be captured by allowing
decisions and distributions to respond to the precise geographic pattern of shocks. Responses
can differ substantially based on distance, but also based on expectations of perceived future
spatial distributions. Although spatial interactions provide a case which illustrates the full
importance of allowing for response to potentially arbitrarily shaped patterns of heterogene-
ity, the function-valued approach seems promising for a wide variety of applications. These
include understanding the mechanisms behind the dynamics of income and wealth inequality
over business cycles, analyzing both through the relationship with capital markets, as has
been explored in existing studies of incomplete markets models with aggregate shocks, as well
as other potential economic mechanisms and policies. They may also be useful for studying
a variety of patterns of interaction which depend on the entire shape of the distribution of
heterogeneity, such as matching markets in labor or other contexts or interactions through
a social or economic network.

While for some applications, existing methods may be used to characterize the dynamics
of economic heterogeneity, albeit without explicit guarantees of accuracy, the function-valued
approach may still be desirable as a framework for data analysis. By explicitly allowing the
model to incorporate uncertainty of arbitrary shape, the models described allow a complete
characterization of the variation in micro and macroeconomic data and open the possibility
of comparing the model directly to cross-sectional micro data. Because linearized function-
valued models generate dynamics consistent with functional linear processes, estimation and
inference methods from functional data analysis may be applied to evaluate them empirically.
Given the speed and accuracy of the solution methods, they may also open up the possibility
of using functional data methods to perform full information structural estimation of models
with heterogeneous agents.
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A Existence of a generalized Schur decomposition for

pairs of bounded operators

The construction of a solution for the linear expectational difference equation defined by
a linear or linearized rational expectations model in finite dimensions relies on the ability
to partition the state space and the equilibrium equations into ‘stable’ and ‘unstable’ com-
ponents which may be treated separately. This is generally achieved by either a Jordan
decomposition, generating block-diagonal matrices, as in Blanchard & Kahn (1980) or by a
generalized Schur decomposition, generating upper-triangular matrices,12 as in Klein (2000).
In practice, the latter has become preferred, as the Jordan decomposition of a matrix is not in
general continuous while the generalized Schur decomposition, which is generated by unitary
matrices, exhibits numerical stability in theory and practice. Such stability is particularly
desirable in the infinite-dimensional case, as closed form solutions for the eigenfunctions are
not in general feasible and finite-dimensional numerical procedures must by necessity induce
some error into the representation of the operator pair of interest.

While generalization of the Jordan decomposition to infinite-dimensional operator pairs
is well established (Kato, 1976; Gohberg et al. , 1990, Ch IV) and the Schur decomposition
for a single infinite-dimensional operator has also been defined (Gohberg et al. , 1990, Ch
II.3), an analogue of the generalized Schur decomposition for pairs of infinite-dimensional
linear operators has not, to the best of my knowledge, been described. As in the case of
the Schur decomposition of a single operator, extension to the infinite-dimensional case is
slightly delicate, as the existence of the Schur or generalized Schur decomposition is based on
an iterative construction which extends only in certain cases to an uncountable state space.
In particular, the Schur decomposition may be extended to compact operators but not to
arbitrary bounded or closed operators, for which a Jordan decomposition exists but a Schur
decomposition may not. For the purposes of constructing an analogy of the generalized Schur
decomposition which permits extension of rational expectation solution procedures, there are
at least two ways around this difficulty. The first, and simplest, is to note that while solution

12This decomposition is often referred to as the QZ decomposition, in reference to the QZ algorithm often
used to compute it. See Golub & van Loan (1996).

66



requires splitting the domain into ‘forward’ and ‘backward’ subspaces, for a stationary solu-
tion there is no requirement that the restriction of the operator to these subspaces itself take
upper triangular form. Instead, one can construct a block upper triangular decomposition
which preserves the desirable feature of being generated by unitary transformation while
eschewing the necessity to make restrictive compactness assumptions. Alternately, one may
construct a generalized Schur decomposition analogously to the infinite-dimensional Schur
decomposition, which does preserve an upper-triangular structure within blocks, under a
modified and so slightly less onerous compactness condition than in the single operator case.
In the following, I show existence of a blockwise decomposition under general conditions, and
also decomposition which is upper triangular within blocks under a condition on compactness
of certain transformations of the operator pair which does not imply that both operators are
compact, and in particular allows the pertinent example of the standard eigenvalue problem
in which one of the operators in the pair is the identity operator, which is not compact
on an infinite-dimensional space. This construction also has the advantage that it implies
compactness of certain Schur components and so generates a solution for the law of motion
which is itself compact.

Formally, let (M, G) be a pair of bounded linear operators acting between complex Hilbert
spaces HX and HY , i.e. M 2 L(HX ! HY ) G 2 L(HX ! HY ). Following Gohberg et al.
(1990), define the spectrum �(M, G) as those � 2 C such that �G �M is not invertible,

accompanied by the point1 if and only if G does not have bounded inverse, and the resolvent
set ⇢(M, G) as C1\�(M, G), where C1 is the extended complex plane with the standard
topology (see Conway (1978, Ch. 1 S. 6)).

Definition 4. An operator pair is said to be �-regular (with respect to a set �) if for some
nonempty subset � ⇢ C1, � ⇢ ⇢(M, G).

Assume � is a Cauchy contour (c.f. Gohberg et al. (1990, p.6)) with inner domain �+

and outer domain ��, and that (M, G) is �-regular. For concreteness, we will often take �

to be the positively oriented complex unit circle, in which case �-regularity means that the
spectrum does not contain � such that |�| = 1. From a modeling perspective, this ensures
stationarity by ruling out unit roots; this particular choice is not required to ensure existence
of a generalized Schur decomposition. By Gohberg et al. (1990) Theorem IV.1.1, the above
assumptions ensure the existence of (possibly oblique) projection operators ⇡1: HX ! HX

and ⇡2: HY ! HY which partition HX and HY into Im ⇡1 � Ker ⇡1 and Im ⇡2 � Ker ⇡2

respectively, and the operator pair (M, G) into components

(M, G) =

 "
M1 0

0 M2

#"
G1 0

0 G2

#!
: Im ⇡1 �Ker ⇡1 ! Im ⇡2 �Ker ⇡2 (A.1)
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such that (M1, G1) and (M2, G2) are �-regular, �(M1, G1) = �(M, G)\�+ and �(M2, G2) =

�(M, G)\��. In words, this says one can separate the pair into a component with spectrum
inside some domain and a component with spectrum outside.

Assume in addition that 0 2 �+ and 1 2 ��. By the above result and the definition
of the resolvent, this implies that G1 and M2 are invertible on their respective domains. In

particular, E =

 
G�1

1 0

0 M�1
2

!
: Im ⇡2 �Ker ⇡2 ! Im ⇡1 �Ker ⇡1 is a bounded invertible

operator and we may define the partition

(EM,EG) =

 "
⌦1 0

0 I2

#"
I1 0

0 ⌦2

#!
: Im ⇡1 �Ker ⇡1 ! Im ⇡1 �Ker ⇡1 (A.2)

where ⌦1 = G�1
1 M1 and ⌦2 = M�1

2 G2. These operators have the following relationship
with (M1, G1) and (M2, G2):

Lemma 3. �(M1, G1) = �(⌦1), and 1
�
2 �(⌦2) if and only if � 2 �(M2, G2) (where 1

1 may
be defined to equal 0)

Proof. Suppose � is in the resolvent set of ⌦1. Then ⌦1 � �I1 has some bounded inverse Z.
Then �ZG�1

1 satisfies �ZG�1
1 (�G1 �M1) = Z(⌦1 � �I1) = I1 and �(�G1 �M1)ZG�1

1 =

�G1G
�1
1 (�G1 �M1)ZG�1

1 = G1(⌦ � �I1)ZG�1
1 = G1G

�1
1 = I1, so � 2 ⇢(M1, G1). That is,

⇢(⌦1) ⇢ ⇢(M1, G1). Next, suppose � 2 ⇢(M1, G1). Then �G1�M1 has a bounded inverse Z,
and �ZG1 satisfies �ZG1(⌦��I1) = Z(�G1�M1) = I1 and �(⌦��I1)ZG1 = �G�1

1 G1(⌦�
�I1)ZG1 = G�1

1 (�G1 �M1)ZG1 = G�1
1 G1 = I1, and so ⇢(M1, G1) ⇢ ⇢(⌦1). Combining,

⇢(M1, G1) = ⇢(⌦1) and so �(M1, G1) = �(⌦1). Similar calculations show 1
�
2 �(⌦2) if and

only if � 2 �(M2, G2). If1 2 �(M2, G2), G2 is not invertible and so M�1
2 G2� 1

1I2 = M�1
2 G2

must also have nontrivial kernel, and so be noninvertible.

With this notation, it is possible to characterize conditions under which the operator pair
(M, G) has a generalized Schur decomposition. As our construction makes use of complete
orthonormal bases, we assume now that (M, G) are operators between separable Hilbert
spaces HX and HY .

Lemma 4. Let (M, G) be a pair of bounded operators M 2 L(HX ! HY ) G 2 L(HX ! HY )

�-regular with respect to a Cauchy curve with inner domain �+ such that 0 2 �+ and outer
domain �� such that 1 2 ��. Define projectors ⇡1 and ⇡2 as in A.1 with respect to
�. Then, there exist unitary operators Q = [Q1, Q2

] : Im⇡2 � HY /Im⇡2 ! F1 � F2 and
P = [P 1, P 2

] : Im⇡1 �HX/Im⇡1 ! E1 � E2 such that (M, G) has the following block-wise
generalized Schur decomposition
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(QMU⇤, QGU⇤
) =

 "
M11 M12

0 M22

#
,

"
G11 G12

0 G22

#!

from E1 � E2 ! F1 � F2

where E1, E2, F1, and F2 are spaces such that there exist linear isometric isomorphisms
from Im⇡1 ! E1, HX/Im⇡1 ! E2, Im⇡2 ! F1, and HX/Im⇡2 ! F2, respectively. Further,
�(M11, G11) = �(M1, G1) = �(M, G) \�+ and �(M22, G22) = �(M2, G2) = �(M, G) \��.

Remark. The precise identity of the spaces E1, E2, F1, and F2 need not be considered for this
result. However, a canonical choice of spaces would be to allow E1 = Im⇡1, E2 = HX/Im⇡1,
F1 = Im⇡2, F2 = HY /Im⇡2, in which case the Schur decomposition acts on the same space
as (M, G).

Proof. We generate Q and U constructively, then verify their properties. Choose a complete
orthonormal basis on Im⇡1, denoted {u1i}1i=1 and then a complete orthonormal basis on the
orthogonal complement of Im⇡1 inH1, denoted {u2i}1i=1. The eigenvectors are not, in general,
such a basis, because ⌦1 and ⌦2 are not assumed self-adjoint and so nothing requires their
eigenvectors to be orthogonal vectors. Then, U1 is the operator

P1
i=1 hu1i, .i e1

i where {e1
i }1i=1

are an arbitrary orthonormal basis on E1, a space isometrically isomorphic to Im⇡1, U2 is
the operator

P1
i=1 hu2i, .i e2

i where {e2
i }1i=1 are an arbitrary orthonormal basis on E2, a space

isometrically isomorphic to H1/Im⇡1. Likewise, choose a complete orthonormal basis {q1i}1i=1

for the image of (M1, G1) and a complete orthonormal basis for the orthogonal complement
of this space in HY , {q2i}1i=1. We define Q1 =

P1
i=1 hq1i, .i f 1

i and Q2 =

P1
i=1 hq2i, .i f 2

i , for
{f 1

i }1i=1 and {f 2
i }1i=1 orthonormal bases of F1 and F2, spaces isometrically isomorphic to the

domains of Q1 and Q2 respectively.
Next, we show that these induce an upper triangular decomposition. We define
 "

M11 M12

M21 M22

#
,

"
G11 G12

G21 G22

#!
=

 "
Q1

Q2

#
M
h

U⇤
1 U⇤

2

i
,

"
Q1

Q2

#
G
h

U⇤
1 U⇤

2

i!

Using A.1, we have that (BU⇤
1 , AU⇤

1 ) = (B1U⇤
1 , A1U⇤

1 ) since the range of U⇤
1 is Im⇡1,

and the restriction of (M, G) to this space is (M1, G1). Then, since the domain of Q2 is
orthogonal to Im(M1, G1), we have (M21, G21) = (0, 0), so this is a triangular decomposition.

To characterize the spectrum of the decomposition, first note that �(M1, G1) = �(M, G)\
�+ and �(M2, G2) = �(M, G) \�� by Gohberg et al. (1990) Theorem IV.1.1. (M11, G11)

may be written as (Q1MU⇤
1 , Q1GU⇤

1 ) = (Q1M1U⇤
1 , Q1G1U⇤

1 ). Consider � 2 ⇢(M1, G1). Then
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�M11�G11 = �Q1M1U⇤
1�Q1G1U⇤

1 = Q1(�M1�G1)U⇤
1 , which has inverse U1(�M1�G1)

�1Q⇤
1

which is bounded since (�M1�G1)
�1 is bounded, by definition of the resolvent set, and U1 and

Q⇤
1 are since they are unitary by construction. So �(M11, G11) ⇢ �(M1, G1) = �(M, G)\�+.

Characterization of the spectrum of (M22, G22) requires a bit more care. (M22, G22) may
be written as

(Q2MU⇤
2 , Q2GU⇤

2 ) = (Q2M(⇡1 + (I � ⇡1))U
⇤
2 , Q2G(⇡1 + (I � ⇡1))U

⇤
2 )

= (Q2M1⇡1U
⇤
2 , Q2G1⇡1U

⇤
2 ) + (Q2M2(I � ⇡1)U

⇤
2 , Q2G2(I � ⇡1)U

⇤
2 )

= (Q2M2(I � ⇡1)U
⇤
2 , Q2G2(I � ⇡1)U

⇤
2 )

where the second line follows from A.1 and the final line follows from the fact that
the domain of Q2 is orthogonal to the range of (M1, G1). Consider � 2 ⇢(M2, G2). By
definition of the resolvent, T (�) := (�M2�G2)

�1 is a bounded operator for all such �. Then
�M22 � G22 = Q2(�M2 � G2)(I � ⇡1)U⇤

2 . I claim that U2T (�)Q⇤
2 is a bounded inverse of

�M22 � G22. To see this, note that Q⇤
2Q2 is equal to IH

Y

/Im⇡2 and U⇤
2 U2 = IH

X

/Im⇡1 . As
a result, we have U2T (�)Q⇤

2Q2(�M2 � G2)(I � ⇡1)U⇤
2 = U2(I � ⇡1)U⇤

2 = U2U⇤
2 = IH

X

/Im⇡1 ,
where we use the fact that U2⇡1 = 0 since U2 has domain orthogonal to the image of ⇡1.
By the identity (M2, G2)(I � ⇡1) = (I � ⇡2)(M2, G2), Q2(�M2 �G2)(I � ⇡1)U⇤

2 U2T (�)Q⇤
2 =

Q2(I �⇡2)(�M2�G2)U⇤
2 U2T (�)Q⇤

2 = Q2(I �⇡2)Q⇤
2 = IH

Y

/Im⇡2 , since Q2⇡2 = 0. As a result,
�(M22, G22) ⇢ �(M2, G2) = �(M, G) \��.

To show the reverse inclusion, note that �(M, G) = �(QMU⇤, QGU⇤
) by unitarity of Q

and U . Next, we show that �(QMU⇤, QGU⇤
) = �(M11, G11)[�(M22, G22). Since �+ and ��

are disjoint, �(M11, G11) ⇢ �(M, G)\�+, and �(M22, G22) ⇢ �(M, G)\��, this implies that
�(M11, G11) = �(M, G)\�+ and �(M22, G22) = �(M, G)\��, as claimed. To show this, con-

sider � 2 ⇢(M11, G11)\⇢(M22, G22). Then �QMU⇤�QGU⇤
=

"
�M11 �G11 �M12 �G12

0 �M22 �G22

#

has bounded inverse given by
"

(�M11 �G11)
�1 �(�M11 �G11)

�1
(�M12 �G12)(�M22 �G22)

�1

0 (�M22 �G22)
�1

#

and so �(QMU⇤, QGU⇤
) ⇢ �(M11, G11) [ �(M22, G22). Next, suppose � 2 �(M11, G11) and

assume for contradiction that � 2 ⇢(QMU⇤, QGU⇤
), and so �QMU⇤ � QGU⇤ has some

bounded inverse

"
a b

c d

#
. Then

"
a b

c d

#"
�M11 �G11 �M12 �G12

0 �M22 �G22

#
=

"
I 0

0 I

#
and

so a(�M11�G11) = I, implying that �M11�G11 has bounded inverse a, a contradiction. Sim-
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ilarly, if � 2 �(M22, G22), then if �QMU⇤�QGU⇤ had some bounded inverse

"
a b

c d

#
then

"
�M11 �G11 �M12 �G12

0 �M22 �G22

#"
a b

c d

#
would equal

"
I 0

0 I

#
, implying (�M22�G22)d = I,

which is assumed false. As a result, �(QMU⇤, QGU⇤
) � �(M11, G11)[ �(M22, G22), and the

claim is shown.

Slightly stronger assumptions than used in the above can yield stronger results. In
particular, the assumption of compactness of ⌦1 and ⌦2 may permit the block triangular
decomposition to be extended to a triangular decomposition within each block, as in the
infinite-dimensional Schur decomposition in Gohberg et al. (1990). This provides a link
to the finite-dimensional method, but is nowhere necessary for the application of the de-
composition considered. However, compactness of the components does provide a useful
sufficient condition for the necessary conditions, and also ensures the compactness of the
solution operators, which is a condition commonly imposed for the validity of estimators of
infinite-dimensional operators: see, e.g., Bosq (2000).

If this refinement is not needed, we may instead operate under a strictly weaker assump-
tion: viz. that the spectrum of (M, G) is bounded away from �. To see that this is weaker,
note that compactness implies that the unique accumulation point of the spectrum is at 0,
and so by 3, the spectra of ⌦1 and ⌦2 and, as a result, of (M, G) must neither be inside of
� or have limit point in �. Formally, we define a block triangular decomposition as follows.
For notational convenience and analogy to the finite-dimensional case, we take the decom-
position to be defined as a pair on L(HX ! HY ) rather than over isometrically isomorphic
spaces.

Lemma 5. Let (M, G) be a pair of bounded operators M 2 L(HX ! HY ) G 2 L(HX ! HY )

�-regular with respect to a Cauchy curve with inner domain �+ such that 0 2 �+ and outer
domain �� such that 1 2 ��. Define projectors ⇡1 and ⇡2 as in A.1 with respect to � and
⌦1 and ⌦2 as in A.2. Suppose in addition that ⌦1 and ⌦2 are compact operators. Then, there
exist unitary operators Q = [Q1, Q1?, Q2, Q2?

] : F1 � F?
1 � F2 � F?

2 ! F1 � F?
1 � F2 � F?

2

and P = [P 1, P 1?, P 2, P 2?
] : E1 � E?

1 � E2 � E?
2 ! E1 � E?

1 � E2 � E?
2 such that (M, G)

has the following (generalized Schur) decomposition
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(M, G) =

0

BBBB@

2

66664

M11 M off
11 M12 .

0 M?
11 . .

0 0 M22 M off
22

0 0 0 M?
22

3

77775
,

2

66664

G11 Goff
11 G12 .

0 G?
11 . .

0 0 G22 Goff
22

0 0 0 G?
22

3

77775

1

CCCCA

from E1 � E?
1 � E2 � E?

2 ! F1 � F?
1 � F2 � F?

2

where E1, E?
1 , E2, E?

2 and F1, F?
1 , F2, F?

2 are closed linear subspaces of HX and HY , re-
spectively. Further, with respect to the orthonormal bases {p̃1

i }1i=1 of E1 and {q̃1
i }1i=1 of

F1 generating the rows of P 1 and Q1, respectively, (M11, G11) are upper triangular with
(M11)jj/(G11)jj = �j where �j is the jth nonzero generalized eigenvalue (in some arbitrary
fixed order) repeated a number of times equal to its multiplicity in �(M1, G1), and similarly
with respect to the orthonormal bases {p̃2

i }1i=1 of E2 and {q̃2
i }1i=1 of F2 generating the rows of

P 2 and Q2, respectively, (M22, G22) are upper triangular with (M22)jj/(G22)jj = �j where �j

is the jth finite generalized eigenvalue repeated a number of times equal to its multiplicity in
�(M2, G2). In addition, �(M?

11, G
?
11) ⇢ {0} and �(M?

22, G
?
22) ⇢ {1}.

Remark. (G?
11)

�1M?
11 and (M?

22)
�1G?

22 are examples of Volterra operators, as they are compact
and quasinilpotent (with spectrum equal to zero only). As a result, they may be shown to
be unitarily equivalent to a particular continuous analogue of an upper-triangular operator
with respect to a (not necessarily countable) increasing chain of projections on subspaces of
HX (Gohberg et al. , 1993, Thm. XXI.1.5). In principle, a fully triangular representation of
(M, G) in which (M?

11, G
?
11) and (M?

22, G
?
22) are also upper-triangular with respect to some

chain of subspaces could be generated via an analogue for operator pairs of Gohberg et al.
(1993, Thm. XXI.1.2). Such a decomposition is unnecessary for our purposes, as block-

triangular structure is sufficient for representing a solution of the equilibrium conditions and
the approximation techniques to be used do not take advantage of the continuous structure
provided by the more intricate decomposition.

Proof. Begin by noting that if P{�
i

} is a projector onto an eigenspace of ⌦1 corresponding
to nonzero eigenvalue �i (sorted in arbitrary but fixed order), it is also a projector onto an
eigenspace of (M1, G1) corresponding to the same eigenvalue. By compactness, any nonzero
element of the spectrum of ⌦1 is isolated and an eigenvalue, and by equality of spectra
corresponds to an isolated point in the spectrum �(M1, G1). As a result, one may write the
projector onto the eigenspace associated with �i of ⌦1 as P⌦1

{�
i

} :=

1
2⇡◆

´
�

�

i

(⇣I1 � ⌦1)
�1d⇣,

where ��
i

is a closed Cauchy curve enclosing �i, and the projector onto the space associated
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with element �i of the spectrum of pair (M1, G1) as P (M1,G1)
{�

i

} :=

1
2⇡◆

´
�

�

i

(⇣G1 �M1)
�1G1d⇣

(See Gohberg et al. (1990, Ch. I.2 and IV.1)). Since ⌦1 = G�1
1 M1,

P (M1,G1)
{�

i

} =

1

2⇡◆

ˆ
�

�

i

(⇣G1 �M1)
�1G1d⇣ =

1

2⇡◆

ˆ
�

�

i

((G1G
�1
1 )(⇣G1 �M1))

�1G1d⇣ (A.3)

=

1

2⇡◆

ˆ
�

�

i

((G1)(⇣I1 � ⌦1))
�1G1d⇣

=

1

2⇡◆

ˆ
�

�

i

(⇣I1 � ⌦1)
�1G�1

1 G1d⇣

= P⌦1
{�

i

}

Compactness also guarantees that the dimension of the image of P{�
i

} is finite (Gohberg
et al. , 1990, Thm II.3.2), and so by equality of spectra, the subspaces associated with points
not equal to zero in the spectrum of (M1, G1) are all finite-dimensional. As a result, we may
choose for each i, a finite set of basis vectors, of cardinality ki, for the space ImP{�

i

} and
a basis for the image of the pair (MP{�

i

}, GP{�
i

}) which must be of dimension ki as GP{�
i

}
must be of full rank since G1 is. In particular, as on this space the operator pair has a
representation as a pair of ki⇥ki-dimensional matrices, we may without loss of generality use
orthonormal basis vectors {q1

i1, . . . , q
1
ik

i

} for the image of (MP{�
i

}, GP{�
i

}) and {p1
i1, . . . , p

1
ik

i

}
for ImP{�

i

} such that with respect to these bases, M and G are upper triangular with
diagonal elements of M and G identically equal to �i and ⌧i, respectively, where �

i

⌧
i

= �i.
Such a representation exists by the generalized Schur decomposition for finite-dimensional
matrix pairs (Stewart & Sun, 1990, Th. VI.1.9). Note that while these basis vectors are
orthogonal within each block, in general ImP{�

i

} is not necessarily orthogonal to ImP{�
j

} for
i 6= j as these are oblique, not orthogonal projections.

For Ker ⇡1, compactness of ⌦2 permits an analogous construction of a countable sequence
of finite-dimensional eigenprojections associated to isolated points of the spectrum, with
the difference that the projection onto the space associated with point �i in the spectrum
�(M2, G2) is equal to projection associated with nonzero eigenvalue 1

�
i

2 �(⌦2). That is
to say, in the notation above, P (M2,G2)

{�
i

} = P⌦2

{ 1
�

i

} for �i 6= 1. Since Im P⌦2

{ 1
�

i

} is a finite-

dimensional subspace of dimension ki, and since MP (M2,G2)
{�

i

} is full rank since M2 is, we may
define sets of orthonormal basis vectors {q2

i1, . . . , q
2
ik

i

} on the image of (MP (M2,G2)
{�

i

} , GP (M2,G2)
{�

i

} )

and {p2
i1, . . . , p

2
ik

i

} on ImP (M2,G2)
{�

i

} such that with respect to these basis vectors, (M, G) has
a representation as a pair of ki ⇥ ki upper-triangular Schur matrices with diagonal elements
identically equal to the corresponding eigenvalue pair {�i, ⌧i} where �

i

⌧
i

= �i.
For the space Im ⇡1\Span{p1

11, . . . , p
1
1k1

, p1
21,...}, choose choose an arbitrary complete or-
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thonormal basis, say {p1?
1 , p1?

2 , . . .} and for Im ⇡2\Span{q1
11, . . . , q

1
1k1

, q1
21,...}, choose a basis

{q1?
1 , q1?

2 , . . .}. Likewise, for the space Ker ⇡1\Span{p2
11, . . . , p

2
1k1

, p2
21,...}, choose choose an ar-

bitrary complete orthonormal basis, say {p2?
1 , p2?

2 , . . .} and for Ker ⇡2\Span{q2
11, . . . , q

2
1k1

, q2
21,...}

choose a basis {q2?
1 , q2?

2 , . . .}. These bases may in general be infinite dimensional and are
not necessarily orthogonal to the bases defined for other spaces. To produce the stated
decomposition, these bases will be used to construct an orthogonal basis with the desired
properties.

To produce the desired decomposition, order the sets of vectors as ({p1
11, . . . , p

1
1k1
},

{p1
21, . . . , p

1
2k2
}, . . . , {p1?

1 , p1?
2 , . . .}, . . . , {p2

11, . . . , p
2
1k1
}, {p2

21, . . . , p
2
2k2
}, . . . , {p2?

1 , p2?
2 , . . .}, . . .)

and ({q1
11, . . . , q

1
1k1
}, {q1

21, . . . , q
1
2k2
}, . . . , {q1?

1 , q1?
2 , . . .}, . . . , {q2

11, . . . , q
2
1k1
}, {q2

21, . . . , q
2
2k2
}, . . . , {q2?

1 , q2?
2 , . . .}, . . .)

and apply Gram-Schmidt orthonormalization to the countable sequences to produce a pair of
orthonormal bases {p̃1

11, . . . , p̃
1
1k1

, p̃1
21, . . . , p̃

1?
1 , . . . , p̃2

11, . . . , p̃
2
1k1

,p̃2
21, . . . , p̃

2?
1 , . . .} and {q̃1

11, . . . , q̃
1
1k1

,

q̃1
21, . . . , q̃

1?
1 , . . . , q̃2

11, . . . , q̃
2
1k1

, q̃2
21, . . . , q̃

2?
1 , . . .} of HX and HY respectively. We may then de-

fine E1 = Span{p̃1
11, . . . , p̃

1
1k1

, p̃1
21, . . .}, F1 = Span{q̃1

11, . . . , q̃
1
1k1

, q̃1
21, . . .}, E?

1 = Span{p̃1?
1 , p̃1?

2 , . . .},
F?

1 = Span{q̃1?
1 , q̃1?

2 , . . .}, E2 = Span{p̃2
11, . . . , p̃

2
1k1

, p̃2
21, . . .}, F2 = Span{q̃2

11, . . . , q̃
2
1k1

, q̃2
21, . . .}

E?
2 = Span{p̃2?

1 , p̃2?
2 , . . .}, and F?

2 = Span{q̃2?
1 , q̃2?

2 , . . .}, and decompose (M, G) into its re-
strictions to these spaces. We may define P and Q as the unitary operators whose rows are
given by the basis vectors. That is, let P 1

=

P1
i,j=1

⌦
p̃1

ij, .
↵
p̃1

ij, Q1
=

P1
i,j=1

⌦
q̃1
ij, .
↵
q̃1
ij, P 1?

=

P1
i=1

⌦
p̃1?

i , .
↵
p̃1?

i , Q1?
=

P1
i=1

⌦
q̃1?
i , .

↵
q1?
i , P 2

=

P1
i,j=1

⌦
p̃2

ij, .
↵
p̃2

ij , Q2
=

P1
i,j=1

⌦
q̃2
ij, .
↵
q̃2
ij,

P 2?
=

P1
i=1

⌦
p̃2?

i , .
↵
p̃2?

i , and Q2?
=

P1
i=1

⌦
q̃2?
i , .

↵
q2?
i .

I claim that with respect to these bases, (M11, G11), has the desired properties. The proof
of this fact follows by induction. Denote Pm =

Pm
i,j=1

⌦
p̃1

ij, .
↵
p̃1

ij and Qm =

Pm
i,j=1

⌦
q̃1
ij, .
↵
q̃1
ij.

To show (M11, G11) are upper-triangular with respect to this basis, it suffices to show (I �
Qs)MPs = (I � Qs)GPs = 0 for all s 2 N. It then also follows that (I � Q1

)MP 1
=

(I � Q1
)GP 1

= 0, and so the (2, 1), (3, 1) and (4, 1) elements of M and G are indeed 0 as
claimed. To see this, note that by definition of a closed span, for any x 2 E1, for all � > 0,
9s such that kPsx � xk < �. Since M and G are continuous, for any ✏ > 0 there exists
� > 0 such that kzk < � implies kMzk < ✏, kGzk < ✏, and so for any x 2 HX , 9s 2 N
s.t. k(I � Q1

)MP 1xk = k(I � Q1
)MPsxk + k(I � Q1

)M(P 1 � Ps)xk < ✏ and similarly
k(I �Q1

)GP 1xk < ✏.
Begin by showing that the first step of the induction chain holds. By construction of

the generalized Schur decomposition for the finite-dimensional matrix pair, q̃1
11 = q1

11 =

1

kGp̃1
11kGp̃1

11 and so (I � Q1)GP1 = 0 and likewise, since p̃1
11 satisfies Mp̃1

11 = �1Gp̃1
11 =

�1 kGp̃1
11k q̃1

11, (I � Q1)MP1 = 0. Next, for arbitrary index s = k ⇥ ` assume the inductive
hypothesis (I � Qs�1)MPs�1 = (I � Qs�1)GPs�1 = 0. By the Gram-Schmidt process,
p̃1

s =

1
k(I�P

s�1)p1
s

k(I � Ps�1)p1
s. Since p1

s is a generalized Schur vector of a finite-dimensional
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matrix pair,

q1
s =

1

k(I �P`�1
j=1

⌦
q1
k,j, .

↵
q1
k,j)Gp1

sk
(I �

`�1X

j=1

⌦
q1
k,j, .

↵
q1
k,j)Gp1

s (⇤)

and

(I �
`�1X

j=1

⌦
q1
k,j, .

↵
q1
k,j)Mp1

s = �k(I �
`�1X

j=1

⌦
q1
k,j, .

↵
q1
k,j)Gp1

s (⇤⇤)

, or, in words, p1
s is a generalized eigenvector of the matrix pair on the space orthogo-

nal to previous generalized Schur vectors within the block. Now consider (I � Qs)Gp̃1
s =

1
k(I�P

s�1)p1
s

k(I � Qs)G(I � Ps�1)p1
s =

1
k(I�P

s�1)p1
s

k(I � Qs)Gp1
s by the inductive hypothesis.

By (⇤), Gp1
s 2 span{q1

k,1, . . . , q
1
s} ⇢ span{q̃1

1, . . . , q̃
1
s} so (I � Qs)Gp̃1

s = 0, and since by the
inductive hypothesis (I �Qs)Gp̃1

m = 0 for m < s, (I �Qs)GPs = 0. Similarly, by (⇤⇤) and
the inductive hypothesis, (I �Qs)Mp̃1

s = 0, so it is also the case that (I �Qs)MPs = 0. By
induction, (I �Qs)MPs = (I �Qs)GPs = 0 for all s 2 N.

To show that diagonals of (M11, G11) are the generalized eigenvalues, note that the sth

diagonal elements with respect to this basis are given by hMp̃1
s, q̃

1
si and hGp̃1

s, q̃
1
si. Since p̃1

s =

1
k(I�P

s�1)p1
s

k(I�Ps�1)p1
s, q̃1

s =

1
k(I�Q

s�1)q1
s

k(I�Qs�1)q1
s , (I�Qs�1)M(I�Ps�1) = (I�Qs�1)M

by triangularity, and Qs�1 is idempotent and self-adjoint since it is an orthogonal projection,
hMp̃1

s, q̃
1
si =

1
k(I�P

s�1)p1
s

k hMp1
s, q̃

1
si, and similarly hGp̃1

s, q̃
1
si =

1
k(I�P

s�1)p1
s

k hGp1
s, q̃

1
si. By the

finite-dimensional generalized Schur decomposition, (⇤⇤) holds, and so hMp̃1
s, q̃

1
si / hGp̃1

s, q̃
1
si =

�k, and so (M11, G11) has the generalized eigenvalues along the diagonals as desired.
To demonstrate that the (3, 2) and (4, 2) blocks of (M, G) are equal to 0 is equiva-

lent to requiring that (I � [Q1, Q1?
])M [P 1, P 1?

] = (I � [Q1, Q1?
])G[P 1, P 1?

] = 0. Because
({p1

11, . . . , p
1
1k1
}, {p1

21, . . . , p
1
2k2
}, . . . , {p1?

1 , p1?
2 , . . .}, . . .) span Im ⇡1 and ({q1

11, . . . , q
1
1k1
}, {q1

21, . . . , q
1
2k2
}, . . . ,

{q1?
1 , q1?

2 , . . .}, . . .) span Im ⇡2, we have by A.1 that Im M [P 1, P 1?
] ⇢ Im ⇡2 = Im [Q1, Q1?

]

and Im G[P 1, P 1?
] ⇢ Im ⇡2 = Im [Q1, Q1?

] so M [P 1, P 1?
] = [Q1, Q1?

]M [P 1, P 1?
] and

G[P 1, P 1?
] = [Q1, Q1?

]G[P 1, P 1?
] so orthogonality holds.

The proof of the upper-triangular structure of (M22, G22) proceeds similarly to the above,
by induction. Denote P 2

m =

Pm
i,j=1

⌦
p̃2

ij, .
↵
p̃2

ij and Q2
m =

Pm
i,j=1

⌦
q̃2
ij, .
↵
q̃2
ij. Further, denote

Qu
m = [Q1, Q1?, Q2

m] the projection onto the set of basis vectors of HY up to q̃2
m and similarly

P u
m = [P 1, P 1?, P 2

m]. To show (A22, B22) are upper-triangular with respect to this basis, it
suffices to show (I � Qu

s )MP 2
s = (I � Qu

s )GP 2
s = 0 for all s 2 N. It then also follows by

analogous � � ✏ argument that (I � [Q1, Q1?, Q2
])MP 2

= (I � [Q1, Q1?, Q2
])GP 2

= 0, and
so the (4, 3) elements of M and G are 0 as claimed. The proof is essentially identical to
that for (M11, G11) except that all vectors are orthogonalized with respect to previous basis
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vectors, and the generalized Schur form of each matrix pair constructs q2
ij from M instead

of G, as on Ker ⇡1 the spectrum excludes 0 and so M2 is guaranteed to be invertible while
G2 is not.

Begin by showing the first step of the induction for (M22, G22). By construction of the gen-
eralized Schur decomposition for the finite-dimensional matrix pair, q̃2

11 = (I�[Q1, Q1?
])q2

11 =

(I�[Q1,Q1?])

kMp2
11k Mp2

11 while p̃2
11 = (I�[P 1, P 1?

])p2
11. As shown above, (I�[Q1, Q1?

])M [P 1, P 1?
] =

0 and so q̃2
11 =

(I�[Q1,Q1?])

kMp2
11k Mp̃2

11 and so (I � Qu
1)MP u

1 = 0. Likewise, since p̃2
11 satisfies

(I � [Q1, Q1?
])Gp2

11 =

1
�
(I � [Q1, Q1?

])Mp2
11 =

1
�
kMp2

11k q̃2
11, (I � Qu

1)BP u
1 = 0 also. This

shows that the first step of the induction holds: the continuation proceeds as for (M11, G11)

except switching the order of M and G. Similarly, the presence of the eigenvalues along the
diagonals is shown in a completely analogous manner.

It remains to show that (M?
11, G

?
11) satisfies �(M?

11, G
?
11) ⇢ {0}. In this, I follow Gohberg

et al. (1990, Lemma II.3.4) closely. By construction, (M?
11z,G?

11z) = (Q?
1 M1z,Q?

1 G1z) for
all z 2 E?

1 . By assumption, G is a bounded operator, so G1 must be also and so G�1
1 Q?

1 G1

must be as well. Since the compact operators are a closed ideal within the algebra of bounded
operators on a Banach space (see, e.g. (Carl & Stephani, 1990)) and G�1

1 M1 is compact by
assumption, G�1

1 Q?
1 M1 = G�1

1 Q?
1 G1G

�1
1 M1 is compact also, as is ⌦

?
1 := P?

1 G�1
1 Q?

1 M1P?
1 ,

its restriction to E?
1 . Suppose for contradiction that µ is a nonzero element of �(M?

11, G
?
11).

Then by reasoning entirely analogous to 3, �(M?
11, G

?
11) = �(⌦

?
1 ) and so by compactness µ

is an isolated point in the spectrum of ⌦

?
1 . Further, ⌦

?⇤
1 must have µ̄ 2 �(⌦

?⇤
1 ) as a nonzero

point in the spectrum, and so by compactness, it must be an isolated point in the spectrum
associated with (at least one) nonzero eigenvector, which we will call x0 2 E?

1 . The upper
triangular decomposition of (M1, G1) may be used to show ⌦

?⇤
1 = P?

1 (G�1
1 M1)

⇤P?
1 . To see

this, note that multiplication of the the upper triangular decomposition of M1 by the inverse
of the upper triangular decomposition of G1 yields

(G�1
1 M1)

⇤
=

 
G�1

11 M11 �G�1
11 Goff

11 G?�1
11 M off

11

0 G?�1
11 M?

11

!⇤
=

 
(G�1

11 M11)
⇤

0

(�G�1
11 Goff

11 G?�1
11 M off

11 )

⇤
⌦

?⇤
1

!

and so ⌦

?⇤
1 = P?

1 (G�1
1 M1)

⇤P?
1 as claimed. As a result, x0 is also an eigenvector of

compact operator (G�1
1 M1)

⇤ associated with eigenvalue µ̄, and so x0 2 E?
1 \ Im P

(G�1
1 M1)⇤

{µ̄} .

However, we know also by A.3 that Im P
G�1

1 M1

{µ} = Im P (M1,G1)
{µ} ⇢ E1, and by orthogo-

nality of the decompositions, E?
1 is orthogonal to Im P

G�1
1 M1

{µ} , and so must be a subset of

Ker (PG�1
1 M1

{µ} )

⇤. Since this is an isolated eigenvalue of an operator on a Hilbert space, Gohberg

et al. (1990, Prop I.2.5) gives that (P
G�1

1 M1

{µ} )

⇤
= P

(G�1
1 M1)⇤

{µ̄} , and so E?
1 ⇢ Ker P

(G�1
1 M1)⇤

{µ̄} . This
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contradicts the previous assertion that there is a nonzero element x0 in E?
1 \ Im P

(G�1
1 M1)⇤

{µ̄}
and so the original assertion that there is some µ 6= 0 in �(M?

11, G
?
11).

The proof that (M?
22, G

?
22) satisfies �(M?

22, G
?
22) ⇢ {1} is essentially similar to the above,

except using ((I � [Q1, Q1?
])M(I � [P 1, P 1?

]), (I � [Q1, Q1?
])G(I � [P 1, P 1?

])) in place of
(M1, G1) and reversing the order of M and G.

B Perturbation Theory for the Generalized Schur De-

composition

Perturbation for generalized Schur subspaces associated with a subset of the spectrum is
covered in Stewart (1973) for perturbations measured in Frobenius norm. In this section,
I extend the results to perturbation in operator norm. In addition to bounds on the error
in terms of the subspace angle between the approximate and true deflating subspaces, this
section will also consider approximation of the Rayleigh components of the operator pair
corresponding to these subspaces. First, set up the generalized Schur subspace approximation
problem exactly as in Stewart (1973).

Let (A, B) 2 L(H1 ! H2,H1 ! H2) and unitary operators X = (X1, X2) H1 ! H1 and
Y = (Y1, Y2) H2 ! H2 decompose (A, B) as

(Y ⇤AX, Y ⇤BX) =

 "
A11 A12

A21 A22

#
,

"
B11 B12

B21 B22

#!

To find a perturbation bound, we search for the minimal rotations

UX =

 
I �P ⇤

P I

! 
(I + P ⇤P )

�1/2
0

0 (I + PP ⇤
)

�1/2

!

UY =

 
I �Q⇤

Q I

! 
(I + Q⇤Q)

�1/2
0

0 (I + QQ⇤
)

�1/2

!

such that X 0
= (X 0

1, X
0
2) = XUX and Y 0

= (Y 0
1 , Y

0
2) = Y UY generate subspaces R(X 0

1) =

X ⇢ H1 and R(Y 0
1) = Y ⇢ H2 which form a deflating pair of (A, B). A pair of subspaces

X , Y form a deflating pair if and only if (A0
21, B

0
21) = (0, 0). This is equivalent to

QA11 � A22P = A21 �QA12P

QB11 �B22P = B21 �QB12P (B.1)
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In order to find (Q, P ) which satisfy the above condition and are small relative to per-
turbations in operator norm, define a norm over the space of operator pairs over subspaces
conformable to the pair (Q, P ) as the largest operator norm of an operator in the pair, i.e.

k(Q, P )kB = max(kQk, kPk)

If we can show that the conditions of Stewart (1973) Theorem 3.1 are satisfied for B.1
using this norm, then this theorem will provide a bound on the operator norm of the rotation
needed to generate such a decomposition. Define

T (Q, P ) =

⇣
QA11 � A22P QB11 �B22P

⌘

g =

⇣
A21 B21

⌘

'(Q, P ) = ( QA12P QB12P )

To show a quadratic bound for '(Q, P ), begin with the first term:

k'1(Q, P )k  kQk kPk kA12k
 k(Q, P )k2B kA12k

Combining with identical calculations for the second term yields quadratic bound

k'(Q, P )kB  ⌘k(Q, P )k2B (B.2)

where
⌘ = k(A12, B12)kB

To demonstrate the Lipschitz property for this operator, again note

k'1(Q, P )� '1(
˜Q, ˜P )k 

���Q� ˜Q
��� kPk kA12k+

��� ˜Q
���
���P � ˜P

��� kA12k
 2 max(k(Q, P )kB, k( ˜Q, ˜P )kB)k(Q� ˜Q, P � ˜P )kB kA12k

Combining with identical calculations for the second term gives Lipschitz condition

k'(Q, P )� '(

˜Q, ˜P )kB  2⌘max(k(Q, P )kB, k( ˜Q, ˜P )kB)k(Q� ˜Q, P � ˜P )kB (B.3)
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These demonstrate that conditions (i) and (ii) of Theorem 3.1 in Stewart (1973) continue
to hold for the norm k.kB

Again defining

� = kgkB

� = kT�1k�1
B

one obtains

Lemma 6. Suppose T (Q, P ) = g � '(Q, P ) with T , g, and ' defined as above, where '
satisfies the quadratic bound and Lipschitz conditions. Let � > 0 and �⌘/�2 < 1/4. Then

k
⇣

Q, P
⌘
kB < 2

�

�

To determine precisely how the above theorem imposes bounds on errors in Schur sub-
spaces, it is necessary to examine the stability properties of the term �. Define

dif(A, B) = dif(
A11 B11

A22 B22

) = kT�1k�1
B (B.4)

Note that this operator depends on only the block diagonal terms of the pair (A, B).
Define the perturbation (E,F ) 2 L(H1 ! H2,H1 ! H2) and define a partition of the
operator conformable with that of (A, B) by (Eij, Fij) = (Y H

i EXj, Y H
i FXj). We would like

to define a bound on the term

dif(A + E,B + F ) = dif(
A11 + E11 B11 + F11

A22 + F22 B22 + F22

)

Using the alternate characterization dif(A, B) = inf
kZkB=1

kT (Z)kB where Z 2 B, one can

derive lower and upper bounds

dif(A, B) + ⌫(E,F ) � dif(A + E,B + F ) � dif(A, B)� ⌫(E,F )

where
⌫(E,F ) = max(kE11k+ kE22k, kF11k+ kF22k)

Combing this bound with the previous lemma, obtain
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Theorem 3. Let (A, B) and (E,F ) 2 L(H1 ! H2,H1 ! H2) and X = (X1, X2) H1 ! H1

and Y = (Y1, Y2) H2 ! H2 be unitary operators such that R(X1) and R(Y1) form a deflating
pair of subspaces for the operator pair (A, B). Suppose these operators partition the pairs
such that

(Y HAX, Y HBX) =

 "
A11 A12

0 A22

#
,

"
B11 B12

0 B22

#!

(Y HEX, Y HFX) =

 "
E11 E12

E21 E22

#
,

"
F11 F12

F21 F22

#!

Define
� = dif(A, B)� ⌫(E,F )

along with

� = k( E21 F21) kB
and

⌘ = k(A12 + E12, B12 + F12)kB
Suppose � > 0 and �⌘/�2 < 1/4. Then
Then there is a pair of operators (Q, P ) with

���
⇣

Q, P
⌘���

B
 2�

�

such that
X 0

1 = (X1 + X2P )(I + P ⇤P )

�1/2

Y 0
1 = (Y1 + Y2Q)(I + Q⇤Q)

�1/2

and R(X 0
1) and R(Y 0

1) form a pair of deflating subspaces for (A + E,B + F ).

This is essentially identical to Theorem 5.7 of Stewart (1973) aside from the definition of
the norms via which the terms are defined and the resulting difference in the lower bound
on �.

Via Theorem 2.7 in Stewart (1973), we know that

k sin ⇥(R(X1), R(X 0
1))k  k tan ⇥(R(X1), R(X 0

1))k = kPk

k sin ⇥(R(Y1), R(Y 0
1))k  k tan ⇥(R(Y1), R(Y 0

1))k = kQk

both of which are less than
���
⇣

Q, P
⌘���

B
. As a result, we have the following corollary

Corollary 1. Suppose (A, B), (E,F ), X and Y satisfy the conditions of the theorem above.
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Then the operator pair (A + E,B + F ) has a right generalized Schur subspace R(X 0
1) such

that kProjX0
1
� ProjX1k2  2�

�
and associated left generalized Schur subspace R(Y 0

1) such
that kProjY 01 � ProjY1k2  2�

�

As a result, for appropriately small approximation error in the operator pair of interest, a
fixed, well-separated, primary generalized Schur subspace (and associated generalized Schur
functions or vectors whose range spans it) of the perturbed pair differs by an amount which is
on the order of the operator norm of the perturbation from the corresponding true subspace
(and associated functions). This dependence on the order of the operator norm of the error
may be particularly useful in the case of large or infinite-dimensional subspaces, for which
the Frobenius norm of the error may increase as the square root of the dimension of the
subspace. One loses, however, the set of sharp characterizations of the difference term �

in terms of spectral properties of the operator to be approximated which may be obtained
when it is defined via the Frobenius norm. This seems necessary in general, however, as the
Frobenius or Hilbert-Schmidt norm may fail to be finite in the infinite-dimensional case for
otherwise well-behaved operators.

To bound the approximation error in the components (A11, B11) induced by an approxi-
mation, it is helpful to introduce an additional pair of subspaces to correspond to the right
deflating pair R(X1) and R(Y1). Defining (X1, X2) and (Y1, Y2) as above so R(X1) and
R(Y1) form a deflating pair, we look for operators V1 and U2 and R and S with V1 = Y1+Y2R⇤

and U2 = X2 �X1S to solve

(V1, Y2)
⇤A(X1, U2) =

 
I R

0 I

! 
A11 A12

0 A22

! 
I �S

0 I

!
=

 
A11 0

0 A22

!

(V1, Y2)
⇤B(X1, U2) =

 
I R

0 I

! 
B11 B12

0 B22

! 
I �S

0 I

!
=

 
B11 0

0 B22

!
(B.5)

This holds if there exist S, R such that

A11S �RA22 = A12

B11S �RB22 = B12

Theorem 5.9 in Stewart (1973) notes that if T is nonsingular, there exist S and R which
solve this equation, and so (X1, U2) and (V1, Y2), which are not in general unitary, though
are nonsingular, block diagonalize (A, B). Further, by the definitions of V1 and U2, one has
kV1k = k sec ⇥(R(V1), R(Y1)k = k sec ⇥1k and kU2k = k sec ⇥(R(U2), R(X2)k = k sec ⇥2k .

This block diagonalization can be used along with the perturbation formula to construct
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bounds on the approximation error in (A11, B11). Consider a perturbation (E,F ) of (A, B)

and define

((V1, Y2)
⇤E(X1, U2), (V1, Y2)

⇤F (X1, U2)) =

  
E11 E12

E21 E22

!
,

 
F11 F12

F21 F22

!!

so that perturbed operator pair satisfies

((V1, Y2)
⇤
(A + E)(X1, U2), (V1, Y2)

⇤
(B + F )(X1, U2)) =

  
A11 + E11 E12

E21 A22 + E22

!
,

 
B11 + F11 F12

F21 B22 + F22

!!
(B.6)

then, following Stewart & Sun (1990) VI.2.15, we have

Theorem 4. Define

� = dif(A, B)�max(kE11k+ kE22k, kF11k+ kF22k)

along with

� = k( E21 F21) kB
and

⌘ = k(E12, F12)kB
Suppose � > 0 and �⌘/�2 < 1/4.
Then there is a pair of operators (Q, P ) with

���
⇣

Q, P
⌘���

B
 2�

�

such that
X 0

1 = X1 + U2P

Y 0
2 = Y2 + V1Q⇤

satisfy

((V1, Y
0
2)
⇤
(A + E)(X 0

1, U2), (V1, Y
0
2)
⇤
(B + F )(X 0

1, U2)) =

  
A11 + E11 + E12P E12

0 A22 + E22 + QE12

!
,

 
B11 + F11 + F12P F12

0 B22 + F22 + QF12

!!

(B.7)
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and so (A0
11, B

0
11) =(A11 + E11 + E12P, B11 + F11 + F12P ) form the generalized Rayleigh

quotients of the perturbed operator pair, and as a result, we have

kA11 � A0
11k  kE11 + E12Pk  kE11k+ kE12k2�

�

kB11 �B0
11k  kF11 + F12Pk  kF11k+ kF12k2�

�

Proof. Existence of a unique solution (Q, P ) with the specified properties follows if there exist

(Q, P ) such that left multiplying (B.6) by

 
I 0

Q I

!
and right multiplying by

 
I 0

P I

!

sets the lower left elements in (B.7) to 0. This holds if there is unique solution to
 

Q(A11 + E11) + (A22 + E22)P

Q(B11 + F11) + (B22 + F22)P

!
=

 
E21

F21

!
+

 
QE12P

QF12P

!

Existence of a unique solution here follows from application of Theorem 3.1 in Stewart
(1973), the Lipschitz and norm bound shown for the quadratic component above, and the
lower bound on � which lower bounds the minimum singular value of the lefthand side.

C Proofs

C.1 Section 2 Proof

Proof. of (1). Suppose h(x, z) := h(x, �)+�z is a measurable function from (Bx⇥Bz, ⌃x⌦⌃z),
the product space of Bx ⇥ Bz equipped with a product sigma field, to (Bx, ⌃x). We want
conditions on the space, the function, and the sigma fields such that it induces a measurable
stochastic process on the product space of Bx. We may assume z is drawn independently
of x according to measure µz on (Bz, ⌃z), and may ask for the initial distribution of x

to be given by µx. For each x, we can define the pushforward measure on (Bx, ⌃x) by
µx0

x (f(x0)) := µz
(f(h(x, �) + �z) for any f 2M+

(Bx, ⌃x, ¯R, B(

¯R)) nonnegative measurable
functions from x to the real line equipped with the Borel sigma field. If the family (µx0

x )x of
measures satisfies x ! µx0

x (A) is a measurable function from (Bx, ⌃x) ! (

¯R, B(

¯R)) for any
A 2 ⌃x, then this is a probability kernel and by, e.g, the Ionescu Tulcea extension theorem,
the family induces a measurable stochastic process for xt on the countable product space
⌦1t=1(Bx, ⌃x).

To show measurability of the family of measures (µx0
x )x, consider a �-class argument. The

measure µz maps the class of measurable rectangles {x 2 A1, z 2 A2} for A1 2 ⌃x, A2 2 ⌃z
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to (nonnegative multiples of) indicators of sets ⌃x, which are therefore measurable. The
class of measurable rectangles generates the product sigma field ⌃x⌦⌃z and is stable under
pairwise intersections. The class of bounded nonnegative functions f(x, z) 2 M+

(Bx ⇥
Bz, ⌃x ⌦ ⌃z, ¯R, B(

¯R)) such that µzf(x, z) is (Bx, ⌃x) measurable can be shown to form a
�-cone (Pollard, 2002, 2.11 Def. <43>) and so by these facts (Pollard, 2002, 2.11 Lemma
<44>), µz maps M+

(Bx⇥Bz, ⌃x⌦⌃z, ¯R, B(

¯R)) to M+
(Bx, ⌃x, ¯R, B(

¯R)). In particular, let
h(x, z) be Bx ⇥Bz, ⌃x ⌦⌃z ! Bx, ⌃x measurable, then µz

(f(h(x, z)) is (Bx, ⌃x) measurable
for any f 2 M+

(Bx, ⌃x, ¯R, B(

¯R)) and in particular, x ! µx0
x (A) is a measurable function

from (Bx, ⌃x)! (

¯R, B(

¯R)) for any A 2 ⌃x. As a result, (µx0
x )x is a probability kernel.

To construct a measurable stochastic process, consider the i.i.d. sequence {zt}1t=0 such
that zt each have identical marginal measure µz

t and, beginning with initial measure µx, con-
struct the sequence of probability kernels on ⌦1t=1(Bx, ⌃x) by iterating the identical kernels
defined by µx0

xt(f(x0)) := µz
t (f(h(x, z)). This generates a sequence x0 ⇠ µx

0 , xt = h(xt�1, zt).
By the Ionescu Tulcea extension theorem, the sequence of kernels induces a measurable
stochastic process on the countable product space ⌦1t=1(Bx, ⌃x) with finite-dimensional dis-
tributions generated by the iterated probability kernels. Note that the only assumptions
made on (Bx, ⌃x), (Bz, ⌃z) and h(x, z) are that h(x, z) is jointly measurable from the prod-
uct sigma field over x and z to the sigma field over x. In particular, because the probability
kernel was constructed explicitly, no topological assumptions needed to be made on the
spaces or sigma fields, as are usually required to invoke the Kolmogorov extension theorem.
This permits, among other constructions, the use of nonseparable function spaces or non-
Borel sigma fields, which may alleviate some difficulties when working in infinite-dimensional
space.

By measurability of g(x, �) and F , the measurability of the probability kernels defining
the conditional distribution of the random variables yt = g(xt,�) and F (xt, g(xt,�), h(xt,�)+

�zt+1, g(h(xt,�) + �zt+1,�) given x and from there the corresponding stochastic processes
can be established in an analogous fashion, ensuring that (xt, yt) is product measurable and
EF (x, g(x, �), h(x, �)+�⌘z0, g(h(x, �)+�⌘z0,�),�) coincides with the conditional expectation
of F (xt, g(xt,�), h(xt,�)+�⌘zt+1, g(h(xt,�)+�⌘zt+1,�),�) at time t given xt = x, as claimed.

C.2 Section 3 Results

We apply the implicit function theorem to calculate d!
d�

. Taking derivatives of equations
(3.3),(3.4), (3.5), and (3.6) evaluated at the uniform steady state, obtain
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dY

d�
= µ[.]

dY

dw
= µ[.]

dT

d�
=


⌧(� � 1)

2

� 1
1��

1

1� �
ˆ

G

e⌧(1��)|x�z|dz

� �

1��

ˆ
G

[.]e⌧(1��)|x�z|dz

dT

dw
=


⌧(� � 1)

2

� 1
1��

1

1� �
ˆ

G

e⌧(1��)|x�z|dz

� �

1��

(1� �)

ˆ
G

[.]e⌧(1��)|x�z|dz

dw

dY
=


⌧(� � 1)

2

� 1
�

1

�

ˆ
G

e�⌧(��1)|x�z|dz

� 1��

�

ˆ
G

[.]e�⌧(��1)|x�z|dz

dw

dT
=


⌧(� � 1)

2

� 1
�

1

�

ˆ
G

e�⌧(��1)|x�z|dz

� 1��

�

(� � 1)

ˆ
G

[.]e�⌧(��1)|x�z|dz

d!

dw
= [.]

d!

dT
= �µ[.]

By the chain rule, we can express the derivative of the real wage with respect to the
population distribution as

d!

d�
=

dw

d�
� µ(

dT

dw

dw

d�
+

dT

d�
) (C.1)

where by the implicit function theorem in Banach space and the chain rule repeatedly applied,

dw

d�
= (I � dw

dY

dY

dw
� dw

dT

dT

dw
)

�1
(

dw

dY

dY

d�
+

dw

dT

dT

d�
).

C.3 Section 4 Proofs

Proof. of Lemma 1 Unitarity of U provides the following facts: since U⇤
= U�1, we have

U⇤U = I. Decomposing U into U11, U12, U21, and U22 obtain
"

U⇤
11U11 + U⇤

21U21 U⇤
11U12 + U⇤

21U22

U⇤
12U11 + U⇤

22U21 U⇤
12U12 + U⇤

22U22

#
= I =

"
Ix 0

0 Iy

#

Where Ix = 'X⇤'X and Iy = 'Y ⇤'Y are the identity operators on Hx and Hy respectively.
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To see this more formally, consider U⇤
11U12 + U⇤

21U22. It can be written as

'X⇤U⇤
1 U1'

Y
+ 'X⇤U⇤

2 U2'
Y

= 'X⇤
(U⇤

1 U1 + U⇤
2 U2)'

Y

= 'X⇤'Y
= 0

Equivalent calculations describe the other identities.
Using these identities we can express

(U11 + U12gx)
⇤
(U11 + U12gx) = U⇤

11U11 + U⇤
11U12gx + g⇤xU

⇤
12U11 + g⇤xU

⇤
12U12gx

= Ix � U⇤
21U21 � U⇤

21U22gx + g⇤xU
⇤
22U21 + g⇤x(Iy � U⇤

22U22)gx

= Ix � U⇤
21U21 + U⇤

21U22U
⇤
22(U22U

⇤
22)

�1U21

+U⇤
21(U22U

⇤
22)

�1⇤U22U
⇤
22U21 + g⇤xIygx � g⇤xU

⇤
22U22gx

= Ix � U⇤
21U21 + U⇤

21U21 + U⇤
21U21 + g⇤xIygx � U⇤

21U21

= Ix + g⇤xIygx

= Ix + gx
⇤gx

As a result, post-multiplying by (U11 + U12gx)
�1 and inverting (Ix + gx

⇤gx), obtain

(U11 + U12gx)
�1

= (Ix + gx
⇤gx)

�1
(U11 + U12gx)

⇤

C.4 Section 5 Proofs

Proof. Of Theorem (1). The proof proceeds in two steps: first, showing that the generalized
Schur decomposition is continuous with respect to the approximation, and then showing the
policy operators are continuous in the generalized Schur decomposition.
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First, note that

k( ˜BK , ˜AK
) + (I � ⇡K

)(BI , AI)(I � ⇡K
)� (B, A)kB 

k( ˜BK , ˜AK
)� (BK , AK

)kB + k(BK , AK
) + (I � ⇡K

)(BI , AI)(I � ⇡K
)� (B, A)kB =

k( ˜BK , ˜AK
)� (BK , AK

)kB+

k(I�⇡K
)(BI , AI)(I�⇡K

)�(I�⇡K
)(B, A)(I�⇡K

)�(I�⇡K
)(B, A)⇡K�⇡K

(B, A)(I�⇡K
)kB =

k( ˜BK , ˜AK
)�(BK , AK

)kB+k�(I�⇡K
)(BC , AC)(I�⇡K

)�(I�⇡K
)(BC , AC)⇡K�⇡K

(BC , AC)(I�⇡K
)kB

= k( ˜BK , ˜AK
)� (BK , AK

)kB + k⇡K
(BC , AC)⇡K � (BC , AC)kB  ⇣K + ⌘K

where the third expression follows from the decomposition of (B, A) = (BI , AI)+(BC,, AC),
and the construction of ⇡K so that (I � ⇡K

)(BI , AI)⇡K
= 0 and ⇡K

(BI , AI)(I � ⇡K
) = 0.

The consistency of the approximation of (B, A) implies consistency of the components
of the Schur decomposition by (3) and (4) and the bound on dif(B, A). Note that the
generalized Schur decomposition of (

˜BK , ˜AK
) separately is equivalent to (one ordering of)

the generalized Schur decomposition of their sum. More precisely,

"
˜Q⇤K

1 0 , ˜Q⇤K
2 0

0 Q⇤I
1 0 Q⇤I

2

#
2

66664

˜TK
11 0

˜TK
12 0

0 T I
11 0 T I

12

0 0

˜TK
22 0

0 0 0 T I
22

,

˜SK
11 0

˜SK
12 0

0 SI
11 0 SI

12

0 0

˜SK
22 0

0 0 0 SI
22

3

77775

2

66664

˜UK
11 0

˜UK
12 0

0 U I
11 0 U I

12

˜UK
21 0

˜UK
22 0

0 U I
21 0 U I

22

3

77775

where an I superscript indicates a component corresponding to the Schur decompo-
sition on Ker ⇡K of (BI , AI

), is a generalized Schur decomposition of (

˜BK , ˜AK
) + (I �

⇡K
)(BI , AI)(I � ⇡K

) corresponding to curve �. Note that by operator norm convergence,
for sufficiently large K, �min(� ˜BK � ˜AK

+ (I � ⇡K
)(�BI�, AI)(I � ⇡K

)) � �min(�B �A)�
2(⇣K + ⌘K) > 0 uniformly in � 2 � by Weyl’s inequality and the compactness of � and so
(

˜BK , ˜AK
)+(I�⇡K

)(BI , AI)(I�⇡K
) is �-regular and so the generalized Schur decomposition

described exists.
To bound kgK � gXk, note

gK = �(

˜UK
22)

�1
˜U21 � (U I

22)
�1U I

21 = �
 

˜UK
22 0

0 U I
22

!�1 
˜UK

21 0

0 U I
21

!
= �(

˜U22)
�1

˜U21.
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By (3),

k ˜U1 � U1k  kU1kkI � (I + P ⇤P )

� 1
2k+ kPk

���U2(I + P ⇤P )

� 1
2

���

 CkPk+ o(kPk)  C
2(⇣K + ⌘K)

�

for some constant C < 2+✏ for any ✏, for K sufficiently large, where � > 0 by the assumption
that dif(B,A)>0. As a result, by invertibility of U22, Weyl’s inequality, and the triangle
inequality,

���� ˜U�1
22

˜U21 + U�1
22 U21

���  C 2(⇣
K

+⌘
K

)
�

for some constant C for K large enough.
Similarly, we have

hK =

0

@
 

˜UK
11 0

0 U I
11

!
�
 

˜UK
12 0

0 U I
12

! 
˜UK

22 0

0 U I
22

!�1 
˜UK

21 0

0 U I
21

!1

A
�1

⇤
 

˜SK
11 0

0 SI
11

!�1 
˜TK
11 0

0 T I
11

!
⇤

0

@
 

˜UK
11 0

0 U I
11

!
�
 

˜UK
12 0

0 U I
12

! 
˜UK

22 0

0 U I
22

!�1 
˜UK

21 0

0 U I
21

!1

A

= (

˜U11 +

˜U12gK)

�1
(

˜S11)
�1

˜T11(
˜U11 +

˜U12gK)

Applying the triangle inequality, (3), (4), and convergence of gK , this implies that for
some constant C, for K large enough, khK � hxkop  C ⇣

K

+⌘
K

�
, as claimed.

A demonstration that for appropriately smooth functions wavelet representations pro-
vide the necessary error control to ensure consistency follows from some standard estimates
regarding wavelet coefficients.

Proof. of Theorem (2). First we demonstrate bounds on ⌘K , the error induced by truncating
to a K term wavelet series, using results on wavelet coefficients and operator norm bounds
from Johnstone (2013), then bounds on ⇣K , the error induced by calculating the inner prod-
ucts with the wavelet basis by quadrature using quadrature error estimates from Beylkin
et al. (1991).

First, denoting the blocks of (BC , AC) as Kr,ij max{��BK
C �BC

��
op

,
��AK

C � AC

��
op
} 

Jmax

r,i,j

��KK
r,ij �Kr,ij

��
op

by definition of operator norm. Because an orthonormal basis is

used, ⇡K
(BI , AI)⇡K is simply expressed in terms of identity matrices on this space, and so

can be evaluated exactly.
The projection of Kr,ij onto the space of the first Ki ⇥ Kj wavelet coefficients can be
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expressed using the inner product with the tensor product over the first Ki⇥Kj orthonormal
basis functions {�k}K

i

k=1 and {�k}K
j

k=1 as

⇡K
iKr,ij⇡

K
j

[f(y)] =

K
jX

k=1

K
iX

l=1

hKr,ij(x, y),�k(x)�l(y)i h�k(y), [f(y)]i�l(x)

=

´
ˆKr,ij(x, y)f(y)dy where ˆKr,ij(x, y) =

PK
j

k=1

PK
i

l=1 hKr,ij(x, y),�k(x)�l(y)i�k(y)�l(x) is
the Ki ⇥ Kj term projection of the kernel of the integral operator onto the wavelet basis.
Since Kr,ij(x, y) 2 ⇤

↵
r,ij

([0, 1]

d
i ⇥ [0, 1]

d
j

) and �k are a standard wavelet basis, we can use
norm bounds to control the error in this projection. Sup norm bounds available in Chen &
Christensen (2015), show that under the ↵r,ij�Hölder assumption,

��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]di⇥[0,1]dj )

= O((KiKj)
�↵

r,ij

/(d
i

+d
j

)
)

when wavelets satisfying (4) are used. In particular, adapting the proof of their Lemma 2.4,
letting

`K
i

K
j

= sup

f2L1([0,1]di⇥[0,1]dj )

������

K
jX

k=1

K
iX

l=1

hf(x, y),�k(x)�l(y)i�k(y)�l(x)

������
L1

/ kf(x, y)kL1

be the Lebesgue constant for the tensor product wavelet basis

��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]di⇥[0,1]dj )

 (1 + `K
i

K
j

)O((KiKj)
�↵

r,ij

/(d
i

+d
j

)
),

and by their Theorem 5.1 applied in the case of uniform density, `K
i

K
j

is bounded uniformly
in Ki and Kj.

By compactness of the domain, we have
ˆ ��� ˆKr,ij(x, y)�Kr,ij(x, y)

��� dx  C
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]di⇥[0,1]dj )ˆ ��� ˆKr,ij(x, y)�Kr,ij(x, y)

��� dy  C
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]di⇥[0,1]dj )
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almost surely, so by Young’s inequality (Johnstone, 2013, Theorem C.26)

sup

kfk=1

����
ˆ

(

ˆKr,ij(x, y)�Kr,ij(x, y))f(y)dy

����  C
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]di⇥[0,1]dj )

 (KiKj)
�↵

r,ij

/(d
i

+d
j

)

As this holds for each r, i, j, we have

⌘K = max{��BK
C �BC

��
op

,
��AK

C � AC

��
op
}  O(Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)
)

as claimed, by bounding the operator norm by the Frobenius norm of the J ⇥J matrix with
i, j element equal to the operator norm of the i, j block.

To use this result to bound the number of basis functions needed to obtain a total operator
norm error of order ✏, letting ↵̄ = min

r,ij

2↵
r,ij

d
i

+d
j

, by setting {Kj}J
j=1 all equal and proportional to

(

J
✏
)

1
↵̄ , obtain Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)
= O(✏). This results in a basis of size K =

PJ
j=1 Kj

proportional to J(

J
✏
)

1
↵̄ as claimed.

Next, bound ⇣K , the error induced by approximating each integral operator in (BC , AC)

by a matrix with entries given by the discrete wavelet transform of Kr,ij(xs, yt). For con-
venience, define the level of the dj�tensor product of multiresolution analyses of Im ⇡K

j in
each dimension as {njp}d

j

p=1, and let the total number of basis functions in the tensor product
basis satisfy Kj = ⇧

d
j

p=12
n

jp .13 The discrete wavelet transform in one dimension is a unitary
mapping on the space spanned by the scaling functions �n

j

,s := 2

�n
j

/2�(2

�n
jx � s + 1) at

multiresolution level nj from vectors whose entries are inner products with these scaling
functions to vectors whose entries are inner products with the orthonormal wavelet basis
spanning the same space, and in multiple dimensions it maps the tensor product of scaling
functions representation to the tensor product of wavelets representation. As the operator
norm is unitarily invariant, it therefore suffices to bound the operator norm error in terms
of the error in the representation defined in terms of scaling function coefficients. By the
compact support, vanishing moment condition, and Hölder exponent bound, Beylkin et al.
(1991) show by a Taylor expansion argument that if a scaling function with the property´
�(x + ⌧)xmdx = 0 for all integers m  ↵ + 1, for some integer ⌧ , is used, then any

f(x) 2 ⇤

↵
[0, 1] satisfies 2

�n/2f(2

�n
(k � 1 + ⌧)) =

´
f(x)�n,k(x)dx + O(2

�n(↵+ 1
2 )

) uniformly
in k, and for multivariate functions f(x1, . . . , xd

) 2 ⇤

↵
[0, 1]

d, a straightforward extension
13One can avoid restricting to powers of 2 by using a larger number of functions at the finest level, at the

cost of more cumbersome notation. The order of all asymptotic results remains the same.
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shows

(2

�n1/2 . . . 2�n
d

/2
)f(2

�n
(k1 � 1 + ⌧), . . . , 2�n

(kd � 1 + ⌧)) =

ˆ
. . .

ˆ
f(x1, . . . , xd)�n,k1

(x1) . . .�n,kd(xd)dx1 . . . dxd + O(

dY

p=1

2

�n
p

/2
dX

p=1

2

�↵n
p

)

Applying this to 1p
K

i

K
j

Kr,ij(xs, yt) we see that its entries satisfy

�����
1p

KiKj

Kr,ij(xs, yt)�
D
Kr,ij(x, y), ⇧d

i

p=1�n
ip

,s+⌧ (xp)⇧
d

j

p=1�n
jp

,t+⌧ (yp)

E�����

= O((

d
iY

p=1

2

�n
ip

/2

d
jY

p=1

2

�n
jp

/2
)(

d
iX

p=1

2

�n
ip

↵
r,ij

+

d
jX

p=1

2

�n
jp

↵
r,ij

))

uniformly in s, t. To control the operator norm error induced by this approximation to
the matrix of scaling function coefficients, we again use Young’s inequality, combined with
the fact that the scaling functions �n

j

,s are rescaled translations of a single bounded and
compactly supported function over a regular grid, to bound the operator norm error in the
quadrature approximation of the finite projection of Kr,ij(x, y) onto a finite tensor product
wavelet basis. In particular, denoting ✓ijst :=

D
Kr,ij(x, y), ⇧d

i

p=1�n
ip

,s+⌧ (xp)⇧
d

j

p=1�n
jp

,t+⌧ (yp)

E

and ˆ✓ijst :=

1p
K

i

K
j

Kr,ij(xs, yt) the L1 norm error induced by quadrature in the Ki ⇥ Kj

term representation of the kernel is equal to

sup

x,y2[0,1]di⇥[0,1]dj

������

K
iX

s=1

K
jX

t=1

(✓ijst � ˆ✓ijst)⇧
d

i

p=1�n
ip

,s+⌧ (xp)⇧
d

j

p=1�n
jp

,t+⌧ (yp)

������

As noted in Chen & Christensen (2015, Section 6), by the assumption that the one-dimensional
scaling function � has support within a compact interval, with length no greater than 3N +1

for a fixed integer N (depending order of the wavelet used), at most 3N +1 scaling functions
at any fixed level nj may overlap on any set of positive Lebesgue measure, and so over the
di +dj-dimensional tensor product space, no point x, y is covered by more than (3N +1)

d
i

+d
j
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scaling functions.14 As a result

sup

x,y2[0,1]di⇥[0,1]dj

������

K
iX

s=1

K
jX

t=1

(

ˆ✓ijst � ✓ijst)

d
iY

p=1

�n
ip

,s+⌧ (xp)

d
jY

p=1

�n
jp

,t+⌧ (yp)

������

 (3N + 1)

d
i

+d
j

max

s,t

���ˆ✓ijst � ✓ijst

��� sup

x,y

������

d
iY

p=1

�n
ip

,s+⌧ (xp)

d
jY

p=1

�n
jp

,t+⌧ (yp)

������

 (3N+1)

d
i

+d
jO(

d
iY

p=1

2

�n
ip

/2

d
jY

p=1

2

�n
jp

/2
)(

d
iX

p=1

2

�n
ip

↵
r,ij

+

d
jX

p=1

2

�n
jp

↵
r,ij

))

d
iY

p=1

2

n
ip

/2

d
jY

p=1

2

n
jp

/2
sup

x
|�(x)|

= O((3N + 1)

d
i

+d
j

(

d
iX

p=1

2

�n
ip

↵
r,ij

+

d
jX

p=1

2

�n
jp

↵
r,ij

))

by boundedness and the definition of �n
jp

,s. When the number of basis functions used in
each dimension is identical for all dimensions p = 1 . . . di and 1 . . . dj, this term is bounded
by

O((3N + 1)

d
i

+d
j

(di + dj)(KiKj)
�↵

r,ij

/(d
i

+d
j

)
)

This is the same order as the projection result, except for a multiplicative constant depending
on dimension. Let ¯d = max

j
2dj. Then, if the number of basis functions is set so that {Kj}J

j=1

all equal and proportional to (

(3N+1)d̄d̄J
✏

)

1
↵̄ , the above bound along with Young’s inequality

gives an operator norm error bound bound for each block no greater than O(

✏
J
). With each

of J2 blocks bounded by no more than this quantity, obtain the bound

⇣K  O(✏)

exactly as claimed.

C.5 Section 6 Proofs

Proposition. Derivation of ˆd!
d� �

: ˆd!
d� �

= (1 � µH(�))

µH(�)�H(�)2

��µH(�)�(��1)H(�)2 +

µ
��1H(�), with

H(�) :=

(��1)2

(��1)2+⌧�2�2

Proof. d!
d�

is shown in Equation (C.1) to equal dw
d�
� µ(

dT
dw

dw
d�

+

dT
d�

) which is a composition of
convolution operators and their inverses and so can also be expressed as multiplication by

14The vanishing moments property characterizing Coiflets also requires that the length of the filter defining
the scaling function be longer by a factor of 1.5 than the filter for the corresponding standard Daubechies
wavelet. This results in an larger constant in front of the quadrature error and the running time of the
discrete wavelet transform, but does not affect the rate of convergence.
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the Fourier transform of some function. To construct the Fourier transform of the function,
simplify the integrals in equations (3.3),(3.4), (3.5), and (3.6) and denote

H(�) =

(� � 1)

2

(� � 1)

2
+ ⌧�2�2

the Fourier transform of the Laplace distribution in the convolution operator

⌧(1� �)

2

ˆ
G

[.]e⌧(1��)|x�z|dz.

This yields the formulas ˆdw
dT

=

��1
�

H, ˆdw
dY

=

1
�
H, ˆdT

d�
=

1
1��

H, dT
dw

= H. Substituting into the

expressions for partial derivatives, obtain ˆdw
d�

=

�µ

�

H+ 1
�

H2

1�µ

�

H���1
�

H2 and

ˆd!

d� �
= (1� µH(�))

µH(�)�H(�)

2

� � µH(�)� (� � 1)H(�)

2
+

µ

� � 1

H(�). (C.2)

This is almost the same as Krugman (1996)’s equation (A.44) for this term, but differs
slightly due to what appears to be an algebra error in the text.

Proof. of (2). The proof applies the machinery and notation of Stewart (1973). While rates
of convergence are obtained, no attempt is made to ensure that these are optimal. First,
note that �� = k(B�, A�)� (Bi

I , A
i
I)kF ! 0 by assumption, and so all submatrices also

converge at least as rapidly in Frobenius norm. Next note that (Bi
I , A

i
I) has generalized

Schur decomposition
 

Q⇤1
"

S111 S122

0 S122

#"
U1

11 U1
12

U1
21 U1

22

#
, Q⇤1

"
T111 T122

0 T122

#"
U1

11 U1
12

U1
21 U1

22

#!

where (S1, T1) =

0

B@

2

64
1 0 0

0

p
2 0

0 0 0

3

75 ,

2

64
0 0 0

0 0 1/
p

2

0 0 1/
p

2

3

75

1

CA and U1
=

0

B@
�1 0 0

0 �1 0

0 0 1

1

CA.

Applying standard formulas for policy functions, obtain ĝ1 = �U1�
22 U1

21 = (0, 0) and

ˆh1 = (I2 + ĝ⇤1ĝ1)

�1
((

I2

ĝ1
)

⇤U1⇤
1 S1�1

11 T111 U1
1 (

I2

ĝ1
)) =

 
0 0

0 0

!

As generalized eigenvalues corresponding to the stable subspace are equal to 0 and the
generalized eigenvalue corresponding to the unstable subspace is1, the measure of subspace
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separation defined in Stewart (1973), which ensures that Schur subspaces are numerically
stable, is given by � = dif(S111 , T

1
11 , S122 , T

1
22 ) > 0. As a result, by Stewart (1973), Theorem

5.7 and 5.3,
���sin ⇥(U1⇤

1 , U�⇤
1 )

���
F
 2

�
�

��2�
�

for �� small enough, and similarly for U1
2 , where

⇥(U1⇤
1 , U�⇤

1 ) is the matrix of principal angles between the span of U1⇤
1 and U�⇤

1 . While this
does not imply that

���U1⇤
1 � U�⇤

1

���
F
! 0, as the span does not uniquely define the basis, it

does imply, because U�⇤
2 and U1⇤

2 have a one-dimensional span and norm 1, that

���U�⇤
2 � U1⇤

2

���
2

F
= 2� 2

���cos ⇥(U�⇤
2 , U1⇤

2 )

���

= 2� 2

q
1� sin

2
⇥(U�⇤

2 , U1⇤
2 )

 2� 2

s

1� (

2��

� � 2��

)

2
= O(��)! 0

. Since U1
22 = 1 is invertible, the policy function ĝ� = �U��

22 U�
21 therefore satisfies the bound

kĝ� � ĝ1k2F  O(��)! 0 , as claimed.
Further, it is possible to show that for each �, there exists a unitary (2⇥2) transformation

R� of U1⇤
1 such that

���U1⇤
1 R� � U�

1

���
F
! 0. Applying the definition of principal angles,

for each � there exist unitary matrices R1
� = [R1

�1, R
1
�2] and R2

� = [R2
�1, R

2
�2] such that

[cos ⇥(U1⇤
1 , U�⇤

1 )]11 =

D
U1⇤

1 R1
�1, U

�⇤
1 R2

�1

E
and [cos ⇥(U1⇤

1 , U�⇤
1 )]22 =

D
U1⇤

1 R1
�2, U

�⇤
1 R2

�2

E
, so

���U1⇤
1 R� � U�

1

���
2

F
:=

���U1⇤
1 R1

�R
2⇤
� � U�

1

���
2

F

=

���U1⇤
1 R1

� � U�
1 R2

�

���
2

F

= 2(1� [cos ⇥(U1⇤
1 , U�⇤

1 )]11 + 1� [cos ⇥(U1⇤
1 , U�⇤

1 )]22)

 4� 4

s

1� (

2��

� � 2��

)

2
= O(��)! 0.

Equivalent results show that for a different unitary transform RQ
� ,
���RQ

� Q1
1 � U�

1

���
2

F
= O(��).

Combining these results and applying the triangle inequality,
���S�

11 � S1(�)
11

���
F

:=

���S�
11 �RQ

� Q1
1 A1U1⇤

1 R�

���
F
 O(�

1
2
� )

and ���T �
11 � T1(�)

11

���
F

:=

���T �
11 �RQ

� Q1
1 B1U1⇤

1 R�

���
F
 O(�

1
2
� )

also, gives convergence of the generalized Schur components of the finite order matrices
along a triangular array to unitary transformations (S1(�)

11 , T1(�)
11 ) of the generalized Schur
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components of the limit pencil. Noting that unitary transformations leave singular values
unaffected and that S111 is invertible, S�

11 is also asymptotically invertible, so by Weyl’s
inequality

���S��1
11 � S1(�)�1

11

���
F

���S��1

11

���
op

���S1(�)�1
11

���
op

���S�
11 � S1(�)

11

���
F
 O(�

1
2
� ).

Using the unitarity of R� and applying the triangle inequality, one can see that

���U�⇤
1 S��1

11 T �
11U

�
1 � U1⇤

1 S1�1
11 T111 U1

1

���
F

=

���U�⇤
1 S��1

11 T �
11U

�
1 � U1⇤

1 R�S
1(�)�1
11 T1(�)

11 R⇤
�U

1
1

���
F

 O(�
1
2
� ),

and so the fact that Schur vectors do not converge does not affect the convergence of the
policy function, which is invariant to unitary transformations of these vectors. Finally,
defining

ˆh� = (I2 + ĝ⇤�ĝ�)
�1

((

I2

ĝ�

)

⇤U�⇤
1 S��1

11 T �
11U

�
1 (

I2

ĝ�

))

the above results and the triangle inequality imply that
���ˆh� � ˆh1

���
F
 O(�

1
2
� ).

To show compactness, it suffices to show that the singular values converge to 0. As g[.]

and h[.] are block-diagonal, it suffices to show that the operator norm of each block converges
to 0. As the operator norm is bounded by the Frobenius norm, each block has operator norm
at most O(�

1
2
� )! 0 and so compactness holds.

(ii) To show that an h[.] is Hilbert Schmidt, Tr(h⇤h) < 1, it suffices to show that the
sum of squared singular values converges. As the sum of squared singular values for each
block is equal to the square of its Frobenius norm, which is O(��) for large |�|, convergence
holds so long as

P1
�=n �� <1 for some finite n. Superlinear convergence �� = O(|�|�(1+✏)

)

for some ✏ > 0 is sufficient for this sum to be finite.

D Additional Figures

The following figures display the Euclidean norm of pointwise errors over a grid in impulse
responses calculated by Fourier and Wavelet basis at each time period for different numbers
of basis functions K. For details, see Section 5.
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Figure D.1: Euclidean Discrepancy, K=512
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Figure D.2: Euclidean Discrepancy, K=1024
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