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Abstract

To investigate the dynamic interrelationship between microstructure noise
and price volatility, we devise a model under which the observed stock price is
decomposed into a permanent component representing the efficient price and
a transient microstructure noise. Both components are allowed to have time-
varying volatilities through a GARCH-type specification, and the innovations
in the two components can be non-Gaussian and will feed back to the volatil-
ity process. Bayesian techniques are used to estimate the resulting nonlinear
and non-Gaussian state-space system. In particular, we develop a hierarchical
sequential Monte Carlo method that samples from the posterior distribution of
the fixed model parameters and that of the unobserved state variables. On the
lower level and for a fixed set of model parameters, we run particle filters to
obtain a point-wise estimate of the likelihood, which in essence integrates out
the unobserved state variables in the likelihood. On the upper level, we obtain
the posterior distribution using a sequential Monte Carlo sampler over the fixed
parameters with the point-wise likelihood estimates. We show that the method
works well with a finite number of particles. The heavy computational load is
handled by a GPU-based parallel computer. Implementing the method on 100
firms from CRSP, we find that microstructure shocks have an important role
in the volatility dynamics.
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1 Introduction

In this paper we ask whether transient changes in transaction prices have a role to
play in the dynamics of volatility. To investigate this issue, we set up a model in
which the observed transaction price is decomposed into a permanent component
representing the efficient price and a transient microstructure noise. Both compo-
nents are allowed to have fat tails and time-varying volatility. The volatility of
microstructure noises is a constant multiple of the efficient price volatility. Our fo-
cus is the volatility equation, where in a GARCH-like specification, the conditional
variance can depend on its own lagged value, on past efficient price innovations and
past microstructure errors. The resulting system is a non-linear and non-gaussian
state-space model.

We choose a likelihood-based Bayesian approach to inference over the joint dis-
tribution of the dynamic hidden states and the fixed model parameters. Particle
filters provide the basic building block of our procedure. First, they allow us to ob-
tain point-wise estimates of the likelihood for given model parameters. Second,they
provide an approximation to the distribution of the hidden states conditional on the
data and the model parameters. This suggests a marginalized sampling procedure
where we first define a sampler over the fixed parameter using the point-wise like-
lihood estimates and then draw from the hidden states given the fixed parameters.
However, to follow through this idea, the particle filter needs to be called tens of
thousands of times at different fixed parameter sets, making the approach very time
consuming. To make the computational task manageable, we implement a parti-
cle filter parallelized over the model parameters on a graphical processor achieving
speedup factors of 40-100 over the CPU version. Then, to tackle our problem, we
need a statistical method that (i) carries out the marginalized sampling routine (ii)
can be parallelized over the model parameters. We achieve this objective by com-
bining two recent statistical techniques. The first of these, the population MCMC
(PMCMC) algorithm of Andrieu et al (2010) embeds a particle filter into an MCMC
algorithm over the model parameters, satisfying our first criteria. Unfortunately it
is sequential in the model parameters. To achieve parallelization, we turn to the Se-
quential Monte Carlo Sampler (SMCS) approach of Del Moral et al (2006). These
authors propose to construct a sequence of bridging densities between the target
distribution and an easy-to-sample initial density (the prior in our case). A set of N
particle is passed through this sequence using Markov transition kernels and sequen-
tial monte carlo. The output is a population of N weighted samples representing
the target.
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We then define an SMCS procedure over the fixed parameters and use PMCMC
kernels to move the particles towards the target. The procedure then consists of
running N parallel PMCMC chains within an SMC algorithm over the model param-
eters. For each chain, computing the acceptance probabilities and the importance
weights necessitates the point-wise likelihood estimates obtained from a particle fil-
ter using M particles. Hence our method is a hierarchical sequential monte carlo
method. Applying the extended state-space construction of Andrieu et al (2010), we
show that the method delivers samples from the joint distribution of the fixed model
parameters and the hidden states for any finite M . In practice this allows us to use
a moderate number for M as we do not need to resort to asymptotic arguments for
validity.

We implement the methodology on daily equity data between 2002-2008 from
CRSP on 100 randomly selected firms. Our main result is that for 89 firms in the
sample, the data strongly favors the specification where microstructure errors have
a role in the volatility dynamics (Model 2) as opposed to the basic model where
only fundamental innovations enter the volatility equation.(Model 1) To understand
our results better, we also estimate a stochastic volatility alternative where volatil-
ity is driven by fundamental noise and a volatility innovation independent of the
fundamental noise and the microstructure errors.(Model 3) We find Model 3 to be
observationally equivalent to Model 2. In other words, liquidity shocks and shocks
to volatility seem to be closely intertwined. Once we allow for liquidity shocks to
affect volatility we do not need independent volatility shocks. Model 1 is rejected
by both other models for most firms.

We execute some checks to make sure that the quantities we call liquidity shocks
are not pure artefacts of our methodology. First we find that the smoothed first
two moments of the microstructure errors are consistent across different model spec-
ifications no matter whether the econometric identification comes from solely the
autocorrelation structure of the observed return (Model 1) or it reflects both this
autocorrelation structure and the volatility dynamics (Model 2). Second, we inves-
tigate whether the illiquidity proxy implied by our model, the standard deviation of
the microstructure errors is related to common liquidity proxies in the cross-section.
We find that firms with higher microstructure noise volatility tend to have bigger
percentage bid ask spread, are smaller, have a smaller equity trading volume and
have more zero return observations.

Our paper joins a growing literature utilizing sequential monte carlo techniques
in the Bayesian estimation of financial and economic models. Fernandez-Villaverde
and Rubio (2007) embed a particle filter within an MCMC algorithm and apply
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the algorithm to macroeconomics. Flury and Shepard (2009) show the usefulness
of the PMCMC approach for an array of financial and economic models. Jasra
et al (2008) estimate a stochastic volatility model using adaptive sequential monte
carlo samplers. In an online setting, Carvalho et al (2007) provide methods to
jointly estimate the model parameters and states in model that admit a sufficient
statistic structure for the posterior. Johannes et al (2008) present an application to
predictability and portfolio choice. The methodological contribution of our paper is
to link sequential monte carlo samplers with the PMCMC methodology of Andrieu
et al (2010). Our method inherits from PMCMC the feature that the proposals
need to be designed only over the fixed parameters, instead of the joint space of
the model parameters and the hidden states, which is typically much harder. The
main advantages of working with sequential monte carlo samplers as opposed to a
straight PMCMC procedure is that the method is easily parallelizable over the the
model parameters.

We also build on the microstructure literature initiated by Roll (1984) that
uses the moving-average structure of observed returns to estimate the magnitude of
microstructure errors (effective spreads). Roll’s Model is generalized by Hasbrouck
(1993) to allow more general dependence structure of the noise and the efficient
price, while in a recent contribution Bandi and Russell (2004) propose the use of
high-frequency data to identify the volatility of microstructure errors in a non-
parametric setting. We contribute to the empirical microstructure literature by
setting up a parametric model that explicitly link microstructure errors to feed back
to the volatility of the observed prices. Our main finding suggesting that stochastic
volatility shocks may in large part be interpreted as liquidity shocks seems to add
to our knowledge and may deserve further investigation.

2 Model

The efficient price, Et follows a fat-tailed GARCH

Et+1 = µ+ Et + σtεt+1 (1)
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where the innovation has a generalized error distribution with unit variance. Its
density is

f(ε) =
v exp

[
−1

2

∣∣ ε
λ

∣∣v]
λ2(1+1/v)Γ(1/v)

where λ =
[
2(−2/v)Γ(1/v)/Γ(3/v)

]1/2

v > 0

The measurement noise itself follows a GARCH process

Zt+1 = δσtηt+1 (2)

Here we implicitly assume a constant signal-to-noise ratio δ and the measurement
error ηt+1 is GED(v2)

The observation, Yt is the sum of the efficient price and the measurement noise

Yt = Et + Zt (3)

To model the volatility process, we take an extension of the NGARCH specifi-
cation:

σ2
t+1 = α0(1− α1) + α1σ

2
t + σ2

t

[
β1gt+1 + β2(η2

t+1 − 1)
]

(4)

gt+1 is the feedback from the fundamental innovation with asymmetry parameter γ,
defined to have 0 mean:

gt+1 = (εt+1 − γ)2 − (1 + γ2)

β2 measures the effect of transient measurement noises on the volatility process and
we allow for an independent normal volatility innovation, ζt+1 through the parameter
β3. The persistence of the volatility process is α1 while the unconditional variance
is α0.

To ensure positivity and stationarity of the variance process the following pa-
rameter restrictions are used:

α0, α1, β1, β2 > 0 (5)
α1 − β1(1 + γ2)− β2 > 0

α1 < 1
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3 Estimation Method

Ours is a state-space model, where the hidden variables Xt = (Et, σt) completely
determine the future evolution of the system. Denote the fixed model parameters by
θ. The dynamics of the hidden states is determined by an initial density X1 ∼ µθ(·)
and the transition density from (1) and (4)

Xt+1 | (Xt = x) ∼ fθ(·|x) (6)

The observations yt, t = 1, ..., T are linked to state of the system through the mea-
surement equation (3) with the density denoted as

Yt | (Xt = x) ∼ gθ(·|x) (7)

For a given vector (z1, ..., zt), use the notation z1:t.
The objective is to perform Bayesian inference conditional on the observations

y1:T . If θ is a known parameter, the posterior is pθ(x1:T | y1:T ) ∝ pθ(x1:T , y1:T )
where

pθ(x1:T , y1:T ) = µθ(x1)
T∏
n=2

fθ(xn|xn−1)
T∏
n=1

gθ(yn | xn) (8)

If θ is unknown and p(θ) is the prior distribution over θ the joint posterior is

p(θ, x1:T | y1:T ) ∝ pθ(x1:T , y1:T )p(θ) (9)

In the following we first assume that θ is known and present particle filtering
methods that give approximations to pθ(x1:T | y1:T ) and the marginal likelihood
pθ(y1:T ). Then, we present a method to sample from the joint distribution pθ(θ, x1:T |
y1:T ).

3.1 Particle Filter for fixed θ

Particle filters provide a sequential approximation to the densities pθ(x1:t | y1:t) and
the marginal likelihoods pθ(y1:t) for t = 1, ..., T and a fixed θ by propagating a set
of particles through the system. In particular, assume that at time t − 1 we have
a set of particles Xk

1:t−1, k = 1, ...,M with attached weights W k
t−1 whose empirical

distribution approximates pθ(x1:t−1 | y1:t−1)

p̂θ(x1:t−1 | y1:t−1) :=
M∑
k=1

W k
t−1δXk

1:t−1
(x1:t−1) (10)
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Then, the identity

pθ(x1:t | y1:t) ∝ pθ(x1:t−1 | y1:t−1)fθ(xt|xt−1)gθ(yt|xt)

suggests sampling particles from p̂θ(x1:t−1 | y1:t−1) and extending them to x1:t using
importance sampling and some proposal distribution qθ(·|yt, xt−1). The importance
weights that compensate for the difference between the target and the proposal
are st(xt) = fθ(xt|xt−1)gθ(yt|xt)

qθ(xt|yt,xt−1) . This will produce a weighted sample approximately
distributed according to pθ(x1:t | y1:t)

Use the notation Wt := (W 1
t , ...,W

M
t ) for the normalized importance weights

at time t and F(·|p) for the discrete probability distribution on 1, . . . ,M) with
probabilities p = (p1, . . . , pM ). Then, the particle filtering algorithm is as follows

Initialization At t = 1

1. Sample Xk
1 ∼ qθ(·|y1)

2. Compute and normalize the weights

w̃1(Xk
1 ) =

µθ(Xk
1 )gθ(y1|Xk

1 )
qθ(Xk

1 |y1)

W k
1 =

w̃1(Xk
1 )∑M

i=1 w̃1(Xi
1)

Recursions At t = 2, . . . , T

1. Sample Akt−1 ∼ F(·|Wn−1)

2. Sample Xk
t ∼ qθ(·|yt, X

Akt−1

t−1 ) and set Xk
1:t = (X

Akt−1

1:t−1, X
k
t )

3. Compute and normalize the weights

w̃t(Xk
1:t) =

fθ(Xk
t |X

Akt−1

t−1 )gθ(y1|Xk
t )

qθ(Xk
t |yt, X

Akt−1

t−1 )

W k
t =

w̃t(Xk
1:t)∑M

i=1 w̃t(X
i
1:t)
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This algorithm provides an estimate of the joint posterior density of the hidden
states

p̂θ(x1:T |y1:T ) =
M∑
k=1

W k
T δXk

1:T
(x1:T ) (11)

which can be sampled by sampling from the discrete distribution F(·|WT ) and
taking the corresponding particle Xk

1:T . Further, we also obtain an estimate of the
marginal likelihood given by

p̂θ(y1:T ) = p̂θ(y1)
T∏
t=2

p̂θ(yt|y1:t−1) (12)

p̂θ(yt|y1:t−1) =
1
M

M∑
k=1

w̃t(Xk
1:t)

Above, Akt−1 represents the parent at time t − 1 of particle Xk
1:t. Using the

notation An = (A1
n, . . . , A

M
n ), the joint density of the parents chosen at n is

r(An−1|Wn−1) =
M∏
k=1

F(Akn−1|Wn−1)

Further, define Bk
t to be the index that the ancestor of particle Xk

1:T had at time t.
These can recursively be obtained as follows from Akt :

• At t = T we have Bk
t = k

• At t < T we have Bk
t = A

Bkt+1

t

Then we have the identity Xk
1:T = (XBk1

1 , . . . , X
BkT
T ) and Bk

1:T = (Bk
1 , . . . , B

k
T = k) is

the ancestral lineage of particle k. For a general introduction to particle filters see
Doucet and Gordon (2001) while for theoretical results see Del Moral (2004).

3.2 Sampling over θ

In the previous subsection we have seen that for given fixed parameters θ, the parti-
cle filtering algorithm provides estimates of the hidden dynamic states p̂θ(x1:T |y1:T )
and the likelihood of the data after marginalizing out the hidden states, p̂θ(y1:T ).
This suggests that a sensible approach to obtain the joint posterior of the dynamic
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states and the model parameters p(θ, x1:T | y1:T ) is to first sample from the marginal
distribution of θ and then to draw from the hidden states conditional on the fixed
parameters. To operationalize this, we first need a sampler over the model parame-
ters, θ utilizing the point-wise likelihood estimates p̂θ(y1:T ). Then, estimates of the
hidden states given the model parameters could be obtained by drawing from the
particles produced by these particle filters. This approach is attractive as instead of
designing a sampler over the joint distribution of (θ, x1:T ) which can be very high-
dimensional when the data sample size T is large, we only need to design samplers
over θ, a much easier task.

In any such sampling routine we typically need to call the particle filtering algo-
rithm tens of thousands of times, leading to a substantial computational load. To
make our approach manageable, we have programmed a parallelized particle filter
for our model on a graphical processing unit (GPU) based NVIDIA Tesla proces-
sor containing 240 processing cores. Lee et. al (2010) have already demonstrated
the usefulness of GPU-based processors to dramatically speed up sequential monte
carlo routines when the number of particles gets very large. Our implementation
is somewhat different, as in our model we do not need a large number of particles,
M for satisfactory performance for a given model parameter set, θ. To benefit from
the computational power of the GPU, we parallelize the routine in the dimension
of the model parameters. In essence each thread runs a particle filter for a given θ.
Table 1 shows timing results on the speedup we have achieved using this approach
compared to a CPU-based implementation. In the experiment, the number of data
points is set to T = 1500 while the number of particles in the point-wise particle
filters is M = 100. When the routine is called for 1024 sets of model parameters,
which is the number we use in the applications later, the GPU-based implementation
achieves a 40× speedup over the CPU. When the number of model parameters gets
even higher the speed up achieves 100×. In short, our GPU-based implementation
removes the computational bottleneck if we can find a statistical algorithm that is
parallel in θ.

Thus, what we need is a statistical method that (i) implements the marginal-
ization idea by directly sampling from the model parameters using estimates of the
point-wise likelihood estimates and (ii) is parallelizable in θ. In the following we de-
scribe an approach that satisfies these two criteria. To achieve our goal, we combine
two recent statistical innovations. The first of these, the particle MCMC (PMCMC)
approach of Andrieu et. al (2010) embed a particle filter into an MCMC algorithm
over θ. Crucially, Andrieu et al. (2010) show that for any finite number of particles
M , the equilibrium distribution of the chain is the joint posterior p(θ, x1:T | y1:T ), i.e.

9



the estimation error in the point-wise likelihoods does not invalidate the algorithm.
While the PMCMC approach satisfies our first requirement, being an ingenuous im-
plementation of the marginalization idea, unfortunately it is inherently sequential in
θ. To achieve parallelization over θ, we turn to the sequential monte carlo sampler
(SMCS) approach of Del Moral et al (2006). In this method, one defines a sequence
of bridging densities between an easy-to-sample distribution (the prior) and the ul-
timate target (the posterior) and propagates a sample of particles through these
densities. The particles are moved using MCMC kernels and appropriate weights
are attached to them to make sure that the population at the end represents the
target distribution. We combine the two methods by running an SMCS routine
over N sets of fixed parameters θ and moving the particles around using a variant
of PMCMC kernels. The combined method will satisfy both of our requirements.
First, it is trivially parallelizable over θ, a property it inherits from SMCS. Second,
it is a valid implementation of the marginalization idea for any finite number of
particles in the pointwise likelihood evaluations, a feature borrowed from the PM-
CMC framework. In the following, we briefly present the two building blocks of our
approach, PMCMC and SMCS and then describe the hierarchical sequential monte
carlo routine.

3.2.1 Particle MCMC

This section introduces the PMCMC sampler from Andrieu et al. (2010). We
have seen in section 3.1 that for fixed θ, the particle filter provides estimates of
the marginal likelihood pθ(y1:T ) and the conditional density pθ(x1:T |y1:T ). If we are
interested in sampling from the joint distribution p(θ, x1:T |y1:T ), the decomposition
p(θ, x1:T |y1:T ) = p(θ|x1:T )pθ(x1:T |y1:T ) suggests the following ”ideal” marginalized
MH update:

q{(θ∗, x∗1:T )|(θ, x1:T )} = q(θ∗|θ)pθ∗(x∗1:T |y1:T )

One only needs to choose the proposal over θ, while sampling from the hidden states
is perfectly adapted. The resulting MH acceptance ratio is

p(θ∗, x∗1:T |y1:T )
p(θ, x1:T |y1:T )

q{(θ, x1:T )|(θ∗, x∗1:T )}
q{(θ∗, x∗1:T )|(θ, x1:T )}

=
pθ∗(y1:T )p(θ∗)
pθ(y1:T )p(θ)

q(θ|θ∗)
q(θ∗|θ)

While this ”ideal” MH cannot be implemented, Andrieu et al (2010) suggest to
run an analogue using the approximations from the particle filter, p̂θ(y1:T ) and
p̂θ(x1:T |y1:T ). Note that an early appearance of the same idea can be found in
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Fernandez-Villaverde and Rubio-Ramirez (2007). The resulting particle marginal
MH algorithm is

Initialization i = 0

– Set θ(0) arbitrarily

– Run a particle filter at θ(0), sample X1:T (0) ∼ p̂θ(0)(x1:T |y1:T ) and let
p̂θ(0)(y1:T ) denote the marginal likelihood estimate

Iterations i > 0

• Sample θ∗ ∼ q(·|θ(i− 1))

• Run a particle filter at θ∗, sample X∗1:T ∼ p̂θ∗(x1:T |y1:T ) and let p̂θ∗(y1:T )
denote the marginal likelihood estimate. Note, that the random numbers used
in the particle filter need to be independent across the iterations.

• The MH acceptance probability is

α(i) = 1 ∧ p̂θ∗(y1:T )p(θ∗)
p̂θ(i−1)(y1:T )p(θ(i− 1))

q(θ(i− 1)|θ∗)
q(θ∗|θ(−1))

We then have

θ(i) = θ∗, X1:T (i) = X∗1:T , p̂θ(i)(y1:T ) = p̂θ∗(y1:T ) with probability α(i)
θ(i) = θ(i− 1), X1:T (i) = X1:T (i− 1), p̂θ(i)(y1:T ) = p̂θ(i−1)(y1:T ) with probability 1− α(i)

The key result of Andrieu et al (2010) (their Theorem 4) consists of showing
that this markov chain admits p(θ, x1:T |y1:T ) as its stationary distribution. In other
words, the estimation error in p̂θ(y1:T ) and p̂θ(x1:T |y1:T ) does not change the equilib-
rium distribution of the chain1. The PMCMC algorithm implements the marginal-
ization idea, but it is unfortunately sequential in θ. In the following we describe a
method that will allow us to achieve parallelization.

1It will however influence the dependence and hence the efficiency of the chain
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3.2.2 Sequential Monte Carlo Samplers

Let us assume for the purposes of this subsection that we can actually evaluate the
likelihood of the parameters θ, pθ(y1:T ) and ignore the hidden states for the moment.
Then, our task consists of sampling from the posterior p(θ|y1:T ) ∝ pθ(y1:T )p(θ) using
a method that is parallel in θ. Sequential Monte Carlo Samplers (SMCS), introduced
by Del Moral et al (2006) provide a methodology to do this. The main idea of
the method is to begin with an easy-to-sample distribution and traverse through a
sequence of densities to the ultimate target which is much harder to sample from.
In particular construct the following sequence of densities:

πl(θ) =
γl(θ)
Zl

, l = 1, . . . , P

γl(θ) = pθ(y1:T )ξlp(θ) where ξ1 = 0, . . . , ξP = 1

π1(θ) = p(θ) is the prior, while the final distribution πP (θ) = p(θ, x1:T |y1:T ) is the
posterior. Further, the ratio of the normalizing constants ZP

Z1
is the marginal likeli-

hood of the model, important for Bayesian model choice. Then, SMCS suggests to
first sample N points using some importance sampler η1(θ) targeting γ1(θ) and then
to recursively sample from γl(θ) by moving these points using some Markov kernel
Kl(θ, θ′) for l = 2, . . . , P . In essence, the method gradually gathers information on
the target and adapts the sampler accordingly. This is implemented by using the
location of the previously sampled particles in the new proposals. The change in the
tempering parameter, ξl − ξl−1 determines the speed of learning and can be tuned
depending on the difficulty of the task.

One of the contributions of Del Moral et al (2006) lies in proposing an auxiliary
target density that facilitates the computation of importance weights. In particular,
introduce the following auxiliary targets

π̃l(θ1:l) =
γ̃l(θ1:l)
Zl

γ̃l(θ1:l) = γl(θl)
l−1∏
k=1

Lk(θk+1, θk) (13)

where Lk−1(θk, θk−1) is an arbitrary backward Markov kernel. Then, π̃l(θ1:l) ad-
mits πl(θl) as a marginal by construction and the two distributions share the same
normalizing constant Zl. The main advantage of working with π̃l(θ1:l) is that it

12



facilitates the computation of the importance weights. Define the importance func-
tion ηl(θ1:l) as the joint distribution of the initial importance sampler η1(θ) and the
Markov Kernels Kl(θ, θ′)

ηl(θ1:l) = η1(θ1)
l−1∏
k=1

Kk+1(θk−1, θk)

Then, applying importance sampling to the auxiliary target, we obtain the unnor-
malized importance weights

sl(θ1:l) = γ̃l(θ1:l)/ηl(θ1:l)
= sl−1(θ1:l−1)s̃l(θl−1, θl)

where the incremental weights are

s̃l(θl−1, θl) =
γl(θl)Ll−1(θl, θl−1)

γl−1(θl−1
Kl(θl−1, θl) (14)

In the method, there is a great degree of freedom in the choice of the forward
markov kernels Kl(θl−1, θl) and of the artificial backward ones, Ll−1(θl, θl−1). Here
let us assume that the forward kernel Kl(θl−1, θl) is an MCMC kernel leaving πl(θl)
invariant. Then, we can define the backward kernel as follows

Ll−1(θl, θl−1) =
πl(θl−1)Kl(θl−1, θl)

πl(θl)
(15)

and the incremental weights become

s̃l(θl−1, θl) =
γl(θl−1)
γl−1(θl−1)

(16)

In our problem the incremental importance weights takes the particularly simple
form of

s̃l(θl−1, θl) = pθl−1
(y1:T )ξl−ξl−1

The algorithm so far has been already proposed in prior work by Neal (2001). The
key innovation of Del Moral et al (2006) compared to Neal (2001) is to apply re-
sampling ideas to the problem. As the algorithm proceeds the weights sl(θ1:l) tend
to become concentrated to a few particles, a phenomenon known as particle de-
generacy. To counterweight this effect, Del Moral et al (2006) propose to resample
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the particle population whenever the diversity of the particles falls below a certain
value. One measure of degeneracy of the particle set is the effective sample size
(ESS) criterion: ESS = 1∑N

j=1

(
S

(j)
l

)2 where S(j)
l is the normalized weight of particle

j in step l. In general the ESS is between 1 and N . Then, one should resample if
the ESS drops below a pre-specified value, e.g. N/2. This yields the following SMC
algorithm over θ

Initialization At l = 1

– Sample Θ(i)
1 ∼ η1(·)

– Attach importance weights

s1(Θ(i)
1 ) =

γ1(Θ(i)
1 )

η1(Θ(i)
1 )

and normalize the weights

S
(i)
1 =

s1(Θ(i)
1 )∑N

j=1 s1(Θ(j)
1 )

Recursions At l = 2, . . . , P

– If ESS < N/2, resample and set S(i)
l−1 = 1

N

– Sample Θ(i)
l ∼ Kl(Θ

(i)
l−1, ·)

– Compute incremental weights

s̃l(Θ
(i)
l−1,Θ

(i)
l ) = p

Θ
(i)
l−1

(y1:T )ξl−ξl−1

and normalize the weights

S
(i)
l =

s̃l(Θ
(i)
l−1,Θ

(i)
l )S(i)

l−1∑N
j=1 s̃l(Θ

(j)
l−1,Θ

(j)
l )S(j)

l−1
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We can estimate the ratio of the subsequent normalizing constants as

Ẑl
Zl−1

=
N∑
j=1

S
(j)
l−1s̃l(Θ

(i)
l−1,Θ

(i)
l )

The ratio ZP /Z1 can be estimated as

ẐP
Z1

=
P∏
l=2

Ẑl
Zl−1

One can interpret this algorithm as running N parallel interacting MCMC chains
where importance weights are used to allow for the fact that the previous state of
the chain has not been the target distribution.

3.2.3 Hierarchical Sequential Monte Carlo

Now we can propose a method that (i) samples from the joint distribution of (x1:T , θ)
using the marginalization idea of PMCMC (ii) can be parallelized in θ following
SMCS. Basically, we embed PMCMC kernels within an SMCS algorithm over θ.
We call the method Hierarchical Sequential Monte Carlo, as it consists of running a
sequential monte carlo routine over θ, while it uses point-wise particle filters given θ
to implement the Markov kernels, to compute the importance weights in the SMCS
algorithm and to sample from the hidden states x1:T .

In the previous discussion on SMCS, we have assumed that the likelihood func-
tion pθ(y1:T ) can be evaluated and we ignored the sampling over the hidden states.
While in our problem we do not have access to pθ(y1:T ), we can run a point-wise
particle filter for θ and obtain an estimate p̂θ(y1:T ). This can be used to esti-
mate the incremental weights in (3.2.2). Further, the argument of Andrieu et al
(2010) suggests that we can use the following Markov Kernels Kl(θl−1, θl) targeting
p̂θ(y1:T )ξlp(θ) to move the particles around:

• Sample the fixed parameters according to a random walk move θ∗ ∼ hl−1(· |
θl−1). Here hl−1(· | θl−1) can be adaptive, i.e. it can depend on the past of
the particles.

• Run a particle filter at θ∗, compute the estimated normalizing constant p̂∗ =
p̂θ∗(y1:T )

• Sample a particle from X∗1:T ∼ p̂θ∗(x1:T |y1:T )
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• Accept the proposal (θ∗, p̂∗, X∗1:T ) with probability

1 ∧ (p̂∗)ξlp(θ∗)

p̂ξll−1p(θl−1)

hl−1(θl−1 | θ∗)
hl−1(θ∗ | θl−1)

For simplicity, assume that we can directly sample from the prior distribution. Then,
the Hierarchical Sequential Monte Carlo Algorithm with P steps and N particles in
the SMC scheme over θ and M particles in the point-wise particle filters will take
the following form:

Initialization At l = 1

For i = 1, . . . , N

1. Sample Θ(i)(1) ∼ p(θ) from the prior distribution over the fixed param-
eters

2. Run a particle filter for each Θ(i)(1) with M particles and compute
the estimate of the normalizing constant p̂(i)(1) = p̂Θ(i)(1)(y1:T ). Note
that the rnadom numbers used in the particle filter are assumed to be
independent across the samples and across iteration. Sample a particle
from p̂Θ(i)(1)(x1:T |y1:T ), denote it as X(i)

1:T (1).

3. Attribute equal weights S(i)(1) = 1/N to the particles

Recursions At l = 2, . . . , P

1. If ESS < N/2, resample and set S(i)(l − 1) = 1
N

2. Compute the incremental weights

s̃(i)(l) = p̂(i)(l − 1)ξl−ξl−1

estimate the ratio of normalizing constants

Ẑl
Zl−1

=
N∑
i=1

S(i)(l − 1)s̃(i)(l)

and normalize the weights

S(i)(l) =
s̃(i)(l)S(i)(l − 1)∑N
j=1 s̃

(j)(l)S(j)(l − 1)
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3. Move the particles using the PMCMC kernel

– Draw fixed parameters from Θ(i,∗)(l) ∼ hl(·|Θ(i)(l − 1))

– Run a particle filter for each Θ(i,∗)(l) with M particles and compute
the estimate of the normalizing constant p̂(i,∗)(l) = p̂Θ(i,∗)(l)(y1:T ).

Sample a particle from p̂Θ(i,∗)(l)(x1:T |y1:T ), denote it as X(i,∗)
1:T (l).

– The acceptance probability is

α
(i)
l = 1 ∧

(
p̂(i,∗)(l)

)ξl p (Θ(i,∗)(l)
)(

p̂(i)(l − 1)
)ξl p (Θ(i)(l − 1)

) hl (Θ(i)(l − 1) | Θ(i,∗)(l)
)

hl
(
Θ(i,∗)(l) | Θ(i)(l − 1)

)
Then, we have that(

Θ(i)(l), p̂(i)(l), X(i)
1:T (l)

)
=

(
Θ(i,∗)(l), p̂(i,∗)(l), X(i,∗)

1:T (l)
)

with prob. α(i)
l(

Θ(i)(l), p̂(i)(l), X(i)
1:T (l)

)
=

(
Θ(i)(l − 1), p̂(i)(l − 1), X(i)

1:T (l − 1)
)

otherwise

After running the algorithm, the empirical distribution of the weighted sample
{S(i)(P ),Θ(i)(P ), X(i)

1:T (P )}, i = 1, . . . , N provides a sample from the joint distri-
bution of p(θ, x1:T |y1:T ) for any finite number of M for a large enough N . The
validity of the algorithm is shown in the Appendix and uses the extended state
space construction of Andrieu et. al (2010) in the SMCS context.

4 Empirical Results

4.1 Data, Priors and Simulation Parameters

We have estimated the model on daily equity price data from CRSP between 2002-
2008 on 100 randomly selected firms. We have excluded penny stocks (prices lower
than 2 USD) and we only used price data originating from actual transactions.
Further, we have restricted our investigation to firms traded either on NYSE or on
NASDAQ and names where we have at least 1500 observations in the sample period.

We have specified independent priors for the model parameters and obtained the
prior distribution by specifying their 5th and 95th percentiles. These quantities and
the chosen density function for each parameter can be found in Table 2. As can
be seen from the Table, we have tried to use relatively non-informative priors. In
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addition, we enforce the stationarity and non-negativity restrictions from (5) in the
prior.

In the particle filter given fixed parameters we have used a gaussian importance
function which incorporates new information in a gaussian approximation of the
model. This seemed to be a consistently efficient choice. Throughout we have used
a relatively low number of particles M = 100. For each firm, the variance has been
initialized at the variance of the observed returns, while the efficient price process
at the first observed price observations. To make sure that the initialization does
not drive the results, the first estimated likelihood of the first 10 observations have
been dropped from the estimation routine.

In the SMC sampler over the fixed parameters, we have used N = 1024 particles
and P = 100 steps in the SMC algorithm. Following advice from Jasra et al (2007),
we have chosen to focus more of the computational effort on the initial steps. In
particular, the tempering parameter ξl was uniformly spaced between [0, 0.15] in the
first 20 steps, between [0.15, 0.4] between steps 20-60 and finally the last 40 steps
were equally distributed between [0.4, 1]. The estimation of one model specification
for one firm took roughly 7 minutes on a workstation using one Nvidia Tesla card.

In the MCMC kernels, we used a normal random walk for parameters without
nonnegativity restrictions (i.e. for µ and γ). For all the other parameters we used
a lognormal random walk. We allowed the MCMC kernel to depend on the past of
the particles. In particular, the variance of the random walk increments at step l
was set to cl × V arl−1 where V arl−1 is the empirical variance of the target at step
l − 1. The scaling constant cl is chosen to keep the average acceptance probability
in the MCMC step between 0.2 and 0.4. In particular if the acceptance probability
in step l − 1 falls below 0.2, cl = cl−1/1.5 If in contrast it grows above 0.4 we
set cl = cl−1 × 1.5. The scale adaptation has been stopped at the 50th iteration,
otherwise the algorithm tended to decrease the scale without limits. The reason
for this phenomenon is that the Monte Carlo noise from using a finite sample of
particles M in the point-wise likelihood evaluations tends to decrease the acceptance
probabilities below the range obtained by the ideal algorithm using an infinite M .

4.2 Parameter Estimates

Table 3 reports cross-sectional statistics across the 100 firms on the posterior means
of the model parameters for two model specifications. In Model 1 we set β2 = 0 so
the only innovation to the volatility dynamics comes from fundamental noises. In
Model 2 β2 is estimated so volatility can be affected by both fundamental innovations
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and microstructure noises.
There are several patterns emerging from the Table. First, comparing estimates

from Model 1 and Model 2 one can see that microstructure errors seem to important
predictors of volatility. In fact when one allows feedback from microstructure errors
to volatility, one observes that the coefficient on the microstructure error (β2) is
twice as large on average as the coefficient on the fundamental innovations (β1).
Another interesting feature across the two models is that while the average value of
volatility persistence (α1) is similar, the lower tail seems to be significantly lower
for Model 1. In other words, for some firms, allowing microstructure errors seems
to lead to a higher estimated volatility persistence. To understand these results in
further detail, Table 3 reports the cross-sectional correlation matrix of the parameter
estimates for Model 2. The most interesting number here is the high negative
correlation (-0.75) between the volatility persistence parameter, α1 and the feedback
parameter on microstructure noise, β2, suggesting that firms with large noise have
lower volatility persistence. In fact these are exactly the firms where allowing for
feedback to volatility from microstructure noise leads to a decrease in the estimated
volatility persistence.

In both specifications, the average value of the signal-to-noise ratio is δ ≈ 0.2,
showing that in our sample transient pricing errors are non-negligeable, their magni-
tude is roughly one-fifth of daily fundamental price changes. There are no surprises
on the behavior of the fundamental noise εt. For the average firm it is fat-tailed
with the GED degree of freedom parameter close to one and the innovations typically
feeds back to volatility with a leverage parameter γ > 0. In contrast, interestingly,
the data does not seem to contain much information on the shape of the measure-
ment noise distribution v2, the length of the posterior central 90% credible interval
is very close to its prior analogue.

To formally compare the two specifications we have also computed the Bayes
factor between them. In particular, if the marginal likelihood of Model 2 is Z2 while
that of Model B is Z1, then the relative likelihood of Model 2 compared to Model
1 is the Bayes factor defined as B21 = Z2

Z1
. Kass and Raftery (1995) propose the

following scale to interpret the evidence in favour of Model 2 compared to Model 1
2 ln(BAB) BAB Evidence in favour of Model 2
0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
10 < 150 < Very Strong

Reinforcing the

need for microstructure noises in predicting the volatility process, out of the 100
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firms, there is strong evidence in the data for Model 2 compared to Model 1 for 89
firms.

5 Robustness Checks

5.1 Stochastic Volatility

We wanted to check how our model relate to a standard stochastic volatility model.
In order to do so we have modified the variance equation to the following

σ2
t+1 = α0(1− α1) + α1σ

2
t + σ2

t

[
β1gt+1 + β3(ζ2

t+1 − 1)
]

(17)

where we allow for an independent normal volatility innovation, ζt+1 through the
parameter β3. We have chosen the prior over β3 to follow a beta distribution with
its central 90% probability mass covering [0.01, 0.3]. Let us denote this specification
as Model 3.

Panel A of Table 5 reports the parameters estimates from Model 3, while Panel
B reports the number of firms where the data contains strong evidence for the model
in the row compared to the model in the column. The main message from the table
is that the independent stochastic volatility noise seems to play the same role in
the volatility process as the microstructure error we used before. Looking at Panel
A, Model 3 seems to behave identically to our Model 2 before. In fact, the cross-
sectional correlation coefficient between estimates of β2 in Model 2 and estimates
of β3 in Model 3 is 0.93. Further, looking at the evidence from the pairwise Bayes
Factors in Panel B, we see that for most firms the data favors Model 2 and Model
3 to Model 1, but it does not discriminate between Model 2 and Model 3.

A question that comes up is whether the measurement noises implied by our
methodology is a robust feature of the data instead of being a simple artefact of
a given model specification. To address this issue we have computed the average
correlation between the smoothed estimates of the measurement noises E(Zt|y1:T )
in the three model specifications in Panel C. We can see that the average correlation
between these quantities is very high, around 90% suggesting that the measurement
errors are robustly pinned down by the observed data. In particular, the microstruc-
ture errors in Model 1 and Model 2 are very similar. This is a good news as it
suggests that in Model 2 microstructure errors are not simply rotated to play the
role of some unrelated volatility variable. To investigate this point in greater detail
we have also computed the average correlations between the squared microstructure
errors E(Z2

t |y1:T ) in Model 1 and Model 2 and the independent volatility innovations
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E(σ2
t−1ζ

2
t |y1:T ) in Model 3. Remember that in Model 1, microstructure noises are

exclusively pinned down by the autocorrelation structure of the observed returns
while in Model 2 they are identified by both the autocorrelation structure and by
the volatility process. In spite of the different source of identification, E(Z2

t |y1:T ) is
closely related across the two models with a correlation parameter of 80%. Further,
the squared microstructure error from Model 1 has a correlation of 65% with the
independent volatility noise from Model 3, showing that when there are shocks in
volatility, the scale of measurement noises tend to be higher. Overall these results
tends to suggest that stochastic volatility shocks and liquidity shocks are closely
related and one are observationally equivalent. One we account for the latter, we
do not need the former to explain the data.

5.2 Relationship of the estimates to liquidity proxies

Last, we would like to relate a measure of liquidity from our model to commonly used
liquidity proxies to make sure that our results are reasonable. A natural measure
of illiquidity in our setup is the standard deviation of the microstructure noise,
δE(σt|y1:T ).For each firm, we have computed the time-series average of this variable
and then investigated whether it is related to some liquidity proxies in the cross-
section using the Spearman rank correlation. The liquidity proxies we investigated
were the average percentage bid-ask spread, the average log size, the average log
volume of shares traded and the percentage of zero returns. Table 6 reports that
our illiquidity measure tends to be larger for firms with higher bid-ask spreads, lower
size, smaller trading volume and more zero returns. All the relationships have y=the
sign we expect a priori and the only one which is not significant is the relationship
to the log volume. We have also investigated the time series Spearman correlation of
the percentage bid-ask spreads for each firm with E(σt|y1:T ) and average correlation
number was 0.24. In sum, our measure seems to be related to these commonly used
liquidity measures.

6 Conclusions

In this paper we investigate what role microstructure errors play in the volatility
dynamics of equity prices. We set up a model where observed prices are decomposed
into permanent fundamental innovations and transient microstructure effects. The
volatility of the prices follow a GARCH-like process where both fundamental inno-
vations and microstructure errors can affect the volatility process. To estimate the
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model, we propose a novel Bayesian technique using a hierarchical sequential monte
carlo algorithm and tackle the computational load using a GPU-based computer.

We estimate the model on daily equity data on CRSP for 100 firms between
2002-2008. our main finding is that microstructure errors play an important role in
volatility. For most firms the data strongly favors the model that allows a feedback
from microstructure errors to volatility compared to the version where this channel
is shut down. Further, when we compare the model with microstructure errors in
the volatility process with a stochastic volatility model we find the two specifications
observationally equivalent. Shocks to volatility that are orthogonal to fundamental
innovations seem closely related to liquidity shocks from our microstructure model.
In other word, once we allow both fundamental innovations and microstructure
noises to affect volatility we do not need extra stochastic volatility shocks to explain
the data. Further, the microstructure noises seem robust across different model
specifications and their volatility is related to common liquidity proxies in the cross-
section.

There are several research directions that these results open up. First, it would
be interesting to dig deeper and try to understand the economic drivers of why mi-
crostructure errors affect volatility. To empirically test the different potential causes
we can proceed in the tradition of GARCH models and introduce the terms proxying
for the various economic forces into the volatility equation. For example, Brunner-
meier and Pedersen (2009) describe a mechanism where microstructure innovations
may feed back on the fundamental price process through the effect of margins. In
particular, if margins are set using a Var-type risk measure based on observed re-
turns and there is volatility clustering in fundamentals, then a liquidity shock will
lead to an increase in margins. In their model this in turn will lead to subsequent
price changes due to liquidity spirals. To empirically test whether this mechanism
contributes to our findings, we should obtain a time-varying proxy of funding liquid-
ity and estimate a specification where the feedback from microstructure innovations
to volatility is allowed to depend on the level of asset liquidity. Second, the econo-
metric methodology proposed, using hierarchical sequential monte carlo, is very
general and can be applied to any model that can be written in a state-space form.
Further, using the GPU implementation it is fast enough to handle large data-sets.
In particular, the methodology seems well suited to estimate rich structural empiri-
cal microstructure models or parametric models of high-frequency data that contain
jumps, stochastic volatility and microstructure effects.

Appendix: Validity of the Hierarchical Sequential Monte Carlo algo-
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rithm

This Appendix contains the proof that the algorithm described in Section 3.2.3
delivers samples from the joint distribution of p(θ, x1:T |y1:T ). The proof is basically
an application of the extended target density construction from Andrieu et al (2010).
The main idea here is to define an extended target density that includes all the
random variables produced by the particle filtering algorithm and which admits the
p(θ, x1:T |y1:T ) as a marginal.

In the proof that follow we use the notation introduced in Section 3.1. In addition
use the notation X̄t = (X1

t , . . . , X
M
t ). Then, it is easy to check that the joint

density of the random variables produced by a point-wise particle filter run at θ,(
X̄1, . . . , X̄T ,A1, . . . ,AT−1

)
is

ψθ (x̄1, . . . , x̄T ,a1, . . . ,aT−1) =

{
M∏
i=1

qθ(xi1|y1)

}
T∏
t=2

{
rθ(at−1|wt−1)

M∏
i=1

qθ(xit|y1, x
ait−1

t−1 )

}
(18)

If we further denote by K the index of the particle that is sampled from p̂θ(x1:T |y1:T ),
the joint density of

(
K, X̄1, . . . , X̄T ,A1, . . . ,AT−1

)
is

wkTψθ (x̄1, . . . , x̄T ,a1, . . . ,aT−1)

Now consider the following artificial extended target experiment devised by An-
drieu et al (2010) over

(
Θ,K, X̄1, . . . , X̄T ,A1, . . . ,AT−1

)
• Choose the particle index at T and its ancestral lineage from a uniform dis-

tribution on (1, . . . ,M)T

– Sample K from a uniform over (1, . . . ,M). Set BK
T = K

– For each t = T − 1, ..., 1 sample ABt+1

t from a uniform (1, . . . ,M) and
set BK

t = A
Bt+1

t

• Sample (Θ, XBK1
1 , . . . , X

BKT
1 ) from the target distribution p(θ, x1:T |y1:T ). (Of

course this is only a hypothetical sampling experiment, we do not know how
to do this) By definition, the kth particle path XK

1:T = X(B
K
1

1 , . . . , X
BKT
1 ).

• Run a conditional particle filtering algorithm compatible with (BK
1 , . . . , B

K
T )

and (Θ, XBK1
1 , . . . , X

BKT
1 ).

23



The density function of the extended target is

pM (θ, k, x̄1, . . . , x̄T ,a1, . . . ,aT−1)

=
1
NT
× p(θ, xk1:T |y1:T )× ψθ (x̄1, . . . , x̄T ,a1, . . . ,aT−1)

q1(xb
k
1

1 |y1)
∏T
t=2 r(b

k
t−1|wt−1)qt(x

bkt
t |x

bkt−1

t−1 , yt)

= wkTψθ (x̄1, . . . , x̄T ,a1, . . . ,aT−1) p̂θ(y1:T )p(θ) (19)

By construction, the marginal of (Θ, XBK1
1 , . . . , X

BKT
1 ) we obtain from this auxiliary

target will be distributed according to our original target p(θ, x1:T |y1:T ).
Now we define an SMCS routine over the extended space

(
Θ,K, X̄1, . . . , X̄T ,A1, . . . ,AT−1

)
using the following sequence of densities:

γl (θ, k, x̄1, . . . , x̄T ,a1, . . . ,aT−1)
= wkTψθ (x̄1, . . . , x̄T ,a1, . . . ,aT−1) p̂θ(y1:T )ξlp(θ) (20)

where ξ1 = 0, . . . , ξP = 1. Then the marginal distribution of γ1(·) is exactly the
prior, while γP (·) is the extended target in (19) with a marginal p(θ, x1:T |y1:T ).

Further, the proposals in the PMCMC kernels proposed in Section 3.2.3 will
have a density

qMl (θ, k, x̄1, . . . , x̄T ,a1, . . . ,aT−1)
= wkT (θ)ψθ (x̄1, . . . , x̄T ,a1, . . . ,aT−1)hl−1(θ | θl−1) (21)

where the likelihood ratio in the MH sampler is

γl (θ, k, x̄1, . . . , x̄T ,a1, . . . ,aT−1)
qMl (θ, k, x̄1, . . . , x̄T ,a1, . . . ,aT−1)

=
p̂θ(y1:T )ξlp(θ)
hl−1(θ | θl−1)

leading to the acceptance probabilities described in the text. Last, the importance
weights that need to be attached are

γl(U(l − 1))
γl−1(U(l − 1))

= p̂Θl−1
(y1:T )ξl−ξl−1

Here for simplicity we have denoted by U(l) all the random variables defined on the
extended space in iteration l.
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N Time on GPU Time on CPU CPU/GPU
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128 2.41 14.93 6.2
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512 2.62 59.76 22.8

1024 2.88 119.48 41.5
2048 3.3 238.91 72.4
4096 4.4 477.82 108.6
8192 10 955.64 95.6

16384 18.63 1911.28 102.6
This Table report the computation time in seconds of the particle 

filter on a CPU and on GPU for N sets of fixed parameters. The 

number of data points is T=1500, the number of particle M=100. The 

CPU is a Intel Xeon E5420 2.5 GHZ while the GPU is an Nvidia 

Tesla C1060 with 240 cores. 
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Density Function 5th Percentile 95th Percentile
µ Normal - 1/252 1/252
α0 Inv. Gamma Vari/5 Vari*5
α1 Beta 0.3 0.95
β1 Beta 0.01 0.03
β2 Beta 0.01 0.03
γ Normal -3 3
v Inv. Gamma 1 3
v2 Inv. Gamma 1 3
δ Gamma 0.01 1

Table 2: Prior Specification

This table reports the prior specification over the fixed 
parameters. The priors over the individual parameters are 
independent. Vari is the variance of the observed return for the 
firm

Mean 5th Percentile 95th Percentile Mean 5th Percentile 95th Percentile
µ 0.0001 -0.0011 0.0011 0.0001 -0.0010 0.0011
α0 0.0007 0.0002 0.0017 0.0008 0.0002 0.0019
α1 0.94 0.82 0.99 0.95 0.89 0.99
β1 0.10 0.04 0.21 0.04 0.01 0.09
β2 0.15 0.06 0.31
γ 0.52 0.00 1.20 0.94 -0.21 2.03
v 1.05 0.82 1.42 1.19 0.92 1.56
v2 1.90 1.50 2.38 1.94 1.53 2.34
δ 0.20 0.04 0.47 0.20 0.05 0.46

Model 1: Only fundamental noise in volatility equation
Model 2: Fundamental noise+Microstructure noise in volatility equation

This table reports cross-sectional statistics across the 100 firms on the posterior means of the 
parameters for different model specifications.

Table 3: Posterior Means of Model Parameters

Model 1 Model 2
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Mean 5th Percentile 95th Percentile
µ 0.0002 -0.0011 0.0011
α0 0.0008 0.0002 0.0019
α1 0.95 0.88 0.99
β1 0.04 0.01 0.10
β3 0.16 0.06 0.32
γ 0.89 -0.47 1.86
v 1.21 0.94 1.58
v2 1.91 1.45 2.45
δ 0.19 0.04 0.47

Model 1 Model 2 Model 3
Model 1 0 0
Model 2 89 4
Model 3 88 2

Panel C: Correlations of some smoothed quantities
E(Zt

2) From M1 E(Zt
2) From M2 E(σ2

t-1ξt
2) From M3

E(Zt
2) From M1 1

E(Zt
2) From M2 0.80 1.00

E(σ2
t-1ξt

2) From M3 0.65 0.83 1

E(Zt) From M1 E(Zt) From M2 E(Zt) From M3
E(Zt) From M1 1
E(Zt) From M2 0.88 1.00
E(Zt) From M3 0.93 0.93 1

Table 5

Panel C reports the average correlations between some smoothed 
quantities across different model specifications

Panel B: Bayes Factors showing strong evidence (BF>20)

In each cell, Panel B reports the number of firms where the data favors the 

Model in the row compared to the Model in the column as measured by the 

Bayes Factors.

Panel A: Parameter Estimates for Model 3

Panel A reports cross-sectional statistics across the 100 firms on the 
posterior means of the parameters 
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Spearman rho pvalue
% Bid-ask Spread 0.24 0.02
Log(Size) -0.31 0.00
Log(Volume) -0.14 0.17
% ZeroRet 0.32 0.00

Table 6

This table computes the cross-sectional 

Spearman rank correlation coefficient between 

the time-series average of the microstructure 

noise stdev. δσt and different liquidity proxies
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