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Abstract

We study decentralized trading networks where agents di�er in both their time-

varying taste for an asset and the constant frequency at which they meet others. We

demonstrate that fast agents endogenously arise as intermediators whose net valuation

of the asset gets moderated through their exposure to others. We show that allocating

meetings in an ex-ante asymmetric fashion across agents generates higher welfare then

a homogeneous distribution of meeting frequencies, only if some agents intermediate.

We also characterize properties of the market equilibrium in which ex-ante identical

agents choose their meeting rates, and show that an equilibrium with symmetric meet-

ing rates does not exist. Finally we compare the properties of equilibrium outcome

with the planner allocation.
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1 Introduction

A key feature of many asset markets is that agents trade in bilateral meetings and that the

search for a counterparty is frictional. Another key feature of many asset markets is the

vast heterogeneity across participants in terms of trading frequencies, trading volume, and

number of trading partners. A natural candidate explanation is that the this heterogeneity

re�ects heterogeneous meeting technologies. For instance, one might think of some agents

having invested in faster communication technologies, better visibility through location

choices or advertisement, or relationships with more counterparties.

In this paper, we explore the consequences of such heterogeneity for equilibrium out-

comes in a frictional asset market and o�er an explanation for the coexistence of hetero-

geneous market participants. We further show that, from a normative viewpoint, such

heterogeneity is in fact desirable. To that end, we model an over-the-counter asset mar-

ket where individuals trade in stochastic bilateral meetings as in Rubinstein and Wolinsky

(1987). As is standard in the literature following Du�e et al. (2005), we focus on an envi-

ronment where the underlying reason for the trade of an asset are di�erences in the current

�ow utility agents receive from holding the asset. As in Vayanos and Wang (2007), Weill

(2008), Hugonnier et al. (2014), Shen and Yan (2014), and Neklyudov (2013) time-varying

tastes for the asset capture di�erential liquidity needs or hedging motives of individuals.

Yet in our framework, market participant di�er along a second dimension, namely in terms

of how often they meet others. Speci�cally, individuals are endowed with search e�ciencies

that allow them to randomly and stochastically meet others at certain pace. Since agents

meet bilaterally, this also implies that a given agent is more likely to draw a meeting partner

with a high search e�ciency.

The positive part of the paper characterizes equilibrium features under heterogeneous

search e�ciencies and then shows that heterogeneity is a natural market feature if agents can

ex-ante invest into a search technology. We �rst show that faster individuals endogenously

emerge as intermediaries in equilibrium. In particular, faster agents are more willing to take

on mismatched asset positions that do not align with their idiosyncratic �ow valuation. A

fast agent with little taste for an asset is nonetheless willing to buy it from a slow agent

with similar taste simply because she is more able to �nd a buyer with a taste for the

asset. In turn, faster agents with a taste for an asset sell it to slow agents with similar

taste because they are better at �nding sellers. In order words, faster market participants

have a larger option value of buying and selling which endogenously bu�ers the impact of

their individual taste for the asset on the net valuation they ascribe to it. As a consequence

of their moderate valuations these individuals emerge as middlemen at the center of the
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intermediation chain while slower individuals stay at its fringe.1 Another way of putting

this is that the equilibrium displays a core-periphery structure where the identity of the

market participants at the core remains stable over time.

We then endogenize the equilibrium distribution of trading e�ciencies by letting agents

buy an expected meeting frequency ex ante. We show that not only a symmetric, degener-

ate distribution is not an equilibrium outcome if the search cost function is continuous and

di�erentiable, but also the equilibrium distribution does not have any mass points. The

intuition is that individuals positioned right above a mass point conduct substantially dif-

ferent types of trades than individuals right below a mass point, which introduces a convex

kink into the pro�t function. In other words, the di�erence in the nature of trading oppor-

tunities right above and below a mass point implies a discontinuity in marginal bene�t to

speed. We proceed by characterizing the features of the distribution of search e�ciencies

that is the outcome of the ex ante investment stage.

We then evaluate the normative consequences of heterogeneity. In particular, we char-

acterize both the optimal trading pattern and the optimal distribution of search e�ciencies

and contrast those with the equilibrium. We let a planner dictate a time-invariant set of

trading rules so as to maximize steady state welfare. We �nd that the e�cient trading

pattern coincides with the equilibrium trading pattern given a distribution of search e�-

ciencies. The planner dictates that faster agents take on mismatched positions, that is to

intermediate, because of their superior ability to locate other mismatched individuals.

Next, we study the optimal allocation of search e�ciencies across the population. Specif-

ically, we endow the economy with an aggregate meeting technology that �xes the overall

measure of bilateral meetings in the economy and then distribute search e�ciencies across

the population so as to maximize steady state welfare, with the optimal trading pattern.

Our preliminary theoretical results establish that the planner prefers an intermediate level

of heterogeneity over extreme solutions. To show this, we �rst contrast an economy with

homogeneous speed with an extremely asymmetric economy where a subset of agents are

in autarky and the remainder have accordingly higher meetings rates, and show that the

symmetric economy has higher welfare. Yet we show next that the symmetric economy is

dominated in terms of welfare by an asymmetric perturbation where a subset of agents are

slightly faster than the �xed average meeting rate and the remainder accordingly slower.

Intuitively, in a homogeneous environment, the asset solely �ows from individuals with low

to individuals with high taste. In an environment with heterogeneous search e�ciencies,

1The result that speed moderates valuation is most easily understood by considering an agent whose
meeting rate is very high. The value such an agent associates with holding the asset is close to independent
of her current �ow valuation because she �nds another trading partner at very high pace.
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this still happens yet there is additional trades that enhance welfare, namely trades where

faster agents take on mismatch and intermediate. To show that it is the intermediation ac-

tivity which enhances welfare we also prove that a heterogeneous environment is dominated

by a homogeneous one if we do not allow trades across agents with common �ow valuation.

Finally, our simulation results suggest that the optimal distribution of speed across agents

is continuous, that is the planners solution does not feature any mass points either. The

logic behind the result is similar to the result that rules out a symmetric solution: One

can �split� any mass of agents with homogeneous speed into two groups with marginally

higher and lower speed leaving their interactions with the rest of the economy unchanged

yet yielding new gainful trading opportunities across the two subgroups.

The last section o�ers several numerical exercises which characterize socially optimal

and equilibrium distribution of search e�ciency, and discusses how they compare to each

other. We show that equilibrium distribution is too concentrated compared to the optimal

distribution.There are too few very slow and too few very fast agents.

There are two distinct sources of ine�ciency which leads to this di�erence: the �rst one is

a classic bargaining ine�ciency which leads to under-investment in search e�ciency, as each

individual does not take into account the fraction of surplus from trade which accrues to his

counterparty. The second type of ine�ciency is more novel and speci�c to our model: an

individual does not internalize that a high search e�ciency improves the overall allocation

and decreases the (overall) gains to speed, which leads to over-investment. Our numerical

results suggest that with linear cost function, the under-investment ine�ciency dominates.

Literature Review: Our paper is closely related to a growing body of work on dynamic

trading with search frictions, initiated by Du�e et al. (2005), and followed by Lagos and

Rocheteau (2009), Weill (2008), and Hugonnier et al. (2014) among many others. However,

in these setups agents meeting rates are either homogeneous, or there is an exogenously

given market making sector which facilitates trade, as in Du�e et al. (2005) and Neklyudov

(2013). We add to this literature by showing how market makers arise endogenously in an

environment with heterogeneous meeting technologies and why such a market feature is a

natural consequence of technology choice.

Hugonnier et al. (2014) show that intermediation chains emerge when agents can have

a wide set of di�erent �ow valuation rather than just two. In particular, individuals with

moderate current tastes act as intermediators, buying and selling to individuals with cur-

rently more extreme taste. In contrast to their setup, ours o�ers a theory where the identity

of the individuals at the center of the intermediation chain remains stable over time which

is a key empirical feature of many decentralized asset markets (see, for instance Bech and
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Atalay (2010) for the federal funds market).

Chang and Zhang (2015) provide an alternative model of intermediation where agents

di�er in how volatile their taste for an asset is. As in our framework agents with more

moderate types act as intermediators. The key di�erence is that we explicitly model the un-

derlying reason for heterogeneous volatility and show why it is natural equilibrium outcome

for ex-ante identical agents. Üslü (2015) o�ers a setup that allows for rich heterogeneity

focusing on heterogeneity in pricing and inventories. Pagnotta and Philippon (2015) also

considers the e�ect of di�erential speed on e�ciency of �nancial markets. Unlike our model,

they focus on a centralized model of trade so bargaining and search frictions play no role

in their model.

The rest of the paper is organized as follows: Section 2 lays out the model, section 3

characterizes the equilibrium trading pattern and endogenizes the equilibrium distribution of

search e�ciencies. Section 4 discusses properties of the welfare maximizing trading pattern

and distribution of search e�ciencies, and section 5 provides several numerical examples.

Section 6 concludes.

2 Model

Time is continuous and there is a perfectly divisible endowment of a homogeneous asset of

measure M = 1
2
. The economy is populated by a measure one of in�nitely lived agents who

have time-varying taste for the asset and discount the future at rate ρ. Following Du�e et

al. (2005), we assume that agents have current taste s ∈ {l, h} which switches stochastically

at rate γ. An agent with taste s receives �ow payo� δs from holding the asset where δh > δl.

We restrict agents' asset holdings to j ∈ {0, 1}. We call agents mismatched if they hold the

asset in state l and if they do not hold the asset in state h.

Agents meet each other in bilateral meetings but the search process for a meeting partner

is frictional. Speci�cally, an individual of type λ meets another individual at rate λ. An

individual's type λ is time-invariant and distributed according to G (λ). We use search

e�ciency, meeting rate, or speed to refer to λ, interchangeably. Search is random and

the matching function is such that the probability of meeting any other individual λ′ is

proportional to their type λ′, and independent of their current preference or asset position.

Let Λ =
´∞

0
xdG (x) be the average meeting rate in the economy. Then, conditional on a

meeting, the meeting partner has type λ′ ≤ z with probability
´ z
0 xdG(x)

Λ
. Let µs,j (λ) denote

the fraction of agent with type λ with taste s and asset holdings j,
∑

s,j µs,j (λ) = 1, ∀λ.
Finally, note that at any point half of the agents own an asset which implies that half of all
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meetings are between asset holders and non-holders.

If one agent in a meeting holds the asset and the other does not, the agents trade the

asset when there is strictly positive surplus from doing so. In this event, the price is set via

symmetric Nash bargaining as in Rubinstein and Wolinsky (1987) and allocates half of the

joint surplus to either party.

We then endogenize the latter by studying the investment decision of ex-ante identical

agents who can acquire a search technology. Speci�cally, agents commit ex-ante to perma-

nently rent a search technology λ at �ow cost C (λ) so as to maximize their expected present

value taking the equilibrium trading pattern as given. We assume C (λ) to be strictly in-

creasing, continuous, and di�erentiable. For expositional purposes we �rst characterize the

equilibrium trading pattern given G (λ) and then study agents' investment choices.

Value Functions

Let Vs,j (λ) be the value of an individual with meeting technology λ, current taste s and

current asset holdings j. Further, let Ss (λ) ≡ Vs,1 − Vs,0 capture the net value of asset

ownership. Denoting by s̃ the opposite taste of s, we can write the values of owning and

not owning as

ρVs,1 (λ) = δs + γ (Vs̃,1 − Vs,1) +
λ

2

∑
s′

ˆ
λ′

Λ
max {Ss′ (λ′)− Ss (λ) , 0}µs′,0 (λ′) dG(λ′)

ρVs,0 (λ) = γ (Vs̃,0 − Vs,0) +
λ

2

∑
s′

ˆ
λ′

Λ
max {Ss (λ)− Ss′ (λ′) , 0}µs′,1 (λ′) dG(λ′).

Asset owners receive �ow payo� δs, switch taste at rate γ, and meet others at rate λ. They

draw meeting partners proportional to their speed λ′ and, if they meet a non-owner who

has a higher net valuation, they sell the asset and receive half of the gains from trade.

Non-owners buy when they meet an owner with lower net valuation.

Using these expressions we can write the net value of asset ownership as

(1) ρSs (λ) = δs + γ (Ss̃ (λ)− Ss (λ)) +
λ

2
O (λ)
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where

O (λ) =

(∑
s′

ˆ
λ′

Λ
max {Ss′ (λ′)− Ss (λ) , 0}µs′,0 (λ′) dG(λ′)

)

−

(∑
s′

ˆ
λ′

Λ
max {Ss (λ)− Ss′ (λ′) , 0}µs′,1 (λ′) dG(λ′)

)

captures the option value of �nding a buyer with a higher valuation net of the foregone

option value of �nding a seller with a lower valuation.

Ss (λ) consists of a term capturing the �ow utility and an option value term that is

weighted by λ. O (λ) has a dampening e�ect on an individuals net valuation: An agent who

values the asset relatively highly takes into account that it is unlikely she will be able to

pro�tably sell it and her net option value O (λ) will thus be low. An agent who associates

little value with the asset takes into account that she will likely be to pro�tably sell it

and her net option value O (λ) will thus be high. Jointly with the observation that O (λ)

is weighted by λ this heuristically suggests that search e�ciency moderates the impact of

taste on an agent valuation of an asset.

Law of Motion

Let N(s, λ|s′, λ′) denote the endogenous probability that agent (s, λ) holds the asset after a

meeting with (s′, λ′).2 With this de�nition, we can write the law of motion for µ, suppressing

the time dependence as

µ̇s,0(λ) = γµs̃,0(λ) + λµs,1(λ)

ˆ
λ′

Λ

(∑
s′

µs′,0(λ′)N(s′, λ′|s, λ)

)
dG(λ′)

− γµs,0(λ)− λµs,0(λ)

ˆ
λ′

Λ

(∑
s′

µs′,1(λ′)N(s, λ|s′, λ′)

)
dG(λ′)

µ̇s,1(λ) = γµs̃,1(λ) + λµs,0(λ)

ˆ
λ′

Λ

(∑
s′

µs′,1(λ′)N(s, λ|s′, λ′)

)
dG(λ′)

− γµs,1(λ)− λµs,1(λ)

ˆ
λ′

Λ

(∑
s′

µs′,0(λ′)N(s′, λ′|s, λ)

)
dG(λ′)

(2)

2The object N(s, λ|s′, λ′) is not strictly needed for the equilibrium characterization since it turns out
that N(s, λ|s′, λ′) = 1 if Ss (λ) > Ss′ (λ)and N(s, λ|s′, λ′) = 0 and Ss (λ) < Ss′ (λ) while any non-trivial
interior cases will be ruled out. However, it is a useful object for the normative analysis which is why we
introduce it here.
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3 Equilibrium Characterization

The key equilibrium objects are the endogeneous distribution of meeting rates G (λ), the

distribution of asset holdings across agents which can be represented by µs,j (λ) given G (λ),

and the pattern at which agents trade, N(s, λ|s′, λ′). We next restrict attention to a par-

ticular class of equilibria before characterizing, in that order, µs,j (λ), N(s, λ|s′, λ′), and
G (λ).

De�nition 1. [Stationary Symmetric Equilibrium]. We impose two restrictions.

First, we impose stationarity, characterized by µ̇s,j(λ) = 0, ∀ λ, s, j and time-invariant

trading patterns. Second, we impose a particular, but natural form of symmetry: Speci�-

cally, we restrict attention to equilibria where, if N(h, λ|h, λ′) = 1, then N(l, λ′|l, λ) = 1. In

words, we impose that if a type-λ′ asset owner in state h sells to a type-λ non-owner also in

state h and thus mismatched, then it must be that a type-λ′ non-owner buys in state l from

a type-λ owner also in state l and thus mismatched. That is, mismatch gets swapped in

the same direction.3Given these restrictions, no agent can pro�t by deviating to a di�erent

search e�ciency or choosing a di�erent set of trading partners in equilibrium.

3.1 Equilibrium Mismatch

The constant rate of taste change γ implies that in equilibrium, µh,0(λ)+µh,1 (λ) = µl,0(λ)+

µl,1 (λ) = 1
2
. A symmetric equilibrium further implies that mismatch is symmetric µh,0(λ) =

µl,1(λ), and µh,1(λ) = µl,0(λ).4 It follows that µh,0(λ) + µl,0 (λ) = µh,1(λ) + µl,1 (λ) = 1
2

which implies that agents of any search technology spend, in expectation, half their time in

possession of the asset.

Let µ(λ) = µh,0(λ) = µl,1(λ), so that 1
2
− µ(λ) = µh,1(λ) = µl,0(λ). Moreover, let

m(λ) = 2µ(λ) = µh,0(λ)+µl,1(λ) denote the fraction of agents of type who are mismatched ,

i.e. either hold the asset when in state l or not hold the asset when in state h. Note that

exactly half of the mismatched (matched) agents of each speed are are in each preference

state.
3To see why this is a natural restriction, note that our setup is isomorphic to the following two-asset

economy: There is a measure one of agents. There are two assets, A and B, each in supply 1
2 so that, at

any point in time, each agent holds exactly one unit of either asset. Each agent either likes asset A or asset
B, and her desire changes at rate γ. When two agents with di�erent assets meet and there are gains from
trade, they swap assets. In this isomorphic environment, the restriction to symmetric equilibria is natural:
since everything is symmetric, when two agents who both currently value A trade in one direction we expect
them to trade in the same direction when both currently value B.

4It is straightforward to verify this using the in�ow-out�ow relations under symmetry.
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3.2 The Equilibrium Trading Pattern

Illustration

Before we turn to a more formal treatment of the equilibrium trading pattern we numerically

solve the model and illustrate the equilibrium trading pattern in �gure 1. For illustrative

purposes, we solve a version of the model where agents �ow valuation δ can take a large

number of di�erent values. A line lies on combinations (δ, λ) that deliver the same net value

as de�ned in equation (1) in equilibrium.5 Lines are ordered such that lines further to the

right correspond to a higher net valuation.

Figure 1: Iso-Net-Value Curves

/
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

6

0.1

0.2

0.3

Notes: We set G (λ) to be uniform on [.1, .3]. Agents draw a new �ow valuation δ from a uniform

distribution on [1, 2] at rate γ = .03 and discount with ρ = .03.

The main takeaway from �gure 1 is that in this numerical example a high λ indeed

moderates the impact of the �ow valuation δ on the net value an individual ascribes to

holding an asset: In meetings between individuals with low �ow value δ the asset �ows

towards the faster agent. The opposite is true for meetings between individuals with high

�ow value. It follows that fast agents emerge endogenously as intermediators. They take on

the asset from mismatched low-δ individuals even when they also have a low �ow valuation

and sell the asset to mismatched high-δ individuals even when they also have a high �ow

valuation. We next formally characterize key features of the equilibrium.

Formal Charaterization

Focusing on symmetric equilibria, let V0(λ) denote the average value of currently mis-

matched type λ individuals. Since µh,0 = µl,1∀λ, we have that V0 (λ) = 1
2

(
Vh,0(λ) +Vl,1(λ)

)
.

In turn, V1(λ) = 1
2

(
Vh,1(λ) +Vl,0(λ)

)
denotes the analogous for matched type-λ individuals.

Let S(λ) ≡ V1(λ) − V0(λ) denote the di�erence. Further, normalize δh = 1 and δl = 0.

Then,
5Given G (λ), the equilibrium object Ss (λ) determines the pattern of trade.
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ρV0(λ) = γS(λ) +
λ

4

ˆ ∞
0

(
S(λ) + S(λ′)

)λ′
Λ
m(λ′)dG(λ′)

+
λ

4

ˆ ∞
0

max{S(λ)− S(λ′), 0}λ
′

Λ
(1−m(λ′))dG(λ′)− C(λ)

and

ρV1(λ) =
1

2
− γS(λ) +

λ

4

ˆ ∞
0

max{S(λ′)− S(λ), 0}λ
′

Λ
m(λ′)dG(λ′)− C(λ).

A mismatched individual switches states at rate γ, becoming matched. She meets a

mismatched person of type λ′ with the opposite asset position at rate λλ′m(λ′)dG(λ′)/2Λ

in which case they swap assets, both becoming matched, and share the gain from trade

S(λ) + S(λ′) equally. She meets a matched person of type λ′ with the opposite asset

position at rate λλ′(1−m(λ′))dG(λ′)/2Λ, in which case they swap asset positions and share

the gain from trade S(λ) − S(λ′) equally, if there is joint gains from doing so. A matched

person gets on average utility 1
2
, switches states at rate γ, meets a mismatched type λ

individual with the opposite asset position at rate λλ′m(λ′)dG(λ′)/2Λ, in which case they

swap asset positions and share the gain from trade S(λ′) − S(λ) equally, if there is joint

gains from doing so. Taking the di�erence, we get

(ρ+ 2γ)S(λ) =
1

2
− λ

4

ˆ ∞
0

(
S(λ) + S(λ′)

)λ′
Λ
m(λ′)dG(λ′)

+
λ

4

ˆ ∞
0

max{S(λ′)− S(λ), 0}λ
′

Λ
m(λ′)dG(λ′)

− λ

4

ˆ ∞
0

max{S(λ)− S(λ′), 0}λ
′

Λ
(1−m(λ′))dG(λ′).

(3)

We use this expression to establish the following proposition characterizing the equilib-

rium trading pattern.6

Proposition 1. Given any G (λ), the unique symmetric equilibrium trading pattern is such

that 1) two mismatched agents always trade, 2) two matched agents never trade, and 3) a

matched and a mismatched agents trade i� the matched agent has the better search technol-

ogy.

6Note that two agents can of course only trade with each other if one of them holds the asset and the
other one does not.
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Proof. See Appendix.

The proof shows that net surplus function (3) is strictly decreasing in search e�ciency

λ. Proposition 1 establishes formally that faster agents intermediate: They buy the asset

from slower low agents when both have taste δl and sell it to them when both have taste

δh. In other words, they take positions against their own taste preference. In doing so, they

align slower types asset holdings with their preferences and are compensated by bid-ask

spreads. This also implies that faster agents not only meet other agents more frequently

but also trade more frequently conditional on a meeting because they take on the mismatch

from individuals with lower search e�ciency.

3.3 Equilibrium Distribution of λ

Thus far we discussed how given a non-degenerate distribution G (λ) faster agents act as

intermediaries. However, it is unclear whether heterogeneous meeting technologies are a

natural outcome when ex-ante identical agents invest into search e�ciency. This subsection

shows that this is indeed the case.

To do so, rewrite S (λ) using proposition 1

(4)(
4ρ+ 8γ + 2λ

ˆ ∞
0

λ′

Λ
m(λ′)dG(λ′)

)
S(λ) = 2 + λ

ˆ ∞
λ

(S(λ′)− S(λ))
λ′

Λ
(1− 2m(λ′))dG(λ′).

The equilibrium surplus function can then be used to solve uniquely for V0 and V1.

Recall that we assume that ex-ante homogeneous indvididuals commit to permanently pay

a strictly increasing �ow cost C (λ) for the search technology λ. We assume C (λ) to be

continuous and di�erentiable. Let v(λ) = limρ→0 ρV0(λ) − C(λ) = limρ→0 ρV1(λ) − C(λ)

denote the average �ow value of an agent choosing meeting rate λ as we take discounting

to zero.7 In the Appendix, we derive the following explicit expressions for S(λ) and v (λ),

(5) S(λ) =
1

2ρ+ 4γ
(1− e−

´∞
λ φ(λ′)dλ′)

(6) v(λ) =
1

4
+
γ

4
e−
´∞
λ φ(λ′)dλ′ +

λ

4

ˆ λ

0

(
e−
´∞
λ φ(λ′′)dλ′′ − e−

´∞
λ′ φ(λ′′)dλ′′

) λ′
Λ
m(λ′)dG(λ′)−C(λ)

7In doing so we can ignore the initial allocation of the asset.
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where

φ(λ) ≡ 4ρ+ 8γ

λ
(

4ρ+ 8γ + 2λ
´ λ

0
λ′

Λ
m(λ′)dG(λ′) + λ

´∞
λ

λ′

Λ
dG(λ′)

)
and the lower bound of the support, λ is implicitly determined by

(7)
1

2ρ+ 4γ
e−
´∞
λ φ(λ′)dλ′ = C ′(λ)λ (8γ + λ) /(8γ2).

The next proposition applies proposition 1 and equations (5) and (6) to establish that

a degenerate distribution G (λ) is never an equilibrium and that indeed any equilibrium

distribution has continuous density:

Proposition 2. The equilibrium distribution of search e�ciency G (λ) has no mass points.

Proof. See Appendix.

The above proposition implies that although all agents are ex-ante identical, there is

no symmetric equilibrium in which all agents choose identical actions. Even stronger, no

positive measure of agents takes the same action.

The distinct nature of the asset market in our model is that it is intermediated: the

nature and frequency of an individual's trades depend starkly on her search technology

relative to the ones in the population of market participants. We show that no agent chooses

to be at a mass point because the trading opportunities in the vicinity of (hypothetical) mass

point change in a way that makes the mass point a strictly inferior choice. The logic behind

the result is best understood in the context of a single mass point λ∗: An agent choosing

λ∗+ε intermediates all the agent at the mass point and collects bid-ask spreads proportional

to the meeting frequency. As a result her gross pro�ts are proportional to the meeting rate.

An agent choosing λ∗−ε is intermediated by all other market participans, so her gross pro�ts

are purely allocation driven. The improvement in allocation is concave in the meeting rate,

which leads to a convex kink at any mass point. With any continuous di�erentiable cost

function, a convex kink in gross pro�t function can never be an equilibrium.

We highlight that this feature is fundamentally di�erent from the one driving hetero-

geneity in posted wage o�ers in the seminal work of Burdett and Mortensen (1998). In

that environment the equilibrium wage o�er distribution has no mass point either because

the value function of a �rm is discontinuous at any potential mass point, which leads to a

pro�table deviation. The same mechanism is applied in recent work on decentralized asset

markets by Du�e et al. (2015) where dealers post prices to attract traders, just like �rms

post wages to attract workers in Burdett and Mortensen (1998). In these frameworks a
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buyer can discreetly increase the number of pro�table transactions by incurring marginally

higher cost. In our framework the value functions are continuous at mass points and the

reason behind the kink is that an agents trading position with respect to a discreet number

of events reverses on either side of the mass point.

We conclude this section by characterizing some properties of the equilibrium distribu-

tion when the cost function is linear, C(λ) = cλ. First note that in equilibrium, all agents

make the same pro�t, v (λ) = v̄. Second, if an agent is in autarky, i.e. chooses λ = 0, his ex-

pected value would be a constant equal to the probability that he owns the asset multipled

by the expected value of holding the asset, v0 = 1
4
. We call v0 the value of being in autarky,

and focus on equilibria in which agents make pro�ts strictly higher than autarky,v̄ > v0.

Proposition 3. In any equilibrium in which equilibrium value is strictly larger than autarky,

v̄ > v0, the equilibrium distribution of search e�ciencies G (λ) has an open right tail and a

strictly positive lower bound λ > 0.

Proof. See Appendix.

The above proposition shows than with constant marginal cost, in an equilibrium with

strictly positive pro�ts no agent is in autarky. Moreover, there is no level of search e�ciency

λ̄ where all agents choose λ < λ̄. The equilibrium distribution is unbounded, i.e. there are

agents who are in�nitely fast. In other words, although all the agents are ex-ante perfectly

identical, ex-post some of them choose to become market makers, who are in constant

contact with the market. They intermediate every other agent and get compensated by

bid-ask spreads.89 Finally, we characterize the net pro�t that agents make in equilibrium.

Corollary 1. In equilibrium, all agents make the same pro�t, v (λ) = v̄ and v′ (λ) = 0,

∀λ. Equilibrium pro�t is given by v̄ = 1
4

+ γk−C(λ), where k = 1
2ρ+4γ

e−
´∞
λ φ(λ′)dλ′ and λ is

de�ned by equation (7) .

4 Normative Analysis

In this section we study the e�cient distribution of meeting rate among agents, as well as

the e�cient trading pattern. Before formally de�ning the planner's problem, we start with

an illustrative example.

8The only exception is the case where every agent makes pro�ts equal to autarky in equilibrium, in
which case a bounded support is also possible.

9If the cost function is convex enough, all the agent choose to be in autarky, G (0) = 1.
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Example 1. Normalize γ = 1 and assume the meeting rate λ is identical across all indi-

viduals in the economy. The fraction of mismatched agents in the economy is

µ(λ) = µh,0(λ) = µl,1(λ) =

√
2 + λ−

√
2√

2λ

A notion of ine�ciency is the size mismatch µ(λ), the fraction of individuals who value

the asset but do not hold it. For large values of λ, this is well-approximated by 1/
√

2λ, and

in particular the mismatch rate declines with the square root of the matching e�ciency.

We now consider how intermediation may improve e�ciency in this economy. Holding

the average search e�ciency �xed at λ �xed we redistribute search e�ciency unevenly across

the population. In particular, we give a fraction α of the total �ow of meetings λ to a fraction

1 − ε of the population and the remaining 1 − α to a fraction ε of the population, called

intermediaries. We also assume, as their name suggests, that intermediaries intermediate

trade when they meet a regular trader.

Now let λ1 and λ2 denote the trading speed of regular traders and intermediaries, with

(1− ε)λ1 = α and ελ2 = 1− α. Ine�ciency is again given by the measure of individuals in

the high preference state without the asset, µ(λ1)(1− ε) + µ(λ2)ε.

Using the in�ow-out�ow equations (2), we can solve explicitely for the fraction of mis-

matched agents in each type. The resulting solution is cumbersome, and so we focus here

just on the limiting behavior as the number of intermediaries ε converges to zero. Optimiz-

ing over α, it turns out to always be optimal to set α slightly larger than 1
2
, but converging

to 1
2
as λ gets big. The optimal value of α is√

4

λ2
+

3

λ
+

1

16
− 2

λ
+

1

4
.

At this value of α, the value of µ(λ1) (which measures ine�ciency as ε→ 0) is given by

µ(λ1) =
1

64

(
−
√
λ2 + 48λ+ 64 + λ+ 24

)
.

which converges to zero at a higher rate compared to rate of converge in the economy

without intermediation, as λ → ∞ as plotted in Figure 2. In other words, intermediation

increases e�ciency and the pace at which the market converges to its frictionless limit.
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Figure 2: Rate of Convergence to Frictionless Limit

20 30 40 50
λ

0.06

0.08

0.10

0.12

0.14

Mismatch

Symmetric Meeting Rate

Measure Zero of Dealers

Why does intermediation improve the allocation for a given aggregate search technology.

A key observation is that intermediaries are less likely to hold their desired asset position

than are regular traders. The fact that they have many more meetings is outweighed by

the fact that they frequently trade away from their desired asset position. Intermediation

is useful because it makes it easier for the regular traders to obtain their desired asset

holdings, not because intermediaries themselves have preferences well-aligned with their

asset holdings.

4.1 Planner Problem

We focus on the problem of a social planner who is endowed with a �xed number of meetings,

Λ. The social planner seeks to maximize the discounted sum of utilities, subject to the

resource constraint of total number of meetings, by choosing the meeting distribution as

well as trading pattern. The constraint planner problem is the dual of the problem of an

unconstraint planner who faces a linear cost function C(λ) = cλ.

max
{G(λ),N(s,λ|s′,λ′)(t)}

ˆ
e−ρt

(∑
s

δs

(ˆ
µs,1(λ)(t)dG(λ)

))
dt

s.t.
ˆ ∞

0

λdG(λ) = Λ,

where µs,j (λ) (t) evolves according to equations (2) conditional on the planner's choice of

trading pattern. We next restrict the planner to choose a time invariant trading pattern

N(s, λ|s′, λ′) and the limit ρ → 0. Since
∑

s

( ´
µs,1(λ)(t)dG(λ)

)
= M we can rewrite the

planner's problem as
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min
{G(λ),N(s,λ|s′,λ′)}

ˆ
µh,0(λ)dG(λ)

s.t.
ˆ ∞

0

λdG(λ) = Λ,

where steady state mismatch µh,0 follows from the µ̇s,j = 0∀s, j in the in�ow-out�ow

equations (2). The social planner thus minimizes the steady state mismatch rate, subject

to a constraint on aggregate search e�ciency across all agents.

To formalize the intuition demonstrated in the above example, we proceed in two steps.

First, we show that if there are only two di�erent levels of search e�ciency λS < λF and

the asset is in moderate supply, then the optimal trading pattern chosen by the planner

resembles the intermediation pattern described above. The main idea is that when the asset

supply is neither to high not too low both the option value the planner prefers a fast agent

to be mismatched.10 The next lemma summarizes this result.

Lemma 1. If there are only two levels of search e�ciency with λS < λF and M equals the

fraction of individuals in the high preference state then the socially optimal pattern of trade

is for the fast agents to intermediate: N(s, λ|s′, λ′) = 1 i� s = h and s′ = l or s = s′ = l

and λ > λ′ or s = s′ = h and λ < λ′.

Lemma 1 establishes that the planner requires the fast agents to take on a role as

intermediaries. If both meeting partners are in state l the faster one has a better chance

of �nding a non-owner with taste h and thus the planner requires the fast agent to receive

the asset. In turn, if both individuals are in state h the faster one has a better chance of

�nding an owner in state l and the agents thus requires the slow agent to receive the asset.

More generally, consider a general meeting rate distribution G(λ) and the impose the

intermediated trading pattern described in proposition 1 and note that mismatch is given by

µh,0(λ) = µl,1(λ) = µ(λ). Manipulating the in�ow out�ow equations (2) yields the following

steady-state relationship between in�ows and out�ows of mismatch rate

1

2
− 2

ˆ ∞
λ

µ(λ′)dG(λ′) =
1

γΛ

(ˆ ∞
λ

λµ(λ)dG(λ)

)2

10Note the role of asset scarcity in the optimal trading pattern. If the asset is su�ciently scarce then the
planner requires the asset to �ow toward the fast agent even even if both agents are in the high preference
state. In this case the option value of replacing the asset is low because it is hard to �nd. It is thus optimal
to keep it circulating among the those with a high search e�ciency. The reverse is true if the asset is
su�ciently abundant. Since we assume M = 1

2 and the fraction of agents in the high preference state is 1
2

these cases can be ruled out.
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This equation conveys an important intuition: The net �ow into mismatch is linearly

increasing in the measure of matched individuals because of the taste shock γ. To o�set

this in�ow mismatched agents need to meet each other. Thus, the larger the average search

e�ciency among the mismatched the better the allocation and shu�ing mismatch to faster

agents reduces mismatch. This is the main intuition why the intermediation trading pattern

is optimal: mismatch is transferred from slow agents to fast agents who are more e�cient

at �nding other mismatched with opposite taste.

Next we use this Lemma 1 to argue that the social planner, if restricted to two di�erent

search e�ciencies λi, chooses an intermediate level of heterogeneity. In particular, the social

planner does not choose a distribution with extreme dispersion: she does not leave any agent

in autarky nor does she choose a single mass point.

Proposition 4. Given a constant aggregate search technology Λ and two groups of agents

with speed λi, the optimal distribution of search e�ciency requires an intermediate degree

of heterogeneity: No agent is in autarky, λi > 0∀i nor do all agents have the same meeting

rate, λ1 6= λ2.

Proof. See Appendix.

Importantly, this result rules out that a single, homogeneous level of search e�ciency is

socially optimal. That is, without altering the aggregate search technology the allocation

can be improved upon by distributing meetings in a (mildly) asymmetric way. In proving

the latter result, we contrast mismatch under homogeneity with mismatch when half the

population has seach e�ciency Λ+ε and the other half has Λ−ε. Using lemma 1 the optimal

pattern of trade is the one where faster agents intermediate. So we impose this pattern, and

show that the local �split� of the mass point improves the allocation, 1
2

(
µh,0(Λ+ε)+µh,0(Λ+

ε)
)
< µh,0(Λ). The reason is that with homogeneity and random search many meetings are

among individuals with identical taste and are hence not gainful. In turn, whenever the

two individuals in a meeting di�er there is room for gains from trade. The economy takes

advantage of a much larger fraction of meetings leading to �rst order improvements in the

allocation. We suspect, although have not proven, that this is the logic behind our numerical

�ndings below which suggest that the optimal distribution of search e�ciencies does not

display any mass points, allowing for any meeting to involve two di�ering individuals.

Finally observe that we do not let the planner chose the level of Λ. However, we point out

that when considering the social planner's optimal level of total search e�ciency at (linear)

cost cΛ there are diminishing returns to aggregate search e�ciency. As the overall allocation

in the economy improves the aggregate mismatch rate falls. However, there is a constant
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out�ow from being matched due to type change. As all agents become perfectly matched,

it becomes more di�cult for the newly mismatched agents to �nd a trading partner, which

creates the diminishing gain.

4.2 No Trade Within the Same Preference

We have shown that in our framework, some degree of heterogeneity and intermediation is

welfare improving relative to a homogeneous benchmark. We next provide an important

result that highlights the role of intermediation. It also illustrates that the gains associated

with heterogeneity do not arise mechanically from the matching process.

To do so, assume the socially optimal trading pattern is such that there is no trade

within agents of the same preference, even if they have di�erent meeting rates. That is,

just like in the case with a degenerate distribution of search e�ciency, agents in the same

preference state never trade and hence there is no intermediation. Assets get solely traded

from taste l to taste h individual. The in�ow-out�ow equations (2) can then be written as

(8)

(
γ + λ

ˆ
λ′

Λ
µl,1(λ′;G)dG(λ′)

)
µh,0(λ;G) = γµl,0(λ;G).

It is straightforward to verify that with this trading pattern, µl,1(λ) = µh,0(λ) = µ(λ;G)

and µl,0(λ) = µh,1(λ) = 1
2
− µ(λ;G), where we write µ explicitly as a function of G to

emphasize the dependence. Solving equation (8) for µ(λ,G) yields

(9) µ(λ;G) =
γ

2(2γ + λX(G))

where X(G) ≡
´
λµ(λ;G)dG(λ)´

λdG(λ)
denotes the speed-weighted average fraction of the population

that can trade. The next proposition establishes that without intermediation, the socially

optimal distribution of meeting rates is a mass point.

Proposition 5. Consider a planner with constant aggregate search e�ciency Λ. Assume

that individuals trade i� the asset owner is in state l and the non-owner is in state h. Then

the social planner endows all agents with the same search e�ciency Λ.

The above proposition shows that the gains from heterogeneity are due to intermedia-

tion. Without intermediation it turns out that heterogeneity is actually welfare decreasing

re�ecting the global concavity of welfare in search e�ciency Λ. Endowing agents with het-

erogeneous meeting rates involves a cost since the slower agents lose more (relative to the

homogeneous benchmark) than the fast agents win absent intermediation. This cost can
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only be covered by the �rst order gains from intermediation. If there is no intermedia-

tion among agents, endowing all the agents with the same search e�ciency minimizes the

mismatch rate.

5 Numerical Examples

In this section, we numerically �rst compute the endogenous equilibrium distribution of

search e�ciencies under a linear cost function C (λ) = cλ. We then endow the planner with

the equilibrium measure of matches Λ but let the planner freely redistribute those matches

in the population to maximize steady state welfare.

5.1 Equilibrium Distribution

Using equations (5) and (6) along with Corollary 1, we search numerically for a distribution

G (λ) such that a measure one of ex ante homogeneous agents are indi�erent across all λ

with strictly positive density in equilibrium. Speci�cally, we search for weights g̃ (λi) on

N = 600 uniformly distributed grid points on [0, 6] such that
∑N

i g̃ (λi) = 1 and v′ (λi) = 0

for all λi with g̃ (λi) > 0.11 Figure 3 plots the results.

Figure 3: Equilibrium Distribution of Search E�ciencies
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In line with our theoretical �ndings in section 3.3, we �nd that ∃λ > 0 such that

g̃ (λi) = 0 for λi < λ. Further, the approximated equilibrium density is strictly declining

above λ and displays an open right tail.12

11Recall that v (λi) is the value function net of the �ow cost of meetings, so marginal �ow cost c is in
v′ (λi) .

12Clearly, our numerical exercise assumes a �nite support. However, we have experimented with large
values for the upper bound of the gridspace and found that g̃ (λi) > 0 in the right tail, independently of
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5.2 Optimal Distribution

We next search for weights g̃P (λi) that maximize steady state welfare. To enable compar-

ison with the equilibrium, we set Λ equal to the endogenous aggregate search e�ciency in

equilibrium. We then, directly and nonparametrically, search for the distribution of search

e�ciencies that minimize mismatch in steady state subject to the aggregate constraints∑N
i λg̃

P (λi) = Λ and
∑N

i g̃
P (λi) = 1. Figure 4 plots the resulting density.

Figure 4: Optimal Distribution of Search E�ciencies
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The optimal density has the same qualitative features as the equilibrium counterpart.

It features a strictly positive lower bound and is decreasing yet strictly positive everywhere

above. This con�rms the theoretical observation that the optimal distribution does not

feature any mass points. Note the �jump� in the density at the highest grid point. This

re�ects that we cut o� the support, so the planner is prevented from choosing very fast

agents.

5.3 Contrasting Equilibrium and Planner

In this section, we contrast several features of the equilibrium with their e�cient counter-

part. Figure 5 plots the distribution and density of search e�ciency in the population in

equilibrium against the planner's solution.

where we cut it o� numerically.
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Figure 5: Search E�ciencies - Equilibrium versus Planner
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The di�erence between the two distributions sheds light on the main forces in the model.

The two distributions are qualitatively similar, however, the equilibrium distribution is

more concentrated than the e�cient distribution. The intuition for this observation is that

fast agents improve the allocation of slower agents, but this force is strongest when there

are su�ciently many relatively slow agents who bene�t from being intermediated. So the

planner endows agents with more unequal meeting rates.

More speci�cally, fast agents derive most of their equilibrium pro�ts from trade and not

from having their asset holdings aligned with preferences. For exactly the same reason a

planner values an individual with high λ primarily for her intermediation activity. This is

not fully internalized and individuals hence under-invest in search e�ciency at high levels

of λ. In turn, since there is too few intermediators in equilibrium and, for that reason, bid-

ask spreads are high agents over-invest at the low end of the meeting rate distribution. In

other words, intermediation leads to a form of strategic substitutability and the ine�cient

investment decisions at the top of the distribution generate ine�cient investment at the

bottom. As a result, the equilibrium distribution is more concentrated than the socially

optimal distribution.

Figure 6 plots the cumulative allocation of meetings over the support, i.e., how much

aggregate search e�ciency is accounted for by agents below each level of search e�ciency.

It clearly shows that the social planner allocates more meetings to very low speed agents,

and many meetings to a very small fraction of very fast agents, which corresponds to the

sharp spike in the last point of the socially optimal curve. Note that this �gure plots the

cumulative number of meetings allocated across di�erent search e�ciencies, so a spike (or

discontinuity) in the planner curve indicates that there are a very small measure of very fast

agents, who are responsible for a non-zero measure of total meetings. In fact our numerical

experiments suggest that regardless of the support, the planner chooses to have a mass
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zero of in�nitely fast agents who are responsible for strictly positive fraction of total search

e�ciency.13Note that the two curves coincide at the right boundary of the support because

the social planner is endowed with the total search e�ciency that arises in equilibrium. In

other words, what planner does is to reallocate the same total number of meeting across

agents to improve (decrease) the total mismatch rate.

Figure 6: Cumulative Allocation of Meetings, Optimal versus Equilibrium
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Finally, �gure 7 plots mismatch against λ. Importantly agents with higher search e�-

ciency have higher mismatch rate both in equilibrium and under the planner's solution. This

is consistent with intermediation: intermediaries trade against their desired position and in

so doing improve the allocation among those with lower search e�ciency. In equilibrium

intermediaries are compensated through bid-ask spreads. The reason the two curves cross

is that at the lower end of distribution agents are better allocated in equilibrium exactly

since they meet more frequently with faster indviduals which improves their allocation.

13We take care of this case separately by optimizing the fraction of total search e�ciency that the planner
can choose to allocate to a measure zero agents with are in�nitely fast.
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Figure 7: Mismatch Rate, Optimal versus Equilibrium

0 1 2 3 4 5 6
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

 

 

Socially Optimal
Equilibrium

One can also interpret the di�erence between the two distributions in terms of two

distinct sources of ine�cieny: the �rst one is the classic bargaining ine�ciency, also present

in a large body of labor search models. Agents under-invest in their search technology

because they do not internalize the share of surplus captured by their counterparties. The

second source of ine�ciency is rather unique to our model: when an individual agent chooses

meeting rate he does not internalize that a high meeting rate improves the overall allocation

and decreases the (overall) gains to search e�ciency, which leads to over-investment. Our

numerical results suggest that with linear cost function, both sources of ine�ciency are

sizable, but the under-investment ine�ciency dominates.

6 Conclusions

We study a model of over-the-counter trading in asset markets in which ex-ante identical

agents invest in trading technology and participate in bilateral trade. We show that when

traders have heterogeneous search e�ciencies, the fast agents intermediate: they trade

against their desired position and take on misallocation from slower agents. Moreover,

we characterize how starting with exante homogeneous agents, the distribution of search

e�ciency is determined endogenously in equilibrium, and how it compares with the cor-

responding socially optimal distribution. We argue that an economy with homogeneous

meeting rate is nor an equilibrium, neither desirable from a social perspective. We also

characterize properties of equilibrium and socially optimal meeting rate distribution and

show how they compare to each other.
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7 Appendix

Proof. [Proposition 1] Distributing the �rst integral on the right hand side of equation

(3) between the two last integrals, and doing some further manipulation, equation (3) can

be written as

S(λ) =
2 + λ

´∞
0

min{S(λ′), S(λ)}λ′
Λ

(1− 2m(λ′))dG(λ′)

4ρ+ 8γ + λ
.

View this as a mapping S = T (S). We claim that for any cumulative distribution function G

and mismatch function m with range [0, 1/2], T is a contraction, mapping continuous func-

tions on [0, 1/(2ρ+ 4γ)] into the same set of functions. Continuity is immediate. Similarly,

if S is nonnegative, T (S) is nonnegative. If S ≤ 1/(2ρ+ 4γ),

T (S)(λ) ≤ 1

2ρ+ 4γ

(
4(ρ+ 2γ) + λ

´∞
0

λ′

Λ
(1− 2m(λ′))dG(λ′)

4ρ+ 8γ + λ

)
<

1

2ρ+ 4γ
,

where the last inequality uses m(λ) > 0.

Finally, we prove T is a contraction. If |S1(λ)− S2(λ)| ≤ ε for all λ,

|T (S1)(λ)− T (S2)(λ)| ≤
λε
´∞

0
λ′

Λ
(1− 2m(λ′))dG(λ′)

4ρ+ 8γ + λ
≤ ε

ˆ ∞
0

λ′

Λ
(1− 2m(λ′))dG(λ′).

Note that the second inequality uses the fact that the fraction is increasing in λ and hence

evaluates it at the limit as λ converges to in�nity. Since
´∞

0
λ′(1 − 2m(λ′))dG(λ′) <´∞

0
λ′dG(λ′) = Λ, this proves that T is a contraction in the sup-norm, with modulus´∞

0
λ′

Λ
(1− 2m(λ′))dG(λ′).

Next we prove that the mapping T takes nonincreasing functions S and maps them into

decreasing functions. This implies that the equilibrium surplus function is decreasing. To

prove this, let

I(λ) ≡
ˆ ∞

0

min{S(λ′), S(λ)}λ
′

Λ
(1− 2m(λ′))dG(λ′).

Note that if S(λ) ∈ [0, 1/(2ρ + 4γ)] and is nonincreasing, I(λ) ∈ [0, 1/(2ρ + 4γ)) and is
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nonincreasing. Now take λ1 < λ2. Then

T (S)(λ1)− T (S)(λ2) =
2 + λ1I(λ1)

4ρ+ 8γ + λ1

− 2 + λ2I(λ2)

4ρ+ 8γ + λ2

≥ 2 + λ1I(λ1)

4ρ+ 8γ + λ1

− 2 + λ2I(λ1)

4ρ+ 8γ + λ2

=
2
(
1− I(λ1)(2ρ+ 4γ)

)
(λ2 − λ1)

(4ρ+ 8γ + λ1)(4ρ+ 8γ + λ2)
> 0.

The �rst equality is the de�nition of T . The �rst inequality uses I(λ2) ≤ I(λ1). The second

equality groups the two fractions over a common denominator. And the second equality

uses I(λ) < 1/(2ρ + 4γ). This proves the result. It follows that the equilibrium surplus

function is decreasing.

Proof. [Equations (5) and (6)] For all �nite λ, solve equation (4) explicitly for S(λ).

S(λ) =
2 + λ

´∞
λ
S(λ′)λ

′

Λ
(1− 2m(λ′))dG(λ′)

4ρ+ 8γ + λ
(

1−
´ λ

0
λ′

Λ
(1− 2m(λ′))dG(λ′)

)
First note that S(0) = 1/(2ρ+ 4γ). Next, note that for λ =∞ we have

(ρ+ 2γ)S(λ) =
1

2
+
λ

4

[ ˆ ∞
0

S(λ′)
λ′

Λ
m(λ′)dG(λ′)−

ˆ ∞
0

S(λ′)
λ′

Λ
m(λ′)dG(λ′)− 2S(λ)(1− α)

]
.

lim
λ→∞

S(λ) = lim
λ→∞

2

2ρ+ 4γ + λ(1− α)m(λ)
= 0

where (1 − α) is the fraction of all meetings that agents with λ = ∞ are responsible for.

With �nite equilibrium Λ, mass of agents at with λ = ∞ goes to zero, but they can still

be responsible for non-zero fraction of meetings because they have in�nitely high meeting

rate. This potentially non-zero fraction is captured by 1− α.
Next, di�erentiate with respect to λ to get(
4ρ+ 8γ + 2λ

ˆ ∞
0

λ′

Λ
m(λ′)dG(λ′)

)
S ′(λ) + 2

ˆ ∞
0

λ′

Λ
m(λ′)dG(λ′)S(λ)

=

ˆ ∞
λ

(S(λ′)− S(λ))
λ′

Λ
(1− 2m(λ′))dG(λ′)− λS ′(λ)

ˆ ∞
λ

λ′

Λ
(1− 2m(λ′))dG(λ′)

=

(
4ρ+ 8γ + 2λ

´∞
0

λ′

Λ
m(λ′)dG(λ′)

)
S(λ)− 2

λ
− λS ′(λ)

ˆ ∞
λ

λ′

Λ
(1− 2m(λ′))dG(λ′),

where the second equation eliminates
´∞
λ

(S(λ) − S(λ′))λ
′

Λ
(1 − 2m(λ′))dG(λ′) using equa-
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tion (4). Now solve this expression for S ′(λ):

S ′(λ) =
(4ρ+ 8γ)S(λ)− 2

λ
(

4ρ+ 8γ + 2λ
´ λ

0
λ′

Λ
m(λ′)dG(λ′) + λ

´∞
λ

λ′

Λ
dG(λ′)

) = φ(λ)

(
S(λ)− 1

2ρ+ 4γ

)
,

where

φ(λ) ≡ 4ρ+ 8γ

λ
(

4ρ+ 8γ + 2λ
´ λ

0
λ′

Λ
m(λ′)dG(λ′) + λ

´∞
λ

λ′

Λ
dG(λ′)

) .
The general solution to this di�erential equation is

(10) S(λ) =
1

2ρ+ 4γ
− ke

´ λ
λ φ(λ′)dλ′ ,

and

(11) S ′(λ) = −kφ(λ)e
´ λ
λ φ(λ′)dλ′ .

As S(∞) = 0, this gives us the constant of integration

k =
1

2ρ+ 4γ
e−
´∞
λ φ(λ′)dλ′ ,

This implies

S(λ) =
1

2ρ+ 4γ

(
1− e−

´∞
λ φ(λ′)dλ′

)
.

Next, we can use the surplus function to solve uniquely for V0 and V1. In particular,

recall v(λ) = limρ→0 ρV0(λ)− C(λ) = limρ→0 ρV1(λ)− C(λ). This satis�es

v(λ) =
1

2
− γS(λ)− λ

4

ˆ λ

0

(S(λ)− S(λ′))
λ′

Λ
m(λ′)dG(λ′)− C(λ)

=
1

4
+ γke

´ λ
λ φ(λ′)dλ′ +

λk

4

ˆ λ

0

(
e
´ λ
λ φ(λ′′)dλ′′ − e

´ λ′
1 φ(λ′′)dλ′′

) λ′
Λ
m(λ′)dG(λ′)− C(λ),

which can be solved explicitly by substituting for k from above to get the desired result.

To get the implicit equation which de�nes the lower bound of the support, let u(λ) =

v(λ) +C(λ) denote the gross equilibrium pro�t of an agent with search e�ciency λ. Di�er-
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entiate u to get14

u′(λ) = −
(
γ +

λ

4

ˆ λ

0

λ′

Λ
m(λ′)dG(λ′)

)
S ′(λ)− 1

4

ˆ λ

0

(S(λ)− S(λ′))
λ′

Λ
m(λ′)dG(λ′)

=
u(λ)− 1

4

λ
−
kλφ(λ)e

´ λ
1 φ(λ′)dλ′

´∞
λ

λ′

Λ
dG(λ′)

8

=
u(λ)− 1

4

λ
+
S ′(λ)

´∞
λ

λ′

Λ
dG(λ′)

8

(12)

Moreover, note that

φ(λ) ≡ 4ρ+ 8γ

λ (4ρ+ 8γ + λ)

so using equation (12), and noting that ρ→ 0, we have

v′(λ) = −γS ′(λ)− C ′(λ) = +γkφ(λ)e
´ λ
λ φ(λ′)dλ′ − C ′(λ) = γk

8γ

λ (8γ + λ)
− C ′(λ)

We know that in equilibrium, v(λ) is constant over the support, so v′(λ) = 0. Evaluating

this �nal equality at λ and substituting for k gives the implicit equation that de�nes the

lower bound of the support.

Proof. [Proposition 2] Note that if the type distribution G has a mass point at λ, de-

nominator of φ jumps down at λ as well, since 2m(λ′) < 1. As a result φ jumps up. The

expression for S implies S is continuous, but the di�erential equation for S ′ implies that the

derivative jumps down discretely at λ (given the expression for S, S ′ equals φ multiplied by

a negative number). That is, S has a concave kink at any mass point λ.

As before, let u(λ) = v(λ) + C(λ) denote the gross pro�t of agents. As shown in that

proof

u′(λ) =
u(λ)− 1

4

λ
+
S ′(λ)

´∞
λ

λ′

Λ
dG(λ′)

8

This implies that u(λ) has a convex kink whenever S has a concave kink, i.e. at any mass

point. Basically, the �rst term on RHS is continuous. In the second term, S ′(λ) < 0 and it

jumps down, and
´∞
λ

λ′

Λ
dG(λ′) is positive but also jumps down.

Finally, suppose that individuals choose λ to maximize v(λ), and C(λ) is a di�erentiable

cost function. If there is a mass point in G at some λ, the gross bene�t u(λ) has a convex

14Note that when integrating under dG(λ) distribution, seting the lower bound of integral to 0 gives the
same result as setting the lowerbound to λ as by de�nition, there is no density on 0 < λ < λ.
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kink at λ, and λ is a local minimum of the gross pro�t function. This proves that there are

no mass points in the equilibrium speed distribution.

Proof. [Proposition 3] Assume there is an upper bound on the support of equilibrium

distribution, λ̄. Let u(λ) = v(λ) + C(λ) again denote the gross pro�t of agents. Then

u′(λ) =
u′(λ)− 1

4

λ
+
S ′(λ)

´∞
λ

λ′

Λ
dG(λ′)

8
(13)

Then ∀ λ > λ̄, λu′(λ) = u(λ)− 1
4
as there is no agent above λ > λ̄. As a result

u(λ) =
u(λ̄)− 1

4

λ̄
λ+

1

4
∀ λ ≥ λ̄

In order for no agent to be pro�table to deviate to λ > λ̄, we must have v′(λ) < 0 ∀ λ > λ̄,

or equivalently c ≥ u(λ̄)− 1
4

λ̄
.

However, we know that every agent in equilibrium makes at least net 1
4
pro�ts, which is

the value of being in autarky, limλ→0 v(λ) = limλ→0 u(λ) = 1
4
. So the same must hold for

the agent with λ = λ̄, who has at least paid cλ̄ in cost. So we must have u(λ̄) ≥ 1
4

+ cλ̄, or

c ≤ u(λ̄)− 1
4

λ̄
.

The above two conditions can simultaneously be satis�ed only if c =
u(λ̄)− 1

4

λ̄
. As a result,

either everyone in equilibrium makes zero pro�t (beyond the 1
4
in autarky), in which case

support can be bounded [or if the marginal cost is too high then all the mass at zero is

an equilibrium]; or all the agents make pro�ts strictly more than autarky, in which case

support is unbounded. This also implies that λ = 0 can only be part of a solution in which

everyone's pro�t is exactly 1
4
: in any equilibrium everyone must make the same pro�t, and

in equilibria with unbounded support everyone makes strictly more pro�t than autarky. As

a result, any equilibrium with positive pro�ts and unbounded support has a strictly positive

lower bound λ = λ.

Proof. [Corollary 1] Since all agents are ex-ante identical, they must all make the same

pro�t in equilibrium, otherwise there will be a pro�table deviation for any agent who makes

a lower pro�t. This equilibrium pro�t can be evaluated at the lower bound from equation

(6)

v(λ) =
q

4
+ γk − C(λ)

where k and λ are computed when deriving equations (5) and (6).
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Proof. [Lemma 1] We need to introduce some more notation to prove this statement.15

Let x̃ be the object in social planner problem parallel to object x in equilibrium.

The net social value, S̃(λ) , analogous to equilibrium object S(λ) as de�ned in equation

1 is given by

(14) ρS̃s (λ) = δs + γ
(
S̃s̃ (λ)− S̃s (λ)

)
+ λÕ (λ)

where Õ(λ) is the option value of search in the social planner problem de�ned analogous

to O(λ) in individual problem.

We represent the di�erent trading rules that might emerge as optimal as chains of

inequalities that determine N(δ, λ|δ′, λ′). Note that agents of identical speed always trade

towards the agent with higher �ow utility. For brevity, we write S(F ) for λS(λF ).

1. Intermediation

S̃l(S) < S̃l(F ) < S̃h(F ) < S̃h(S)(15)

This trading pattern corresponds to the one where the fast agents act as intermedi-

ariers.

2. Trade towards the fast agents, which spans 2 cases:

(a)

S̃l(S) < S̃l(F ) < S̃h(S) < S̃h(F )(16)

At same �ow value asset �ows toward fast agent, but low fast sells to high slow.

(b)

S̃l(S) < S̃h(S) < S̃l(F ) < S̃h(F )(17)

Asset �ows toward fast agent even when a high slow owner meets a low fast

non-owner: in this case fast agents are �absorbing" the asset and the asset is

either held solely by the fast agents or all the fast agents hold an asset which

they never trade and the remaining assets are traded between the slow types.

15We assume γ is constant across the two types (γhl = γlh = γ), which implies excatly half of the agents
are high and half are low. The generalization is straightforward.
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3. Trade towards the slow agents, and again spans 2 cases:

(a)

S̃l(F ) < S̃l(S) < S̃h(F ) < S̃h(S)

At same �ow value asset �ows toward slow agent, but low slow sells to high fast.

(b)

S̃l(F ) < S̃h(F ) < S̃l(S) < S̃h(S)

Asset �ows toward slow agent even when a high fast owner meets a low slow

non-owner: in this case slow agents are �absorbing" the asset.

The proof works by ruling out all the cases except the �rst case, i.e. intermediation.

Proof. [Proposition 4] This proof proceeds in two steps. First we show that the planner

prefers a symmetric distribution to an extremely asymmetric one where one group of agents

is in autarky. Then we show that a perturbation of symmetric speed distribution improves

welfare, which along with the �rst part completes the proof.

Step 1 Consider an average speed level λ and construct the following family of speed

distributions. Choose a fraction x of the population and give it speed λ
x
. Give the remaining

(1 − x) fraction of population speed zero, so that average speed in population remains λ.

This family of speed distributions is features �extreme asymmetry" in the sense that given

(λ, x), the two groups of agents have speeds as di�erent as possible.

Next, �nd the division of total amount of asset between the fast and slow (zero speed)

sub-populations which maximizes total welfare, xµh,1(λ
x
,m1) + (1 − x)µh,1(0,m2). In this

division, m1 denotes the per capita amount of asset own by non-zero speed agents, so

xm1 + (1 − x)m2 = M . Note that x = 1 corresponds to the symmetric speed distribution

where every agent has speed λ.

Next, we show that among all members of this family (indexed by x), the symmetric

distribution maximizes welfare (at the corresponding optimal division of asset). In other

words

x̂ = argmaxx max
m1
{xµh,1(

λ

x
,m1) + (1− x)µh,1(0,m2)}.(18)

s.t. xm1 + (1− x)m2 = M(19)
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We want to show that x̂ = 1. This is su�cient condition for the social planner not to choose

an �extreme-asymmetric" speed distribution.

To do so, we solve the unconstrained version of problem 18 and show that x = 1 max-

imizes it. The relevant constraints are m1 > 0, m1 ≤ 1 and m1 ≤ M
x
(i.e. m2 > 0). Note

that at x = 1 (symmetric equilibrium) none of these constraints bind, while for other x's

they can potentially bind. So if x = 1 is the argmax of the unconstrained problem, it is

also the argmax of the constrained problem. This completes the �rst step of the proof.

Step Two The next step is to show that a small pertubation to the the symmetric speed

distribution, which makes some agents faster and some slower, holding the aggregate speed

constant, is welfare-improving.

We use the following approach: Conjecture a perturbation in which half of agents are

fast and half are slow, g = {gS, gF} = {1
2
, 1

2
}. Next consider the �ow equations for µ's which

characterize an �intermediation� trading rule as de�ned above. Impose λF = λS = λ and

compute the equilibrium stocks. In other words, endow all agents with same speed λ, but

label half of them S and the other half F , and then force the S and F agents to trade in a

fan trading pattern.

With some abuse of notation, let µs,m(F ) (µs,m(F )) denote the fraction of agents labeled

F (S) who are in state s with ownership status m, while both groups have the same speed

λ. The �rst thing to note is that

1

2
µs,m(S) +

1

2
µs,m(F ) = µs,m(λ), s ∈ {l, h}, m ∈ {0, 1}(20)

where µs,m(λ) is the corresponding fraction in the symmetric equilibrium.

Now to show that a intermediation trading pattern with asymmetric speed improves

welfare, we need to show that

(∂µh,1(λ− ε)
∂ε

+
∂µh,1(λ+ ε)

∂ε

)
|ε=0 > 0.(21)

To compute the above partial derivatives totally di�erential the system of equations that

characterize the steady state stocks µ and evaluate it at ε = 0. Equation 21 boils down to

µl,1(F )µh,0(F ) > µl,1(S)µh,0(S)(22)

as de�ned above. To show that this equation always holds, consider the following: assume

the above exercise, except that after labeling agents as S and F we force all low agents to sell

to all high agents and to no-one else (irrespective of their label). So the S and F populations
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will be identical, µs,m(F ) = µs,m(S) ∀ s, m; which means the above inequality will hold

with equality. Now enforce that low S owners sell to low F non-owners and high F owners

sell to high S non-owners. As equation 20 holds as long as the two labeled populations

have the same trading speed, we will have µl,1(F ) > µl,1(S). A symmetric argument for the

high types implies µh1(F ) < µh1(S). Note that because of our choice of perturbation (1
2

of agents being each F and S), µh,1(F ) + µh,0(F ) = µh,1(S) + µh,0(S) = 1
2
fh. This implies

µh,0(F ) > µh,0(S) which along µl,1(F ) > µl,1(S) implies equation 22 and completes the

proof.

The above two together show that social planner chooses some intermediate asymmetric

distribution. So the planner does not want all the market participants to have the same

speed, but he does not want some very fast and some extremely slow agents either.

Proof. [Proposition 5] Observe that µ(λ;G) is a convex function of λ (given G) and

λµ(λ;G) is a concave function of λ (given G).

Start from a distribution function G that is degenerate at Λ and consider any other

distribution G̃ with the same mean,
´
λdG̃(λ) = Λ. Our goal is to prove that

ˆ
µ(λ;G)dG(λ) <

ˆ
µ(λ; G̃)dG̃(λ).

We do this in two steps.

First, we prove X(G) > X(G̃). We prove this by contradiction, assuming instead that

X(G) ≤ X(G̃). Equation (9) then implies µ(λ;G) ≥ µ(λ; G̃) for all λ. Then

ˆ
λµ(λ;G)dG(λ) ≥

ˆ
λµ(λ; G̃)dG(λ) >

ˆ
λµ(λ; G̃)dG̃(λ),

where the �rst inequality uses µ(λ;G) ≥ µ(λ; G̃) and the second uses Jensen's inequality:

λµ(λ; G̃) is concave in λ and G̃ is a mean-preserving spread of G. Since G and G̃ have the

same mean, this implies X(G) > X(G̃), a contradiction which proves X(G) > X(G̃).

Next, X(G) > X(G̃) implies µ(λ;G) < µ(λ; G̃) for all λ by equation (9). Finally,

ˆ
µ(λ;G)dG(λ) <

ˆ
µ(λ; G̃)dG(λ) <

ˆ
µ(λ; G̃)dG̃(λ),
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