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Abstract

An important gap in the literature on labor market search is that the majority of

studies focus on within labor-market transitions, while ignoring workers’ decisions to

participate in or leave the labor force. This paper develops a model of equilibrium search

which simultaneously determines workers’ labor market participation/exit decisions,

and job acceptance rules. Workers revise their labor force entry and exit strategies

through occasional shocks to the utility of non-work options. The model is applied to

the labor market experience of black and white high school graduate women from the

NLSY79 to discern the sources of female black-white labor market inequality in wages

and participation.

1 Introduction

Equilibrium models of labor market search have become very useful for understanding the

effect of frictions on labor market phenomena such as worker transition behavior, labor

market policies (e.g. unemployment compensation); and the nature of the wage offer dis-

tribution. Albrecht and Axell (1984) and Burdett and Mortensen (1998) provided the

theoretical impetus for this line of research. The initial focus of these papers was on ob-
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taining endogenous dispersion in wage offers, perhaps due to the well-known difficulty in

generating non-degenerate wage offer distributions in models of sequential search1. The

subsequent empirical literature, however, has extended and applied their framework to a

wide variety of questions: inter alia, the transition from school to work of young graduates

(see, for example Eckstein and Wolpin (1990), and Bowlus, Kiefer and Newmann (2001));

the sources of wage inequality among workers of different observational types (race) (Bowlus

and Eckstein (1999)); the examination of intra and inter-industry wage differentials (Van

den Berg and Ridder (1998)) and the relative effects of worker and firm heterogeneity (Robin

and Postel-Vinay (2002)).

A significant gap in this literature concerns the treatment of labor force participation.

In much of this literature, transitions into and out of the labor force (which in this paper may

be referred to as “participation flows”) have received comparatively less attention than on

transitions between employment and unemployment (correspondingly referred to as “intra

labor force flows”2). One flaw frequently encounted in this literature is that inadequate

steps are taken to address potential sample selection bias. All the papers cited above, for

example, simply drop non labor-force participants from the sample at the estimation stage.

Van den Berg and Ridder (1998), for example, argue that

“the main features of the [Burdett-Mortensen] model are insensitive to the in-

clusion of such a [nonparticipant] state. Moreover, transitions to and from

nonparticipation are rare in the data.” (pp. 1194, Van den Berg and Ridder

(1998)).

Data and research suggest otherwise, and in fact, it is not hard to show that non-

participation, even at a glance, appears to be more significant than Van den Berg and

Ridder assert. Firstly, data consistently shows participation flows to be of a similar order

of magnitude to job flows.

Table1here

1See Diamond (1971).
2“Participation” flows refer to transitions between a labor force participation state, unemployment or

employment, and nonparticipation. “Intra labor force” flows refer to transitions between employment and

unemployment.
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Panel A of table 1 is constructed from the 1979 National Longitudinal Survey of Youth3

(NLSY79) and shows the average monthly flows over the period 1978 to 1996. The monthly

flow from nonparticipation to employment (n → e) is 3.0% of the population, larger than

than the flow from unemployment to employment (u → e, 1.12%) . Likewise, the rate of flow

from jobs into nonparticipation (e → n) is larger than the rate of flow to unemployment

(e → u, 2.93 vs 1.0). This is consistent with evidence from the Current Population Survey,

taken from Kim (2001) and shown in Panel B of table 1. There, the n → e flow is 0.9%,

only slightly smaller than the u → e flow of 1.1%. The e → u and e → n flows are of similar

magnitude as well.4 Therefore regardless of whether we look at individuals over their life

cycles, or at a cross section of the population, flows into and out of the labor force are at

least as large as flows within the labor force.

Second, research by Flinn and Heckman (1983) and Gonul (1992), suggest that the

unemployed (U), and the out-of-labor force (OLF) are indeed behaviorally different. Flinn

and Heckman (1983) find OLF and U to be distinct states among white male high school

graduates, in that the OLF exit to employment at a lower rate than the unemployed. Gonul

(1992) on the other hand finds that there is no distinguishable difference between OLF and

U among white high school graduate males, but does find a difference among white high

school graduate females. Unlike Flinn and Heckman, Gonul finds evidence of this behavioral

difference not among males but among females; that is, a white OLF female is less likely to

find work compared to an unemployed female. One interpretation of these differentials is

that labor force participation is a choice. Gonul’s findings also suggest that women appear

to be somewhat “more conscious” in the choice of labor force particpation choice than men

are. These different findings by these two papers suggest that this question is far from

settled.

Third, related to the second point above, there is a natural setting where participation

flows are of potentially significant importance: that of the participation behavior of females

in the labor market. Life cycle events such as marriage, divorce, childbirth affect the

3Panel A is constructed from the cross sectional sample of the NLSY79 (N=6111).
4The figures from the NLSY79 and the CPS are not directly comparable. The flows from the NLSY79

are averaged over the life cycle of a fairly homogeneous age cohort, while the flows calculated from the CPS

are for a cross section of the population.
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Figure 1: Labor Force Participation from 1990 Census.

labor supply of women more significantly than men. Figure (1) depicts the life cycle labor

supply of women from the 1990 census, by age cohort, who have completed high school or

have a GED. Notice that the typical black female has a “hump-shaped” life cycle labor

force participation profile, whereas white women begin to leave the labor force in their mid-

twenties, and re-enter the labor force again roughly ten to fifteen years later, thus generating

a slight non-concave profile. This suggests that changes in the value of non-work activities

during these years might be significant determinants of wage and transition behavior among

women.

As mentioned above, most models applied to consider the effects of labor market policy

characterize the labor market in two states–employment and unemployment, neglecting

considering effects on the participation margin. Such an omission may result in misleading

policy predictions because these policies affect not only individuals’ reservation wages but

also their desire to remain in the labor force.

From the above, it is clear that a two-state model will not be satisfactory in explaining

the movements into and out of the labor force and wage structure of females. What is
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needed is a model which allows the simultaneous determination of entry and exit from

the labor force, as well as the determination of wage acceptance strategies. The goal

of this paper is to develop such a model. In this model it is also neccessary to endow

individuals with some form of heterogeneity, in order to generate participation flows. This

paper considers the role of non-work options which may change from time to time. In order

to obtain an endogenous wage distribution, firms are assumed to make profit-maximizing

wage offers. This allows us to examine the wage structure of workers, in addition to workers’

transition behavior.

This paper aims to do the following. First, to develop a model of labor market search

where agents make both participation and reservation strategies, and which generates wage

dispersion based upon the model’s fundamental parameters (in this case both friction pa-

rameters and heterogeneity in work and non-work options). I then estimate such a model

to determine how important is the distinction between the states of OLF and U among

females. Second and more interestingly, I assess the empirical validity of the model by ap-

plying it to a contemporary policy-relevant issue: accounting for the wage-inequality among

young black and white females. To establish this second goal, I estimate this model on two

samples of females–one of black women, another of white women–which are observationally

the same along the dimensions of education and age and differ only in race. The estimates

will show the extent to which (1) search impediments; (2) labor market and (3) non-labor

market options differ between white and black women. Using this mode, I can conduct a

number of counter factual experiments to discern which are the more significant sources of

labor market inequality among white and black women.

There is a large literature researching the extent of labor market inequality among white

and black females in the US. I shall only relate my paper to a small subset of this literature.

Several studies (Chandra (2000) and Heckman, Lyons and Todd (2000)) have observed that

black-white wage gaps in reported wages may be much smaller than the corresponding wage

gaps in estimated potential wages. Furthermore, the observed-wage gap has been found to

be smaller for women than for men. These findings suggest that wage inequality between

black and white females have been understated, and that conventional wisdom presents a

misleading picture of racial differences in labor market opportunities. In a similar vein,
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Derek Neal (2003) observed that significant black-white differences in marriage market

opportunity and household structure could account for labor market differences. Using a

wage imputation method accounting for marital opportunities, Neal finds the black-white

gap in potential wages to be about 60 percent larger than the gap in reported wages. I find

that the current paper is able to speak to this debate. The various attempts at imputing

the unobserved “potential” wages, are analogous to obtaining the wage offer distribution.

Furthermore, this paper goes on further to suggest where the sources of these differences

may lie: whether from differences in search impediments, non-work options, or the types of

jobs available to each group. Beyond wage inequality, the search model also generates flows

and steady state spell lengths, allowing us to compare other dimensions of labor market

inequality.

In the model by Albrecht and Axell, heterogeneity in non-work alternatives was the

driving force that generated wage dispersion. In the model by Burdett and Mortensen, wage

dispersion was generated by workers who engage in on-the-job search. This paper blends the

insights of the models of the two models in that the wage offer distribution can be explained

by frictions in the job (and on-the-job) search process and the distribution of opportunity

cost of work. However unlike the current literature, heterogeneity in workers’ opportunity

costs of work generates participation flows as well. Bontemps et. al. (1999/2000) found

that heterogeneity in workers’ opportunity costs did not play an important role in the wage

distribution. However Bontemps et. al. consider only two states, and in effect ignore the

possibility that workers’ opportunity costs play a role in generating flows, even if it may

not explain wage dispersion.

Preliminary estimates from the model find relatively large differences in the transition

parameters between black and white females. As one would expect, the arrival rates of jobs

are lower for black females than for white females. Interestingly, the parameter estimates

of the distribution of non-work options suggest that black women in the NLSY79 face more

frequent and on average better shocks to utility of their non-work option, and hence this

appears to be an important factor accounting for black-white wage inequality. I further find

that the implied mean wage offer to black females, is actually slightly higher than that for

white females in the NLSY79. On the other hand, black and white women are found to
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have very similar reservation wage functions, suggesting that it is not that black women are

more selective in accepting jobs, but that the effect of lower arrival rates just about offsets

the higher non-work utility options, and average wage offers that they face.

Finally, it should be mentioned that within the vast literature on equilibrium search,

Kim (2001) is closest to the current work. He presents an version of the Mortensen and

Pissarides (1994) search model with the participation decision. In his paper, transitions

are generated by shocks to workers’ productivity leading to layoffs and exits from the labor

force. Unlike the present paper, there is no on-the-job search and no quits. He calibrates the

model to match various macroeconomic aggregates and job flow data whereas the present

paper represents to my knowledge the first attempt at estimating a three-state equilibrium

model from individual transitions and wage data.

The paper is organized as follows. The next section presents the model, the third

section discusses the data, solution and estimation of the mode. Section 4 considers some

policy experiments, and the last section concludes.

2 The Model.

In the model I consider, workers not attached to a job make two choices: whether to partic-

ipate in the labor force, and what wage to accept, if a participant. Workers attached to a

job decide whether or not to separate from the job, and if separated, whether or not to drop

out of the labor force all together. What motivates these decisions is that workers face an

occasional shock to the utility of their non-work activity, sometimes referred to as leisure.

Firms differ in their endowed marginal product of labor and make profit-maximizing wage

offers. There are two sources of heterogeneity: in the worker’s valuation of the non-work

option, and in the firms’ marginal product of labor. In the equilibrium, the wage offer de-

pend on the shapes of the distribution of non-work options as well as job options available

to the workers, in addition to the transition parameters. The model thus permits us to ask

to what extent do the availability and quality of non-work and work options affect wage

offers, and influence labor market transitions.
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2.1 The Worker’s Problem.

There is a unit measure of workers. Each worker takes as given the distribution of wage

offers F (w) , and distribution of the opportunity cost of work or equivalently utility of

leisure, H (b) . There are three states that the worker can find herself in: employment at

wage w, with associated value function V (w) , unemployed with utility of leisure b, denoted

by U (b) , or nonparticipation with utility of leisure b, denoted by N (b). While unemployed,

the worker is actively searching for a job, at utility cost s, and receives a job offer from

F (w) at rate λ. While a nonparticipant, the worker is assumed to not expend search effort

s but nonetheless may receive a wage offer from F (w) at rate a lower arrival rate λ0 < λ.

Think of this as passive search. There are no other differences between workers.

On the job search is allowed, so workers employed at current wage w may sample a take

it or leave it offer w′ from another firm. To simplify the subsequent analysis, we assume

this happens with rate λ, equal to the arrival rate for the unemployed, and that job offers

arrive without the worker having expended effort in job search while on the job. In doing

so I do not consider job-search choice while on the job.

Regardless of the state they are in, all agents sample a new draw of utility of leisure b′ at

rate γ. However workers in different states will respond to this draw differently. Workers

currently employed at w will have to decide whether to stay on the job, or quit and take

the “offer” of new utility of leisure. If they quit, they will have to decide whether to quit

to unemployment or to nonparticipation. Unemployed and nonparticipant individuals,

however, do not have the option of rejecting the new draw of b′. As they are already

enjoying b, the arrival of a new b′ is treated as a shock to utility of leisure. The only

decision they make is whether to change their participation status.

The three flow parameters, {γ, λ, λ0} generate the six transitions across all the three

states5 observed in the labor market (seven, if one includes job-to-job transitions). The

driving force of these transitions is simply the idea that opportunity costs to labor market

5It should be clear that γ = 0 implies that one’s endowment of non-work utility is permanent and the

model will not produce u ↔ e transitions. This, coupled with λ0 = 0, effectively reduces the model to the

heterogeneous worker case in Burdett-Mortensen (1998). If there were furthermore no on-the-job search, it

corresponds to the Albrecht-Axell (1984) model.
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employment may change from time to time in unanticipated ways, and cause participation

and quit decisions. This is a parsimonious theory of labor force participation that interprets

a number of significant life-cycle changes as a markov process. For instance, the arrival

of a positive shock to b can be thought of as an increase in spousal wealth, the arrival of

a marital suitor, or a child-bearing opportunity. Likewise a negative shock may be the

corresponding departure of that wealthy spouse or similar adverse change in family size.

Bellman Equations In a time interval ∆, the worker employed at wage w can encounter

two possible events: a wage offer w′ with probability ∆λ, or experience a shock to utility of

leisure b′ with probability ∆γ. Both events are assumed not to happen at the same time6.

Let

P (b) = max [U (b) , N (b)]

The Bellman equation of employment at wage w is

(1 + r∆) V (w) = ∆w + ∆λE max
[
V

(
w′

)
, V (w)

]
+ ∆γE max

[
P

(
b′

)
, V (w)

]

+ (1 − ∆γ − ∆λ) V (w)

Similarly we can derive the Bellman equations for unemployment and nonparticipation.

(1 + r∆) U (b) = ∆ (b − s) + ∆λE max
[
V

(
w′

)
, U (b)

]
+ ∆γP

(
b′

)
+ (1 − ∆γ − ∆λ) U (b)

and

(1 + r∆) N (b) = ∆b + ∆λ0E max
[
V

(
w′

)
, N (b)

]
+ ∆γP

(
b′

)
+ (1 − ∆γ − ∆λ) N (b)

Dividing through by ∆ and letting ∆ → 0 yields the continuous time limits

rV (w) = w + λE max
[
V

(
w′

)
− V (w) , 0

]
+ γE max

[
P

(
b′

)
− V (w) , 0

]
(1)

rU (b) = b − s + λE max [V (w) − U (b) , 0] + γE
[
P

(
b′

)
− U (b)

]
(2)

rN (b) = b + λ0E max [V (w) − N (b) , 0] + γE
[
P

(
b′

)
− N (b)

]
(3)

P (b) = max [U (b) , N (b)] (4)

6This is not a strong assumption, because in the continuous time limit, no two events will happen at a

point in time.
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2.1.1 Individual Decision Rules.

The workers’ decision rules regarding reservation wages and participation choices can be

established via a series of lemmas. First, observe that the value function in each labor

force state is increasing only in their respective state variables. Next this implies that for

each state not attached to a job there is a unique reservation wage. Thirdly, I show that

there is a unique cutoff level of leisure b∗ above which all individuals not attached to a job

will prefer to exit the labor force, and below which they will enter the labor market and

engage in active search. The arguments are straightforward and proofs can be found in the

appendix.

Lemma 1 V ′ (w) , U ′ (b) , and N ′ (b) are strictly increasing. In particular, V ′ (w) =

1
r+λ[1−F (w)]+γ[1−H(φj(w))] , j ∈ {u, n} where φ (.) = R−1 (.) .

Lemma 2 Given F (w) and H (b) , there exist unique reservation wage strategies Ru (b)

and Rn (b) for the unemployed and nonparticipant workers respectively such that

1. An unemployed worker accepts all wage offers w ≥ Ru (b) ;

2. A nonparticipating worker accepts all wage offers w ≥ Rn (b) ;

Furthermore, Ru (b) and Rn (b) are strictly increasing in b.

Proposition 1 Assume that s < B
(
b − b

)
where B = λ−λ0

r+γ+λ0
.. Then given F (w) and

H (b) , there exists a unique b∗ ∈
(
b, b̄

)
such that U (b∗) = N (b∗) . Furthermore, U (b) ≷

N (b) ⇐⇒ b∗ ≷ b.

That the value functions depend only on their respective state variables is important

for uniqueness. An interpretation of this is that there is no “recall” of the previous state:

once an individual accepts a wage offer w, or a utility draw b′, she immediately “forgets”

the utility of leisure b or wage w she used to enjoy7. Given unique reservation wages, it

7We can do so because regardless of the state the worker is in V (w) , U (b) or N (b) , she only has to track

one state variable, either b or w. This would not be the case, for example, if V (w, b), such as if employed

workers can recall their b when laid off. This becomes more complicated because we can no longer guarantee

the monotonicity of the reservation wage strategies, which is needed for uniqueness of reservation wages.
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Figure 2: Summary of Individual Worker Strategies and Labor Market Choices.

is easy to show that Rn (b) is steeper than and intersects only once with Ru (b) , implying

that b∗ uniquely divides the population into two groups (proposition 1). Workers who

have an opportunity cost of work b < b∗ will prefer unemployment to nonparticipation,

while workers with b > b∗ will prefer to be nonparticipants. Workers with exactly b∗ are

indifferent. Thus with no loss of generality, Ru (b) specifies the reservation strategy for

b < b∗ and Rn (b) specifies the reservation strategy for b > b∗. Setting V (w) = U (b) and

V (w) = N (b) over these respective two regions, the reservation strategies are

Ru (b) = b − s b < b∗ (5)

Rn (b) = b − (λ − λ0) ϕ [Rn (b)] b > b∗ (6)

where

ϕ (w) =

∫ w̄

w

1 − F (x)

r + λ [1 − F (x)] + γ [1 − H (φj (x))]
dx

The diagram below summarizes the participation choices of workers in (b, w) space.
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The lines labeled Ru (b) and Rn (b) denote the reservation wages of an unemployed and

nonparticipant individual respectively. They are also respectively the loci of indifference

between being employed and unemployed, and being employed and OLF. The upper en-

velope of both functions is indicated in bold. The regions marked E, U , and N mark the

preferred state, given any selected (b, w) pair. All individuals to the left of b∗ prefer unem-

ployment, and all individuals to the right of b∗ choose nonparticipation. Individuals in the

shaded region choose employment, and require values of b′ to the right of the bold envelope

to leave their jobs. Proposition 1 also obtains a sufficient condition for the existence of b∗:

that the cost of search is not too large relative to the support of the opportunity cost of

leisure, i.e. s

b−b
< λ−λ0

r+γ+λ0
. Otherwise no workers would choose to be unemployed (i.e. to

engage in active job search).

From figure (2) it is also particularly easy to characterize the job-to-job movements, and

quits. A worker currently employed at w will encounter other job offers at rate λ and will

accept any offer w′ > w. Workers’ quit strategies depend on where they are on the wage

distribution. At low wages, in particular w < b∗− s, a worker may decide to exit the labor

force altogether, or quit to unemployment, continue searching in hope of a better job. At

high wages, i.e. above w > b∗ − s, a worker quits only when she samples a very high value

of leisure. The following lemma summarizes workers’ quit strategies given their current

wage w:

Lemma 3 Workers quit when they receive a new draw b′ such that Rj (b′) > w, where j ∈

{u, n} . (1) Workers earning w > b∗ − s quit to nonparticipation only (when Rn (b′) > w).

(2) Workers earning w < b∗−s may quit to either nonparticipation (when w < Ru (b′) < w∗)

or unemployment (when Rn (b′) > w∗).

To summarize, given H (b) and F (w) , we are able to obtain a complete characterization

of the workers’ strategies, which are summarized in the following proposition

Proposition 2 Given H (b) and F (w) each individual adopts the following optimal strate-

gies

1. Reservation Strategies. If unemployed, accept any wage offer greater than

Ru (b) = b − s when b < b∗
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Whereas if out of the labor force, accept any wage offer greater than

Rn (b) = b − (λ − λ0) ϕ [Rn (b)] when b > b∗

where

ϕ (w) =

∫ w̄

w

1 − F (x)

r + λ [1 − F (x)] + γ
[
1 − H

(
R−1

n (x)
)]dx

2. Participation Strategies. Choose U if b < b∗ and choose N if b ≥ b∗,where b∗ is

given by the solution to

s = (λ − λ0) ϕ (b∗ − s)

3. Quit and On-the-job search Strategies. If currently employed at wage w,

(a) Accept any wage offer w′ > w.

(b) If w > b∗ − s quit to nonparticipation only when receive a draw b′ such that

Rn (b′) > w.

(c) If w < b∗ − s and w < Ru (b′) < b∗ − s, quit to nonparticipation. But if

Rn (b′) > b∗ − s quit to unemployment.

Having provided a full characterization of the workers’ individual problem, we can now

move on to consider transitions in steady state.

2.1.2 Steady State Aggregates

We now derive the steady state distributions of the model. Let G (w) be the distribution

of paid wages less than or equal to w. Clearly, G (w) differs from F (w) since not all

wage offers are accepted. Let Ju (b) be the distribution of currently unemployed workers

with opportunity cost of work less than or equal to b, and Jn (b) be the distribution of

nonparticipants with opportunity cost of work less than or equal to b. Just as G (w) differs

from F (w) , Ju (b) and Jn (b) differ from H (b) because not all workers receiving a shock to

the utility of leisure will quit their job8. G (w), Ju (b) and Jn (b) have the property that
∫ w̄

w
dG (w) = 1,

∫ b∗

b
dJu (b) = 1 and

∫ b̄

b∗
dJn (b) = 1 respectively. Let e, u, n be the steady

8As can be inferred from figure 2, they quit their job if their offer of leisure utility is far enough to the

right of the bold envelope.
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state proportions of employed, unemployed and nonparticipant individuals in the economy

respectively. Naturally e + u + n = 1. The steady state flows from state i to j, Ti→j (.).

can be written as

Tu→e (b) = λ

∫ b

bl

[1 − F (Ru (x))] dJu (x)

Tu→n = γ [1 − H (b∗)] ∀b ∈ [b, b∗]

Tn→e (b) = λ0

∫ b

b∗
[1 − F (Rn (x))] dJn (x)

Tn→u = γH (b∗) ∀b ∈
[
b∗, b

]

Te→u (Ru (b)) = γ

∫ Ru(b)

w

[H (b) − H (φu (x))] dG (x)

Te→n (Rn (b)) = γ

{

[H (b) − H (b∗)] G (R (b∗)) +

∫ Rn(b)

R(b∗)
[H (b) − H (φn (x))] dG (x)

}

Tu→e (b) is derived as follows. Each unemployed worker given b, receives wage offers at

rate λ and accepts wages higher than Ru (b). Thus this probability is λ [1 − F (Ru (b))] .

This must be integrated over Ju (b) , the distribution of workers’ leisure utilities. All the

other transitions are derived in the same fashion. The Steady state conditions for u, e, and

n must satsify the following three equations:

u [Tu→e (b∗) + Tu→n] = nTn→u + eTe→u (Ru (b∗))

n [Tn→e (bu) + Tn→u] = uTu→n + eTe→n

(
Rn

(
b
))

e + u + n = 1

To preserve readability of the paper, the expressions of e, u and n can be found in the

appendix.

Likewise, applying an analogous steady state condition, Ju (b) and Jn (b) must respec-

tively satisfy:

u {Tu→e (b) + Tu→nJu (b)} = nTn→u + eTe→u (Ru (b)) (7)

and

n {Tn→e (b) + [Tn→u + γ [1 − H (b)]] Jn (b)} = u {γ [1 − H (b)] + Tu→n} + eTe→n (Rn (b))

(8)
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There are, unfortunately, no closed form expressions for Ju (b) and Jn (b). Nevertheless,

it is possible to show that Ju (b) and Jn (b) are unique expressions. The proof, found in

the appendix, shows that the densities of equations (7) and (8), J ′

u (b) and J ′

n (b) , satisfy

the Lipschitz conditions for a first order ordinary differential equation, and are thus unique

solutions for a given initial condition .

Proposition 3 Given F (w) and H (b) , there exists a unique Ju (b) satisfying (7) and a

unique Jn (b) satisfying (8) .

Steady state wage offers F (w) can be derived in like manner. However there are

two cases to consider due to the presence of unemployed and nonparticipants: one where

w < b∗ − s and another where w ≥ b∗ − s. We consider each one in turn.

Case 1: w < b∗ − s. Entrants into G (w) come only from U because nobody in N would

accept wage offers less than b∗ − s. Similarly, exits from G (w) consist of quits and job-to-

job movements. Furthermore there is a lower threshold bl where every worker with b < bl

accepts every job offer. Thus equating inflows and outflows, G (w) must satisfy

uλ

{

F (w) Ju (bl) +

∫ φu(w)

bl

[F (w) − F (Ru (b))] dJu (b)

}

(9)

= e

{

λ [1 − F (w)] G (w) + γ

∫ w

w

[1 − H (φu (x))] dG (x)

}

Case 2: w ≥ b∗ − s. In this case entrants into G (w) come from both U and N. Thus

transitions into/out of G (w) must satisfy

uλ

{

Ju (bl) F (w) +

∫ b∗

bl

[F (w) − F (Ru (b))] dJu (b)

}

+ nλ0

∫ φn(w)

b∗
[F (w) − F (Rn (b))] dJn (b)(10)

= e

{

λ [1 − F (w)] G (w) + γ

∫ R(b∗)

w

[1 − H (φu (x))] dG (x) + γ

∫ w

R(b∗)
[1 − H (φn (x))] dG (x)

}

Differentiating (9) and (10) we obtain an expression for the “labor supply function”

G′(w)
F ′(w) . We get, respectively,

G′ (w)

F ′ (w)
=

λ

e

uJu (φu (w)) + eG (w)

λ [1 − F (w)] + γ [1 − H (φu (w))]
, w < b∗ − s (11)
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and
G′ (w)

F ′ (w)
=

1

e

λ [u + eG (w)] + nλ0Jn (φn (w))

λ [1 − F (w)] + γ [1 − H (φn (w))]
, w ≥ b∗ − s (12)

Having provided a complete characterization of the worker’s problem and the labor side

of the market, we can now turn to the firm’s problem.

2.2 The Firm’s Problem and Equilibrium

There is a unit mass of firms, each of which has a linear production technology with marginal

product of labor p. Firms are heterogeneous in p. Assume that p ∼ Γ (p) continuous on
[
p, p

]
Firms takes as given workers’ strategies on participation, quit and acceptance, and

in turn sets the wage. Each firm maximizes steady state profit per worker by choosing its

wage offer, w. It’s objective function is

Π (w) = max
w

(p − w)
G′ (w)

F ′ (w)

Thus taking F (w), Ru (b) , Rn (b), b∗ as given, the firm’s profit-maximizing wage offer,

w = κ (p) , satisfies

κ (p) ∈ arg max
x

(p − w)
G′ (w)

F ′ (w)

We are now able to define an equilibrium

Definition 1 A steady state equilibrium in this economy is {Rn (b) , Ru (b) , κ (p) , b∗ and F (w)}

such that

1. Given H (b) and F (w) , workers’ reservation wages are determined according to

Ru (b) = b − s

and

Rn (b) = b − (λ − λ0)

∫ w̄

Rn(b)

1 − F (w)

r + λ [1 − F (w)] + γ [1 − H (φn (w))]
dw

2. The labor force participation rate is determined by b∗ satisfying

s = (λ − λ0)

∫ w̄

b∗−s

1 − F (w)

r + λ [1 − F (w)] + γ [1 − H (φn (w))]
dw

3. κ (p) ∈ arg maxx (p − w) G′(w)
F ′(w) .
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Strictly speaking, we do not need heterogeneity in the marginal product of labor in order

to generate wage dispersion. If all firms had the same production technology, the equi-

librium is obtained by an equal maximum profit condition rather than a profit-maximizing

condition. While this would be sufficient to achieve wage dispersion, it may result in a

wage offer distribution that is not of an “admissible” shape when compared with the data.

To overcome this problem, heterogeneity in firm technology is introduced. A discussion

of these issues are beyond the scope of this paper and may be found in Bontemps et. al.

(2000).

Applying the usual concavity conditions on the firm’s objective function, it can be easily

shown that existence and uniqueness of the equilibrium is guaranteed if l (w) = G′(w)
F ′(w) is log-

concave. Furthermore the profit maximizing wage offer w̃ as a function of marginal product

of labor satisfies

p = w̃ +
l (w̃)

l′ (w̃)

Unfortunately, because expressions such as Ju (b) and Jn (b) do not have closed forms, it

is difficult to establish analytically that l (w) is log-concave. However it turns out from

simulations that for common distributions and realistic parameter values, log-concavity is

satisfied. Let w = κ (p) be the solution to the firm’s profit maximization problem. As

long as l (w) is log concave, it is easy to establish that wage offers are increasing in p.

Lemma 4 If l (w) is log concave, then κ′ (p) > 0.

This then implies the upper and lower support of the wage distribution are obtained

from the productivities of the most productive and least productive firms, i,e that w = κ
(
p
)

and w = κ (p) . Also, note that all we need to guarantee uniqueness of κ (p), is that 1

(p−w)
2

is large enough compared to l (w) .

Finally, we can obtain the distribution of wage offers.

Lemma 5 Since κ′ > 0, the proportion of wage offers less than w is Γ
(
κ−1 (w)

)
, so

F (w) = Γ

(

w +
l (w)

l′ (w)

)

(13)

where l (w) = G′(w)
F ′(w) .
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3 Solution, Data and Estimation

3.1 Solution of the Model

The lack of closed forms for the endogenous distributions G (w) , Ju (b) and Jn (b) imply

that the solution must be obtained numerically. The procedure is as follows:

1. obtain G (w) using a kernel estimate and observed w and w are observed from the

data.

2. Using an initial guess of F (.) , solve for the workers’ decision rules Ru (.) and Rn (.)

and b∗. Rn (n) has no closed form, but can easily be solved either by guessing an

intial R0
n (b) and iterating on the reservation wage equation (6) until convergence, or

numerically solving (6) using differential equation techniques.

3. Next solve for Ju (b) and Jn (b) , and u, e, n. By guessing J
(0)
u (.) and J

(0)
n (.) , we can

obtain u, e, and n, which are then used to provide updates of J
(1)
u and J

(1)
n using the

steady state conditions(7) and (8). This step is repeated until convergence of Ju (.)

and Jn (.).

4. With updated Ju (b) and Jn (b) update F (1) (.) using the steady state expressions for

l (w) . (11) , (12) and (13) . Repeat steps (2) to (4) until convergence of F (w) .

3.2 Data

The model is estimated using data from the 1979 Youth Cohort of the National Longitu-

ditudinal Survey (NLSY79) sponsored by the Bureau of Labor Statistics. The NLSY79 is

a nationally representative panel of 12,686 young men and women who were 14-22 years

old in 1979. Our sample is drawn from the cross-sectional sample and the supplemental

sample of the NLSY79. The cross sectional sample consists of 6,111 respondents designed to

be representative of the noninstitutionalized civilian segment of young people living in the

United States. The supplemental sample consists of 5,295 respondents designed to over-

sample civilian Hispanic, black, and economically disadvantaged non-black/non-Hispanic

youth living in the United States.
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The main criteria in choosing a sample are that individuals should have the same ed-

ucation and are unlikely to attain more schooling, are at the same age and stage in their

life cycle, and are relatively likely to make a transition motivated by changes in utility of

leisure. To this end, I select two samples of white and black women who have completed

high school, and did not complete another year of schooling for at least five years after

that. This results in 963 white women, and 633 black women. In this sample, only a small

minority (around 5 percent) attain further education after a five year absence. I begin

observing these women at the start of the second year after high school graduation (i.e.

from June of the year following high school graduation), until the first transition observed

after that period, up to a maximum of eight years9. This period corresponds to the age

range where the black-white differences in labor force participation appear to be largest,

as depicted in figure 1. According to the NLSY79 data, about 95 percent of these women

completed high school at ages 18 or 19. By the age of 24, 51% of white women and 75%

of black women in this sample would have had their first birth. At that same point in

their lives, 73% of white women and 47% of black women would have been married. This

suggests that the chosen period indeed contains the arrival of significant events that may

induce respondents to alter their labor force status. This way of selecting the sample and

period reflects a balance between the realities of the life cycle changes with a model that

delivers transitions in a steady state.

An alternative way would be to use the event of the first birth or mariage as a proxy for

the event signifying an arrival of a new value of leisure. However I do not do so because

the date of labor market transition may vary greatly from the date of birth of the child.

Table 2 presents summary statistics of the sample

table2here

From the first two columns of table 2, observe that black females have a much higher

unemployment (about three times) and nonparticipation rate than white females. Their

mean accepted wage and LFP rate are about 90% of white women, and their average

9In a minority of cases who graduated earlier than 1977, I began following them from the start of the

survey. A period of one to eight years after graduation yields very few truncated spells, so censoring is not

an issue.

19



unemployment spells about 18% longer. The data does not show a significant difference

in the mean lengths of employed and OLF spells. Turning to the flows, observe that the

transitions between u and n for black women are about three times as large as for white

women. Job to job transitions are about 30% smaller for black women compared with white

women. Quits from jobs are about the same, with more blacks quitting to unemployment,

but more whites quitting out of the labor force. From these data, we can guess that black

women may receive more frequent shocks to their non-work utility, and that their arrival

rate of jobs is lower while in the labor force.

3.3 Estimation

The model is estimated via maximum likelihood. I assume that the distribution of leisure

utility and the distribution of marginal product of labor are distributed as log-normals,

that is, b ∼ LN
(
µH , σ2

H

)
and p ∼ LN

(
µP , σ2

P

)
. Along with the transition parameters

{λ, λ0, γ} , the search cost s, the rate of discount r, the model has nine parameters.

The seven types of transitions imply seven types of contributions to the likelihood func-

tion. Below I write down the likelihood contributions assuming that b are unobserved, but

durations and wages are observed without error. In any given labor force state, the escape

rate follows an exponential distribution given b or w as per the following

from unemployment : λ [1 − F (Ru (b))] + γ [1 − H (b∗)]

from nonparticipation : λ0 [1 − F (Rn (b))] + γH (b∗)

from current employment : λ [1 − F (w)] + γ [1 − H (φj (w))] , where φ (.) = R−1 (.)

The escape rate from each state is the sum of the escape rates into the other two states.

For instance, unemployed individuals can transit into employment or to nonparticipation.

Hence given b her probability of leaving unemployment is the sum of the hazard rates into

employment λ [1 − F (Ru (b))] and nonparticipation γ [1 − H (b∗)] . The other two states

can be derived in the same way.

Let L (θ; ti, {wi, w
′

i} |j, k) be the likelihood contribution of individual i who sojourns in

state j for a duration of ti and transits to state k. wi and w′

i are optional arguments

depending on the type of transition, representing the old wage and new wage (if any). Let
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l (.) = ln L (.) . The log-likelihood function is thus

l (θ) =
N∑

i=1

l (θ; ti, w|j, k)

U → E Transition In this transition we observe unemployed duration tu and accepted

wage w. The contribution of this type of transition to the log-likelihood is

l (θ; tu, w|u, e) = ln λ−{λ + γ [1 − H (b∗)]} tu+ln f (w)+ln

(
∫ b∗

b

exp {λF (b − s) tu} dJu (b)

)

(14)

U → N Transition This transition requires we observe only duration tu. The log-

likelihood is

l (θ; tu|u, n) = ln γ+ln [1 − H (b∗)]−{λ + γ [1 − H (b∗)]} tu+ln

(
∫ b∗

b

exp {λF (b − s) tu} dJu (b)

)

(15)

N → E Transition In this type of transition I should observe tn and the accepted wage

w

l (θ; tn, w|n, e) = ln λ0−{λ0 + γH (b∗)} tn +ln f (w)+ ln

(
∫ b̄

b∗
exp {λ0F [Rn (b)] tn} dJn (b)

)

(16)

N → U Transition This transition requires we observe only observe tn

l (θ, tn|n, u) = ln γ − [λ0 + γH (b∗)] tu + ln H (b∗) + ln

(
∫ b̄

b∗
exp {λ0F [Rn (b)] tn} dJn (b)

)

(17)

E → E Transition I should observe duration of current job te, wage at current job w,

and the new wage w′ that I get. Likelihood would be

l
(
θ; te, w, w′|e, e

)
= ln λ − {λ [1 − F (w)] + γ [1 − H (φj (w))]} te + ln f

(
w′

)
(18)
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E → U transitions These transitions only happen when current accepted wage is low

enough, i.e. when w < w < b∗ − s, but the new draw of b is not too high. I should observe

w and te. Likelihood is

l (θ, te, w|e, u) = ln γ + ln [H (b∗) − H (w + s)]−{λ [1 − F (w)] + γ [1 − H (w + s)]} te (19)

E → N transitions There are two possibilities: (1) when w < b∗ − s. The likelihood of

a transition to N is

l (θ; te, w|e, n, w < b∗ − s) = ln γ + ln [1 − H (b∗)] − {λ [1 − F (w)] + γ [1 − H (w + s)]} te

(20)

When (2) w ≥ b∗− s, a worker only quits to nonparticipation the contribution to likelihood

is

l (θ; te, w|e, n, w > b∗ − s) = ln γ+ln {1 − H [φn (w)]}−{λ [1 − F (w)] + γ [1 − H (φn (w))]} te

(21)

Treatment of Missing Observations An empirical issue is that for job to job transi-

tions, it is sometimes observed that w′ < w. This is not admissible under the model as it

generates a likelihood value of zero. To get around this problem, one either incorporates

measurement error, or disregards w′. In the version without measurement error, I take the

latter approach.

3.4 Measurement Error (TO BE ADDED)

Assume that wages are measured with multiplicative error. If w is the true wage and w̃ is

the observed wage, then the relationship between true and observed wage is

w = w̃ε

Assume that ε ∼ Φ(ε) .
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3.5 Estimation Results

Table 3 presents the parameter estimates of the maximum likelihood estimation assuming

that wages are measured without error. Standard errors are calculated from the empirical

hessian of the maximized likelihood.

table3here

That λ > λ0 > 0 and γ > 0 are key results of the paper. The arrival rate of jobs when

OLF is lower than when employed as expected, but significantly different from zero. Also

that γ > 0 imples that shocks to non-work options do drive females’ labor force participa-

tion choices. The results indicate that white females experience a higher arrival rate of jobs

while employed and unemployed (0.0670 vs 0.041)and OLF (0.0256 vs 0.0161)compared

with black females. Both flow parameters are 59% and 63% higher respectively. On

the other hand, the arrival rate of shocks to utility of leisure, γ, is 18% higher among black

women than white women (0.0432 vs 0.0367). The mean of the distribution of leisure values

from the black sample is also higher than for the white sample, while the variance is slightly

lower. Since this is assumed to be lognormal, after converting to 1994 US dollars, this

implies a mean non-work value of $287.54 vs $262.27 per week for black and white females

respectively. Put another way, the estimates imply that black women in the sample have

about a 10% higher mean value of non-work, and slightly less variation in their non-work

utility than the white sample. In addition, they encounter these shocks more frequently.

Search costs turn out to be lower for the black sample than for the white sample, but only

slightly so. The weekly rates of discount are about equal rb = 0.0026 for black sample and

rw = 0.0024 for the white sample. These correspond an annual discount rates of 0.874 for

black women, and 0.883 for white women.10

Turning to the distribution parameters of labor productivity, we find that black women

have a 12% higher mean value of labor productivity. The distribution of productivity, also

a lognormal, implies a mean of about $309.99 and $277.01 per week for the black and white

10There can be several explanations as to why these appear to be rather low annual discount rates. Firstly,

it may be because the sample consists of relatively young women at ages 20 to 28; secondly it may also be

because the rate of discount also incorporates the probability of exogenous “death” of a job match.
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sample respectively. Care should be taken to interpret the productivity parameters. These

are productivity parameters of the firm, not the worker, so in this particular set of estimates,

black females are employed at firms with lower average productivity than white females. In

addition, the estimates should be thought of as a measure of “aggregate” productivity and

are not industry specific. This is largely because the of the relatively small sample chosen

from the NLSY79. With a larger sample, one can stratify the data by industry and perform

a more finely divided analysis that accounts for inter and intra industry differentials.

The overall picture emerging from these results is that the various sources of labor market

differentials between black and white women that are captured by the model appear to work

in opposite directions. Lower arrival rates of job offers faced by black females compared

with white females would decrease reservation wages, but this effect is offset by higher mean

values of leisure and of productivity, which increase reservation wages.

We now turn to table 4 which reports steady state statistics from the model

table4here

Panel A reports the predicted steady state proportion in each of unemployment, em-

ployment and OLF. As much as 47% of black females are not attached to a job, as opposed

to 31% of white females. In panel B, the mean wage offers are $151.52 and $137.53 for black

and white women respectively: much lower than the mean accepted wages, and implying

that the black-white gap in offered wages is in the opposite direction than that of accepted

wages. Looking at the mean sojourn spells, we see that all spells among black females are

shorter than for white females. The higher frequency of shocks to utility of leisure faced

by black females as compared to whites reduces their overall length of time spent in each

state.

Turning to table 5, we compare the average hazards obtained from the sample, with the

hazards implied by the model. For the most part, the model and data hazards are of the

same order of magnitude. It is interesting to note that the model significantly underpredicts

the n → e average hazard rate. The model’s average u → e hazard is about 40 times as

large as the average n → e hazard. This underscores the behavioral difference between the

unemployed and the OLF. The hazards governing movement between u and n are as of the

24



0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 200 400 600 800 1000 1200

W_Ofr
W_Acpt
B_Ofr
B_Acpt

Weekly 
Wages

Figure 3: Wage Offer and Accepted Densities for Black and White Females.

same order of magnitude as the hazards into employment, and as insignificant, as suggested

by Van Den Berg and Ridder (1998).

We now turn to the distributions implied by the model. Figure 3 displays the dis-

tributions of offered wages F (w) and accepted wages G (w) . Indeed, looking at accepted

wages, would give a different picture than offered wages. Offered wages are not a sufficient

picture of racial labor market differences either. One could argue that offered wages are

higher for blacks, but these are offset by the fact that frictions in job search are also higher.

Figure 4 displays the reservation wages implied by the model. The two reservation wage

functions are quite close together, suggesting that no group is more “picky” about jobs than

the other. In sum, the estimated model seems to suggest a mixed picture of black-white

labor market inequality.

The differences in labor market frictions and shocks to non-work options are quite large

and are in favor of white females, the differences in work (productivity) and non-work

(leisure) options are more moderate, and favor the black females, In all, these two effects

appear to cancel each other, resulting in very similar reservation wage functions. Also, the
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Figure 4: Reservation Wages Implied by the Model.

higher rate of shocks to leisure does shorten the average labor market attachment of the

black women compared with white women.

4 Counterfactual Experiments

TO BE ADDED

5 Conclusion

This paper presents the first attempt at formulating and estimating an equilibrium search

model in more than two states. The model developed here incorporates the participation

decision as well as the reservation strategy. Its main driving force in generating participation

is the fact that individuals receive changes to the utility of their non-work option, and

respond by reassessing their labor market choices. They may choose to quit their jobs, and

if so, whether to engage in active search (unemployed) at a utility cost, or passive search

(OLF) at no cost. This formulation is meant to capture, in a parsimonious way, potentially
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long term life cycle changes that are reflected by a change in the valuation of non-work

alternatives.

The estimated model allowed us to examine labor force inequality along several dimen-

sions, namely offered wages, unemployment and participation rates, and spell lengths. In

summary, the estimated model suggests that black labor market spells are shorted as a

result of more frequent changes in non-work options. The parameters also suggest that

labor force inequality arises from (1) more search frictions encountered by black women

than by white women (as evidenced by the lower arrival rate of jobs to black women while

unemployed). However this is somewhat countered by (2) the higher valuation of, and

higher frequency of shocks to non-work alternatives by black women.

The model suggests that putting more structure on search frictions parameters, such as

incorporating endogenous search, would be a fruitful direction of further research. Likewise,

further work to understand the nature of the non-work alternatives would also be fruitful.

TO BE CONTINUED...

6 Appendix

6.1 Proofs

Derivation of Ru (b) and Rn (b) .. Rewrite the value functions characterizing the model

rV (w) = w + λ

∫ w̄

w

[
V

(
w′

)
− V (w)

]
dF

(
w′

)
+ γE max

[
P

(
b′

)
− V (w) , 0

]
(22)

rU (b) = b − s + λ

∫ w̄

Ru(b)

[
V

(
w′

)
− V (Ru (b))

]
dF

(
w′

)
+ γE

[
P

(
b′

)
− U (b)

]
(23)

rN (b) = b + λ0

∫ w̄

Rn(b)

[
V

(
w′

)
− V (Rn (b))

]
dF

(
w′

)
+ γE

[
P

(
b′

)
− N (b)

]
(24)

P (b) = max [U (b) , N (b)] (25)

We begin by solving for the reservation wage for the unemployed. Setting U (b) = V [Ru (b)]

we obtain the expression for the reservation wage of an unemployed worker with b:

Ru (b) = b − s if EP
(
b′

)
≥ U (b) (26)

Similarly, setting N (b) = V [Rn (b)] . This implies

Rn (b) = b − (λ − λ0) ϕ [Rn (b)] if EP
(
b′

)
≥ N (b) (27)
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where by integrating by parts,

ϕ [Rn (b)] =
∫ w̄

Rn(b) [V (w′) − V (Rn (b))] dF (w′) =
∫ w̄

Rn(b) [1 − F (w)] V ′ (w) dw.

To summarize, the workers adopt the following reservation strategy: unemployed and

nonparticipating workers with utility b accept wage offers greater than the reservation wage

equations defined by (26) and (27) respectively.

Proof of Lemma 1.. U ′ (b) , N ′ (b) , V ′ (w) > 0.

Step 1: Recall that

rV (w) = w + λ

∫ w̄

w

[1 − F (z)] V ′ (z) dz + γE max
{
max

[
N

(
b′

)
, U

(
b′

)]
− V (w)

}

where we need to evaluate P (b′) . Suppose the worker receives an opportunity to draw a

new b′. We conjecture that there exists a b∗ such that the worker is indifferent between

U (b∗) and N (b∗). If the worker draws b′ > b∗, she would prefer nonparticipation, because

there the arrival rate of job offers is low, allowing her to enjoy a high b′ for a longer period.

If the worker draws b′ < b∗, she would prefer to choose unemployment, engage in active job

search, and suffer a short term utility loss so as to exit unemployment as soon as possible.

This suggests that

P
(
b′

)
=







N (b′) if b′ ≥ b∗

U (b′) if b′ < b∗

Since there is a b∗ such that U (b∗) = N (b∗) , it must also be true that V [Ru (b∗)] =

V [Rn (b∗)] . And in order that V ′ (.) > 0, it should be true that Ru (b∗) = Rn (b∗) = R (b∗)

also. Therefore we consider 2 cases.

Case 1: w < R (b∗) :

In this case workers have the option to quit to both nonparticipation and to unem-

ployment. Workers would quit to unemployment only if the currently received low wage

(w < R (b∗)) is exceeded by a new sample of b′ such that U (b′) > V (w) , and U (b′) > N (b′).

Thus Ru (b′) > w. (i.e. the wage she received was so low, that she’d rather quit to unem-

ployment if the opportunity came up). On the other hand if she samples a b′ ≥ b∗, she

would prefer to quit to nonparticipation. This discussion implies that the worker would

(1) quit to unemployment when w is low enough and the worker samples b′ ∈ [R−1
u (w) , b∗),
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or (2) quit to nonparticipation if samples a b′ ∈
[
b∗, b̄

]
. Therefore when w < R (b∗)

E max
[
P

(
b′

)
− V (w) , 0

]
=

∫ b∗

R−1
u (w)

[
V

(
Ru

(
b′

))
− V (w)

]
dH

(
b′

)
(28)

+

∫ b̄

b∗

{
V

[
Rn

(
b′

)]
− V (w)

}
dH

(
b′

)
. (29)

Case 2: w ≥ R (b∗) .

In this case, the worker quits only to nonparticipation. This would happen if she draws

a b′ such that b′ ≥ b∗ and is moreover sufficiently high compared to his current wage that she

is induced to quit. Thus Rn (b′) > w. In other words she must sample b′ ∈
[
R−1

n (w) , b̄
]
.

This discussion implies that when w ≥ R (b∗) ,

E max
[
P

(
b′

)
− V (w) , 0

]
=

∫ b̄

R−1
n (w)

{
V

[
Rn

(
b′

)]
− V (w)

}
dH

(
b′

)
(30)

Combining the two expressions (28) and (30), we now have

E max
[
P

(
b′

)
− V (w) , 0

]
(31)

=







∫ b∗

R−1
u (w) [V (Ru (b′)) − V (w)] dH (b′) +

∫ b̄

b∗
{V [Rn (b′)] − V (w)} dH (b′) if w < R (b∗)

∫ b̄

R−1
n (w) {V [Rn (b′)] − V (w)} dH (b′) if w ≥ R (b∗)

Differentiating equation (31) using Leibniz’s rule:

∂E max [P (b′) − V (w) , 0]

∂w
=







− [1 − H [φu (w)]] V ′ (w) if w < R (b∗)

−{1 − H [ηn (w)]}V ′ (w) if w ≥ R (b∗)
(32)

Step 2: Differentiating equation (22) by Leibniz’s rule, we have :

rV ′ (w) = 1 − λ [1 − F (w)] V ′ (w) + γ
∂E max [P (b′) − V (w) , 0]

∂w
(33)

Substituting (32) into (33) and letting

1 − H [φj (w)] =







1 − H [φu (w)] if w < R (b∗)

1 − H [φn (w)] if w ≥ R (b∗)

allow us to obtain V ′ (w)

V ′ (w) =
1

r + λ [1 − F (w)] + γ {1 − H [φj (w)]}
> 0.
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Step 3: Differentiating the Bellman Equations via Leibniz’s rule and rearranging, we

have

U ′ (b) =
1

r + γ + λ [1 − F (Ru (b))]

N ′ (b) =
1

r + γ + λ0 [1 − F (Rn (b))]

which are both strictly positive.

Proof of Lemma 2.. Consider an unemployed worker with b. Since U (b) is indepen-

dent of w and V ′ (w) > 0, a reservation strategy Ru (b) exists and is unique. Conversely

since U ′ (b) > 0 and V (w) is independent of b, Ru (b) is strictly increasing in b. The same

arguments apply for Rn (b) 11.

Proof of Proposition 1.. We first show existence and uniqueness. Setting U (b∗) =

N (b∗) implies b∗ must solve
s

λ − λ0
= ϕ (b∗ − s)

where ϕ (w) =
∫ w̄

w

1−F (x)
r+λ[1−F (x)]+γ[1−H(φj(x))]dx. It is straightforward to show that ϕ (b − s) is

monotonically declining and is bounded above by the rectangular area b−b
r+γ+λ

. Furthermore,

ϕ
(
b
)

= 0. Continuity and monotonicity guarantee the existence of b∗. Observing further

that b−b
r+γ+λ

> s
λ−λ0

, we obtain the bound B = λ−λ0
r+γ+λ0

.

Next, consider U (b) − N (b) . Using a first order Taylor expansion around b∗ − s,

U (b) − N (b) ≷ 0 ⇐⇒ −s + (λ − λ0) ϕ (b − s) ≷ 0

⇐⇒ −s + (λ − λ0) ϕ (b∗ − s)
︸ ︷︷ ︸

=0

+ (λ − λ0) ϕ′ (b∗ − s) (b − b∗) ≷ 0

⇐⇒ ϕ′ (b∗ − s) (b − b∗) ≷ 0

where since ϕ′ < 0, the inequality can be flipped to obtain the result.

11We can do so because regardless of the state the worker is in V (w) , U (b) or N (b) , she only has to track

one state variable, either b or w. This would not be the case, for example, if V (w, b), such as if employed

workers can recall their b when laid off. This becomes more complicated because we can no longer guarantee

the monotonicity of the reservation wage strategies, which is needed for uniqueness of reservation wages.
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6.2 Solving the Endogenous Transitions and Distributions

6.2.1 Aggregate Transitions and Stocks in Steady State

The model generates six transitions: u → e, u → n, n → e, n → u, e → u, e → n.

Aggregate transitions in steady states therefore must satisfy the following flow condi-

tions. Inflows to and outflows from unemployment must satisfy:

u

{

λ

[

Ju (bl) +

∫ b∗

bl

[1 − F (Ru (b))] dJu (b)

]

+ γ [1 − H (b∗)]

}

(34)

= nγH (b∗) + eγ

∫ R(b∗)

w

[H (b∗) − H (φu (w))] dG (w) (35)

which simplifies to

u {λ [1 − A] + γ [1 − H (b∗)]} = γ {H (b∗) [n + eG (R (b∗))] − eB}

where

A =

∫ b∗

bl

F (Ru (b)) dJu (b)

B =

∫ R(b∗)

w

H (φu (w)) dG (w)

Inflows to and outflows from nonparticipation have to satisfy:

n

{

λ0

∫ bu

b∗
[1 − F (Rn (b))] dJn (b) + γH (b∗)

}

(36)

= uγ [1 − H (b∗)] + eγ

{

[1 − H (b∗)] G (R (b∗)) +

∫ w̄

R(b∗)
[1 − H (φn (w))] dG (w)

}

which simplifies to

n {λ0 [Jn (bu) − C] + γH (b∗)} = γ {u [1 − H (b∗)] + e [1 − H (b∗) G (R (b∗)) − D]}

where

C =

∫ bu

b∗
F (Rn (b)) dJn (b)

D =

∫ w̄

R(b∗)
H (φn (w)) dG (w)
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And finally, imposing the requirement that e + n + u = 1, we have 3 equations in 3

unknowns for which we solve for steady state ergodic distribution of all workers. The closed

form solutions to the steady state stocks of u, e, n are

u =
γ2H (1 − B − D) + λ0γ (GH − B) (J − C)

∆
(37)

e =
λ0 (J − C) [γ (1 − H) + λ (1 − A)] + γλ (1 − A) H

∆
(38)

n =
γ2 (1 − H) (1 − B − D) + γλ (1 − A) (1 − D − HG)

∆
(39)

where

∆ = γ2 (1 − B − D) + λ (1 − A) [γ (1 − D + H − GH) + λ0 (J − C)]

+λ0γ (J − C) (1 − B + H − GH)

6.2.2 Ju (b) and Jn (b) .

The support of b must be split into four regions: [b, bl] , where workers will accept any job

because their utility of leisure is very low, [bl, b
∗] , and [b∗, bu] , where workers accept some

jobs but reject others, and
[
bu, b

]
where workers reject all jobs because they enjoy leisure

too much.

These specify four cases:

Case 1: b < b < bl By the same logic of equating inflows and outflows, Ju (b) must satisfy

u {λ + γ [1 − H (b)]} Ju (b) = γnH (b)

implying

Ju (b) =
n

u

γH (b)

λ + γ [1 − H (b)]
(40)

Case 2: bl < b < b∗ Ju (b) must respectively satisfy:

u

{

λJu (bl) +

∫ b

bl

λ [1 − F (Ru (x))] dJu (x) + γ [1 − H (b)] Ju (b)

}

(41)

= γ

[

nH (b) + e

∫ Ru(b)

w

[H (b) − H (φu (x))] dG (x)

]
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Case 3: b∗ < b < bu Jn (b) in this case would be

n

{∫ b

b∗
λ0 [1 − F (Rn (x))] dJn (x) + γ [1 + H (b∗) − H (b)] Jn (b)

}

(42)

= γ

{

u [H (b) − H (b∗)] + e

[

G (R (b∗)) [H (b) − H (b∗)] +

∫ Rn(b)

R(b∗)
[H (b) − H (φj (x))] dG (x)

]}

Case 4 : bu < b < b

n

{∫ bu

b∗
λ0 [1 − F (Rn (x))] dJn (x) + γ [1 + H (b∗) − H (b)] Jn (b)

}

(43)

= γ

{

u [H (b) − H (b∗)] + e

∫ Rn(bu)

R(b∗)
[H (bu) − H (φu (x))] dG (x) + e [H (b) − H (bu)]

}

Proposition 4 Given F (w) and H (b) , there exists a unique Ju (b) satisfying (41) and a

unique Jn (b) satisfying (42) and (43)

Proof. We will prove by differentiating (41) to (43) with respect to b and showing that

the resulting differential equations satisfy the Lipschitz condition. Differentiating expression

(41) and rearranging we get

J ′

u (b) =
γ

u

[n + eG (Ru (b)) + uJu (b)] H ′ (b)

λ [1 − F (Ru (b))] + γ [1 − H (b)]

Define the RHS as K (b, x) = [n+eG(Ru(b))+ux]H′(b)
λ[1−F (Ru(b))]+γ[1−H(b)] . Observe that K (b, x) is continuous

for all x and for all b satisfying λ [1 − F (Ru (b))] + γ [1 − H (b)] > 0 which is true as long

as b∗ < b̄. Next observe that

|K (b, x2) − K (b, x1)| =

∣
∣
∣
∣

uH ′ (b) (x2 − x1)

λ [1 − F (Ru (b))] + γ [1 − H (b)]

∣
∣
∣
∣

which satisfies the Lipschitz condition because b∗ < b̄. From this together with our initial

condition that Ju (b) = 0, we conclude that Ju (b) exists and is unique. The proof for Jn (b)

is identical, with the analogous expressions for the differential equation

J ′

n (b) =
γ

n

{nJn (b) + u + eG (Rn (b))}H ′ (b)

λ0 [1 − F (Rn (b))] + γ [1 + H (b∗) − H (b)]

b ∈ [b∗, bu]

and

J ′

n (b) =
1

n

H ′ (b) [1 − n + nJn (b)]

[1 + H (b∗) − H (b)]

b ∈
[
bu, b

]
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and the initial condition Jn (b∗) = 0. Note now that the denominator in this case is always

> 0.

6.3 Computation of the Model

6.3.1 Computation of Ju (b) and Jn (b) .

Given a solution to {u, e, n} we need to update the Ju (b) and Jn (b) expressions. Using

the steady state conditions (40) , (41) , (42) and (43) , we can write updating expressions as

follows:

Case 1: b < b < bl

Ju (b) =
n

u

γH (b)

λ + γ [1 − H (b)]
(44)

Case 2: bl < b < b∗

J (t+1)
u (b) =

uλA (b) + γH (b) [n + eG (b − s)] − eγB (b − s)

u {λ + γ [1 − H (b)]}
(45)

where

A (b) =

∫ b

w+s

F (t) (b − s) J ′(t)
u (b) db

B (b − s) =

∫ b−s

w

H (w + s) G′ (w) dw

Case 3: b∗ < b < bu

J (t+1)
n (b) =

nλ0C (b) + uγ [H (b) − H (b∗)] + eγH (b) [G (Rn (b)) − G (b∗ − s)] − eγD (Rn (b))

n {λ0 + γ [1 + H (b∗) − H (b)]}
(46)

where

C (b) =

∫ b

b∗
F (t) [Rn (b)] J ′(t)

n (b) db

D (Rn (b)) =

∫ Rn(b)

b∗−s

H [φn (w)] G′ (w) dw
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Case 4 : bu < b < b and

J (t+1)
n (b) =

−nλ0

[

J
(t)
n (bu) − C (bu)

]

+ uγ [H (b) − H (b∗)] + eγH (bu) [G (Rn (bu)) − G (b∗ − s)] − eγD (Rn (bu))

nγ [1 + H (b∗) − H (b)]

where noting that Rn (bu) = w,

J (t+1)
n (b) =

−nλ0

[

J
(t)
n (bu) − C (bu)

]

+ uγ [H (b) − H (b∗)] + eγH (bu) [1 − G (b∗ − s)] − eγD (w)

nγ [1 + H (b∗) − H (b)]

where

C (bu) =

∫ bu

b∗
F (t) [Rn (b)] J ′(t)

n (b) db

D (w) =

∫ w

b∗−s

H [φn (w)] G′ (w) dw

6.3.2 Computation of F (w) .

Once we have converged on Jn (b) and Ju (b) we are in a position to update F (w) . Using

equations (9) and (10) we can write the updating equations as

F (t+1) (w) =
(γ + λ) eG (w) + uλA (w + s) − eγB (w)

uλJu (w + s) + eλG (w)
(47)

where w < b∗ − s

where

A (w + s) =

∫ w+s

w+s

F (t) (b − s) J ′(t)
u (b) db

B (w) =

∫ w

w

H (w + s) G′ (w) dw

and

F (t+1) (w) =
(γ + λ) eG (w) + uλA (b∗) + nλ0C [φn (w)] − eγ [B (b∗ − s) + D (w)]

λ [u + eG (w)] + nλ0Jn [φn (w)]
(48)

where w ≥ b∗ − s (49)
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where

A (b∗) =

∫ b∗

w+s

F (t) (b − s) J ′(t)
u (b) db

B (b∗ − s) =

∫ b∗−s

w

H (w + s) G′ (w) dw

C [φn (w)] =

∫ φn(w)

b∗(t)
F (t) [Rn (b)] J ′(t)

n (b) db

D (w) =

∫ w

b∗−s

H [φn (x)] G′ (x) dx

Hence Update Rules for F (w) are (47) and (48) .
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(% Sample

Panel A : NLSY79 Cross Section Sample 
(N=6111) averaged over Jan 1978 - Dec 1996

n � u 1.07

n � e 3.00

u � n 0.96

u � e 1.12

e � u 1.00

e � n 2.93

e � e 1.89

Panel B : CPS Jan 1968 to May 1986 

n � u 0.66

n � e 0.90

u � n 0.55

u � e 1.01

e � u 0.80

e � n 1.02

e � e -

Notes: Panel B taken from Kim (2001).

Table 1 : Average Monthly Worker Transitions as a Percentage of Sample



Table 2 : Summary Statistics of the Data

Black White B/W Ratio

Unemployment 0.122 0.046 2.646

Employment 0.580 0.733 0.791

OLF 0.299 0.221 1.353

Unemployment Rate 0.173 0.059 2.932

LFP Rate 0.701 0.779 0.900

Mean Accepted Wage/Week* 294.9 336.98 0.875

Std dev. Wage 149.18 160.49

Spell Length Before Transition (week)

Mean Unemployed Spell 14.7 12.4 1.185

Mean Employed Spell 35.1 34.9 1.006

Mean OLF Spell 23.4 23.8 0.984

Weekly Worker Flows (%)
n � u 0.425 0.132 3.218
n � e 0.447 0.485 0.921
u � n 0.429 0.133 3.227
u � e 0.329 0.264 1.245
e � u 0.283 0.233 1.212
e � n 0.448 0.502 0.893
e � e 0.980 1.292 0.759

Weekly Hazards(%)
n � u 1.423 0.598 2.378

n � e 1.495 2.196 0.681

u � n 3.519 2.886 1.219

u � e 2.699 5.736 0.471

e � u 0.487 0.318 1.532

e � n 0.773 0.685 1.129

e � e 1.689 1.762 0.959

*Wages are in 1994 dollars.



Black White

λλλλ 0.0410 0.0670
(0.0006) (0.0005)

λλλλ���� 0.0161 0.0256
(0.0008) (0.0006)

γγγγ 0.0432 0.0367
(0.0006) (0.0006)

s 25.59 27.20
(0.0006) (0.0006)

r 0.0026 0.0024
(0.0011) (0.0011)

µµµµ���� 5.0333 4.9248
(0.0003) (0.0003)

σσσσ���� 1.1207 1.1354
(0.0002) (0.0002)

µµµµ���� 5.5144 5.3100
(0.0003) (0.0003)

σσσσ���� 0.6665 0.7925
(0.0002) (0.0002)

Negative of log-likelihood 2908.6 5892.933

Number of Observations 462 827

Mean Value of Leisure 287.54 262.27

S.d. Value of Leisure 455.68 425.28

Mean Marginal Product of Labor 309.99 277.01

S.d. Marginal Product of Labor 231.85 258.97

Table 3 : Maximum Likelihood Estimation Results



Table 4: Statistics Implied by the Estimated Model 

Black White B/W Ratio

Panel A: % in State.
Unemployment 0.122 0.240 0.046 0.133 2.646 1.798

Employment 0.580 0.531 0.733 0.687 0.791 0.772

OLF 0.299 0.230 0.221 0.179 1.353 1.280

Panel B: Labor Market Statistics
Unemployment Rate (U/LF) 0.173 0.311 0.059 0.163 2.932 1.915

LFP Rate (LF/POP) 0.701 0.770 0.779 0.821 0.900 0.939

Mean Wage Offer - 151.52 - 137.53 - 1.102

S.d. Wage Offer - 170.00 - 156.07 -

Mean Accepted Wage From Data 286.26 286.26 320.7 320.7 0.893 0.893

b* 330.61 353.96

Mean Unemployed Spell (wk) 34.81 12.4 40.6 0.000 0.857

Mean Employed Spell (wk) 60.96 34.9 77.3 0.000 0.789

Mean OLF Spell (wk) 25.63 23.8 28.8 0.000 0.891



Table 5: Comparison of Hazards and Flows from Data and Model 

Weekly Average Hazard (%) Data Model Data Model
n � u 1.423 3.251 0.598 2.924
n � e 1.495 0.065 2.196 0.119
u � n 3.519 1.065 2.886 0.744
u � e 2.699 2.798 5.736 4.529
e � u 0.487 0.340 0.318 0.261
e � n 0.773 0.953 0.685 0.650
e � e 1.689 1.374 1.762 1.681

Weekly Worker Flows (%) Data Model Data Model
n � u 0.425 0.746 0.132 0.524
n � e 0.447 0.015 0.485 0.021
u � n 0.429 0.255 0.133 0.099
u � e 0.329 0.671 0.264 0.604
e � u 0.283 0.180 0.233 0.179
e � n 0.448 0.506 0.502 0.447
e � e 0.980 0.729 1.292 1.155

Black White


