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Abstract

What role should assumptions play in inference? We present a small theoretical case study

of a simple, clean case, namely the nonparametric comparison of two continuous distributions

using (essentially) information about quartiles, that is, the central information displayed in a

pair of boxplots. In particular, we contrast a suggestion of John Tukey — that the validity

of inferences should not depend on assumptions, but assumptions have a role in efficiency —

with a competing suggestion that is an aspect of Hansen’s generalized method of moments —

that methods should achieve maximum asymptotic efficiency with fewer assumptions. In our

case study, the practical performance of these two suggestions is strikingly different. An aspect

of this comparison concerns the unification or separation of the tasks of estimation assuming

a model and testing the fit of that model. We also look at a method (MERT) that aims not

at best performance, but rather at achieving reasonable performance across a set of plausible

models.
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1 Introduction: A Question and an Example

1.1 What Role for Assumptions?

In his essay, “Sunset Salvo,” Tukey (1986, p. 72) advocated:

Reduc[ing] dependence on assumptions . . . using assumptions as leading cases, not

truths, . . . when possible, using randomization to ensure validity — leaving to assump-

tions the task of helping with stringency.

Although the comment is not formal, presumably ‘validity’ refers to the level of tests and the

coverage rate of confidence intervals, while ‘stringency’ refers to efficiency at least against some

alternatives. Later in the essay (p. 73), Tukey describes a statistic as “safe” if it is “valid — and

of reasonably high efficiency — in each of a variety of situations.” (Recall that a most stringent test

minimizes the maximum power loss, and that in many problems, uniformly most powerful tests are

not available; see Lehmann (1997).)

The first part of Tukey’s suggestion — ‘reduce dependence of validity on assumptions’ — is,

today, uncontroversial, and there are many, widely varied attempts to achieve that goal. The second

part of Tukey’s suggestion — ‘use assumptions to help with stringency’ — runs against the grain of

some recent developments, which attempt to reduce the role of assumptions in obtaining efficient

procedures. Do assumptions have a role in efficiency when comparing equally valid procedures?

Or can we have it all, asymptotically of course, adapting our procedures to the data at hand to

increase efficiency?

Our purpose here is to closely examine these questions in a theoretical case study of a simple,

clean case. We offer exactly the same information to two types of nonparametric procedures in a

setting in which both are valid, though one chooses a procedure with high relative efficiency across

a set of plausible models, while the other tries to be asymptotically efficient with fewer assumptions.

The first method uses a form of rank statistic (Gastwirth 1966, 1985, Birnbaum and Laska 1967).

The second method is a particular case of Hansen’s (1982) generalized method of moments (GMM),

widely used in econometrics. Both methods compare two distributions to estimate a shift. Both

methods look at exactly the same information, somewhat related to the information about quartiles

depicted in a pair of boxplots, but the methods use this simple information very differently. We
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compare the methods in a scientific example, in a simulation, and using asymptotics. Also, we

ask whether there is information against the shift model. We also show how to eliminate a shared

assumption of both methods, namely the existence of a shift, which if false may invalidate their

conclusions.

In §1.2, a motivating example is described. In §2, notation and the methods of estimating

a shift are defined, and in §2.4 they are applied to the motivating example. The methods are

evaluated by simulation in finite samples in §3, where some large sample results hold in quite small

samples and other require astonishingly large samples. In §4, we dispense with the shift model.

The relevant large sample theory is discussed in the appendix, §6, with some patches needed to

cover some nonstandard details.

1.2 A Motivating Example: Radiation in Homes

In the early 1980’s, a number of residential buildings were constructed in Taiwan using 60Co−contaminated

steel rods, with the consequence that the levels of radioactive exposure in these homes were often

orders of magnitude higher than background levels. Chang, et al. (1999) compared 16 residents

of these buildings to 7 unexposed controls with respect to several measures of genetic damage, in-

cluding the number of centromere-positive signals per 1000 binucleated cells, as depicted in Figure

1. The sorted values for the 16 residents were 3.7, 6.8, 8.4, 8.5, 10.0, 11.3, 12.0, 12.5, 18.7, 19.0,

20.0, 22.7, 24.0, 31.8, 33.3, 36.0, and for the 7 controls were 3.2, 5.1, 8.3, 8.8, 9.5, 11.9, 14.0. They

reported means, standard deviations, and the significance level from the Mann-Whitney-Wilcoxon

test. In Figure 1, the distribution for exposed subjects looks higher, more dispersed, and possibly

slightly skewed right in comparison to the controls, but of course the sample sizes are small and

boxplots fluctuate in appearance by chance. Should one estimate a shift in the distributions? If

so, how? If not, what should one do instead?

Suppose that the control measurements, X1, . . . , Xm, are independent observations from a

continuous, strictly increasing cumulative distribution F (·), and that the exposed measurements,

Y1, . . . , Yn, are independent observations from a continuous, strictly increasing cumulative distri-

bution G (·), with N = n + m. The distributions are shifted if there is some constant ∆ such that

Yj −∆ and Xi have the same distribution F (·), or equivalently if F (x) = G(x+∆) for each x. We

are interested in whether a shift model is compatible with the data, and if it is, with estimating ∆,
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and if it is not, with estimating something else. Obviously, in the end, with finite amounts of data,

there is going to be some uncertainty about both questions — whether a shift model is appropriate,

what values of ∆ are reasonable — but the goal is to describe the available information and the

uncertainty that remains.

2 Two Approaches Using the Same Information

2.1 A 2 × 4 Table

Boxplots serve two purposes: they call attention to unique, extreme observations requiring indi-

vidual attention, and they describe distributional shape in terms of quartiles. Here, we focus on

quartiles, and contrast two approaches to using (more or less) the depicted information to deter-

mine whether a shift, ∆, exists, and what values of ∆ are reasonable. We very much want to

offer the two approaches exactly the same information, and then see which approach makes better

use of this information; that is, we want to avoid complicating the comparison by offering different

information to the different approaches. Because the question about distributions is raised by the

appearance of boxplots, the information offered to the methods is information about the quartiles.

Consider the null hypothesis that the distributions are shifted by a specified amount, ∆0, that

is, H0 : F (x) = G(x + ∆0). If this hypothesis were true, then Z∆0

1 = X1, . . ., Z∆0

m = Xm,

Z∆0

m+1 = Y1 − ∆0, . . ., Z∆0

N = Yn − ∆0, would be N independent observations from F (·). Let

Z∆0

(1) < . . . < Z∆0

(N) be the order statistics, let qi =
⌈

iN
4

⌉
for i = 1, 2, 3, where dwe is the least integer

greater than or equal to w, and define Z∆0

(qi)
to be the ith quartile. With N = 23 in the example,

q1 = 6, q2 = 12, q3 = 18, and the quartiles are Z∆0

(6) , Z∆0

(12), Z∆0

(18). Write k1 = q1, k2 = q2 − q1,

k3 = q3 − q2, and k4 = N − q3, so for N = 23, k1 = 6, k2 = 6, k3 = 6, k4 = 5. For the

hypothesized ∆0, form the 2 × 4 contingency table in Table 1 which classifies the Z∆0

i by quartile

and by treatment or control. Notice that the marginal totals of Table 1 are functions of the sample

sizes, n, m, and N = n + m, so they are fixed, not varying from sample to sample.

If the null hypothesis is true, Table 1 has the multivariate hypergeometric distribution:

Pr
(
A∆0

1 = a1, A∆0

2 = a2, A∆0

3 = a3, A∆0

4 = a4

)
=

(k1

a1

)(k2

a2

)(k3

a3

)(k4

a4

)
(N

n

) (1)
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Table 1: Contingency Table From Pooled Quartiles.
Quartile Interval Treated Control Total

Z∆0

i ≤ Z∆0

(q1)
A∆0

1 k1 − A∆0

1 k1

Z∆0

(q1)
< Z∆0

i ≤ Z∆0

(q2)
A∆0

2 k2 − A∆0

2 k2

Z∆0

(q2)
< Z∆0

i ≤ Z∆0

(q3)
A∆0

3 k3 − A∆0

3 k3

Z∆0

(q3)
< Z∆0

i A∆0

4 k4 − A∆0

4 k4

Total n m N

for 0 ≤ aj ≤ kj , j = 1, 2, 3, 4, a1 + a2 + a3 + a4 = n. (2)

As a consequence, if the null hypothesis is true, the expected counts are

E
(
A∆0

j

)
=

nkj

N
, j = 1, 2, 3, 4, (3)

with variances and covariances

var
(
A∆0

j

)
=

nmkj (N − kj)

N2 (N − 1)
, cov

(
A∆0

i , A∆0

j

)
= − nmki kj

N2 (N − 1)
, i 6= j. (4)

Write

A∆0
=
(
A∆0

1 , A∆0

2 , A∆0

3 , A∆0

4

)T

E=

(
nk1

N
,

n k2

N
,

n k3

N
,

n k4

N

)T

and V for the symmetric 4× 4 covariance matrix of the hypergeometric defined by (4). Notice, in

particular, that A∆0
is a random vector whose value changes with ∆0, whereas E and V are fixed

matrices whose values do not change with ∆0.

For each value of ∆0 there is a table of the form Table 1, and if the distributions were actually

shifted, F (x) = G(x + ∆), then the table with ∆0 = ∆ has the multivariate hypergeometric

distribution. The information available to both methods of inference is this collection of 2 × 4

tables as ∆0 varies.

A minor technical issue needs to be mentioned. Because A∆0

1 + A∆0

2 + A∆0

3 + A∆0

4 = n is

constant, the covariance matrix V is singular, that is, positive semidefinite but not positive definite.

One could avoid this by focusing on
(

A∆0

2 , A∆0

3 , A∆0

4

)
, but the 2×4 table is too familiar to discard
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for this minor technicality. We define V− as the specific generalized inverse of V which has 0’s in

its first row and column, and has in its bottom right 3 × 3 corner the inverse of the bottom right

3 × 3 corner of V; see Rao (1973, p. 27). Although our notation always refers to the 2 × 4 table,

the calculations ultimately use only the nondegenerate piece of the table,
(

A∆0

2 , A∆0

3 , A∆0

4

)
. In

later sections, this issue comes up several times, always with minor consequences.

The distribution (1) for Table 1 also arises in other ways. For instance, if there are N subjects,

and n are randomly assigned to treatment, with the remaining m = N − m subjects assigned to

control, and if the treatment has an additive effect ∆0, then (1) is the distribution for Table 1

without assuming samples from a population.

2.2 Inference Based on Group Ranks

A simple approach to inference about ∆ assuming shifted distributions uses a group rank statistic,

as discussed by Gastwirth (1966) and Markowski and Hettmansperger (1982, §5); see also Brown

(1981) and Rosenbaum (1999). Here, the rows of Table 1 are assigned scores, w = (w1, w2, w3, w4)
T ,

with w1 = 0, and the hypothesis H0 : ∆ = ∆0 is tested using the group rank statistic T∆0
= wTA∆0

whose exact null distribution is determined using (1). An exact confidence interval for ∆ is obtained

by inverting the test; e.g., Lehmann (1963), Moses (1965), Bauer (1972). The Hodges-Lehmann

(1963) point estimate, ∆̂HL, for this rank test is essentially the solution to the estimating equation

wTAe∆
= wTE. (5)

More precisely, with increasing scores, 0 = w1 < w2 < w3 < w4, because wTAe∆ moves in discrete

steps as ∆̃ varies continuously, the Hodges-Lehmann estimate is defined so that: (i) if equality in

(5) cannot be achieved, then the estimate is the unique point ∆̃ where wTAe∆ passes wTE, or (ii)

if equality is achieved for an interval of values of ∆̃ then ∆̂HL is defined to be the midpoint of the

interval.

In large samples, the null distribution of T∆0
is approximately Normal with expectation wTE

and variance wTVw, so the deviate

D∆0
=

wT (A∆0
−E)√

wTVw
(6)
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is compared with the standard Normal distribution. The Hodges-Lehmann estimate ∆̂HL defined

by (5) is essentially the same as the value ∆̃ that minimizes D2
e∆
.

All of this assumes the distributions are indeed shifted. A simple test of the hypothesis that

F (x) = G(x + ∆0) is based on the statistic

G2
∆0

= (A∆0
−E)T

V− (A∆0
−E)

whose exact null distribution follows from (1) and whose large sample null distribution is ap-

proximately χ2 on 3 degrees of freedom. It is useful to notice that under the null hypothesis

E
(
G2

∆0

)
= tr

[
E
{

(A∆0
−E) (A∆0

−E)T
}

V−
]

= 3, so the exact null distribution of G2
∆0

and

the χ2 approximation have the same expectation. This will be relevant to certain comparisons to

be made later.

Is the shift model plausible for plausible values of ∆0? A simple, informative procedure is

to plot the exact, two-sided P − values from D2
∆0

and G2
∆0

against ∆0. Curiosity is, of course,

aroused by values ∆0 which are accepted by D2
∆0

and rejected by G2
∆0

, because then the shift model

is implausible for an ostensibly plausible shift. Greevy, et al. (2004) do something similar.

2.3 Inference Based on the Generalized Method of Moments

In an important and influential paper, Hansen (1982) proposed a method for combining a number

of estimating equations to estimate a smaller number of parameters. In the current context, the

Tables 1 for different ∆0 yield the four estimating equations given by (3), one of which is redundant

or linearly dependent on the other three. Obviously, there may be no ∆0 that satisfies all four

equations at once, so Hansen proposed weighting the equations in an optimal way. In particular,

he showed that the optimal weighting of the equations uses the inverse covariance matrix of the

moment conditions (3), and it is, in fact, the value ∆̂gmm that minimizes G2
∆0

:

∆̂gmm = arg min
e∆

(
Ae∆ −E

)T
V− (Ae∆ −E

)
. (7)

In theory, ∆̂gmm is asymptotically efficient, fully utilizing all of the information in the estimating

equations (3); see Hansen (1982) and §6. Surveys of GMM are given by Mátyás (1999) and
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Lindsay and Qu (2004). Hansen’s results do not quite apply here, because certain differentiability

assumptions he makes are not strictly satisfied, but his conclusions hold nonetheless, as discussed

in §6, where a result of Jureckova (1969) about the asymptotic linearity of rank statistics replaces

differentiability. Hansen proposed a large sample test of the model or ‘identifying restrictions’ (3)

using the minimum value of G2
∆0

, that is, here, testing the family of models by comparing

G2
b∆gmm

=
(
Ab∆gmm

−E
)T

V−
(
Ab∆gmm

−E
)

to the χ2 distribution on 2 degrees of freedom. There does not appear to be an exact null

distribution for G2
b∆gmm

because it is computed not at ∆ but rather at ∆̂gmm which varies from

sample to sample, so the hypergeometric distribution for A∆ is not relevant. One large sample

test of H0 : ∆ = ∆0 compares G2
∆0

− G2
b∆gmm

to the chi-square distribution on 1 degree of freedom

(Newey and West 1987, Mátyás 1999, p. 109), and a confidence set is the set of ∆0 not rejected by

the test. See §6.

By a familiar fact (Rao 1973, p. 60)

sup
c=(0,c2,c3,c4)

{
cT
(
Ae∆ −E

)}2

cTVc
=
(
Ae∆ −E

)T
V− (Ae∆ −E

)
= G2

e∆
(8)

so that

∆̂gmm = arg min
e∆

sup
c=(0,c2,c3,c4)

{
cT
(
Ae∆ −E

)}2

cTVc
(9)

whereas ∆̂HL minimizes an analogous quantity, namely D2
e∆

in (6) for one specific set of weights w.

The w that achieves the bound in (8) is w = V− (Ae∆
−E

)
, so this optimizing w is not fixed, but

is rather a function of the data.

Both ∆̂HL and ∆̂gmm use the same information, the information in Table 1 for varied ∆0 and

the moment equations (3); however, ∆̂HL uses an a priori weighting of the equations yielding the

one estimating equation (5), while ∆̂gmm weights the equations (3) using V−. In the sense of (8),

∆̂gmm uses the ‘best’ weights as judged by the sample, and asymptotically it achieves the efficiency

associated with knowing what are the best fixed weights to use; see §6. Is it best to use the ‘best’

weights?

The generalized method of moments includes many familiar methods of estimation, including
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maximum likelihood, least squares, and two-stage least squares with instrumental variables. In

particular cases, such as weak instruments, it is known that poor estimates may result from GMM

(e.g., Imbens 1997, Staiger and Stock 1997), but this is sometimes viewed as a weakness in the

available data. A weak instrument may reduce efficiency but need not result in invalidity if

appropriate methods of analysis are used (Imbens and Rosenbaum 2005). The two-sample shift

problem is identified and presents no weakness in the data.

2.4 Example

The methods of §2.2 and §2.3 will now be applied to the data in Figure 1, where the two boxplots

have medians 8.8 and 15.6 differing by 6.8, and means 8.7 and 17.4 differing by 8.7. If the

distributions were shifted by ∆, then T∆ would be distribution-free using (1), and the expectation

of T∆ with rank weights, wj = j, j = 0, 1, 2, 3, would be 22.957 and the variance would be 6.1206.

Now, T8.7 = 22, T8.69999 = 23, so ∆̂HL = 8.7, which is by coincidence the same as the difference

in means. Also, G2
∆0

takes its smallest value, 3.176, on the half open interval [0.10, 4.90), so

∆̂gmm = 0.10+4.90
2 = 2.5. In these data, which estimate, ∆̂HL = 8.7 or ∆̂gmm = 2.5 looks better?

Figure 2 compares ∆̂HL and ∆̂gmm by displaying the control responses, Xi, together with the

adjusted exposed responses, Yj − ∆̂HL or Yj − ∆̂gmm. If the shift model were true, the estimates

equaled the true shift, and the sample size were very large, then the three boxplots would look

essentially the same. As it is, Yj − ∆̂gmm appears both too high and too dispersed compared to

the controls: all three quartiles of the Yj − ∆̂gmm are above the corresponding quartiles of the Xi;

the median of Yj − ∆̂gmm is above the upper quartile of the Xi; the upper quartile of Yj − ∆̂gmm

is above the maximum of Xi. In contrast, the Yj − ∆̂HL are shifted reasonably but appear more

dispersed than the Xi: the upper quartile of the Yj −∆̂HL is too high while the lower quartile is too

low; indeed, the entire boxplot of the Xi fits inside the quartile box of the Yj − ∆̂HL. Obviously,

a shift can relocate a boxplot but cannot alter its dispersion.

Assuming there is a shift ∆, the exact distribution of the squared deviate D2
∆ based on T∆ is

determined using (1) and it has Pr
(
D2

∆ ≥ 4.156
)

= 0.0436. The 1 − 0.0436 = 95.6% confidence

set D is the closure of the set
{
∆0 : D2

∆0
< 4.156

}
which is [0.1, 19.5].

The test of fit of the shift model based on the generalized method of moments yields G2
b∆gmm

=

G2
2.5 = 3.176 which is compared to χ2 on 2 degrees of freedom, yielding a significance level greater
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Table 2: Table for Testing 8.69.
Quartile Interval Treated Control Total

Lowest 6 0 6
Low 2 4 6
High 3 3 6

Highest 5 0 5

Total 16 7 23

than 0.2. In short, the GMM test of the shift model based on G2
b∆gmm

suggests the shift model is

plausible, and the appearance of Figure 2 could be due to chance.

Figure 3 is the plot, suggested in §2.2, of the exact, two-sided P − values from D2
∆0

and G2
∆0

plotted against ∆0. To focus attention on small P − values, the vertical axis uses a logarithmic

scale. To anchor that scale, horizontal lines are drawn at P = 0.05, 0.1, and 1/3. The solid

step function for D2
∆0

cuts the horizontal P = 0.05 line at the endpoints for the 95% confidence

interval. As suggested by Mosteller and Tukey (1977), a 2/3 confidence interval is analogous to an

estimate plus or minus a standard error. The Hodges-Lehmann estimate is ∆̂HL = 8.7. Notice,

however, that at ∆0 = 8.69, the P − value for D2
∆0

is 1.000, but the P − value for G2
∆0

is 0.021;

that is, the shift model is implausible for a value of ∆0 judged highly plausible by D2
∆0

. Table 2

is Table 1 evaluated at ∆0 = 8.69, and from this table, it is easy to see what has happened. With

∆0 = 8.69 subtracted from treated responses, T8.69 = 5× 3 +3× 2 +2× 1 +0× 6 = 23, which is as

close as possible to the null expectation 22.957 of T∆, but because of the greater dispersion in the

treated group, all 6 + 5 = 11 observations outside the pooled upper and lower quartiles are treated

responses, leading to a large G2
8.69 = 9.2 with exact significance level 0.021. The pattern in Table

2 is hardly a surprise: the comparison of dispersions is most decisive when it is not obscured by

unequal locations.

Because T∆0
is monotone in ∆0, the 95%, 90%, and 2/3 confidence sets it yields in Figure 3 are

intervals. In contrast, the 95%, 90%, and 2/3 confidence sets based on G2
∆0

are not intervals; for

instance, the 90% confidence set is the union of three disjoint intervals. If the confidence interval is

defined as the shortest closed interval containing the confidence set, then the three intervals based

on G2
∆0

are all longer than the corresponding intervals based on D2
∆0

.

Figure 4 calculates the large sample confidence interval from GMM, plotting G2
∆0

− G2
b∆gmm

against ∆0. For instance, the dotted line labeled 95% in Figure 4 is at 3.841, the 95% point of
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the chi square distribution with 1 degree of freedom. The 95% confidence set for ∆ is the set

of ∆0 such that G2
∆0

− G2
b∆gmm

≤ 3.841, and it is the union of two disjoint intervals; similarly,

the 90% confidence set is the union of three disjoint intervals, and the 2/3 confidence set is the

union of two disjoint intervals. The shortest closed interval containing the 95% confidence set for

∆ is [−2.7, 19.5] which is longer than the exact 95% confidence interval based on D2
∆0

, namely

[0.1, 19.5]. Of course, both confidence intervals include values of ∆ rejected by G2
∆0

, so the shift

model is not really plausible for some parameter values that both intervals report as plausible shifts.

In short, the method of §2.2 gave a point estimate of ∆̂HL = 8.7, consistent with the difference

in means, but raised doubts about whether a shift model is appropriate, rejecting the shift model

for H0 : ∆ = 8.69. In contrast, the method of §2.3 suggested the shift is much smaller, ∆̂gmm = 2.5,

and the associated goodness of fit test based on G2
b∆gmm

suggested that the shift model is plausible.

Obviously, the example just illustrates what the two methods do with one data set; it tells us

nothing about performance in large or small samples.

3 Simulation

3.1 Structure of the Simulation

The simulation considered three distributions, F (·), namely the Normal (N), the Cauchy (C), and

the convolution of a standard Normal with a standard exponential (NE). Recall that the standard

Normal and exponential distributions each have variance one, so NE has variance two. Although

the support of NE is the entire line, NE has a long right tail and a short left tail, and is moderately

asymmetric near its median. There were 5,000 samples drawn for each sampling situation.

We considered several estimators, including the two in §2.4, namely ∆̂gmm based on GMM,

∆̂HL using scores w1 = 0, w2 = 1, w3 = 2, w4 = 3. Note that the weights for ∆̂HL are close to the

optimal weights for the Normal. The estimate ∆̂M with scores w1 = 0, w2 = 0, w3 = 1, w4 = 1

is the Hodges-Lehmann point estimate associated with Mood’s two sample median test; they are

close to the optimal weights for the Cauchy. The estimate ∆̂mert with weights w1 = 0, w2 = 0.18,

w3 = 0.82, w4 = 1 is Gastwirth’s compromise weights for the Normal and the Cauchy; they are

almost the same as w1 = 0, w2 = 1, w3 = 4, w4 = 5, and so are much closer to ∆̂M than to ∆̂HL.

The coverage rates and behavior of confidence intervals and the null distribution of the goodness

11



Table 3: Efficiency for Samples from the Normal Distribution.
n 24 50 20 80 500 2,000 10,000
m 24 50 80 80 500 2,000 10,000

∆̂gmm : ∆̂HL .72 .76 .81 .79 .86 .89 .93

∆̂gmm : ∆̂M 1.00 1.05 1.08 1.07 1.14 1.18 1.24

∆̂gmm : ∆̂mert .80 .86 .91 .89 .94 .97 1.03

Summary: b∆HL is best in all cases, and b∆mert is second for n,m≤2000.

Table 4: Efficiency for Samples from the Cauchy Distribution.
n 24 50 20 80 500 2,000 10,000
m 24 50 80 80 500 2,000 10,000

∆̂gmm : ∆̂HL .82 .92 .90 .95 1.07 1.11 1.18

∆̂gmm : ∆̂M .66 .75 .74 .76 .86 .90 .94

∆̂gmm : ∆̂mert .70 .78 .78 .80 .89 .93 .99

Summary: b∆M is best in all cases, and b∆mert is second in all cases.

of fit test based on G2
b∆gmm

were also examined.

3.2 Efficiency

Asymptotic theory says: (i) ∆̂gmm should always win in sufficiently large samples, (ii) ∆̂HL should

be close to the best for the Normal, (iii) ∆̂M should be close to the best for the Cauchy, and (iv)

∆̂mert should be better than ∆̂HL for the Cauchy and better than ∆̂M for the Normal.

Table 3 compares efficiency for samples from the Normal distribution. The values in the table

are ratios of mean squared errors averaged over 5000 samples, so the value .72 for n = m = 24

in ∆̂gmm : ∆̂HL indicates that ∆̂HL had a mean squared error that was 72% of the mean squared

error of ∆̂gmm. The predictions of large sample theory are qualitatively correct, but some of

the quantitative results are striking. The performance of ∆̂gmm improves with increasing sample

size, but ∆̂gmm is still 7% behind ∆̂HL with n = m = 10, 000 and only marginally better than

∆̂mert. For sample sizes of n = m = 2, 000 or less, ∆̂mert is better than ∆̂gmm, often substantially

so. In Table 3, the relative performance of ∆̂gmm is still improving as the sample size increases,

with the promised optimal performance not yet visible for the sample sizes in the table. With

n = m = 40, 000, not shown in the table, the relative efficiency ∆̂gmm is still about 5% behind

∆̂HL.

Table 4 is the analogous table for samples from the Cauchy distribution. As before, the
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Table 5: Efficiency for Samples from the Normal + Exponential Distribution.
n 24 50 20 80 500 2,000 10,000
m 24 50 80 80 500 2,000 10,000

∆̂gmm : ∆̂HL .85 .78 .76 .83 .87 .91 .95

∆̂gmm : ∆̂M 1.11 1.03 .98 1.08 1.17 1.19 1.25

∆̂gmm : ∆̂mert .94 .85 .83 .91 .95 .99 1.04

Summary: b∆HL is best in all cases, and b∆mert is second for m,n≤2000.

relative performance ∆̂gmm improves with increasing sample size, so that it is inferior to ∆̂HL for

n = m = 80 but superior for n = m = 500. In Table 4, ∆̂M is best everywhere, as anticipated,

but ∆̂mert is close behind, marginally ahead of ∆̂gmm even for n = m = 10, 000, and well ahead for

smaller sample sizes.

Efficiency comparisons for the convolution of a Normal and an exponential random variable are

given in Table 5. The best estimator in all cases in Table 5 is ∆̂HL. The relative performance

of ∆̂gmm improves with increasing sample size, but it is still 5% behind ∆̂HL for n = m = 10, 000.

Also, ∆̂mert is ahead of ∆̂gmm up to n = m = 2, 000.

In summary, the relative efficiency of the GMM estimator ∆̂gmm does increase with increasing

sample size, as the asymptotic theory says it should, but the improvement is remarkably slow. The

fixed score estimator, ∆̂mert, is designed to achieve reasonable performance for both the Normal

and the Cauchy, and it is more efficient than ∆̂gmm for all three sampling distributions in Tables

3 to 5 for sample sizes up to n = m = 2, 000.

3.3 Confidence Intervals

In each of the 3 × 7 = 21 sampling situations in Tables 3 to 5, we computed the large sample

nominally 95% confidence intervals from ∆̂HL, ∆̂mert, and ∆̂gmm, and empirically determined the

actual coverage rate. For comparison, a binomial proportion with 5000 trials and probability of

success 0.95 has standard error 0.003, so 0.95 ± (2 × 0.003) is 0.944 to 0.956.

The group rank confidence intervals performed well, with coverage close to the nominal level,

even when large sample approximations were applied to small samples. All of the 2 × 21 = 42

simulated coverage rates for ∆̂HL and ∆̂mert were between 93.7% and 96.1%, and only one was

less than 94%. Exact intervals are available for ∆̂HL and ∆̂mert based on the hypergeometric

distribution, but there is no need to simulate these, because their coverage rates are exactly as

13



Table 6: Empirical Coverage of Nominal 95 Percent Intervals from GMM.
n 24 50 20 80 500 2,000 10,000
m 24 50 80 80 500 2,000 10,000

Normal 85.7 89.7 88.0 90.1 91.9 92.3 94.2
Cauchy 87.2 90.9 89.3 91.3 92.7 93.6 94.1

Normal+Exponential 87.2 90.5 87.6 89.8 92.1 93.2 94.3
Summary: 95% Intervals from GMM miss too often for n,m≤2,000.

stated.

The empirical coverages of the 95% confidence interval based on GMM are displayed in Table

6. As in §3.2, the asymptotic theory appears correct in the limit but takes hold very slowly.

The coverage of the nominal 95% interval is about 90% for n = m = 80 and about 92% for

n = m = 500. Also, by the results in §3.2, these intervals from ∆̂gmm not only have lower coverage

than the intervals for the group rank test, but also for sample sizes up to n = m = 2, 000 the

intervals from ∆̂gmm are typically longer intervals than those from ∆̂mert, as well. This is not

much of a trade–off: lower coverage combined with longer intervals.

Finally, all of the confidence sets from ∆̂HL and ∆̂mert are intervals, but for ∆̂gmm the confidence

sets from GMM are often not intervals, and become intervals only by including interior segments

that the test rejected. For ∆̂gmm for the Normal, with n = m = 24, only 49% of the confidence

sets are intervals, rising to 67% for n = m = 500, and 83% for n = m = 10, 000. Results for the

other two distributions are not very different.

3.4 GMM’s Goodness of Fit Test

Recall that G2
b∆gmm

is often used as a test of the model, in the current context, comparing it to the

chi square distribution on two degrees of freedom. Here, too, the asymptotic properties appear true

but are approached very slowly. In particular, when the shift model is correct, G2
b∆gmm

tends to be

too small, compared to chi square on two degrees of freedom, both in the tail and on average. For

instance, the chi square P−value from G2
b∆gmm

is less than 5% in 0.1% of samples of size n = m = 24

from the Normal, in 0.6% of samples of size n = m = 80, in 2% of samples of size n = m = 500, and

3.7% of samples of size n = m = 10, 000. Similarly, instead of expectation 2 for a chi square with

two degrees of freedom, the expectation of G2
b∆gmm

was 0.9 for samples of size n = m = 24 from the

Normal, 1.1 for samples of size n = m = 80, 1.4 for samples of size n = m = 500, and 1.8 for samples

14



of size n = m = 10, 000. Similar results were found for the Cauchy and Normal+Exponential. In

sharp contrast, one compares G2
∆ to chi square with three degrees of freedom, and E

(
G2

∆

)
= 3

exactly in samples of every size from every distribution; see §2.2. In other words, replacing the

true ∆ by the estimate ∆̂gmm and reducing the degrees of freedom by one to compensate is an

adequate correction only in very large samples.

To understand the behavior of G2
b∆gmm

, it helps to recall what happened in the example in §2.4.

There, G2
∆ was minimized at a peculiar choice ∆̂gmm of ∆, in part because G2

∆ avoided not only

implausible shifts but also tables like Table 2 which suggest unequal dispersion. Having avoided

Table 2 — that is, having avoided evidence of unequal dispersion by its choice of ∆̂gmm — the

goodness of fit test, G2
b∆gmm

, found no evidence of unequal dispersion. This suggests it may be best

to separate two tasks, namely estimation assuming a model is true, and testing the goodness of fit

of the model.

4 Displacement Effects

In the example in §1.2, the HL estimate gave a more reasonable estimate of shift than did the GMM

estimate assuming the shift model to be true, and based on that estimate, raised clearer doubts

about whether the shift model was appropriate. This is seen in Figures 2 and 3. Having raised

doubts about the shift model, it is natural to seek exact inferences for the magnitude of the effect

without assuming a shift.

The shift model is not needed for an exact inference comparing two distributions. There are

112 = 16 × 7 possible comparisons of the n = 16 exposed subjects to the m = 7 controls, and in

V = 87 of these comparisons, the exposed subject had a higher response, where V is the Mann-

Whitney statistic. Under the null hypothesis of no treatment effect in a randomized experiment,

the chance that V ≥ 82 = 0.044. It follows from the argument in Rosenbaum (2001, §4) that in

a randomized experiment, we would be 1 − 0.044 = 95.6% confident that at least 87 − 82 + 1 = 6

of the 112 possible comparisons, or about 5% of them, favor the exposed group because of effects

of the treatment, and the remaining 87 − 6 favorable comparisons could be due to chance. So

the effect is not plausibly zero but could be quite small. The methods in Rosenbaum (2001, §5)

may be used to display the sensitivity of this inference to departures from random assignment of

15



treatments in an observational study of the sort described in §1.2.

5 Summary: What Role for Assumptions?

In the radiation effects example in §1.2, the generalized method of moments (GMM) estimator,

∆̂gmm, estimated a small shift, one that did little to align the boxplots in Figure 2, and the

associated test of the shift model using G2
b∆gmm

suggested that the shift model was plausible. In

contrast, the Hodges-Lehmann estimate, ∆̂HL, estimated a larger shift, one that did align the

centers of the boxplots in Figure 2, but with this shift, the shift model seemed implausible, leading

to the analysis in §4 which dispensed with the shift model. Although one should not make too

much of a single, small example, our sense in this one instance was that GMM’s results gave an

incorrect impression of what the data had to say.

The simulation considered situations in which the shift model was true. The promise of full

asymptotic efficiency with GMM did seem to be true, but was very slow in coming, requiring

astonishingly large sample sizes. For moderate sample sizes, m ≤ 500, n ≤ 500, GMM was

neither efficient nor valid: it produced longer 95% confidence intervals often with coverage well

below 95%. In contrast, asymptotic results were a good guide to the performance of the group

rank statistics for all sample sizes considered, even for samples of size n = m = 24. Moreover,

exact inference is straightforward with group rank statistics. The estimator, ∆̂mert, aims to avoid

bad performance under a range of assumptions rather than to achieve optimal performance under

one set of assumptions. By every measure, in every situation, ∆̂mert was better than ∆̂gmm for

m ≤ 2000, n ≤ 2000.

Our goal has not been to provide a comprehensive analysis of the radiation effects example, nor

to provide improved methods for estimating a shift. Rather, our goal was to create a laboratory

environment — transparent, quiet, simple, undisturbed — in which two strategies for creating

estimators might be compared. The laboratory conditions were favorable for GMM: (i) the shift

parameter is strongly identified, (ii) there are only three moment conditions, and (iii) the optimal

weight matrix for the moment conditions is known exactly and is free of unknown parameters.

In a theorem, the assumptions are the premises of an argument, and for the sole purpose

of proving the theorem, they play similar roles: the same conclusion with fewer assumptions is a
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‘better’ theorem, or at least better in certain important senses. When used in scientific applications,

these same assumptions acquire different roles. As in the quote from Tukey in §1.1, assumptions

needed for validity of confidence intervals and hypothesis tests play a different role from assumptions

used for efficiency or stringency, and both play a very different role from the hypothesis itself. A

familiar instance of this arises with hypotheses: omnibus hypotheses (ones that assume very little)

are not automatically better hypotheses than focused hypotheses (ones that assume much more)

— power may be much higher for the focused hypotheses, and which is relevant depends on the

science of the problem at hand. The trade-off discussed by Tukey is a less familiar instance. Here,

we have examined a small, clean theoretical case study, in which the same information is used by

different methods that embody different attitudes towards assumptions. The group rank statistics

followed Tukey’s advice, in which validity was obtained by general permutation test arguments,

but the weights used in the tests reflected judgements informed by statistical theory in an effort to

obtain decent efficiency for a variety of sampling distributions. The generalized method of moments

(GMM) tried to estimate the weights, and thereby always have the most efficient procedure, at least

asymptotically. In point of fact, the gains in efficiency with GMM did not materialize until very

large sample sizes were reached, whereas validity of confidence intervals was severely compromised

in samples of conventional size.
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6 Appendix: Large Sample Theory Under Local Alternatives

This appendix discusses the asymptotic efficiency of GMM against local alternatives. Hansen’s

results about GMM concerned statistics that are differentiable in ways that rank statistics are not,

but his conclusions hold nonetheless if differentiability is replaced by asymptotic linearity using

Theorem 1 from Jureckova (1969); see Theorem 2 below. Here we consider the limiting behavior

of D∆N
and G2

∆N
when H0 : ∆ = ∆N is false but nearly correct, that is, when F (x) = G (x + ∆)

but ∆N = ∆− δ√
N

, as N = n + m → ∞ with λN = n/(n + m) → λ, 0 < λ < 1. Because N → ∞,

quantities from earlier sections computed from the sample of size N now have an N subscript, e.g.,

E (AN,∆) = EN and var (AN,∆) = VN . Then Z∆
N1, . . . , Z

∆
NN are iid F (·), but DN,∆N

and G2
N,∆N

are computed from Z
∆−δ/

√
N

N1 , . . . , Z
∆−δ/

√
N

NN , so Z
∆−δ/

√
N

N1 , . . . , Z
∆−δ/

√
N

Nm corresponding to the X’s

are iid F (·), but Z
∆−δ/

√
N

N,m+1 , . . . , Z
∆−δ/

√
N

NN corresponding to the Y ’s have the same distribution

but shifted upwards by δ/
√

N . Assume F has density f with finite Fisher information and write

ϕ (u, f) = −f ′ {F−1 (u)
}

f {F−1 (u)} and ηg = λ (1 − λ)

∫ g

4

g−1

4

ϕ (u, f) du for g = 1, 2, 3, 4.

Let η = (η1, η2, η3, η4)
T , and notice that 0 =

∑
ηg by Hájek, Šidák, and Sen (1999, Lemma 1, p.

18). Then a result of Jureckova (1969, Thm 3.1, p. 1891) yields:

Theorem 1 (Jureckova 1969) For any fixed w = (0, w2, w3, w4)
T with 0 = w1 ≤ w2 < w3 ≤ w4,

ε > 0 and Υ > 0:

lim
N→∞

Pr

(
max
|δ|<Υ

∣∣∣∣
1√
N

wT
(
AN,∆−δ/

√
N −AN,∆

)
− δ wT η

∣∣∣∣ ≥ ε

√
1

N
wTVNw

)
= 0.

As N → ∞, one has (1/N)VN → Σ and NV−
N → Σ− where Σ has entries σjj = 3λ (1 − λ) /16

and σij = −λ (1 − λ) /16 for i 6= j, and Σ−, like V−
N , has first row and column equal to zero.

Moreover, Theorem 1 implies

wT
(
AN,∆−δ/

√
N −EN

)

√
wTVNw

D−→ N

(
δ wT η√
wTΣw

, 1

)
. (10)
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The noncentrality parameter in (10), wT η/
√

wTΣw, is maximized with w = Σ−η, so the best

group rank statistic has w = Σ−η. The GMM confidence interval for ∆ was calculated by

comparing G2
N,∆ − G2

N, b∆gmm
to the chi square distribution with one degree of freedom. Theorem

2 shows G2
N,∆ − G2

N, b∆
converges in probability (henceforth

P→) to the best group rank statistic.

Theorem 2 If F has finite Fisher information, then:

{
(AN,∆ −EN)T

V−
Nη
}2

ηTV−
Nη

−
(
G2

N,∆ − G2
N, b∆gmm

)
P→ 0. (11)

Proof of Theorem 2. Write ‖a‖N =
√

N aTV−
Na. Then G2

N,∆ =
∥∥∥ 1√

N
(AN,∆ −EN )

∥∥∥
2

N
and

G2
N, ∆−δ/

√
N

=
∥∥∥ 1√

N

(
AN,∆−δ/

√
N −EN

)∥∥∥
2

N
. Define G̃2

N, ∆−δ/
√

N
=
∥∥∥ 1√

N
(AN,∆ −EN ) + δ η

∥∥∥
2

N
,

which is quadratic in δ, and is minimized at

δ̃N =
−
√

N (AN,∆ −EN )T
V−

Nη

NηTV−
Nη

.
=

− 1√
N

(AN,∆ −EN )T
Σ−η

ηTΣ−η
D−→ N

(
0,

1

ηTΣ−η

)
;

moreover, G̃2
N, ∆−δ/

√
N

has minimum value G2
N,∆ −

{
(AN,∆ −EN )T V−

Nη
}2

/ηT V−
Nη. Let EΥ be

the event EΥ =
{√

N
∣∣∣∆̂gmm − ∆

∣∣∣ < Υ and
∣∣∣δ̃N

∣∣∣ < Υ
}

. It is possible to pick a large Υ > 0 such

that for all sufficiently large N , the probability, Pr (EΥ) , is arbitrarily large. Therefore, in proving

(11), we assume EΥ has occurred. Write ψN,δ =
{(

AN,∆−δ/
√

N −AN,∆

)
/
√

N
}
− δ η and note

that Theorem 1 implies max|δ|<Υ

∥∥ψN,δ

∥∥2

N

P→ 0. By the triangle inequality, for any norm ‖·‖,

∣∣∣ ‖a‖2 − ‖b‖2
∣∣∣ ≤ ‖a− b‖2 + 2 ‖a− b‖ max (‖a‖ , ‖b‖) . (12)

With a =
(
AN,∆−δ/

√
N −EN

)
/
√

N and b = (AN,∆ −EN ) /
√

N + δ η, so a−b = ψN,δ, then (12)

yields

max
|δ|<Υ

∣∣∣G2
N, ∆−δ/

√
N
− G̃2

N, ∆−δ/
√

N

∣∣∣

≤ max
|δ|<Υ

{∥∥ψN,δ

∥∥2

N
+ 2

∥∥ψN,δ

∥∥
N

max

(√
G̃2

N, ∆−δ/
√

N
,
√

G2
N, ∆−δ/

√
N

)}
P→ 0,

so that
∣∣∣min|δ|<Υ G2

N, ∆−δ/
√

N
− min|δ|<Υ G̃2

N, ∆−δ/
√

N

∣∣∣ P→ 0, which is (11).
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Figure 1: Genetic Damage in Radiation Exposed and Control Groups.
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Figure 2: Boxplots of Yj − ∆̂HL, Xi and Yj − ∆̂gmm. GMM failed to align the boxes: all of the

quartiles of Yj − ∆̂gmm are above those of Xi.
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Two Tests of Various Parameter Values.
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Confidence Interval Based on GMM.
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