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Abstract

This paper examines the empirical analysis of treatment effects on duration
outcomes from data that contain instrumental variation. We focus on social
experiments in which an intention to treat is randomized and compliance
may be imperfect. We distinguish between cases where the treatment starts
at the moment of randomization and cases where it starts at a later point
in time. We derive exclusion restrictions under various informational and
behavioral assumptions and we analyze identifiability under these restric-
tions. It turns out that randomization (and by implication, instrumental
variation) by itself is often insufficient for inference on interesting effects,
and needs to be augmented by a semiparametric structure. We develop
corresponding non- or semiparametric tests and estimation methods.
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1 Introduction

Social experiments have become important tools for policy evaluation in general,

and the evaluation of active labor market policies in particular (see Heckman,

LaLonde and Smith, 1999, for a survey). Until recently, it was generally thought

that policy evaluation using social experiments merely involved trivial compar-

isons of outcomes between the various treatment statuses assigned in the exper-

iment. The studies of Ham and LaLonde (1996), Meyer (1996), and Eberwein,

Ham and LaLonde (1997) show that complications arise if the outcome vari-

able of interest is a duration variable (e.g. unemployment duration) or depends

on the realization of a duration variable (e.g. the post-unemployment wage or

the subsequent employment duration). The evaluation based on outcomes among

those who survive up to a certain point is confounded with dynamic selection

effects even if initial treatment assignment is randomized. Further problems arise

if compliance to the treatment status assigned in the experiment (the intention to

treat, or ITT) is imperfect and if actual program enrollment is a time-consuming

process. In this paper, we explore the use of social experiments in duration and

event-history analysis. We consider the randomized ITT as an instrumental vari-

able (IV), and more generally consider the use of instrumental variables in dura-

tion analysis.

To motivate the paper and outline its contributions, it is useful to give (in the

next paragraphs) a taxonomy of different cases that may arise in practice. This

corresponds to the way the paper is organized. In all cases we allow the popula-

tion under study to be heterogeneous. Throughout the paper, we use the terms

“randomization” and “random assignment” to denote situations in which an ITT

is assigned independently of agents’ individual characteristics. An agent is said

to “comply” with the ITT outcome if the actual treatment status coincides with

it.1 In every case, the policy setting determines what is meant with “treatment”.

In Section 2, we start with the benchmark case where (i) randomization of

ITT occurs at time 0 (which is usually the moment of inflow into the state of

which the subsequent time spent in it is the outcome of interest), (ii) agents

are immediately subject to the treatment, and (iii) there is perfect compliance.

We show that dynamic selection effects may arise, and care has to be taken how

to define and estimate treatment effects. We re-appraise the insights from Ham

and LaLonde (1996). We also briefly discuss what happens if assumption (ii) is

1In the literature, compliance is often only used for agents who are assigned to be treated
instead of being in the control group, but here we also use it for those who are assigned to the
control group, unless stated otherwise.
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violated in the sense that the actual treatment occurs at a later point in time.

This is less relevant from an empirical point of view, because, with a positive

time interval between ITT assignment and actual treatment, perfect compliance

becomes a very strong assumption.

Subsequently, as the second main case, we relax in Section 3 the perfect com-

pliance assumption (iii) but maintain assumptions (i) and (ii). This case arises

e.g. if there is randomization of program offers (ITT) at time 0 and agents choose

immediately whether to accept the offer and enroll. In such cases, ITT can be

used as an IV for, but does not coincide with, actual treatment. We first develop

and analyze a nonparametric IV estimator that, unlike existing estimators, allows

for censoring. We then provide novel semiparametric identification results, and a

corresponding semiparametric IV estimator.

To avoid problems with imperfect compliance, researchers often analyze the

effect of ITT instead of actual treatment in reduced-form models. Methodologi-

cally, such an analysis fits our first main case. Moreover, under the appropriate

IV conditions, the null of no treatment effects and the null of no ITT effects are

equivalent (e.g. Robins and Tsiatis, 1991, and Abadie, 2002). Two advantages of

an ITT-analysis are often cited (see e.g. Robins and Tsiatis, 1991). First, ran-

domization can be ensured even if compliance is imperfect and selective. Second,

ITT rather than actual treatment is the relevant public-policy instrument if the

policy maker cannot control compliance any better than the analyst.2 On the

other hand, an IV analysis allows to some extent to disentangle the effects of

compliance (participation) and the effects of actual treatment. If enough (para-

metric) structure is imposed, the results of an IV analysis can be extrapolated

beyond the scope of the experiment. Therefore, and because an ITT-analysis is

already covered by our first case, we consider the effects of actual treatment using

ITT as an IV.

The third main case, which we examine in Section 4, is the case where both

assumptions (ii) and (iii) are violated, i.e. randomization of ITT occurs at time

0, the actual treatment occurs later, and compliance is imperfect. Again, ITT can

be used as an instrument (see e.g. Eberwein, Ham and LaLonde, 1997). However,

as argued by Rosenzweig and Wolpin (2000) and Abbring and Van den Berg

(2003b), it is often hard to justify exclusion restrictions in a dynamic setting with

forward-looking agents. In particular, if ITT affects the treatment, as it should

if it is to be a valid instrument, then it is likely to affect the outcome hazard

up to the moment of treatment enrollment as well. Therefore, we introduce a

2For example, the threat of a punishment treatment may be considered as a treatment itself
(Abbring, Van den Berg and Van Ours, 1997, and Black et al., 2003).
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weaker-than-usual IV assumption that only requires “ex post exclusion”, that is

exclusion of ITT from the outcome hazard after treatment enrollment. We discuss

informational and behavioral assumptions under which this weaker IV assumption

holds, and discuss its implications for identifiability. We show that, even though

ITT is randomly assigned, “ex ante” effects of ITT on treatment assignment

and on outcome hazards before treatment enrollment cannot be identified, and

can typically not even be signed. Moreover, the effects of actual treatment are

poorly identified in this case. More constructively, we argue that data on ex post

ITT effects are informative on selection effects. After all, under ex post exclusion

these effects cannot be causal. We demonstrate that a selectivity test based on

this idea bears a remote analogy to tests on cohort effects in mortality rates

(Vaupel and Yashin, 1985) and on unobserved heterogeneity in duration models

with time-varying explanatory variables (Van den Berg and Van Ours, 1997).

All results apply to the case where there is no deliberate randomization at

time 0 but the data contain appropriate instrumental variation (e.g., because of

a natural experiment). Also, our results carry over to more complex, dynamic

experimental designs than the one considered here (Section 5 provides some dis-

cussion). In all cases, we follow nonparametric and semiparametric approaches.3

We do not restrict attention to effects on survival probabilities but, in line with

duration analysis in general, we focus on the effects on the hazard rate of the

outcome duration variable, because of the intimate link between the hazard rate

and economic behavioral models (Van den Berg, 2001). Knowing the effect on

individual behavior as reflected in the hazard rate and the way this changes over

time enables one to learn something about the reasons for the effectiveness or

ineffectiveness of a policy, and this allows one to extrapolate the experimental

results to slightly different policies and policies in slightly different environments.

As an example, consider the third case above, where the empirical distinction be-

tween “ex ante” and “ex post” effects calls for a hazard rate analysis. We return

to this below.

Various papers consider methods for IV analysis of distributional treatment

effects that apply to some extent to the problems studied in this paper. The

nonparametric approach for effects on survival probabilities in our second main

case is closely related to Imbens and Rubin (1997) and Abadie (2002), who dis-

3We also generalize results to cases where the treatment is not binary but varies continu-
ously. Further generalizations concern cases where treatment and instrument may change over
time at the same discrete (deterministic or random) points of times. This avoids the substantive
problems discussed in Abbring and Van den Berg (2003b), but unlikely to have many appli-
cations. The methodology for such cases has been discussed in the context of transformation
models by Bijwaard (2003). We do not consider such cases.
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cuss identification, estimation, and testing of distributional treatment effects in

a nonparametric setting.4 Their methods, however, do not handle censoring. In

contrast, our focus is on methods that allow for right-censoring. Duration-model

IV estimators that allow for censoring have been developed by Robins and Tsi-

atis (1991), Bijwaard and Ridder (2003), Bijwaard (2003), and Chesher (2003).

These estimators apply to our second and/or third main cases. They require

(semi-)parametric structure, and additional substantive assumptions like perfect

compliance in the control group (Bijwaard and Ridder, 2003). With some ex-

ceptions, they do not focus on effects on the individual hazard rate. We will

discuss these estimators where appropriate, notably when we evaluate exclusion

restrictions in our third main case.

Throughout the paper, we consider experiments at face value, and we do

not address generalizability issues. Specifically, we do not address endogenous

selection into the experimental population, differences between the experiment

and the permanent imposition of a policy, and equilibrium effects in general. See

Heckman, LaLonde and Smith (1999) for a detailed discussion, Ferrall (2002) for

a comprehensive dynamic economic framework, and Van den Berg and Van der

Klaauw (2001) for an empirical illustration in a reduced-form duration-analysis

framework.

The remainder of the paper is organized as follows. Sections 2, 3, and 4 discuss

our three main cases. Section 5 concludes.

2 Randomization with perfect compliance

2.1 Potential-outcome framework, treatment effects, and

available data

We consider the population of agents or individuals flowing into a state of interest,

and the durations these individuals subsequently spend in that state. Upon inflow,

an individual is assigned to a treatment from a set S. In this section, we assume

that the individual complies with the assigned treatment, so that ITT and actual

treatment coincide. We are interested in the causal effect of the treatment on the

4Also, Abadie, Angrist and Imbens (2002) develop and apply a semiparametric IV estimator
of quantile treatment effects. This estimator does not allow for censoring. It is moreover based
on quantile models that are designed for outcomes like earnings and that do not apply naturally
to duration and event-history outcomes.
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duration spent in the state of interest (the “outcome”).5

We model this effect using the potential-outcome framework pioneered by

Neyman (1923). To each treatment s ∈ S corresponds a random variable T (s),

the potential outcome duration that would prevail if we would intervene and

assign treatment s. We assume that {T (s)} := {T (s); s ∈ S} is a measurable

stochastic process.6 Moreover, for ease of exposition we assume that each T (s) is

continuous, and we denote the hazard rate of T (s) by θT (s). We are interested in

contrasts between the distributions of T (s) and T (s′) corresponding to treatments

s, s′ ∈ S. These contrasts are summarized in so-called treatment effects. We focus

on two of these,

θT (s′)(t)

θT (s)(t)
and Pr(T (s′) > t)− Pr(T (s) > t), (1)

which are, respectively, the relative effect on the hazard rate at t and the addi-

tive effect on the survival probability at t of replacing one treatment s by another

treatment s′, as functions of t. The former captures the effect on the most inter-

esting feature of the duration distribution. The latter, as we shall see, can easily

be related to the standard literature on treatment evaluation. For the time being

we consider a single subject, or, equivalently, a homogeneous group of subjects.

We may of course consider a whole range of alternative treatment effects, like

Pr(T (s′) > t)/Pr(T (s) > t) and E[T (s′)]/E[T (s)].

In fact, the relative effect on the survival probability may often be more inter-

esting than the additive effect. However, as we shall see in the next subsection,

nonparametric inference simultaneously provides estimates of all of these. More-

over, as we shall see in Subsection 2.4, heterogeneity across subjects causes related

methodological difficulties for all treatment effects except for the additive effect on

the survival probability (and the effects derived from it). The two special effects

in (1) therefore cover the whole range of treatment effects from a methodological

point of view.

The treatment is assigned according to a S-valued random variable S. Through-

out this section, we assume that treatment assignment is randomized, i.e.7

Assumption 1 (Randomization). S⊥⊥{T (s)}.
5For expositional clarity, we restrict attention to a single outcome duration. Most methods in

this paper are easy to extend to more general event-history outcomes. For examples, the Nelson-
Aalen estimator used in this section has been developed for general event-history processes.

6This process, viewed as a random function s 	→ Ts, can alternatively be interpreted as a
nonparametric structural equation for the determination of the outcome by the treatment.

7More generally, randomization could be conditional on observed covariates, or even observed
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The actual outcome duration is T := T (S); all other potential outcomes are

counterfactual.

We allow for random right-censoring.8 To this end, define a random cen-

soring time C that is independent of (T, S). Our data are derived from the

full-information random sample ((T1, S1, C1), . . . , (Tn, Sn, Cn)) from the distri-

bution of (T, S, C). Suppose that observation i is censored if Ti > Ci, and

complete if Ti ≤ Ci. Then our data are the limited-information random sam-

ple ((T̃1, S1, D1), . . . , (T̃n, Sn, Dn)), where Di is defined as Di := I(Ti ≤ Ci), so

Di = 1 indicates a complete observation, and

T̃ =

{
Ti if Ti ≤ Ci

Ci if Ti > Ci

is the possibly censored outcome duration. In the sequel we do not consider

treatment effects on moments of the outcome duration (like the mean) because

typically the observation window is finite (i.e., observed durations are always

right-censored if they exceed some finite time) and the moments are not non-

parametrically identified from such data.

2.2 Nonparametric estimators and tests

With randomization, as in Assumption 1, standard hazard regressions (e.g. An-

dersen et al., 1993, and Fleming and Harrington, 1991) are directly informative on

{T (s)}. We briefly discuss nonparametric estimation and testing methods from

the perspective of the treatment-evaluation problem.

Let the integrated hazard of T (s) be denoted by ΘT (s), so

Pr (T (s) > t) = exp
(
−ΘT (s)(t)

)
.

If S is discrete, then {ΘT (s)} can be estimated by repeated application of the

Nelson-Aalen estimator. Without loss of generality, denote S = {0, 1, . . . , k},
where possibly k = ∞. Then, the Nelson-Aalen estimator of ΘT (s) is given by

external covariate processes. Throughout most of this paper, we ignore observed covariates.
If appropriate, it is implicitly understood that results hold conditional on covariates. In the
case of discrete covariates, all empirical methods can be directly applied to strata defined by
the covariates. In practice, continuous covariates are harder to handle, because of the usual
computational problems.

8The censoring mechanism specified here is usually referred to as “simple random right-
censoring”. Extensions to more general forms of independent censoring and filtering are straight-
forward (see Andersen et al., 1993, and Fleming and Harrington, 1991).
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(see e.g. Andersen et al., 1993, p.178)

Θ̂T (s)(t) =
∑

{i:Di=1,T̃i≤t,Si=s}

[
Rs(T̃i)

]−1

,

with Rs(t) :=
∑n

j=1 I(T̃j ≤ t, Sj = s) the number of spells in the subsample with

Si = s that are at risk (not completed nor censored) at time t. The asymptotic

behavior of Θ̂T (s)(t) (s ∈ S) follows from standard results for the Nelson-Aalen

estimator (e.g., Andersen et al., 1993, Example IV.1.6):

√
nps

(
Θ̂T (s) −ΘT (s)

) D−→ Gs (s ∈ S)

jointly, where ps := Pr (S = s). Here, Gs (s ∈ S) are mutually independent

Gaussian martingales such that G(0) = 0 and, for t < t′,

cov (Gs(t),Gs(t
′)) =

∫ t

0

θT (s) (τ)

F T (s) (τ)FC (τ−)
dτ =: σ2

s (t) ,

where F T (s) and FC are the survival functions of T (s) and C, respectively. The

variances σ2
s (t) can be consistently estimated by

σ̂2
s (t) =

∑
{i:Di=1,T̃i≤t,Si=s}

[
Rs(T̃i)

]−2

,

and nps by Ns :=
∑n

i=1 I(Si = s).

The potential duration distributions and survival probabilities are one-to-one

related to the potential integrated hazards by

F T (s)(t) = P t
0

(
1− dΘT (s)(τ)

)
= exp

(
−ΘT (s)(t)

)
.

Here, P is the product integral. The properties of the well-known Kaplan-Meier

estimator of F T (s),

F̂ T (s)(t) = P t
0

(
1− dΘ̂T (s)(τ)

)
=

∏
{i:Di=1,T̃i≤t,Si=s}

(
1− [Rs(T̃i)]

−1
)

follow from the properties of the Nelson-Aalen estimator. In particular, accord-

ing to the delta method,
√
nps

(
F̂ T (s) − F T (s)

)
is asymptotically equivalent to

−√
npsF T (s)

(
Θ̂T (s) −ΘT (s)

)
, so that jointly

√
nps

(
F̂ T (s) − F T (s)

) D−→ −F T (s)Gs (s ∈ S). (2)
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Without censoring (FC = 1), 1 − F̂ T (s) reduces to the empirical distribution

function,

cov(−F T (s)(t)Gs(t),−F T (s)(t
′)Gs(t

′)) = F T (s)(t)F T (s)(t
′)σ2

s(t) = FT (s)(t)F T (s)(t
′)

for t ≤ t′, and −F T (s)Gs is an F -Brownian bridge.

These results are the basis for estimating potential-outcome contrasts and

for various tests. One can immediately derive (i) uniform confidence bounds on

the potential duration distributions, (ii) point-wise results for isolated survival

probabilities, and (iii) results for treatment effects. See Andersen et al. (1993)

for methods of inference for the hazard rates θT (s) that are derived in the above

framework (these methods typically impose some smoothness of the hazard rates

as functions of the duration).

As an example, consider the additive effect of replacing treatment s by s′ on

the survival function at t, defined as F T (s′)(t) − F T (s)(t). For given t, F̂ T (s)(t)

consistently estimates the probability of surviving for t periods under treatment

s, with asymptotic standard error (nps)
−1/2F T (s)(t)

2σs(t). The latter can be con-

sistently estimated by N
−1/2
s F̂ T (s)(t)

2σ̂s(t). The estimators F̂ T (s)(t) and F̂ T (s′)(t)

are asymptotically independent. In the evaluation of a training program, we could

use the estimator to assess the effect of training on the probabilities of staying un-

employed for 6 or 12 months. Because of right-censoring, discrete-choice models

like probit models are not a good alternative. Also, in discrete-choice models it is

hard to deal with time-varying explanatory variables. The dynamically assigned

treatment of Section 4 of this paper provides an example of such an explanatory

variable.

The Nelson-Aalen estimator is also a basis for tests of null hypotheses like

F T (s) = F T (s′) for s, s
′ ∈ S. Andersen et al. (1993), Chapter V, provides a unified

treatment. One popular test is the log rank test, which behaves particularly well

against proportional treatment effects

F T (s) = exp(−ΘT (s)) = exp(−cΘT (s′)) =
(
F T (s′)

)c

for 0 < c �= 1. Other tests are Kolmogorov-Smirnov and Cramér-Von Mises tests

for censored data.

In the case of continuous S, additional smoothness is required. For example,

Cox’s (1972) regression can be used to estimate the scalar parameter γ > 0 in the

proportional hazards (PH) model θT (s)(t) = γsλ(t). The “baseline hazard” func-

tion λ can be estimated nonparametrically by the Breslow estimator. Dabrowska

(1987) develops an alternative for Cox’s regression based on kernel smoothing.
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As in the nonparametric approach, discrete-choice models are not a good alterna-

tive if outcomes are censored or if there are time-varying explanatory variables.

Moreover, discrete-choice analysis is typically less efficient than semiparametric

duration analysis based on e.g. the PH model.

2.3 Treatment plans

In the model of Subsection 2.1 the ITT is (randomly) assigned at time 0 and is

always observed by the analyst. The assumed perfect compliance ensures that the

actual treatment equals the ITT. By implication, the treatment is also assigned

at time 0, and is always observed.

The most straightforward application of this model takes S to be a set of

programs in which agents either enroll at time 0 or not enroll at all. However, the

model is versatile in dealing with alternative timing patterns. In particular, the

treatment space itself may include one or more time dimensions. For example, a

treatment in S may not only specify a particular program but also the time of

enrolling into this program. Perfect compliance requires that agents comply with

the full ITT, including the assigned timing of the program.9 Moreover, because

the ITT is always observed, so is the actual treatment. This is true even if program

enrollment is intended to occur after the agent has left the state of interest.

If the treatment is discrete, for example if there is a finite set of programs and

enrollment takes place at discrete times, then we can straightforwardly apply the

nonparametric methods of the previous subsection. With continuous enrollment,

we again need additional smoothness. Here, we should be careful in choosing

appropriate semiparametric structure. In the typical case that agents observe the

ITT at time 0, they will perfectly anticipate future enrollment and respond to

the assigned treatment from time 0 onwards. It is well known that Cox’s (1972)

PH specification is typically inconsistent with dynamic economic theory in this

case.10 Therefore, the methods based on the PH model suggested in the previous

subsection can typically not be used.

We do not elaborate on this. As noted in Section 1, perfect compliance is

a strong assumption in this case. We postpone further discussion to Section 4,

which addresses the more relevant case with imperfect compliance.

9Note that this may be applied to the case in which program enrollment at an intended
time is contingent on not having left the state of interest at that time. Also, recall that the
model may be interpreted as being conditional on some external observed covariate process.
This allows for the possibility that the ITT is a plan contingent on such a covariate process.

10See Van den Berg (2001) for a discussion of the PH model from an job-search perspective.
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2.4 Unobserved heterogeneity and treatment effects

2.4.1 Selectivity despite randomization

If the population is homogeneous, the nonparametric treatment effect estimators

of Subsection 2.2 estimate the corresponding individual treatment effects. How-

ever, as noted in Section 1, we allow individuals to be heterogeneous, and in this

subsection we examine the implications of using the nonparametric tools in a

heterogeneous population.

We only consider ex ante individual heterogeneity in outcomes that can be

captured by time-invariant unobserved characteristics V , because this is sufficient

to obtain the main insights. Randomization (Assumption 1) implies that S⊥⊥V .

For ease of exposition, we take V to be a continuous random variable and S to

be a binary indicator with realizations 1 (“treatment”) and 0 (“control”), and

we assume that the hazard rates θT (s)(t|V ) satisfy the usual regularity conditions

that guarantee existence of the expressions below.

Individual treatment effects are now defined in terms of the distributions of

T (0)|V and T (1)|V , whereas average treatment effects now concern averages over

the relevant population, i.e. over the distribution of V in the relevant population.

Thus, the individual treatment effects on the hazard rate and the survival prob-

ability at t are defined as

θT (1)(t|V )

θT (0)(t|V )
and Pr(T (s′) > t|V )− Pr(T (s) > t|V )

respectively. The average additive treatment effect on the survival probability

at t is naturally defined as E[Pr(T (s′) > t|V ) − Pr(T (s) > t|V )]. This equals

Pr(T (s′) > t)−Pr(T (s) > t), so the nonparametric tools straightforwardly apply

to inference of this effect in the presence of heterogeneity. This result extends to

much more general types of heterogeneity than considered here (e.g. V may vary

over time).

Unfortunately, the above line of reasoning cannot be applied to any other

treatment effect of interest. Consider the effect on the hazard rate. We demon-

strate that the nonparametric estimators cannot be used to obtain consistent

estimates of average treatment effects, and, related to that, that the definition of

average treatment effects on the hazard rate is nontrivial.

The main difficulties follow from the fact that if the treatment has a causal

effect on the duration, then, typically, the distribution of V among the survivors

at points in time t > 0 depends on the treatment, so V⊥⊥�S|T > t. In other words,

there is no randomization at t > 0 despite the randomization at 0. To see this,

10



let f , F , and F be generic symbols for a density, a distribution function, and

a survival function, with subscripts denoting the corresponding random variable

(note that F := 1−F ). Further, denote the hazard of T by θT , and its integrated

hazard by ΘT . Note that because of randomization at 0, θT (s)(t|V ) = θT (t|S =

s, V ) and ΘT (s)(t|V ) = ΘT (t|S = s, V ). From e.g. Lancaster (1990),

fV (v|T > t, S) =
F T (t|S, V )fV (v)∫ ∞

0
F T (t|S, V )dFV (v)

, (3)

and F T (t|S, V ) = exp [−ΘT (t|S, V )].11

It is not difficult to construct examples in which the distribution of V among

the treated survivors at t is first-order stochastically dominated by the distribu-

tion of V among the non-treated survivors at t, in particular if there is a strong

positive interaction between S and V in the hazard rate of T , and this hazard rate

increases in V and S. Then the individual hazard rate at t is very large if both

S = 1 and V is large, and as a result the survivors at t may contain relatively

few treated individuals with a high V . As a specific example, let FV be a gamma

distribution with unit mean and variance, and let

θT (s)(t|V ) = θ∗T (s)(t)V (4)

for all t, s, with Θ∗
T (s)(t) defined analogously. Then, the distribution of V | T >

t, S = 1 equals the distribution of

1 + Θ∗
T (0)(t)

1 + Θ∗
T (1)(t)

V

∣∣∣∣∣ T > t, S = 0,

so12

E [V |T > t, S = 1]

E [V |T > t, S = 0]
=

1 + Θ∗
T (0)(t)

1 + Θ∗
T (1)(t)

.

What does this imply for inference on average treatment effects on the hazard

rate? First, we have to define average effects. Consider the average treatment

effect defined by

E[θT (1)(t|V )/θT (0)(t|V )]

11Of course, the distributions of V among the survivors at t (FV (v|T > t, S = s) with s = 0, 1)
differ from the distribution of V in the inflow into unemployment (FV (v)), but this is not the
point here.

12One can construct nongeneric examples where the distribution of V among survivors does
not depend on S, notably if θT (t|S, V ) is additive in a term depending on S and t on the one
hand and a term depending on V and t on the other.

11



This involves aggregation over V in the population. However, a hazard concerns

a subpopulation of survivors at t, which is systematically different from the pop-

ulation, so instead one would like to take the average over V among survivors.

But because the selectivity of survivors at t > 0 depends on the treatment status,

one has to be specific about this status as well. We propose the following average

treatment effect on the individual hazard rate,

E

[
θT (1)(t|V )

θT (0)(t|V )

∣∣∣ T (1) ≥ t

]
which can be called the average treatment effect on the treated survivors at t. It

averages over the distribution of V among the survivors at t if the agents are as-

signed to the treatment. Under randomization, this is equivalent to averaging over

the distribution of V among the treated survivors at t (so with T ≥ t, S = 1). If

equation (4) is satisfied then the average treatment effect on the treated survivors

at t equals both the average and the individual treatment effect on the hazard

at t (which then equal θ∗T (1)(t)/θ
∗
T (0)(t)). Note that in this case the individual

treatment effect is homogeneous across individuals but not necessarily over time.

Note that in general the average treatment effect on the treated survivors at t

is a property of a subpopulation whose composition depends on the treatment

effect on [0, t).

Now consider nonparametric inference. Without unobserved heterogeneity,

θT (t|S = 1)/θT (t|S = 0) equals the average population treatment effect on the

hazard rate at t. With unobserved heterogeneity

θT (t|S = 1)

θT (t|S = 0)
=

E[θT (t|S = 1, V ) | T ≥ t, S = 1]

E[θT (t|S = 0, V ) | T ≥ t, S = 0]
,

so this ratio reflects (i) the treatment effect and (ii) the selection effect that at

T = t, among the survivors at t, the treated and controls have systematically

different unobserved characteristics despite the randomization at t = 0. The

nonparametric estimator of θT (t|S = 1)/θT (t|S = 0) (which is basically its sample

equivalent) therefore does not capture the treatment effect. In the earlier example

with the gamma distribution for V , the nonparametric estimator of θT (t|S =

1)/θT (t|S = 0) underestimates the average effect for the population.

In fact, one can construct examples where

θT (t|S = 1) < θT (t|S = 0)

even if

θT (1)(t|V ) > θT (0)(t|V ) almost surely for all t. (5)

12



For example, let V have a discrete distribution with Pr(V = 0.2) = Pr(V =

2.5) = 0.5, and let equation (4) be satisfied, with Θ∗
T (1)(t) > Θ∗

T (0)(t) for all t > 0

(note that this is weaker than inequality (5) for θT (s)(t|V ) in this example). Then

θT (t|S = 1) < θT (t|S = 0) for values of Θ∗
T (s)(t) in an interval around 1. In

such cases the dynamic selection effect on the observed hazard rate dominates

the treatment effect, in certain time intervals. Obviously, this may lead to invalid

nonparametric inference on the sign of the treatment effect.

Similar results can be derived for e.g. the use of the sample equivalent of

FT (t + a|T > t, S = 1)/FT (t + a|T > t, S = 0) for a > 0 (e.g. from a probit

analysis of whether T ∈ (t, t + a] given T > t, S) to estimate the corresponding

average effect on the individual conditional survival probability.13

2.4.2 Semiparametric approaches

To proceed towards more constructive results, we need to impose some semipara-

metric structure on the distribution of T (s)|V . Subsequently, two approaches can

be taken. First, one may abandon point identification and estimation, and fo-

cus on bounding the parameters of interest (e.g. Manski, 1997). Second, we may

impose a structure that is sufficiently specific to enable point identification and

estimation of relevant treatment effects.

Following the first approach, we may assume that equation (4) applies and

that the individual-level potential-outcome distributions can be ranked in terms

of first-order stochastic dominance, i.e. Θ∗
T (1)(t) > Θ∗

T (0)(t) for all t > 0, Θ∗
T (1)(t) =

Θ∗
T (0)(t) for all t > 0, or Θ∗

T (1)(t) < Θ∗
T (0)(t) for all t > 0. In Appendix 1 we prove

that, with unobserved heterogeneity,

θT (t|S = 1)

θT (t|S = 0)
< E

[
θT (1)(t|V )

θT (0)(t|V )

]
= E

[
θT (1)(t|V )

θT (0)(t|V )

∣∣∣ T (1) ≥ t

]
(6)

if Θ∗
T (1)(t) > Θ∗

T (0)(t), for all t > 0. The results for the other two cases follow

as straightforward modifications. The ranking of the individual-level potential-

outcome distributions can be inferred from the ranking of FT ;S=1(t) and FT ;S=0(t)

13Average non-additive treatment effects on quantities that are defined for the whole pop-
ulation, such as the average of the relative effect on the survival probability defined in
Subsection 2.1, can also not be inferred nonparametrically, but this is only because of the
non-additivity. Note that if ΘT (1)(t|V ) > ΘT (0)(t|V ) for all t > 0 and at all V , then the
observable quantity FT (t|S = 1)/FT (t|S = 0) − 1 is always negative (this follows from
FT (t|S = s) = E[exp(−ΘT (s)(t|V ))]) and vice versa, so then this observable quantity always
has the same sign as the average treatment effect E[exp(−ΘT (1)(t|V ))/ exp(−ΘT (0)(t|V ))] − 1.
A similar result holds for θT (0|S = 0)− θT (0|S = 1). All these quantities are based on samples
drawn at t = 0, at which there has been no dynamic selection yet.
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near t = 0, so the average treatment effects on the hazard rate can be bounded

by the observable left-hand side of equation (6) (see also Meyer, 1996).

Now let us turn to the second semiparametric approach, imposing a structure

that is sufficiently specific to enable point identification and estimation. An ob-

vious choice is to impose that the hazard rate of T (s)|V is multiplicative in t, s

and V , so, in equation (4),

θ∗T (s)(t) = γs λ(t)

for some scalar parameter γ > 0 and some “baseline hazard” function λ. This

results in the so-called two-sample MPH model for T |S, V , with

θT (t|S, V ) = λ(t) γS V. (7)

Here, “two-sample” refers to the subsamples with S = 0 and S = 1. We are pri-

marily interested in identification of the individual (and average) treatment effect

parameter γ. Under the additional assumption that E [V ] <∞ this parameter is

identified from (see Elbers and Ridder, 1982, and Kortram et al., 1995)

γ = lim
t↓0

FT (t|S = 1)

FT (t|S = 0)
. (8)

In applications of MPH models, the “random effects” assumption that observed

and unobserved explanatory variables are independent is often controversial.

However, here this assumption follows from the randomization of S.

The analysis by Lenstra en Van Rooij (1998) suggests that the sample analog

of the right-hand side of (8),
[
1− F̂ T (1) (tn)

]
/
[
1− F̂ T (0) (tn)

]
, is a consistent

estimator of γ if tn ↓ 0 at an appropriate rate as n→ ∞.14 Other semiparametric

structures of the hazard rate of T (s)|V may also lead to point identification and

estimation of treatment effects (see Heckman and Taber, 1994, and Van den Berg,

2001, for surveys).

2.4.3 Post-duration outcomes

We end this subsection by re-addressing the results in Ham and LaLonde (1996)

on problems with inference of treatment effects on post-spell outcomes if random-

ization occurs at t = 0. Consider an outcomeW that is realized immediately after

T . Let W (s) be the random outcome that would prevail if we would hypotheti-

cally assign the treatment s to the agent. The process {W (s)}, which is assumed

14Horowitz (1999) provides an asymptotically normal estimator of γ for the case that S is
continuous and the model satisfies additional smoothness conditions.

14



measurable, can again be given a structural interpretation. In general, {W (s)}
may depend on V . The observation window is denoted by [0, T ) with T <∞. We

observe W iff T < T . The distribution of V |S = s among the agents for whom

W is observed equals the distribution of V |T < T , S = s. It follows that, among

the observed W , the distribution of V among the treated in general differs from

the distribution of V among the controls. So, despite randomization at t = 0, we

cannot simply compare the observed mean outcomes of W among treated and

controls in order to uncover e.g. E[W (1) −W (0)]. However, let T → ∞. Then

each sample member provides an observation of W . As V⊥⊥S|T < ∞ because

of randomization, it follows that the distribution of V is the same among the

treated and the controls for whom W is observed, and inference can be based on

simple comparisons of observed outcomes of W .

This line of reasoning also applies if W is realized with a certain delay after

T , and/or if the analysis is only based on realizations of W in a fixed time

interval. One may think of T as the unemployment duration and W as the post-

unemployment wage, the post-unemployment job duration, or the earnings of

employed workers say two years after the experiment.

We conclude that problem with causal inference on post-duration outcomes

arises because of a bounded observational window (i.e., right-censoring on a

bounded interval). Without the latter, the former does not arise. With a bounded

observational window, a solution is to estimate a model that takes unobserved

heterogeneity into account.15

3 Randomization and immediate treatment with

imperfect compliance

3.1 Model and data

We now relax Section 2’s assumption of perfect compliance, but retain the as-

sumption that treatment is immediate. Instead of being randomly assigned to a

treatment as in Assumption 1, agents are randomly assigned a label Z ∈ Z at

time 0. In the typical experimental setup, Z takes values in the set Z = S of

possible treatments and is interpreted as the ITT with the treatment Z. More

generally, we allow Z to be an IV with support Z �= S. We will nevertheless refer

to Z as the ITT throughout.

15See Visser (1996) for a related empirical analysis of the duration of the second (AIDS) stage
of HIV/AIDS if the observational window is fixed.
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Let S(z) be the random actual treatment that would prevail if we hypothet-

ically assign the agent the label z ∈ Z. The process {S(z)}, which is assumed

measurable, can again be given a structural interpretation. The actual treatment

is S = S(Z). In the ITT case with perfect compliance, we would have that

S(z) = z for all z ∈ Z = S, and that S = S(Z) = Z. In the present section,

however, we allow for imperfect compliance (so S = S(Z) �= Z) by allowing S(z)

to be non-degenerate. If Z is discrete and an effective ITT, it should be the case

that Pr(S(z) = z) > Pr(S(z) = z′) for all z, z′ ∈ S such that z′ �= z.

Throughout this section we maintain

Assumption 2 (IV). (i) z 	→ S(z) is nontrivial (in a way that will be further

specified in special cases below), and (ii) Z⊥⊥({T (s)}, {S(z)}).

Underlying Assumption 2(ii) is the notion that (a) the ITT does not causally

affect outcomes directly, so that potential outcomes T (s) need not be indexed

by z, (b) outcomes do not causally affect treatment, so that S(z) need not be

indexed by possible values t of T , and (c) the ITT is not causally affected by

either outcomes or treatment (see Abbring, 2003, for discussion).

With imperfect compliance, the actual treatment S = S(Z) and the potential

outcomes {T (s)} are typically dependent, because agents non-experimentally self-

select or are selected in actual treatment. This sets the present analysis apart from

that of Section 2. Note, however, that a reduced-form analysis of the effect of ITT

on outcomes fits Section 2’s framework. Formally, the outcome equation can be

reduced to {T (S(z))}. Under Assumption 2, Z⊥⊥{T (S(z))}, so that Assumption

1 holds for the reduced-form model with Z replacing S.

The data of Subsection 2.1 are accordingly enriched with instrumental varia-

tion. We now have a random sample ((T̃1, S1, D1, Z1), . . . , (T̃n, Sn, Dn, Zn)) from

the joint distribution of (T̃ , S,D, Z).

3.2 Nonparametric estimation and testing with IV

For now, consider the binary treatment-binary instrument case that S = {0, 1}
and Z = {0, 1}. Again, it is convenient to think of the treatment statuses as

“treatment” (s = 1) and “control” (s = 0) in this case. Define p(z) := Pr(S(z) =

1). Note that p(z) = Pr(S = 1|Z = z) under Assumption 2. Assume that Im-

bens and Angrist’s (1994) monotonicity property holds, that is S(0) ≤ S(1) or

S(0) ≥ S(1). Without further loss of generality, we take S(0) ≤ S(1). Then, the

subpopulation that switches treatment status between propensities p(0) and p(1)

all switch from treatment 0 to treatment 1. This subpopulation, called “com-

pliers” by Imbens and Rubin (1997), is therefore Q := {S(0) = 0, S(1) = 1},
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and has probability mass Pr(Q) = p(1) − p(0). We formalize Subsection 3.1’s

Assumption 2(i) by assuming that Pr(Q) > 0.

Standard methods from the treatment-effects literature can be adapted to

learn about various average contrasts between T (1) and T (0) on Q, and the

marginal distributions F0;Q and F1;Q of, respectively, T (0) and T (1) on Q. In

this subsection we only consider the average additive treatment effect on the

survival probabilities, as from Section 2 we know that nonparametric inference of

other effects is not well possible if the population is heterogeneous. Of particular

interest here are adaptations of existing methods that allow for censoring.

Identification of the marginal potential-outcome distributions F0;Q and F1;Q

on Q is straightforward (Imbens and Rubin, 1997). In particular, in Appendix 2

we show that

F 0;Q(t) =
Pr (T > t, S = 0|Z = 0)− Pr (T > t, S = 0|Z = 1)

p(1)− p(0)
and

F 1;Q(t) =
Pr (T > t, S = 1|Z = 1)− Pr (T > t, S = 1|Z = 0)

p(1)− p(0)
.

By implication, the mean survival probability contrast on Q

∆Q(t) := F 1;Q(t)− F 0;Q(t),

is identified (Imbens and Angrist, 1994). This is a local average treatment effect

on survival for at least t periods.

In applied work, researchers often choose only a few values of t and apply e.g.

Imbens and Angrist’s (1994) IV estimator to assess the effect of a program on sur-

vival through the corresponding intervals of time. For example, in the evaluation

of a training program, one could define the outcomes to be survival in unem-

ployment for 6 months. The appeal of such an approach lies in its computational

and presentational simplicity. However, if richer survival data are available, it

ignores potentially useful information on the effect of the program. Furthermore,

standard methods cannot handle the fact that survival data are often censored,

nor can they handle time-varying covariates. We therefore focus on econometric

methods to learn about the functions F 0;Q, F 1;Q, and ∆Q in the possible presence

of right-censoring.

To this end, first note that

∆Q =
F T ;Z=1 − F T ;Z=0

p(1)− p(0)
,

where F T ;Z=z (t) := Pr(T > t|Z = z). Thus, the causal null that F 0 = F 1 is

equivalent to the reduced-form null that F T ;Z=0 = F T ;Z=1 (Robins and Tsiatis,
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1991, and Abadie, 2002). Thus, under the IV assumptions we can test for distri-

butional treatment effects using any of the nonparametric tests of Section 2.

Next, consider estimating F 0;Q, F 1;Q, and ∆Q. First note that F T ;Z=z(t) can

be estimated by the Kaplan-Meier estimator

F̂ T ;Z=z(t) =
∏

{j:Dj=1,T̃j≤t,Zj=z}

(
1− [Rz(T̃j)]

−1
)
,

with Rz(t) :=
∑n

i=1 I(T̃i ≤ t, Zi = z) the appropriate risk set. The conditional

survival probability F T ;S=s,Z=z(t) := Pr(T > t|S = s, Z = z) can be estimated

by a similar Kaplan-Meier estimator F̂ T ;S=s,Z=z(t). Also, p(z) can be estimated

by

p̂(z) =

∑n
i=1 SiI(Zi = z)∑n
i=1 I(Zi = z)

.

Thus, F 0 and F 1 can be estimated by

F̂ 0;Q =
[1− p̂(0)] F̂ T ;S=0,Z=0 − [1− p̂(1)] F̂ T ;S=0,Z=1

p̂(1)− p̂(0)
and (9)

F̂ 1;Q =
p̂(1)F̂ T ;S=1,Z=1 − p̂(0)F̂ T ;S=1,Z=0

p̂(1)− p̂(0)
, (10)

respectively, and ∆Q can be estimated by

∆̂Q = F̂ 1;Q − F̂ 0;Q =
F̂ T ;Z=1 − F̂ T ;Z=0

p̂(1)− p̂(0)
.

Asymptotic behavior of these estimators follows from standard results for the

Kaplan-Meier estimator. Let qz := Pr(Z = z). We have

Proposition 1. Under Assumption 2,
√
n
(
F̂ 1;Q − F 1;Q, F̂ 0;Q − F 0;Q

) D−→

1

p(1)− p(0)

((
F T ;S=1,Z=1 − F 1;Q

)
N1 −

(
F T ;S=1,Z=0 − F 1;Q

)
N0

−

√
p(1)

q1
F T ;S=1,Z=1G11 +

√
p(0)

q0
F T ;S=1,Z=0G10,(

F T ;S=0,Z=1 − F 0;Q

)
N1 −

(
F T ;S=0,Z=0 − F 0;Q

)
N0

+

√
1− p(1)

q1
F T ;S=0,Z=1G01 −

√
1− p(0)

q0
F T ;S=0,Z=0G00

)
,
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with Nz (z = 0, 1) a normal random variable with zero mean and variance

p(z) [1− p(z)] /qz, Gsz (s, z = 0, 1) a Gaussian martingale such that Gsz(0) = 0

and, for t < t′,

cov (Gsz(t),Gsz(t
′)) =

∫ t

0

θT ;S=s,Z=z (τ)

F T ;S=s,Z=z (τ)FC (τ−)
dτ =: σ2

sz (t) ,

and N1, N0, G11, G01, G10, and G00 mutually independent.

Proof. See Appendix 2.

It is instructive to note that the mathematical expressions in Proposition 1 differ

in a number of ways from the corresponding expressions in Subsection 2.2 (see in

particular equation (2)). First, each estimator F̂ s;Q now depends on two Kaplan-

Meier estimators and on estimators of p(z) (see equations (9) and (10)). For each

estimator F̂ s;Q, the limiting stochastic process is a sum of four independent terms

reflecting the variation in the estimators of p(1), p(0), and the two Kaplan-Meier

estimators, respectively. The two estimators F̂ s;Q (s = 0, 1) are asymptotically

dependent because they both depend on the estimators of p(0) and p(1).

Proposition 1 can be used to compute asymptotic standard errors of F̂0,Q(t),

F̂1;Q(t), and ∆̂Q(t), and (point-wise and uniform) confidence bounds on F0,Q,

F1;Q, and ∆Q. In particular, for ∆̂Q we have

Corollary 1. For t ≤ t′, the asymptotic covariance of ∆̂Q(t) and ∆̂Q(t
′) equals

1

[p(1)− p(0)]2

{p(1) [1− p(1)]

nq1

[
F T ;S=1,Z=1(t)− F T ;S=0,Z=1(t)−∆Q(t)

]
×

[
F T ;S=1,Z=1(t

′)− F T ;S=0,Z=1(t
′)−∆Q(t

′)
]

+
p(0) [1− p(0)]

nq0

[
F T ;S=1,Z=0(t)− F T ;S=0,Z=0(t)−∆Q(t)

]
×

[
F T ;S=1,Z=0(t

′)− F T ;S=0,Z=0(t
′)−∆Q(t

′)
]

+
p(1)F T ;S=1,Z=1(t)F T ;S=1,Z=1(t

′)σ2
11(t)

nq1

+
[1− p(1)]F T ;S=0,Z=1(t)F T ;S=0,Z=1(t

′)σ2
01(t)

nq1

+
p(0)F T ;S=1,Z=0(t)F T ;S=1,Z=0(t

′)σ2
10(t)

nq0

+
[1− p(0)]F T ;S=0,Z=0(t)F T ;S=0,Z=0(t

′)σ2
00(t)

nq0

}
.

(11)
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A consistent estimator of this asymptotic covariance follows by plugging the esti-

mators p̂(z) of p(z), Mz :=
∑n

i=1 I(Zi = z) of nqz, F̂ T ;S=s,Z=z of F T ;S=s,Z=z, ∆̂s;Q

of ∆s;Q, and consistent estimators16

σ̂2
sz (t) =

∑
{j:Dj=1,T̃j≤t,Sj=s,Zj=z}

[
Rsz(T̃j)

]−2

of σsz(t) into equation (11). Note that Corollary 1 provides the asymptotic vari-

ance of ∆̂Q(t), and therefore its asymptotic standard error, for t = t′.
One special case deserves some attention. In the case that there is no cen-

soring, ∆̂Q(t) reduces to Imbens and Angrist’s (1994) IV estimator of the local

average treatment effect on the binary outcome I(T > t), the Wald estimator17

∆̂Q(t) =
M−1

1

∑n
i=1 ZiI(Ti > t)−M−1

0

∑n
i=1(1− Zi)I(Ti > t)

M−1
1

∑n
i=1 ZiSi −M−1

0

∑n
i=1(1− Zi)Si

.

In this case, Proposition 1 implies

Corollary 2. If FC = 1 (no censoring), then, for t ≤ t′, the asymptotic covari-
ance of ∆̂Q(t) and ∆̂Q(t

′) equals

1

[p(1)− p(0)]2

{p(1) [1− p(1)]

nq1

[
F T ;S=1,Z=1(t)− F T ;S=0,Z=1(t)−∆Q(t)

]
×

[
F T ;S=1,Z=1(t

′)− F T ;S=0,Z=1(t
′)−∆Q(t

′)
]

+
p(0) [1− p(0)]

nq0

[
F T ;S=1,Z=0(t)− F T ;S=0,Z=0(t)−∆Q(t)

]
×

[
F T ;S=1,Z=0(t

′)− F T ;S=0,Z=0(t
′)−∆Q(t

′)
]

+
p(1)FT ;S=1,Z=1(t)F T ;S=1,Z=1(t

′)
nq1

+
[1− p(1)]FT ;S=0,Z=1(t)F T ;S=0,Z=1(t

′)
nq1

+
p(0)FT ;S=1,Z=0(t)F T ;S=1,Z=0(t

′)
nq0

+
[1− p(0)]FT ;S=0,Z=0(t)F T ;S=0,Z=0(t

′)
nq0

}
.

16See Section 2.
17See e.g. Angrist and Krueger (1999) and Heckman, LaLonde and Smith (1999) for general

discussions of the Wald estimator in the treatment evaluation context.
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For t = t′, this reduces to the asymptotic variance given by Imbens and Angrist
(1994),

E
[(
I(T > t)− F T (t)−∆Q(t) (S − E[S])

)2
(Z − E[Z])2

]
[cov (S, Z)]2

.

In general, the functions F 0;Q, F 1;Q, and ∆Q inherit the disadvantages of the

local average treatment effect parameter in Imbens and Angrist’s (1994) work.

Unless p(0) = 0 and p(1) = 1, in which case Q is (almost surely) the entire pop-

ulation, the set Q, and therefore these functions, are instrument-dependent for

given propensity scores p(0) and p(1) (see Heckman, 1997, Heckman, LaLonde

and Smith, 1999, and Abbring, 2003, for discussion). Policy-evaluation problems

usually require information on “parameters of interest” other than the identified

local average treatment effects. It is often more interesting to know average treat-

ment effects on individual hazard rates than on survival functions. As elsewhere

in the paper, two approaches can then be taken. First, one may focus on bound-

ing the parameters of interest. In this section we do not pursue this approach.

Instead, in the next subsection, we follow the second approach, which amounts to

the imposition of some semiparametric structure and the investigation of point

identification and estimation of treatment effects in the ensuing models.

3.3 Semiparametric IV in a proportional hazards frame-

work

In this subsection we adopt structures for the hazard rate of T (s) that are related

to the familiar mixed proportional hazards (MPH) model, allowing for unobserved

heterogeneity V across individuals. As in Subsection 2.4, this enables us to focus

on individual treatment effects. We only allow {T (s)} and S to be dependent by

way of a common dependence on the individual V , so {T (s)}⊥⊥S|V . This means

that in the case where S differs from the randomized assignment due to selective

compliance, this selection mechanism is captured by V .18

We start by adopting the multiplicative structure for θT (s)(t|V ) from Subsec-

tion 2.4.2, resulting in the two-sample MPH model for T |S, V ,

θT (t|S, V ) = λ(t) γS V. (7)

18Recall that in Subsection 2.4 we examined general models for T (s)|V with V ⊥⊥S. Com-
pared to that, we now impose some structure on the distributions of T (s)|V and we drop the
assumption that V ⊥⊥S.
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We again assume that E [V ] < ∞, but we now replace the assumption that

S⊥⊥V by the assumption that there is an instrument Z that satisfies Assumption

2. We again take the “worst-case scenario” that Z is binary (again, one may

think of Z as an ITT indicator). Among other things, Assumption 2(ii) in this

case implies that Z⊥⊥V . We now formalize Assumption 2(i) by assuming that

p(1)E[V |S = 1, Z = 1] �= p(0)E[V |S = 1, Z = 0]. Note that p(0) �= p(1) is

necessary for this condition to hold.

Just as in (8), it is useful to focus on limits as t ↓ 0, because at 0 the dynamic

selection that we examined in Subsection 2.4 has not yet taken place. There holds

that19

γ = lim
t↓0

p(1)FT ;S=1,Z=1(t)− p(0)FT ;S=1,Z=0(t)

[1− p(0)]FT ;S=0,Z=0(t)− [1− p(1)]FT ;S=0,Z=1(t)
(12)

The right-hand side of this only depends on observable quantities. Thus, γ is

identified. We summarize this result in

Proposition 2. With a valid binary instrument (i.e. that satisfies Assumption

2), and under the assumption that E[V ] < ∞, the treatment effect parameter γ

in an MPH model with an endogenous binary treatment is identified.

Note that we do not require exogenous explanatory variables. We also do not

require parametric assumptions (like a parametric latent-variable selection equa-

tion) on the treatment selection process {S(z)}. If, in violation of Assumption 2,

Z is not informative on S (i.e., if p(1) = p(0)) then equation (12) does not have

a solution for γ.

By analogy to Lenstra and Van Rooij (1998), it may be possible to demon-

strate that γ can be consistently estimated by the sample equivalent of the right-

19 To see this, note that the right-hand side of (12) equals

lim
t↓0

p(1)fT ;S=1,Z=1(t) − p(0)fT ;S=1,Z=0(t)
[1 − p(0)] fT ;S=0,Z=0(t) − [1 − p(1)] fT ;S=0,Z=1(t)

by De l’Hospital’s rule, and that

fT ;S=s,Z=z(t) = λ(t)γsE

[
V exp

(
−γsV

∫ t

0

λ(τ)dτ

)
|S = s, Z = z, T ≥ t

]
.

The result follows from E[V |Z = 1] = E[V |Z = 0] which implies that

p(1)E[V |S = 1, Z = 1]−p(0)E[V |S = 1, Z = 0] = [1−p(0)]E[V |S = 0, Z = 0]−[1−p(1)]E[V |S = 0, Z = 1].
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hand side of (12),

γ̂ =
p̂(1)

[
1− F̂ T ;S=1,Z=1(tn)

]
− p̂(0)

[
1− F̂ T ;S=1,Z=0(tn)

]
[1− p̂(0)]

[
1− F̂ T ;S=0,Z=0(tn)

]
− [1− p̂(1)]

[
1− F̂ T ;S=0,Z=1(tn)

] ,
where tn ↓ 0 at an appropriate rate as n→ ∞. This IV estimator γ̂ can be seen as

a version for our non-linear model of the Wald IV estimator of a treatment effect

in the linear regression model.20 To see this, note that at t ↓ 0, the specification

(7) resembles a non-linear regression model with an endogenous regressor and a

constant treatment effect parameter, and that equation (12) can be re-expressed

as follows,21

γ−1 = lim
t↓0

θT (t|Z = 1)− θT (t|Z = 0)

(1− p(0))θT (t|S = 0, Z = 0)− (1− p(1))θT (t|S = 0, Z = 1)
(14)

Although the proposition does not concern identification of the full model, it

is not difficult to achieve the latter e.g. by way of including exogenous explanatory

variables X. One may use these identification results as a justification to estimate

full models that consist of two model equations: (i) an MPH model equation

20See e.g. Angrist and Krueger (1999) and Heckman, LaLonde and Smith (1999) for discus-
sions in a regression model context.

21One may elaborate on this intuition by noting that equation (12) can be re-expressed as
(see also Footnote 19)

γ − 1 = lim
t↓0

fT ;Z=1(t) − fT ;Z=0(t)
[1 − p(0)]fT ;S=0,Z=0(t) − [1 − p(1)]fT ;S=0,Z=1(t)

. (13)

Heuristically, the numerator in the right-hand side of (13) satisfies [fT ;Z=1(t) − fT ;Z=0(t)] dt =
E[I(t ≤ T < t + dt)|Z = 1] −E[I(t ≤ T < t + dt)|Z = 0]. Like the numerator of the population
version of the Wald estimator, this is a difference in mean outcomes between the subpopulations
with Z = 1 and Z = 0. Moreover, near t = 0 this difference in mean outcomes equals the
parameter of interest, γ − 1, times the denominator in the right-hand side of (13) (see also
Footnote 19; we divide by λ(t) to cover the cases in which λ is not bounded away from 0 and
∞ at 0):

lim
t↓0

fT ;Z=1(t) − fT ;Z=0(t)
λ(t)

= (γ − 1) {p(1)E[V |S = 1, Z = 1] − p(0)E[V |S = 1, Z = 0]}

= (γ − 1) lim
t↓0

[1 − p(0)]fT ;S=0,Z=0(t) − [1 − p(1)]fT ;S=0,Z=1(t)
λ(t)

.

The denominator’s factor p(1)E[V |S = 1, Z = 1] − p(0)E[V |S = 1, Z = 0] is nonzero under
Assumption 2(i), and reduces to [p(1) − p(0)] E[V ] = (E[S|Z = 1] − E[S|Z = 0]) E[V ] in the
special case that V ⊥⊥(S, Z). More generally, it reflects not only the difference in mean treat-
ments between the subpopulations with Z = 1 and Z = 0, but also the interaction with the
unobservables V .
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for T |S,X, V , say θT (t|S,X, V ) = λ(t)γS exp(αX)V , and (ii) a latent-variable

selection equation, say S∗ = β0 + β1Z + β2X + ε, with S := I(S∗ > 0), and

where ε and V are possibly dependent. The identification results imply that the

estimation results are not fully driven by functional-form assumptions.

It is clear that a continuous instrument Z enables identification of more gen-

eral models. Chesher (2003) considers an MPH-type model with an endogenous

continuous treatment indicator S as well as exogenous variables X, a continuous

instrument Z, and a latent variable equation relating S and Z. He demonstrates

local identification of ratios of the derivatives of the individual hazard rate with

respect to S and X.

We now proceed to the case where Z represents an ITT and non-compliance

is asymmetric in the sense that agents always comply if assigned to the control

group (z = 0), i.e. S(0) = 0 and p(0) = 0. Under this restriction, Bijwaard and

Ridder (2003) develop an estimator of a treatment effect in an MPH model with

a parametric baseline hazard. They exploit that, because of randomization, the

subpopulation of agents with Z = 0 is representative for the population. This

ensures that all parameters except the treatment effect are identified from the

data on this subpopulation. The treatment effect is subsequently identified from

the outcomes of the agents with Z = 1. Here we follow the same approach. This

requires an MPH model that is fully identified in the absence of treatments.22

This is usually achieved by including exogenous X variables, so we augment

equation (7) with such variables. In addition, we now allow the treatment effect

γ to depend on the elapsed time t since treatment and on X,

θT (t|S, V,X) = λ(t) γ(t, X)S φ(X) V, (15)

and we make standard assumptions that ensure identification of λ, φ, and the

distribution of V in the population in the absence of treatments (notably, this

requires X⊥⊥V ). The observed outcomes for Z = 0 then identify these quantities.

Now consider the outcomes of non-compliers among those who are assigned to

be treated. We demonstrate in Appendix 2 that these identify the distribution

of V |S = 0, Z = 1. Together, this then also identifies the distribution of V |S =

1, Z = 1. The outcomes of agents with S = 1 and Z = 1 subsequently identify

the treatment effect function γ. In sum, we have

Proposition 3. Consider a standard MPH model that is augmented by an en-

dogenous binary treatment and that is identified in the absence of this treatment.

Assume perfect compliance among the controls. With a valid binary instrument

22See Heckman and Taber (1994) and Van den Berg (2001) for surveys.
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(i.e. that satisfies Assumption 2), the treatment effect as a function of the elapsed

duration and observed covariates is identified.

Proof. See Appendix 2.

From a policy point of view it is obviously important to be able to identify

the way in which the individual treatment effect changes over time and across

individuals.23

4 Randomization with later treatment and im-

perfect compliance

4.1 Model and data

We further extend the model of Subsection 3.1 by not only allowing for imperfect

compliance, but also for positive amounts of time between treatment assignment

and treatment enrollment. Again, a Z-valued label Z is randomly assigned at

time 0. Then, the agents engage in a time-consuming process of enrolling in a

program. We focus on the case of a binary program, in which the agents either

enroll at some time in [0,∞) or not enroll at all. Following Abbring and Van

den Berg (2003b), we can formalize this by taking S = [0,∞]. Then, S simply

denotes the random time at which an agent enrolls in the program. The point ∞
corresponds to never enrolling at all.

As before, denote the model for the treatment as a function of the instrument

by {S(z)}. In a social experiment, perfect compliance would again arise if Z = S
and S(z) = z. An interpretation is that a full treatment plan Z, stipulating the

timing of future program participation, is randomly assigned at time 0 and is

adhered to in all states of the world. If Z is observed by the agent, which we typi-

cally assume it is, this is the perfect-foresight case alluded to in Subsection 2.3. In

this section, we allow for imperfect compliance, i.e. non-degenerate {S(z)}. This
case is more relevant than the case of perfect compliance and delayed treatment.

For expositional convenience, we take the instrument (ITT) to be binary (Z =

{0, 1}). Because S is larger than Z, Z cannot contain a treatment plan for each

possible treatment. Therefore, S(0) and S(1) cannot both be non-degenerate,

except in the trivial case that S has binary support. Thus, there is imperfect

compliance.

23One might want to consider inference in models where the individual treatment effect γ is
allowed to depend in a general way on V , but this seems too ambitious.
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In the next subsection we argue that the ITT is likely to affect outcomes

directly in this case. To accommodate this, we augment the outcomes model by

indexing potential outcomes not only by treatments in S, but also by the labels

in Z. Thus, the potential-outcomes process is now {T (s, z)} := {T (s, z); (s, z) ∈
S × Z}. We again assume that each T (s, z) is continuously distributed, with

hazard rate θT (s,z) and integrated hazard ΘT (s,z). For expositional convenience,

we restrict the joint distributions of {T (s, z)} for fixed z as in

Assumption 3. For all z ∈ Z, there exists a unit exponential random variable

Ez such that T (s, z) = Θ−1
T (s,z)(Ez) for all s ∈ [0,∞].

Because we never observe two potential outcomes jointly, Assumption 3 is em-

pirically innocuous.

Following Abbring and Van den Berg (2003b), we assume that there is no

anticipation of future treatment. This means that current potential integrated

hazards do not depend on future treatment enrollment, i.e.

Assumption 4. For all s ∈ [0,∞), z ∈ Z, ΘT (s,z)(t) = ΘT (∞,z)(t) for all t ≤ s.

Note that Assumptions 3 and 4 imply that T (s, z) = T (∞, z) on {T (∞, z) ≤ s}.
We also assume that treatments are only observed if enrollment has taken

place before the outcome spell is completed. This is natural in combination

with Assumption 4, and natural in many applications.24 Thus, we now have

a random sample ((T̃1, S1I(S1 < T̃1), D1, I(S1 < T̃1), Z1), . . . , (T̃n, SnI(Sn <

T̃n), Dn, I(Sn < T̃n), Zn)) from the joint distribution of (T̃ , SI(S < T̃ ), D, I(S <

T̃ ), Z).

4.2 Which exclusion restrictions can be derived from so-

cial experiments?

An equivalent of Assumption 2 for this section would require that (i) z 	→ S(z)

is nontrivial, and (ii) Z⊥⊥({T (s, Z)}, {S(z)}). A sufficient condition for (ii) is

that ITT does not causally affect outcomes directly, i.e. T (s, z) = T (s, z′) for

all s ∈ S, z, z′ ∈ Z. With imperfect compliance and dynamic enrollment in

24The analysis can be straightforwardly extended to the case that treatments are always
observed. A natural symmetric extension of the present model allows outcomes to affect future
treatment and imposes that neither future outcomes nor future treatments are anticipated.
Alternatively, under the assumption that treatments are not causally affected by outcomes at
all, we can allow for for anticipation of future treatment. See Abbring and Van den Berg (2003b)
and Abbring (2003) for details.
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treatment, randomization is unlikely to ensure such exclusion. To see this, con-

sider a social experiment in which the treatment is a public training program for

the unemployed, and the outcome is the unemployment duration. Suppose that

agents operate in a continuous-time dynamic environment in which they may

affect treatment and outcomes by (i) investing in some (human) capital, and (ii)

searching for job and training opportunities. Agents are informed about their ITT

status and possible some other predetermined variables (called V below). Oth-

erwise, information accumulates in the obvious way. In this framework, dynamic

selection issues may arise because of the agents’ private information. Moreover,

at the level of an individual agent ITT will affect not only treatment but also

outcomes directly (i) before enrollment (“ex ante”) if ITT is informative on the

arrival of future training (or other) opportunities and this is relevant to search

behavior (e.g. the extent of discouraged worker effects), and (ii) after enrollment

(“ex post”) if ITT affects investments in financial or human capital.

If the ex ante effects of ITT on outcomes are absent, we say that an ex ante

exclusion restriction is satisfied. Similarly, we refer to the absence of ex post

effects of ITT as ex post exclusion. A violation of ex ante exclusion is very likely,

because ITT has to affect actual treatment in order to be a useful instrument in

the first place (as in Assumption 2(i)). An ex post exclusion restriction, on the

other hand, is not per se inconsistent with ITT being an instrument and may be

reasonable in some applications.

A formal statement of such an assumption requires notation that allows us to

explicitly control for dynamic selection. To this end, again suppose that all ex ante

heterogeneity is captured by a random variable V such that {T (s, z)}⊥⊥{S(z)}|V .

Then, a weak version of Assumption 2 that only imposes ex post exclusion is

Assumption 5 (IV with ex post exclusion). (i) z 	→ S(z) is nontrivial, (ii)

Z⊥⊥({T (s, z)}, {S(z)}, V ), and (iii) for all s ∈ [0,∞), and z, z′ ∈ Z,

θT (s,z)(t|V ) = θT (s,z′)(t|V ) almost surely, for all t > s. (16)

Note that ex ante exclusion would require equation (16) to hold for all t ≤ s.
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4.3 Non-parametric approach

4.3.1 Identifiability

Suppose that Pr(S = T ) = 0. Following Abbring and Van den Berg (2003b) note

that a large data set would provide25

QS;Z=z(t, s) := Pr(T > t, S > s, T > S|Z = z) and

QT ;Z=z(t) := Pr(T > t, T < S|Z = z)
(17)

for all (t, s) ∈ R2
+ and z = 0, 1. These are the sub-survival-functions of (T, S) and

T on Z = z for the subpopulations with respectively T > S and T < S.

We are interested in inference on (i) causal ITT effects, and (ii) causal effects

of actual treatment on outcomes. By Assumption 5, the former are the ex ante

effects of ITT on the treatment process, as embodied in z 	→ S(z), and the ex

ante effects of ITT on outcomes, as in z 	→ T (∞, z). The latter are the treatment

effects embodied in s 	→ T (s, z). In general, these effects will depend on the ITT

status (z).26

First consider identifiability of the ITT effects in (i) . One may tend to believe

that, because of randomization of Z, ITT effects can be directly inferred from

comparing outcomes and treatments between the subpopulations with Z = 0 and

Z = 1. However, we will now argue that surprisingly little can be learned about

ITT effects.

Note that the effects of ITT on the treatment process are only observed (and

only relevant) on [0, T ]. Moreover, by Assumption 5, ITT only possibly causally

affects the outcome process on [0, S]. Intuitively, we should therefore learn about

ITT effects from data on the “identified minimum” of (T, S), i.e. the smallest of

T and S joint with the identity of this smallest duration, on Z = 0 and Z = 1.

The distribution of this identified minimum on Z = z is fully characterized by

(Q0
S;Z=z, QT ;Z=z), with Q

0
S;Z=z(·) := QS;Z=z(−∞, ·) (Tsiatis, 1975). We can think

of such data as being generated by a competing risks model that is embedded in

our model, and in which one risk is enrollment in the treatment (which terminates

the ex ante effects of ITT on outcomes) and the other risk is realized by the

outcome transition (which terminates observability of the effects of ITT on the

treatment process).

25Note that simple random censoring does not matter for identification, provided that some
straightforward support conditions hold.

26We can avoid such a dependence by focusing on θT (s,z)(·|V ) on (s,∞) (where θT (s,0)(·|V ) =
θT (s,1)(·|V ) by Assumption 5).
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If {S(z)}⊥⊥{T (s, z)} (randomized assignment) then (Q0
S;Z=z, QT ;Z=z) is con-

sistent with an independent risks model in which the outcome risk has sur-

vival function F T (∞,z) and the treatment risk has survival function F S(z). Be-

cause independent risks models are identified (e.g. Cox, 1962), F T (∞,0) and F S(0)

are identified from (Q0
S;Z=0, QT ;Z=0), and F T (∞,1) and FS(1) are identified from

(Q0
S;Z=1, QT ;Z=1).

However, here we allow for general dependence of {S(z)} and {T (s, z)},
through a common dependence on the unobservable V . Then we know that

(Q0
S;Z=z, QT ;Z=z) is consistent with a particular dependent risks model in which

the outcome risk has marginal survival function F T (∞,z) and the treatment risk

has marginal survival function F S(z). However, dependent competing risks models

are not nonparametrically identified (Cox, 1959, 1962; Tsiatis, 1975). We could

find an independent competing risks model that fits the data, but the marginal

survival functions of its risks would now typically not be F T (∞,z) and F S(z).

Indeed, Peterson’s (1976) results imply that F T (∞,z) and F S(z) can at best be

bounded, as in

Proposition 4. For given data (Q0
S;Z=z, QT ;Z=z), F T (∞,z) and F S(z) satisfy

Q0
S;Z=z +QT ;Z=z ≤ F T (∞,z) ≤ QT ;Z=z +Q0

S;Z=z(−∞) and

Q0
S;Z=z +QT ;Z=z ≤ F S(z) ≤ Q0

S;Z=z +QT ;Z=z(−∞),

for z = 0, 1. The bounds are sharp.

The bounds in Proposition 4 are typically wide, and may overlap across ITT

groups even if there are ITT effects. Then, ITT effects cannot even be signed.

This would imply that, contrary to typical IV analyses, one cannot infer empir-

ically whether the ITT variable Z has a causal effect on S. Moreover, a priori

information on one of the risks is not informative on the marginal distributions

of the other risk. More formally, the bounds on either marginal distribution can

be attained even if we arbitrarily fix the other marginal distribution.27

For example, suppose that T (∞, z) is exponential with parameter µz, S(z)

is exponential with parameter νz, and that {S(z)}⊥⊥{T (s, z)}. Then, if we do

27Peterson’s bounds on, for example, FT (∞,z) follow from FT (∞,z) = QT ;Z=z +Q∗
T ;Z=z, where

Q∗
T ;Z=z(t) := Pr(T > t, S < T |Z = z). We know QT ;Z=z. Non-tight bounds on FT (∞,z) arise

because we only know that Q0
S;Z=z ≤ Q∗

T ;Z=z ≤ Q0
S;Z=z(∞). Now, suppose that we do not only

know Q0
S;Z=z and QT ;Z=z, but also FS(z). This is equivalent to also knowing the marginal sub-

survival-functions Q∗
S;Z=z of S on {S > T }. Given Q0

S;Z=z, Q∗
S;Z=z is clearly not informative

on the sub-survival-functions Q∗
T ;Z=z of T on {S < T }. Therefore, this additional information

cannot be used to tighten the bounds on FT (∞,z).
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not assume or know that {S(z)}⊥⊥{T (s, z)}, we have to settle for Proposition 4’s

bounds,

exp [−(µz + νz)t] ≤ F T (∞,z)(t) ≤
µz

µz + νz

exp [−(µz + νz)t] +
νz

µz + νz

and

exp [−(µz + νz)t] ≤ F S(z)(t) ≤
νz

µz + νz

exp [−(µz + νz)t] +
µz

µz + νz

,

for z = 0, 1. Now let µ0 = ν0 = 1 and µ1 = ν1 = 2. This case could e.g. arise

if T is an unemployment duration, S is the (unforeseeable) duration at which

unemployment benefits are reduced, and the ITT concerns assignment of different

rates of benefits reduction (e.g. Abbring, Van den Berg and Van Ours, 1997).

Then, agents in the group with the higher rate of benefits reduction typically

respond by increasing their unemployment exit rate. In this numerical example,

the bounds reduce to

l0(t) := exp (−2t) ≤ F T (∞,0)(t), F S(0)(t) ≤
1

2
exp (−2t) +

1

2
:= u0(t) and

l1(t) := exp (−4t) ≤ F T (∞,1)(t), F S(1)(t) ≤
1

2
exp (−4t) +

1

2
:= u1(t).

Now note that l0(0) = u0(0) = l1(0) = u1(0) = 1 and, more importantly, that

l1 < l0 < u1 < u0 on (0,∞). Thus, even though the ITT effects are substantial,

the bounds for the two ITT groups overlap and ITT effects cannot be signed.

To gain some intuition for this result, consider the following heuristic approach

to inferring ITT effects on outcomes.28 Consider the “crude” ex ante outcome

hazard on Z = z,

θT (t|S ≥ t, Z = z) =
−Q′

T ;Z=z

QT ;Z=z +QS;Z=z

.

The fact that Z has been randomly assigned may lead one to believe that contrasts

of this crude hazard between Z = 0 and Z = 1 are informative on (ex ante) ITT

effects on outcomes. However, note that

θT (t|S ≥ t, Z = z) = fT (t|S(z) ≥ t, T (∞, z) ≥ t, Z = z),

so that for t > 0 a comparison of the crude hazard between the subpopulations

with Z = 0 and Z = 1 does not only reveal causal ITT effects on outcomes, but

also differences in unobservable characteristics between the subpopulations

{S(0) ≥ t, T (∞, 0) ≥ t, Z = 0} and {S(1) ≥ t, T (∞, 1) ≥ t, Z = 1}.
28Note that the argument symmetrically applies to the effects on treatment.
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These differences will in particular exist because z 	→ S(z) is nontrivial by As-

sumption 5, so that S(0) ≥ t and S(1) ≥ t will in general select different subpop-

ulations.

These selection effects disappear in the limit t ↓ 0, but in the fully nonpara-

metric case this cannot be exploited. If we impose additional smoothness on the

embedded competing risks model, then ITT effects (or, at least, their sign) can be

identified from behavior of the crude hazard near 0. For example, if we impose an

multivariate MPH structure, then individual ITT effects can be identified (Ab-

bring and Van den Berg, 2003a). Such semiparametric approaches are discussed

in Subsection 4.4.

So far, we have focused on identification of ITT effects from the embedded

competing risks data. The data on the residual outcome durations after enroll-

ment in treatment are also informative on ITT effects, but in a very limited

way. By Assumption 5, there are no direct causal effects of ITT on outcome haz-

ards after treatment enrollment. Thus, any effects of ITT in the data should be

due to indirect selection effects (that is, effects on the distribution of V among

survivors). Such effects can only arise if there are ITT effects on outcomes, or,

because z 	→ S(z) is nontrivial by Assumption 5, if {S(z)} and {T (s, z)} are

dependent through joint dependence on the unobservable V . Note that this in-

formation cannot be used to further disentangle ITT effects on treatment and

outcomes and selection effects. Information on ex post ITT effects can however

be used to test for selection effects in general. In the next subsection, we explore

this further.

Finally, note that the scope for nonparametric identifiability of ex post effects

of treatment enrollment on outcomes is very limited. The case for identification is

worse than in the similar single-spell case studied by Abbring and Van den Berg

(2003b). This suggests that substantial semiparametric structure is needed to

ensure identifiability of the ex post effects. Again, this is discussed in Subsection

4.4.

In conclusion, even though ITT is randomly assigned, not much can be learned

about either (i) ex ante ITT effects or (ii) ex post treatment effects without

imposing semiparametric structure. This means that results based on actual social

(or, for that sake, laboratory) experiments depend on the chosen semiparametric

structure.

4.3.2 Testing

The previous subsection suggests that Assumption 5 does not permit a nonpara-

metric structural analysis in which ex ante ITT effects and ex post treatment
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effects are identified or meaningfully bounded. Nevertheless, a reduced-form ITT

analysis would still be of interest if the ITT itself is a public-policy instrument.

However, the equivalence of the null hypothesis of no treatment effects and the

null hypothesis of no ITT effects breaks down in this case. Thus, unlike in the

second main case, a reduced-form analysis of ITT effects is not very informative

on the effects of actual training.

We have also argued that, under Assumption 5, information on ex post ITT

effects can be used to test for selection effects.29 This suggests two approaches to

testing. First, we may be able to test for the sign of overall causal ITT effects.

Second, we can nonparametrically test for ex post ITT effects. This is informative

on the presence of heterogeneity that leads to nonrandom inflow into the “ex post”

state. If the null hypothesis of no ex post ITT effects is accepted then one may

proceed by estimating models that ignore such heterogeneity.

4.4 Semiparametric approach

4.4.1 Bounds

Recent results by Bond and Shaw (2003) can to some extent be used to sign

ITT effects in a fairly general class of models. Suppose that there exist increasing

functions ξS and ξT such that (S(0), T (∞, 0)) equals (ξS(S(1)), ξT (T (∞, 1))) in

distribution. For example, in the bivariate MPH model

Pr (S(z) > s, T (∞, z) > t) = L
(
ΛS(z)(s),ΛT (∞,z)(t)

)
(z = 0, 1),

29The line of reasoning underlying this claim can be related to tests for selection effects in the
event-history literature. First, consider the test by Van den Berg and Van Ours (1997) on selec-
tion effects due to unobserved heterogeneity in duration analysis. If the value of an exogenous
time-varying explanatory variable in the first period is related to the hazard rate in the second
period then this indicates such selection effects. Second, consider tests on selection effects in
demographic mortality analysis where cohort effects may be present (Vaupel and Yashin, 1985,
Lindeboom, Portrait and Van den Berg, 2003). The mortality rate at advanced ages may be
related to indicators of childhood conditions early in life. This can be due to a causal effect (e.g.,
bad childhood conditions result in damage to organs, leading to higher mortality at advanced
ages). It can also be due to a selection effect: under adverse childhood conditions, only the
children with the “best” unobserved characteristics survive. Under additional semiparametric
structure, one may distinguish between these hypotheses by examining the sign of the observed
correlation. Third, in Abbring, Chiappori and Pinquet (2003)’s model of car-insurance claims
under moral hazard and experience rating, individual claim propensities are only causally af-
fected by the past occurrence of claims, but not their timing. Any variation of observed claim
intensities with the timing of past claims conditional on their occurrence should therefore be
due to selection effects. This is used to identify the sign of the occurrence-dependence effects
under additional semiparametric structure on the model.
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with L the bivariate Laplace transform of the mixing distribution, this holds

for ξS = Λ−1
S(0) ◦ ΛS(1) and ξT = Λ−1

T (∞,0) ◦ ΛT (∞,1). Thus, this structure includes

the MPH competing risks model of Abbring and Van den Berg (2003a). It also

includes the more general model studied by Heckman and Honoré (1990).

Bond and Shaw call (ξS, ξT ) a “covariate-time transformation”.30 This covariate-

time transformation is all we need to know to rank the (ex ante) marginal

potential-outcome and potential-treatment distributions in terms of first-order

stochastic dominance. For example, if ξS(t) = t for all t then F S(0) = F S(1).

If ξS(t) > t for all t, on the other hand, then F S(1) < F S(0), etcetera. De-

fine QS;Z=z(t) := Pr(S ≤ t, T > S), QT ;Z=z(t) := Pr(T ≤ t, T < S), and

FZ=z(t) := Pr(S ≤ t, T ≤ t), for t ≥ 0.

Bond and Shaw’s results immediately imply

Proposition 5. Suppose that either ξS ≤ ξT or ξS ≥ ξT . Then, either

F−1
Z=0 ◦ FZ=1 ≤ ξS ≤ Q

−1

S;Z=0 ◦QS;Z=1 and

Q
−1

T ;Z=0 ◦QT ;Z=1 ≤ ξT ≤ F−1
Z=0 ◦ FZ=1

or

F−1
Z=0 ◦ FZ=1 ≥ ξS ≥ Q

−1

S;Z=0 ◦QS;Z=1 and

Q
−1

T ;Z=0 ◦QT ;Z=1 ≥ ξT ≥ F−1
Z=0 ◦ FZ=1.

These bounds are tight if ξS = ξT .

Proof. See Appendix 3.

Note that either the lower bound on ξS coincides with the upper bound on ξT or

the upper bound on ξS equals the lower bound on ξT . As a consequence, either

the potential-treatment distributions or the potential-outcome distributions (or

both) can be ranked.

4.4.2 Point-identification

Richer point-identification results can be derived if we are willing to impose fur-

ther structure. In line with the semiparametric models in previous sections, which

were based on the MPH model, we consider the following model framework,

θT (s,z)(t|X, V ) = λ1(t) V1 γ
I(t>s) eβ1X+η1z I(t≤s)

30More precisely, they call t 	→ ((t, ξS), (t, ξT )) a covariate-time transformation. For both
risks, t 	→ t is the (normalized) time-transformation for the first covariate value (z = 0).
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θS(z)(t|X, V ) = λ2(t) V2 e
β2X+η2z,

where V := (V1, V2). This is the Timing-of-Events model (Abbring and Van den

Berg, 2003b) augmented with a (binary) ITT variable. The ex ante effect on

outcomes is represented by η1. An ex ante exclusion restriction would impose

η1 = 0. The parameter η2 captures the causal effect of z on S. If Z is degenerate

at say Z = 0 then η1 and η2 are not identified, and the model reduces to the

Timing-of-Events model. The parameter γ represents the ex post effect.

The identification proofs of Abbring and Van den Berg (2003b) can be straigh-

forwardly adapted to prove identification of the augmented Timing-of-Events

model.31

Proposition 6. Consider a Timing-of-Events model that is augmented by a bi-

nary treatment assignment indicator Z and where we do not impose ex ante exclu-

sion restrictions. If this indicator is exogenous (e.g. randomized) then the model

is identified.

Some comments are in order. First, we can identify substantially more than

Abbring and Van den Berg (2003b). In particular, we can now identify the ex

ante effect on the outcome hazard rate, and we can now identify the ex post effect

in deviation from the hazard rate for those who are assigned to a particular z,

e.g. to the control group (Z = 0).

Second, the model is heavily over-identified.

Third, notice that for the first time in this paper we require a specification

for the distribution of S as a function of its determinants (here Z,X and V ).

5 Conclusion

Social experiments in which the outcome of interest is a duration variable are

more difficult to analyze than social experiments with time-independent out-

comes. First, the outcome may be censored. Second, the randomization occurs at

time zero but the composition of survivors changes over time in different ways in

the treatment and control groups. The paper studies the three most important

benchmark cases, distinguished by whether treatment is immediate or not and

whether compliance is perfect or not.

In the intermediate case of imperfect compliance and immediate treatment,

one can make nonparametric inferences on local average treatment effects on

31In particular, the ITT is simply treated as another regressor, independent of V by random-
ization, in the embedded competing-risks model.
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survival probabilities, and we derive the relevant asymptotic results. To infer av-

erage effects on hazard rates, one has to resort to semiparametric models. As a

by-product, the paper establishes identification of MPH models with a binary

endogenous regressor and a binary instrumental variable. In the most compli-

cated case (imperfect compliance, later treatment), nonparametric analyses are

not very informative on (ex ante) effects on survival before actual treatment (and

their signs), nor on ex post effects. Again, semiparametric models provide iden-

tification, and the paper establishes identification of Timing-of-Events models

augmented with ex ante effects.

The results of this paper lead to the conclusions that (1) while it is possible

to make nonparametric inferences on additive effects on survival probabilities,

the degree to which these are informative decreases with the complexity of the

case at hand, and (2) to study the more interesting average effects on individual

hazard rates and conditional exit probabilities one needs a semiparametric struc-

ture, despite the randomization at time zero. In sum, despite the randomization

not much can be learned without a semiparametric structure. The underlying

intuition is that hazard rates condition on survival up to a positive duration, so

that a nonparametric comparison of hazard rates is affected by selection, whereas

survival probabilities concern the population at time zero.32

One approach to these problems is to use more complex dynamic experimen-

tal designs than the simple design considered in this paper. However, the main

arguments and results carry over to such designs in which randomization takes

place repeatedly at discrete (possibly random) times. If actual treatment enroll-

ment takes place at the same times, an extension of our first two cases applies. If

agents enroll in treatment more frequently, say continuously, then an extension

of our third case applies. With continuous outcomes and treatment enrollment,

repeated randomization can at best reduce the inference problems, e.g. by nar-

rowing bounds on some parameters of interests, but not solve these problems

altogether.

The results have some implications for the design of social experiments and

laboratory experiments. First, experimental inference requires semiparametric

structure, so results depend on the chosen semiparametric structure. Second, it

is useful to collect as many explanatory variables on the subjects as possible,

for two reasons: it serves to reduce the magnitude of unobserved heterogeneity,

32Intuitively, the nonparametric hazard rates at zero are not yet affected by selection, and
semiparametric identification involves an extrapolation of the treatment effect on the hazard at
zero to positive durations. This does of course not mean that semiparametric estimation results
are completely driven by extremely short durations.
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and it facilitates the semiparametric inference. Third, it is advisable to minimize

imperfect compliance.
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Appendix

Appendix 1 Proof of equation (6) in Subsection 2.4

Proof. Note that the middle and right-hand sides of equation (6) equal θ∗T (1)/θ∗T (0). We now
turn to the left-hand side. Let LV be the Laplace transform of FV . There holds that

FT (t|S = s) = LV

(
Θ∗

T (s)(t)
)

(18)

Therefore,

θT (t|S = 1)/θT (t|S = 0)
θ∗T (1)/θ∗T (0)

=
L′

V (Θ∗
T (1)(t))/LV (Θ∗

T (1)(t))

L′
V (Θ∗

T (0)(t))/LV (Θ∗
T (0)(t))

(19)

Note that the right-hand side of (19) equals 1 if FV is degenerate. Now take any t > 0. We
need to prove that the right-hand side of (19) is smaller than 1 if Θ∗

T (1)(t) > Θ∗
T (0)(t) and FV is

non-degenerate. Clearly, this is established if −L′
V /LV is decreasing. The latter follows because

the derivative of −L′
V /LV at Θ∗

T (s)(t) equals minus the variance of V |T ≥ t, S = s.

Appendix 2 Proofs of statements in Section 3

Proof of identification of F 0;Q, F 1;Q, and ∆Q. Consider the observed events

Asz := {T > t, S = s, Z = z}

for some t ≥ 0, and s = 0, 1 and z = 0, 1. Note that

A00 = {T (0) > t, S(0) = 0, S(1) = 1, Z = 0} ∪ {T (0) > t, S(1) = 0, Z = 0}
A01 = {T (0) > t, S(1) = 0, Z = 1}
A11 = {T (1) > t, S(0) = 0, S(1) = 1, Z = 1} ∪ {T (1) > t, S(0) = 1, Z = 1}
A10 = {T (1) > t, S(0) = 1, Z = 0},

that the sets in the right-hand sides are disjoint, and that the mass of the subpopulation Q

considered is Pr(Q) = p(1) − p(0). It immediately follows that the marginal potential-outcome
distributions

F 0;Q(t) =
Pr (T > t, S = 0|Z = 0) − Pr (T > t, S = 0|Z = 1)

p(1) − p(0)
and

F 1;Q(t) =
Pr (T > t, S = 1|Z = 1) − Pr (T > t, S = 1|Z = 0)

p(1) − p(0)

on Q are identified (Imbens and Rubin, 1997).
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Proof of Proposition 1. First write

√
n

(
F̂ 0;Q − F 0;Q

)
=

1 − p̂(0)
p̂(1) − p̂(0)

√
n

(
F̂T ;S=0,Z=0 − FT ;S=0,Z=0

)
− 1 − p̂(1)

p̂(1) − p̂(0)
√

n
(
F̂T ;S=0,Z=1 − FT ;S=0,Z=1

)
+ FT ;S=0,Z=0

√
n

(
1 − p̂(0)

p̂(1) − p̂(0)
− 1 − p(0)

p(1) − p(0)

)
− FT ;S=0,Z=1

√
n

(
1 − p̂(1)

p̂(1) − p̂(0)
− 1 − p(1)

p(1) − p(0)

)
and

√
n

(
F̂ 1;Q − F 1;Q

)
=

p̂(1)
p̂(1) − p̂(0)

√
n

(
F̂T ;S=1,Z=1 − FT ;S=1,Z=1

)
− p̂(0)

p̂(1) − p̂(0)
√

n
(
F̂T ;S=1,Z=0 − FT ;S=1,Z=0

)
+ FT ;S=1,Z=1

√
n

(
p̂(1)

p̂(1) − p̂(0)
− p(1)

p(1) − p(0)

)
− FT ;S=1,Z=0

√
n

(
p̂(0)

p̂(1) − p̂(0)
− p(0)

p(1) − p(0)

)
.

Next, note that
√

n
(
F̂T ;S=0,Z=z − FT ;S=0,Z=z

)
(z = 0, 1),

√
n

(
F̂T ;S=1,Z=z − FT ;S=1,Z=z

)
(z = 0, 1), and

√
n (p̂(z) − p(z)) (z = 0, 1) converge jointly in distribution to −FT ;S=0,Z=zG0z/√

(1 − p(z)) qz (z = 0, 1), −FT ;S=1,Z=zG1z/
√

p(z)qz (z = 0, 1), and Nz (z = 0, 1), with N1,
N0, G11, G01, G10, and G00 mutually independent with distributions as given in Proposition 1.
Furthermore, p̂(z) D−→ p(z) by the law of large numbers. The claimed result follows from con-
secutively applying Slutsky’s lemma, the delta method, and the continuous-mapping theorem
(see e.g. Van der Vaart and Wellner, 1996).

Proof of Proposition 3. The X variables only play a role in the identification of λ, φ and FV

from the outcomes for Z = 0. We therefore proceed conditional on X , subsume φ(X) into λ,
and suppress X in the notation.

Among agents with S = 0, Z = 1 there holds that

θT ;S=0,Z=1(t|V ) = λ(t)V and

FT ;S=0,Z=1(t) = LV ;S=0,Z=1

(∫ t

0

λ(τ)dτ

)
,

with LV ;S=0,Z=1 being the Laplace transform of [V |S = 0, Z = 1]. Its argument
∫ t

0 λ(τ)dτ is
an already identified function. Thus, LV ;S=0,Z=1 is identified, and therefore FV ;S=0,Z=1.

From

FV (v) = FV ;Z=1(v) = p(1)FV ;S=1,Z=1(v) + [1 − p(1)]FV ;S=0,Z=1(v)

we can now also identify FV ;S=1,Z=1, since all other quantities in this equation are observed or
identified.

Among agents with S = 1, Z = 1 there holds that

θT ;S=1,Z=1(t|V ) = λ(t)γ(t)V and
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FT ;S=1,Z=1(t) = LV ;S=1,Z=1

(∫ t

0

λ(τ)γ(τ)dτ

)
,

with LV ;S=1,Z=1 being the Laplace transform of [V |S = 1, Z = 1]. Because this is already
identified, and the left-hand side is observed, we can back out the argument of this Laplace
transform. Since λ is also already (almost everywhere) identified, it follows that γ is (almost
everywhere) identified.

Appendix 3 Proofs of statements in Section 4

Proof of Proposition 5. This proof follows as a special case of Bond and Shaw (2003). First,
suppose that ξS ≥ ξT . Then,

QS;Z=1(t) = Pr (S(1) ≤ t, T (∞, 1) > S(1))

= Pr
(
S(0) ≤ ξS(t), ξ−1

T (T (∞, 0)) > ξ−1
S (S(0))

)
≥ Pr (S(0) ≤ ξS(t), T (∞, 0) > S(0)) = QS;Z=0(ξS(t)),

QT ;Z=1(t) = Pr (T (∞, 1) ≤ t, T (∞, 1) < S(1))

= Pr
(
T (∞, 0) ≤ ξT (t), ξ−1

T (T (∞, 0)) < ξ−1
S (S(0))

)
≤ Pr (T (∞, 0) ≤ ξT (t), T (∞, 0) < S(0)) = QT ;Z=0(ξT (t)),

and

FZ=0(ξT (t)) ≤ FZ=1(t) = Pr(T (∞, 1) ≤ t, S(1) ≤ t)

= Pr (T (∞, 0) ≤ ξT (t), S(0) ≤ ξS(t)) ≤ FZ=0(ξS(t)).

Taken together, these inequalities imply that

F−1
Z=0 ◦ FZ=1 ≤ ξS ≤ Q

−1

S;Z=0 ◦ QS;Z=1 and

Q
−1

T ;Z=0 ◦ QT ;Z=1 ≤ ξT ≤ F−1
Z=0 ◦ FZ=1.

Similarly, if ξS ≤ ξT we have that

F−1
Z=0 ◦ FZ=1 ≥ ξS ≥ Q

−1

S;Z=0 ◦ QS;Z=1 and

Q
−1

T ;Z=0 ◦ QT ;Z=1 ≥ ξT ≥ F−1
Z=0 ◦ FZ=1.
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