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Abstract

We formulate and solve a range of dynamic models of information-constrained credit markets
that allow for moral hazard and unobservable investment. We compare them to the exogenously
incomplete markets environments of autarky, saving only, and borrowing and lending in a single
asset. We develop computational methods based on mechanism design theory, linear program-
ming, and maximum likelihood techniques to structurally estimate, compare and statistically
distinguish among the competing theoretical models of credit market imperfections. Our meth-
ods can be applied with both cross-sectional and panel data and allow for measurement error
and unobserved heterogeneity in initial conditions. The models match major stylized facts from
the empirical literature on firm dynamics as listed by Cooley and Quadrini (2001). Empirically,
we find that using consumption, cashflow and investment data jointly or using dynamic data
improves the researcher’s ability to distinguish across the various model regimes relative to us-
ing consumption or investment only data, especially in the presence of high measurement error.
We also estimate our models using data on Thai households running small businesses. We find
that the borrowing and saving only frameworks provide the best fit when using joint data on
consumption, cashflow and investment.
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1 Introduction

We study the enterprises run by households that are so common not only in emerging markets
but also other countries. More specifically, we compute, estimate, and contrast the consumption
and investment behavior of risk averse households running business under various financial market
environments, including both exogenously incomplete ones (autarky, savings only, borrowing and
lending) and endogenously information-constrained ones (moral hazard with observed or unobserved
investment, both relative to full insurance). We compare the predictions of each of these financial
regimes to stylized facts reported in the literature (e.g., Cooley and Quadrini, 2001) and discuss in
what circumstances they might be distinguished in data. Indeed, we develop methods for empirical
estimation of mechanism design models and test the various models against each other using both
data generated from the models themselves and actual data on Thai households running small
businesses.

The relatively small businesses that we study are only beginning to be recognized as a major
economic factor in a variety of economies, both developing and developed. In addition, these
household business typically “fall between the cracks” in the literature. To make clear the objects
we study, we elaborate a bit at the outset on these two issues.

In Thailand’s high growth period from 1976 to 1996, occupation shifts from agriculture to wage
work and enterprise account for 18-21% of the change in per capita income. These shifts, along
with an increase followed by a decrease of the enterprise income premium, profits minus wages,
account for 33-39% of the change in inequality. Occupation shifts alone account for 29% reduction
in the poverty rate, the most important factor. Using a micro-founded structural model of credit
constraints, Jeong and Townsend (2007) estimate that 73% of the change in Thailand’s total factor
productivity can be explained by a combination of occupational choice and changes in the financial
infrastructure. In India, own-account enterprises using at most unpaid family labor account for
68% of all non-agricultural enterprises and 36% of all employment.

Even in advanced OECD countries such as Spain, large fractions of some bank portfolios are
loans to entrepreneurs, as distinct from mortgages, consumer durables, and loans to listed, officially
registered corporations in various sectors. In the US, non-employers account for 70% of all estab-
lishments, though only 14% of employment. Using data from the Survey of Consumer Finances,
Cagetti and De Nardi (2006) in their study of US inequality find that the 7.6% of self-employed
business owners hold 33% of the wealth.

Yet, with few exceptions, the literature maintains a dichotomy embedded in the national ac-
counts: households are consumers and suppliers of market inputs, whereas firms produce and hire
labor and other factors. This gives rise, on the one hand, to a large development literature which
studies household consumption smoothing. There is voluminous work estimating the permanent
income model, the full risk sharing model, buffer stock models (Zeldes, 1989; Deaton and Laroque,
1996) and, lately, models with private information (Phelan 1994; Ligon, 1998; Werning, 2001) or
limited commitment (Ligon, Thomas and Worrall, 2002) . On the other hand, the consumers-firms
dichotomy gives rise to an equally large literature on investment. There is the adjustment costs
approach of Abel and Blanchard (1983) and Bond and Meghir (1994), for example. In an industrial
organization setting, Hopenhayn (1992) and Ericson and Pakes (1995) model the entry and exit of
firms with Cobb-Douglas or CES production technologies where investment augments capital with
a lag and output produced from capital, labor and other factors is subject to factor-neutral Markov
technology shocks.

Mostly firms are modeled to be risk neutral maximizers of expected discounted profits or div-
idends to owners. There are models attempting to explain stylized facts for firm growth, with
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higher mean growth and variance in growth for small firms, e.g. Cooley and Quadrini (2001)
among others. The more recent work by Albuquerque and Hopenhayn (2004) and Clementi and
Hopenhayn (2006) introduce either private information or limited commitment but maintain risk
neutrality. Applied general equilibrium models feature both consumption and investment in the
same context, as Rossi-Hansberg and Wright (2007), but there the complete markets hypothesis
justifies, within the model, a separation of the decisions of households from the decisions of firms.
Alem and Townsend (2008) provide an explicit derivation with full risk sharing with equilibrium
stochastic discount factors rationalizing the apparent risk neutrality of households as firms making
investment decisions.

The work that is closest to this paper, and complementary with it, does feature households as
firms but largely assumes that certain markets are missing. For example, Cagetti and De Nardi
(2006) follow Aiyagari (1994) in their study of inequality and assume labor income is stochastic
and uninsured. In contrast, Angeletos and Calvet (2007) and Covas (2006) in their study of buffer
stock motives and macro savings rates feature uninsured entrepreneurial risk. In the asset pricing
vein, Heaton and Lucas (2000) feature entrepreneurial investment as a portfolio choice problem,
assuming exogenously incomplete markets, as in the tradition of Geanakoplos and Polemarchakis
(1986) and Zame (1993).

These papers beg the question of how good an approximation are the various assumptions
on financial regimes, different across the different papers. That is, what would be a reasonable
assumption for the financial regime if that part too were taken to the data? We take that view below
to see how far we get. The adjustment costs investment literature may be picking up constraints
implied by financing, not adjustment costs per se. The pecking order investment literature (Myers
and Majuf, 1984) assumes that internally generated funds are least expensive, then debt, and
finally equity, discussing wedges and distortions. Berger and Udell (2002) have a long discussion
in this spirit of small vs. large firm finance. He points out that small firms would seem to be
informally opaque yet have received funds from family, friends, angels, and venture capitalists.
Bitler, Moskowitz and Vissing-Jorgensen (2005) argue likewise that agency considerations play
a key role. The empirical work of Fazzari, Hubbard and Petersen (1988) picks up systematic
distortions for small firms, but the nature of the credit market imperfection is not modeled, leading
to criticisms of their interpretation of the tests (Kaplan and Zingales, 2000).

Our methods in this paper follow logically from Paulson, Townsend and Karaivanov (2006)
where we estimated whether moral hazard or limited commitment is the key financial obstacle
causing the observed positive monotonic relationship between initial wealth and subsequent decision
to enter into business. Buera and Shin (2007) extend this to dynamics and endogenous savings
decision in a model with limited borrowing. Here we abstract from occupational choice and focus
much more on the dynamics, investment, and especially on a wide variety of financial regimes.

We also analyze the advantages of using a combination of data on consumption and the smooth-
ing of income shocks, with data on firms size distribution and the smoothing of investment from
cash flow fluctuations, in effect filling the gap between the dichotomies of the literature. In estimat-
ing both exogenously incomplete and endogenous information-constrained regimes we also break
new ground. The only other effort of which we are aware is Meh and Quadrini (2006), who compare
and contrast a bond economy to an economy in which unobserved diversion of capital creates an
incentive constraint.

In this paper we focus on whether, and in what circumstances, it is possible to distinguish
financial markets regimes, depending on the data used. To that end, we feature tests where we
have full control, i.e., we know what the financial regime really is, using data generated from the
model. Our paper is thus both a conceptual and methodological contribution. We show how all
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the regimes can be formulated as linear programming problems, often of large dimension, and how
likelihood functions, naturally in the space of lotteries or histograms, can be estimated. We allow
for i.i.d. measurement error, the need to estimate the underlying distribution of unobserved state
variables, and related, the use of data from economies in transition, before they reach steady state.

When using model-generated data we find that, naturally, the ability to distinguish between
the regimes depends on both the type of data used and the amount of measurement error. With
low measurement error we are able to distinguish between virtually all regime pairs. As expected,
however, higher levels of measurement error in the data reduce the power of our model comparison
tests to such an extent that some of the regimes cannot be distinguished from the data generating
baseline as well as from each other. This is especially pronounced for the case of firm size data
under full depreciation. Using consumption/income data, we typically cannot distinguish between
the moral hazard and full information regimes when there is high measurement error. In contrast,
in virtually all cases we are able to distinguish between regime groups, that is the exogenously
incomplete regimes versus the mechanism design moral hazard and full information regimes.

Using joint data on consumption, investment and cash flow markedly improves the ability to
distinguish across the regimes including when there is high measurement error. In that case, if the
hypothesized null regime is true, then we can distinguish the truth from other regimes. But if the
researcher guesses incorrectly, and the null is a counterfactual regime, then there is sometimes less
ability to distinguish the null from other regimes nearby. Thus researchers should be cautious when
testing a given regime against an alternative when they fail to reject it in the data. Both the null
and the alternatives may not be the true regime. We also incorporate intertemporal data from the
model through either repeated cross-sections or panels. We find that doing so improves the ability
to distinguish the regimes relative to when using single cross-sections.

Additionally, we do take the next step and apply our methods to our featured emerging market
economy, Thailand, to make the point that our methods offer a feasible practical approach to
real data when the researcher aims to provide insights as to the source and nature of financial
constraints. We chose Thailand for two reasons. First, our data source (the Townsend Thai surveys)
includes panel data on both consumption and enterprise size and this is rare. We can thus see if the
combination of consumption and firm size data really helps in practice. Second, we also learn about
potential next steps in modeling financial regimes. We know in particular from other work with
these data that consumption smoothing is quite good, i.e., it is difficult to reject full insurance, in
the sense that the coefficient on idiosyncratic income is small if significant (Chiappori, Shulhulfer-
Wohl, Samphantharak, and Townsend, 2008). We also know that investment is sensitive to cash
flow, especially for the poor, but on the other hand this is overcome by networks of family and
friends (Samphantharak and Townsend, 2008). We are interested in how these same data look when
viewed jointly though the lens of the various financial regimes modelled in this paper. We also want
to be assured that our methods which rely on grid approximation, cell size, reasonable measurement
error, estimation of unobserved distribution of utility promises, and transition dynamics are, as a
practical matter, applicable to actual data.

We find that by and large out methods work, though sometimes the number of probability cells
needed to use joint data in the estimation (and in some instances, panel data) exceeds our sample
size. This also hurts some of the other bilateral comparison. Otherwise, we obtain results consistent
with those using theory-generated data and some striking findings. There are some puzzles as well.
We find that the Thai consumption and income data are most consistent with the moral hazard
regime but full information is a close second and sometimes statistically tied, depending on the
specification. Here, using repeated cross sections data helps pin down the dominance of moral
hazard. However, a two-year panel separated by several years offers a very blurry picture, though
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this tends to happen as well in model-generated data. We also find that the investment and cash
flow data are most consistent with the savings and/or borrowing lending regime, again with ties
depending on the specification. Again, repeated cross sections help pin down the dominance of the
borrowing regimes. Using firm size and investment data alone does better than using consumption
and income data alone. The results using combined consumption and investment data also lend
support to the savings/borrowing lending regime but now it is hard to distinguish borrowing from
saving only. The dominance of different financial regimes depending on the data used is something
that does not occur in the model-generated data. We explore this further in the conclusions.

2 Theory

2.1 Basic Setting

Consider an economy of agents (firms) heterogeneous in their initial endowments (assets), k0 of a
single good that can be used for both consumption and investment. The agents live T periods,
where T can be infinity. They can interact with a financial intermediary, entering into saving, debt,
or insurance contracts. We characterize the optimal dynamic financial contracts that arise between
the agents and the intermediary in different information or credit access regimes.

Agents are risk averse and have time-separable preferences defined over consumption, c, and
labor effort, z represented by U(c, z) where U1 > 0, U2 < 0. They discount future utility using a
discount factor, β where β ∈ (0, 1). For computational reasons (see below) we assume that c and z
belong to the finite discrete sets (grids) C, Z accordingly. The agents have access to a stochastic
output technology, P (q|z, k) : Q×Z×K → [0, 1] giving the probability of obtaining output, q from
effort level z and capital level k1. The sets Q and K are also finite and discrete2. In all information
regimes we study, output is assumed to be observable and verifiable. However, one or both of
the inputs, k and z may be unobservable to third parties, leading to moral hazard and/or adverse
selection problems. Capital, k depreciates at a rate δ every period. Depending on the application
we have in mind, the lowest capital level (k = 0) could be interpreted as a “worker” occupation
(similar to PTK, 2006) or as a firm “exit” state.

The financial intermediary is risk neutral and has access to an outside credit market with op-
portunity cost of funds R. Using the linear programming approach of Prescott and Townsend
(1984) and Phelan and Townsend (1991), we model the optimal financial contracts as probability
distributions over assigned or implemented allocations of consumption, output, effort, and invest-
ment (see below for details). There are two possible ways to interpret this. First, one can think
of the intermediary (the principal) contracting with a single agent/firm at a time, in which case
the contracts specify mixed strategies over allocations. Alternatively, one can think of a principal
contracting with a continuum of agents, so that the optimal contract specifies the fraction of agents
of given type that receive a particular deterministic allocation. It is further assumed that there are
no aggregate shocks, there are no technological links between the agents, and the agents cannot
collude. Finally, the principal and the agents are assumed to be able to fully commit to the ex-ante
optimal contract (although our methods allow us to relax this assumption).

1We can easily incorporate heterogeneity in entrepreneurial ability across agents as in Paulson et al. (2006), for
instance by adding a talent parameter θ in the production function P (q|z, k).

2This can be either a technological or computational assumption depending on the application.
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2.2 Information and Credit Access Regimes

We write down a dynamic linear programming problem determining the (constrained) optimal
contract in each regime. To characterize the contracts with incomplete information we invoke the
revelation principle and study direct mechanisms in which the agents announce truthfully their
type3.

The information / credit access regimes we study can be classified into two groups. The first
group are regimes with exogenously incomplete markets: autarky (A), savings only (S), and bor-
rowing and lending (B). In these models the feasible financial contracts take a specific, exogenously
defined form (no access to financial markets, a deposit contract, or a debt contract). In contrast,
in the second group of regimes the financial contracts are endogenously determined as solving a
mechanism design problem, potentially subject to information and incentive constraints. We look
at two such endogenously incomplete markets regimes — moral hazard (MH), in which agents’ effort
is unobserved but capital and investment are observed, and moral hazard with unobserved capital
(UC), in which both effort and investment are unobservable. All regimes are compared to the full
information (FI) regime (the first best).

2.2.1 Exogenously Incomplete Markets Regimes

Autarky
In this regime the agent is assumed to have no access to financial intermediaries or storage. The

timeline is as follows. The agent starts the current period with initial capital k which he invests
into production. At this time the agent also decides on his effort z. At the end of the period
output q is realized, the agent decides on the next period capital level, k0 ∈ K, and consumes
c = (1 − δ)k + q − k0. Capital, k is the state variable in the recursive formulation of the agent’s
optimization problem. This is a relatively simple problem and can be solved by standard non-
linear dynamic programming techniques. To be consistent with the solution methods used for the
endogenously incomplete regimes, where non-linear techniques may be inapplicable due to non-
convexities introduced by the incentive and truth-telling constraints, we reformulate the problem
as a linear program with respect to the joint probabilities of obtaining allocations (q, z, k0) given k:

V (k) = max
π(q,z,k0|k)

X
Q×Z×K

π(q, z, k0|k)[u((1− δ)k + q − k0, z) + βV (k0)] (1)

The maximization in (1) is subject to a set of constraints on the choice variables, π. First, for each
k ∈ K, the π0s have to be Bayes-consistent with the probability distribution over outputs, P :X

K

π(q, z, k0|k) = P (q̄|z̄, k)
X
Q×K

π(q, z̄, k0|k) for all (q̄, z̄) ∈ Q× Z (2)

Given that π0s are allocation probabilities, we also must have π(q, z, k0|k) ≥ 0 (non-negativity) for
all (q, z, k0) ∈ Q× Z ×K 0, as well as (adding-up):X

Q×Z×K
π(q, z, k0|k) = 1 (3)

The policy variables π(q, z, k0|k) that solve the maximization problem determine the optimal effort
and investment level z and k0 in autarky.

3The proofs that the optimal contracting problem can be written in a recursive form and that the revelation
principle applies follow from Doepke and Townsend (2006) and hence are omitted.
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Saving Only / Borrowing
In this financial environment the agent is able to either save (which we call the saving only,

(S) regime) or borrow and save (called the borrowing, (B) regime) through a competitive financial
intermediary. Thus, the agent can use debt/savings to smooth consumption or investment, on top
of what he could do under autarky. More specifically, if the agent borrows (saves) an amount b,
next period he has to repay (collect) an amount Rb, independently of the state of the world. As
with all other variables, b is assumed to take values on the finite discrete set, B. By convention, a
negative value of b represents savings, thus in the S regime the upper bound of the grid B is zero
— the agent can only accumulate and run down a buffer stock. Default is ruled out by assuming
that the principal refuses to lend to a borrower who is at risk of not repaying4. By shutting down
all contingencies in the debt contracts we aim for better differentiation with the endogenously
constrained state-contingent contracts described next.

The timeline is as follows: the agent starts the current period with capital k carried and uses
it in production together with effort z. In the end of the period, output q is realized, the agent
repays Rb, and borrows or saves b0 ∈ B. He also puts aside (invests) next period’s capital, k0 and
consumes c = (1− δ)k + q + b0 −Rb− k0. The two assets k and b can be freely converted into one
another each period. The problem of an agent with current capital stock k and debt/savings level
b can be written recursively as:

V (k, b) = max
π(q,z,k0,b0|k,b)

X
Q×Z×K×B

π(q, z, k0, b0|k, b)[U((1− δ)k + q + b0 −Rb− k0, z) + βV (k0, b0)]
(4)

subject to the Bayes-consistency and adding-up constraints analogous to (2) and (3) and subject
to π(q, z, k0, b0|k, b) ≥ 0 for all (q, z, k0, b0) ∈ Q× Z ×K 0 ×B0.

2.2.2 Mechanism Design Regimes

Full Information
With full information the principal observes and can contract upon agent’s effort and invest-

ment. We write the corresponding dynamic principal-agent problem as an extension of Phelan and
Townsend (1991) with capital accumulation. As is standard in such settings (see Spear and Srivas-
tava, 1987; Doepke and Townsend, 2006), to obtain a recursive formulation we need an additional
state variable — promised utility, i.e., discounted future utility, w belonging to the discrete set5 W.
As in Phelan and Townsend (1991) the grid of promised utilities we use has a lower bound, wmin
corresponding to the lowest possible consumption, cmin (obtained from the lowest possible τ ∈ T
and the highest k0 ∈ K) and the highest possible effort, zmax promised forever. The set’s upper
bound, wmax corresponds to promising the highest possible consumption, cmax and lowest possible
effort forever, i.e.,

wFI
min =

U(cmin, zmax)

1− β
and wFI

max =
U(cmax, zmin)

1− β

The optimal full information (FI) contract for an agent with current promised utility w and
capital k consists of effort and investment levels, z, k0, next period’s promised utility w0 ∈ W, as
well as a transfer, τ (belonging to the discrete set T ) between the principal and the agent. A
positive value of τ denotes a transfer from the principal to the agent. The timing of events is the
same as before, with the addition that the transfer occurs after output is observed. The principal’s

4Computationally, this is achieved by assigning a very low utility value for such borrower.
5In principle, some values in this set may be infeasible. The set of feasible values is determined along with iterating

on the value function using the methods proposed by Abreu, Pearce and Stacchetti (1990).
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objective function, V (w, k) when contracting with an agent at state (w, k) maximizes the expected
value of output net of transfers to the agent plus the discounted value of future outputs and
transfers. We write the mechanism design problem as a linear program in the joint probabilities,
π(τ, q, z, k0, w0|w, k) over allocations (τ, q, z, k0, w0):

V (w, k) = max
{π(τ,q,z,k0,w0|w,k)}

X
T×Q×Z×K×W

π(τ, q, z, k0, w0|w, k)[q − τ + (1/R)V (w0, k0)] (5)

The maximization in (5) is subject to the familiar Bayes-consistency and adding-up constraints on
the probabilities π:X

T×K×W
π(τ, q̄, z̄, k0, w0|w, k) = P (q̄|z̄, k)

X
T×Q×K×W

π(τ, q, z̄, k0, w0|w, k) for all (q̄, z̄) ∈ Q× Z,
(6)X

T×Q×Z×K×W
π(τ, q, z, k0, w0|w, k) = 1, (7)

as well as non-negativity: π(τ, q, z, k0, w0|w, k) ≥ 0 for all (τ, q, z, k0, w0) ∈ T ×Q× Z ×K ×W.
Because of the extra state, w there is an additional constraint, the promise keeping constraint,

which ensures that the agent’s expected utility equals his current utility promise:X
T×Q×Z×K×W

π(τ, q, z, k0, w0|w, k)[U(τ + (1− δ)k − k0, z) + βw0] = w (8)

By varying the initial value of w one can trace the whole Pareto frontier of expected utilities for
the principal and the agent (see the Appendix for computed examples). The optimal FI contract
maximizes (5) subject to the constraints (6), (7) and (8). We solve the dynamic linear program
numerically. The solution is a vector of probabilities π∗(τ, q, z, k0, w0|w, k) representing the optimal
contract between the bank and the agent.

Moral Hazard
In this regime the principal can still observe and control capital and investment (k and k0) but

he can no longer observe or verify agent’s effort, z. With capital observed and controlled, it can
be interpreted as endogenous collateral when output is low. The timing is the same as in the FI
regime. The unobservability of effort implies a moral hazard problem, i.e., the principal must induce
effort from the agent. This is achieved by requiring that the optimal contract, π(τ, q, z, k0, w0|w, k)
satisfy an incentive-compatibility constraint (ICC) in addition to (6)-(8). The ICC states that,
given the agent’s state (w, k), a recommended effort level, z̄, and known and enforced capital level
k0 and transfer τ, the agent must not be able to achieve higher expected utility by deviating to an
alternative effort level ẑ, i.e., for all (z̄, ẑ) ∈ Z × Z :X

T×Q×W 0×K0
π(τ, q, z, k0, w0|w, k)[U(τ + (1− δ)k − k0, z̄) + βw0] ≥

≥
X

T×Q×W 0×K0
π(τ, q, z, k0, w0|w, k)P (q|ẑ, k)

P (q|z̄, k) [U(τ + (1− δ)k − k0, ẑ) + βw0] (9)

For details on the derivation of the ICC in the linear programming approach, see Prescott and
Townsend (1984). The key term is the “likelihood ratio”, P (q|ẑ,k)

P (q|z̄,k) reflecting the fact that, if the
agent deviates, he changes the probability distribution of output and the probabilities π must be
adjusted to preserve Bayes rule consistency.
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Apart from the constraint (9), the moral hazard regime also differs from the full information
regime in the set of feasible promised utilities, W . Specifically, the lowest possible promise under
moral hazard can no longer be the value wFI

min. Indeed, if the agent is assigned minimum con-
sumption forever he would not supply any effort level above the minimum possible. The range of
promised utilities for the MH setting is instead:

wMH
min =

U(cmin, zmin)

1− β
and wMH

max =
U(cmax, zmin)

1− β

The derivation of the bound wMH
min is as in Phelan and Townsend (1991). Intuitively, the principal

cannot promise a slightly higher consumption in exchange for much higher effort so that agent’s
utility falls below wMH

min since this is not incentive compatible. If the agent does not follow the
principal’s recommendations but deviates to zmin the worst punishment he can receive is cmin
forever.

The (constrained) optimal contract in the moral hazard regime is the solution to the linear pro-
gram defined by (5)—(9). The contract features incomplete consumption insurance and intertem-
poral tie-ins, i.e., it is not simply a repetition of the optimal one-period contracts (Townsend,
1982).

Moral Hazard with Unobserved Investment
Now suppose the effort exerted by the agent is still unobservable by the principal but, in addition,

assume that the principal also cannot observe the agent’s capital level, k and the level of capital
investment planned for next period, k0. Thus, there is both a dynamic adverse selection problem
about the agent’s unobserved state, k, as well as the moral hazard problem of two unobserved
actions, z and k0.

To model the mechanism design problem that arises, assume that the agent sends a message
about his capital level k to the principal who offers a contract conditional on the agent’s message
consisting of transfer τ, recommended effort, z, investment, k0 and future promised utility. Due to
the physical linkage between time periods and the dynamic adverse selection problem in k, following
Fernandes and Phelan (2000) the proper state variable for the problem’s recursive representation is
a promise function, w(k) instead of the scalar w in the MH regime. The reason why utility promises
cannot be independent of k, in general, is the different incentives of agents entering next period with
different k0 (see Kocherlakota, 2004). Thus, to induce incentive compatibility, the principal needs to
offer an optimal promised utility schedule dependent on assets, w ≡ {w(k1), w(k2), ..., w(k#K)} ∈
W where k1, k2, etc. are the elements of the grid K6. The set W is endogenously determined
and, computationally, must be iterated upon together with the value and policy functions (Abreu,
Pierce and Stacchetti, 1990).

Within this financial regime, we study two different scenarios regarding investment, which affect
the way we write the mechanism design problem. First, we study the case of capital depreciating
fully during the production process, i.e., δ = 1 (e.g. interpret k as materials). This case is easier to
solve because the states are not technologically linked (as in Fernandes and Phelan, 2000 or Doepke
and Townsend, 2006). Matters become more complicated when capital depreciates incompletely,
i.e., δ < 1 (e.g. k is “machines”), creating an additional inter-dependence between time periods.
We manage to resolve these difficulties by judicious usage of extra state variables and utility bounds
(see the Appendix).

6We use bold font to denote vector variables. The notation #X means ”the number of elements of vector X”.
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The computational method we propose to solve for the optimal contract in this regimes require
separability in consumption and leisure, U(c, z) = u(c)− d(z) (this is not needed in the MH, FI or
the exogenously incomplete regimes). The separability allows to split each period into two stages
and use dynamic programming not only across but also within time periods. This helps us keep the
curse of dimensionality in check since the resulting stage sub-problems are of lower dimensionality.
The first stage includes: the announcement of k by the agent, the principal’s effort recommendation,
z, the agent’s effort supply, and the realization of the output q. The second stage includes: the
transfer τ, the announcement of the promised utility vector, w0, the investment recommendation,
k0, and agent’s consumption and investment. To tie the two sub-periods together, we introduce an
extra variable that we call interim utility, a mathematical object representing the agent’s expected
utility from the end of sub-period 1 onwards.

Consider the full depreciation case first (see the Appendix for the incomplete depreciation case).
The first sub-period problem for computing the optimal contract between the principal and an agent
who has announced k and has been promised w is:

Program UC1:

V (w, k) = max
{π(q,z,wm|w,k)}

X
Q×Z×Wm

π(q, z, wm|w,k)[q + Vm(wm)] (10)

The choice variables are the probabilities over allocations (q, z, wm) ∈ Q × Z ×Wm. The set of
interim utilities, Wm is a discrete finite set with bounds consistent with those on W. The function
Vm(wm) is defined in the second stage problem (see below). The maximization is subject to a
number of constraints. First, the optimal contract must deliver the promised utility, w(k):X

Q×Z×Wm

π(q, z, wm|w,k)[−d(z) + wm] = w(k) (11)

The utility from consumption, as well as discounted future utility are incorporated in wm. Second,
as in the MH regime, the optimal contract must satisfy incentive compatibility. That is, ∀(z, ẑ) ∈
Z × Z : X

Q×Wm

π(q, z, wm|w,k)[−d(z) +wm] ≥
X

Q×Wm

π(q, z, wm|w,k)[−d(ẑ) + wm]
P (q|ẑ, k)
P (q|z, k)

(12)

Third, the state k is private information, so the agents need incentives to reveal it truthfully. On
top of that, agents can presumably consider joint deviations in their announcements, k and effort
choices, z. To rule out joint deviations in k and z, truth-telling must hold regardless of whether
the agent decides to follow the effort recommendation, z or considers a deviation to another effort
level, δ(z) where δ(z) denotes all possible mappings from Z to Z. Such behavior is ruled out by
imposing the following truth-telling constraints, which must hold for all k̂ 6= k and δ(z) ∈ Z :

w(k̂) ≥
X

Q×Z×Wm

π(q, z, wm|w,k)[−d(δ(z)) + wm]
P (q|δ(z), k̂)
P (q|z, k) (13)

In words, an agent who actually has k̂ but considers announcing k should find any such deviation
unattractive. There are (#K−1)#Z#Z such constraints in total. Finally, the contract must satisfy
the familiar Bayes-consistency, adding-up, and non-negativity constraints for π(q, z, wm).

To solve Program UC1, we first need to compute the principal’s interim value function Vm(wm).
Thus, we compute, for each wm ∈Wm the following:
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Program UC2:

Vm(wm) = max
{π(τ,k0,w0|wm)}

X
T×K×W

π(τ, k0,w0|wm)[−τ + (1/R)V (k0,w0)] (14)

The maximization in (14) is subject to the following constraints. First, we impose the definition of
interim utility:

wm =
X

T×K×W
π(τ, k0,w0|wm)[u(τ − k0) + βw0(k0)] (15)

Next, obedience in the investment decision must be ensured by providing incentives for the agent
not to deviate from the recommendation, k0 to some alternative value, k̂0. Because of our timing,
this has to hold for any transfer τ , i.e., we must have that for all τ ∈ T, k0, k̂0 ∈ K 0, k̂0 6= k0 :X

W

π(τ, k0,w0|wm)[u(τ − k0) + βw0(k0)] ≥
X
W

π(τ, k0,w0|wm)[u(τ − k̂0) + βw0(k̂0)] (16)

Finally, adding-up and non-negativity must hold for π(τ, k0,w0|wm).

3 Computation

3.1 Techniques

We solve for the optimal financial contracts from the previous section numerically7. Specifically,
we use the linear programming (LP) methods proposed by Prescott and Townsend (1984) and
Phelan and Townsend (1991). An alternative to the LP methodology is the “first order approach”
(Rogerson, 1985), used for instance by Abraham and Pavoni (2005). A potential problem with the
latter method is the non-convexity introduced by the incentive and/or truth-telling constraints. In
contrast, the LP approach is extremely general and can be applied for any possible preference and
technology specifications, as it convexifies the problem by allowing for all possible lotteries over
allocations. A potential downside is that the LP method may suffer from a “curse of dimensional-
ity”. However, as we show above, by judicious formulation of the linear programs this deficiency is
minimized.

To speed-up computation, the dynamic problems for each regime are solved using policy function
iteration (Judd, 1998). We start with a suitable initial guess for the value function and iterate
until convergence on the Bellman operator in policy space. At each iteration step, we solve a
linear program8 in the policy variables π. In the unobserved capital (UC) regime the promised
utilities set, W is endogenously determined (Abreu, Pierce and Stacchetti, 1990) and has to be
solved for together with V . Using incentive compatibility, we restrict attention to non-decreasing
promise vectors w(k). Specifically, we “discretize” the functional setW by starting with a broad
dense set W0 consisting of linear functions w(k) with intercepts that take values from the grid
W = {wmin, w2, ...wmax} defined above and a set of non-negative slopes. We initially iterate on the

7Given our primarily empirical objectives, we have chosen general functional forms that preclude analytical
tractability. As is standard in computational work, we are aware of the fact that computed examples do not constitute
proofs. We verify robustness by using multiple parameterizations and initial conditions. The full set of numerical
computations is available on request.

8All coefficient matrices of the objective and the constraints were created in Matlab while all linear programs were
solved using the comercial solver CPLEX. All computations were performed on a dual core, 2.2 Ghz, 2GB RAM,
Windows XP machine.
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UC dynamic programming problem using value function iteration (Judd, 1998), that is, iterate over
the feasible promise set together with the value function by dropping all infeasible vectors w at each
iteration. Once we have successively eliminated all vectors in W0 for which the linear programs
have no feasible solution, i.e., we have converged to the feasible promises set W∗, we switch to
policy function iteration9 and continue iterating on the Bellman equation until convergence in V.

3.2 Functional Forms, Grids, and Parameters

Below we describe the functional forms used in the numerical analysis. Agent preferences are of
the CES type10:

u(c, z) =
c1−σ

1− σ
− ξzθ

The production function, P representing the probability of obtaining given output level, q ∈ Q ≡
{q1, q2, ..q#Q}, from effort z and capital, k is:

P (q = q1|z, k) = 1− (ηkρ + (1− η)zρ)1/ρ

P (q = qi|z, k) = (
1− λ

1− λ#Q−1
)λi−1 (ηkρ + (1− η)zρ)1/ρ for i = 2, ..#Q

where the lowest output, q1 is interpreted as “failure”. The probability of obtaining any output level
is bounded away from zero11. Our formulation allows for a wide range of production technologies.
With ρ = 1 we have a perfect substitutes technology, with ρ → 0 we obtain the Cobb-Douglas
form, and with ρ→ −∞ the technology is Leontief. The weight parameter λ ∈ (0, 1) ensures that
the probabilities add up to 1.

The grids for each variable are defined in Table 1. For simplicity, and to allow easier interpreta-
tion of the results, we assume two output levels (low and high), q0 and q1 with q0 < q1. Effort takes
three values12. In the simulations and empirical exercises below we use different parametrizations
for the grid bounds in the cases of full and incomplete depreciation. The reason is to avoid corner
solutions e.g., zero investment.

To get an idea of the computational difficulty of the dynamic contracting problems we compute,
Table 2 reports the number of linear programs, variables and constraints that need to be solved
at each iteration for the various regimes. The number of linear programs is closely related to the
number of state variables while the number of variables and constraints is related to the product
of the grid dimensions. The biggest computational difficulties arise from increasing #K and #Z
because of the exponential increase in the number of variables or constraints to which this leads.
That is why we keep these dimensions relatively low while, for example, increasing #T is relatively
“cheap” computationally. In practice, the number of variables for which we solve is slightly lower
than the numbers reported in the table above because we drop from the computation any alloca-
tions that result in negative consumption, i.e., we assign probability zero to their corresponding
probabilities, π. Because of the huge dimensionality and computational time requirements for the

9We have also verified our results against proceeding with value function iteration all the way.
10Our LP numerical methodology does not require separable preferences but separability is commonly used in the

literature and simplifies the analysis in the unobserved k case.
11To have well-defined likelihood ratios and satisfy the full support condition, the probabilities we actually use in

the computation are constrained between .01 and .99. That is, if the formulae above imply some probability value
P, we actually use P̃ = min{.99,max{.01, P}}.
12The lowest value is set to be slightly higher than zero for technical reasons.
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unobserved capital case with incomplete depreciation we only compute results for the full depreci-
ation baseline. Finally, table 3 displays the baseline parameters used in the simulation, estimation
and testing exercises13.

3.3 Generating Cross-Sectional and Panel Data from the Model

Our numerical approach allows us to study the models from both static and dynamic angles using
the policy functions, π∗(.) solving the dynamic programming problems in section 2. Using the
policy functions we first construct the Markov state transition matrices corresponding to each
regime. Formally, denote by s ∈ S the current state (k in the A regime, (k, b) in S/B, and (k,w) in
the MH/FI regimes). The transition probability of going from s to some next period state, s0 can
be found using the π∗, integrating out all non-state variables. For example, in the MH regime we
have:

Pr(w0, k0|w, k) =
X

T×Q×Z
π∗(τ, q, z, k0, w0|w, k)

Putting those together, we form the model’s state transition matrix, M of dimension #S × #S
with elements mij corresponding to the transition probability of going from state i to state j.
This matrix completely characterizes the dynamics of the model. In particular, we can use M to
compute the cross-sectional probability distribution over states at any time t, Dt(s) ≡ (d1t , .., d

#S
t ),

starting from an arbitrary initial state distribution, D0(s):

Dt(s) = (M
0)tD0(s) (17)

Setting t =∞ gives the stationary state distribution (if one exists).
The state distribution (17) can be further used, in conjunction with the policy functions, π∗,

to compute cross-sectional distributions (histograms), Ht(x) for any variable of interest, x (could
be k, c, z, τ, q, etc.), or any combination thereof, at any time period. For example, in the MH
regime, the probability distribution of next period’s firm size, k0 over the grid K with elements k0i,
i = 1, ..#K at time t can be computed as:

Pr t(k
0 = k0i|D0) =

X
j=1..#S

djt
X

T×Q×Z×W 0
π∗t (τ, q, z, k

0 = k0i, w
0|sj)

We can also use the state distribution, Dt(s) and the Markov matrix,M to compute transition
probabilities, Pt(x, x

0) for any variable, x at any time period, t. Furthermore, the transition and
the cross-sectional probabilities can be combined into joint probability distributions encompass-
ing several periods at a time as in a panel. Model dynamics can be also studied by generating
population-weighted time paths (empirical mean of a given variable over time), starting from any
initial state distribution. For example, to compute the expected time path of next period’s firm
size, we sum over all possible grid points, k0j in K weighted by the corresponding fraction of agents
at grid point k0j at time t, Ht(k

0
j):

Et(k
0) =

X
j=1..#K

k0jHt(k
0
j) (18)

13We also performed many robustness checks for the preference and technology parameter values (shown in
parentheses).
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3.4 Numerical Results and Examples

In this section we compute a baseline set of numerical results followed by a series of robustness checks
for alternative parameters and initial conditions. Consistent with our objectives, we concentrate on
investment, firm assets, and consumption smoothing. We also explore the model predictions with
regards to the stylized facts from the firm dynamics literature - firm growth, cash flow sensitivity
and growth variance.

3.4.1 Firm Size, Investment, and Cashflow

Cooley and Quadrini (2001) report the following empirical regularities about firm size, growth and
investment14:

Fact 1 — Firm growth decreases with firm size
Fact 2 — The variability of firm growth decreases with firm size
Fact 3 — Small firms invest more.
Fact 4 — Small firms take on more debt.
Fact 5 — The investment of small firms is more sensitive to cash flows even after controlling

for their future profitability.
To compare the predictions of our models with the above regularities15, we first map the model

variables into their empirical counterparts. We interpret k as firm size (assets). Firm growth is
then given by the ratio k0/k, while investment is i = k0 − (1 − δ)k. Firm growth variability is
measured by the variance, V ar(k0/k). Output, q is firm’s cash flow. We measure the sensitivity of
investment to cash flow by the difference between expected investment when cash flow is high and
low, E(i(q2))−E(i(q1)).Note that this is equivalent to looking at the differenceE(k0(q2))−E(k0(q1)).
As k and z are fixed before output is realized, the randomness in q2 vs. q1 has nothing to do with
productivity. Indeed, this difference is zero in the full information case. Also, note that firm growth
k0/k as a function of firm size is the same (up to a constant) as relative investment i/k as a function
of firm size since i/k = k0/k − (1− δ), so Facts 1 and 3 can be analyzed jointly in our model.

Figure 1 displays, for each model regime, the expected values16 of firm growth, sensitivity to cash
flows, growth variance (as defined above), and, for the borrowing regime only, relative indebtedness,
E(b0/k), each plotted as function of firm size, k. The top panels show that virtually all regimes,
from autarky to full information, match qualitatively facts 1 and 3. However, there are noticeable
quantitative differences between the regimes that could be used in testing them against one other.
Specifically, the autarky lines are farthest from the FI, followed by S, B, etc. The MH regime
produces lines that are very close to those for the FI and UC regimes. While all regimes predict
that E(k0/k) is downward sloping, they differ in the slopes, with the autarky line flattest and the
full information line steepest. Intuitively, households are trying to get to the firm size determined
by productivity and the less constrained the regime, the higher the ability to adjust assets. These
different slopes are a testable implication of our model.

The second row of panels on fig. 1 shows that all regimes exhibit decreasing variance of firm
size growth as function of k, which matches qualitatively Fact 2. However, once again, there are

14We omit facts that our model does not currently allow to match or verify.
15Currently we explore only the facts regarding firm size and not firm age. In principle, we can account for firm

age by interpreting k = 0 as “being out of business” as in PTK (2006). This would enable us to study firm entry,
aging and exit. We save this for future applications.
16The expectation is taken over the initial normal distribution for w or b, in addition to over any lotteries in the

optimal contract. Using a uniform distribution or putting all mass at a single state (done as robustness checks)
produces qualitatively the same results.
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significant quantitative differences e.g., the exogenously incomplete regimes display markedly higher
growth variability at lower firm size. Intuitively, being more constrained, these regimes do worse
smoothing out cash flow fluctuations and are more sensitive to variation in b compared to the
mechanism design regimes (FI, UC and MH).

The empirical fact that produces qualitatively different results across the model regimes is Fact
5 (cash flow sensitivity of investment diminishing in firm size), exhibited on the third row of panels
in fig. 1 We find this regularity to hold to some extent for the exogenously incomplete regimes with
incomplete depreciation (see also fig. 4) but it does not obtain in the MH or FI environments and
also when capital depreciates fully. In our setting, this finding is consistent with the hypothesis that,
on average, firms in the Cooley and Quadrini data are more likely to behave as if facing constraints
to smoothing investment as modelled by the saving and/or borrowing regimes. Comparing across
the regimes, the level of cash flow sensitivity decreases as the exogenous or information constraints
are relaxed (going from A to FI). This is another testable implication. Finally, the bottom row of
panels of fig. 1 shows that Fact 4 is matched as well by the borrowing regime.

Overall, we find that the model matches successfully the firm growth and finance empirical
regularities from the Cooley and Quadrini list. However, this success should be taken with some
caution. The finding that most regularities are matched qualitatively by financial market envi-
ronments filling the whole spectrum from no access to financial markets (A) to complete markets
(FI) suggests the qualitative stylized facts in the list seem not to provide much insight for selecting
across theoretical models of firm finance. However, we found significant quantitative differences
across the regimes that could be used as a basis to statistically test and distinguish between the
competing models. We explore this in the empirical part of the paper.

3.4.2 Consumption Smoothing

Now treat the agents in the model as consumers. Figures 2a-2b depict the expected values of c
(integrated over b or w) across the regimes as function of assets, k. As expected, we see large
variation in consumption across the high and low output states in the autarky regime, as the only
channel to smooth consumption is investment. In the S regime the consumption differential is
reduced in half, with the agent now able to use savings as a second smoothing instrument. Moving
to the B regime, the consumption differential is reduced even further as the agent can also borrow.
The UC regime provides even more smoothing, especially at low assets. Consumption smoothing is
almost perfect in the MH regime, as in our specification most of incentive provision occurs through
promised utility rather than consumption as function of income, q.

Overall, the consumption smoothing dimension of our model suggests that the different regimes
provide households with different ability to smooth income shocks across states of the world and
time. This offers another basis to empirically distinguish among the regimes in cross-sectional or
panel data on consumption, c and income, q. We perform this in section 5.

3.4.3 Dynamics

The model regimes have different predictions about dynamics of consumption, firm size and in-
vestment. One way to compare is by looking at population-weighted expected time paths of c and
k0 using (18), starting from a uniform initial state distribution (the results are not sensitive to
this). Figure 3 shows that in the most constrained regimes (A and S), consumption and invest-
ment converge relatively fast (around 10 and 50 periods, respectively) to non-degenerate stationary
distributions. That is, while there may be a lot of mobility inside the distribution, the overall
cross-sectional consumption distribution and hence its variance may be observed not to vary over
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time in the long-run. In contrast, the less constrained regimes (B and MH) do not converge in
means within 100 periods. These results are important with regards to the literature on testing
full vs. partial insurance (e.g., Blundell, Pistaferri and Preston, 2008). Observing time-varying
variance in the consumption distribution is surely a sufficient condition to reject the full insurance
hypothesis but, as our results show, the opposite is not true: observing zero time variation in the
cross-sectional consumption variance is consistent with partial insurance.

The simulations suggest that the ability to distinguish the regimes may depend on the length of
the time period from which the data are drawn. In section 5 we test this hypothesis by estimating
the regimes on the basis of repeated cross-sections or panel data lying either one period apart (short
run dynamics) or fifty periods apart (longer run dynamics).

4 Empirical Implementation

4.1 Maximum Likelihood Estimation

In Paulson, Townsend and Karaivanov (2006) we estimated via maximum likelihood a one-period
model of occupational choice with financial constraints. We used only binary data on occupational
choice and data on ex-ante wealth. The dynamic models presented here significantly expand this
approach to fit a wide range of cross-sectional frequencies, panel data, or repeated cross-sections
of consumption, investment, firm size and income/cash flow17. Both model-simulated and actual
data are used in the estimation exercises (see next section for details).

Specifically, let the data in frequency form (e.g., the joint empirical distribution of c, q) be
m̂ij where

PJ
j=1 m̂ij = 1 for all i = 1..I. The subscript j = 1..J refers to data frequencies in

mutually exclusive cells (e.g., if there are #C grid points for c and #Q grid points for q, we have
J = #C ×#Q) while the subscript i refers to different sets of data frequencies (e.g., i = 1, 2 could
denote the frequency distributions of two cross-sections of c, q).

The structural model is parametrized by a vector, φ that we are interested in estimating. The
elements of φ can include any of the preference or technology parameters, as well as distributional
parameters (e.g., mean, variance) of unobserved state variables (promises, w or debt, b) or mea-
surement error. Given φ, let the counterpart of the data m̂ij in the model be the model-predicted
frequencies, mij(φ), where once again, by construction,

PJ
j=1mij(φ) = 1 for all i.

The maximum likelihood (ML) estimator, φMLE is defined by:

φ̂MLE = argmax
φ

n
IX

i=1

⎡⎣J−1X
j=1

m̂ij lnmij(φ) + (1−
J−1X
j=1

m̂ij) ln(1−
J−1X
j=1

mij(φ))

⎤⎦ (19)

where n is the overall sample size. The maximization above can be done by any optimization
algorithm robust to local maxima, e.g., pattern search, genetic algorithms, or simulated annealing
(Goffe, Ferrier and Rogers, 1994).

The requirement we impose, that the data be in the form of frequencies over mutually exclusive
cells18, has two significant advantages. First, it allows us to write the log-likelihood function in

17In general, the MLE approach proposed here can be used on any data in the form of probabilities/ fractions — that
is any single-period or repeated cross-sectional distibutions or panels of model variables or transitional probabilities.
Any dataset can be put in this form by sorting the observations in “bins” and then using the bin frequencies to
perform the estimation (see also Jappelli and Pistaferri, 2006).
18Note that given our MLE methodology, the need for grids in our LP algorithm turns out to be perfectly suited

for our estimation approach.
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explicit form. Second, it allows us to use a formal statistical test, Vuong’s (1989) test, to compare
across the competing model regimes. In theory, one could also employ a GMM or minimum-χ2

techniques to estimate on the basis of any data moments instead of using frequency distributions
over cells. Unfortunately, to our knowledge, no tractable way of forming and implementing a
statistical test to compare across the models exists for this more general methodology (see Rivers
and Vuong, 2002 for a theoretical discussion).

4.2 Testing and Model Selection

We use the results of Vuong (1989) to compute an asymptotic test statistic to distinguish between
competing non-nested models. Vuong’s test is based on the maximum likelihood method. An
attractive feature of the test is that it does not require that either of the compared models be
correctly specified. A further advantage, extremely useful for numerical work is that the computa-
tional method used to estimate the competing models need not optimize the model fit criterion as
long as it is held constant across the regimes (see Rivers and Vuong, 2002).

Suppose the values of the estimation criterion function being minimized (i.e., minus the log-
likelihood) for two non-nested19 competing models are given by L1n(φ̂

1) and L2n(φ̂
2) where n is the

common sample size and φ̂1 and φ̂2 are the parameter estimates for the two non-nested models.
The null hypothesis, H0 of the Vuong test is that the two models are “asymptotically equivalent”
relative to the true data generating process. Define the “difference in lack-of fit” statistic:

Tn = n−1/2
L1n(φ̂

1)− L2n(φ̂
2)

σ̂n

where σ̂n is a consistent estimate of the asymptotic variance
20, σn of L

1
n(φ̂

1)−L2n(φ̂2) (the likelihood
ratio). The main result is:

Proposition (Vuong, 1989):

Under some regularity assumptions, if the compared models are non-nested, then the
Vuong test-statistic, Tn is distributed N(0, 1) under the null.

4.3 Methodological Discussion

Initial Conditions: Steady States vs. Transitions
When estimating dynamic models, an important issue is initialization. In our setup the initial

conditions are the t = 0 values of the state variables (k for A, (k, b) for S/B, and (k,w) for the
mechanism design regimes), some of which are unobserved by the econometrician. For example,
the initial promise, w being a purely mathematical object keeping track of output history, is clearly
not observable. Thus, if we are interested in transitional dynamics (more on this below), w needs
to be estimated to initialize the MH/FI models.

Indeed, all model regimes we study have implications for both transitional dynamics and long-
run distributions. This has to be reflected in the estimation strategy. If the researcher believes
that the data represents a steady state then one can estimate the model to match the simulated

19It is crucial to point out that the different models we study are statistically non-nested. Formally, for our purposes
we say that model A nests model B, if, for any possible allocation that can arise in model B, there exist parameter
values such that this is the allocation in model A (see Paulson et al., 2006 for more details).
20A consistent estimate of σn is given by the sample analogue of the variance of the LR statistic (see Vuong, 1989,

p. 314).
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stationary distribution with the actual empirical distribution disregarding transitional dynamics
and initial conditions. If, however, one is dealing with data that is more likely to correspond to
a transition (as might be natural to assume if the data are from a developing economy) then the
model needs to be estimated using both cross-sectional and intertemporal data. We focus on the
latter case which we find empirically more plausible given the applications we have in mind.

Identification
Due to the analytical complexity of our models, it is not possible to provide theoretical iden-

tification proofs. In fact, we are aware (Honore and Tamer, 2006) that point identification can
sometimes fail in complex structural models like ours. To address this issue we use the following
verification procedure, which is a form of numerical identification: Step 1 — take a baseline model
regime parametrized by a vector of parameters, φbase; Step 2 — generate simulated data from the
baseline regime; Step 3 — estimate the baseline model using the data in Step 2 using maximum
likelihood and obtain estimates, φ̂base; and Step 4 — if the estimates from Step 3 are numerically
close to the baseline φbase, report success, otherwise report failure.

Sample Size and Number of Frequency Cells
As explained above, our ML estimation strategy is based on matching model-generated with

actual data frequencies in mutually exclusive “frequency cells”. Holding sample size, n constant,
increasing the number of frequency cells can have two opposite effects on the precision of the
estimates and on our ability to distinguish between the models. The first effect is positive, if the
increase in the number of frequency cells being fitted is due to using richer data (e.g., data on
c, q, k, k0 instead of c, q only, or using panel data instead of a single cross-section). This, by itself,
improves our ability to statistically distinguish across the regimes since more dimensions in which
the models differ are utilized in the estimation. There is, however, a second effect, which goes in
the opposite direction. Namely, holding n constant, increasing the number of cells means that,
on average, the empirical probabilities in each cell are less precisely estimated. Thus, the relative
magnitudes of the number of cells, n and the sample size, IJ are important for our ability to
distinguish across regimes. We find evidence of this trade-off in the estimation results below.

5 Estimation and Model Selection Using Simulated Data

In this section we estimate and test across the model regimes using the following dimensions sug-
gested by the theory and simulations in sections 2 and 3: (i) firm size, investment and cash flow;
(ii) consumption smoothing, and (iii) dynamics.

To keep the environment under complete control when assessing our methodology, we first test
across the regimes using simulated data from one of the regimes. In the next section, we show how
the same methodology can be applied to real data. We adopt as a baseline the moral hazard model
with observed investment (MH) and generate data from it to be used in the estimation. Regarding
firm size, investment and cash flow, we generate data from the joint distribution (k, k0, q) of firms’
current and future assets21, k and k0 and cash flow, q. This distinguishes across the regimes based
on the stylized facts from section 3.4 which involve firm size and growth (k, k0) and cash flow.
To evaluate consumption smoothing as a basis to differentiate between the regimes, we use the
cross-sectional distribution of (c, q). We also explore whether using data on firm assets, investment
and consumption jointly (the joint distribution of c, q, k, k0) improves our ability to distinguish

21In the UC regime k and k0 are unobserved to third parties in the model but assumed observed to the
econometrician.
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the regimes. Finally, section 3 suggests that the various regimes have different implications about
consumption and investment dynamics. We test this dimension of the model using data from
repeated cross-sections (e.g., c, q and c0, q0) or panel data (e.g., the joint distribution c, q, c0, q0).

5.1 Generating Data From the Model

We use the two baseline parametrizations in table 3 (for incomplete or full depreciation) to generate
baseline data from the model. Because of the heavy computational requirements of the MLE
procedure (the need to compute and iterate on the linear programs at each parameter vector
during the grid search and estimation) we use the following grid sizes (smaller than those in table
1): #K = 5, #T = 19, #W = 5, #B = 5 (for S) and #B = 9 (for B)22. Consumption, c generated
from the models is gridded up23 using #C = 10 values on [0, 1.2] or [0, 3.5], respectively for the
δ = .05 and δ = 1 cases.

To initialize the baseline model (MH) from which we draw the data used to estimate all regimes,
we assume an initial distribution over states (k,w) with an equal number of data points for each
gridpoint inK and normally distributed24 in w, i.e., w˜N(μw, γ

2
w) for each k ∈ K. We pick μw equal

to the average promise 25.We then draw n random numbers from N(μw, γ
2
w) (that is, n/#K draws

for each k) and generate the sample distribution over the initial state space. We then compute the
baseline model at the baseline parameters (see table 3) and use the state transition matrix, M to
generate n values for each c, q and k0.

As explained above, we allow for additive measurement error26 in consumption c, and/or firm
size k and k0. The measurement errors εi, i = 1, ..n applied to each variable are drawn from the
normal distributionN(0, γ̃2me).We perform all estimation and testing exercises for two specifications
of measurement error (m.e.): low m.e. i.e., γ̃me equal to 10% of the grid span of the respective
variable and high m.e. i.e., γ̃me equal to 50% of the grid span. That is, the standard deviation of the
measurement error is taken as proportional to the variable’s grid span: γ̃me = γme(gridspan) where
γme (=.1 or .5) is the proportionality parameter

27. For example, if the true value of consumption
(the value generated from the baseline model at the initial state) is ci, the “observed” data value
used in the estimation is c̃i = ci + εi

28. Finally, we use c̃, k̃,etc. to create the actual data used in
the estimation — e.g., (c̃, q) cross-sectional data, (k̃, k̃0, q) repeated cross-sections, etc.

5.2 Baseline Results Using Model-Generated Data

The parameters we estimate are the three distributional parameters for promises and measurement
error (μw, γw and γme) as well as three of the model’s structural parameters: the preference pa-
rameters, σ and θ and the technology parameter, ρ. The rest of the parameters are set at their

22Our methods can handle much larger problems at the cost of additional computational time.
23In all models in section 2 consumption is a resultant variable, dependent on the grids for k, b, etc. It is fitted on

an explicit grid here to use in the MLE procedure.
24Our methods allow using mixtures of normals to approximate any initial state distribution at the cost of more

parameters to be estimated.
25This implies setting the baseline distributional parameters to (μw, γw) = (19.99, 8) for δ = .05 and (34.64, 15) for

δ = 1.
26Cash flow, q is assumed to be observed without error for computational reasons, as it takes only two values

and moderate measurement error will not affect its distribution over the grid. In principle, our method allows for
measurement error in q as well.
27By using a relative rather than absolute level of the measurement error, we able to keep the standard deviation

commeasurable across variables with different grid spans.
28Unavoidably, allowing for measurement error could sometimes lead to “truncation” and information loss if the

resulting value falls outside the grid (we then assign the grid end point).
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benchmark values in table 3. In the S and B regimes, instead of the promise parameters, μw and γw
we estimate the mean, μb and standard deviation, γb of the debt variable b (assumed unobserved
and drawn from a normal distribution to be consistent with the MH/FI cases).

For each regime we follow the same procedure described above: draw initial states, generate
simulated data, apply measurement error, and populate the necessary frequency cells corresponding
to the dimension of the model being used. We then form the likelihood function, (19) to compute
the criterion value and use an optimization routine29 to solve for the estimates φ̂ maximizing the
likelihood between the baseline data and the model regime being estimated. We also estimate
the data-generating regime itself, to verify how well we recover the parameters used to generate
the baseline data (see the “numerical identification” discussion above). Next, we use the pairwise
Vuong test to find out whether we can distinguish statistically between the data-generating (MH)
and the rest of the regimes, as well as between any possible regime pairs including counterfactual
ones (e.g., B vs. S).

5.2.1 Firm Size, Investment, and Cash Flow

We first estimate and test the regimes based on their implications about firm size, investment
and cash flow. That is, we generate data from the baseline MH regime on the joint distribution
of (k, k0, q). Tables 4 and 5 display, respectively, the estimation and model selection results30.
Table 4 shows that the baseline parameters used to generate the data are recovered well in the
estimation process (when estimating the baseline, MH) in the low measurement error specification
although, not surprisingly, not so well in the high m.e. case. In terms of log-likelihood values the
regimes follow a robust order: the data-generating MH regime naturally has the highest likelihood,
followed by the other mechanism design regimes — FI (and UC), then the exogenously incomplete B,
S regimes, and finally A, although with high measurement error the likelihood values are sometimes
very close.

The parameter estimates differ across the estimated regimes, as the MLE procedure is trying
to fit the data as well as possible, but the estimates are generally similar between the FI and
MH regimes. The exogenously incomplete regimes (B, S, A) seem to require a higher value for
the measurement error variance (in the range .44 — .90 for low m.e. and .62 — .85 for high m.e.)
compared to the baseline (.1 and .5 respectively) to fit the data. Assuming larger measurement
error decreases the likelihood values for all regimes when using (k, k0, q) data although this does not
always happen below, when using different data. The standard errors of the parameter estimates
also tend to rise for the least likely regimes, at least in the incomplete depreciation case.

Turning to the results of the pairwise Vuong tests between the competing regimes (table 5),
we find that in the low m.e. specification we are able to distinguish between the baseline MH
regime and each of the other regimes almost perfectly (at less than 1% confidence level). Moreover,
this result also holds (with two exceptions, at the 5% or 10% level), in the pairwise comparisons
between the counterfactual (non-MH) regimes. That is, even if the researcher (incorrectly) believes
that e.g., the data were generated from the FI regime, he can still distinguish it from the others.

In contrast, with high measurement error, the distinction between the regimes is blurred and
we cannot differentiate statistically between the MH and FI regimes in the incomplete depreciation

29We first perform a detailed grid search over the parameter space to rule out local extrema and then use the
Matlab routines patternsearch and fminsearch to maximize the likelihood.
30Due to computational reasons the UC regime is only estimated in the full depreciation (δ = 1) specification. We

are working on paralellizing our numerical algorithm which should eventually allow us to overcome the computational
constraints.
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case or between any of the MH, FI, B, UC and S models in the full depreciation specification.
Assuming full depreciation breaks the link between firm size today and tomorrow, k and k0, so less
information is available to use in the Vuong test relative to the alternative specification δ = .05. This
suggests that more data dimensions are needed to be able to distinguish between the competing
regimes in this case.

The UC regime achieves very similar likelihoods to the MH and FI regimes indicating that it
might be difficult to distinguish between the endogenous information-constrained regimes. Table
5 shows that, with low m.e., we distinguish between UC and FI only at a 5% confidence level,
while with high m.e. we cannot discern between MH, FI and UC. These findings suggest that, in
terms of its firm size, growth and cash flow implications (i.e., regarding the Cooley and Quadrini,
1999 facts), the moral hazard regime produces similar data to the full information or several other
regimes when there is high measurement error. In contrast, in all cases, including high m.e., all
non-autarky regimes are statistically distinguishable at the 1% level from the autarky regime.

We visualize these results on Figure 4 which plots firm size growth, growth variance and cash
flow sensitivity at the parameter estimates for the incomplete depreciation case for both the low
and high m.e. parametrizations. We see that the MH and FI regimes are indeed very close in terms
of their firm dynamics implications. The figure also shows clearly how higher measurement error
blurs the distinction between the regimes, relative to Figure 1.

5.2.2 Consumption Smoothing

We estimate and test whether we can distinguish between the regimes based on the degree of
consumption smoothing, as embedded in the consumption-income, (c, q) joint distribution. The
results31 are in table 6. As when using (k, k0, q) data, the likelihood values we obtain are ordered
MH, FI/UC, B, S and A from the highest to the lowest likelihood32. This indicates that the ranking
of the regimes relative to the data-generating MH specification is robust and is not affected by the
type of data used (with the exception of the UC/FI pair). In terms of ability to distinguish the
regimes using (c, q) data, with low measurement error, both the baseline and the counterfactual
regimes are once again distinguished with high accuracy from the alternatives. In contrast, in the
high measurement error specification we are able to distinguish between the baseline (MH) and
alternative regimes (B, FI or S with δ = .05 and FI, B, UC with δ = 1) only at lower confidence
levels. As in the results using (k, k0, q) data, some other regime pairs are also indistinguishable
when γme is high. Unlike using (k, k

0, q) data, using (c, q) data makes it harder to distinguish the
regimes in the incomplete depreciation case at high measurement error but the opposite is true in
the complete depreciation case. Finally, as before, autarky is statistically distinguished from all
alternative regimes (with a single exception), even if γme is high.

5.2.3 Using Joint Data on Consumption, Firm Size, Growth and Income / Cash Flow

A natural question is whether using joint data on consumption and investment can improve our
ability to distinguish the competing regimes even with high measurement error. Theoretically,
it is known that, with incomplete markets as all of our regimes but FI stipulate, the classical
“separation” result between consumption and production/investment decisions fails. Thus, other
things held constant, more information should be present in the joint data on c, k, k0 and q than

31For lack of space we omit the parameter estimates (available upon request). The same disclaimer applies to the
rest of the runs in this section. We find the same general patterns as in the (k, k0, q) case.
32The UC and FI regimes flip positions depending on measurement error.
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in consumption and investment data separately. However, note that using joint data implies a
substantially larger number of frequency cells (500 for c, q, k, k0 data compared to 20 for c, q data
and 50 for k, k0, q data). Thus, holding the sample size n constant, a less precise estimate of each
cell would be possible, especially if n is small, which might work against the theoretical advantage
of using joint consumption / investment data.

Table 7 reports the estimation and test results using the joint distribution (c, q, k, k0). The ability
to distinguish across regimes remains very good under low measurement error. More importantly,
we do observe a significant improvement in the ability to distinguish between the data-generating
regime against each alternative (this occurs in all possible cases compared to tables 5 and 6 when
using consumption or investment data separately. The ability to distinguish between pairs of
counterfactual regimes in the high measurement error specification improves as well, although a
few cases remain in which if the researcher guesses (incorrectly) the data-generating regime he
would be unable to distinguish with some alternative, nearby regime.

More specifically, using (k, k0, q) data only (see table 5) there are 10 “tie” cases (i.e., being
unable to distinguish) among the compared regimes at δ = 1, while using (c, q) data (see table 6)
there are 4 ties (plus 2 weak rejections). In contrast, using joint data on (c, q, k, k0), all regime
comparisons are significant at the 5% confidence level and all but two at the 1% level. The results
are similar for the incomplete depreciation high measurement error case. In summary, even quite
substantial measurement error (50% of the entire range of values consumption and investment
can take) does not impede our ability to distinguish across the regimes once joint consumption,
investment and cash flow data are used.

5.2.4 Using Intertemporal Data: Panel and Repeated Cross-sections

We also estimate and test the financial regimes based on their implications about short and longer
run dynamics of consumption and income. Specifically, we use model-generated data on the joint
distribution of consumption and income (c, q) in two different periods, t = 0, 1 (or t = 0, 50) as in
a panel dataset. Table 8 contains the results from the pairwise Vuong tests. We report only the
high measurement error case to investigate whether using intertemporal data improves our ability
to distinguish across the regimes compared to using single cross-sections as above.

Compared to table 6, the results in Table 8 show that adding a time dimension to the data used
in the estimation improves significantly our ability to distinguish the regimes, especially in the case
of incomplete depreciation (the number of ties diminishes from 5 to 2 and, in general, the Vuong
test statistics are larger in all cases). The improvement in ability to discern the regimes is however
smaller compared to when joint data on consumption, firm growth and cash flow was used (Table
7 vs. Table 8). A second observation concerns the period length, one vs. fifty periods apart. We
find that using data further apart improves somewhat our ability to distinguish across the regimes
in the 100% depreciation specification (the number of ties falls from 3 to 2), but the opposite is
true with incomplete depreciation.

An alternative way to use dynamic data is through repeated cross-sections instead of panel.
The advantage is that using repeated cross-sections requires a lower number of probability cells
(40 instead of 400 for c, q data) which increases precision if n is small. Table 9 reports model
comparison results using two cross-sections of the joint (c, q) distribution at two time periods (as
above, t = 0 and 1 or t = 0 and 50). Incorporating intertemporal data once again improves our
ability to distinguish the regimes compared to when using single a cross-section as in table 6. But,
the length of the period at which we take the cross-sections (1 or 50) does not seem to affect the
results in any definite way as with panel data.
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5.3 Robustness Runs Using Model-Generated Data

5.3.1 Using Data from the Savings Only Regime

We also performed several additional runs to study the robustness of our results. First, instead of
generating the baseline data from the MH model, we generated it from the saving only regime (S).
The data generation procedure is exactly as before, and measurement error is allowed once again.
Table 10 presents the Vuong test results using data on firm size, investment and cash flow (k, k0, q).
We compare these results to table 5 where MH is the data-generating regime.

We see that when the data are generated by the S regime, the likelihood ranking changes
accordingly, with the S regime producing the highest likelihood, followed by B, UC, FI or MH
and A. Interestingly, the UC regime comes closer to matching the firm size and investment data
produced by the saving only compared to the MH or FI regimes. This is consistent with the
literature on hidden savings (e.g., Allen, 1985). The autarky regime is again furthest away from
the data-generating (S) regime although now, in a few cases, it cannot be distinguished statistically
from the MH and FI specifications. As in table 5 we find that larger measurement error reduces
our ability to distinguish the regimes, especially in the full depreciation case, in which we cannot
differentiate between S and B.

5.3.2 Additional Robustness Checks

Table 11 contains the results from additional robustness runs performed using (k, k0, q) data gen-
erated from the baseline MH regime for incomplete depreciation. In the top panel we analyze the
effect of allowing even larger measurement error (γme = .7). As expected, the Vuong test statistics
worsen relative to those in table 5 and now, in addition to the MH/FI pair, we also cannot distin-
guish between the S and B regimes. The autarky regime remains statistically distinguishable from
all the rest even with this high level of error.

In the middle two panels we study the effect of sample size, n on our ability to distinguish
the regimes. We find that reducing the sample size from 1,000 to 200 observations significantly
reduces the power of the Vuong test and so we cannot distinguish between any of the MH, FI and B
regimes (also, we can distinguish them only at 5% significance level from the S regime). In contrast,
increasing n to 5,000 significantly improves our ability to discern among the regimes relative to the
table 5 baseline. Larger sample size is thus quite helpful.

Finally, the last panel of table 11 investigates the sensitivity of the results to grid size. Re-
ducing the size of the consumption grid to #C = 5 (from 10) does not affect the Vuong statistics
significantly relative to the table 5 baseline reassuring for the robustness of our findings and for our
computational methods which sometimes require relatively coarse grids.

5.4 Summary of Findings Using Model-Generated Data

We summarize the main findings from the model comparisons with data generated from the MH
model (tables 4-9) in table 12. First, we find that some regime pairs are always distinguished what-
ever type of data are used: MH/A; FI/A; B/A; UC/A. Thus, autarky is almost always distinguished,
even with high measurement error. The regime pairs MH/S and FI/S are also distinguishable in
most cases (less than 10% exceptions). On the other end, the pairs that are most rarely distin-
guishable are B/UC; B/S; FI/UC and FI/B. Intuitively the borrowing and saving regime are harder
to distinguish as they share very similar theoretical structure. We also see that, especially with
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high measurement error, the non-data-generating mechanism design regimes (FI, UC) might not
be statistically distinguishable from the exogenously incomplete (B, S) regimes.

Comparing the incidence of Vuong test ties (see panel 2), within the groups of mechanism design
regimes (MH, UC, FI) and exogenously incomplete regimes (B, S, A) vs. across those groups, we
see that more ties occur within groups (25% and 15.3% of all pairs respectively) against 11.5%
only for the across group comparisons (8.3% if exclude the UC regime). A similar picture emerges
comparing the number of indistinguishable pairs involving the data-generating MH regime — 23.5%
ties when compared to FI/UC vs. only 5.6% ties when MH is compared to B, S and A. The fact
that there are more ties within the exogenous or mechanism design regime groups vs. across them
exists for both specifications but is more pronounced with incomplete depreciation. The reason is
that the UC regime is often tied with B, S in the full depreciation case.

6 An Application to Thai Data

This section demonstrates how our methodology can be applied to actual data from a developing
country.

6.1 Data

The data we use come from the Townsend Thai monthly survey (Townsend, Paulson and Lee).
The survey began in August 1997 with a comprehensive baseline questionnaire on an extensive set
of topics, followed by interviews roughly every month. Initially consumption data were gathered
weekly, then bi-weekly. The data we use here begins in January 1998, so that technique and
questionnaire adjustments were essentially done. We use a panel of 531 households observed for
seven consecutive years, 1998 to 2004. These data are gathered from 16 villages in four provinces,
two in the relatively wealthy industrializing Central region near Bangkok, and two in the relatively
poor semi-arid Northeast.

Consumption expenditures, c include owner-produced consumption (rice, fish, etc.). Income, q
is measured on an accrual basis (see Samphantharak and Townsend, 2008). Wage labor income is
excluded to try to capture income as return to assets, as in the model. Assets, k include business and
farm equipment, but exclude livestock and household assets such as durable goods (the distinction
is sometimes not so obvious). Assets other than land are depreciated, so investment includes gross
change. All variables were added up to produce annual numbers. All variables are in nominal
terms (but inflation was low over this period). The variables are not converted to per-capita terms,
i.e., household size is not brought into consideration. Summary statistics for the Thai data are
displayed in Table 13.

6.2 Data Preparation

The first step in our empirical strategy is to put the Thai data in the frequency form needed
to perform the MLE estimation. To start, we convert the data into model units rather than
currency. We do this by dividing all currency values in the data by the 90-th percentile of the
assets distribution (1,742,557 baht). The normalized assets are then placed on the 5-point grid33,
[0, .03, .2, .6, 1]. The unequal spacing of the grid reflects the skewedness of the assets distribution in
the data, with many small and few large firms. The data fractions (in the whole sample) at each of

33We use a standard histogram function based on distance to closest gridpoint (Matlab’s command hist) to fit the
data on the grids.
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those grid points are respectively [28.3%, 24.3%, 17.4%, 13.8%, 16.1%]. Consumption is normalized
by the same factor and fit on a 10-point linear grid on [0, .1] while normalized income values are
fitted, consistent with the model, on a two-point grid [.005, .13]. The grid bounds reflect the extreme
values of c and q in the data relative to those for k. Having fitted the data on those grids for all
years we can construct any joint distributions we need, e.g., (c, q), (k, k0, q), etc. Admittedly, some
information could be lost approximating the continuous data in this fashion. We perform various
robustness checks to verify this does not affect our model comparison results.

We use the same procedure as in section 5.1 to draw the initial distribution of (unobservable)
states assuming normal distributions for w, b with means and variances to be estimated. Additive
measurement error with standard deviation proportional to grid span is allowed for c, k and k0 as
before.

6.3 Estimation Results

Given the normalized Thai data, we simulate each model regime and form the likelihood function be-
tween the model-generated frequencies and their counterpart in the data. As with model-generated
data, for computational reasons, we estimate a subset of the structural parameters,34 (σ, θ, ρ), to-
gether with the distributional parameters, μw (or μb), γw (or γb), and the standard error parameter,
γme.

The results are summarized in tables 14-16. Table 14 contains the parameter estimates, boot-
strap standard errors, and likelihoods when using cross-sectional investment and cash flow data
from 1998-99. The actual Vuong test statistics are in table 15. In table 16 we report a summary
of the regime ranking in terms of likelihood, the proportion of statistically insignificant regime
comparisons (“ties”), and the fraction of those ties within the groups of mechanism design vs. ex-
ogenously incomplete markets regimes. As the top lines of Tables 14.1, 14.2 and 14.3 list the best
fitting regimes, one can see that the parameter estimates are sensitive to the data used inclusive of
bootstrap standard errors.

6.3.1 Business Assets, Investment and Cash Flow Data

We first estimate and test the implications of the models about firm size, investment and cash
flow. That is, the data used are the joint distribution of (k, k0, q). For robustness we estimate
using either the first two (’98-99) or the last two (’03-04) years of the Thai data (n = 531) for each
parametrization.

The main finding is that, when estimated from k, k0, q cross-sectional data (see Table 16), the
financial regimes rank (in decreasing order of likelihood) as: B, S, MH, FI, A, with the Vuong
test unable to reject the hypothesis that the B and S regimes are equally close to the Thai ’98-
99 data. Furthermore, exactly as in our simulations with model-generated data, in all pairwise
comparisons the autarky regime always does significantly worse than the others. Also, as before,
whenever Vuong test ties are observed in table 15, they are within the groups of mechanism design
regimes (MH, FI) or exogenously constrained regimes (B, S) and not across these groups. As in the
model-generated data, the parameter estimates (see table 14.1) differ across the different regimes
as the model needs to adjust to achieve best fit. The lowest likelihood full information and autarky
regimes exhibit the highest estimated level of measurement error.

34Given with the data-determined grids, to generate interior solutions, we set η = .8 and ξ = .1. As a robustness
check we estimated (η, ξ, ρ) instead of (σ, θ, ρ) with very similar results (available upon request). All runs with Thai
data are computed for the incomplete depreciation case.
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As a graphical illustration of the results, fig. 5 plots the (k, k0, q) joint distribution histograms35

in the Thai data vs. the histograms produced from the model at the MLE parameter estimates
for 1998-99 data. Evidently, one dimension of the data that model regimes struggle to match is
the high persistence in assets between periods (note the high frequencies at the k = k0 bars). This
probably has to do with the low frequency of investment in the data.

6.3.2 Business Assets, Investment, Cash Flow and Consumption Data

The regime likelihood ranking we obtain when using joint data on consumption, investment and
cash flow (see section 2 of tables 15-16) is the same we obtained in the investment only, (k, k0, q)
case but now we are unable to distinguish between the S and B regimes. Note, however, that the
number of cells when using all available data is large (500 now vs. 50 before). We do not see
a more significant improvement in the ability to distinguish the regimes relative to the (k, k0, q)
case when adding the consumption data, due to the low precision we have in each probability
cell. This intuition is confirmed in section 6.3.5 below in which we perform a robustness run with
model-generated data using the MLE parameters.

6.3.3 Consumption Smoothing Data

We test whether we can distinguish between the studied regimes based on the degree of consumption
smoothing as embedded in the (c, q) cross-sectional distribution in the Thai data. Despite the fact
that there are many fewer cells, we observe significantly more ties among the regime comparisons
in Table 15 (7 ties and 3 marginally significant (at 10%) comparisons) relative to when using joint
investment and consumption data (3 ties). This confirms our findings from section 5 that using
joint investment-consumption data improves our ability to distinguish the regimes and shows that
the general forces from the model-generated data section are at work. Using investment data only,
(k, k0, q) performs better than using consumption data only. Unlike model-generated data, the
consumption Thai data alone seem to be unable to pin down precisely the best fitting regime.

The regime likelihoods using (c, q) data also rank differently compared to when using (k, k0, q) or
(c, k, k0, q) data. As before, the autarky regime has the worst likelihood and is always rejected, but
now the mechanism design regimes (MH/FI) achieve slightly higher likelihoods than the exogenously
incomplete (B/S) regimes. However, the likelihood differences are usually statistically insignificant,
and thus we cannot reject the hypothesis that the B/S regimes are as close to the data as the
MH/FI regimes in most cases.

In general, the parameter estimates in table 14.3 differ relative to the (k, k0, q) case as the MLE
is adjusting the estimates to the different data. We illustrate the ability of the competing financial
regimes to match the Thai consumption data on fig. 6. Note the bad performance of the autarky
regime which puts too much weight on the incorrect (c, q) cells.

6.3.4 Dynamics: Using Repeated Cross-sections and Panel Data

We also estimate and test across the regimes based on repeated cross-sections and panel data
targeting the model dynamics. Specifically, we use cross-sections of the joint distributions (c, q),
(k, k0, q) or (c, q, k, k0) taken at two different time periods, one or five years apart (6 years for
c, q)— see tables 15 and 16. Using repeated cross sections of (k, k0, q) data improves significantly
our ability to distinguish the regimes relative to when using a single (k, k0, q) cross-section. Using

35On the horizontal axis (k0) the first five columns of bars refer to the (k, k0) values when q = .005 and the next
five columns refer to q = .13.
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repeated (c, q) cross-sections we also find, in general, a much better ability to distinguish compared
to using a single cross-section. These results confirm our findings from the model-generated data
section that using more data dimensions improves our ability to distinguish across regimes.

Next, we compare the regimes using data on the joint distribution of consumption and income
in two different periods t and t0, i.e., (c, q, c0, q0) data as in a panel36 (section 5 of tables 15-16).
The ordering of regimes in terms of likelihood from the single (c, q) cross-section case is preserved,
with the MH/FI regimes coming slightly (often insignificantly) ahead and the A regime always
rejected against any other. As in section 5, with incomplete depreciation our ability to distinguish
the regimes does not improve with the time between surveys in the panel.

6.3.5 Model-Generated Data

Finally, we also ran the MLE and model comparison tests on model-generated data but for para-
meter values actually estimated from corresponding Thai data. The sample size and variable grids
are also chosen to be the same as in the Thai data runs in tables 14-16. We report the Vuong
statistics in table 17. For each data type (e.g., (c, q), (k, k0, q),etc.) we pick as data-generating the
MH or S regime that is found to fit the Thai data better, as indicated in the table.

The measurement error variance parameter, γme is estimated and turns out to be generally
low, in the range 0.07-0.11 (the exception is 0.23 using c, q, k, k0 data). This measurement error
level corresponds closely to our ”low m.e.” specification in the runs from section 5. As in that
section, we see that at this low level of measurement error, most regime pairs are statistically
distinguishable from each other with the B/S pair being the hardest to discern as in our baseline
parameter results. In terms of likelihoods, the ranking among the regimes remains robust. As
before, the autarky regime is always distinguished at the 1% significance level from all alternatives.

The main finding from this exercise is that, when using model-generated data and controlling
for parameter values, grids and sample size we obtain much better ability to distinguish among the
regimes compared to when using actual Thai data (compare the counts of regime ties in tables 15
and 17).

6.3.6 Summary

The findings from all estimation exercises with Thai data are summarized in Table 16. We saw
that the type of data used can affect our ability to pin down the model of financial constraints
that matches the Thai data best or, in general, to distinguish across the regimes. The results
using combined data on (c, q, k, k0) where the likelihood ranking among the regimes is the same as
that when using (k, k0, q) data and where our ability to distinguish regimes is better than using
consumption data only, seems to imply that the type of financial constraints represented by the
B/S regimes are the important factor in shaping overall outcomes in the Thai data.

The results from this section should be put in perspective relative to our findings in PTK
(2006) where we estimated a single-period model of occupational choice between starting a small
business and subsistence farming. We found moral hazard (rather than limited liability) to be
the predominant source of financial constraints for rural Thai entrepreneurs but the borrowing
and saving regimes we study here were not in the set of compared models. On the other hand,
Karaivanov (2007) finds that, in an occupational choice setting very similar to PTK’s, one cannot
distinguish statistically between a model of moral hazard vs. a model of borrowing with default.

36Unfortunately, using panel data on (k, k0, q) or (c, q, k, k0) is infeasible with our Thai dataset due to the very high
number of cells required to be fitted (2,500 or 25,000) using only 531 observations.
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7 Discussion and Conclusions

We formulated and solved numerically a wide range of multi-period financial market regimes
with exogenous or endogenous asset structure that allow for moral hazard and unobservable capi-
tal/investment. We characterized the optimal allocations implied by the regimes from both cross-
sectional and intertemporal perspectives. We developed methods based on mechanism design theory
and linear programming and used them to structurally estimate, compare and distinguish between
the different information regimes. We showed that such models can match stylized facts from the
empirical firm dynamic literature as listed by Cooley and Quadrini (2001). The compared regimes
were also demonstrated to differ significantly with respect to their qualitative and/or quantitative
implications for investment, consumption, financial flows, and insurance in cross-section, transi-
tions, and long-run outcomes. Joint consumption and investment data are particularly useful in
pinning down the financial regime generating the data. Our methods can handle unobserved het-
erogeneity, grid approximations, transitional dynamics, and reasonable measurement error.

One striking finding is that we can readily distinguish exogenously incomplete financial regimes
from endogenous incomplete ones, where the latter are solutions to mechanism design problems
with unobserved effort and hidden state variables. As the literature we surveyed in the introduction
typically takes one route, or the other, we believe this ability to distinguish will prove quite helpful
in future research and the applications of others. We are also able to distinguish within these groups,
though this depends on measurement error, the variables coming from a survey, and whether or not
we have more than static cross-sections. Of course, we do not claim we have covered all possible
models, only six typical prototypes. Obvious inclusions for future work would include observed
effort and unobserved capital, unobserved output, and costly state verification. We could also
easily incorporate limited enforcement/limited commitment in our formulation by requiring that
the minimum possible promised utility be equal to the agent’s discounted value under autarky or,
if the agent’s saving or borrowing cannot be controlled by the bank, his value under the saving only
or borrowing regimes.

We are still somewhat limited on the computation side, though we are encouraged with recent
advances we have been making. In this paper, we estimate only a subset of parameters at one time
(though we conducted robustness check to verify that none of our conclusions depended on this).
We also had some difficulty estimating the unobserved capital regime with incomplete depreciation.
In recent collaboration with research scientists, we have been exploring the use of parallel processing
and the Grid to speed up existing codes and allow more complexity. What we do thus far is, for want
of better terminology, brute force. There may be further gains from more streamlined programs
and more efficient search, i.e., where to refine the grids, when to use non-linear or mixed methods,
the use of the dual, and so on.

We have established that our methods work on real data from villages in Thailand. We echo
previous work which finds that full risk sharing is rejected, but not by much, and indeed find
that the moral hazard regime is consistent with the income and consumption data. We also echo
previous work which finds that investment is not smooth and may be sensitive to cash flow and
indeed find that savings only, or borrowing and saving regimes seem to characterize the investment,
firm size, and cash flow data. Of course, we recognize that these results are an anomaly: the regime
which the Thai data fits best depends on which data are used, unlike the model-generated data
comparisons.

We thought perhaps we might recover a more sophisticated contract theoretic regime if we
restricted attention to family networks, but was not the case. So we suspect our results are instead
due to the infrequent nature of investment in the data and the relatively large size of investment
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compared to capital when investment takes place. That is, the Thai data results may have more
to do with the technology and not the financial regime. Indeed, recall that we dropped costly
adjustment per se and tried to view the data though the lens of financial regimes alone. Evidently
we have learned something from our approach, or at least know what would be one obvious next
step. Fortunately this is doable. Other future steps include distinctions across different technologies
(fish/shrimp, livestock, business, and so on), and the inclusion of aggregate shocks (shrimp disease,
rainfall). We would also return to the issue of entrepreneurial talent, as in our earlier work (PTK,
2006), and allow for heterogeneity in returns. Other work (Pawasutipaisit and Townsend, 2007)
shows that ROA varies considerably across households and is persistent. On the other hand, these
data summaries have trouble finding consistent patterns with respect to finance, suggesting the
data be viewed through the lens of revised models.

We have our eyes on other economies as well, in part because we get more entry and exit from
business in other countries, and in part because we need large sample sizes for our methods to work.
Unfortunately, we do not typically find both consumption and income data which is why we chose
the Thai data to begin with. But preliminary work with enterprise data from Spain shows not only
the stylized facts of firm growth, declining mean and variance with size and age, but also a salient
financial life cycle, with newly born small firms relying on informal finance, then, conditional on
survival, gaining credit from one formal financial intermediary, and finally, having access to multiple
banks (Zambrano, Saurina and Townsend, 2008). The methods of this paper allow in principle for
transitions across financial regimes, jointly with the growth facts. Fortunately, there are as many
as 10,000 data points in each Spanish cohort.

Other complementary approaches include doing more on the supply side. It may be that lenders
have rules for access and credit levels that are hard to mimic with the current regimes at hand.
Hsieh and Klenow (2007) also find that the distribution of firm size may have to do with regulatory
distortions. Assuncao, Mityakov, and Townsend (2008) are working in this direction.
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8 Appendix

8.1 Moral Hazard with Unobserved Investment and Incomplete Depreciation

We extend the moral hazard with unobserved investment model to include the possibility of in-
complete depreciation, δ < 1. This makes the interim principal’s value, Vm dependent on k since
capital does not expire in production. Furthermore, the interim utility must now take into account
that the agent might have deviated in his announcement of k when entering the second stage, i.e.,
we need to define it as a vector wm = {wm(k1), wm(k2), ...} ∈ Wm similarly to w. The set Wm

is endogenously determined during the value function iteration, similarly to the set W. The first
sub-period problem is then (compare with program UC1):

Program UC3:

V (w, k) = max
{π(q,z,wm|w,k)}

X
Q×Z×Wm

π(q, z,wm|w,k)[q + Vm(wm, k)] (20)

The maximization is subject to the constraints (11) and (12), replacing wm with wm(k) and
π(q, z, wm|w,k) with π(q, z,wm|w,k). Additionally, truth-telling needs to be induced, as in (13),
only replacing wm with wm(k̂) (the interim utility needs to be consistent with the agent’s true
type) and π(q, z, wm|w,k) with π(q, z,wm|w,k). The rest of the constraints are the familiar Bayes-
consistency, adding-up, and non-negativity.

The state variables in the second stage sub-problem are different from the δ = 1 case, namely
now they are the vector of interim utilities, wm and the announcement k. This introduces extra
truth-telling and obedience constraints in the second stage program The reason is that now we need
to ensure that, when deciding on k0, the agent cannot get more than his interim utility, wm(k) for
any announcement k. Due to the higher dimensional state space, we also need to compute a much
larger number of second stage linear programs — one for each possible (k,wm) ∈ K×Wm given by:

Program UC4:

Vm(wm, k) = max
{π(τ,k0,w0|wm,k)},{v(k,k̂,k0,τ)}

X
T×K0×W0

π(τ, k0,w0|wm, k)[−τ + (1/R)V (k0,w0)]
(21)

In addition to the probabilities, π(τ, k0,w0|wm, k), we now add more choice variables, namely

v(k, k̂, k0, τ). These variables, which we call utility bounds, (see Prescott, 2003 for details) specify the
maximum expected utility that an agent of type k̂ could obtain by not announcing truthfully (report
k instead) and who receives transfer τ and an investment recommendation k0. This translates into
the constraint: X

W0
π(τ, k0,w0|wm, k)[u(τ + (1− δ)k̂ − k̂0) + βw0(k̂0)] ≤ v(k, k̂, k0, τ) (22)

holding for all possible combinations τ, k0, k̂0, k̂ 6= k, and k̂0 6= k0. To obtain the utility, wm(k̂) that
an agent obtains in the second sub-period by reporting k when the true state is k̂, we add up the
bounds v(k, k̂, k0, τ) over all possible τ, k0 ∈ T ×K 0 resulting in the constraint:X

T×K0
v(k, k̂, k0, τ) ≤ wm(k̂) (23)

The two sets of constraints, (22) and (23) also rule out any joint deviations in the report k and the
action k0. Further, by definition, the interim utility must satisfy:

wm(k) =
X

T×K0×W0
π(τ, k0,w0|wm, k)[u(τ + (1− δ)k − k0) + βw0(k0)] (24)

Finally, the π’s must satisfy non-negativity and adding-up as usual.
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8.2 Welfare

The analysis in section 2 implies that the information regimes we study can be unambiguously
ranked in terms of efficiency, as measured by how far the Pareto frontier extends. The autarky
regime (no access to markets) is characterized with lowest welfare. It is followed by the saving only
and borrowing regimes which allow non state-contingent intertemporal consumption smoothing but
no extra insurance across states apart from self-insurance. In turn, if β = 1/R as in our baseline,
the moral hazard regime with unobserved investment (UC) Pareto dominates the B regime since
the optimal allocation achieved by B is incentive and truth-telling compatible in UC (it can be
achieved by allowing the agent to borrow and lend through the principal)̇. In general, however,
UC can provide extra insurance relative to the borrowing regime37. The moral hazard regime
with observed investment (MH) is in turn Pareto superior to the unobserved investment regime as
the truth-telling constraints are relaxed. Finally, the full information regime dominates all other
regimes since, by definition, it achieves the first best allocation.

The Pareto frontiers for all regimes, computed at the baseline parameters from table 3 are
graphed on fig. A1-2. To plot the B and S frontiers we use that agent’s savings determining his
utility map into negative principal value and conversely about agent’s debt. The autarky frontier is
a single point. The increasing portion of the frontier for the MH and UC regimes is due to the fact
that at very low promised utility the agent’s incentives to exert effort and invest are diminished
(see Phelan and Townsend, 1991 for discussion).

37The results of Allen (1985) and Cole and Kocherlakota (2001) for dynamic adverse selection problems which
state that no additional insurance on top of self-insurance can be provided by the principal do not apply in our moral
hazard setting because of the endogeneity of the stochastic process of output (see Abraham and Pavoni, 2005).
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Grid Size Grid Range (full depr.) Grid Range (inc. depr.)

Q 2 {.1, 3} {.1, .5}
K 11 [0, 1] [0, 1]
Z 3 [.01, 1] [.01, 1]
B 21 S: [-5, 0], B: [-5, 5] S: [-1, 0], B: [-1, 1]
T 31 (86 if δ < 1) [0, 3] [0, 1]
W 21 [wmin, wmax] [wmin, wmax]

Wm 31 (630 if δ < 1) [wmin, βwmax+u(tmax)] [wmin, βwmax+u(tmax)]

# linear programs # LP variables (π) # LP constraints

Autarky 11 66 7
Saving / Borrowing 231 1386 7
Full Information 231 42,966 8
Moral Hazard, full depr. 231 42,966 14
Moral Hazard, inc. depr. 231 119,196 14
Unobserved k, full depr. stage 1 6,930 186 284
Unobserved k, full depr. stage 2 21 410,130 188
Unobserved k, inc. depr. stage 1 6,930 3,780 284
Unobserved k, inc. depr. stage 2 6,930 1,137,780 95,548

Parameter
depreciation rate, δ
agent's discount factor, β
principal's discount factor, 1/R
risk aversion, σ
effort curvature, θ
effort cost, ξ
technology parameter, ρ
capital share, η
probability scaling factor, λ 0.5

Table 3 - Baseline Parameters

2
1 (0.1)

0 (-1, 1)
0.5 (0.8)

1 (full depr.), 0.05 (incomplete depr.)
0.95
0.95

0.5 (0, 2)

Table 1 - Baseline Grids

Table 2 - Dimensionality

Value(s)



Table 4 - Parameter Estimates Using Model-Generated Data on Firm Size, Investment and Cashflow (k, k', q)
Data-Generating Model is Moral Hazard, n = 1000
Incomplete depreciation (δ = 5%)

Estimates for: μw/b γw/b γme σ θ ρ LL Value
Model
Moral Hazard (base) - MH 20.1875 (.586) 8.2500 (.798) 0.1000 (.005) 0.5000 (.000) 2.0313 (.043) 0.0000 (.053) -3165.1
Full Information - FI 19.9766 (.862) 8.7188 (1.06) 0.1366 (.011) 0.5039 (.008) 1.9961 (.058) -0.0547 (.028) -3221.4
Borrowing & Lending - B -0.1521 (.142) 0.2161 (.232) 0.5276 (.044) 0.6000 (.199) 1.3750 (4.04) -0.9063 (.161) -3441.7
Saving Only - S -0.4000 (.001) 0.2000 (.071) 0.6374 (.056) 0.1313 (.027) 1.2000 (.513) 2.3984 (.376) -3480.3
Autarky - A n.a. n.a. 0.7039 (.043) 0.1000 (.473) 8.1000 (1.88) 0.2188 (6.10) -3617.2
baseline values 19.9999 8 0.1 0.5 2 0

Moral Hazard (base) - MH 19.0000 (6.40) 9.0000 (6.52) 0.6414 (.075) 0.5000 (.002) 2.0156 (.771) -0.0469 (1.06) -3581.3
Full Information - FI 19.9688 (7.22) 8.0625 (8.86) 0.5684 (.105) 0.5000 (.012) 1.9844 (.802) -0.0625 (.721) -3595.2
Borrowing & Lending - B 0.0000 (.250) 0.1377 (.108) 0.6559 (.066) 0.5000 (.492) 2.0000 (4.31) -3.8203 (3.13) -3630.3
Saving Only - S -0.1651 (.081) 0.0000 (.286) 0.6619 (.031) 0.4537 (.071) 2.0753 (.718) -2.7498 (1.78) -3679.6
Autarky - A n.a. n.a. 0.6845 (.035) 1.1125 (.365) 1.4917 (1.38) -3.4563 (4.00) -3741.2
baseline values 19.9999 8 0.5 0.5 2 0

Complete depreciation (δ = 100%)
Estimates for: μw/b γw/b γme σ θ ρ LL Value

Model
Moral Hazard (base) - MH 36.7338 (1.73) 15.0000 (1.42) 0.1039 (.003) 0.5000 (.006) 2.0234 (.027) -0.0313 (.129) -2976.3
Unobserved k - UC n.a. n.a. 0.1020 (.079) 0.5469 (.192) 4.1375 (.045) -0.2813 (.608) -3018.1
Full Information - FI 34.1713 (1.82) 17.7266 (2.47) 0.1937 (.018) 0.5068 (.004) 2.5859 (.451) -0.0313 (.152) -3059.4
Borrowing & Lending - B -1.0000 (.003) 0.4367 (.016) 0.5517 (.013) 0.9750 (.352) 4.0000 (.589) 0.0000 (.164) -3165.3
Saving Only - S -1.0000 (.003) 0.2873 (.096) 0.4402 (.017) 0.0375 (.435) 6.0000 (.004) 0.2402 (.171) -3184.6
Autarky - A n.a. n.a. 0.9031 (.083) 0.1000 (.002) 10.0000 (.000) 0.7344 (.002) -3868.4
baseline values 34.64 15 0.1 0.5 2 0

Moral Hazard (base) - MH 34.6400 (6.14) 14.5000 (2.13) 0.5898 (.035) 0.5000 (.026) 2.2188 (1.89) 0.3125 (.082) -3514.9
Full Information - FI 34.6400 (.019) 14.9688 (7.42) 0.6168 (.088) 0.5000 (.008) 2.4375 (1.60) 0.0000 (.191) -3522.9
Borrowing & Lending - B -1.0000 (.107) 0.2414 (.195) 0.6335 (.044) 0.2188 (.059) 10.0000 (.000) -0.3750 (.394) -3528.4
Unobserved k - UC n.a. n.a. 0.6224 (.029) 0.1352 (.160) 5.0156 (3.04) -5.5938 (1.83) -3528.7
Saving Only - S -1.0000 (.006) 0.0250 (.182) 0.6550 (.079) 0.4750 (.192) 8.1000 (.045) 0.2344 (.608) -3530.4
Autarky - A n.a. n.a. 0.8521 (.056) 0.1000 (.002) 10.0000 (.000) 0.7344 (.006) -3952.3
baseline values 34.64 15 0.5 0.5 2 0

Note: Bootstrap standard errors are in the parentheses next to the estimates.

Low Measurement Error (stdev = 0.1 * gridmax)

High Measurement Error (stdev = 0.5 * gridmax)

Low Measurement Error (stdev = 0.1 * gridmax)

High Measurement Error (stdev = 0.5 * gridmax)



Table 5 - Model Comparisons Using Data on Investment and Cash Flow (k,k',q)
Data-Generating Model is Moral Hazard, n=1000

Incomplete depreciation (δ = 5%), low measurement error (γme = 0.1 * gridspan)

Model LL value1

MH FI B S A
MH n.a. -3165.1
FI 6.143***(MH) n.a. -3221.4
B 11.25***(MH) 9.233***(FI) n.a. -3441.7
S 11.22***(MH) 9.217***(FI) 1.720*(B) n.a. -3480.3
A 14.36***(MH) 12.33***(FI) 6.981***(B) 8.213***(S) n.a. -3617.2

Incomplete depreciation (δ = 5%), high measurement error (γme = 0.5 * gridspan)
Model LL value

MH FI B S A
MH n.a. -3581.3
FI 1.177(tie) n.a. -3595.2
B 4.904***(MH) 2.376**(FI) n.a. -3630.3
S 6.302***(MH) 6.566***(FI) 3.171***(B) n.a. -3676.9
A 8.573***(MH) 6.588***(FI) 6.824***(B) 3.499***(S) n.a. -3741.2

Complete depreciation (δ = 100%), low measurement error (γme = 0.1 * gridspan)
Model LL value

MH UC FI B S A
MH n.a. -2976.3
UC 3.576***(MH) n.a. -3018.1
FI 4.978***(MH) 2.25**(UC) n.a. -3059.4
B 10.53***(MH) 7.55***(UC) 7.336***(FI) n.a. -3165.3
S 9.598***(MH) 7.11***(UC) 8.364***(FI) 1.783*(B) n.a. -3184.6
A 21.16***(MH) 20.5***(UC) 20.32***(FI) 18.59***(B) 17.74***(S) n.a. -3868.4

Complete depreciation (δ = 100%), high measurement error (γme = 0.5 * gridspan)
Model LL value

MH FI B UC S A
MH n.a. -3514.9
FI 1.379(tie) n.a. -3522.9
B 1.362(tie) 0.535(tie) n.a. -3528.4
UC 1.419(tie) 0.531(tie) 0.025(tie) n.a. -3528.7
S 1.285(tie) 0.715(tie) 0.145(tie) 0.12(tie) n.a. -3530.4
A 14.98***(MH) 14.12***(FI) 14.30***(B) 12.9***(UC) 13.54***(S) n.a. -3952.3

NOTES:
1. The regimes in all tables are ordered in decreasing likelihood.
2. *** = 1%,  ** = 5%,  * = 10% two-sided significance level; the better fitting regime is in the parentheses;
3. "tie" denotes the tested regimes cannot be statistically distinguished from each other relative to the data. 

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats



Table 6 - Model Comparisons Using Data on Consumption and Income (c,q)
Data-Generating Model is Moral Hazard, n=1000

Incomplete depreciation (δ = 5%), low measurement error (γme = 0.1 * gridspan)
Model LL value

MH FI B S A
MH n.a. -2561.3
FI 5.157***(MH) n.a. -2597.4
B 7.250***(MH) 3.963***(FI) n.a. -2646.4
S 8.750***(MH) 6.320***(FI) 4.059***(B) n.a. -2682.4
A 13.52***(MH) 12.11***(FI) 16.35***(B) 12.81***(S) n.a. -2793.6

Incomplete depreciation (δ = 5%), high measurement error (γme = 0.5 * gridspan)
Model LL value

MH B FI S A
MH n.a. -2715.8
B 1.633(tie) n.a. -2721.4
FI 2.105**(MH) 0.791(tie) n.a. -2724.7
S 2.240**(MH) 1.582(tie) 0.748(tie) n.a. -2729.7
A 3.087***(MH) 2.989***(B) 2.066**(FI) 1.151(tie) n.a. -2735.7

Complete depreciation (δ = 100%), low measurement error (γme = 0.1 * gridspan)
Model LL value

MH UC FI B S A
MH n.a. -2729.6
UC 3.308***(MH) n.a. -2754.2
FI 4.593***(MH) 1.67*(UC) n.a. -2768.8
B 6.856***(MH) 6.09***(UC) 2.943***(FI) n.a. -2811.4
S 9.616***(MH) 8.40***(UC) 5.958***(FI) 5.636***(B) n.a. -2860.2
A 17.18***(MH) 16.5***(UC) 14.14***(FI) 17.11***(B) 19.18***(S) n.a. -3096.3

Complete depreciation (δ = 100%), high measurement error (γme = 0.5 * gridspan)
Model LL value

MH FI UC B S A
MH n.a. -2790.6
FI 0.857(tie) n.a. -2793.8
UC 1.346(tie) 0.680(tie) n.a. -2797.5
B 2.009**(MH) 1.646*(FI) 0.77(tie) n.a. -2801.9
S 4.923***(MH) 4.560***(FI) 4.15***(UC) 4.793***(B) n.a. -2845.1
A 6.664***(MH) 6.113***(FI) 6.24***(UC) 7.100***(B) 5.077***(S) n.a. -2881.7

NOTES:
1. The regimes in all tables are ordered in decreasing likelihood.
2. *** = 1%,  ** = 5%,  * = 10% two-sided significance level; the better fitting regime is in the parentheses;
3. "tie" denotes the tested regimes cannot be statistically distinguished from each other relative to the data. 

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats



Table 7 - Model Comparisons Using Data on Investment, Consumption and Cash Flow (c,q,k,k')
Data-Generating Model is Moral Hazard, n=1000

Incomplete depreciation (δ = 5%), low measurement error (γme = 0.1 * gridspan)
Model LL value

MH FI B S A
MH n.a. -4655.7
FI 8.785***(MH) n.a. -5129.2
B 22.85***(MH) 12.11***(FI) n.a. -6282.7
S 25.78***(MH) 14.33***(FI) 1.467(tie) n.a. -6403.3
A 27.98***(MH) 16.92***(FI) 6.439***(B) 4.712***(S) n.a. -6829.3

Incomplete depreciation (δ = 5%), high measurement error (γme = 0.5 * gridspan)
Model LL value

MH FI B S A
MH n.a. -5744.3
FI 3.754***(MH) n.a. -5939.0
B 7.217***(MH) 4.031***(FI) n.a. -6267.2
S 8.853***(MH) 6.288***(FI) 2.380**(B) n.a. -6455.7
A 11.23***(MH) 8.893***(FI) 5.375***(B) 3.277***(S) n.a. -6794.9

Complete depreciation (δ = 100%), low measurement error (γme = 0.1 * gridspan)
Model LL value

MH UC FI B S A
MH n.a. -4688.8
UC 12.27***(MH) n.a. -5308.8
FI 10.33***(MH) 1.13(tie) n.a. -5404.7
B 13.69***(MH) 5.15***(UC) 4.457***(FI) n.a. -5766.6
S 20.90***(MH) 9.28***(UC) 7.102***(FI) 4.438***(B) n.a. -6068.3
A 30.58***(MH) 23.7***(UC) 20.25***(FI) 18.06***(B) 18.45***(S) n.a. -8262.4

Complete depreciation (δ = 100%), high measurement error (γme = 0.5 * gridspan)
Model LL value

MH FI UC B S A
MH n.a. -5715.2
FI 2.947***(MH) n.a. -5908.6
UC 5.324***(MH) 2.382**(FI) n.a. -6087.1
B 7.304***(MH) 4.548***(FI) 2.56**(UC) n.a. -6306.7
S 9.936***(MH) 7.197***(FI) 5.65***(UC) 3.216***(B) n.a. -6614.7
A 15.10***(MH) 12.13***(FI) 10.6***(UC) 7.734***(B) 13.54***(S) n.a. -7206.2

NOTES:
1. The regimes in all tables are ordered in decreasing likelihood.
2. *** = 1%,  ** = 5%,  * = 10% two-sided significance level; the better fitting regime is in the parentheses;
3. "tie" denotes the tested regimes cannot be statistically distinguished from each other relative to the data. 

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats



Table 8 - Model Comparisons Using Panel Data on Consumption and Income (c,q,c',q')
Data-Generating Model is Moral Hazard, n=1000; high measurement error (γme = 0.5 * gridspan)

Incomplete depreciation (δ = 5%), using (c,q) data at t = 0 and t = 1 (joint distribution)
Model LL value

MH FI B S A
MH n.a. -5711.0
FI 3.520***(MH) n.a. -5940.9
B 6.378***(MH) 3.212***(FI) n.a. -6171.3
S 6.438***(MH) 3.307***(FI) 0.725(tie) n.a. -6229.2
A 10.86***(MH) 8.216***(FI) 6.162***(B) 5.166***(S) n.a. -6720.4

Complete depreciation (δ = 100%), using (c,q) data at t = 0 and t = 1 (joint distribution)
Model LL value

MH FI UC B S A
MH n.a. -5622.6
FI 1.862*(MH) n.a. -5730.3
UC 4.917***(MH) 3.606***(FI) n.a. -5954.0
B 5.045***(MH) 3.471***(FI) 0.600(tie) n.a. -5997.5
S 5.771***(MH) 4.304***(FI) 1.415(tie) 0.980(tie) n.a. -6069.0
A 9.678***(MH) 8.200***(FI) 5.91***(UC) 5.594***(B) 5.431***(S) n.a. -6501.0

Incomplete depreciation (δ = 5%), using (c,q) data at t = 0 and t = 50 (joint distribution)
Model LL value

MH FI B S A
MH n.a. -5707.3
FI 3.279***(MH) n.a. -5924.9
B 4.511***(MH) 1.545(tie) n.a. -6045.2
S 7.332***(MH) 4.360***(FI) 2.826***(B) n.a. -6282.0
A 8.397***(MH) 5.624***(FI) 4.438***(B) 1.420(tie) n.a. -6404.2

Complete depreciation (δ = 100%), using (c,q) data at t = 0 and t = 50 (joint distribution)
Model LL value

MH FI B UC S A
MH n.a. -5616.5
FI 4.246***(MH) n.a. -5831.8
B 5.304***(MH) 2.110**(FI) n.a. -5999.3
UC 6.094***(MH) 2.871***(FI) 0.574(tie) n.a. -6050.2
S 8.937***(MH) 5.874***(FI) 4.676***(B) 2.93***(UC) n.a. -6348.3
A 9.826***(MH) 6.928***(FI) 5.217***(B) 4.51***(UC) 1.606(tie) n.a. -6478.3

NOTES:
1. The regimes in all tables are ordered in decreasing likelihood.
2. *** = 1%,  ** = 5%,  * = 10% two-sided significance level; the better fitting regime is in the parentheses;
3. "tie" denotes the tested regimes cannot be statistically distinguished from each other relative to the data. 

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats



Table 9 - Model Comparisons Using Repeated Cross-sections of Consumption and Income
Data-Generating Model is Moral Hazard; high measurement error

Incomplete depreciation (δ = 5%); using (c,q) data at t = 0 and t = 1 (two cross-sections)
Model LL value

MH FI B S A
MH n.a. -5557.6
FI 2.864***(MH) n.a. -5575.7
B 3.516***(MH) 0.662(tie) n.a. -5580.9
S 4.217***(MH) 2.198**(FI) 1.880*(B) n.a. -5594.5
A 7.458***(MH) 6.583***(FI) 6.483***(B) 6.997***(S) n.a. -5661.1

Complete depreciation (δ = 100%), using (c,q) data at t = 0 and t = 1 (two cross-sections)
Model LL value

MH FI B UC S A
MH n.a. -5558.3
FI 1.984**(MH) n.a. -5581.5
B 4.449***(MH) 3.270***(FI) n.a. -5654.5
UC 5.699***(MH) 3.950***(FI) 0.561(tie) n.a. -5671.6
S 5.760***(MH) 4.750***(FI) 3.141***(B) 1.155(tie) n.a. -5709.9
A 8.959***(MH) 8.229***(FI) 7.661***(B) 5.32***(UC) 7.985***(S) n.a. -5855.5

Incomplete depreciation (δ = 5%); using (c,q) data at t = 0 and t = 50 (two cross-sections)
Model LL value

MH FI B S A
MH n.a. -5549.6
FI 3.292***(MH) n.a. -5574.5
B 4.074***(MH) 1.034(tie) n.a. -5586.3
S 5.013***(MH) 2.062**(FI) 1.473(tie) n.a. -5599.3
A 6.899***(MH) 4.490***(FI) 5.100***(B) 4.496***(S) n.a. -5639.2

Complete depreciation (δ = 100%), using (c,q) data at t = 0 and t = 50 (two cross-sections)
Model LL value

MH FI B UC S A
MH n.a. -5572.4
FI 3.530***(MH) n.a. -5592.8
B 5.263***(MH) 2.696***(FI) n.a. -5626.3
UC 5.670***(MH) 3.440***(FI) 0.717(tie) n.a. -5637.3
S 9.054***(MH) 7.361***(FI) 9.563***(B) 4.33***(UC) n.a. -5729.4
A 9.678***(MH) 11.03***(FI) 13.30***(B) 9.83***(UC) 6.261***(S) n.a. -5850.3

NOTES:
1. The regimes in all tables are ordered in decreasing likelihood.
2. *** = 1%,  ** = 5%,  * = 10% two-sided significance level; the better fitting regime is in the parentheses;
3. "tie" denotes the tested regimes cannot be statistically distinguished from each other relative to the data. 

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats



Table 10 - Robustness: Model Comparisons Using Data on Investment and Cash Flow (k,k',q)
Data-Generating Model is Saving Only, n=1000

Incomplete depreciation (δ = 5%), low measurement error (γme = 0.1 * gridspan)
Model LL value

S B FI MH A
S (baseline) n.a. -2868.1
B 3.649***(S) n.a. -2896.2
FI 11.86***(S) 9.096***(B) n.a. -3063.5
MH 11.24***(S) 8.931***(B) 0.189(tie) n.a. -3065.1
A 13.15***(S) 11.83***(B) 4.158***(FI) 4.012***(MH) n.a. -3164.1

Incomplete depreciation (δ = 5%), high measurement error (γme = 0.5 * gridspan)
Model LL value

S B FI MH A
S (baseline) n.a. -3547.7
B 0.335(tie) n.a. -3549.8
FI 2.248**(S) 2.253**(B) n.a. -3565.9
MH 4.733***(S) 4.455***(B) 3.086***(FI) n.a. -3600.4
A 5.774***(S) 5.052***(B) 4.334***(FI) 0.411(tie) n.a. -3606.8

Complete depreciation (δ = 100%), low measurement error (γme = 0.1 * gridspan)
Model LL value

S B UC FI A MH
S n.a. -2743.0
B 0.658(tie) n.a. -2743.7
UC 7.302***(S) 7.215***(B) n.a. -2846.3
FI 17.40***(S) 17.23***(B) 15.0***(UC) n.a. -3165.2
A 19.71***(S) 19.66***(B) 15.8***(UC) 1.230(tie) n.a. -3197.9
MH 17.71***(S) 17.54***(B) 15.7***(UC) 3.175***(FI) 0.136(tie) n.a. -3201.8

Complete depreciation (δ = 100%), high measurement error (γme = 0.5 * gridspan)
Model LL value

S B UC MH FI A
S n.a. -3366.9
B 0.163(tie) n.a. -3369.0
UC 1.004(tie) 0.667(tie) n.a. -3379.5
MH 3.862***(S) 3.904***(B) 3.79***(UC) n.a. -3432.4
FI 4.234***(S) 4.520***(B) 4.33***(UC) 1.053(tie) n.a. -3442.3
A 4.383***(S) 4.239***(B) 3.48***(UC) 0.585(tie) 0.120(tie) n.a. -3447.0

NOTES:
1. The regimes in all tables are ordered in decreasing likelihood.
2. *** = 1%,  ** = 5%,  * = 10% two-sided significance level; the better fitting regime is in the parentheses;
3. "tie" denotes the tested regimes cannot be statistically distinguished from each other relative to the data. 

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats



Table 11 - Robustness Checks: More Regime Comparisons using (k,k',q) data
benchmark is Moral Hazard; incomplete depreciation (δ = 5%)

Larger measurement error (γme = 0.7 * gridspan)
Model LL value

MH FI B S A
MH n.a. -3566.0
FI 0.293(tie) n.a. -3569.0
B 2.951***(MH) 2.562**(FI) n.a. -3598.3
S 2.666***(MH) 3.567***(FI) 0.305(tie) n.a. -3601.5
A 7.507***(MH) 7.099***(FI) 5.688***(B) 6.484***(S) n.a. -3690.8

Smaller number of data points (n = 200)
Model LL value

FI MH B S A
FI n.a. -3568.6
MH 0.032(tie) n.a. -3569.2
B 0.336(tie) 0.332(tie) n.a. -3579.5
S 2.427**(FI) 2.266**(MH) 2.105**(B) n.a. -3647.6
A 4.490***(FI) 4.074***(MH) 3.962***(B) 3.034***(S) n.a. -3830.1

Larger number of data points (n = 5000)
Model LL value

MH FI B S A
MH n.a. -3566.4
FI 3.256***(MH) n.a. -3572.0
B 4.989***(MH) 3.586***(FI) n.a. -3584.8
S 7.198***(MH) 5.815***(FI) 4.769***(B) n.a. -3596.7
A 25.07***(MH) 24.32***(FI) 23.76***(B) 25.49***(S) n.a. -3792.4

Smaller Grid Size (#C = 5)
Model LL value

MH FI B S A
MH n.a. -3579.7
FI 1.113(tie) n.a. -3593.3
B 3.132***(MH) 1.758*(FI) n.a. -3622.8
S 5.865***(MH) 2.811***(FI) 1.133(tie) n.a. -3638.9
A 8.379***(MH) 8.184***(FI) 5.100***(B) 4.496***(S) n.a. -3737.8

NOTES:
1. The regimes in all tables are ordered in decreasing likelihood.
2. *** = 1%,  ** = 5%,  * = 10% two-sided significance level; the better fitting regime is in the parentheses;
3. "tie" denotes the tested regimes cannot be statistically distinguished from each other relative to the data. 

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats

Vuong Test Z-stats



Table 12 - Summary of Results Using Model-Generated Data from the MH regime

1. Ties Between Regime Pairs % ties overall % ties, δ = .05 % ties, δ = 1

MH v. FI 25% 29% 20%
MH v. B 13% 14% 10%
MH v. S 4% 0% 10%
MH v. A 0% 0% 0%

MH v. UC 20% n.a. 20%
FI v. B 25% 36% 10%
FI v. S 8% 7% 10%
FI v. A 0% 0% 0%

FI v. UC 30% n.a. 30%
B v. S 33% 43% 20%
B v. A 0% 0% 0%

B v. UC 60% n.a. 60%
S v. A 13% 14% 10%

S v. UC 20% n.a. 20%
A v. UC 0% n.a. 0%

2. Ties Within v. Between Exogenous (B, S, A) and Mechanism Design (MH, FI, UC) Regimes

25.0%
15.3%
11.5%

8.3%
5.6%

23.5%

3. Ties Within v. Between Exogenous (B, S, A) and Mechanism Design (MH, FI, UC) Regimes,
high measurement error specification only

31.3%
18.5%
15.5%
11.1%

7.4%
32.0%

% ties within the mechanism design regime group
% ties within the exogenous regime group
% ties across the exogenous and mechanism design groups

% ties between MH and any mechanism design regime

% ties between MH/FI and any exogenous regime
% ties between MH and any exogenous regime
% ties between MH and any mechanism design regime

% ties within the mechanism design regime group
% ties within the exogenous regime group
% ties across the exogenous and mechanism design groups
% ties between MH/FI and any exogenous regime
% ties between MH and any exogenous regime



Variable mean median std. dev. min max

Assets, k 963,580 164,250 3,744,100 0 97,006,000

Net Income from production, q 128,700 65,016 240,630 -1,473,100 5,211,800

Consumption expenditure, c 64,172 47,868 53,284 4,210 610,860

1. Sample size is 531 households observed over 7 years (1998-2004). Unit is Thai baht.
2. The summary statistics are computed for the overall (pooled) data.

Table 14 - Parameter Estimates and Likelihoods Using Thai Data
14.1. Estimates using investment and cashflow (k,k',q) data; years used: '98-99; δ = .05; n = 531

Model μw/b γw/b γme σ θ ρ LL Value1

Borrowing and Lending - B -0.1454 0.1528 0.1154 0.4057 1.3499 0.8955 -2.8836
0.0452 0.0449 0.0197 0.0802 3.3505 0.0134

Saving Only - S -0.1540 0.1552 0.1101 0.2842 0.1908 0.9766 -2.9311
0.0221 0.0106 0.0300 0.0200 0.0636 0.0956

Moral Hazard - MH 10.1792 0.6016 0.2005 0.5057 2.2763 -2.2537 -3.1554
0.3942 1.5149 0.0989 0.0164 0.1961 1.1570

Full Information - FI 10.6670 0.0000 0.4728 0.5167 2.6916 0.8918 -3.1656
0.0745 0.2221 0.0933 0.0135 1.5591 0.2308

Autarky - A n.a. n.a. 0.4517 0.1000 2.2964 2.6028 -3.4679
0.1957 0.2615 0.4178 1.2346

14.2. Estimates using investment, consumption and cashflow (c,q,k,k') data; years used: '98-99; δ = .05; n = 531
Model μw/b γw/b γme σ θ ρ LL Value

Saving Only - S -0.3333 0.0083 0.2208 1.0928 1.2007 -0.0282 -5.5033
0.0392 0.0318 0.0407 0.1324 0.5732 0.1150

Borrowing and Lending - B -0.2924 0.0543 0.2040 1.2370 0.2471 0.0000 -5.5659
0.0158 0.0526 0.0512 0.0839 1.7019 0.1307

Moral Hazard - MH 6.3367 4.9798 0.1650 0.5000 2.8590 0.2398 -6.3853
0.8588 1.8416 0.0751 0.0246 1.2363 0.2488

Full Information - FI 5.8082 3.1694 0.3088 0.5000 1.7330 -0.8014 -6.7038
1.4404 0.9605 0.0638 1.9415 0.5509 5.9247

Autarky - A n.a. n.a. 0.3204 2.2940 0.1003 0.2838 -7.1196
0.0723 0.7939 0.0339 0.2191

14.3. Estimates using consumption and cashflow (c,q) data; years used: '98; δ = .05; n = 531
Model μw/b γw/b γme σ θ ρ LL Value

Moral Hazard - MH 6.3860 0.9362 0.1045 0.5000 1.9273 -12.2697 -2.4131
0.2752 0.1251 0.0070 0.0010 1.5072 3.2229

Full Information - FI 5.9436 0.7363 0.1045 0.4785 0.4632 0.4405 -2.4160
0.0961 0.0861 0.0077 0.0024 0.0984 0.0590

Borrowing and Lending - B -0.1392 0.1368 0.0734 0.4057 0.2903 0.8955 -2.4622
0.0237 0.0225 0.0088 0.0000 0.0000 0.0000

Saving Only - S -0.3989 0.3236 0.0119 0.0475 1.2364 3.0255 -2.4687
0.0363 0.0539 0.0120 0.0023 0.1097 0.2340

Autarky - A n.a. n.a. 0.3085 0.5000 0.1000 0.3237 -2.7792
0.0079 0.0176 0.0341 0.3407

1. In all tables the regimes are ordered in decreasing order of likelihood to the Thai data.
2. Bootstrap standard errors are in italics below the estimates.

Table 13 - Thai Data Summary Statistics



Comparison MH v FI MH v B MH v S MH v A FI v B FI v S FI v A B v S B v A S v A

1. Using (k,k',q) data
1.1. years: 98-99 0.29(tie) -4.98***(B) -3.42***(S) 5.15***(MH) -6.73***(B) -4.74***(S) 7.10***(FI) 1.36(tie) 13.78***(B) 9.77***(S)
1.2. years: 03-04 -0.44(tie) -10.7***(B) -11.8***(S) 3.43***(MH) -8.76***(B) -8.58***(S) 2.74***(FI) 2.26**(B) 13.15***(B) 13.56***(S)

2. Using (c,q,k,k') data
2.1. years: 98-99 2.31**(MH) -5.74***(B) -6.54***(S) 5.49***(MH) -7.09***(B) -8.10***(S) 3.05***(FI) -0.81(tie) 10.49***(B) 12.09***(S)
2.2. years: 03-04 0.97(tie) -5.32***(B) -5.00***(S) 3.61***(MH) -5.59***(B) -5.49***(S) 2.50**(FI) 0.21(tie) 8.93***(B) 8.43***(S)

3. Using (c,q) data
3.1. year: 98 0.26(tie) 1.52(tie) 1.71*(MH) 8.50***(MH) 1.36(tie) 1.72*(FI) 9.39***(FI) 0.27(tie) 9.80***(B) 12.98***(S)
3.2. year: 04 4.92***(MH) 0.62(tie) 0.42(tie) 7.99***(MH) -2.31**(B) -1.92*(S) 4.76***(FI) -0.17(tie) 10.28***(B) 9.01***(S)

Dynamics
4. Repeated Cross-Sections
4.1. (k,k',q), yrs: 98-9 & 99-0 7.86***(MH) -7.12***(B) -4.38***(S) 14.8***(MH) -15.2***(B) -9.71***(S) 7.89***(FI) 3.34***(B) 20.8***(B) 18.2***(S)
4.2. (k,k',q), yrs: 98-9 & 03-4 4.28***(MH) -7.97***(B) -8.37***(S) 8.55***(MH) -12.5***(B) -14.9***(S) 7.72***(FI) 0.54(tie) 18.5***(B) 21.3***(S)

4.3. (c,q,k,k'), 98-9 & 99-0 -0.09(tie) -4.51***(B) -5.52***(S) 4.51***(MH) -4.61***(B) -5.64***(S) 4.78***(FI) -0.50(tie) 10.3***(B) 11.3***(S)
4.4. (c,q,k,k'), 98-9 & 03-4 0.15(tie) -5.10***(B) -5.01***(S) 3.20***(MH) -5.04***(B) -4.96***(S) 2.84***(FI) 0.95(tie) 8.18***(B) 8.01***(S)

4.5. (c,q), yrs:  98 & 99 10.5***(MH) 2.82***(MH) 1.84*(MH) 15.3***(MH) -2.52**(B) -3.64***(S) 11.2***(FI) -2.56**(S) 14.5***(B) 15.7***(S)
4.6. (c,q), yrs:  98 & 04 10.8***(MH) 3.72***(MH) 3.78***(MH) 13.8***(MH) -2.58***(B) -3.54***(S) 6.51***(FI) -0.86(tie) 12.8***(B) 15.6***(S)

5. Two-Year Panel
5.1. (c,q), yrs: 98 and 99 4.01***(MH) 2.62***(MH) 3.40***(MH) 10.4***(MH) 0.32(tie) 1.41(tie) 8.45***(FI) 1.77*(B) 8.89***(B) 7.57***(S)
5.2. (c,q), yrs: 98 and 04 1.06(tie) -0.07(tie) -0.82(tie) 6.97***(MH) -0.70(tie) -1.55(tie) 6.53***(FI) -1.02(tie) 8.61***(B) 9.89***(S)

NOTES:
*** = 1%,  ** = 5%,  * = 10% two-sided significance level, the "winning" regime is in the parentheses
Z-stat cutoffs and colors: 2.575 = *** 1.96 = ** 1.645 = * "tie"

Table 15 - Model Comparisons Using Thai Data - Vuong Test Z-Statistics



Data used sample # frequency LL Ranking % ties % within group
size, n cells ties of all ties

1. Model tests using (k,k',q) data
1.1. using '98-99 data 531 50 B=S, MH=FI, A 20% 100%
1.2. using '03-04 data 531 50 B, S, MH=FI, A 10% 100%

2. Model tests using (c,q,k,k') data
2.1. using '98-99 data 531 500 S=B, MH, FI, A 10% 100%
2.2. using '03-04 data 531 500 B=S, MH=FI, A 20% 100%

3. Model tests using (c,q) data
3.1. using '98 data 531 20 MH=FI=B, S, A 40% 50%
3.2. using '04 data 531 20 MH=S=B, FI, A 30% 33%

4. Using Repeated Cross-Sections
4.1. using (k,k',q) data, years: '98-99 and '99-00 1062 100 B, S, MH, FI, A 0% n.a.
4.2. using (k,k',q) data, years: '98-99 and '03-04 1062 100 B=S, MH, FI, A 10% 100%

4.3. using (c,q,k,k') data, years: '98-99 and '99-00 1062 1000 S=B, FI=MH, A 20% 100%
4.4. using (c,q,k,k') data, years: '98-99 and '03-04 1062 1000 B=S, MH=FI, A 20% 100%

4.4. using (c,q) data, years: '98 and '99 1062 40 MH, S, B, FI, A 0% n.a.
4.6. using (c,q) data, years: '98 and '04 1062 40 MH, S=B, FI, A 10% 100%

5. Using 2-Year Panel
5.1. using (c,q) data, years: '98 and '99 531 400 MH, FI=B, S, A 20% 0%
5.2. using (c,q) data, years: '98 and '04 531 400 S=B=MH=FI, A 60% 33%

Table 16 - Summary of Model Comparisons Using Thai Data



Comparison MH v FI MH v B MH v S MH v A FI v B FI v S FI v A B v S B v A S v A

1. Using (k,k',q) data, n=531
DGM3: B; est. γme= 0.1154 2.90***(MH) -10.7***(B) -8.75***(S) 4.43***(MH) -11.5***(B) -10.2***(S) 2.88***(FI) 1.27(tie) 14.03***(B) 12.18***(S)

2. Using (c,q,k,k') data, n=531
DGM: S; est. γme= 0.2208 1.59(tie) -8.15***(B) -11.9***(S) 3.22***(MH) -9.57***(B) 12.9***(S) 1.69*(FI) -4.55***(S) 11.23***(B) 13.92***(S)

3. Using (c,q) data, n=531
DGM: MH; est. γme= 0.1045 2.63***(MH) 8.30***(MH) 7.70***(S) 19.4***(MH) 6.90***(FI) 6.59***(FI) 17.8***(FI) -1.14(tie) 13.10***(B) 15.78***(S)

4. Using Repeated Cross-Sections, n=1062
4.1. using (k,k',q) data
DGM: B, 1-yr; est.γme= 0.0898 4.03***(MH) -11.5***(B) -9.02***(S) 4.72***(MH) -16.6***(B) -13.9***(S) 3.13***(FI) 0.64(tie) 9.40***(B) 9.88***(S)
DGM: B, 5-yr; est.γme= 0.0564 3.08***(MH) -18.6***(B) -6.91***(S) 1.88*(MH) -18.2***(B) -9.40***(S) 0.08(tie) 4.51***(B) 11.6***(B) 6.82***(S)

4.2. using (c,q,k,k') data
DGM: S, 1-yr; est.γme= 0.2386 1.49(tie) -8.06***(B) -14.7***(S) 6.67***(MH) -9.37***(B) -16.9***(S) 5.44***(FI) -6.16***(S) 14.34***(B) 19.78***(S)
DGM: B, 5-yr; est.γme= 0.3124 0.85(tie) -13.9***(B) -13.8***(S) 5.75***(MH) -14.8***(B) -14.7***(S) 5.35***(FI) 1.38(tie) 17.60***(B) 17.49***(S)

4.3. using (c,q) data
DGM: MH, 1-yr; est.γme= 0.1059 0.59(tie) 13.7***(MH) 17.3***(MH) 35.9***(MH) 6.69***(FI) 7.15***(FI) 15.3***(FI) 0.58(tie) 17.10***(B) 20.86***(S)
DGM: MH, 6-yr; est.γme= 0.1147 3.86***(MH) 12.1***(MH) 11.8***(MH) 26.3***(MH) 11.4***(MH) 11.1***(FI) 24.6***(FI) -3.29***(S) 28.35***(B) 31.43***(S)

5. Two-Year Panel of (c,q), n=531
DGM: MH, 1-yr; est.γme=0.1012 3.16***(MH) 9.02***(MH) 9.42***(MH) 17.8***(MH) 6.99***(FI) 6.79***(FI) 15.2***(FI) -0.59(tie) 8.54***(B) 10.20***(S)
DGM: S, 6-yr; est.γme=0.1872 3.78***(MH) -1.20(tie) -1.16(tie) 7.28***(MH) -4.83***(B) -4.80***(S) 4.49***(FI) 0.03(tie) 8.05***(B) 7.61***(S)

NOTES:
1. *** = 1%,  ** = 5%,  * = 10% two-sided significance level, the "winning" regime is in the parentheses
2. Z-stat cutoffs and colors: 2.575 = *** 1.96 = ** 1.645 = * "tie"
3. DGM: data-generating model

Table 17 - Comparisons Using Model-Generated Data at Best-Fit Thai Data Estimates - Vuong Test Z-Statistics1, 2
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Figure 1 − Financial Indicators − baseline parameters
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Fig. 2a − Consumption, full depreciation baseline

Fig. 2b − Consumption, incomplete depreciation baseline
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Fig. 3 − Time Paths − baseline parameters
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Fig. 4 − Financial Indicators, estimated parameters, δ=0.05
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Fig. 5 − Data and Model Histograms using (k, k’, q) data
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