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Abstract

We propose a framework for estimating dynamic behavioral models accounting for

the presence of unobserved state variables that are correlated across individuals and

across time periods. We extend the standard literature on the structural estimation

of dynamic models by incorporating an unobserved aggregate correlated shock that

a�ects the individuals' static payo�s and the dynamic continuation payo�s associated

with di�erent decisions. Given a standard parametric speci�cation the dynamic prob-

lem, we show that the aggregate shocks are identi�ed from the variation in the observed

aggregate behavior. The shocks and their transition are separately identi�ed, provided

there is enough cross-sectional variation of the observed states. We use our framework

to estimate a model of mortgage default for a cohort of Colombian debtors between

1997 and 2004. Results indicate that the dynamic structure and the unobserved het-

erogeneity are crucial for identifying correctly the impact of di�erent factors on default

behavior.

1 Introduction

The estimation of discrete choice dynamic models is limited by the ability of standard microe-

conometric techniques to incorporate a rich pattern of unobserved heterogeneity a�ecting the
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choices of individuals. Accounting for such unobserved heterogeneity is crucial in order to

infer correctly the underlying relationship between individual choices and observed relevant

variables. The basic techniques for estimating such behavioral models (e.g. Rust (1987),

Wolpin (1984), Pakes (1986) and Hotz and Miller (1993); for one comprehensive review of

the literature see, for example, Aguirregabiria and Mira (2002)) are based on the assump-

tion that all the unobserved heterogeneity is iid. The more recent standard literature (e.g.

Keane and Wolpin (1994)) can also accommodate the presence of unobserved states that

vary systematically across individuals but stay constant over time. In this paper we develop

a framework for estimating dynamic structural models under the presence of an unobserved

state variable that is both correlated across individuals and over time.

An alternative approach for estimating dynamic choice models with serially correlated

shocks has been proposed by Altug and Miller (1998). In their model the structure of the

aggregate shocks is estimated separately and used as input into the dynamic model, which

is then estimated using the technique developed by Hotz and Miller (1993). Such approach

is practical when the aggregate shocks can be estimated from a separate model (e.g. a

macroeconomic model). If that is not possible, they have to be estimated from the dynamic

choice problem, as we do in this paper.

Our model is based on a Markovian decision problem with �nite horizon in which the

payo�s depend on observed and unobserved state variables that vary systematically across

individuals. We use the model to compute the likelihood of a random panel of observed

choices integrating over the parametric distribution of the unobserved states. Given any

vector of model parameters, we integrate over the distribution of the random states that

vary across individuals using standard numerical techniques.

The main contribution of the paper is the incorporation of an unobserved correlated shock

that is common to all individuals and that is correlated over time. The estimation of these

aggregate shocks exploits the variation in aggregate behavior, which is a piece of information

that is not used directly by the existing literature. Moreover, we show conditions under which

these aggregate unobserved shocks and their transition probability are separately identi�ed

in a standard speci�cation of dynamic discrete choice model.

We use the proposed framework to estimate a dynamic model of mortgage default and

estimate it using micro-level Colombian data spanning the years between 1998 and 2004.

During this time, mortgage default rates in Colombia were unusually high due to an un-

precedented economic downturn that was accompanied by a dramatic fall in home prices.
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The extent to which the fall in household incomes and the fall in home prices contributed

separately to the unprecedented rates of default is a relevant policy question that can be an-

swered with the proposed estimation. Our results suggest that the factor driving the default

decisions of debtors is home prices, not income. This is consistent with a model of rational

dynamic behavior, but not with conventional wisdom. In fact, we show that estimates that

don't account for the presence of unobserved correlated states would misleadingly indicate

that prices are not a very important determinant of default.

In the second section of the paper we describe our methodological framework. We for-

mulate an optimal stopping problem with correlated unobserved heterogeneity, describe our

estimation approach and discuss the identi�cation of the di�erent components of the model.

In the third section of the paper we present the application of the model to the Colombian

mortgage market. We describe the data, the estimation and the results. The paper concludes

with a discussion of the limitations of the proposed framework.

2 The empirical framework

2.1 An optimal stopping problem

Consider the standard optimal stopping problem of an individual i at time t ≤ Ti, who has to

choose action j ∈ {0, 1} where j = 0 is an absorbing state over a �nite horizon Ti which may

be di�erent across individuals. Each choice generates a static a payo� ũi,j,t ≡ u(Xi,j,t; γ)+εi,j,t

with an observed component u(Xi,j,t; γ) that depends on a vector Xi,j,t and is indexed by a

vector of parameters γ. It also depends on an additive unobserved state variable εi,j,t that

is correlated across individuals and time periods.

At time t, the problem of the individual is to maximize the �ow of payo�s from τ =

t, ..., Ti:

max{di,t,...di,Ti}Et

Ti∑
τ=t

βτ−tũi,dτ ,τ (1)

where di = {dt, ...dTi} is a sequence of feasible decisions such that once di,τ = 0 is chosen, no

other alternative can be chosen.

Normalize the payo� generated by the action j = 0 to zero and relabel ui,1,t ≡ ui,t. Let

S̃i,t ≡ {Xi,t, εi,0,t, εi,1,t} be the set of relevant state variables for individual i at time t. The

vector of observed states Xi,t is assumed to follow a �rst order Markov process, indexed by
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the parameter vector ρX,i which can be estimated directly from the data. The unobserved

states {εi,0,t, εi,1,t} are also assumed to be Markovian as described below.

We can use the Bellman representation to write recursively the problem for individual i

who has not chosen j = 0 in the past at time t ≤ T as:

Ṽi,1,t(S̃i,t) = max{u(Xi,t; γ) + εi,1,t − εi,0,t + βEt

[
Ṽi,1,t+1(S̃i,j,t+1)|S̃i,j,t

]
, 0} (2)

where β is a known exogenous discount rate. At t = Ti the continuation payo� of the problem

is zero, so that:

ETi [Ṽi,1,Ti+1(S̃i,j,Ti+1)|S̃i,j,Ti ] = 0 (3)

It has been shown before (Rust (1994)) that the model above is not identi�ed non-

parametrically. Therefore, the mapping of the model above into data is based on parametric

assumptions on the distribution of the unobserved states ε. In order to allow a rich pattern

of unobserved correlation, we will decompose this unobserved state as follows:

εi,1,t − εi,0,t ≡ ξt + µi + εi,t (4)

where εi,t is an iid idiosyncratic logit disturbance, which is a standard and convenient as-

sumption. The term µi is an individual-speci�c unobservable state that stays constant over

time and is distributed among the population of individuals according to a known parametric

distribution Φ(µi;σ). The term ξt is a common aggregate unobserved shock that follows a

�rst order Markov process. The parameters σ and ρξ indexing the distribution of µ and ξ

have to be estimated simultaneously with the whole model.

Notice that under this speci�cation individual choices to be correlated over time and

across debtors even after conditioning on the observed states; in addition, this unobserved

heterogeneity can be allowed to depend on Xi,t which would be equivalent to a model with

heterogenous γ coe�cients. The model is similar to the standard models except for the

presence of the shock ξt 6= 0 which is allowed to be correlated over time. We will refer to

these shocks as aggregate shocks that hist the economy over time, but they more generally

can be understood as the common component of the unobserved heterogeneity.

This model nests the standard models mentioned above. Speci�cally, if we set µi = ξt = 0,

all the unobserved heterogeneity in the model is iid and the model is similar to the models

in Rust (1987), Wolpin (1987), Hotz and Miller (1993) and Pakes (1986). If we assume away

only the aggregate shocks so that ξt = 0, but account for a correlated individual shock µi 6= 0

the model is similar to Keane and Wolpin (1994).
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Let Si,t ≡ {Xi,t, µi, ξt} be the the set of state variables, excluding the idiosyncratic iid

error. De�ne the expected value function as the expectation of the value function in (2) with

respect to the idiosyncratic iid shock, conditional on the current states:

V (Si,t) = Eε

[
Ṽi,t(Si,t, εi,t)|Si,t

]
= log(1 + eu(Xi,t;γ)+ξt+µi+βEt[Vi,1,t+1(Si,t+1)|Si,t]) (5)

where the second equality is the standard �social surplus" equation which follows from the

logit assumption.

For convenience, write the expectation of (5) as a function of the conditioning states as

follows:

Et[V (Si,t+1)|Si,t] ≡ Ψ(Si,t; ρX,i, ρξ) (6)

where the expectation is taken with respect to the dynamic states given their realization and

their transition parameters. For given state variables and transition parameters, this value

can be computed using standard numerical techniques starting at the terminal period.

Conditional on survival, the predicted probability that individual i chooses j = 1 at time

t is given by:

Pri,1,t = Prob [u(Xi,t; γ) + µi + ξt + εi,t + βEt [Vi,1,t+1(Si,t+1)|Si,t] > 0]

=
eu(Xi,t;γ)+ξt+µi+βΨ(Si,t;ρX,i,ρξ)

1 + eu(Xi,t;γ)+ξt+µi+βΨ(Si,t;ρX,i,ρξ)
(7)

where the continuation payo�s correspond to the expectation of (6). Notice that this prob-

ability depends on the realization of the unobserved individual heterogeneity µi.

We de�ne now the probability of any given sequence of choices which we will use below.

Given (7), denote as P̃ ri the probability of an individual history which can be computed as

the product of probabilities over the given sequence of choices, conditional on the realization

of the individual heterogeneity and the aggregate shocks:

P̃ ri =

T̄i∏
t=1

Pr
di,t
i,1,t(1− Pri,1,t)(1−di,t)dΦ (8)

where T̄i is the last time period at which the loan is observed to be outstanding either

because it is defaulted on or because it reaches its maturity, i.e. the time when individual i

�rst chooses j = 0 or the �nal period Ti if it always chooses j = 1.

5



2.2 Estimation

Consider estimating the model above using a random sample of i = 1, ..., N individuals

who are observed solving the described optimal stopping problem during a sequence of T̄ =

max{T̄1, ..., T̄N} time periods. For notational convenience assume that all individuals start

to solve the problem simultaneously but then have potentially di�erent problem horizons

Ti. For each individual, a matrix of potentially time-varying exogenous state variables Xi =

{X0
i,1, ..., X

0
i,T̄i
} is observed, as well as a sequence of decisions d0

i = {d0
i,1, ..., di,T̄i}.

Given the observed states, its transition parameters ρX,i which potentially vary across

individuals, can be estimated directly before estimating the whole model if they are exoge-

nous. The remaining parameters θ = {γ, σ, ρξ} and ξ = {ξ1, ..., ξT̄} have to be estimated.

The sample likelihood is given by:

`(θ, ξ) =
N∏
i=1

ˆ [ T̄i∏
τ=1

Pr
d0i,τ
i,1,τ (1− Pri,1,τ )1−d0i,τ

]
dΦ

=
N∏
i=1

ˆ
P̃ ri(γ, ρξ, ξ)dΦ(σ) (9)

where the choice probabilities are integrated with respect to the initial distribution Φ of µ.

The model is estimated e�ciently by maximizing the likelihood function over the space of

parameters. Notice that the estimation of the model in principle is identical to the estimation

of standard models, except for the presence of the aggregate shocks ξ and their transition ρξ.

Depending on the case, maximizing (9) can be di�cult, specially if the number of periods T̄

is large, because each shock ξt has to be estimated, for all t.

We show now that the model , if desired, the estimation of these aggregate shocks can

be concentrated out from the wider estimation algorithm. In other words, we show that the

estimation of the model is identical to the estimation of a standard model with the addition

of a restriction that identi�es the aggregate shocks. Speci�cally, take the derivative of (9)

with respect to each ξt and set it equal to zero to obtain the following condition:

Ndi,t=1

Nt

≡ s̄1,t =

[
1

Nt

N∑
i=1

ˆ
Pri,1,t

P̃ ri´
P̃ ridΦ

dΦ

]

+

[
1

Nt

N∑
i=1

ˆ
β
∂Ψi,t(Si,t)

∂ξt
(Pri,t(Si,t)− di,t)

P̃ ri´
P̃ ridΦ

dΦ

]
(10)

where Ndi,t is the number of individuals in the sample who choose action j = 1 at time t.
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The �rst term on the right hand side of (10) is the expected aggregate choice probability

conditional on the observed histories. The second term is the sample covariance of the

prediction error and the derivative of the expected continuation payo� with respect to the

aggregate shock, conditional on the observed histories. This implies that in �nite samples,

an e�cient estimation of the model won't match the predicted and the observed aggregate

choice probabilities exactly.

Equation (10) generates a set of T̄ non-linear equations, which can be used to concentrate

out the estimation of ξ from the problem of estimating θ. In other words, for any set of

parameters θ0, we can solve for the parameters ξ0 that satisfy (??) as we look numerically

for the estimator θ∗ and its associated ξ∗.

Notice that in large samples (??) reduces to a set of intuitive average probabilities. Since

the predicted choice probability and the expected continuation payo�s are conditioned on

the same set Si,t of state variables, the covariance of the second term should converge to

zero, since this covariance is zero in the population. It follows then, that when Nt is large

the expression above can be approximated by the following expression:

Ndi,t=1

Nt

≡ s̄1,t ≈

[
1

Nt

N∑
i=1

ˆ
Pri,1,t

P̃ ri´
P̃ ridΦ

dΦ

]
(11)

Which might be an easier expression to use when concentrating out the estimation of ξ.

Moreover, if we compute (10) in the population, we obtain a condition that we state

as Lemma 1. This lemma can also be used to concentrate out the estimation of ξ when

the population shares are observed and the sample is large. For this de�ne the empirical

distribution of the observed states as Ft(x), which is by assumption independent of the

distribution Φ of unobserved states. Let also s1,t be the share of choice j = 1 at each time t

among active agents.

Lemma 1 Consider the estimation of the model described by the choice probabilities (7) and

(8). At the true value of θ and ξ the following condition holds:

s1,t =

ˆ
Pri,1,t(θ, ξ)

P̃ ri(θ, ξ)´
P̃ ri(θ, ξ)dΦ(σ)

dΦ(σ)dFt(x) ≡ s̃1,t(θ, ξ) (12)

This lemma states that at the true value of the parameters, the observed aggregate choice

probability has to be equal to a weighted average of the predicted choice probabilities. The

weighting is equivalent to conditioning the predicted choice probabilities on the observed

choice history of each individual up until the terminal period T̄i.
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As a corollary of this lemma, we point out below that if there is no persistent unobserved

heterogeneity the condition (12) reduces to a simple average. This condition is similar to the

standard BLP-style market-level condition that is used to concentrate out the estimation of

choice-speci�c shocks from the estimation of discrete demand systems, except that it only

holds in large samples. The proof follows trivially from Lemma 1, by noting that when there

is no persistent unobserved heterogeneity, the integrals in the expressions above vanish.

Corollary 1 Consider the estimation of the model described by the choice probabilities (7)

and (8). Let µi = µ ∀i so that the distribution Φ is degenerate. At the true value of θ and ξ

the following condition holds:

s1,t =

ˆ
Pri,1,t(θ, ξ)dFt(x) (13)

An interesting feature of (10) and (11) is that the average choice probabilities at any

period t are not conditioned on the survival until t − 1 but on the whole history until T̄i.

This property is not a consequence of the dynamic structure of the problem, but of the

presence of unobserved correlated shocks. In fact, this condition extends to static models (as

in Goolsbee and Petrin (2004)), in the sense that whenever there are unobserved correlated

shocks, an e�cient estimation with a �nite sample would require that observed aggregate

choice behavior matches the predicted behavior, conditional on the observed choices.

When the population shares s1,t are known, so that the data set is a combination of

micro-level and market-level information, Lemma 1 can be used to �concentrate out" the

estimation of the aggregate shocks {ξ} from the estimation algorithm using the aggregate

choice probabilities.

Speci�cally, at each time t and given parameters θ0 and ξt, the model generates a vector

of aggregate predicted choice probability s̃1,t(θ0, ξ0). If the model is correctly speci�ed and

the sample is large (12) must hold:

s1,t = s̃1,t(θ, ξ)∀t (14)

Given any value of θ0, the expression in (14) generates a system of T̄ non-linear equations,

so that a unique value of ξ(θ0) can be solved directly. If the population shares s1,t are not

observed, but only the shares s̄1,t in the sample, then (10) or (11) can be used instead.

The feasible computation of the model requires that for any set of feasible parameters θ0,

the vector ξ0 that solves (10) be always de�ned. Moreover, the identi�cation of the model
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will require that the vector ξ0 be unique, at least around the true vector ξ∗. The following

lemma establishes the su�cient conditions under which the solution to (14) exists and is

unique. The proof of this lemma, shown in the appendix, relies on the monotonicity of the

average predicted default rates (12) on the aggregate shock.

Lemma 2 Let Et[ξt+1|ξt] = h(ξt; θ), such that h(.) is strictly monotone and −1 < h′(ξt) < 1.

Then, for the system of T equations implied by s̄1,t = s1,t(θ
0, ξ) for t = 1, ..., T has a unique

solution ξ(θ0), if the sample size N is large.

The su�cient conditions for the lemma to be true are very weak in the sense that they are

far from necessary. Moreover, they imply restrictions that are usually natural in empirical

environments. For example, if the aggregate shocks follow a linear autoregressive process, a

su�cient condition for the lemma and the corollary to hold is that the process is stationary.

Lemmas 1 and 2 will be used to show our identi�cation result below. For practical

purposes, they imply that the model can be estimated using the standard techniques with

the addition of (14) as a separate restriction, thereby reducing the computational dimension

of the estimation algorithm. In other words, there is no need to maximize the likelihood

over all the parameters of the model, which is useful specially when the number of periods

is large. Speci�cally, the model can be estimated maximizing the likelihood (9) over the

parameters θ, solving numerically for ξ from (14) along the estimation algorithm:

maxθ`(θ, ξ(θ)) (15)

Notice that the model is overidenti�ed, in the sense that the levels of ξ and their transition

parameters ρξ are estimated separately. Therefore, additional moments can be added to (15)

to guarantee the consistency of both, which might be desirable in long panels.

Before presenting an application of our methodology, in the following sections we discuss

the identi�cation of the components of the model and the applicability of the methodological

framework to more general environments.

2.3 Identi�cation of the model

We have already pointed out that in general the described model is nont identi�ed non-

parameterically as shown by Rust (1994). We discuss now the identi�cation of the para-

metric model described above and show the conditions under which such identi�cation is
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possible. The main problem lies in the separate identi�cation of the aggregate shocks and

their transition, which we show is possible only when micro level information is available.

Importantly, the identi�cation conditions are su�cient and necessary.

The choice probabilities in (7) are similar to the choice probabilities in standard empirical

dynamic models with unobserved heterogeneity like in Keane and Wolpin (1994), except for

the presence of the aggregate shocks ξ and their transition ρξ. Therefore, the identi�cation

of the preference parameters γ and the parameters σ of the distribution of µ is based on

similar arguments as in the standard literature. Therefore, we provide a brief discussion of

their identi�cation and then discuss in detail the identi�cation of the aggregate shocks ξ and

their transition parameters ρξ.

The �nite horizon of the problem facilitates the identi�cation of much of the parameters

of the model. Since at Ti the continuation payo�s of the problem are zero, the probability

that individual i chooses j = 1 ,obtained from (7), doesn't contain the transition parameters:

Pri,1,Ti =
eu(Xi,Ti ;γ)+ξTi+µTi

1 + eu(Xi,Ti ;γ)+ξTi+µi
(16)

Conditional on the aggregate and individual-level shocks ξTi and µi, the identi�cation of γ

from (16) is obvious even with a single cross section of individuals who face the same terminal

period1.

The individual-level unobserved shocks are identi�ed as long as we observe the same indi-

viduals making choices over time. Speci�cally, if an individual who according to his observed

states Xi,t has a high probability of choosing j = 0 is observed choosing j = 1 consistently

over time, it can be inferred that he has a high µi. This identi�cation argument is similar

to the identi�cation argument in random utility discrete choice models with heterogeneous

preference parameters and relies partly on the functional form of the utility function.

The novel part of this paper is the separate identi�cation of the aggregate shocks and their

transition. Intuitively, the identi�cation of the aggregate shocks comes from the variation in

the data of the aggregate behavior, which is not fully exploited in the standard literature.

Notice that, in practice, our estimation approach is equivalent to a standard estimation of

a Markovian decision model, with the addition of an �aggregate" restriction (14), which

directly identi�es the aggregate shocks.

1Notice that, more generally, these preference parameters are identi�ed non-parameterically at Ti as

shown by Heckman and Navarro (2007).
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The separate identi�cation of the levels ξ of the aggregate shocks and their transition

parameters ρξ has to be explained in detail. From inspecting (7) it can be seen that both

the aggregate shocks ξ and their transition parameters ρξ enter the continuation payo�s.

Moreover, ξ enters additively the instant payo�s, so that potentially it can happen that

changes in ξ that are o�set by changes in their expected serial correlation generate identical

predictions, so that they would not be separately identi�ed.

We have two sources for the separate identi�cation of the two set of unobservables. On

one hand, notice from (16) that in the terminal periods {T1, ..., TN} the parameters ρξ don't

enter the choice probabilities and therefore the aggregate shocks are identi�ed up to the

constant of the utility function. Therefore, if we observe individuals who face their terminal

period at each time period of our sample, ξ will be identi�ed separately from ρξ.

The second and more general source of identi�cation is the functional form of the choice

probabilities, so that ξ and ρξ will be separately identi�ed even in a sample of individuals

who face the same terminal period. To see this, notice that at the true value ρ∗ξ of the

transition parameters, our estimation algorithm looks for the unique vector ξ∗ that satis�es

(14) which we can rewrite as follows:

s1,t =

ˆ
Pri,1,t(.; γ̂, ξ

∗, ρ∗ξ)
P̃ ri(.; γ̂, ξ

∗, ρ∗ξ)´
P̃ ri(.; γ̂, ξ∗, ρ∗ξ)dΦ

dΦdFt(x)

=

ˆ
P̃ ri,t(.; γ̂, ξ

∗, ρ∗ξ)dFt(x) (17)

where s̄1,t is the observed proportion of individuals who choose j = 1 at time t and where

P̃ ri,t is the choice probability integrated over the distribution of individual heterogeneity,

conditional on each choice history:

P̃ ri,t(.; γ̂, ξ
∗, ρ∗ξ) =

ˆ
Pri,1,t(.; γ̂, ξ

∗, ρ∗ξ)
P̃ ri(.; γ̂, ξ

∗, ρ∗ξ)´
P̃ ri(.; γ̂, ξ∗, ρ∗ξ)dΦ

dΦ

As we change ρξ, the algorithm will �nd new vectors of ξ consistent with (17). The

implicit function theorem implies that the variation of ξ as ρξ changes is given by:

∂ξt
∂ρξ

= −
´

(∂P̃ ri,1,t/∂ρξ)dFt(x)´
(∂P̃ ri,1,t/∂ξ)dFt(x)

(18)

If such variation in ξ leads to the same choice probabilities as in (18), then the two sets of

parameters are not separately identi�ed. Notice, though, that at any given ρξ and for every
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agent i, the implicit variation of ξ as ρξ changes such that P̃ ri,1,t is constant is given by:

∂ξt
∂ρξ

= −(∂P̃ ri,1,t/∂ρξ)

(∂P̃ ri,1,t/∂ξ)
(19)

which is in general di�erent than (18), as long as the predicted choice probabilities vary

across individuals. Consequently the predicted choice probabilities change as the transition

parameters change.

In other words, if there is variation in the observed states across individuals, the derivative

of the individual choice probabilities with respect to the ρξ is di�erent from zero. Conse-

quently, the sample likelihood will necessarily fall around the estimated parameter ρ∗ξ so that

ξ and ρξ are separately identi�ed as formally established in the following proposition, which

we prove in the appendix.

Proposition 1 Consider the model with sample likelihood `(γ0, σ0, ρξ) given by (9) with

known parameters γ0 and σ0. Assume that the conditions in Lemmas 1 and 2 hold. The

parameter vector ρξ is identi�ed if and only if the states Xi,t vary across individuals for at

least one individual i for all t.

The proposition establishes the identi�cation of ρξ, conditional on the known parameters

γ and σ, whose identi�cation was explained before. Moreover, the identi�cation of ρξ is

formally independent from the identi�cation of ξ. Therefore, if we estimate ρξ using the

estimated ξ we might �nd substantial discrepancies with the estimated ρ obtained from the

estimation above, specially in short samples.

The identi�cation of the parametric model is not surprising. The more important result is

the nonidenti�cation of the model when no micro level data are available. There is a growing

literature on the estimation of structural dynamic models of demand using market-level data

(e.g. Carranza (2007) and Gowrisankaran and Rysman (2006)). Our result highlights the

limits of the identi�cation of that general class of models.

2.4 Further remarks on the methodology

For illustrative purposes, we have described our methodological framework using a simple

binomial optimal stopping problem. The general approach extends naturally to more general

dynamic Markov decision problems with multiple repeated choices.
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For example, if instead of an absorbing state, we let individuals choose j = 0 repeatedly,

the only di�erence is that a continuation payo� has to be computed for both j = 0 and j = 1.

This adds to the computational burden of the algorithm, but the fact that we would observe

the same individuals making the same choices repeatedly over time would also strengthen

the identi�cation of the individual-level unobserved heterogeneity.

In addition, we can allow for multiple choices each with its associated continuation pay-

o�. The computation of multiple continuation payo�s along the estimation algorithm is

feasible but computationally costly. In addition, the data requirements are stronger, as the

identi�cation of the aggregate shocks relies on the computation of choice-speci�c aggregate

probabilities. Otherwise, the estimation approach is the same.

3 An application to the Colombian mortgage market be-

tween 1998 and 2004

3.1 Description of the data

We will use the described empirical model to estimate a dynamic model of optimal default

using two separate data sets with information on the behavior of Colombian mortgage debtors

between 1997 and 2004. The �rst (or �main") data set contains information on a set of

random mortgages that were outstanding between 1997 and 2002. The monthly payment

history of each mortgage, its original and current value and term of the mortgaged home are

included. A �secondary" data set contains non-matching individual-level demographic data,

including income and real estate holdings.

The total number of loans contained in the main data set is 16000. Nevertheless, this

set of mortgages includes loans that started at di�erent points in time, most of them before

1997. From this subset of loans that started before 1997 we only observe those that survived

until 1997. Since our model predicts that loan survival is endogenous, for the estimation

below we selected the cohort of loans started during the year 1997 and assumed that the

distribution of unobserved attributes of new debtors is the same throughout that year. After

eliminating from our sample those loans with incomplete or inconsistent payment histories,

we ended with a total of 925 loans which are observed from the time they start in 1997 until

20042. Despite the reduction in the number of mortgages in our data set, we end up with a

2For a detailed study of the default behavior observed in the whole sample using a simpler empirical
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panel with 14250 observations.

The data set contains only the price of each home at the time the loan started as reported

by the bank. These prices are very reliable because banks are very serious about the value of

the collateral. The expected prices of individual homes at any point in time P̄it are updated

using housing price indices constructed by the Colombian Central Bank. In addition, all data

is aggregated into quarters, so that default observations are not confounded with missed

payments or coding errors. All variables are expressed in constant 1997 real Colombian

pesos.

Since this main data set contains no information on the income of debtors over the span

of the sample, survey data from the secondary data set was used to control for the changing

distribution of income. This data set is part of an annual survey conducted by DANE that

contains demographic information of large samples of individual household. We selected

households in the sample who reported having a home loan. We use the reported income

and matching housing payments to simulate the joint distribution of income and the other

state variables.

In the data it is observed that some debtors stop making their payments, sometimes only

temporarily and sometimes de�nitively. Therefore what 'default' means and its timing has

to be de�ned. Speci�cally, in the estimation below, loans that accumulate past due payments

of more than 3 months are assumed to be defaulted and are dropped o� from the data set.

Therefore, 'default' is de�ned as the event in which the number of past due payments in a

loan history changes from 3 or less to more than 3 between two quarters. After a loan is

de�ned to be defaulted, it is dropped o� the sample3.

Table 1 contains some summary statistics of the main data set, which goes from the �rst

quarter of 1997 to the second quarter of 20044. The number of loans in the data set increases

during the �rst four quarters of 1997 as new loans are initiated until reaching 925 which is

the total number of loans in the cohort. Notice from column (3) that the number of number

of non-defaulted loans decreases gradually over time which is a re�ection of the high numbers

of defaults observed in the sample. The default rate, de�ned as the number of defaults over

model see Carranza and Estrada (2007).
3The default rate based on this de�nition is highly correlated with default rates based on longer default

periods. The 3-month threshold was chosen in order to observe as much default as possible and in order to

capture all defaulted loans, including those that are terminated soon after default.
4Since default is inferred from the change in the number of past due mortgage payments, no default is

reported during the �rst period of the sample.

14



the total number of outstanding loans in column (4), reaches a level higher than 7% during

the fourth quarter of 1999, which is indicative of the severity of the market collapse. By the

end of the sample more than half of the loans in the sample were defaulted.

To give a sense of the characteristics of the defaulted loans we computed the average

price of homes with outstanding loans (column (5)) and the average price of all homes in the

sample (column (6)). Notice that up until the middle of 1999, the average price of homes

with outstanding mortgages was higher than the average price of the homes of all the loans

in the sample which implied that defaults tended to occur among the mortgages of the least

expensive homes. After 1999 the price of homes with outstanding loans was lower than the

average price of all homes in the sample, which implied that it was among mortgages of the

more expensive homes where defaults were concentrated.

Besides the rich modelling of the structural error in our model, we use the secondary

data set to account for the unobserved variation in individual incomes. The data correspond

to the quarterly household survey collected by the Colombian national statistics agency

(DANE). The survey collects demographic and economic information of a random sample of

households. All households are asked their household income. In addition, once a year they

are asked whether they have a mortgage or not and the corresponding monthly payments.

In order to control for the unobserved variation in income we use the distribution of

income that we observe in this data set, conditional on whether the household has a mortgage

or not and on their monthly payments. Speci�cally, for each household we simulate several

income draws from the data to integrate out part of the unobserved heterogeneity. The draws

are taken from the corresponding quintile of the distribution of income ordered according

to the monthly mortgage payments which is assumed to match the distribution of income

conditional on the ratio of balance to remaining term.

To understand the roots of the extraordinarily high observed default rates in Colombia

in these years, it is important that we describe the history and institutional details of the

Colombian mortgage �nancing system. The centerpiece of the system, established in the

1970's, were the mortgage banks whose only purpose was to fund construction projects. In

order to guarantee enough funding, these banks were the only institutions allowed to issue

interest-bearing savings accounts5.

In addition, mortgage loans were denominated in a constant value unit called �UPAC"6,

5Regular commercial banks had exclusive rights to issue checking accounts bearing no interest.
6UPAC stands for Unidad de Poder Adquisitivo Constante: Constant Purchasing Power Unit
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whose value changed over time according to a rate (called the �monetary correction") de-

termined by the Central Bank which was supposed to re�ect the in�ation rate. The UPAC

protected institutions and debtors against in�ationary risks and facilitated the long-run �-

nancing of housing projects, which in turn gave a boost to the economy during the following

decades.

Each month, debtors had to pay a proportion of the outstanding balance of their debt.

In addition, each month debtors made an interest payment on the balance. This additional

interest rate was �xed for the lifetime of the loan and was not set on a debtor-by-debtor

basis, but was rather negotiated between the mortgage bank and the developer in charge

of the construction of any type of housing project, before individual homes were sold. The

following month the remaining balance was updated according to the �monetary correction".

Until the early 1990's the monetary correction pretty much tracked the in�ation rate.

But then the government decided to liberalize the �nancial sector and allowed commercial

banks to o�er savings accounts, which until then could only be o�ered by the mortgage

banks. The government also decided to tie the �monetary correction" to a market interest

rate, which meant that interest was added over time to the balance of the debts.

During these years the Colombian exchange rate was �xed and positive �ows of capital

kept the interest rate low. Then in the 1990's the �ows of capital reversed, as happened in

virtually all emerging economies. The Central Bank decided to defend the exchange rate at

any cost, as did most countries in the area, which meant letting the interest rates increase

to unprecedented levels which had itself a devastating e�ect on the real sector, including

the housing industry. In addition, as home prices and household incomes started to fall,

mortgage balances, that were now tied to the interest rate, ballooned. At the end of the

decade and due to the default rates observed in the data, mortgage �nancing in Colombia

came to a halt and was only reestablished several years later under a di�erent regulatory

framework.

One of the important policy questions raised by the crisis is the extent to which the

observed default rates were caused by the government policies and what extent was caused

by the fall in income, which was probably inevitable. We will be able �rst to measure the

e�ect of changes on each variable on the default probabilities. Moreover, we will be able to

simulate the e�ect of counterfactual policies.
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3.2 The model of default

We study the behavior of mortgage holders (�debtors") who live in the mortgaged piece of

real estate (�home"). Let the utility that a debtor i gets from the home each period t be

given by the following linear function:

ũ(qi,t, yi,t −mi,t, εi,t) = θ0 + γqi + α(yi,t −mi,t) + εui,t. (20)

where qi,t is a measure of subjective home quality, yi,t−mi,t is the di�erence between house-

hold income and mortgage payments and εui,t is an additive unobserved state variable, which

incorporates unobserved (to the econometrician) variables that may a�ect default, e.g. home

attributes that are only valued by its owner and other preference shocks that vary across

consumers and time.

Since no home attributes are observed in our application, we further assume that the

unobserved �quality" of homes qi,t is random:

qi,t ≡ κ+ εqi,t, (21)

where εqi,t is a random variable that is potentially correlated over time and across debtors.

Any systematic di�erence in the subjective home quality across debtors will be captured by

the correlation structure of the error which will be described in the estimation section below.

In our data set we have no information on the required payments mi,t of each debtor.

However, it is known that the required payments are linear functions of mortgage balances

bi,t and remaining term Li,t, with some random variation across debtors:

mi,t = ρ0 + ρ1bi,t + ρ2Li,t + εmi,t. (22)

where εmi,t is an error term.

We assume that �default" leads to an absorbing state. Let Wi,t denote the value for

individual i of defaulting on her mortgage at time t. This value is the result of a complex

scenario. Speci�cally, the individual may be waiting to see whether the following period she

can pay back her dues; she may try to sell the home and cash the di�erence between price

and loan balance; she may let the bank take over the property to cover her obligation; �nally,

she could also just stop making payments inde�nitely and face forfeiture or a renegotiation

with the bank.
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The resulting value of default Wi,t is the weighted sum of payo�s across the random

scenarios just described. We assume that Wi,t has the following linear reduced form:

Wi,t = ω0 + ω1yi,t + ω2π̄i,t + ω3bi,t + εwi,t. (23)

where π̄i,t is the expected price of the home at time t, bi,t is the balance of the debt, yi,t is

the debtor's income and εwi,t are other unobserved (to the econometrician) attributes. These

are variables that enter directly the payo�s of the individual scenarios arising after a default

decision as discussed above.

Group the unobserved components into one error term ε̄i,t ≡ γεqi,t − αεmi,t + εui,t − εwi,t

and let S̃i,t = {π̄i,t, yi,t, bi,t, Li,t, ε̄i,t} be the vector of observed and unobserved states and

assume that it follows a �rst order Markov process. We can obtain the value of the debtor's

problem at each point in time as function of variables that can be mapped to the data and

of unobserved random variables:

Ṽli,t(S̃i,t) = max
{

0, ζ0 + ζ1π̄i,t + ζ2yi,t + ζ3bi,t + ζ4Li,t + ε̄i,t + βE
[
Ṽli,t+1(S̃i,t+1)|S̃i,t

]}
(24)

where it is assumed that at the last period of the mortgage Ti the continuation payo� of

non-default is zero:

E
[
Ṽli,Ti+1(S̃i,Ti+1)|S̃i,Ti

]
= 0 (25)

The parameters to be estimated ζ = {ζ0, ζ1, ζ2, ζ3, ζ4} are linear combinations of the under-
lying structural parameters. Notice that this function can be computed recursively starting

from the last period if all the state variables and their transition are known.

3.3 Estimation

In order to estimate the model we decompose the unobserved state ε̄i,t as follows:

ε̄i,t = ξt + µi + εi,t (26)

where µi is an individual-speci�c unobservable state and εi,t is an iid idiosyncratic logit

disturbance. The term ξt is a common aggregate unobserved shock with a transition indexed

by the vector ρξ = {ρξ0, ρ
ξ
1, ρ

ξ
2} as follows:

ξt+1 = ρξ0 + ρξ1ξt + ωξt (27)

where ωξt is an error with variance ρξ2.
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We estimate the model above using debtor-level data on mortgage balances, mortgage

terms and home prices over a set of t = 1, ...T time periods. Since the Colombian mortgage

data we use does not contain matching income data tracing the evolution of income for

individual debtors, we use household survey data containing information on debtors' income

and mortgage payments as described in the data section. Therefore, we treat income yi,t as

an unobserved state with distribution given by Gy
t (y|b/L), which is the empirical distribution

of income conditional on the mortgage payments.

We also assume that µ correlated with the initial loan-to-value ratio (LTV) of each loan,

which as said before is regarded as a good predictor of the risk attitude of debtors. We

assume that this underlying correlation is determined by the following loading equation:

LTVi = α0 + α1µi + νi (28)

where νi ∼ N(0, α2
2), and µ is distributed according to the mixture of three normal distribu-

tions with parameters σ = {µ̄, σ2
µ, wµ} such that µ̄, σ2

µ and wµ are 3×1 vectors containing the

means, the variances and the probabilities of each distribution, respectively, such that the

mean of the mixture is zero and its variance is one. We denote this distribution as Φ(µ;σ).

The vector σ of distribution parameters and the coe�cients of (28) above are estimated

jointly with the other parameters of the model.

Let Xt ≡ {X1,t, ..., XNt,t} where Xi,t = (π̄i,t, bi,t, Li,t) contains the observed states. We

estimate the transition Xi,t directly from the data according to:

log(bit+1) = ρb0 + ρb1log(bit) +
3∏
l=1

ρblL
l
i,t + ωbit (29)

log(piit+1) = ρπ0 + ρπ1 log(πit) + ωπit

log(yit+1) = ρy0 + ρy1log(yit) + ωyit

where {ωbi,t, ωπi,t, ω
y
i,t} are iid errors and ρX = {ρy, ρb, ρπ} are parameters to be estimated.

The transition of the balance is assumed to depend on both the balance and the remaining

term of the mortgage. It is estimated using only non-defaulted mortgages so that it re�ects

the expected evolution of the balance for household that have not defaulted yet. Since house

prices are updated using a price index, the transition is basically the same for everyone.

The transition of income is common for households within the same quintile of the income

distribution.

19



Under the given assumptions, the model above generates the following non-default prob-

ability for debtor i at time t conditional on not having defaulted on the mortgage up to t−1

and conditional on the realization of the random states:

Pri,t(π̄i,t, bi,t, Li,t, yi,t, µi, ξt, li) =
eζ0+ζ1π̄i,t+ζ2yi,t+ζ3bi,t+ζ4Li,t+ξt+µi+βΨli,t+1

1 + eζ0+ζ1π̄i,t+ζ2yi,t+ζ3bi,t+ζ4Li,t+ξt+µi+βΨli,t+1
. (30)

where Ψli,t = EεṼli,t is the expected value function as de�ned in (5) and (6) which is computed

separately for each li using the speci�ed transition probabilities.

For any realization of the aggregate shocks and any choice of parameters θ0 = {ζ0, σ0, α0, ρξ0}
we can obtain the aggregate non-default probability for each time period as de�ned in (12):

st(ξt, Xt; θ
0) =

1

Nt

´ ∏T̄i
τ=1 Pr

0
i,τPr

0
i,tdG

Y
t (Y |K)dΦ(µ;σ0)´ ∏t−1

τ=1 Pr
0
i,τdG

Y
t (Y |K)dΦ(µ;σ0)

(31)

where Φ is the normal distribution function. Given (31), the implied vector of aggregate

shocks ξ(θ0) can be solved from (14).

Let di,t ∈ {0, 1} be the observed choice of individual i at time t ≤ T ∗i , where T
∗
i is

the the time when i defaults, the last period of the mortgage or the last period at which

she is observed. With the values of the aggregate shocks, ξ (θ0), at hand we can compute

the likelihood of the sample for any choice of parameters θ0, which is the product across

debtors of individual default/non-default histories, integrated over the distribution of the

unobservables:

`(θ0) =
∏
i∈N

ˆ [∏
t

P
di,t
i,t

(
1− P (1−di,t)

i,t

)]
dGY

t (Y |K)dΦµ(µ;σ0)dΦ(ν) (32)

where the likelihood accounts also for the the distribution of the errors ω of the LTV loading

equation. Estimates of θ are obtained by �nding the vector that maximizes (32).

3.4 Computation and results.

For any value of θ along the estimation algorithm, the computation of (32) requires the use

of numerical techniques to integrate out the distribution of income and µ. We proceed as

follows: For each mortgage i at time t, a set of Si income draws {Yst}s=1,...Si is simulated

from the corresponding quintile of the empirical distribution of income conditional on the

monthly mortgage payments, contained in the �secondary" data set. In addition, for each
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income draw and for any vector σ of mixture parameters, the distribution of µ is used to

integrate them out using a quadrature method.

The computation of the likelihood of individual default/non-default observations requires

in addition the computation of the expected value functions (5), which is done recursively

starting from the last period for each mortgage term length li. There are three types of term

length in the data: 5 years, 10 years and 15 years. For each term length, the expected value

functions are computed backwards using interpolation as in Keane and Wolpin (1994), given

the transition of the observed states and the assumed transition of the aggregate shocks.

The interpolation is made using a multi-linear approximation.

Instead of concentrating out the estimation of ξ, the maximization of the likelihood func-

tion (32) is done over the whole parameter space, checking afterwards that at the estimated

values the predicted default probabilities match the observed shares as in (14). We esti-

mated eight versions of the model: four duration models with myopic debtors and four fully

dynamic models. Each type of model was estimated with and without persistent unobserved

heterogeneity and with and without income heterogeneity. The quarterly discount rate was

set to β = 0.97.

We show on table 2 the estimated parameters of the duration models, which are equivalent

to the model described above, except that we set the discount rate equal to zero β = 0. In

these models the aggregate shocks are just time-changing constants. Model I contains no

dynamics, no persistent unobserved heterogeneity and no income heterogeneity. Model II

adds only income heterogeneity to model I, whereas model III adds persistent unobserved

heterogeneity to model I. Model IV is a duration model with both persistent unobserved

heterogeneity and heterogeneous income.

On table 3 we display the estimated parameters of the fully dynamic model. Model V

contains no persistent unobserved heterogeneity and no income heterogeneity. Model VI is

a dynamic model with income heterogeneity, whereas model VII has persistent unobserved

heterogeneity but no income. Model VIII has full dynamics, persistent unobserved hetero-

geneity and heterogeneous income.

For each model, we show the estimated coe�cients and the estimated marginal e�ects

integrated over the distribution of debtors, with corresponding standard errors. The marginal

e�ects are computed with respect to a 10% change in price, balance and income and a one

quarter change in term length. In the case of the dynamic models (table 3), the marginal

e�ects are computed accounting for the e�ects of changes in the state variables on the
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continuation payo�s.

We discuss �rst the results of the estimation of the duration models displayed in table 2,

where the dependent variable is the probability of not making default, as indicated above.

The results imply that, conditional on all other variables, home price has a negative e�ect

on default probability, while the value of the mortgage balance and the remaining number

of quarters left in the mortgage have a positive e�ect on the default probability, which was

expected.

The �rst salient feature of the estimates of the duration model is the e�ect of accounting

for the persistent unobserved heterogeneity on the estimated price and balance coe�cients.

Comparing the estimates in models I and II with the results of models III and IV, we can see

that the price and balance coe�cients are in absolute value much bigger in the models that

included explicitly the persistent unobserved heterogeneity. The estimated marginal e�ects,

which are precisely estimated, are literally doubled. These e�ects imply that a 10% increase

in balance or home price changes in average the quarterly default probability in one percent

point, which economically is a very signi�cant �gure.

The second salient feature of the results is the economic irrelevance of income on the de-

fault rates. Statistically, models I and II seem to indicate that income is positively correlated

with default, which does not make much sense. After controlling for the persistent hetero-

geneity such correlation becomes insigni�cant. In any case, the magnitude of the estimated

e�ects is very small.

We also report on the lower part of the table the estimated coe�cients of the loading

equation that correlates the persistent unobserved heterogeneity with the initial loan-to-

value LTV of the loans. The estimates suggest that higher initial LTV is associated with

a higher �taste" for default, which simply means that riskier debtors select themselves into

more leveraged mortgages. Unfortunately the estimates are statistically insigni�cant. We

also report the variance of the persistent heterogeneity which is computed over the mixture

of estimated normal distributions and its respective probabilities (not shown).

The estimates corresponding to the fully dynamic models are presented on table 3. The

upper part of the table contains the estimates of the dynamic models without persistent

unobserved heterogeneity (models V and VI), while the lower part contains the estimates of

the models with persistent heterogeneity (models VII and VIII). The �rst thing to notice is

that the inclusion of persistent unobserved heterogeneity has as signi�cant an e�ect on the

price and balance coe�cients as it did in the duration models. In models VII and VIII the
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estimated marginal e�ects of 10% changes in price and balance are higher in absolute value

than in the duration models, even though the di�erence is not statistically signi�cant.

It should be remembered that in the dynamic model a change in a variable has an e�ect on

the current default probability through its e�ect on the current payo�s via the parameter γ,

which is the same as ion the duration models. In addition, such change has on e�ect through

its e�ect on the expected evolution of the variable in the future which a�ects the continuation

payo�s associated with any choice. The marginal e�ects reported for the dynamic model

account for these two e�ects.

As a consequence the e�ects of a purely transitory shock to the states that does not a�ect

its transition will be in general smaller in magnitude than the reported marginal e�ects. In

general we cannot compare coe�cients across speci�cations. Nevertheless, the coe�cients

are more or less comparable across speci�cations that have no persistent unobserved hetero-

geneity. To see this, denote the estimated marginal e�ect as m̂e and let ĉe be the estimated

coe�cient of interest. Abusing notation a little bit, the estimated marginal e�ect is given

then by:

m̂e =

ˆ
ĉeP̂ r

2

i dFi

where P̂ ri is the predicted choice probability of debtor i and Fi is the distribution of ob-

served and unobserved debtor characteristics. In the case without unobserved persistent

heterogeneity (models I, II, V and VI) the distribution Fi is the same across speci�cations.

We know that at the estimated parameters and for all speci�cations
´
ĉeP̂ ridFi ≈ s, where

s is the observed market share. If the estimated probabilities are more or less similar across

speci�cations along the distribution F , then we know that the estimated coe�cients have

more or less a similar scaling and are therefore more or less comparable.

If we compare the estimated coe�cients in the duration models I and II in table with

the estimated coe�cients from the dynamic models V and VI in table 3, we can see the

estimated coe�cients are much larger in the duration models than in the dynamic models.

Since these models have no unobserved persistent heterogeneity, we can roughly compare the

magnitude of their coe�cients. The reason for this di�erence is that the coe�cients of the

duration models capture the entire e�ect of the variables, whereas in the dynamic models,

the coe�cient captures the purely static e�ect. This highlights the fact that the dynamic

model makes it possible to distinguish between transitory shocks and shocks that spill over

time periods.
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The estimates on table 3 of the parameters ρξ are not very precise. The displayed results

correspond to an estimation of the model in which no restriction was imposed to restrict

the estimates of ρξ to be consistent with the estimates of ξ. As we have pointed out, in our

model both sets of parameters are separately identi�ed, so that we can actually estimate the

implicit beliefs of debtors about the evolution of ξ separately from its realization.

We chose to impose no restrictions, because the span of our sample was relatively short

and its timing was extraordinary. One drawback of our decision is that the estimated ρξ

coe�cients have too large standard deviations. We found that persistence coe�cient ρξ1 of the

autoregressive process that drives the expected evolution of ξ is negative. If we estimated the

coe�cient directly on the estimated ξ, such persistence coe�cient is positive. This di�erence

would imply that debtors were too pessimistic about the evolution of the aggregate shocks,

and were therefore anticipating their default decisions. The lack of statistical signi�cance,

though, does not allow us to draw any strong conclusion.

We do not include measures of the �t of the model in the tables of results because the

�t of all models at the market level is virtually perfect. We have already shown that the

unrestricted maximization of the model likelihood implies that at the estimated parameters

(14) holds. In other words for every set of estimated parameters and for every speci�cation

of the model, the observed default rate is equal to the average default rate across surviving

debtors, weighted by the corresponding history probability.

We �nalize our discussion of the results with a counterfactual policy simulation that

illustrates the usefulness of the model. As we indicated when describing the data, the

observed default rates were driven both by an economic slowdown and an exogenous policy

decision that drove up the mortgage balances. We will compute the counterfactual default

behavior of debtors under a natural policy alternative. Speci�cally, we will assume that the

�monetary correction" rate which was set by the Central Bank was tied to the in�ation rate

instead of the market interest rate.

Under the counterfactual policy assumption, each debtor pays a proportion of its real

balance each period depending on the number of periods left in the mortgage. Therefore the

evolution of real balances was perfectly anticipated by debtors. Under the counterfactual

assumption, the transition of real balances is given by:

bi,t+1 = bi,t − bi,t/Li,t = bi,t(1− 1/Li,t) (33)

This transition approximates the initial spirit of the UPAC system, as an institutional ar-
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rangement to protect banks and debtors against in�ationary risks.

We perform our counterfactual analysis using the estimates of model VIII. Given that

our sample size falls rapidly over time as debtors default on their loans, we compute �rst

a baseline simulation with the given transitions. We take all debtors in or sample and

have them start their mortgages simulataneously on the �rst quarter of 1997. For each

debtor we simulate ten histories of observed states and unobserved heterogeneity using the

estimated distribution of states. The analog of the default rate in the simulation is the

hazard rate, which we can average across simulated debtors as we follow their survival and

default probability over time. We obtain the counterfactual default rates performing the

same computation on the simulated sample using the counterfactual transition of balances

(33) instead of the one we estimated from the data.

We show the results of the baseline simulation and the counterfactual computation in

Figure 1 over the 30 periods in our sample. As can be seen, the counterfactual default rates

are consistently lower than the baseline simulation. Moreover, since as debtors default they

can not start again, these di�erences accumulate over time. At the end of the sample around

70% of debtors have defaulted under the baseline simulation. Under the counterfactual

simulation around 50% of debtors default. In other words, the policy of tying the balances

to a market interest rate was the cause of at least 2/7 of the observed defaults.

This di�erence is substantial and is only a lower bound estimate of the impact of the

counterfactual policy, because we have kept all other variables at their observed levels. Specif-

ically, we would expect that home prices were a�ected negatively by the observed default

rates. If we allowed for general equilibrium e�ects, the home prices would be higher in the

counterfactual simulation and the equilibrium counterfactual default rates would be even

lower.

4 Final remarks

The dynamic model of default described above was estimated with a methodology that ac-

counts for a very rich structure of unobserved heterogeneity. Speci�cally, it incorporates

individual-level heterogeneity using both survey and simulated data. Our main contribu-

tion is the addition of aggregate time-varying heterogeneity, allowing for a rich pattern of

unobserved heterogeneity.

The standard techniques for estimating dynamic structural models have limited applica-
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bility due to di�culties associated with incorporating correlated unobserved states. In that

sense, the applicability of our methodology goes beyond the estimation of default models. It

can be used to estimate dynamic structural models in environments with both micro-level

and aggregate data.

The proposed framework identi�es the aggregate heterogeneity exploiting the aggregate

variation of choices over time. We showed that the aggregate shocks are separately identi�ed

from their transition, as long as there is micro-level variation in the observed states. This

result is important because it highlights the limitations of identi�cation of dynamic models

when only market-level information is available.

We applied the methodology to address the factors that determined the mortgage default

rates in Colombia during the economic crisis that it faced during the late 1990's and the early

years of the current decade. We showed that the policy of tying the variation of mortgage

balances to the interest rate, instead of the in�ation rate, was the cause of a substantial part

(but presumably not all) of the observed defaults.

The use of dynamic structural model to study mortgage default highlights the often

overlooked fact that default behavior does not only depend on the di�erence between home

price and mortgage balance. As we showed, default depends also on the expected evolution

of these variables, which a�ects the option value of defaulting in the future. For example, it is

possible to design policies that increase the value of not defaulting, while keeping the current

states (including balance) constant. The extent to which this is possible is an empirical issue

which can only be addressed with the speci�c data and an empirical dynamic model, like

ours.
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Appendix

Proof of Lemma 2

Assume: (i) the aggregate shocks follow an autoregressive process such that ξt+1 = h(ξt) +

υt+1, where υ is an iid error with cdf Fυ, such that Et[ξt+1|ξt] = h(ξt);(ii) −1 < ∂h(ξt
∂ξt

< 1;

(iii) the sample size N is large. We need to show that for any parameters θ0 such that the

assumptions (i), (ii) and (iii) hold, equation (14) has a unique solution ξ(θ0).

First, assume that θ = θ0 and rewrite the mapping as follows:

s1,t ≡ s1,t(Si,t; θ
0, ξt) =

ˆ
Pri,1,t(Si,t; θ

0, ξt)
P̃ ri´
P̃ ridΦ

dΦdFt(x) (A1)

where 0 < s̄1,t < 1 and s1,t are the observed and predicted proportions of individuals who

choose j = 1 at time t, respectively. The integral is computed with respect to the dis-

tribution Φt, conditioned on the observed history. The expected continuation payo�s can

be computed recursively starting at T , when ETV (Si,T+1) = 0. For t < T , EtV (Si,t+1) =

Et
[
log(1 + eu(Xi,t+1;γ)+ξt+1+µi+βEt[Vi,1,t+2(Si,t+2)|Si,t+2])

]
.

We prove existence and uniqueness by showing that under the given conditions the map-

ping s1,t(., ξt) shown above is bounded by zero and one and is strictly monotone in ξt. The

derivative of s1,t with respect to ξt is given by:

∂s1,t(., ξt)

∂ξt
=

ˆ [
Pri,1,t(Si,t)(1− Pri,1,t(Si,t))

(
1 + β

∂Et[V (Si,t+1)|Si,t]
∂ξt+1

)]
P̃ ri´
P̃ ridΦ

dΦdFt(x)

+
1

Nt

N∑
i=1

ˆ [
Pri,1,t(Si,t)

(
(κ(Si,t)−

ˆ
κ(Si,t)

P̃ ri´
P̃ ridΦ

)]
P̃ ri´
P̃ ridΦ

dΦdFt(x)

(A2)

whereas the derivative of S1,t with respect to ξt′ for t 6= t′ is:

∂s1,t(., ξt)

∂ξ′t
=

ˆ [
Pri,1,t(Si,t)

(
(κ(Si,t′)−

ˆ
κ(Si,t′)

P̃ ri´
P̃ ridΦ

)]
P̃ ri´
P̃ ridΦ

dΦdFt(x) (A3)

where the function κ(.) is given by:

κ(Si,t) = (−Pri,1,t(Si,t))1−di,t(1− Pri,1,t(Si,t))−di,t
(

1 + β
∂Et[V (Si,t+1)|Si,t]

∂ξt+1

)
The �rst thing to notice is that the second term in (A2) and (A3) are the average of an

expectation error. Therefore, as the sample size goes to in�nity, these terms become zero.
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Therefore, all we need to do to show that in large samples the mapping (A1) is monotone is

show that the �rst term in (A2) is either positive or negative.

We will show now that the (A2) is always positive. Notice �rst that the derivative of the

continuation payo�s with respect to ξt is given by:

∂EtV (Si,t+1)

∂ξt
=

ˆ [
Pri,t+1

∂h(ξt)

∂ξt

(
1 + β

∂EtVi,1,t+2(Si,t+2)

∂ξt

)]
dFυ (A4)

for t < T . At t = T , this derivative is
∂ETV (Si,T+1)

∂ξT
= 0.

Assumptions (i) and (ii) imply that −1 <
∂EtV (Si,t+1)

∂ξt
< 1. To see this, start computing

(A4) at t = T − 1 and then solve backwards. This, in turn implies that (A2) is strictly

positive. Therefore, s1,t(., ξt) is strictly monotone (increasing) ∀ξt.
Another implication of −1 <

∂EtV (Si,t+1)

∂ξt
< 1 is that as ξt → ∞, in (A1) s1,t → 1.

Conversely, as ξt → −∞, s1,t → 0, which completes the proof.

Proof of Proposition 1

The probability that a particular history {di,1, ..., di,T̄i} is observed is given by (8):

ˆ
P̃ ridΦ =

ˆ T̄i∏
t=1

Pr
di,t
i,1,t(1− Pri,1,t)(1−di,t)dΦ (A5)

where, given Lemma 1 and Lemma 2, the vector ξ(γ, ρξ) is uniquely obtained from (14):

s1,t =

ˆ
Pri,1,t(.; γ, ρξ, ξt(γ, ρξ))

P̃ ri(.; γ, ρξ, ξ(γ, ρξ))´
P̃ ri(.; γ, ρξ, ξ(γ, ρξ))dΦ

dΦdFt(x) (A6)

The implicit function theorem implies that as ρξ changes, ξ changes in (A6) according to the

following derivative:
dξt
dρξ

= −∂s̃1,t/∂ρξ
∂s̃1,t/∂ξ

(A7)

Given Lemma 2, this derivative is well de�ned, provided that its conditions are met.

Assume (i) that the preference parameter γ is known; and (ii) that for some i, j ∈ Nt

it is true that Xi 6= Xj. Assumption (ii) implies that for at least two agents i, j ∈ Nt, the

predicted choice probabilities are di�erent,
´
Pri,1,tdΦ 6=

´
Prj,1,tdΦ. Given (A5), (ii) also

implies that for at least two agents i, j ∈ Nt, (d
´
Pri,1,tdΦ/dξt) 6= (d

´
Prj,1,tdΦ/dξt).
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A su�cient condition for the identi�cation of ρξ is that, for some i ∈ Nt∀t, the derivative
of the predicted probabilities with respect to ρξ is di�erent from zero:

d
´
Pri,1,t(.; γ, ρξ, ξt(γ, ρξ))dΦ

dρξ
6= 0 (A8)

In other words, we need to show that for at least one agent the predicted choice probability

changes as ρξ changes. We prove that this is true by contradiction. Suppose that for all

i ∈ Nt, the derivative of the predicted choice probabilities with respect to ρξ are zero. Using

the chain rule and replacing (A7), we obtain:

d
´
Pri,1,t(.)dΦ

dρξ
=
∂
´
Pri,1,t(.)dΦ

∂ρξ
+
∂
´
Pri,1,t(.)dΦ

∂ξ

dξ

dρξ
= 0

=
∂
´
Pri,1,t(.)dΦ

∂ρξ
−
∂
´
Pri,1,t(.)dΦ

∂ξ

(
∂s̃1,t/∂ρξ
∂s̃1,t/∂ξ

)
= 0 (A9)

which would imply that for all i ∈ Nt:

∂
´
Pri,1,t(.)dΦ/∂ρξ

∂
´
Pri,1,t(.)dΦ/∂ξ

=
∂s̃1,t/∂ρξ
∂s̃1,t/∂ξ

(A10)

But this is impossible because we have already argued that (A5), (ii) imply that for at

least two agents i, j ∈ Nt, (dPri,1,t/dξt) 6= (dPrj,1,t/dξt). Therefore (A10) is false and the

proposition is proved.
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Table 1: Summary statistics (main data set)

(1) (2) (3) (4) (5) (6) (7)

Quarter Number Outstanding Default Mean Mean Price/

of loans loans rate Price 1 Price 2 Balance

1997 : 1 93 93 0.00 % 167.98 167.9828 53.23 %

1997 : 2 355 351 1.14 % 85.69 85.3543 47.17 %

1997 : 3 591 575 2.09 % 87.28 86.3226 47.25 %

1997 : 4 925 892 1.91 % 85.12 84.0201 46.01 %

1998 : 1 925 856 4.21 % 91.18 88.4451 44.96 %

1998 : 2 925 831 3.01 % 95.70 91.6633 43.60 %

1998 : 3 925 810 2.59 % 95.11 90.2188 45.65 %

1998 : 4 925 788 2.79 % 95.70 89.3045 47.57 %

1999 : 1 925 750 5.07 % 100.14 91.3159 48.65 %

1999 : 2 925 704 6.53 % 94.14 91.0233 49.66 %

1999 : 3 925 680 3.53 % 77.67 85.8669 51.58 %

1999 : 4 925 634 7.26 % 61.55 92.029 48.44 %

2000 : 1 925 598 6.02 % 59.76 87.9514 49.14 %

2000 : 2 925 586 2.05 % 65.43 96.0334 43.04 %

2000 : 3 925 555 5.59 % 58.92 94.8815 44.00 %

2000 : 4 925 539 2.97 % 59.74 95.4666 42.74 %

Continues in next page

Prices and balances are in 1997 COL$

Mean Price 1 and Mean Price 2 are computed over outstanding and all loans, respectively.
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Table 1, continued

(1) (2) (3) (4) (5) (6) (7)

2001 : 1 925 526 2.47 % 67.15 107.0776 37.51 %

2001 : 2 925 513 2.53 % 61.34 97.2037 42.04 %

2001 : 3 925 502 2.19 % 66.04 104.0606 39.06 %

2001 : 4 925 491 2.24 % 69.75 108.6502 36.62 %

2002 : 1 925 489 0.41 % 63.46 98.703 39.29 %

2002 : 2 925 483 1.24 % 71.43 110.7895 34.48 %

2002 : 3 925 473 2.11 % 66.99 103.5303 35.78 %

2002 : 4 925 462 2.38 % 76.25 117.7744 30.71 %

2003 : 1 925 456 1.32 % 70.26 108.3027 32.00 %

2003 : 2 925 453 0.66 % 73.77 113.6786 30.25 %

2003 : 3 925 450 0.67 % 72.92 112.0695 29.47 %

2003 : 4 925 448 0.45 % 73.87 114.9951 27.67 %

2004 : 1 925 444 0.90 % 72.45 113.0203 27.33 %

2004 : 2 925 439 1.14 % 80.93 125.7102 23.91 %

Prices and balances are in 1997 COL$

Mean Price 1 and Mean Price 2 are computed over outstanding and all loans, respectively.
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Table 2: Estimation results: Duration Models

Model I Model II

Coe�cient Est. (s.e.) Marginal e�ect (s.e.) Est. (s.e.) Marginal e�ect (s.e.)

γ1 (Price) 0.072 ( 0.016 ) 0.004 ( 0.001 ) 0.073 ( 0.013 ) 0.004 ( 0.001 )

γ2 (Balance) -0.185 ( 0.028 ) -0.005 ( 0.001 ) -0.174 ( 0.025 ) -0.005 ( 0.001 )

γ3 (Term) -0.016 ( 0.005 ) -0.002 ( 0.001 ) -0.016 ( 0.002 ) -0.002 ( 0.000 )

γ4 (Income) -0.001 ( 0.000 ) -0.001 ( 0.000 )

Model III Model IV

Coe�cient Est. (s.e.) Marginal e�ect (s.e.) Est. (s.e.) Marginal e�ect (s.e.)

γ1 (Price) 0.120 ( 0.043 ) 0.008 ( 0.002 ) 0.126 ( 0.045 ) 0.008 ( 0.003 )

γ2 (Balance) -0.422 ( 0.133 ) -0.012 ( 0.003 ) -0.417 ( 0.136 ) -0.012 ( 0.004 )

γ3 (Term) -0.023 ( 0.011 ) -0.003 ( 0.001 ) -0.025 ( 0.012 ) -0.003 ( 0.002 )

γ4 (Income) -0.001 ( 0.001 ) -0.001 ( 0.001 )

α0 0.483 ( 0.007 ) 0.483 ( 0.007 )

α1 -0.004 ( 0.005 ) -0.003 ( 0.005 )

α2 0.036 ( 0.003 ) 0.036 ( 0.003 )

var(µ) 5.800 5.750
In models I and II µi = 0; all models include aggregate shocks (not shown)
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Table 3: Estimation results: Dynamic Models

Model V Model VI

Coe�cient Est. (s.e.) Marginal e�ect (s.e.) Est. (s.e.) Marginal e�ect (s.e.)

γ1 (Price) 0.008 ( 0.003 ) 0.003 ( 0.001 ) 0.008 ( 0.002 ) 0.003 ( 0.001 )

γ2 (Balance) -0.049 ( 0.019 ) -0.004 ( 0.001 ) -0.047 ( 0.013 ) -0.004 ( 0.002 )

γ3 (Term) -0.003 ( 0.001 ) -0.002 ( 0.000 ) -0.003 ( 0.001 ) -0.002 ( 0.001 )

γ4 (Income) 0.000 ( 0.000 ) 0.000 ( 0.000 )

ρξ0 0.005 ( 0.156 ) 0.034 ( 0.069 )

ρξ1 -0.429 ( 3.693 ) -0.389 ( 0.632 )

ρξ2 0.000 ( 0.004 ) 0.000 ( 0.000 )

Model VII Model VIII

Coe�cient Est. (s.e.) Marginal e�ect (s.e.) Est. (s.e.) Marginal e�ect (s.e.)

γ1 (Price) 0.094 ( 0.029 ) 0.012 ( 0.006 ) 0.092 ( 0.029 ) 0.012 ( 0.006 )

γ2 (Balance) -0.478 ( 0.099 ) -0.016 ( 0.006 ) -0.463 ( 0.087 ) -0.015 ( 0.006 )

γ3 (Term) -0.021 ( 0.009 ) -0.004 ( 0.002 ) -0.021 ( 0.008 ) -0.004 ( 0.002 )

γ4 (Income) 0.000 ( 0.001 ) 0.000 ( 0.000 )

ρξ0 -2.271 ( 1.938 ) -2.271 ( 2.314 )

ρξ1 -0.480 ( 1.146 ) -0.506 ( 1.525 )

ρξ2 0.238 ( 0.978 ) 0.237 ( 1.428 )

α0 0.483 ( 0.007 ) 0.483 ( 0.007 )

α1 -0.001 ( 0.003 ) -0.002 ( 0.004 )

α2 0.036 ( 0.003 ) 0.036 ( 0.003 )

var(µ) 3.030 3.006
In models V and VI µi = 0
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Figure 1: Simulated and counterfactual default
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