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Abstract

Standard methods for solving dynamic discrete choice models involve calculating the value

function either through backwards recursion (finite-time) or through the use of a fixed point

algorithm (infinite-time). Conditional choice probability (CCP) estimators provide a computa-

tionally cheaper alternative but are perceived to be limited both by distributional assumptions

and by being unable to incorporate unobserved heterogeneity via finite mixture distributions.

We extend the classes of CCP estimators that need only a small number of CCP’s for estimation.

We also show that not only can finite mixture distributions be used in conjunction with CCP

estimation, but, because of the computational simplicity of the estimator, an individual’s location

in unobserved space can transition over time. Finally, we show that when data is available on

outcomes that are not the dynamic discrete choices themselves but are affected by the unobserved

state, the distribution of the unobserved heterogeneity can be estimated in a first stage while

still accounting for dynamic selection. The second stage then operates as though the unobserved

state is observed where the conditional probabilities of being in particular unobserved states are

calculated in the first stage and used as weights in the second stage. Monte Carlo results suggest

that the algorithms developed are computationally cheap with little loss in precision.
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1 Introduction

Standard methods for solving dynamic discrete choice models involve calculating the value func-

tion either through backwards recursion (finite-time) or through the use of a fixed point algorithm

(infinite-time). Conditional choice probability (CCP) estimators provide an alternative to these

techniques which involves mapping the value functions into the probabilities of making particular

decisions. While CCP estimators are much easier to compute than estimators based on obtaining

the full solution and have experienced a resurgence in the literature on dynamic games,1 there are

at least two reasons why researchers have been reticent to employ them in practice. First, it is

perceived that the mapping between CCP’s and value functions is simple only in specialized cases.

Second, it is believed that CCP estimators cannot be adapted to handle unobserved heterogeneity.2

This latter criticism is particularly damning as one of the fundamental issues in labor economics, and

indeed one of the main purposes of structural microeconomics, is the explicit modelling of selection.

We show that, for a wide class of problems, the value functions only depend upon the CCP’s

a few periods ahead. Indeed, in single-agent problems the value functions often depend upon only

the one period ahead CCP’s for a single choice. The class of problems we discuss is quite large

and includes dynamic games where one of the decisions is whether to exit. Further, unobserved

heterogeneity via finite mixture distributions is not only easily incorporated into the algorithm, but

the finite mixture distributions can transition over time as well. Previous work on incorporating

unobserved heterogeneity has been restricted to cases of permanent unobserved heterogeneity in

large part because of the computational burdens associated with allowing for persistence, but not

permanence, in the unobserved heterogeneity distribution. Using insights from the macroeconomics

literature on regime switching and the computational simplicity of CCP estimation, we show that

incorporating persistent but time-varying heterogeneity comes at very little computational cost.

We adapt the EM algorithm, and in particular its application to sequential likelihood developed

in Arcidiacono and Jones (2003), to two classes of CCP estimators that between them cover a wide

class of dynamic optimization problems and sequential games with incomplete information, based

on representations developed in Hotz et al (1994) and Altug and Miller (1998). Our techniques

can be also readily applied to models with discrete and continuous choices by exploiting the Euler
1See Aguirregabiria and Mira (2006), Bajari, Benkard, and Levin (2006), Pakes, Ostrovsky, and Berry (2004), and

Pesendorfer and Schmidt-Dengler (2003).
2A third reason is that to perform policy experiments it is often necessary to solve the full model. While this is

true, using CCP estimators would only involve solving the full model once for each policy simulation as opposed to

multiple times in a maximization algorithm.
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equation representation given in Altug and Miller (1998).

The algorithm begins by making a guess as to the CCP’s for each unobserved type, conditional

on the observables. Given this initial guess, we iterate on two steps. First, given the type-specific

CCP’s, maximize the pseudo-likelihood function with the unobserved heterogeneity integrated out.

Second, update the type-specific CCP’s using the parameter estimates. These updates can take two

forms. In stationary models, the updates can come from the likelihoods themselves. In models with

finite time horizons, while the updates can come from the likelihoods themselves, a second method

may be computationally cheaper. Namely, similar to the EM algorithm, we calculate the probability

that an individual is a particular type. These conditional type probabilities are then used as weights

in forming the updated CCP’s from the data.

The method described above is a likelihood-based approach. However, there are many cases

where estimation is computationally feasible only via a non-likelihood approach. Our algorithm can

be adapted to these cases as well provided the model also includes outcomes besides the choices

themselves. For these cases, we show how to estimate the parameters governing the unobserved

heterogeneity in a first stage. For example, IO models often estimate profits in a first stage. With

observations on profits and the empirical distribution of the dynamic discrete choice decisions we

show how to estimate the distribution of unobserved heterogeneity in a first stage. It is then possible

to incorporate unobserved heterogeneity into non-likelihood based approaches such as Hotz et al.

(1994) and Bajari et al. (2006) in a second stage. The conditional probabilities of being in particular

unobserved states are taken from the first stage and used as weights when estimating the parameters

of the second stage (i.e. the parameters of the dynamic discrete choice problem that are not in the

first stage).

We illustrate the small sample properties of our estimator using two sets of Monte Carlos designed

to highlight the two methods of updating the type-specific CCP’s. The first is a finite horizon model

of teen drug use and schooling decisions. Students in each period decide to whether to stay in school

and, if the choice is to stay, use drugs. Before using drugs, individuals only have a prior as to how

well they will enjoy the experience. However, upon using drugs, students discover their drug ‘type’

and this is used in informing their future decisions. Here we illustrate both ways of updating the

CCP’s, using the likelihoods or the conditional probabilities of being particular a particular type as

weights. Results of the Monte Carlo show that both methods of updating the CCP’s yield estimates

similar to that of full information maximum likelihood with little loss in precision.

The second is a dynamic entry/exit example with unobserved heterogeneity in the demand lev-
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els for particular markets which in turn affects the values of entry and exit. Here the unobserved

heterogeneity is allowed to transition over time and the example explicitly incorporates dynamic

selection. The type-specific CCP’s are updated using the likelihoods evaluated at the current pa-

rameter estimates and the current type-specific CCP’s. The results suggest that incorporating

time-varying unobserved heterogeneity is not only feasible but computationally simple and yields

precise estimates even of the transitions on the unobserved state variables. Further, the two-stage

method–where the patterns governing demand and the unobserved heterogeneity are estimated in

a first stage– performs quite well yielding parameter estimates close to the truth with little loss in

precision.

Our work is most closely related to the nested pseudo-liklelihood estimators developed by Aguir-

reggabiria and Mira (2006), and Buchinsky, Hahn and Hotz (2005). Both papers seek to incorporate

a fixed effect within their CCP estimation framework drawn from a finite mixture. Aguirregabiria

and Mira (2006) show how to incorporate unobserved characteristics of markets in dynamic games,

where the unobserved heterogeneity only affects the utility function itself. In contrast our analysis

demonstrates how to incorporate unobserved heterogeneity into both the utility functions and the

transition functions and are thereby account for the role of unobserved heterogeneity in dynamic

selection. Buchinsky, Hahn and Hotz (2005) use the tools of cluster analysis, seeking conditions

on the model structure that allow them to identify the unobserved type of each agent, whereas we

only identify the distribution of unobserved heterogeneity across agents. Thus their approach seems

most applicable in models where there are relatively small numbers of long lived agents which may

or may not be comparable to each other, whereas our approach is applicable to large populations

where the focus is on the unobserved proportions that partition it.

2 The Framework

We consider a dynamic programming problem in which an individual makes a sequence of discrete

choices dt over his lifetime t ∈ {1, . . . , T} for some T ≤ ∞. The choice set has the same cardinality

K at each date t, so we define dt by the multiple indicator function dt = (d1t, . . . , dKt) where

dkt ∈ {0, 1} for each k ∈ {1, . . . ,K} and

∑K

k=1
dkt = 1

A vector of characteristics (st, εt) fully describes the individual at each time t, where st are a set of

time-varying characteristics, and εt ≡ (ε1t, . . . , εKt) is independently and identically distributed over
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time with continuous support and distribution function G (εt). The vector st evolves as a Markov

process, depending stochastically on the choices of the individual. We model the transition from st to

st+1 conditional on the choice k ∈ {1, . . . ,K} with the probability distribution function Fk (st+1 |st ).

We assume the current utility of an individual with characteristics (st, εt) from choosing alternative

k by setting dkt = 1, is additively separable in st and εt , and can be expressed as uk (st) + εkt. The

individual sequentially observes (st, εt) and maximizes the expected discounted sum of utilities

E

{∑T

t=1

∑K

k=1
βtdkt [uk (st) + εkt]

}
where β ∈ (0, 1) denotes the fixed geometric discount factor.

Let do
t ≡ (do

1t, . . . , d
o
Kt) denote the optimal decision rule for this problem where do

kt ≡ dkt (st, εt)

for each k ∈ {1, . . . ,K}, define the conditional valuation functions by

vk (st) = E

{∑T

t=1

∑K

k=1
βtdo

kt [uk (st) + εkt]
}

and the conditional choice probabilities as

ξk (st) =
∫
dkt (st, εt) dG (εt)

The representation theorem of Hotz and Miller (1993) implies there is a mapping from the conditional

choice probabilities to the conditional valuation functions, which we now denote as

ψ1 [ξ (st)] =


ψ2

1 [ξ (st)]
...

ψK
1 [ξ (st)]

 =


v2 (st)− v1 (st)

...

vK (st)− v1 (st)


The expected contribution of the εkt disturbance to current utility, conditional on the state st, is

found by integrating over the region in which the kth action is taken, so appealing to the represen-

tation theorem∫
[dkt (st, εt) εkt] dG (εt)

=
∫

1 {εkt − εjt ≥ uj (st)− uk (st) + vj (st)− vk (st) for all j ∈ {1, . . . , J}} [dkt (st, εt) εkt] dG (εt)

=
∫

1
{
εkt − εjt ≥ uj (st)− uk (st) + ψj

k [ξ (st)] for all j ∈ {1, . . . , J}
}

[dkt (st, εt) εkt] dG (εt)

≡ wk [ξ (st)]

It now follows that the conditional valuation functions can be expressed as a mapping of the condi-

tional choice probabilities for states that might be visited in the future

vk (st) = E

{∑T

t=1

∑K

k=1
βtξk (st) [uk (st) + wk [ξ (st)]]

}
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3 Finite Dependence

We specialize the model by assuming that optimal decision making is not affected by any event

that occurred in the distant past providing certain choice sequences were taken in the intervening

periods, a concept called finite dependence. Finite dependence covers a broad class of models in labor

economics and industrial organization including the terminal state dynamic programming models

of Hotz and Miller (1993), renewal models considered by Rust (1987), the deterministic transition

models of Altug and Miller (1998), and incomplete information games of entry and exit of Pakes,

Ostrovosky and Berry (2004).

In particular, suppose after ρ periods a particular state can be reached through a series of choices

given any initial choice. In this case, the difference in expected future utility across any two choices

can be expressed as a function of the ρ period ahead flow utilities and CCP’s. ρ-period finite

dependence is then defined as follows:

Definition 1 A problem exhibits ρ-period dependence at time t and at state variables st, when for

all j, j′ pairs of initial choices there is a sequence of choices from each initial choice and state,

λ(djt, st) and λ(dj′t, st), such that f(s(t+ρ)|λ(djt, st)) = f(s(t+ρ)|λ(dj′t, st) where f is the pdf of the

ρ period ahead state variables.

For example, given two different initial choices and the current state, there are a sequence of choices

from both initial choices that lead to the exact same transitions on the state space ρ periods ahead.

The ρ-period ahead finite dependence property then dictates how many future conditional choice

probabilities are needed to formulate the differences in expectations of future utility across choices.

Proposition 2 If ρ-period finite dependence holds across all t, st and initial choices dt, then the

differences in expected future utility across choices only depend on the ρ period ahead conditional

choice probabilities.

Proof. Consider the conditional valuation of initial choice j at time t, vj(st). We can write vj(st)

as:

vj(st) = uj(st) + β

∫ (
vl(st+1) +

K∑
k=1

ξk(st+1)
[
vk(st+1) + uk(st+1) + wk[ξ(st+1)]

−vl(st+1)− uk(st+1)− wl[ξ(st+1)]
])
f(st+1|st, djt)

= uj(st) + β

∫ (
vl(st+1) +

K∑
k=1

ξk(st+1)[ψk
l (ξ(st+1)) + ũk

l (st+1) + w̃k
l [ξ(st+1)]]

)
f(st+1|st, djt)
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where vl is the conditional valuation of choice l, ũk
j refers to the difference in flow utility between j

and k, and w̃k
j refer to the difference in the expected error between j and k. Note that both the ψ’s

and the w’s only depend upon the conditional choice probabilities at t+1. This rewriting can be done

regardless of the choice of l and therefore can be done for the first choice in λ(djt, st). By continuing

to normalize with respect to the choices in λ(djt, st). Let λjst′ give the element of λ(djt, st) at time

t′. By repeatedly substituting in for the future values of the v’s and then normalizing with respect

to the choice given by the decision rule λ(djt, st), we obtain the following:

vj(st) = uj(st) +
∫
...

∫
βρ+1vl(st+ρ+1)f(st+ρ+1|st+ρ, dλjs(t+ρ)

)...f(st+1|st, djt)

+
t+ρ+1∑
t′=t+1

∫
...

∫
βt′
( K∑

k=1

ξk(st′)
[
ψk

λjst′
(ξ(st′)) + ũk

l (st′w̃
k
λjst′

[ξ(st′)]
])
f(st′ |st′−1, dλjs(t′−1)

)...f(st+1|st, djt)

where at period ρ + 1 the choice l is arbitrary. Taking the similar expressions for initial choice j′

yields:

vj′(st) = uj′(st) +
∫
...

∫
βρ+1vl(st+ρ+1)f(st+ρ+1|st+ρ, dλj′s(t+ρ)

)...f(st+1|st, dtj′)

+
t+ρ+1∑
t′=t+1

∫
...

∫
βt′
( K∑

k=1

ξk(st′)
[
ψk

λj′st′
(ξ(st′)) + ũk

l (st′w̃
k
λj′st′

[ξ(st′)]
])
f(st′ |st′−1, dλ(t′−1)j′s)...f(st+1|st, dtj′)

where now the choice l at t + ρ + 1 is chosen to match that in the expression of vj . Since the

likelihood of making any choice depends not the v’s themselves but rather on the differenced v’s, by

taking vj−vj′ the vl terms cancel out by the definition of ρ-period ahead finite dependence. Further,

since at t+ ρ the initial choice of either j or j′ leads to the same distribution of the state variables

and the normalization is with respect to the same choice, all terms at t+ ρ+ 1 cancel out. We are

therefore left with expressions for the differenced conditional valuation functions that depend only

on the ρ period ahead conditional choice probabilities.

The intuition behind the constructing the sequences of choices comes from the fact that the Hotz-

Miller inversion gives a mapping from the differenced conditional value functions to conditional

choice probabilities where the difference can be taken with respect to the conditional valuation

functions of any of the choices, including sets of choices that, once differences are taken to form the

likelihoods, lead to cancelations of the ρ+ 1 period ahead future utility terms.

We illustrate the finite dependence property with a set of examples that highlight cases where

only one-period ahead CCP’s are necessary to calculate the expected future utility differences. These

cases have a renewal action that is present in, for example, the Rust bus-engine problem and virtually

all entry/exit games. The last example illustrates how finite dependence can still be used even if no

renewal action is present.
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3.1 Example 1: Renewal problems

We first focus on a simple two choice model. Given the framework described above, Rust (1987)

shows that if we make the additional assumption that the εt’s are i.i.d. extreme value we can write

the v’s as:

v0(st, εt) = u0(st, εt) + β

(∫
ln

(
1∑

k=0

exp(vk(st+1))

)
f(st+1|st, dt = 0) + γ

)

v1(st, εt) = u1(st, εt) + β

(∫
ln

(
1∑

k=0

exp(vk(st+1))

)
f(st+1|st, dt = 1) + γ

)
where γ is Euler’s constant.

Note that what is inside the log is the denominator for the probability of choosing any of the

alternatives. This will hold true for any representation where the ε’s come from a GEV distribution.

This implies that the v’s can be rewritten as:

v0(st, εt) = u0(st, εt) + β

(∫
[v0(st+1)− ln(ξ0(st+1))]f(st+1|st, dt = 0) + γ

)

v1(st, εt) = u1(st, εt) + β

(∫
[v0(st+1)− ln(ξ0(st+1))]f(st+1|st, dt = 1) + γ

)
There are some cases when the v0’s are particularly easy to calculate. For example, if dt = 0 is an

absorbing state, v0 is often specified as something that is linear in the parameters. If it is possible to

consistently estimate the transitions f(st+1|st, dt) and the one period ahead p0’s, then the obtaining

estimates of the u1(zt)’s simplifies to estimating a linear in the parameters logit. Note that whether

T is finite or infinite has no bearing on the problem.

The condition that the probability of choosing an alternative depends only on current utility and

on a one period ahead choice probability of a single choice is broader than just the cases satisfying

the terminal state property. To see this, note that the probability of choosing an alternative is

always relative to one of the choices:

v1(st, εt)− v0(st, εt) = u1(st, εt)− u0(st, εt)

+β
∫

[ln(ξ0(st+1))][f(zt+1|zt, dt = 0)− f(st+1|st, dt = 1)]

+β
∫

[v0(st+1)][f(st+1|st, dt = 1)− f(st+1|st, dt = 0)]

If v0 does not depend the lagged choice except through the one period ahead flow utility then

the future component effectively cancels out leaving the v(st)’s once again linear in the utility

parameters. This is a special case of Altug and Miller (1998), which establishes how to write CCP’s
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when there is finite time dependence. Note that this does not rule out transitions of the state

variables provided the transitions do not depend upon the choice. For ease of exposition, we label

problems where the value functions can be expressed as functions of the one-period ahead conditional

choice probabilities as having the one-period dependence (OPD) property. Many problems of interest

naturally exhibit this property. Rust’s bus engine problem is one, along with virtually every game

that involves an exit decision.

This renewal property, where the difference in the value functions depends only on the linear

flow utility, the one-period ahead transitions on the state variables, and the one-period ahead choice

probabilities of a single choice, is not restricted solely to logit errors. Consider the case where the

errors follow a nested logit specification and the ‘outside option’ depends upon the current state

only through the one period ahead flow utlity, that is, it satisfies the OPD property. The conditional

value function is then:

vj(zt, εt) = uj(zt, εt) + βγ

+β
∫

ln

((
K∑

k=1

exp
(
vk(st+1)

σ

))σ

+ exp(v0(st+1))

)
f(st+1|st, dtj)

Writing the future component in terms of the probability of choosing the outside good yields:

vj(st, εt) = uj(st, εt) + βγ

+β
∫

[v0(st+1)− ln(ξ0(st+1))]f(st+1|st, dtj)

Note that this expression is identical to the simple logit example above. Differencing with respect

to v0 then yields the same cancellations as before.

Conditional on one of the options having the OPD property, the expression above will be the

same for a broad class of correlation structures. Consider a mapping G : RK+1 → R1 that satisfies

the restrictions given in McFadden (1978) such that:

F (ε0, ε1, ..., εK) = exp (−G(eε0 , eε1 , ..., eεK ))

is the cdf of multivariate extreme value distribution. Whenever G(·) can be written as:

G(ev) = G(ev1(st), ..., evK(st)) + ev0(st)

the conditional value function for choosing k can be written as:

vk(st, εt) = uk(st, εt) + β

∫
ln
(
G(ev1(st), ..., evK(st)) + ev0(st)

)
f(st+1|st, dtk)
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Differencing with respect to v0 and substituting in for the future value term with [exp(v0(zt+1)]/ξ0

yields:

vk(zt, εt)− v0(st, εt) = uk(st, εt)− u0(st, εt) + β

∫
[ln(ξ0(st+1))][f(st+1|st, dt0)− f(st+1|st, dtk)]

+β
∫

[v0(st+1)][f(st+1|st, dtk)− f(st+1|st, dt0)]

If choice 0 is a terminal state or if v0 does not depend upon the choice made in the previous period

except in the flow utility then the last line is easily calculated since the future portion cancels

out. Note that this structure can accommodate quite complex error structures. For example,

Bresnahan, Stern, and Trajtenberg (1997) allow errors to be correlated across multiple nests. Hence,

only the CCP’s for the outside good are needed to avoid solving the backwards-recursion or fixed

point problem. Moreover, by using the techniques developed below to incorporate unobserved

heterogeneity, the GEV assumption is quite weak. In particular, we can approximate correlation

among the ε’s with a finite mixture distribution and keep the additive separability of the outside

option conditional on the draw from the mixture distribution.

3.2 Example 2: Dynamic Entry/Exit

To further illustrate the simplicity and versatility of our estimator, we show how it can be applied to

the dynamic entry/exit game that forms the basis for the second Monte Carlo discussed in section

??. The game is in discrete time with an infinite horizon. Players are assumed to employ strategies

consistent with a Markov Perfect Equilibrium. There are M markets with one potential entrant

arriving in each market in each period. Potential entrants choose whether or not to enter the

market and, once in the market, continue to choose whether or not to stay. If the firm leaves the

market, it disappears, which also occurs if it chooses not to enter (whether the firm dies or enters

the pool of potential entrants to be assigned to a market is not relevant to the problem for large

M).For simplicity, we assume that there can be at most 2 firms in a market.

Firms are identical but subject to private i.i.d. profit shocks for staying in or entering a market.

These shocks are distributed i.i.d. Type I extreme value and only affect the cost of staying in the

market. Since we are focusing on a simple entry/exit example, we assume that firm identity is not

important, except for whether the firm is an incumbent or a potential entrant (and only the number

of such firms matters). All choices occur simultaneously. Expected lifetime profits for firm i depend

upon:

1. Whether there is another player, Ej ∈ {0, 1}
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2. Whether firm i is an incumbent, Ii ∈ {0, 1}

3. If there is another player, whether that player is an incumbent, Ij ∈ {0, 1}

4. A state variable s ∈ {0, 1} which transitions according to f(s′|s).

The realized flow profits for i, denoted π, then depend upon whether the firm ends up a mo-

nopolist or a duopolist, D ∈ {0, 1}, whether the firm started out as an incumbent, and the state of

demand. We can then express expected lifetime profits from entering as:

vi(Ej , Ii, Ij , s) =
1∑

k=0

ξk(1, Ij , Ii, s)
(
π(k, Ii, s) + β

2∑
s′=1

V (1, 1, k, s′)f(s′|s)
)

+ εi

where ξ0 and ξ1 are the probabilities of the other firm staying out of and in the market, respectively.

With the profits for exiting left as a deterministic scrap value SV , the i.i.d. Type I extreme value

ε’s imply that we can write the previous expression as:

vi(Ej , Ii, Ij , s) =
1∑

k=0

ξk(1, Ij , Ii, s)
(
π(k, Ii, s) + βγ + βSV − β

2∑
s′=1

ln[ξ0(1, 1, k, s′)]f(s′|s)
)

+ εi

3.3 Example 3: Female Labor Supply

We now show an example where the future value terms depend upon more than the one-period

CCP’s. Each period until T a woman chooses whether or not to work. Earnings at her work depend

upon her experience, ht, and whether or not she worked in the previous period. Let dt = 1 if

the woman works and 0 if she does not. ht increases stochastically by j, j ∈ [1, 2, ...S] with f(s)

indicating the probability of the jth draw. Since the v’s will depend upon accumulated experience,

leaving the workforce does not amount to starting over. For both the choice to work at time t and

the choice to not work at time t we need to write the expected future utility for each of the choices

such that the v term factored out from the expected future utility for both choices ρ periods ahead

is the same and hence cancel out. Let the ε’s associated with each of the choices be iid Type I

extreme value. The value function for working is:

v1(ht, dt−1) = u1(ht, dt−1) +
S∑

s=1

ln [exp(v1(ht + s, 1)) + exp(v0(ht + s, 1))] f(j)

Since eventually we are going to be working with v1(ht, dt−1) − v0(ht, dt−1) we want to choose to

reformulate the expected future utility above such that a different formulation for the expected

future utility for not working will lead to a cancelation. Since by working an additional year of
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work experience is accumulated, we want to reformulate the expected future utility conditional on

working as the conditional of value of not working plus a function of the CCP’s:

v1(ht, dt−1) = u1(ht, dt−1) +
S∑

s=1

(v0(ht + s, 1) + ln [exp(v1(ht + s)− (v0(ht + s, 1)) + 1]) f(s)

= u1(ht, dt−1, εt) +
S∑

s=1

(v0(ht + s, 1)− ln[ξ0(ht + s, 1)]) f(s)

Substituting in for the v0(ht + s, 1)’s with the flow utility plus the expected future utility and again

differencing out with respect to the no work option yields:

v1(ht, dt−1) = u1(ht, dt−1)−
S∑

s=1

[
β ln(ξ0(ht + s, 1)) + βu0(ht + s, 1)

−β2 ln(ξ0(ht + s, 0)) + β2v0(ht + s, 0)
]
f(s)

If we can then write down the v0(ht, dt−1) such that the last term has the identical terms for the

β2v0(ht + j, 0)’s, then once we take differences these terms will cancel out. We will then have the

differenced conditional value functions written solely as a function of the two-period ahead flow

utilities and the two-period ahead conditional choice probabilities. For v0(ht, dt−1), we want to now

write the one-period ahead expected future utility relative to working and write the two period-ahead

expected future utility relative to not working yielding:

v0(ht, dt−1) = u0(ht, dt−1)− β ln(ξ1(ht, 1)) + βu1(ht, 0)

+
S∑

s=1

[
β2 − ln(ξ0(ht + s, 1)) + β2v0(ht + s, 0)

]
f(s)

Now taking v1(ht, dt−1)− v0(ht, dt−1) yields the cancelation:

v1(ht, dt−1)− v0(ht, dt−1) = u1(ht, dt−1)− u0(ht, dt−1, εt)

+
S∑

s=1

(
β

[
u0(ht + s, 1)− u1(ht, 0)− ln(ξ0(ht + s, 1)) + ln(ξ1(ht, 0))

+β
(
u0(ht + s, 0)− u0(ht + s, 1)− ln(ξ0(ht + s, 0) + ln(ξ0(ht + s, 1)

)])
f(s)

4 Unobserved Heterogeneity, CCP’s, and Finite Dependence

This section explains the algorithm we use for estimating dynamic optimization problems and games

of incomplete information where there is unobserved heterogeneity that evolves over time as a
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stochastic process, and the finite dependence assumption is satisfied. We consider a panel data set

of N individuals, T choices for each individual n ∈ {1, . . . , N} are observed, along with a subvector

of their state variables. Observations are independent across individuals. We partition the state

variables snt into those observed by the econometrician xnt ∈ {x1, . . . xX} and, with some abuse of

notation, those that are not observed snt ∈ {s1, . . . sS}. The nth individual’s unobserved type snt

at time t may affect both the utility function and the transition functions on the observed variables

and may also evolve over time. Suppose the initial probability of being assigned to state si is πi.

States follow a Markov process with pjk dictating the probability of transitioning from state or type

j to type k.3 The structural parameters that define the utility outcomes for the problem are denoted

by θ ∈ Θ and the set of conditional choice probabilities (the ξ’s) are treated as nuisance parameters

in the estimation.

Let L (dnt |xnt, s; θ, π, p, ξ ) be the likelihood of observing individual n make choice dnt at time

t, conditional on being in state (xnt, s) , given structural parameter θ and nuisance parameter ξ.

Forming their product over the T periods we obtain the likelihood of any given path of choices

and (dn1 . . . , dnT ) , conditional on the (xn1 . . . , xnT ) sequence and the unobserved state variables

(s (1) . . . , s (T )). Integrating the product over the inital unobserved state with probability distri-

bution π and the subsequent probability transitions p then yields the likelihood of observing the

choices dn conditional on xn given (θ, π, p, ξ) :

L (dn |xn, θ, π, p, ξ ) ≡
S∑

s(1)

S∑
s(2)

...
S∑

s(T )

πs(1)L (dn1 |xn1, s (1) ; θ, π, p, ξ )
T∏

t=2

ps(t−1),s(t)L (dnt |xnt, s (t) ; θ1, π, p, ξ )

Therefore the log likelihood for the sample is:4

N∑
n=1

logL (dn |xn, θ, π, p, ξ ) (1)

Directly maximizing the log likelihood above is typically very costly. However, in time series

models with regime-switching, Hamilton (1990) has shown that the EM algorithm simplifies this

optimization problem substantially. An alternative to maximizing (1) directly is to iteratively max-
3Note that this nests both the case where unobserved heterogeneity is permanent (the transition matrix would be

an S × S identity matrix) and the case where the unobserved state is completely transitory (the transition matrix

would have the same values in row j as in row k for all j and k).
4Note that when unobserved heterogeneity is permanent the log likelihood for the sample is given by:

NX
n=1

log

 
SX

s=1

TY
t=1

πsLnst

!
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imize the expected log likelihood function where the mth iteration involves maximizing:∑N

n=1

∑S

s=1

∑T

t=1
q
(m)
nst logL

(
dnt

∣∣∣xnt, s; θ, π(m), p(m), ξ(m)
)

(2)

with respect to θ to obtain θ(m+1). At this maximization step the initial probabilities of being in

each of the unobserved states, the π’s, and the probabilities of transitions across unobserved states,

the p’s are taken as given. Here, q1nst ≡ q1st (dn, xn, θ, π, p, ξ) is formally defined below as the

probability that individual n is in state s at time t given the parameter values
(
θ(m), π(m), p(m), ξ(m)

)
and conditional on the all the data about n, (dn, xn) ≡ (dn1, xn1, . . . , dnT , xnT ). These conditional

probabilities of being in each of the unobserved states are taken as given and are used as weights in

the maximization step. Finally, ξ(m) is a vector of conditional choice probability estimates plugged

into the mth iteration and updated as described below.

Let (θ∗, ξ∗) denote the converged values of the structural and nuisance parameters from the EM

algorithm. Following the same arguments as given in Arcidiacono and Jones (2003), the EM solution

satisfies the first order conditions derived from maximizing (1) with respect to θ given ξ∗. We now

formally define the mapping qnst (dn, xn, θ, π, p, ξ) , the iterations
(
θ(m), π(m), p(m), ξ(m)

)
, show how

the likelihood is evaluated, and then summarize the steps.

To define qnst (dn, xn, θ, π, p, ξ), let Lnst (dn |xn, θ, π, p, ξ ) denote the joint probability of state s

occurring at date t for the nth individual and observing the choice sequence dn, conditional on the

exogenous variables xn, when the structural parameters take value (θ, π) and nuisance parameters

ξ. Abbreviating L (dnt |xnt, s; θ, ξ ) by Lnst, Lnst (dn |xn, θ, π, ξ ) is given by:

Lnst (dn |xn, θ, π, p, ξ )

=
S∑

s(1)

...

S∑
s(r−1)

S∑
s(r+1)

...

S∑
s(T )

πs(1)Lns(1)1ps(t−1)sLnstps,s(t+1)Lns(t′+1)t′+1

(∏T

t′=2,t′ 6=t,t′ 6=t+1
ps(t−1)s(t)Lns(t′)t′

)

where the summations of s(1) and so on are over s ∈ {s1, . . . , sS} . Summing over all states s ∈ S

at time r returns the likelilihood of observing the choices dn conditional on xn given (θ, π, ξ) :

L (dn |xn, θ, π, p, ξ ) =
S∑

s′=1

Lns′t (dn |xn, θ, π, p, ξ )

Therefore the probability that individual n is in state s at time r given the parameter values

(θ, π, p, ξ) conditional on all the data for n is:

qnst (dn, xn, θ, π, p, ξ) ≡
Lnst (dn |xn, θ, π, p, ξ )
Ln (dn |xn, θ, π, p, ξ )

(3)

Note that the denominator is the same across all time periods and all states.
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To make the algorithm operational we must explain how to update the probabilities for the un-

observed states ((π, p)) , the other structural parameters (θ), and the conditional choice probabilities

(ξ). The updating formula for the transition probabilities is based on the identities:

pjk ≡ Pr {k |j } =
Pr {k, j}
Pr {j}

=
E {E [snkt |dn, xn, snjt−1 ]E [snjt−1 |dn, xn ]}

E {E [snjt |dn, xn ]}
≡
E
[
qnkt|jqnjt

]
E [qnjt]

where snkt is an indicator for whether individual n is in state k at time t and qnts|j ≡ E [sntk |dn, xn, sn,t−1,j ]

denotes the probability of individual n being type k at time t conditional on the data and also on

being in unobserved state j at time t − 1. This conditional probability given the lagged state is

defined by the expression:

qnkt|j =
pjkLnkt

(∑S
s(t+1) ...

∑S
s(T )

∏T
t′=t+1 ps(t′−1),s(t′)Lns(t′)t′

)
∑S

s′ pjs′Lns′t

(∑S
s(t+1) ...

∑S
s(T )

∏T
t′=t+1 ps(t′−1),s(t′)Lns(t′)t′

)
Averaging over qnkt|jqnjt to approximate the joint probability E

[
qnkt|jqnjt

]
, and averaging over qnjt

to estimate E [qnjt] , we update p with the formula

p
(m+1)
jk =

∑N
n=1

∑T
t=2 q

(m)
nkt|jq

(m)
njt∑N

n=1

∑T
t=2 q

(m)
njt

(4)

Setting t = 1 yields the conditional probability of the nth individual being in unobserved state

s in the first time period. We update π by averaging those conditional probabilities obtained from

the previous iteration over the sample population:

π(m+1)
s =

1
N

N∑
n=1

q
(m)
ns1 (5)

In a Markov stationary environment, the unconditional probabilities reproduce themselves each

period. In that special case we can average over all the periods in the sample in the update formula

for π to obtain

π(m+1)
s =

1
NT

∑T

t=1

∑N

n=1
q
(m)
nst

The last component in the updating formula is the vector of conditional choice probabilities.

In contrast to models where there is no unobserved heterogeneity, initial consistent estimates of ξ

cannot be cheaply computed prior to structural estimation, but must be iteratively updated along

with (θ, π, p). One way of updating the nuisance parameters is to substitute in the likelihood

evaluated at the previous iteration. Let Lk (x, s; θ, ξ) denote the conditional likelihood of observing

choice k ∈ {1, . . . ,K} for the state (x, s) when the parameters are (θ, ξ). An updating rule for ξ is:

ξ
(m+1)
kxs = Lk

(
x, s; θ(m+1), ξ(m)

)
(6)
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Another way of updating ξ comes from exploiting the identities

Pr {dnkt |x, s}Pr {s |x} = Pr {dnkt, s |x} ≡ E [dnkt(snt = s) |x ] = E [dnktE {snt = s |dn, xn } |x ]

where the last equality follows from the law of iterated expectations and the fact that dn in-

cludes dnkt as a component. From its definition qnst = E [snt = s |dn, xn ] , and since Pr {s |x} =

E {E [snt = s |dn, xn ] |x} by the law of iterated expectations, it now follows that

Pr {dnkt |x, s} =
E [dnktqnst |x ]
E [qnst |x ]

In words, of the fraction of the total population with characteristic x in state s, the portion choosing

the kth action is ξkxs. This identity suggests a second way of updating ξ, namely:

ξ
(m+1)
kxs =

∑T
t=1

∑N
n=1 dnktq

(m)
nst I(x = xnt)∑T

t=1

∑N
n=1 q

(m)
nst I(x = xnt)

(7)

where I(x = xnt) where I is the indicator function for x. This method is particularly useful when an

outcome from one of the choices is observed, so that the estimation of the (π, p) probabilities, which

determine the stochastic process for unobserved heterogeity, can be separated from the estimation

of the structural parameters that define the utility obtained for the remaining choices, a variation

on our basic framework that we develop below.

We have now defined all the pieces necessary to implement the algorithm. It is triggered by

setting initial values for the conditional choice probabilities, ξ(1), the initial distribution of the the

unobserved states, π(1), their probability transitions, p(1), initial values for the structural parame-

ters, θ(1), and the conditional choice probabilities ξ(1). The values for θ(1) and ξ(1) can be obtained

from estimating a model without any unobserved heterogeneity and perturbing the estimates ob-

tained. Each iteration in the algorithm has four steps. Given
(
θ(m), π(m), p(m), ξ(m)

)
the (m+ 1)th

proceeding as follows:

Step 1 Compute q(m+1)
nst , the probability that each individual n is of type s at each time period t

for all S types conditional upon (dn, xn) , using (3) with parameters
(
θ(m), π(m), p(m), ξ(m)

)
.

Also compute q(m+1)
nst|j , the probability that each individual n is of type s at each time period t

for all S types conditional on being type j in period t− 1.

Step 2 Given q(m+1)
nst and q(m+1)

nst|j for each (n, s, t, j) compute π(m+1) and p(m+1) using (5) and (4).

Step 3 Given q
(m+1)
nst for each (n, s, t, j) , and ξ(m), maximize the expected log likelihood function

to obtain estimates of θ(m+1).
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Step 4 Update the conditional choice probability nuisance parameters ξ(m+1), using either (6)

evaluated at
(
θ(m+1), ξ(m)

)
, or (7) evaluated at q(m+1)

nst for each (n, s, t) .

While this is only one of several possible orderings of steps within an iteration that converges

to the same fixed point, this procedure has the virtue of only using the q(m)
nst values within each

iteration, as opposed to using both sets of q(m)
nst and q(m+1)

nst within an iteration.

5 Unobserved Heterogeneity, CCP’s, and Outcomes

Although the estimation method described above is computationally feasible for many problems

where finite time dependence holds, not all dynamic discrete choice model have that property. We

now show how to estimate the distribution of unobserved heterogeneity without fully specifying the

dynamic optimization problem provided that there is data on an outcome that depends upon the

unobserved heterogeneity. For example, when the conditional transition probability for the observed

state variables depends on the current values of the unobserved state variables, when there is data

on a payoff of a choice that depends on the unobserved heterogeneity, or when data exists on some

other outcome that is determined by the unobserved state variables, the estimation approach above

can be extended beyond the finite dependence case by using the two stage procedure developed here.

One advantage of using this two stage procedure is that it enlarges the class of models to which

our estimator applies. Rather than assuming the model exhibits finite time dependence, one could

estimate a stationary markov model without this property by using the estimator described here to

estimate the distribution of unobserved heterogeneity in a first stage. The estimates from the first

stage can then be combined with non-likelihood based estimation methods in the second stage.

This adaptation is motivated by the second method of updating the conditional choice probabil-

ities, using equation (7), which can be interpreted as an empirical estimator of the fraction of people

in any given state making a particular choice. When information is available on both the individual

choices and an outcome, this method for updating the conditional choice probabilities implies that

we can substitute the empirical estimator into the likelihood for observing a sequence of outcomes

without estimating all the structural parameters that affect the decision itself.

More formally, decompose the likelihood into two parts: the likelihood associated with a partic-

ular outcome conditional on the choice, L1, and the likelihood associated with the choice, L2. Let

the parameters in each of the likelihoods be given by θ1 and θ2 where θ1 and θ2 may overlap. We

then replace Lnst in (3) with L1nstL2nst. But now instead of using the likelihoods themselves for
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the L2nst’s, substitute in the weighted CCP’s along the lines of (7) by using:

L̂2nst =
∑N

n=1 qnstdnktI(x = xnt)∑N
n=1 qnstI(x = xnt)

(8)

By iterating on (3) and (8) until a fixed point is reached, we obtain estimates of the conditional

probability of being in a particular state given 1) current values of the π’s and pjk’s, 2) the current

values of θ1, and 3) the weighted average of the data governing the choices where the weights are

given by the conditional probabilities of being in particular states. The first stage of the algorithm

iterates on three steps where the m+ 1 iteration follows:

Step 1 For each of the S types, calculate the conditional probability that each individual is of type

s at each time period t, update q(m+1)
nst using (3) and substituting in for L2 with (8). Iterate

on (3) and (8) until convergence.

Step 2 Given the q(m+1)
nst ’s, the π(m)

i ’s, and the p(m)
ij ’s, obtain the π(m+1)

i ’s and the p(m+1)
ij using (5)

and (4).

Step 3 Maximize the expected log likelihood function to obtain estimates of θ(m+1)
1 and taking the

q
(m+1)
nst ’s as given.

Once convergence has been achieved, we have consistent estimates of the conditional probability of

being in state s at time t given the data. As we prove below, subject to the outcome model being

identified, the first stage of estimation yields consistent estimates of the probability distributions

characterizing unobserved heterogeneity (π, p) along with the estimates of the conditional choice

probability incidental parameters ξ.

Having achieved convergence in the first stage, there are several methods for estimating θ1, the

preference parameters determining the (remaining) preferences over choices by substituting
(
π̂, p̂, ξ̂

)
into parameters in a second stage. If the model satisfies finite dependence, then the appropriate rep-

resentation can be used to express the conditional valuation functions in conjunction with standard

optimziation methods. Alternatively, the simulation estimators of Hotz, Miller, Sanders, and Smith

or Bajari, Benkard, and Levin can be directly applied regardless of whether the model satisifes

the limited dependence property or not, providing the outcome equation is not subject to selection

considerations. The second-stage estimation problem is the same as when all variables are observed.

That is, from the N×T data set, create a data set that is N×T×S where this later data set has, for

each observation in each time period, each possible value of the unobserved state. The second-stage

estimation then weights these observations using the weights estimated in the first stage, the q̂nst’s.

18



For example, to implement the algorithm of Hotz, Miller, Sanders, and Smith, we appeal directly

to the representation theorem. Namely, for each unobserved state we can stack the (K−1) mappings

from the conditional choice probabilities into the differences in conditional valuation functions for

each individual n in each period t:

ψ2
1 [ξn1t]− (vn21t − vn11t)

...

ψK
1 [ξn1t]− (vnK1t − vn11t)

...

ψ2
S [ξnSt]− (vn2St − vn1St)

...

ψK
S [ξnSt]− (vnKSt − vn1St)


=



0
...

0
...

0
...

0


where the second to last subscript on both the ξ’s and the v’s is the unobserved state. Future paths

are simulated by drawing future choices and transition paths of the observed and unobserved state

variables for each initial choice and each initial observed and unobserved state. With the future

paths in hand, it is possible to form future utility paths given the sequence of choices and these

future utility paths can be substituted in for the v’s. Estimation can then proceed by minimizing,

for example, the weighted sum of each of the squared values of the left hand side of (5) with respect

to θ1. The weights are then the conditional probabilities of being in particular states in particular

time periods estimated from the first stage, the qnst’s.

6 Large Sample Properties

The defining equations for this estimator come from three sources. First are orthogonality conditions

for θ, the parameters defining utility and the probability transition matrix for the observed states,

which are analogous to the score for a discrete choice random utility model with nuisance parameters

are used in defining the payoffs. Second are the orthogonality conditions for the initial distribution

of the unobserved heterogeneity π, and its transition probability matrix p, again computed from

the likelihood as in a random effects model. Third are the equations which define the nuisance

parameters as estimators of the conditional choice probabilities. This section defines the equations

that are satisfied by our estimator, proves it is consistent, and establishes its asymptotic distribution.

Let (ϕ∗, ξ∗) solve the EM algorithm, where ϕ ≡ (θ, π, p) is the vector of structural parameters.

For any fixed set of nuisance parameters ξ, the solution to the EM algorithm (equation 9) satisfies
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the first order conditions of the original problem (1). Consequently setting ξ = ξ∗ in the original

problem implies the first order conditions for the original problem are satisfied. It now follows that

the large sample properties of our estimator can be derived by analyzing the score associated with

(1) augmented by a set of equations that solve the conditional choice probability nuisance parameter

vector ξ, either the likelihoods or the empirical likelihoods, as discussed in the previous section.

In the previous section we defined the conditional likelihood of (ϕ, ξ) upon observing dn given

xn, which we now denote as L (dn |xn, s;ϕ, ξ ) ≡ L (dn |xn, s; θ, π, p, ξ ). The arguments above imply

that in this case (ϕ∗, ξ∗) solve

1
N

N∑
n=1

∂ log [L (dn |xn;ϕ∗, ξ∗ )]
∂ϕ

= 0

When the choice specific likelihood is used to update the nuisance parameters, the definition of

the algorithm implies that upon convergence, ξ∗kxs = Lk (x, s;ϕ∗, ξ∗) for each (k, x, s) . Stacking

Lk (x, s;ϕ∗, ξ∗) for each choice k and each value (x, s) of state variables to form L (ϕ, ξ) , a K×X×S

vector function of the parameters (ϕ, ξ) , our estimator satisfies the KXS additional parametric re-

strictions L (ϕ∗, ξ∗) = ξ∗. When the empirical likelihoods are used instead, this condition is replaced

by the KSX equalities

ξ∗kxs

T∑
t=1

N∑
n=1

I(x = xnt)qst (dn, xn, ϕ
∗, ξ∗) =

T∑
t=1

N∑
n=1

dnktI(x = xnt)qst (dn, xn, ϕ
∗, ξ∗)

Forming the SX dimensional vector qt (dn, θ, ϕ, ξ) from stacking the terms I(x = xnt)qst (dn, xn, ϕ
∗, ξ∗)

for each state (x, s) and the KSX dimensional vector q(n,t)
st (dn, ϕ, ξ) from I(x = xnt)qst (dn, xn, ϕ, ξ),

we rewrite this alternative set of restrictions in vector form as[
1
NT

T∑
t=1

N∑
n=1

qt (dn, ϕ
∗, ξ∗)

]
Hξ∗ =

1
NT

T∑
t=1

N∑
n=1

q
(n,t)
st (dn, ϕ

∗, ξ∗)

where H is the SX ×KSX block diagaonal matrix

H ≡


1 1 1 . . . 0 0 0

. . . . . . . . .

0 0 0 . . . 1 1 1


We now turn to the properties of the algorithm. First we show that if the model generating the

data, ϕ0, is identified within the Ψ space, then ϕ∗ is a consistent estimator of ϕ0. It follows that if

more than one root solves the orthogonality conditions that define the limit points of our estimator,

then the model is not identified, so cannot be estimated using maximum likelihood either. In this

way the limit properties of the algorithm are informative about whether the underlying framwork

is identified. The following proposition formally states this result.
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Proposition 3 Suppose the data {dn, xn} are generated by ϕ0, exhibiting conditional choice prob-

abilites ξ0. If ϕ1 satisfies the vector of moment conditions

E

[
∂ log [L (dn |xn;ϕ1, ξ1 )]

∂ϕ

]
= 0

where the expectation is taken over (dn, xn) in the sample population and L (ϕ1, ξ1) = ξ1, then under

standard regularity conditions ϕ0 and ϕ1 are observationally equivalent.

Proof The definition of this estimator ensures (π1, p1, ξ1) define a set of probability distri-

butions that generate the empirical distribution of the choices observed in the data conditional on

the observed state variables. Thus the data generation process is fully characterized by (ϕ1, ξ1) . It

only remains to show that in the structural model defined by ϕ1, optimizing behavior by the agents

leads to the vector of conditional choice probabilities ξ1.

From the parameter vector (ϕ1, ξ1) we form the payoff function, or expected value function,

v (z;ϕ, ξ1) , using the the finite dependence representation discussed in Section 2 and exploited in

the estimation of (ϕ1, ξ1). Also let uk (z) ≡ uk (z; θ) denote the component of current utility that

depends on the state variables when the kth choice is made and given a parameterziation within the

Ψ class of models It follows that, conditional on (znt, εnt) the value of choosing k is

uk (znt;ϕ) +
∑Z

z′=1
v
(
z′;ϕ, ξ1

)
dFk

(
z′ |znt;ϕ

)
+ εnt

We consider the problem of estimating ϕ ∈ Ψ in a random utility model with payoffs defined above,

where ξ1 is known and ε is parameterized by G (ε;ϕ) , which is known up to ϕ.

By construction, the likelihood of ϕ given the sequence (dn, xn) and the incidental parameters ξ1

is L (dn |xn;ϕ, ξ1 ) . Define ϕ1 as a value that solves the expectation of the score in the proposition.

Under standard regularity conditions, ϕML, the maximum likelihood estimator of ϕ ∈ Ψ, is defined

by its first order condition. Appealing to continuity of the likelihood in ϕ and the law of large

numbers, ϕML converges to ϕ1. Furthermore ϕML is consistent, which implies from the definition

of ξ1, that ϕ1 solves

ξ
(kz)
1 = Pr

 εk − εl ≥ ul (z;ϕ)− uk (z;ϕ) +
∑Z

z′=1 v (z′;ϕ) dFl (z′ |z;ϕ)−
∑Z

z′=1 v (z′;ϕ, ξ1) dFk (z′ |z;ϕ)

for all l ∈ {1, . . . ,K}


for all (k, z) . Consequently the conditional choice probabilites ξ1 are generated by a random utility

function above with the parameterization defined above.

From our representation result in Section 2, v (z;ϕ1, ξ1) is the expected valuation function for

the dynamic programming problem, and therefore the conditional choice probabilites arise from
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individuals optimizing in the ϕ1 model. We conclude that the choice probabilities conditional on the

observed state variables for both ϕ0 and ϕ1 are the same, thus proving ϕ0 and ϕ1 are observationally

equivalent.‖

Given the identification of ϕ0 ∈ Ψ and hence the consistency of ϕ∗, its convergence at rate
√
N

can be readily established by appealing well known results in the literature found in Hansen (1982)

or Newey and McFadden (1994) for example. In general ϕ∗ does not, however, achieve the Cramer

Rao lower bound. To define its asymptotic covariance matrix let

h1 (dn, xn, ϕ, ξ) ≡

 ∂ log [L (dn |xn;ϕ, ξ )] /∂ϕ

L (ϕ, ξ)− ξ


and

h2 (dn, xn, ϕ, ξ) ≡

 ∂ log [L (dn |xn;ϕ, ξ )] /∂ϕ[
q (dn, xn, ϕ, ξ)Hξ − q(n,t) (dn, xn, ϕ, ξ)

]


Respectively defining the expected outer product and derivative matrices for each estimator k ∈

{1, 2} as

Ωk = E
[
hk (dn, xn, ϕ0, ξ0)hk (dn, xn, ϕ0, ξ0)

′]
Γk = E

[
∂hk (dn, xn, ϕ0, ξ0)

∂ϕ

∂hk (dn, xn, ϕ0, ξ0)
∂ξ

]
it follows from Hansen (1982, Theorem 3.1) for example, that

√
N (ϕ∗ − ϕ0) is asymptotically nor-

mally distributed with mean zero and covariance matrix

Σk = [Iρ : 0KSX ] Γ−1
k ΩkΓ−1′

k [Iρ : 0KSX ]′

where Iρ is the ρ dimensional identity matrix, ρ is the dimension of ϕ, and 0KSX is a ρ × KSX

matrix of zeros.

7 Small Sample Performance

We perform two Monte Carlo simulations to assess the performance of our estimator for finite

samples. Both simulations are simpler versions of proposed empirical projects discussed below. The

first simulation is of a finite horizon model and shows that both methods of updating the CCP’s

yield parameter estimates similar to full backwards recursion with little loss in efficiency. The second

simulation is an infinite horizon game and shows that CCP estimators can handle regime switching

in dynamic discrete choice models even when few time periods are observed in the data.
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7.1 Finite Horizon Monte Carlo

The first simulation is a model of teenage behavior where in each period t the teen decides among

three alternatives: drop out (d0t = 1), stay in school and do drugs (d1t = 1), or stay in school but

do not do drugs (d2t = 1). In this model there are two types of agents, where an individual’s type

affects their utility of using drugs. The probability of being type L is given by π. An individual

learns their type through experimentation: if at any point an individual has tried drugs their type is

immediately revealed to them. Hence, the individual’s information about their type, st, comes from

the set {U,L,H} where U indicates that the individual does not know their type. The econometrician

and the individual then have the same priors as to the individual being a particular type before the

individual has tried drugs. However, once an individual has tried drugs their type is immediately

revealed to them but not to the econometrician.

The individual also faces a withdrawal cost if he uses drugs at time t − 1 but does not use at

time t. Hence, the other relevant state variable, xt, is taken form {N,Y } which indicate whether

the individual used drugs in the previous period. There are then five possible information sets

{st, xt}: {U,N}, {L,N}, {L, Y }, {H,N}, and {H,Y }. With dropping out being a terminal state,

the evolution of the state space conditional on the two stay in school options is given by the transition

matrix in Table 1.

With dropping out being a terminal state, we normalize utility with respect to this option. The

flow utilities net of the ε’s when an individual know their type are given by:

u1(st ∈ {L,H}, xt) = α0 + α1 + α2(st = H)

u2(st ∈ {L,H}, xt) = α0 + α3(xt = Y )

where α0 is the baseline utility of attending school, α1 is the baseline utility of using drugs, α2 is the

additional utility from being type H and using drugs, and α3 is the withdrawal cost. Note that if the

individual chooses to use drugs no withdrawal cost is paid meaning that xt is not relevant. On the

other hand, if the individual choose not to use drugs only the individual’s type becomes irrelevant

as type only affects the utility of using drugs. We can then write down the similar expressions for

those who do not know their type;

u1(U, xt) = α0 + α1 + (1− π)α2(st = H)

u2(U, xt) = α0

where now the utility of using drugs is probabilistic and, since the individual has not used drugs in

the past, no withdrawal cost needs to be paid.
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Table 1: Evolution of the State Space†

{U,N} {L,N} {L, Y } {H,N} {H,Y }

{D,U} d2t = 1 1 0 0 0 0

d1t = 1 0 0 π 0 1− π

{L,N} d2t = 1 0 1 0 0 0

d1t = 1 0 0 1 0 0

{L, Y } d2t = 1 0 1 0 0 0

d1t = 1 0 0 1 0 0

{H,N} d2t = 1 0 0 0 1 0

d1t = 1 0 0 0 0 1

{H,Y } d2t = 1 0 0 0 1 0

d1t = 1 0 0 0 0 1

†Rows give state at time t, columns the state at time t + 1.

With the flow utilities in hand, we now focus on our attention on the value functions themselves.

Here it is important to note that choosing to drop out leads to a terminal state. Combining this

with having the ε’s be distributed Type I extreme value means that the future value components

are functions of the transition on the state space and the one period ahead conditional choice

probabilities of dropping out. The expressions for the vk’s when an individual knows their type then

follow:

v1(st ∈ {L,H}, xt) = u1(st ∈ {L,H}, xt)− β ln [ξ0(st ∈ {L,H}, Y )] + βγ

v2(st ∈ {L,H}, xt) = u2(st ∈ {L,H}, xt)− β ln [ξ0(st ∈ {L,H}, N)] + βγ

with the corresponding expressions when an individual does not know their type following:

v1(U, xt) = u1(U, xt) + βγ

−β (π ln [ξ0(L, Y )] + (1− π) ln [ξ0(H,Y )])

v2(U, xt) = u2(U, xt)− β ln [ξ0(U,N)] + βγ

For each simulation we create 5000 simulated individuals with 5 periods of data. There are less

observations for those who drop out as no further decisions occur once the simulated individual
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leaves school. We estimate the model using three different methods of calculating the expected

future utility where all three are equivalent asymptotically. The first calculates the expected future

utility via backwards recursion while the second and third use CCP’s with the CCP’s updated using

the likelihoods or the weighted data respectively. Each simulation was performed 500 times. Table

2 shows that both CCP estimators performed nearly as well as the more efficient model. Updating

the CCP’s via the likelihoods yielded smaller standard errors than using the data but the differences

were small. Note that it is particularly surprising how well the CCP estimators performed given that

we are only using data from a discrete outcome. In more standard cases unobserved heterogeneity

will affect both transitions (which may be on continuous variables) and choices. Using the variation

from the transitions is likely to further reduce the differences across the estimators.

Table 2: School and Drug Choice Monte Carlo†

School/No Drug No Withdrawal Low Drug High Drug Discount Prob. of

Intercept Benefit Type Type Factor High Type

True Parameters 0.2 0.4 -15 2 0.9 0.7

Efficient Estimates 0.197 0.403 -15.011 2.003 0.900 0.700

Standard Error 0.069 0.078 0.755 0.074 0.017 0.014

CCP Estimates 1‡ 0.194 0.397 -14.835 1.99 0.891 0.701

Standard Error 0.085 0.092 0.800 0.087 0.017 0.014

CCP Estimates 2 0.2003 0.3934 -14.833 2.000 0.884 0.7005

Standard Error 0.097 0.105 0.817 0.099 0.026 0.014

†Listed values are the means and standard errors of the parameter estimates over the 500 simulations.

‡CCP Estimates 1 refers to updating the CCP’s via the likelihoods while CCP Estimates 2 updates the CCP’s using

the data directly.
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7.2 Monte Carlo 2: An Infinite Horizon Entry/Exit Game

Our second Monte Carlo examines an entry/exit game along the lines of the game described in

section 4.3. We assume that the econometrician observes prices as well, though these prices do not

affect the firm’s expected profits once we control for the relevant state variables. We specify the

price equation as:

Yjt = α0 + α1(1 Firm in Market j) + α2(2 Firms in Market j) + α3sjt + ζjt (9)

where j indexes the market. Price then depends upon how many firms are in the market, an

unobserved state variable that transitions over time, sjt, and takes on one of two values, H or L,

as well as a normally distributed error, ζjt. Firms know the current value of this unobserved state

variable but only have expectations regarding its transitions. The econometrician has the same

information as the firms regarding the probability of transitioning from state to state but does not

know the current value of the state. Profits are assumed to be linear in whether the firm has a

competitor and the state of the market. Each of our Monte Carlos has 3000 markets5 observed for

5 periods each. The rest of the specification of the Monte Carlo follows directly from the entry/exit

game discussed in section 4.3.

The first set of columns corresponds to our base CCP algorithm described in section 4. The

second set involves estimating the parameters governing the unobserved variables, the conditional

probabilities of being in each of the unobserved states, and the parameters of the price equation

in a first stage. The likelihood contributions of the entry/exit choices are calculated from the data

in this first stage as opposed to solving out the dynamic discrete choice problem. We then use the

conditional probabilities of being in a particular state as weights in a second stage maximization of

the dynamic discrete choice problem.

Results are presented for 100 simulations in Table 2. Both the base CCP estimator and the CCP

estimator where unobserved heterogeneity is estimated in a first stage yield estimates that are quite

close to the truth with small standard errors. The noisiest parameters are those associated with the

persistence of the states and with the initial conditions. Of particular interest are the coefficients

on monopoly and duopoly in the demand equation. If we ignore unobserved heterogeneity and

estimate the demand by OLS, the coefficients are -.18 and -.41 respectively, biased significantly

upward compared to the true values of -.3 and -.7. Controlling for dynamic selection shows a much

stronger effect of adding firms to the market, consistent with the actual data generating process.
5This is roughly the number of U.S. counties.
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Table 3: Dynamic Entry/Exit Simulations†

Method 1§ Method 2

True Values Estimates Std. Error Estimates Std. Error

Intercept L 7.000 6.999 0.042 6.999 0.043

Price Intercept H 8.000 8.005 0.066 8.004 0.067

Equation 1 Firm -0.300 -0.299 0.035 -0.304 0.036

2 Firms -0.700 -0.702 0.053 -0.702 0.054

Flow Profit L 0.000 -0.002 0.032 -0.002 0.040

Profit Flow Profit H 0.500 0.516 0.103 0.496 0.111

Function Duopoly Cost -1.000 -1.009 0.043 -1.002 0.055

Entry Cost -1.500 -1.495 0.027 -1.495 0.029

p‡LL 0.800 0.799 0.028 0.799 0.029

Unobserved pHH 0.700 0.702 0.040 0.705 0.037

Heterogeneity π††
L 0.800 0.799 0.031 0.799 0.032

† 100 simulations of 3000 markets for 5 periods. β set at 0.9.

‡ The probability of a market being in the low state in period t conditional on being in the low state at t− 1.

†† Initial probability of a market being assigned the low state.

§ Method 1 uses our base algorithm. Method 2 estimates unobserved heterogeneity using two-stage method taking

the distribution of unobserved heterogeneity as given when solving the dynamic discrete choice problem.

8 Conclusion

Estimation of dynamic discrete choice models is computationally costly, particularly when controls

for unobserved heterogeneity are implemented. CCP estimation provides a computationally cheap

way of estimating dynamic discrete choice problems. In this paper we have broadened the class

of CCP estimators that rely on a small number of CCP’s for estimation and have shown how to

incorporate unobserved heterogeneity that transitions over time. The algorithm itself borrowed

from the macroeconomics literature on regime switching– and in particular the insights gained from

the EM algorithm– in order to form an estimator that iterated on 1) updating the conditional

probabilities of being a particular type, 2) updating the CCP’s, 3) forming the expected future

utility as functions of the CCP’s, and 4) maximizing a likelihood function where the expected future
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utility is taken as given.

The base method relies on being able to use maximum likelihood. There are many cases where

estimation is computationally feasible only via a non-likelihood approach. Our algorithm can be

adapted to these cases as well provided the model also includes outcomes besides the choices them-

selves. For these cases, we show how to estimate the parameters governing the unobserved hetero-

geneity in a first stage. Here, the updating of the CCP’s relies on using the empirical distribution of

the choices weighted by the conditional probabilities of being in particular unobserved states. It is

then possible to incorporate unobserved heterogeneity into non-likelihood based approaches such as

Hotz et al. (1994) and Bajari et al. (2006) in a second stage. The conditional probabilities of being

in particular unobserved states are taken from the first stage and used as weights when estimating

the parameters of the second stage. Both methods were shown to be both computationally simple

with little loss of information relative to full information maximum likelihood.

References

[1] Altug, S. and R.A. Miller (1998): “The Effect of Work Experience on Female Wages and Labour

Supply,” Review of Economic Studies, 62, 45-85.

[2] Aguirregabiria, V. and P. Mira (2002): “Swapping the Nested Fixed Point Algorithm: A Class

of Estimators for Discrete Markov Decision Models,” Econometrica, 70, 1519-1543.

[3] Aguirregabiria, V. and P. Mira (2006): “Sequential Estimation of Dynamic Discrete Games,”

Forthcoming in Econometrica.

[4] Arcidiacono, P. (2005): “Affirmative Action in Higher Education: How do Admission and

Financial Aid Rules Affect Future Earnings?” Econometrica, 73, 1477-1524.

[5] Arcidiacono, P., and J.B. Jones (2003): “Finite Mixture Distributions, Sequential Likelihood,

and the EM Algorithm,” Econometrica, 71, 933-946.

[6] Bajari, P., L. Benkard, and J. Levin (2006): “Estimating Dynamic Models of Imperfect Com-

petition,” Forthcoming in Econometrica.

[7] Becker, G. and K.M. Murphy (1988): “A Theory of Rational Addiction,” Journal of Political

Economy, 96, 675-700.

28



[8] Bresnahan, T.F., S. Stern and M. Trajtenberg (1997): “Market Segmentation and the Sources of

Rents from Innovation: Personal Computers in the Late 1980s,” RAND Journal of Economics,

28, 17-44.

[9] Eckstein, Z. and K.I. Wolpin (1999): “Why Youths Drop Out of High School: The Impact of

Preferences, Opportunities, and Abilities,” Econometrica, 67, 1295-1339.

[10] Ericson, R. and A. Pakes (1995): “Markov-Perfect Industry Dynamics: A Framework for Em-

pirical Work,” Review of Economic Studies, 62, 53-82.

[11] Hamilton, J.D. (1990): “Analysis of Time Series Subject to Changes in Regime,” Journal of

Econometrics, 45, 39-70.

[12] Hotz, J. and R.A. Miller (1993): “Conditional Choice Probabilities and Estimation of Dynamic

Models,” Review of Economic Studies, 61, 265-289.

[13] Pakes, A., M. Ostrovsky, and S. Berry (2004): “Simple Estimators for the Parameters of

Discrete Dynamic Games (with Entry/Exit Examples),” Working Paper: Harvard University.

[14] Pesendorfer, M. and P. Schmidt-Dengler (2003): “Identification and Estimation of Dynamic

Games,” NBER working paper #9726.

[15] Rust, J. (1987): “Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold

Zurcher,” Econometrica, 55, 999-1033.

29


