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Abstract

We consider nonparametric identification of random utility discrete choice models of de-
mand for differentiated products. We examine the case of market level data, i.e., obser-
vations of product characteristics, market characteristics, and market shares. Our rep-
resentation of preferences nests random coefficients discrete choice models widely used
in practice in the literature on demand for differentiated products; however, our model
is nonparametric and distribution free. It allows for choice-specific unobservables, en-
dogenous choice characteristics (e.g., prices), and high-dimensional taste shocks with
arbitrary correlation and heteroskedasticity. Using standard conditions from the liter-
atures on mulitnomial choice, nonparametric instrumental variables, and simultaneous
equations, we demonstrate the identifiability of demand and of the full random utility
model.

∗We had helpful early conversations on this topic with Rosa Matzkin and Yuichi Kitamura. We had
helpful feedback from participants in the 2008 Game Theory World Congress and the 2008 LAMES.



1 Introduction

Discrete choice demand models play a central role in the modern empirical literature in

industrial organization and are widely used in a range of applied fields of economics. Ap-

plications include studies of the sources of market power (e.g., Berry, Levinsohn, and Pakes

(1995), Nevo (2001)), welfare gains from new goods or technologies (e.g., Petrin (2002),

Eizenberg (2008)), mergers (e.g., Nevo (2000), Capps, Dranove, and Satterthwaite (2003)),

network effects (e.g., Rysman (2004), Nair, Chintagunta, and Dube (2004)), product promo-

tions (e.g., Chintagunta and Honoré (1996), Allenby and Rossi (1999)), vertical contracting

(e.g., Villas-Boas (2007), Ho (2007)), product offerings (e.g., Gentzkow and Shapiro (2007),

Fan (2008)), trade policy (e.g., Goldberg (1995)), residential sorting (e.g., Bayer, Ferreira,

and McMillan (2007)), and school choice (e.g., Hastings, Staiger, and Kane (2007)).

Typically these models are estimated using econometric specifications incorporating func-

tional form restrictions and parametric distributional assumptions. Such restrictions may

be desirable in practice: estimation in finite samples always requires approximations and,

since the early work of McFadden (1974), an extensive literature has developed providing

flexible models well suited to estimation and inference. Furthermore, parametric structure

is necessary for the extrapolation involved in many out-of-sample counterfactuals. However,

an important question is whether parametric specifications and distributional assumptions

play a more fundamental role in determining what is learned from the data. In particular,

are such assumptions essential for identification? This is the question we explore here.

We study the identification of random utility multinomial choice models in the case of

“market data,” where the researcher observes product characteristics, market characteristics,

and market shares, but not individual choices.1 Our representation of preferences is nonpara-

metric and distribution free, but nests random coefficients discrete choice models widely used

1A setting in which one observes individual choices, with or without individual characteristics, is equiva-
lent except when there are observables that shift the relative desirabililty of products in a given choice set.
In that case the the additional invidividual level data (i.e., “micro data”) can provide additional informa-
tion, in effect providing variation in the choice set while the choices themselves—in particular, choice-specific
unobservables—are held fixed. We address identification in the case of micro data in Berry and Haile (2008).
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in practice. It allows for choice-specific unobservables, endogenous choice characteristics,

unknown heteroskedasticity, and high-dimensional correlated taste shocks.

We investigate identification of demand as well as identification of the full random utility

model. Identification of demand naturally requires instruments for prices (and/or any other

endogenous choice characteristics), and we provide one result relying on standard nonpara-

metric instrumental variables conditions (Newey and Powell (2003)). Because identification

of demand is sufficient for many purposes motivating estimation of random utility discrete

choice models, we view this as an important result. Nonetheless, nonparametric instrumental

variables conditions can be difficult to interpret or verify. We provide an alternative result

relying instead on a large support condition for the case in which cost-shifters are available

as instruments. This result requires additional structure on the supply side, although not a

fully specified supply model.

To show full identification of the random utility model we require an additional sep-

arability restriction on preferences and a large support condition. Even with this added

restriction, our model generalizes those considered previously in the applied and economet-

rics literatures. And although large support conditions are strong and controversial, they

are also standard for evaluating identifiability under ideal conditions. Our results show that

full identification of a very general fully nonparametric model can be obtained under the

same kind of support conditions previously used to demonstrate identification in even the

simplest semiparametric random utility models.

Together these results provide a positive message regarding the faith we may take in

applied work using random utility models allowing for rich consumer heterogeneity, choice-

specific unobservables, and endogeneity. Such models are identified without parametric

assumptions under the same sorts of conditions that identify much simpler and more familiar

models. Our results also shed light on the key sources of variation one should look for in

applications.

In addition to our separate focus on identification of demand, our work is distinguished

by the approach of modeling of utility as a nonparametric random function of observed
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and unobserved choice characteristics. This contrasts with the usual practice of building up

randomness from random coefficients and/or other taste shocks. Our approach facilitates

focusing directly on the identifiability of the joint distribution of utilities (conditional on

observed and unobserved characteristics) rather than on the joint distribution of taste shocks.

This is a significant advantage because the vector of utilities has the same dimension as the

vector of observable choice probabilities; thus, the dimension of the model primitives equals

that of the observables. This simple fact enables us to obtain positive identification results

for a very general class of models.

Essential to our model is an unobservable associated with each choice and market. Al-

though explicit modeling of these choice-specific unobservables is standard in the applied

literature, most prior econometric work on discrete choice with endogeneity has embedded

the sources of randomness in preferences and the sources of endogeneity in the same random

variables. Explicitly modeling choice-specific unobservables can be important for defining the

objects of interest, particularly the effects of changes in endogenous characteristics within a

flexible model of consumer heterogeneity. For example, our formulation allows us to charac-

terize demand elasticities, which require evaluating the effects of a change in price (including

resulting changes in the variance or other moments of random utilities) holding unobserved

product characteristics fixed.2

In the following section we briefly place our work in the context of the prior literature.

We set up the model in section 3, then discuss a key preliminary result in section 4. We

provide our two sets of identification results in sections 5 and 6. We conclude in section 7.

2 Related Literature

In addition to the large applied literature that motivates our work, the ideas in this pa-

per relate to several literatures. Attention to the identifiability of discrete choice models

has a long history. Important early work includes Manski (1985), Manski (1988), Matzkin

2See, e.g., Chintagunta (2001) for evidence of the importance of allowing for both heterogeneity and
endogeneity.
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(1992), and Matzkin (1993), who examined semiparametric models with exogenous regres-

sors. Work considering identification of heterogeneous preferences has focused on random

coefficients models and includes Ichimura and Thompson (1998) and Gautier and Kitamura

(2007), which focus on binary choice. Briesch, Chintagunta, and Matzkin (2005) consider

multinomial choice, allowing generalizations of the linear random coefficients model. Our

work relaxes functional form and distributional assumptions in this earlier work, but we ex-

ploit many of the same insights, particularly the reliance on exogenous observables to trace

out the distribution of unobservables.

Identification results for discrete choice models allowing for endogeneity have been given

by Honoré and Lewbel (2002), Hong and Tamer (2004), Lewbel (2000), Lewbel (2005), Blun-

dell and Powell (2004), and Magnac and Maurin (2007). These all consider linear semipara-

metric models in which an additive scalar shock (analogous to the extreme value or normal

shock in logit and probit models) may be correlated with some observables. Among these,

Lewbel (2000) and Lewbel (2005) consider multinomial choice. Extensions to nonadditive

shocks are considered in Matzkin (2007b) and Matzkin (2007a).

In addition to relaxing functional form restrictions on the roles of observables and unob-

servables, relative to this prior literature we add a distinction between choice-specific unob-

servables and individual heterogeneity in preferences.3 As discussed in the introduction, this

is important in a number of applications if one is to construct counterfactual predictions (e.g.,

responses to changes in price) that account for both heteroskedasticity (e.g., heterogeneity in

the marginal rate of substitution between income and other characteristics) and endogeneity

(e.g., correlation between a good’s price and its unobserved quality). This separate treatment

of choice-specific unobservables and preference heterogeneity builds on parametric models

used in applied work, including that in Berry, Levinsohn, and Pakes (1995) and a large re-

lated literature. Matzkin (2004) (section 5.1) also makes a distinction between choice-specific

3Concurrent work by Fox and Gandhi (2008) explores identifiability of several related models, including
a flexible model of multinomial choice in which consumer types are multinomial and utility functions are
determined by a finite parameter vector. They suggest that one of our approaches for allowing choice-specific
unobservables and endogenous choice characteristics could be adapted to their framework.
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unobservables and an additive preference shock, but without heteroskedasticity.4

Blundell and Powell (2004), Matzkin (2004), and Hoderlein (2008) have considered binary

choice in semiparametric triangular models, leading to the applicability of control function

methods or the related idea of “unobserved instruments.”5 For binary choice demand esti-

mation, triangular models can be appropriate when price depends only on the unobserved

demand shock, but not on a cost shock as well. In the case of multinomial choice, standard

models of oligopoly pricing in differentiated products markets imply that each price depends

on the entire vector of demand shocks (and cost shocks, if any). This appears to preclude the

use of control function methods; however, one of our results below uses a related approach

of inverting a multivariate supply and demand system to recover the entire vector of shocks

to supply and demand.

Our attention to models in which prices and market shares are determined simultaneously

naturally leads us in some cases to ideas explored previously for identification of simultaneous

equations models (e.g., Brown (1983), Roehrig (1988), Benkard and Berry (2006), Matzkin

(2005), and Matzkin (2008)). Matzkin (2008) in particular has recently explored identifica-

tion in a variety of nonparametric simultaneous equations models. Although she does not

explicitly address discrete choice models, for one of our results we transform the model to

a form equivalent to one she considers. Our assumptions and proof for this case differ from

hers in important ways.6 Nonetheless, we exploit a separability condition whose advantages

she also emphasizes. Our transformation of the discrete choice model to the simultaneous

equations setup applies the insights of Gandhi (2008), who recently showed how to extend a

key invertibility result of Berry (1994) and Berry and Pakes (2007) to a more general class

of models.

Finally, our own work in Berry and Haile (2008) explores identification in the case of

“micro data” using ideas similar to some of those we use. The distinction between “market

4See also Matzkin (2007a) and Matzkin (2007b).
5See also Petrin and Train (2009) and Altonji and Matzkin (2005).
6For example, we use the same large support assumption she uses in discussing supply and demand, but

we do not require any conditions on (even existence of) derivatives of densities.
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data” and “micro data” has been emphasized in the recent industrial organization literature

(e.g., Berry, Levinsohn, and Pakes (2004)), but not the econometrics literature on identifi-

cation. A key insight in Berry and Haile (2008) is that within a market the choice-specific

unobservables are held fixed; therefore, examining how choice probabilities change within a

market as consumer-choice-specific observables vary can provide a great deal of information

about the randomness of utility, holding fixed the choice-specific unobservable.7 That strat-

egy was exploited throughout Berry and Haile (2008), but cannot be applied in the case of

market data.8

3 Model

3.1 Random Utility Discrete Choice

Each consumer i in market t chooses from a set Jt of available products. The term “market”

here is synonymous with the choice set. In particular, consumers facing the same choice set

can be viewed as being in the same market. In practice, markets will typically be defined

geographically and/or temporally. The choice set Jt always includes the option not to

purchase—i.e., to choose the “outside good,” which we index as choice j = 0. We denote the

number of “inside goods” by Jt = |Jt| − 1.9

Each inside good has observable (to us) characteristics xjt ∈ RKx and price pjt ∈ R.

We treat xjt and pjt differently only because we will allow pjt to be endogenous but will

assume other product characteristics are exogenous. The restriction to a single endogenous

characteristic reflects the usual practice, but is not essential for our results. Indeed, the

7Because the prior econometrics literature has given little attention to choice-specific unobservables, the
importance of the distinction between micro data and market data may not have been fully recognized.

8Berry and Haile (2008) includes a discussion of a particular case in which what appears to be a “market
data” environment is actually isomorphic to the “micro data” environment. The key is that in that ex-
ample one has a continuum of observations for which the choice-specific unobservables are held fixed while
observables vary. In general this is not the case.

9In applications with no “outside choice” our approach can be adapted by normalizing preferences relative
to those for a given choice. The same adjustment applies when characteristics of the outside good vary across
markets in observable ways.
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results in sections 4 and 5 hold without modification whatever the dimension of pjt.
10 We

allow xjt to include product dummies; thus, utilities may depend on the “names” of the

products as well as their characteristics. Unobserved product/market characteristics are

represented by an index ξjt ∈ R. A market t is thus characterized by
(
Jt,

{
xjt, pjt, ξjt

}
j∈Jt

)
.

We let χ = supp
(
xjt, pjt, ξjt

)
.

We consider preferences represented by a random utility model. Each consumer i in mar-

ket t has a conditional indirect utility function uit : χ → R. However, consumers have hetero-

geneous tastes, even conditional on all observables. From our perspective, each consumer’s

utility function uit is a random draw from a set U of permissible functions {ũ : χ → R}. We

discuss restrictions on the set U below.

Formally, we define the random function uit as follows. Let (Ω,F , P) denote a probability

space. Given any
(
xjt, pjt, ξjt

)
∈ χ, consumer i’s conditional indirect utility from good j is

given by

vijt = uit

(
xjt, pjt, ξjt

)
= u

(
xjt, pjt, ξjt, ωit

)
(1)

where u is measurable in ωit and u (·, ·, ·, ω) ∈ U for all ω ∈ Ω.

This formulation superficially resembles models in which randomness in utilities is cap-

tured by a scalar random variable (e.g., Lewbel (2000), Matzkin (2007a), Matzkin (2007b));

however, we emphasize that ωit is not a random variable but an elementary event that can

determine an arbitrary number of random variables. The following example illustrates.

Example 1. A special case of the class of preferences we consider is that generated by the

linear random coefficients random utility model

u
(
xjt, pjt, ξjt, ωit

)
= xjtβit − αitpjt + ξjt + εijt

where, for example, the random variables (αit, βit, εi1t, . . . , εiJt) are defined on the probability

space (Ω,F , P) as
(
α (ωit) , β(1) (ωit) , . . . , β(Kx) (ωit) , ε1 (ωit) , . . . , εJ (ωit)

)
.

10The modifications required for the results in section 6 are straightforward.
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As is standard, without loss we assume the draw ωit from the sample space Ω determining

the function uit is independent of the arguments of the function,
(
xjt, pjt, ξjt

)
. We add to

this the standard assumption of menu-independent preferences.11

Assumption 1. The measure P on Ω does not vary with Jt or
{(

xjt, pjt, ξjt

)}
j∈Jt

.

Relative to the standard formulation of a random function on χ, this merely rules out

the possibility that the utility from one product varies with the set or characteristics of other

products on offer. This is a standard assumption of stable preferences made in nearly all

work on discrete choice.12

Aside from this menu-independence and the restriction to scalar choice-specific unobserv-

ables, our representation of preferences is so far fully general. For example, it allows arbitrary

correlation of consumer-specific tastes for different goods or characteristics. It also allows

arbitrary heteroskedasticity in utilities across different elements of Jt, or in utilities for the

same element as
(
xjt, ξjt

)
varies. As the following example shows, even with additional

assumptions that we will not make, this structure provides a significant generalization of

models typically considered in the literature.

Example 1 (continued). With the specification

(αit, βit, εi1t, . . . , εiJt) =
(
α (ωit) , β(1) (ωit) , . . . , β(Kx) (ωit) , ε1 (ωit) , . . . , εJ (ωit)

)
Assumption 1 allows an arbitrary joint distribution of

(
αit, β

(1)
it , . . . , β

(Kx)
it , εi1t, . . . , εiJtt

)
but

requires it to be the same for all i, t, and
{(

xjt, pjt, ξjt

)}
j=1...J

. Note that more general

specifications are permissible, even within the linear random coefficients model. For ex-

11This structure permits variation in Jt across markets. The realization of ωit should be thought of as
generating values of εijt = εj (ωit) for all possible choices j, not just those in the current choice set. Thus,
the utility function defines preferences even over products not available. Note that with Assumption 1 the
joint distribution of {εijt}j∈K will be the same regardless of whether K = Jt or K ⊂ Jt. Thus, for example,
a consumer’s preference between two products j and k does not depend on the other products in the the
choice set.

12See Block and Marschak (1960), Falmagne (1978), and Barbera and Pattanaik (1986) for discussion
of testable implications in the context of discrete choice, and Haile, Hortaçsu, and Kosenok (2008) for an
extension to strategic environments.
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ample, we can allow the specification εijt = εijt (xjt, ωit), where Assumption 1 requires that

the joint distribution of (εi1t, . . . , εiJtt) be the same for choice sets with identical observable

characteristics (which could include product dummies).

We will now restrict the set of utility functions we permit with a restriction on the set U .

First partition xjt into
(
x

(1)
jt , x

(2)
jt

)
with x

(1)
jt ∈ R. We then make the following assumption.

Assumption 2. U is the set of all functions ũit : χ → R such that conditional on any x
(2)
jt ,

ũit

(
xjt, pjt, ξjt

)
= µit

(
x

(1)
jt + ξjt, x

(2)
it , pjt

)
for some function µit that is strictly increasing in

its first argument.

With Assumption 2, we consider random utility functions with representations of the

form

vijt = u
(
x

(1)
jt + ξjt, x

(2)
it , pjt, ωit

)
. (2)

Assumption 2 contains two parts. First is a standard restriction to a vertical product-

specific unobservable ξjt; thus all consumers agree that an increase in ξjt makes choice j more

attractive, all else equal. The second is perfect substitutability between ξjt and x
(1)
jt . In the

the standard linear random coefficients model (Example 1) this holds if there is one covariate

that enters without a random coefficient. To foreshadow the role that these two assumptions

play below, note that identification requires recovering each latent ξjt. Monotonicity in

ξjt will provide an essential invertibility condition, while perfect substitutability provides a

means of quantifying variation in ξjt in units of the observable x
(1)
jt .

Given the choice set, each consumer maximizes her utility, choosing product j whenever

u
(
x

(1)
jt + ξjt, x

(2)
it , pjt, ωit

)
> u

(
x

(1)
kt + ξkt, x

(2)
it , pkt, ωit

)
∀k ∈ Jt − {j}. (3)

We denote consumer i’s choice by

yit = arg max
j∈Jt

u
(
xjt, ξjt, zijt, ωit

)
.
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This leads to market shares (choice probabilities)

sjt = EP [1 {yit = j}]

= EP
[
1
{
u

(
xjt, pjt, ξjt, ωit

)
> u (xkt, pkt, ξkt, ωit) ∀k ∈ Jt − {j}

}]
= sj (Jt, {xkt, pkt, ξkt}k∈Jt) (4)

3.2 Normalizations

Two types of normalizations will be needed to obtain a unique representation of preferences.

Such normalizations are without loss of generality. One is a normalization utilities, which

have no natural location or units (scale). Throughout the paper we will normalize the

location of utilities by setting the utility from the outside good to zero:

vi0t = 0.

We will be able to define our scale normalization on utility below.

The second type of normalization is a normalization of the choice-specific unobservables

ξjt. The linear substitutability between x
(1)
jt and ξjt required by Assumption 2 already

defines the scale of each ξjt. Our choice of location normalization for ξjt will be defined

below.

3.3 Observables and Primitives of Interest

Identification (of demand or the random utility model) with endogenous prices will require

excluded instruments, which we denote by z̃jt. Below we will discuss the types of instruments

we have in mind as well as the formal properties defining valid instruments. The set of

observables then consists of (t,Jt, {sjt, xjt, pjt, z̃jt}j∈Jt). As usual, to discuss identification,

we treat their population joint distribution as known.

We consider two types of identification results. One is identification of demand ; i.e., of

the functions sj defined in (4). These functions fully characterize the demand system: they
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describe how product characteristics (observed and unobserved, endogenous and exogenous)

determine the market shares of all goods, including the outside good.

We also consider identification of the joint distribution of indirect utilities conditional on

the choice set (Jt, {xkt, pkt, ξkt}k∈Jt). These conditional distributions are the primitives of

the model of consumer choice. We refer to this as full identification of the random utility

model. Interest in full identification of random utility model rather than merely demand

derives from welfare questions. However, the specification of preferences in (2) does not

permit meaningful aggregate welfare measures to be defined. This is one reason we will

consider full identification of the random utility model under a more restrictive specification

of the class of utility functions:

Assumption 2′. U is the set of all functions ũit : χ → R such that for each x
(2)
jt there is

a monotonic transformation Γ such that Γ
(
ũit

(
xjt, pjt, ξjt

))
= x

(1)
jt + ξjt + µit

(
x

(2)
it , pjt

)
for

some function µit.

This alternate assumption leads to specifications of random conditional indirect utilities

with representations of the form

vijt = x
(1)
jt + ξjt + µ

(
x

(2)
jt , pjt, ωit

)
(5)

which is a special case of (2). This specification incorporates quasilinearity, enabling char-

acterization of utilitarian social welfare.13

Henceforth we will condition on J with |J | = J . We will also condition on a value

of x
(2)
t =

(
x

(2)
1t , . . . , x

(2)
Jt

)
and suppress it in the notation. For simplicity we then let xjt

represent x
(1)
jt . Since we permitted each x

(2)
jt to include product dummies, conditioning on a

value of x
(2)
t requires that we write

vijt = uj

(
x

(1)
jt + ξjt, pjt, ωit

)
(6)

13Since price enters the function µj the quasilinearity will not be in wealth. This nonetheless provides a
valid notation of utilitarian social welfare in terms of a numeraire characteristic.
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and

vijt = x
(1)
jt + ξjt + µj (pjt, ωit) (7)

to represent, respectively, (2) and (5) above.

4 Preliminaries: Inverting Market Shares

Let

δjt = xjt + ξjt.

Let xt = (x1t, . . . , xJt), pt = (p1t, . . . , pJt), and δt = (δ1t, . . . , δJt).

The key implication of Assumption 2 is that choice probabilities depend on the indices

δjt, rather than separately on the components xjt and ξjt. In particular, for any vector δt,

market shares are given by

sjt = EP [1 {uj (δjt, pjt, ωit) > uk (δkt, pjt, ωit) ∀k ∈ Jt − {j}}]

=

∫
v:vijt≥vikt∀k

dFv (v|δt, pt)

≡ σj (δt, pt) (8)

where v is a J-vector and Fv (v|δt, pt) is the joint distribution of (vi1t, . . . , viJt) conditional

on (δt, pt).

Following Gandhi (2008), we will assume the follow “strong substitutes” condition.

Assumption 3. Consider any δ such that σj (δ, p) > 0 for all j ∈ J . For any strict subset

K ⊂ J , there exists k ∈ K and j /∈ K such that σj (δ, p) is strictly decreasing in δk.

Given the monotonicity of vijt in δjt, this is a natural regularity condition requiring that

for every binary partition of J there is some substitution between cells of the partition. This

is guaranteed if there are always consumers on the margin of indifference between every pair

of choices, as in multinomial probit and logit models (with or without random coefficients).

However, that degree of substitution is stronger than we require. For example, in a pure
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vertical model (e.g., Shaked and Sutton (1982)) each product substitutes with at most two

others, yet Assumption 3 holds.14 With this assumption we can follow the argument in

Theorem 2 of Gandhi (2008) to show the following lemma, which generalizes the well-known

invertibility results for linear discrete choice models from Berry (1994) and Berry and Pakes

(2007).15

Lemma 1. Consider any price vector p and any market share vector s = (s1, . . . , sJ)′ on the

interior of 4J . Under Assumptions 1–3, there is at most one vector δ such that σj (δ, p) = sj

∀ j.

Proof. Suppose, contrary to the claim, that for some δ 6= δ′, σj (δ, p) = σj (δ′, p) = sj for all

j. Since we have normalized the utility of the outside good to zero for all choice sets, we

can define δ0 = δ
′

0 = 0 as a notational convention without loss. Without loss, let δ′j > δj for

choice j ∈ J . Because 0 ∈ J , there must then exist a strict subset of choices K ⊂ J such

that δ′j > δj∀j ∈ K and δ′j ≤ δj∀j ∈ J − K. For this subset K let k ∈ K be the index of a

product referred to as “k” in Assumption 3. Now define a new vector δ∗ by

δ∗k = δ
′

k

δ∗j = δj∀j 6= k.

Monotonicity of vijt in δjt implies that σj (δ∗, p) ≤ σj (δ, p) for all j ∈ J −K. Furthermore,

Assumption 3 implies ∑
j∈J−K

σj (δ∗, p) <
∑

j∈J−K

σj (δ, p)

14For example, consider a 5 good vertical model and K = {3, 4, 5}. Good 4 does not substitute outside
of K, but goods 3 and 4 do. Thus the condition holds. It requires only that there be some element of K that
substitutes with some good outside K. This will be true here for any proper subset K ⊂ J = {0, 1, . . . , 5} .

15Berry (1994) and Berry and Pakes (2007) show existence and uniqueness of an inverse choice probability
in models with an additively separable δjt. Gandhi (2008) relaxes the separability requirement. Our lemma
addresses only uniqueness conditional on existence since, under our maintained assumption that the model
is correctly specified, given any observed choice probability vector, there must exist a vector (δ1, . . . , δJ)
that rationalizes it. Gandhi (2008) provides conditions gauranteeing that an inverse exists for every choice
probability vector in 4J . Our uniqueness result differs from his only slightly, mainly in recognizing that
the argument applies to a somewhat more general model of preferences.
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so that (since probabilities must sum to one)

∑
j∈K

σj (δ∗, p) >
∑
j∈K

σj (δ, p) .

But then by monotonicity of vijt in δjt, we have

∑
j∈K

σj (δ′, p) ≥
∑
j∈K

σj (δ∗, p) >
∑
j∈K

σj (δ, p)

which contradicts the hypothesis σj (δ, p) = σj (δ′, p) = sj for all j. �

5 Identification with General IV Conditions

Recall that δjt ≡ xjt + ξjt and that market shares are given by sjt = σj (δt, pt). Using the

inversion result of Lemma 1, we have

δjt = σ−1
j (st, pt) ∀j (9)

which we can rewrite as

xjt + ξjt = σ−1
j (st, pt) ∀j. (10)

Let zjt = (z̃jt,x1t, . . . , xJt) denote the exogenous variables, where z̃jt represents instru-

ments for pjt excluded from the determinants of vijt. Possible instruments include cost

shifters, exogenous characteristics of substitute goods (Berry, Levinsohn, and Pakes (1995)),

and prices of the same good in other markets (Hausman (1996)). We let zt denote the matrix

(z1t, . . . , zJt).

We first consider identification of demand under a pair of instrumental variables assump-

tions, which we take from Newey and Powell (2003).

Assumption 4. E[ξjt|zjt] = E[ξjt].
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Assumption 5. For any function B (st, pt) with finite expectation, E [B (st, pt) |zjt] = 0

almost everywhere implies B (st, pt) = 0 almost everywhere.

The first is a standard exclusion restriction, requiring mean independence between the

instruments and the structural error ξjt. The second is a “bounded completeness” condition,

which is the nonparametric analog of the standard rank condition for linear models, here

extended to nonparametric models with separable errors. Lehman and Romano (2005) gives

standard sufficient conditions, and additional discussion of this condition can be found in

Newey and Powell (2003) and Severini and Tripathi (2006). Roughly speaking, this condition

requires that the instruments move the endogenous variables (st, pt) sufficiently to ensure

that any function of these variables can be distinguished from other functions through the

exogenous variation in the instruments.

Theorem 1. Under Assumptions 1, 2, and 3–5, the functions sj (Jt, {xkt, pkt, ξkt}k∈Jt) are

identified at all points of support.

Proof. For any j, rewriting (10) and taking expectations conditional on zjt, we obtain

E
[
ξjt|zjt

]
= E

[
σ−1

j (st, pt)
∣∣ zjt

]
− xjt

so that by Assumption 4,

E
[
σ−1

j (st, pt)
∣∣ zjt

]
− xjt = κ

almost everywhere for some constant κ. Suppose there is another function σ̃−1
j satisfying

E
[
σ̃−1

j (st, pt)
∣∣ zjt

]
− xjt = κ

almost everywhere. Letting B (st, pt) = σ−1
j (st, pt)− σ̃−1

j (st, pt), this implies

E [B (st, pt) |zjt] = 0 a.e.

But by Assumption 5 this requires σ̃−1
j = σ−1

j almost everywhere, implying that σ−1
j is iden-
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tified. Each ξjt is then uniquely determined by (10). Since choice probabilities are observed,

and all arguments of the demand functions sj (Jt, {xkt, pkt, ξkt}k∈Jt) are now known, the

result follows. �

To obtain full identification, we will require a large support condition on xt.

Assumption 6. supp xt = RJ .

This support condition is strong. However, it is intuitive that in order to trace out the

full CDF of the random part of a random utility model, extreme values of observables will

be needed.16 This provides a natural benchmark for evaluating identification under ideal

conditions on observables, and the following result shows that the addition of this condition

suffices to obtain full identification under the representation of preferences in (5).

Theorem 2. Under Assumptions 1, 2′, and 3–6, the joint distribution of (vi1t, . . . , viJt)

conditional on any (Jt, {xkt, pkt, ξkt}k∈Jt) in their support is identified.

Proof. With Assumption 2′ the market share of the outside good, conditional on pt, xt, and

(ξ1t, . . . , ξJt) is

Pr (µ1 (p1t, ωit) ≤ −x1t − ξ1t, . . . , µJ (pJt, ωit) ≤ −xJt − ξJt) .

By Theorem 1 each ξjt is identified. Thus, under Assumption 6, variation in the vector xt

identifies the joint distribution of

(µ1 (p1t, ωit) , . . . , µJ (pJt, ωit))

for any (Jt, {pkt}k∈Jt) in their support. Identification of the joint distribution of utilities

conditional on any (Jt, {xkt, pkt, ξkt}k∈Jt) in their support then follows. �

16To our knowledge, all results showing semiparametric or nonparametric identifiation of a full random
utility model rely on a similar condition (e.g., Matzkin (1992), Matzkin (1993), Ichimura and Thompson
(1998), Lewbel (2000), Fox and Gandhi (2008)).
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Theorems 1 and 2 provide sufficient conditions for identification of demand and of the

full random utility model. The conditions for the latter include quasilinearity of utility, so

that meaningful aggregate welfare measures can be defined.

A limitation of these results is their reliance on a high-level instrumental variables con-

dition (Assumption 5), which may be difficult to verify in particular models. Newey and

Powell (2003) show that this condition is, in general, necessary for identification of non-

parametric regression models, so there is little hope that weaker conditions could be found

without imposing additional structure. However, as we show in the following section, we

can provide an alternative result when we have cost shifters and are willing to place some

weak structure on the supply side. Moreover, in this case we can provide a constructive

identification argument.

6 Cost Shifters: A Change of Variables Approach

Here we combine the random utility discrete choice model of demand with some restrictions

on supply. This enables us to proceed without Assumptions 4 and 5, instead relying on

a constructive argument using a change of variables technique often useful in simultaneous

equations models (e.g., Matzkin (2005), Matzkin (2008)). However, to employ the change of

variable technique, we will have to strengthen the statistical assumption on the relationship

between the exogenous variables and the market unobservables. In particular, we will replace

mean independence, assumption 4, with full independence.

Before turning to further assumptions, we discuss the supply-side conditions that are

necessary for the change of variables approach. As noted, we make a high-level assumption

on the invertibility of the first order conditions for optimal prices. This is a generalization

of the “supply-side” inversion of Berry, Levinsohn, and Pakes (1995), which uses first-order

conditions for prices to solve for shocks to marginal cost.
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6.1 Supply

For simplicity consider the case of single-product firms and let firm j produce product j. We

assume firm j’s costs have the form

Cj

(
qjt, z

(1)
jt + ηjt, z

(2)
jt

)
(11)

where qjt is the quantity sold by firm j in market t, ηjt is an unobserved cost shock,
(
z

(1)
jt , z

(2)
jt

)
are cost shifters, and z

(1)
jt ∈ R. We permit z

(2)
jt to include components of x

(2)
jt ; we will be

explicit below about our assumptions on the independent variation required of z
(1)
1t , . . . , z

(1)
Jt .

The specification (11) is our main restriction on the supply side. It requires perfect substitu-

tion between the unobserved cost shock and an observable cost shifter. This is a nontrivial

restriction analogous to that we made previously on utilities. However, the specification of

costs is otherwise unrestricted.

We continue to condition on (and suppress) x
(2)
t . We will now also condition on a

value of
(
z

(2)
1t , . . . , z

(2)
Jt

)
, likewise suppressing it in the notation and letting zjt denote z

(1)
jt for

simplicity.

If Mt is the measure of consumers in market t, qjt = Mtσj (δt, pt), so we will write

qjt (δt, pt). Let

ζjt = zjt + ηjt.

Firm j’s profit is then given by

pjtqjt (δt, pt)− Cj

(
qjt (δt, pt) , ζjt

)
(12)

Rather than assuming a particular extensive form for competition on the supply side, we

make the following high-level assumption on equilibrium prices.

Assumption 7. Given any (δ1t, . . . , δJt), there is at most one vector (ζ1t, . . . , ζJt) consistent

with any given vector of prices (p1t, . . . , pJt).

There are two parts to this assumption. One is that perfect substitutability between
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xjt and ξjt (and between zjt and ηjt) is preserved by the equilibrium supply correspondence.

This only rules out equilibrium selection based on xjt or ξjt instead of their sum δjt (similarly

for ζjt). With this we can write

pjt ∈ ρj (δ1t, . . . , δJt, ζ1t, . . . , ζJt) ∀j

which (given the perfect substitutability) merely represents prices with completely general

reduced form correspondences with the exogenous variables.

The second part of Assumption 7 is uniqueness of the vector (ζ1t, . . . , ζJt) that ratio-

nalizes a given vector of prices, conditional on (δ1t, . . . , δJt). This is satisfied in standard

differentiated products oligopoly models. For example, as the Proposition below shows,

Assumption 7 holds in the cases of price or quantity setting under natural assumptions of

downward sloping demand and nontrivial marginal cost shifters. The idea is simple: if firm

j’s first-order condition holds at one value of ζjt, an increase in ζjt changes its marginal

cost; this will cause its first-order condition to be violated if all firms’ behavior is held fixed.

Thus, conditional on (δ1t, . . . , δJt), a given price vector cannot be generated by equilibrium

behavior at two different values of the vector ζt = (ζ1t, . . . , ζJt) .

Proposition 1. Suppose (i) each function σj is strictly decreasing and differentiable in pjt,

(ii) each function Cj is differentiable in qjt; and (iii)
∂Cj(qjt,ζjt)

∂qjt
is strictly monotonic in ζjt.

Then in a complete information game of price setting or quantity setting, Assumption 7

holds.

Proof. First consider the price setting game. Suppose to the contrary that there exist

two different vectors ζ ′ and ζ ′′ leading to the same vector of equilibrium prices (p1, . . . , pJ).

Without loss, let ζ ′j 6= ζ ′′j . Differentiating (12) with respect to pj gives the first-order condi-

tion

qj (δ, p) +
∂qj (δ, p)

∂pj

[
pj −

∂Cj

(
qj, ζj

)
∂qj

]
= 0. (13)

This condition must hold at both values of ζj, with all else in (13) held fixed. Since demand
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is strictly downward sloping, this is possible only if the marginal cost
∂Cj(qj ,ζj)

∂qj
is the same

at both values of ζj, contradicting hypothesis (iii) of the proposition.

Now consider the quantity setting game. Prices adjust to clear the market. Letting

q = (q1, . . . , qJ) we can write pj = ρj (q, δ). Firm j’s profit is

ρj (q, δ) qj − Cj

(
qj, ζj

)
Again arguing by contradiction, suppose that the first-order condition

ρj (q, δ) +
∂ρj (q, δ)

∂qj

qj −
∂Cj

(
qj, ζj

)
∂qj

= 0

holds at two distinct values of ζj. Because demand slopes down, this is possible only if the

marginal cost
∂Cj(qj ,ζj)

∂qj
is the same at both values of ζj, contradicting hypothesis (iii) of the

proposition. �

We have seen that standard noncooperative oligopoly models imply Assumption 7. Our

results will not require knowledge of the true model of competition—only that Assumption

7 holds. This is an advantage of relying on the high-level Assumption 7.17

The key implication of Assumption 7 is invertibility, analogous to that guaranteed on the

demand side by Lemma 1. In particular, for any (pt, δt) we may write

zjt + ηjt = ρ−1
j (p1t, . . . , pJt, δ1t, . . . , δJt) .

Substituting from (9), we have

zjt + ηjt = ρ−1
j

(
p1t, . . . , pJt, σ

−1
1 (st, pt) , . . . , σ−1

J (st, pt)
)

∀j.

17Although our focus is on identification of demand, full treatment of the identifiability of the marginal cost
function would require committing to further assumptions on the appropriate model of supply – for example,
assuming Nash equilibrium in prices as in Berry, Levinsohn, and Pakes (1995). With such assumptions,
showing identification would be straightforward, since the results below already deliver identification of cost
shocks.
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which we rewrite as18

zjt + ηjt = π−1
j (st, pt) ∀j. (14)

6.2 Identification

From the analysis above we take the two equations (10) and (14), which we repeat here:

xjt + ξjt = σ−1
j (st, pt) ∀j

zjt + ηjt = π−1
j (st, pt) ∀j.

Note that the linear structure normalizes the scale of the unobservables ξjt and ηjt already.

To normalize locations, without loss we take any (x0, z0) and any (s0, p0) in the support of

(st, pt) | (x0, z0) and let

σ−1
j

(
s0, p0

)
− x0

j = π−1
j

(
s0, p0

)
− z0

j = 0. (15)

We now assume existence of a joint density for the structural errors (ξ1t, . . . , ξJt, η1t, . . . , ηJt)

and a large support for (xt, zt).

Assumption 8. The distribution of (ξ1, . . . , ξJ , η1, . . . , ηJ) is absolutely continuous with

respect to the Lebesgue measure.

Assumption 9. supp(xt, zt) = R2J .

Finally, our change of variables approach requires that (xt, zt) be fully independent of

the error (ξt, ηt)

Assumption 10. (xt, zt) |= (ξt, ηt).

Theorem 3. Suppose Assumptions 1, 2, 3, and 7–10 hold. Then the functions sj (Jt, {xkt, pkt, ξkt}k∈Jt)

are identified at all points of support.

18This notation is somewhat strained, as we have not defined any function πj for which π−1
j is the inverse.

We write it this way nonetheless as a reminder that this is the result of inverting the equilibrium pricing
relation.
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Proof. We observe the joint density of the market shares and prices, conditional on the

vectors xt and zt. By standard change of variables, this joint density is related to that of

(ξ1t, . . . , ξJt, η1t, . . . , ηJt) by

fs,p (st, pt|xt, zt) =

fξ,η

(
σ−1

1 (st, pt)− x1t, . . . , σ
−1
J (st, pt)− xJt, π

−1
1 (st, pt)− z1t, . . . , π

−1
J (st, pt)− zJt

)
|J(st, pt)|

where the matrix J (st, pt) is the Jacobian of the vector function
(
σ−1

1 , . . . , σ−1
J , π−1

1 , . . . , π−1
J

)′
at the point (st, pt). Note that here we have used the assumption (Assumption 10)that the

distribution of (ξt, ηt) is the same for all xt, zt. Fixing market shares and prices at (s0, p0)

and letting (xt, zt) vary, we observe the values of fs,p (s0, p0|xt, zt) , from which we learn the

ratios

fξ,η

(
σ−1

1 (s0, p0)− x1t, . . . , σ
−1
J (s0, p0)− xJt, π

−1
1 (s0, p0)− z1t, . . . , π

−1
J (s0, p0)− zJt

)
|J(s0, p0)|

fξ,η

(
σ−1

1 (s0, p0)− x0
1, . . . , σ

−1
J (s0, p0)− x0

J , π−1
1 (s0, p0)− z0

1 , . . . , π
−1
J (s0, p0)− z0

J

)
|J(s0, p0)|

at all values of
(
σ−1

1 (s0, p0)− x1t, . . . , σ
−1
J (s0, p0)− xJt, π

−1
1 (s0, p0)− z1t, . . . , π

−1
J (s0, p0)− zJt

)
traced out by the distribution of (xt, zt)|(s0, p0). The full support assumption on (xt, zt)

ensures that this corresponds to all values of (ξ1t, . . . , ξJt, η1t, . . . , ηJt). Noticing that the

Jacobian determinants cancel,19 these ratios then determine the joint density fξ,η up to a

multiplicative constant on its full support. This constant, i.e.,

fξ,η

(
σ−1

1

(
s0, p0

)
− x0

1, . . . , σ
−1
J

(
s0, p0

)
− x0

J , π−1
1

(
s0, p0

)
− z0

1 , . . . , π
−1
J

(
s0, p0

)
− z0

J

)
19This “trick” of using ratios of densities to cancel the Jacobian determinant is a critical step and was used

by Matzkin (2005) (section 6) to sketch a constructive identification argument for a simultaneous equations
model with the same form that we obtain after inverting the market share and pricing equations. The
sketch uses the trick in a different way and requires, in addition to our location and scale normalizations,
knowledge of the Jacobian determinant at one point. Completing the sketch would require showing that a
particular system of nonlinear simultaneous equations has a unique solution; this appears to require further
conditions on the density of unobservables. The formal results in Matzkin (2008) and Matzkin (2005) rely on
conditions we do not require. Our result may therefore complement those in Matzkin (2008) for applications
of simulataneous equations even outside the application to discrete choice.
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is pinned down by the fact that densities must integrate to one. With fξ,η now known, so is

each marginal CDF Fξj
and Fηj

. Recalling the normalizations (15), let τ 0
j denote the known

value

Fξj
(0) = Fξj

(
σ−1

j

(
s0, p0

)
− x0

j

)
.

Then for any (st, pt), let xj (st, pt) denote the value of xjt solving

τ 0
j = Fξj

(
σ−1

j (st, pt)− xjt

)
so that σ−1

j (st, pt) = −xj (st, pt). Similarly, let υ0
j denote the known value

Fηj
(0) = Fηj

(
σ−1

j

(
s0, p0

)
− z0

j

)
.

Then for any (st, pt), let zj (st, pt) denote the value of zjt solving

υ0
j = Fηj

(
π−1

j (st, pt)− zjt

)
so that ρ−1

j (st, pt) = −zj (st, pt). Thus the functions σ−1
j and π−1

j are identified for all j.

This implies that all ξj (and therefore the demand functions sj) are identified. �

This provides a constructive proof of the identification of demand and has the added

benefit of uniquely determining the supply shocks ζ1t, . . . , ζJt as well. However, unlike

Theorem 1, here we required a large support condition even for the identification of demand.

As before, we can obtain full identification of the random utility model under an additional

restriction that utility is quasilinear in the index δjt.

Theorem 4. Suppose xjt |= ξjt and that Assumptions1, 2′, 3, and 7–10 hold. Then the joint

distribution of (vi1t, . . . , viJt) are identified conditional on any (Jt, {xkt, pkt, ξkt}k∈Jt) in their

support.
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Proof. Under the specification (5), the outside good has market share

Pr (x1t + ξ1t + µ1 (p1t, ωi1t) < 0, . . . , xJt + ξJt + µJ (pJt, ωit) < 0)

which is

Fµ (−x1t − ξ1t, . . . ,−xJt − ξJt) . (16)

Theorem 3 showed that each ξjt was identified. The full support assumption (Assumption

9) and (16) then determine Fµ. Since uijt = xjt + ξjt +µj (pjt, ωit), this gives the result. �

7 Conclusion

We have examined the nonparametric identifiability of a class of models widely used in the

empirical literature on demand for differentiated products in industrial organization and a

range of other fields of economics. We view the primary message of this work as positive.

For many purposes motivating demand estimation, identification of demand is sufficient.

Our results show that identification of demand relies primarily on having good instruments.

Furthermore, even in extremely rich models of discrete choice with heterogeneous prefer-

ences, heteroskedasticity, unobserved choice characteristics, and endogeneity, moving from

identification of demand to identification of the full model of random utility requires the

same kind of separability and support conditions used to show full identification in even the

simplest semiparametric discrete choice models.
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