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Abstract

This paper suggests a term structure model which parsimoniously exploits a broad
macroeconomic information set. The model uses the short rate and the common
components of a large number of macroeconomic variables as factors. Precisely, the
dynamics of the short rate are modeled with a Factor-Augmented Vector Autore-
gression and the term structure is derived using parameter restrictions implied by
no-arbitrage. The model has economic appeal and provides better out-of-sample
yield forecasts than previously suggested approaches. The reduction of root mean
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1 Introduction

Traditional models of the term structure decompose yields into a set of latent factors.
These models commonly provide a good in-sample fit to the data (e.g. Nelson and
Siegel 1987, Knez, Litterman, and Scheinkman 1994, Dai and Singleton 2000) and can
also be used to predict interest rates out-of-sample (e.g. Duffee 2002, Diebold and
Li 2006). While providing a good statistical fit, however, the economic meaning of
such models is limited since they disregard the relationships between macroeconomic
variables and interest rates. In this paper, I suggest a model which has both economic
appeal and superior predictive ability for yields as compared to traditional approaches.

In a widely recognized paper, Ang and Piazzesi (2003) augment a standard three-
factor affine term structure model with two macroeconomic variables which enter
the model through some Taylor-rule type of short rate equation. They find that the
macro variables account for a large share of the variation in interest rates and also
improve yield forecasts. Inspired by this finding, a vivid literature has emerged
lately that explores different approaches to jointly model the term structure and the
macroeconomy. Examples for such models are Hördahl, Tristani, and Vestin (2006),
Diebold, Rudebusch, and Aruoba (2006), and Dewachter and Lyrio (2006). While these
studies consistently find that macroeconomic variables are useful for explaining and/or
forecasting government bond yields, they only exploit very small macroeconomic
information sets. Yet, by limiting the analysis to only a few variables, other potentially
useful macroeconomic information is being neglected.

This is particularly important for term structure modeling as a recent literature
argues that the central bank acts in a “data-rich environment” (Bernanke and Boivin
2003). This means that the monetary policy authority bases its decisions upon a broad
set of conditioning information rather than only a few key aggregates. Consistent with
this argument, a number of studies have found that factors which by construction
summarize the comovement in a large number of macroeconomic time series help
to explain and forecast the evolution of short-term interest rates (e.g. Bernanke
and Boivin 2003, Giannone, Reichlin, and Sala 2004, Favero, Marcellino, and Neglia
2005). In a recent paper, Bernanke, Boivin, and Eliasz (2005) suggest to combine the
advantages of factor modeling and structural VAR analysis by estimating a joint
vector-autoregression of the short-term interest rate and factors extracted from a large
cross-section of macro time series. They label this approach a “Factor-Augmented
VAR” (FAVAR) and use it to analyze the dynamics of the short rate and the effects of
monetary policy on macroeconomic variables.
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In this paper, I take the approach of Bernanke et al. (2005) a step further and em-
ploy the FAVAR model to study the dynamics of the entire yield curve within an
arbitrage-free model. Precisely, I suggest a model that has the following structure. A
Factor-Augmented VAR is used as the state equation of an affine term structure model.
This delivers a dynamic characterization of the short-term interest rate conditional
on a large macroeconomic information set. Given the dynamics of the short rate, the
term structure of interest rates is derived using parameter-restrictions implied by
no-arbitrage. In sum, my model is an affine term structure model that has the short
rate and the common components of a large number of macro time series as factors.
My approach can thus be characterized as a No-Arbitrage Factor-Augmented VAR.

Estimation of my model is in two steps. First, I extract common factors from a
large macroeconomic dataset using the method suggested by Stock and Watson
(2002a,b) and estimate the parameters governing their joint dynamics with the
monetary policy instrument in a VAR. Second, I estimate a no-arbitrage vector
autoregression of yields on the exogenous pricing factors. Specifically, I obtain
the price of risk parameters by minimizing the sum of squared fitting errors of the
model following the nonlinear least squares approach of Ang, Piazzesi, and Wei (2006).

The results of the paper can be summarized as follows. The No-Arbitrage FAVAR
model based on four macro factors and the short rate fits US yields well in-sample.
Compared to a model which incorporates the short rate and four individual measures
of output and inflation as factors, there is a clear advantage in using the larger macroe-
conomic information set. The results from out-of-sample forecasts of yields underpin
this finding. The term structure model based on common factors clearly outperforms
a model based on individual variables. More importantly, the No-Arbitrage FAVAR
model shows a striking superiority with respect to a number of benchmark models in
out-of-sample yield forecasts. Except for extremely short forecast horizons and very
long maturities, the model significantly outperforms the random walk, a standard
three-factor affine model and the model recently suggested by Diebold and Li (2006)
which has been documented to be particularly useful for interest rate predictions.
A subsample analysis reveals that the No-Arbitrage Factor-Augmented VAR model
performs particularly well in periods when interest rates vary a lot.

The paper is structured as follows. In Section 2, the No-Arbitrage Factor-Augmented
VAR model is presented and its parametrization discussed. Section 3 describes the
estimation of the model. In Section 4, I document the in-sample fit of the model and
then discuss the results of the out-of-sample forecasts in Section 5. Section 6 concludes.
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2 The Model

Economists typically think of the economy as being affected by monetary policy
through the short term interest rate. On the other hand, the central bank is assumed
to set interest rates in response to the overall state of the economy, characterized e.g.
by the deviations of inflation and output from their desired levels. In a recent paper,
Bernanke et al. (2005) point out that theoretical macroeconomic aggregates as output
and inflation might not be perfectly observable neither to the policy-maker nor to the
econometrician. More realistically, the observed macroeconomic time series will in
general be noisy measures of broad economic concepts such as output and inflation.
Accordingly, these variables should be treated as unobservable in empirical work so as
to avoid confounding measurement error or idiosyncratic dynamics with fundamental
economic shocks.

Bernanke et al. (2005) therefore suggest to extract a few common factors from a
large number of macroeconomic time series variables and to study the mutual
dynamics of monetary policy and the key economic aggregates by estimating a joint
VAR of the factors and the policy instrument, an approach which they label “Factor-
Augmented VAR” (FAVAR). This approach can be summarized by the following
equations:

Xt = ΛFFt + Λrrt + et (1)(
Ft

rt

)
= µ + Φ(L)

(
Ft−1

rt−1

)
+ ωt. (2)

Xt denotes a M×1 vector of period-t observations of the observed macroeconomic
variables, ΛF and Λr are the M×k and M×1 matrices of factor loadings, rt denotes the
short-term interest rate, Ft is the k×1 vector of period-t observations of the common
factors, and et is an M×1 vector of idiosyncratic components. Moreover, µ = (µ′f , µr)′

is a (k + 1)× 1 vector of constants, Φ(L) denotes the (k + 1)× (k + 1) matrix of order-p
lag polynomials and ωt is a (k + 1) × 1 vector of reduced form shocks with variance
covariance matrix Ω. Since affine term structure models are commonly formulated in
state-space from, I rewrite the FAVAR in equation (2) as

Zt = µ + ΦZt−1 + ωt, (3)

where Zt = (F′t , rt, F′t−1, rt−1, . . . , F′t−p+1, rt−p+1)′, and where µ, Φ,and Ω denote the
companion form equivalents of µ, Φ, and Ω, respectively. Accordingly, the short rate rt

can be expressed in terms of Zt as rt = δ′Zt where δ′ = (01×k, 1, 01×(k+1)(p−1)).
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Adding the Term Structure

The term structure model which I suggest is built upon the assumption that yields are
driven by movements of short term interest rate as well as the main shocks hitting the
economy. The latter are proxied by the factors which capture the bulk of common vari-
ation in a large number of macroeconomic time series variables. The joint dynamics
of these factors and the monetary policy instrument are modeled in a vector autore-
gression. I thus employ the FAVAR in equation (3) as the state equation of my term
structure model. To make the model consistent with the assumption of no-arbitrage, I
further impose restrictions on the parameters governing the impact of the state vari-
ables on the yields of different maturity. More precisely, I model the nominal pricing
kernel as

Mt+1 = exp(−rt −
1
2

λ′
tΩλt − λ′

tωt+1),

= exp(−δ′Zt −
1
2

λ′
tΩλt − λ′

tωt+1), (4)

where λt are the market prices of risk. Following Duffee (2002), these are commonly
assumed to be affine in the underlying state variables Z, i.e.

λt = λ0 + λ1Zt. (5)

In order to keep the model parsimonious, I restrict the prices of risk to depend only on
contemporaneous observations of the model factors.1 In an arbitrage-free market, the
price of a n-months to maturity zero-coupon bond in period t must equal the expected
discounted value of the price of an (n-1)-months to maturity bond in period t + 1:

P(n)
t = Et[Mt+1 P(n−1)

t+1 ].

Assuming that yields are affine in the state variables, bond prices P(n)
t are exponential

linear functions of the state vector:

P(n)
t = exp

(
An + B′

nZt
)

,

where the scalar An and the coefficient vector Bn depend on the time to maturity n. Fol-
lowing Ang and Piazzesi (2003), I show in Appendix A that no-arbitrage is guaranteed
by computing coefficients An and Bn according to the following recursive equations:

An = An−1 + B′
n−1 (µ− Ωλ0) +

1
2

B′
n−1ΩBn−1, (6)

Bn = B′
n−1 (Φ − Ωλ1)− δ′. (7)

1 Obviously, there is some arbitrariness in this restriction. In principle, one can also think of theoretical
models that give rise to market prices of risk which depend on lagged state variables. However, since the
dimensionality of the problem requires to make some identification restrictions, assuming that market
prices of risk depend only on current observations of the states seems to be a plausible compromise.
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Given the price of an n-months to maturity zero-coupon bond, the corresponding yield
is thus obtained as

y(n)
t = − log P(n)

t
n

= an + b′nZt, (8)

where an = −An/n and b′n = −B′
n/n.

Altogether, the suggested model is completely characterized by equations (1), (3),
(6), (7) and (8). In a nutshell, it is an essentially affine term structure model that has a
FAVAR as the state equation. Accordingly, I will refer to my model as a “No-Arbitrage
Factor-Augmented VAR” approach.

3 Estimation of the Model

In principle, the Factor-Augmented VAR model can be estimated using the Kalman
filter and maximum likelihood. However, this approach becomes computationally in-
feasible when the number of macro variables stacked in the vector X is large. Bernanke
et al. (2005) therefore discuss two alternative estimation methods: a single-step ap-
proach using Markov Chain Monte Carlo (MCMC) methods, and a two-step approach
in which first principal components techniques are used to estimate the common
factors F and then the parameters governing the dynamics of the state equation are
obtained via standard classical methods for VARs. Comparing both methods in the
context of an analysis of the effects of monetary policy shocks, Bernanke et al. (2005)
find that the two-step approach yields more plausible results. Another advantage
of this method is its computational simplicity. Since recursive out-of-sample yield
forecasts are the main focus of this paper, I therefore employ the principal components
approach in my application of the FAVAR model.

Accordingly, the common factors have to be extracted from the panel of macro data
prior to estimating the term structure model. As in Bernanke et al., this is achieved
using standard static principal components following the approach suggested by
Stock and Watson (2002a,b). Precisely, let V denote the eigenvectors corresponding to
the k largest eigenvalues of the T × T cross-sectional variance-covariance matrix XX′

of the data. Then, subject to the normalization F′F/T = Ik, estimates F̂ of the factors
and Λ̂ the factor loadings are given by

F̂ =
√

T V and

Λ̂ =
√

T X′V,
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i.e. the common factors are estimated as the k largest eigenvalues of the variance-
covariance matrix XX′.2 In practice, the true number of common factors which capture
the common variation in the panel X is not known. Bai and Ng (2002) have provided
some panel information criteria which allow to consistently estimate the number of
factors. In the application of the FAVAR approach suggested here, the number of
factors that can feasibly be included in the model is limited due to computational
constraints imposed by the market prices of risk parameters. I therefore fix the number
of factors instead of applying formal model selection criteria.

Given the factor estimates, estimation of the term structure model is performed
using the consistent two-step approach of Ang et al. (2006). First, estimates of the
parameters (µ, Φ, Ω) governing the dynamics of the model factors are obtained by
running a VAR(p) on the estimated factors and the short term interest rate. Second,
given the estimates from the first step, the parameters λ0 and λ1 which drive the
evolution of the state prices of risk, are estimated by minimizing the sum of squared
fitting errors of the model. That is, for a given set of parameter estimates (µ̂, Φ̂, Ω̂),
the model-implied yields ŷ(n)

t = ân + b̂′nZt are computed and the sum S is minimized
with respect to λ0 and λ1 where S is given by3

S =
T

∑
t=1

N

∑
n=1

(ŷ(n)
t − y(n)

t )2. (9)

Due to the recursive formulation of the bond pricing parameters, S is highly nonlinear
in the underlying model parameters. It is thus helpful to find good starting values so
as to achieve fast convergence. This is done as follows. I first estimate the parameters
λ0 assuming that risk premia are constant but nonzero, i.e. I set to zero all elements
of the matrix λ1 which governs the time-varying component of the market prices of
risk. I then take these estimates of λ0 as starting values in a second step that allows
for time-varying market prices of risk, i.e. I let all elements of λ0 and λ1 be estimated
freely. Standard errors of the prices of risk parameters are obtained by numerically
computing the outer product of gradients estimate of their variance-covariance matrix.
The standard errors of the state equation parameters are obtained from OLS.

2 To account for the fact that r is an observed factor which is assumed unconditionally orthogonal to
the unobserved factors F in the model (1), its effect on the variables in X has to be concentrated out
prior to estimating F. This is achieved by regressing all variables in X onto r and extracting principal
components from the residuals of these regressions.

3 Note that the assumption that only contemporaneous factor observations affect the market prices of
risk implies a set of zero restrictions on the parameters λ0 and λ1. In particular, λ0 = (λ̃′0, 01×(k+1)(p−1))′

and λ1 =

(
λ̃1 0(k+1)×(k+1)(p−1)

0(k+1)(p−1)×(k+1) 0(k+1)(p−1)×(k+1)(p−1)

)
where λ̃0 is of dimension (k + 1) and λ̃1 is a

(k + 1)× (k + 1) matrix. Hence, in practice only λ̃0 and λ̃1 need to be estimated.
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4 Empirical Results

4.1 Data

I estimate the model using the following data. The macroeconomic factors are
extracted from a dataset which contains about 160 monthly time series of various
economic categories for the US. Among others, it includes a large number of time
series related to industrial production, more than 30 employment-related variables,
around 30 price indices and various monetary aggregates. It further contains different
kinds of survey data, stock indices, exchange rates etc. This dataset has been compiled
by Giannone et al. (2004) to forecast US output, inflation, and short term interest
rates. Notice that I exclude all interest rate related series from the original panel used
by Giannone et al. The reason is that if the factors of my arbitrage-free model were
extracted from a dataset containing yields, restrictions would have to be imposed on
the factor loading parameters in (1) so as to make them consistent with the assumption
of no-arbitrage. This would imply a non-trivial complication of the estimation process.
Accordingly, I exclude the interest rate related series and thus implicitly assume that
the central bank does not take into account the information contained in yields when
setting the short term rate.

The principal components estimation of the common factors in large panels of
time series requires stationarity. I therefore follow Giannone et al. (2004) in applying
different preadjustments to the time series in the dataset.4 Finally, I standardize all
series to have mean zero and unit variance.

I use data on zero-coupon bond yields of maturities 1, 3, 6, and 9 months, as
well as 1, 2, 3, 4, 5, 7, and 10 years. All interest rates are continuously-compounded
unsmoothed Fama-Bliss yields and have been constructed from US treasury bonds
using the method outlined in Bliss (1997). I estimate and forecast the model over the
post-Volcker disinflation period, i.e. from 1983:01 to the last available observation of
the macro dataset, 2003:09.

4.2 Model Specification

In the first step of the estimation procedure, I extract common factors from the large
panel of macroeconomic time series using the principal components approach of Stock

4 Though with a slight difference as regards the treatment of price series: instead of computing first dif-
ferences of quarterly growth rates as in Giannone et al. (2004), I follow Ang and Piazzesi (2003) and
compute annual inflation rates.
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and Watson (2002a,b). Together, the first 10 factors explain about 70% of the total vari-
ance of all variables in the dataset. The largest contribution is accounted for by the first
four factors, however, which together explain about 50% of the total variation in the
panel. Table 1 lists the shares of variance explained by the first four factors as well as
the time series in the panel that each of them is most strongly correlated with. Note
however, that the factors estimated by principal components are only identified up to
a non-singular rotation and therefore do not have a structural economic interpretation.

– Table 1 about here –

As already discussed above, the number of factors that can be included in the No-
Arbitrage FAVAR model is limited due to parameterization constraints imposed by the
market prices of risk specification. Indeed, unless further restrictions are imposed on
the market prices of risk, the number of parameters to estimate in the second step of
the estimation procedure increases quadratically with the number of factors. For the
sake of parsimony, I therefore restrict the number of factors to the first four principal
components extracted from the large panel of monthly time series and the short rate.
Unreported results with smaller and larger number of factors have shown that this
specification seems to provide the best tradeoff between estimability and model fit. A
similar choice has to be made regarding the number of lags to include in the Factor-
Augmented VAR which represents the state equation of my term structure model. Ap-
plying the Hannan-Quinn information criterion with a maximum lag of 12 months
indicates an optimal number of four lags for the joint VAR of factors and the short
rate. I therefore employ this particular specification for the in-sample estimation of the
model. Note that in the recursive out-of-sample forecast exercise documented in Sec-
tion 5, the lag length of the FAVAR is re-estimated each time a forecast is produced as
it would have to be in the context of truly real-time predictions.

4.3 Preliminary Evidence

Before estimating the term structure model subject to no-arbitrage restrictions, I run
a set of preliminary regressions to check whether the extracted macro factors are po-
tentially useful explanatory variables in a term structure model. First, I use a simple
encompassing test to assess whether a factor-based policy reaction function provides a
better explanation of monetary policy decisions than a standard Taylor-rule based on
individual measures of output and inflation. I then perform unrestricted regressions of
yields on the model factors.
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4.3.1 Test of “Excess Policy Response”

The use of the Factor-Augmented VAR pproach has been justified with the argument
that central banks react to a large information set rather than to individual measures
of output and inflation alone. Whether this conjecture holds true empirically can be
tested by comparing the fit of a standard Taylor-rule policy reaction function with that
of a policy reaction function based on dynamic factors. Bernanke and Boivin (2003)
present evidence for what they call an “excess policy reaction” of the Fed by showing
that the fitted value of the federal funds rate from a factor-based policy reaction func-
tion is a significant additional regressor in an otherwise standard Taylor-rule equation.
Alternatively, one can separately estimate the two competing policy reaction functions
and then perform an encompassing test à la Davidson and MacKinnon (1993). This is
the strategy adopted by Belviso and Milani (2005). I follow these authors and compare
a standard Taylor rule with partial adjustment,5

rt = ρrt−1 + (1− ρ)(φππt + φyyt),

to a policy reaction function based on the four factors which represent state variables
in the No-Arbitrage FAVAR model,

rt = ρrt−1 + (1− ρ)φ′FFt.

The results from both regressions are summarized in Tables 2 and 3 in the appendix.
As indicated by the regression R2s of 0.967 and 0.970, the factor-based policy rule fits
the data slightly better than the standard Taylor rule. The Davidson-MacKinnon (1993)
encompassing test can be used to asses whether this improvement in model fit is statis-
tically significant. I therefore regress the federal funds rate onto the fitted values from
both alternative specifications which yields the following result:

rt = 0.207 r̂Taylor
t + 0.793 r̂Factors

t
= (0.186) (0.186)

Hence, the coefficient on the standard Taylor rule is insignificant whereas the coeffi-
cient on the factor-based fitted federal funds rate is highly significant.6 This result can
be interpreted as evidence supporting the hypothesis that the Fed reacts to a broad
macroeconomic information set.

5 Inflation π is defined as the annual growth rate of the GDP implicit price deflator (GDPDEF). The output
gap is measured as the percentage deviation of log GDP (GDPC96) from its trend (computed using the
Hodrick-Prescott filter and a smoothing parameter of 14400). Both quarterly series have been obtained
from the St. Louis Fed website and interpolated to the monthly frequency using the method described
in Mönch and Uhlig (2005). For the interpolation of GDP, I have used industrial production (INDPRO),
total civilian employment (CE16OV) and real disposable income (DSPIC96) as related monthly series.
CPI and PPI finished goods have been employed as related series for interpolating the GDP deflator.

6 Unreported results have shown that this is robust to alternative specifications of both reaction functions
using a larger number of lags of the policy instrument and the macro variables or factors.
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4.3.2 Unrestricted Estimation of the Term Structure Model

To get a first impression whether the factors extracted from the panel of macro vari-
ables also capture predictive information about interest rates of higher maturity, Table
4 summarizes the correlations between the yields and various lags of the factors of the
No-Arbitrage FAVAR model. This table shows that the short rate is most strongly cor-
related with yields of any other maturity. Yet, the four macro factors extracted from the
panel of monthly US time series also exhibit some correlation with yields. While the
short rate is contemporaneously most strongly correlated with yields, the correlations
between macro factors and yields tend to be higher for longer lags. This indicates that
the factors extracted from the panel of macro data might be useful for forecasting inter-
est rates.

– Table 4 about here –

To further explore the question whether the models factors have explanatory power for
yields, Table 5 provides estimates of an unrestricted VAR of yields of different maturi-
ties onto a constant, the four macro factors and the federal funds rate, i.e. it estimates
the pricing equation for yields,

Yt = A + BZt + ut,

where no cross-equation restrictions are imposed on the coefficients A and B. The first
observation to make is that the R2 of these regressions are all very high. Together with
the short rate, the four factors explain more than 95% of the variation in short yields,
and still more than 85% of the variation in longer yields. Not surprisingly, the federal
funds rate is the most highly significant explanatory variable for short maturity yields.
However, in the presence of the macro factors its impact decreases strongly towards
the long end of the maturity spectrum. This shows that the factors extracted from the
large panel of macro variables exhibit strong explanatory power for longer yields and
thus represent potentially useful state variables in a term structure model.

– Table 5 about here –

4.4 Estimating the Term Structure Model

4.4.1 In-Sample Fit

In this section, I report results obtained from estimating the FAVAR model subject to
the cross-equation restrictions (6) and (7) implied by the no-arbitrage assumption as
outlined in Section 2. The model fits the data surprisingly well, given that it does not
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make use of latent yield curve factors. Table 6 reports the first and second moments of
observed and model-implied yields and one-year holding period returns, respectively.
These numbers indicate that on average the No-Arbitrage FAVAR model fits the yield
curve almost exactly. Figure 1 provides a visualization of this result by showing av-
erage observed and model-implied yields across the entire maturity spectrum. Notice
that the model seems to be missing some of the variation in longer maturities since
the standard deviations of fitted interest rates are slightly lower than the standard de-
viations of the observed yields, especially at the long end of the curve. This can also
be seen in Figure 2 which plots the time series for a selection of observed and model-
implied yields.

– Table 6 about here –

Overall, the No-Arbitrage FAVAR model is able to capture the cross-sectional varia-
tion of government bond yields quite well, with a slightly better in-sample fit at the
short end of the curve. As we will see further below, this has an impact also on the
forecast results obtained from the model. Indeed, the improvement over latent-factor
based term structure models is more pronounced at the short than at the long end
of the yield curve. Yet, as has been discussed above, estimating a TSM without latent
yield factors considerably facilitates estimation of the model and thus makes recursive
out-of-sample forecasts feasible.

– Figure 1 about here –

4.4.2 Parameter Estimates

Table 7 in the appendix reports the parameter estimates and associated standard errors
of the No-Arbitrage FAVAR model. The upper panel shows parameter estimates of the
Factor-Augmented VAR that represents the state equation of the model, the second
panel provides the estimates of the state prices of risk which constitute the remaining
components of the recursive bond pricing parameters A and B. A noticeable feature of
the FAVAR estimates is that most of the off-diagonal elements of the lags of the coeffi-
cient matrix Φ are insignificant. Hence, in addition to the unconditional orthogonality
of the model factors that is due to the estimation by principal components, there is
also little conditional correlation between the factors of the FAVAR model.

As the second panel of Table 7 shows, all elements of the vector λ̃0 governing
the unconditional mean of the market prices of risk are large in absolute terms and
highly significant. This suggests that risk premia are characterized by a large constant
component. As indicated by the size and significance of the estimates λ̃1, there is
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also some significant amount of time variation in risk premia over the sample period
considered. It is difficult to interpret individual elements in the estimated prices of
risk matrix, however. Indeed, unreported results from alternative model specifications
varying e.g. the number of factors, the number of lags in the state equation or the
sample period, have shown that the price of risk estimates are quite sensitive to
changes in model specification. Hence, economic reasoning based on the significance
of individual parameters governing the state prices of risk is unwarranted. Instead,
in order to visualize the relation between risk premia and the model factors, Figure
3 provides a plot of model-implied term premia for the 1-year and 5-year yield. As
indicated by these plots, term premia at the short end of the yield curve are inversely
related to the first macro factor which is itself highly correlated with output variables.
By contrast, premia for longer yields are more closely related to the second factor
which is strongly correlated with inflation indicators.

– Figure 3 about here –

Figure 4 shows a plot of the loadings bn of the yields onto the contemporaneous
observations of the model factors. The signs of these loadings are consistent with those
obtained from regressing yields onto the model factors without imposing no-arbitrage
restrictions, summarized in Table 5. By construction of my arbitrage-free model, the
loading of the 1-month yield onto the short rate factor equals unity and those for the
macro factors are zero. However, the impact of the short rate on longer yields sharply
decreases with maturity. Hence, movements in the short-term interest rate only have
a relatively small impact on long-term interest rates. Instead, these are more strongly
driven by the macroeconomic factors. Most importantly, the first factor has an equally
strong impact on yields of medium and longer maturities. Interestingly, shocks to the
third macro factor appear to have a negative effect on yields of very short maturity
and an increasingly strong positive impact on medium-term and long-term rates. This
indicates that negative shocks to the third macro factor imply a flattening of the yield
curve that is commonly associated with an upcoming recession.

– Table 5 about here –

4.5 How are the Macro Factors Related to the Components of the
Yield Curve?

In traditional term structure analysis, the yield curve is often decomposed into three
factors which together explain almost all of the cross-sectional variation of interest
rates. According to their impact on the shape of the term structure, these compo-
nents are commonly labeled level, slope, and curvature. Since the No-Arbitrage FAVAR
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model has been shown to explain yields relatively well in-sample, it is interesting to re-
late the macro factors used in the model to the level, slope, and curvature components
of the yield curve. In this section, I thus regress estimates of the latent yield factors
onto the macro factors and the short rate. The yield factors are computed as the first
three principal components of the yields used to estimate the term structure model.
Consistent with results reported in previous studies, the first three principal compo-
nents explain about 90.8%, 6.4% and 1.6% of the total variance of all yields.

– Table 8 about here –

Table 8 summarizes the results of these regressions. The four macro factors and the
short-term interest rate explain almost all of the variation in the yield level which
captures the most important source of common variation of interest rates. The main
contribution comes from the short rate and the first and third macro factor which are
correlated with output and inflation-related variables, respectively. Almost 80% of the
variation in the slope of the yield curve is explained by the factors of the FAVAR model.
Again, the short rate as well as the first and third macro factors are most strongly cor-
related with the slope. The short rate has a strongly significant negative coefficient in
the slope equation which is consistent with the common view that rises in the short
rate lead to a decreasing yield curve slope. Finally note that only about 35% of the
variation in the curvature of the yield curve are explained by the macro factors. Hence,
variations in the relative size of short, medium and long-term yields seem to be the
least related to macroeconomic news.

5 Out-of-Sample Forecasts

The term structure model suggested in this paper is based on the idea that the Federal
Reserve uses a large set of conditioning information when setting short-term interest
rates and that the FAVAR approach suggested by Bernanke et al. (2005) represents
a useful way of capturing this information. Although economically appealing, the
model is not structural and should therefore not be used for a qualitative analysis of
the economic driving forces behind the yield curve. Accordingly, this paper focuses on
the usefulness of the No-Arbitrage FAVAR model for predicting the term structure of
interest rates.

In the previous section, it has been shown that the model provides a reasonably
good in-sample fit to US yield data. In this section, I study the forecast performance
of the No-Arbitrage FAVAR model in a recursive out-of-sample prediction exercise.
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Model-implied forecasts are obtained using the following formula:

ŷ(n)
t+h|t = ân + b̂nẐt+h|t, (10)

where Z contains the contemporaneous and lagged observations of the short-term in-
terest rate and the four factors explaining the bulk of variation in the panel of monthly
time series for the US. The coefficients ân and b̂n are computed according to equations
(6) and (7), using as input the estimates µ̂, Φ̂, and Σ̂ obtained by running a VAR on
the states, as well as the estimates λ̂0 and λ̂1 that result from minimizing the sum of
squared fitting errors of the model. Forecasts Ẑt+h|t are obtained from the FAVAR ac-
cording to

Ẑt+h|t = Φ̂
hZt +

h−1

∑
i=0

Φ̂
i
µ̂. (11)

5.1 The Competitor Models

I compare the model’s forecast performance to that of several competitor models. In
particular, these are a No-Arbitrage Macro VAR model, an unrestricted VAR on yield
levels, two different specifications of the Nelson-Siegel (1987) three-factor model re-
cently suggested by Diebold and Li (2006), an essentially affine latent yield factor
model A0(3), and the random walk. The latter three models are expected to be the
most challenging competitors. Diebold and Li have shown the Nelson-Siegel model to
outperform a variety of alternative yield forecasting models. Duffee (2002) has docu-
mented strong out-of-sample forecast performance for the essentially affine latent yield
factor model. Finally, the random walk is often reported to be difficult to beat in out-
of-sample forecasts of interest rates. In the following, I briefly sketch the individual
competitor forecasting models.

5.1.1 No-Arbitrage Macro VAR Model

In order to analyze whether the good forecast performance of the No-Arbitrage FAVAR
model can be attributed to the large set of conditioning information incorporated by
the model, I compare it to a model that uses individual macroeconomic indicators in-
stead of factors extracted form a large data panel as state variables. In particular, I
compare it to a model that has a VAR in the short rate and four measures of output
and inflation as the state equation but that is otherwise identically specified. Precisely,
I obtain yield forecasts according to

ŷ(n)
t+h|t = ân + b̂nẐVAR

t+h|t

where ZVAR contains the quarterly growth rate of IP, the help-wanted index, the an-
nual growth rates of CPI and PPI, and the 1-month yield. The coefficients ân and b̂n are
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obtained from equations (6) and (7) and guarantee the absence of arbitrage opportuni-
ties. Forecasts ẐVAR

t+h|t are computed as in (11). The No-Arbitrage Macro VAR model is
denoted “VAR” in the tables below.

5.1.2 VAR(1) on Yield Levels

In this model, forecasts of yields are obtained according to

ŷt+h|t = ĉ + Γ̂yt,

where ĉ and Γ̂ are estimated by regressing the vector yt onto a constant and its h-months
lag. This model is referred to as “VARylds” in the results below.

5.1.3 Diebold-Li Specification of the Nelson-Siegel Model

In a recent paper, Diebold and Li (2006) have suggested a dynamic version of the tra-
ditional Nelson-Siegel(1987) decomposition of yields and have shown that this model
provides superior yield forecasts with respect to a number of benchmark approaches.
According to this model, yields are decomposed into three factors with loadings given
by exponential functions of the time to maturity n and some shape parameter τ. Pre-
cisely, Diebold and Li suggest to obtain yield forecasts according to

ŷ(n)
t+h|t = β̂1,t+h|t + β̂2,t+h|t

(
1− e−τn

τn

)
+ β̂3,t+h|t

(
1− e−τn

τn
− e−τn

)
where

β̂t+h|t = ĉ + Γ̂β̂t

Diebold and Li (2006) obtain initial estimates of the factors β by regressing yields onto
the loadings

(
1, (1−e−τn

τn ), (1−e−τn

τn − e−τn)
)

for a fixed value of τ. They set τ = 0.0609
which is the value that maximizes the curvature loading at the maturity of 30 months.
Diebold and Li consider two different specifications of their model, one where the fac-
tor dynamics are estimated by fitting AR(1) processes and another where the factors
follow a VAR(1). In my application of their model, I report results for both specifica-
tions. These are denoted as “NS(VAR)” and “NS(AR)”, respectively.

5.1.4 Essentially Affine Latent Yield Factor Model A0(3)

This is a traditional affine model where all the factors are latent and have to be esti-
mated from the yield data. I implement the preferred essentially affine A0(3) specifica-
tion of Duffee (2002) who has shown that this model provides superior out-of-sample
forecast results with respect to various other affine specifications. The specification of
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the market prices of risk is therefore similar to the No-Arbitrage FAVAR model. Within
the A0(3) model, yield forecasts are obtained as

ŷ(n)
t+h|t = ân + b̂nẐA0(3)

t+h|t

where ZA0(3) is composed of three latent yield factors, backed out from the yields using
the method by Chen and Scott (1993). In particular, I assume that the 1-month, 1-year
and 10-year yield are observed without error. Moreover, the transition matrix Φ in the
state equation is assumed to be lower-triangular and the variance-covariance matrix
Ω to be an identity matrix so as to ensure exact identification of the model (see Dai
and Singleton 2000). Notice that since the latent factors need to be backed out from
the yields, estimation of the model takes considerably longer than estimation of the
No-Arbitrage FAVAR and VAR models where the parameters of the state equation are
estimated in a first stage of the estimation via OLS.

5.1.5 Random Walk

Assuming a random walk model for interest rates implies a simple “no-change” fore-
cast of individual yields. Hence, in this model the h-months ahead prediction of an
n-maturity bond yield in period t is simply given by its time t observation:

ŷ(n)
t+h|t = y(n)

t

5.2 Out-of-Sample Forecasts

The out-of-sample forecasts are carried out over the time interval 1994:01-2003:09.
The forecast period therefore covers a period of almost ten years. The affine models
are first estimated over the period 1983:01-1993:12 to obtain starting values for the
parameters. All models are then estimated recursively using data from 1983:01 to the
time that the forecast is made, beginning in 1994:01.

Table 9 summarizes the root mean squared errors obtained from these forecasts.
Three main observations can be made. First, the No-Arbitrage FAVAR model clearly
outperforms the No-Arbitrage Macro VAR model except for very short maturities
at the 1-month ahead horizon. This implies strong support for the use of a broad
macroeconomic information set when forecasting the yield curve based on macroe-
conomic variables. Second, at the 1-month ahead horizon, the VAR(1) in yield levels
and the random walk outperform the macro-based FAVAR and VAR models for yields
of all maturities, with the random walk being slightly superior for long yields and
the VARylds model performing best for short and medium-term maturities. Third
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and most importantly, however, the No-Arbitrage FAVAR model outperforms all
considered benchmark models in yield forecasts 6-months and 12-months ahead. As
the first column of panels B and C of Table 9 documents, the FAVAR model implies
smaller out-of-sample root mean squared forecast errors than the benchmark models
across except for very long maturities for which the essentially affine latent yield
factor model A0(3) performs best.

– Table 9 about here –

Interestingly, both specifications of the Nelson-Siegel model considered in Diebold and
Li (2006) are outperformed by the No-Arbitrage FAVAR model. This is striking since
Diebold and Li have documented their approach to be particularly good at forecasting.
This indicates that the combination of a large information set, the rich dynamics of
the FAVAR, and the parameter restrictions implied by no-arbitrage together result in
a model which is particularly useful for out-of-sample predictions. In the subsample
analysis carried out in the next section, I will have a closer look at these results.

Table 10 reports RMSEs of all considered models relative to the random walk
forecast. These results show that the improvement in terms of root mean squared
forecast errors implied by the FAVAR model is particularly pronounced for short
and medium term maturities. At the one-month forecast horizon, all yield-based
models outperform the affine models based on macro variables. However, at forecast
horizons beyond one month, the No-Arbitrage FAVAR model outperforms all other
models for maturities from one month to five years. Relative to the random walk,
the No-Arbitrage FAVAR model reduces root mean squared forecast errors up to
30% at the short end of the yield curve and still improves forecast performance of
medium-term yields about 15%. Compared to the best performing competitor model,
the essentially affine latent factor model A0(3), the improvement is still remarkable.

– Table 10 about here –

One can formally assess whether the improvement of the FAVAR model over the
benchmark models in terms of forecast error is significant by applying White’s (2000)

“reality check” test. This test uses bootstrap resamples of the forecast error series
to derive the empirical distribution of the forecast loss differential of a model with
respect to some benchmark model. It can thus be used to evaluate superior predictive
ability of a model with respect to one or more competitor models. Here, I test whether
the No-Arbitrage FAVAR model has superior predictive accuracy with respect to
the five considered competitors. The test statistics are reported in Table 11. Negative
numbers indicate that the average squared forecast loss of the No-Arbitrage FAVAR
model is smaller than that of the respective competitor model while positive test

18



statistics indicate the opposite. I perform 1,000 block-bootstrap resamples from the
prediction error series to compute the significance of the forecast improvement at the
5% level which are indicated by bold figures. As the results in panels B and C of Table
11 show, the documented improvement in terms of root mean squared forecast errors
is significant at the 5% level for all but very long maturities at forecast horizons of
6-months and 12-months ahead. This underscores the observation made above that
the No-Arbitrage FAVAR model predicts yields considerably better than all studied
competitor models, including the Nelson-Siegel model and the A0(3) model.

– Table 11 about here –

5.3 Subsample Analysis of Forecast Performance

The results documented in the previous section show that the No-Arbitrage FAVAR
model exhibits strong relative advantages over a variety of benchmark models which
have been documented powerful tools in forecasting the yield curve. This result
somewhat challenges the recent findings of Diebold and Li (2006) and therefore a
closer look at the forecast performances of the different models is warranted. In this
section, I thus perform a subsample analysis of the out-of-sample prediction results.
In particular, I analyze the relative performance of the No-Arbitrage FAVAR model
with respect to the Nelson-Siegel model over exactly the sample period that has been
studied by Diebold and Li (2006).

– Table 12 about here –

Table 12 provides the root mean squared forecast errors of the different models for
the out-of-sample prediction period 1994:01-2000:12. At the 1-month ahead horizon,
both specifications of the Nelson-Siegel model outperform the other models except
for the 5-year yield that is best predicted by the random walk. The absolute size of the
RMSEs is very similar to those documented by Diebold and Li (2006). For example,
based on the NS(AR) model Diebold and Li report RMSEs of 0.236, 0.292, and 0.260
for the 1-year, 5-year and 10-year yields at the 1-month ahead horizon whereas I
find values of 0.249, 0.280, and 0.249, respectively, for the same maturities. The small
deviations are likely due to differences in the choice of data and the set of maturities
used to estimate the models. Turning to the results for 6-months ahead predictions,
the picture becomes less favorable for the Nelson-Siegel model. Only for the 1-month
yield, the VAR specification of the Nelson-Siegel model performs best. In contrast, the
No-Arbitrage FAVAR model outperforms all other models for the range of maturities
between 6-months and 5-years. Again, the absolute size of the RMSEs found here is
very similar to those reported by Diebold and Li. For example, while they document
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RMSEs of 0.669, 0.777, and 0.721 for the 1-year, 5-year and 10-year yields, I find values
of 0.711, 0.764, and 0.694, respectively. The results again change somewhat if one
considers 12-months ahead predictions for the sample period studied in Diebold
and Li (2006). In this case, there appears to be a clearer advantage of their preferred
NS(AR) specification which outperforms all other models except for the 6-months and
10-year maturities.

To visualize these results, Figures 5 to 7 show the actual yields and those pre-
dicted by the No-Arbitrage FAVAR, the NS(AR), and the A0(3) model for some
selected maturities. Figure 5 plots the outcomes for the 1-month ahead forecast
horizon. According to this, the NS(AR) and the A0(3) model forecast the persistent
movements of yields quite well while the FAVAR model predicts more variation than
actual yields exhibit. This confirms the relatively poor predictive ability of the model
at very short forecast horizons documented above. Yet, at the 6-months ahead forecast
horizon the picture looks strikingly different. In particular, as Figure 6 shows, the
No-Arbitrage FAVAR model predicts the surge of yields in 1999 and 2000 quite well.
More impressively, it forecasts the strong decline of yields starting towards the end
of 2000 very precisely. By contrast, both the NS(AR) and the A0(3) models miss the
particular dynamics in this episode by a few months. Although less pronounced, a
similar pattern can be seen for the 12-months ahead forecasts, provided in Figure 7.

– Figures 5 to 7 about here –

Altogether, these results show that the No-Arbitrage FAVAR model performs partic-
ularly well compared to yield-based prediction models when interest rates exhibit
strong variation. To provide a more quantitative assessment of this finding, Table
13 displays the root mean squared forecast errors of the different models for the
subperiod 2000:01-2003:09. As can be seen from the plots above, this period was
characterized by an initial surge of yields which was then followed by a sharp and
persistent decline of interest rates of all maturities. The results of Table 13 show
that over this particular sample period, the No-Arbitrage FAVAR model strongly
outperforms all competitor models at forecast horizons 6-months and 12-months
ahead. More precisely, the reduction in RMSEs relative to the random walk amounts
to a striking 50% for short and medium-term maturities.

– Table 13 about here –

In sum, the results of my subsample analysis show that the strong forecast perfor-
mance of the Nelson-Siegel model documented by Diebold and Li is partly due to
their choice of forecast period. In addition, the superior predictive ability of the model
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partly vanishes when confronted with the No-Arbitrage FAVAR model. The latter
strongly outperforms all benchmark models in periods when interest rates move a lot.

6 Conclusion

This paper presents a model of the term structure based on the idea that the central
bank uses a large set of conditioning information when setting the short term interest
rate and that this information can be summarized by a few factors extracted from
a large panel of macroeconomic time series. Precisely, the Factor-Augmented VAR
(FAVAR) approach suggested by Bernanke et al. (2005) is used to model the dynamics
of the short-term interest rate. Starting from this characterization of the short rate,
the term structure is then built up using restrictions implied by no-arbitrage. This
setup is labeled a “No-Arbitrage Factor-Augmented VAR” approach. In contrast to
previously proposed macro-finance models of the term structure, the model suggested
in this paper does not contain latent yield factors, but is entirely built upon observable
macroeconomic information.

Fitting the model to US data, I document that it explains the dynamics of yields
quite well. This underlines that no latent yield factors are needed to capture most of
the variation of interest rates. Most importantly, I find that the No-Arbitrage FAVAR
model exhibits a strikingly good ability to predict the yield curve. In a recursive out-
of-sample forecast exercise, the model is shown to outperform various benchmarks
including the essentially affine three factor model of Duffee (2002) and the dynamic
variant of the Nelson-Siegel model that Diebold and Li (2006) have recently suggested
as a prediction model. A subsample analysis of the forecast results documents that the
No-Arbitrage FAVAR model performs particularly well in periods when interest rates
vary a lot.

Based on the findings of the paper, there are a number of interesting directions
for future research. First, while this paper has focused on the predictive ability of the
No-Arbitrage FAVAR approach, the model can also be used for structural economic
analysis. For example, it would be interesting to identify monetary policy shocks as
in Bernanke et al. (2005) and study their impact on the yield curve. Second, based
on estimates of term premia, one could use the model to analyze the risk-adjusted
expectations of future monetary policy conditional on all macro information available.
Finally, estimating the model using a one-step likelihood based Bayesian approach,
one could add latent yield factors and assess to what extent these add explanatory and
predictive power to the model.
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A Derivation of the Bond Pricing Parameters

The absence of arbitrage between bonds of different maturity implies the existence of
the stochastic discount factor M such that

P(n)
t = Et[Mt+1 P(n−1)

t+1 ],

i.e. the price of a n-months to maturity bond in month t must equal the expected dis-
counted price of an (n−1)-months to maturity bond in month (t+1). Following Ang
and Piazzesi (2003), the derivation of the recursive bond pricing parameters starts with
assuming that the nominal pricing kernel M takes the form

Mt+1 = exp(−rt −
1
2

λ′
tΩλt − λ′

tωt+1)

and by guessing that bond prices P are exponentially affine in the state variables Z, i.e.

P(n)
t = exp(An + B′

nZt).

Plugging the above expressions for P and M into the first relation, one obtains

P(n)
t = Et[Mt+1 P(n−1)

t+1 ]

= Et

[
exp(−rt−

1
2

λ′
tΩλt − λ′

tωt+1) exp(An−1+B′
n−1Zt+1)

]
= exp(−rt−

1
2

λ′
tΩλt+An−1) Et

[
exp(−λ′

tωt+1+B′
n−1(µ + ΦZt + ωt+1))

]
= exp(−rt−

1
2

λ′
tΩλt+An−1+B′

n−1µ+B′
n−1ΦZt)Et

[
exp((−λ′

t+B′
n−1)ωt+1)

]
Since the innovations ω of the state variable process are assumed Gaussian with
variance-covariance matrix Ω, it is obvious that

ln Et
[
exp((−λ′

t + B′
n−1)ωt+1)

]
= Et

[
ln(exp((−λ′

t + B′
n−1)ωt+1))

]
+

1
2

Vart
(
ln(exp((−λ′

t + B′
n−1)ωt+1))

)
=

1
2
[
λ′

tΩλt − 2B′
n−1Ωλt + B′

n−1ΩBn−1
]

=
1
2

λ′
tΩλt − B′

n−1Ωλt +
1
2

B′
n−1ΩBn−1.

Hence, Et
[
exp((−λ′

t + B′
n−1)ωt+1)

]
= exp(1

2 λ′
tΩλt − B′

n−1Ωλt + 1
2 B′

n−1ΩBn−1) and
thus

P(n)
t = exp(−rt −

1
2

λ′
tΩλt + An−1 + B′

n−1µ + B′
n−1ΦZt + . . .

+
1
2

λ′
tΩλt − B′

n−1Ωλt +
1
2

B′
n−1ΩBn−1).

24



Using the relations rt = δ′Zt and λt = λ0 + λ1Zt, and matching coefficients finally
yields

P(n)
t = exp(An + B′

nZt),

where

An = An−1 + B′
n−1(µ− Ωλ0) +

1
2

B′
n−1ΩBn−1,

and Bn = B′
n−1(Φ − Ωλ1)− δ′.

These are the recursive equations of the pricing parameters stated in (6)-(7).
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B Tables and Figures

Table 1: Share of Variance Explained by Factors and Factor Loadings

This table summarizes R-squares of univariate regressions of the factors extracted from the panel of
macro variables on all individual variables. For each factor, I list the five variables that are most highly
correlated with it. Notice that the series have been transformed to be stationary prior to extraction of
the factors, i.e. for most variables the regressions correspond to regressions on growth rates. The four
factors together explain about 50% of the total variation of the time series in the panel.

Factor 1 (25.1% of total variance) R2

Index of IP: Total 0.84
Index of IP: Non-energy, total (NAICS) 0.84
Index of IP: Mfg (SIC) 0.84
Capacity Utilization: Total (NAICS) 0.81
Index of IP: Non-energy excl CCS (NAICS) 0.80
Factor 2 (10.9% of total variance)
CPI: all items less medical care 0.85
CPI: commodities 0.83
CPI: all items (urban) 0.83
CPI: all items less shelter 0.82
CPI: all items ess food 0.79
Factor 3 (7.8% of total variance)
CPI: medical care 0.66
PCE prices: total excl food and energy 0.48
PCE prices: services 0.45
M1 (in mil of current $) 0.39
Loans and Securities @ all comm banks: Securities, U.S. govt (in mil of $) 0.37
Factor 4 (5.0% of total variance)
Employment on nonag payrolls: Financial activities 0.27
Employment on nonag payrolls: Other services 0.23
Employment on nonag payrolls: Service-producing 0.19
Employment on nonag payrolls: Mining 0.18
Employment on nonag payrolls: Retail trade 0.17
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Table 2: Policy Rule Based on Individual Variables

This table reports estimates for a policy rule with partial adjustment based on individual mea-
sures of output and inflation, i.e.

rt = c + ρrt−1 + (1− ρ)(φyyt + φππt),

where r denotes the federal funds rate, y the deviation of log GDP from its trend, and π the
annual rate of GDP inflation. The sample period is 1983:01 to 2003:09. Standard errors are in
parentheses. The R2 of this regression is 0.967.

c ρ φy φπ

-0.011 0.955 1.332 2.592
(0.078) (0.017) (0.627) (0.850)

Table 3: Policy Rule Based on Factors

This table reports estimates for a policy rule with partial adjustment based on the four factors
extracted from a large panel of macroeconomic variables, i.e.

rt = c + ρrt−1 + (1− ρ)(φF1F1t + φF2F2t + φF3F3t + φF4F4t),

where r again denotes the federal funds rate and F1 to F4 the four macro factors extracted from
a panel of about 160 monthly time series for the US. The sample period is 1983:01 to 2003:09.
Standard errors are in parentheses. The R2 of this regression is 0.97.

c ρ φF1 φF2 φF3 φF4

0.198 0.957 0.115 0.076 -0.008 0.006
(0.088) (0.016) (0.025) (0.031) (0.025) (0.026)
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Table 4: Correlation of Model Factors and Yields

This table summarizes the correlation patterns between the yields and factors used for estimating the
term structure model. F1, F2, F3 and F4 denote the macro factors extracted form the large panel of
monthly economic time series for the US, y(1) to y(120) denote the yields of maturities 1-month to 10-
years, respectively.

y(1) y(6) y(12) y(36) y(60) y(120)

Panel A: Contemporaneous Correlation of Factors and Yields
F1 0.243 0.318 0.351 0.382 0.389 0.379
F2 0.597 0.619 0.617 0.570 0.546 0.537
F3 0.150 0.153 0.161 0.270 0.340 0.407
F4 0.315 0.325 0.331 0.354 0.365 0.380
y(1) 1.000 0.987 0.975 0.936 0.899 0.833

Panel B: Correlation of 1 month Lagged Factors and Yields
F1(-1) 0.296 0.365 0.393 0.409 0.409 0.393
F2(-1) 0.600 0.614 0.610 0.564 0.539 0.531
F3(-1) 0.145 0.152 0.161 0.269 0.342 0.411
F4(-1) 0.296 0.309 0.316 0.346 0.358 0.373
y(1)(−1) 0.984 0.974 0.960 0.923 0.888 0.822

Panel C: Correlation of 6 Months Lagged Factors and Yields
F1(-6) 0.445 0.490 0.502 0.473 0.445 0.412
F2(-6) 0.549 0.535 0.521 0.496 0.479 0.470
F3(-6) 0.128 0.151 0.171 0.286 0.364 0.453
F4(-6) 0.285 0.308 0.318 0.343 0.351 0.342
y(1)(−6) 0.899 0.880 0.865 0.850 0.829 0.779

Panel D: Correlation of 12 months Lagged Factors and Yields
F1(-12) 0.548 0.567 0.564 0.502 0.455 0.390
F2(-12) 0.448 0.405 0.385 0.398 0.400 0.408
F3(-12) 0.145 0.186 0.205 0.303 0.378 0.479
F4(-12) 0.275 0.309 0.329 0.349 0.354 0.348
y(1)(−12) 0.742 0.712 0.705 0.738 0.745 0.723
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Table 5: Unrestricted Regressions of Yields on Factors

This table summarizes the results of an unrestricted VAR of yields of different maturities on the four
macro factors extracted from the panel of economic time series, and the short rate. The estimation period
is 1983:01 to 2003:09. t-values are in brackets.

y(6) y(12) y(36) y(60) y(120)

cst 0.65 1.04 2.29 3.18 4.58
[3.47] [3.58] [7.58] [10.65] [12.90]

F1 0.23 0.34 0.45 0.50 0.52
[5.23] [4.83] [6.21] [6.93] [7.25]

F2 0.19 0.26 0.26 0.30 0.45
[3.63] [2.81] [1.95] [2.12] [2.88]

F3 0.04 0.08 0.37 0.55 0.72
[1.43] [1.82] [4.93] [6.32] [6.10]

F4 0.10 0.15 0.26 0.33 0.44
[3.53] [3.01] [2.57] [2.75] [2.96]

y(1) 0.95 0.93 0.82 0.72 0.52
[28.64] [17.59] [11.71] [9.07] [5.57]

R̄2 0.98 0.97 0.93 0.91 0.86
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Table 6: In-sample Fit: Observed and Model-Implied Yields and Returns

This table summarizes empirical means and standard deviations of observed and fitted yields. Yields
are reported in percentage terms. The first and second row in each panel report the respective moment
of observed yields and fitted values implied by the No-Arbitrage FAVAR model while in the third row
the mean and standard deviation of absolute fitting errors are reported, respectively.

y(1) y(3) y(6) y(9) y(12) y(24) y(36) y(48) y(60) y(84) y(120)

Mean
y(n) 5.22 5.47 5.62 5.74 5.89 6.27 6.55 6.78 6.90 7.14 7.27
ŷ(n) 5.22 5.47 5.61 5.76 5.88 6.27 6.56 6.76 6.91 7.14 7.26
|y(n)

t − ŷ(n)
t | 0.00 0.14 0.19 0.24 0.29 0.41 0.46 0.50 0.51 0.56 0.58

Standard Deviation
y(n) 2.11 2.20 2.25 2.29 2.32 2.33 2.27 2.24 2.21 2.14 2.06
ŷ(n) 2.11 2.19 2.25 2.28 2.29 2.27 2.21 2.16 2.12 2.04 1.92
|y(n)

t − ŷ(n)
t | 0.00 0.19 0.25 0.31 0.37 0.50 0.57 0.63 0.65 0.72 0.73
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Table 7: Parameter Estimates for No-Arbitrage FAVAR Model

State dynamics : Zt = µ + Φ1Zt−1 + . . . Φ4Zt−4 + ωt, E[ωtω
′
t] = Ω

Φ1 Φ2

F1 0.977 -0.057 -0.107 -0.103 0.011 0.244 -0.143 0.013 0.143 0.044
(0.096) (0.109) (0.118) (0.064) (0.061) (0.140) (0.180) (0.165) (0.088) (0.079)

F2 0.196 1.357 0.174 0.038 0.028 -0.055 -0.387 -0.306 0.005 0.086
(0.064) (0.073) (0.079) (0.043) (0.041) (0.094) (0.121) (0.111) (0.059) (0.053)

F3 -0.160 0.098 0.945 -0.042 -0.043 0.112 -0.340 -0.014 0.072 0.012
(0.072) (0.082) (0.088) (0.048) (0.046) (0.105) (0.135) (0.124) (0.066) (0.060)

F4 -0.102 -0.172 0.170 1.007 -0.071 -0.068 0.336 0.051 -0.192 -0.044
(0.123) (0.140) (0.151) (0.082) (0.079) (0.179) (0.231) (0.212) (0.112) (0.102)

y(1) 0.140 0.086 -0.045 -0.106 0.860 0.163 -0.057 -0.198 0.147 -0.042
(0.100) (0.113) (0.123) (0.066) (0.064) (0.146) (0.188) (0.173) (0.091) (0.083)

Φ3 Φ4

F1 -0.621 0.057 -0.006 -0.089 0.045 0.315 0.079 0.145 0.072 -0.102
(0.139) (0.178) (0.165) (0.088) (0.079) (0.107) (0.107) (0.110) (0.061) (0.060)

F2 -0.171 -0.049 0.257 -0.028 -0.071 0.084 0.045 -0.117 -0.016 -0.040
(0.094) (0.120) (0.111) (0.059) (0.053) (0.072) (0.072) (0.074) (0.041) (0.040)

F3 0.013 0.314 -0.350 -0.012 0.039 -0.087 -0.040 0.334 0.041 -0.006
(0.104) (0.134) (0.124) (0.066) (0.059) (0.081) (0.081) (0.082) (0.046) (0.045)

F4 0.347 -0.358 -0.111 -0.259 0.091 -0.016 0.165 -0.030 0.293 0.040
(0.178) (0.228) (0.212) (0.113) (0.101) (0.138) (0.138) (0.141) (0.078) (0.077)

y(1) -0.124 0.135 0.293 -0.001 -0.060 -0.022 -0.045 -0.082 -0.005 0.187
(0.145) (0.186) (0.172) (0.092) (0.082) (0.112) (0.112) (0.114) (0.064) (0.063)

Ω µ

F1 0.100 0.013
(0.009) (0.084)

F2 -0.020 0.045 -0.003
(0.005) (0.004) (0.057)

F3 0.054 -0.013 0.057 -0.036
(0.006) (0.003) (0.005) (0.063)

F4 -0.072 -0.016 -0.044 0.165 -0.091
(0.010) (0.006) (0.007) (0.015) (0.108)

y(1) 0.006 -0.003 -0.005 -0.018 0.109 0.246
(0.007) (0.005) (0.005) (0.009) (0.010) (0.088)

Market prices of risk : λt = λ0 + λ1Zt

λ̃0 λ̃1

-26.970 0.619 0.228 0.306 3.557 -0.120
(0.001) (0.102) (0.225) (0.310) (0.007) (0.474)
-15.418 4.486 0.263 0.826 -1.342 0.043
(0.006) (0.038) (0.041) (0.002) (0.003) (0.094)
-91.031 -0.770 -1.083 -0.191 -4.263 0.350
(0.007) (0.078) (0.232) (0.001) (0.010) (0.460)
-79.287 -1.756 -1.867 0.275 0.554 0.241
(0.017) (0.042) (0.007) (0.418) (0.007) (0.176)
-19.460 -0.250 -0.682 -0.040 -0.790 -0.241
(0.009) (0.103) (0.011) (0.773) (0.075) (0.060)
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Table 8: Regression of Latent Yield Factors on the Model Factors

This table summarizes the results obtained from a regression of level, slope, and curvature yield factors
onto the factors of the FAVAR model. Level, slope, and curvature are computed as the first three principal
components extracted from the yields used to estimate the term structure model. They explain 90.8%,
6.4% and 1.6% of the total variance of all yields, respectively. The sample period is 1983:01-2003:9. t-
statistics are in brackets.

Level Slope Curvature
cst 0.23 1.65 -0.05

[10.88] [9.40] [-0.11]
F1 0.04 0.13 -0.37

[7.15] [4.18] [-3.91]
F2 0.03 0.10 -0.13

[2.76] [1.48] [-0.96]
F3 0.04 0.30 0.02

[5.89] [6.23] [0.30]
F4 0.02 0.14 -0.09

[2.92] [2.44] [-1.26]
y(1) 0.07 -0.29 0.02

[13.41] [-7.22] [0.33]
R̄2 0.95 0.77 0.35
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Table 9: Out-of-sample RMSEs - Forecast Period 1994:01-2003:09

This table summarizes the root mean squared errors obtained from out-of-sample yield forecasts. The
models have been estimated using data from 1983:01 until the period when the forecast is made. The fore-
casting period is 1994:01-2003:09. “FAVAR” refers to the No-Arbitrage Factor-Augmented VAR model;

“VAR” denotes an arbitrage-free model with IP growth, the index of help-wanted adds in newspapers,
CPI growth, PPI growth and the short rate as factors; “VARylds” refers to a VAR(1) on yield levels;

“NS(VAR)” and “NS(AR)” denote the Diebold-Li (2006) version of the three-factor Nelson-Siegel model
with VAR and AR dynamics of the latent factors, respectively; “A0(3)” refers to the essentially affine
latent yield factor model, and “RW” denotes the random walk forecast.

y(n) FAVAR VAR VARylds NS(VAR) NS(AR) A0(3) RW
Panel A: 1-month ahead forecasts

n=1 0.534 0.334 0.249 0.262 0.275 0.681 0.305
n=6 0.496 0.347 0.204 0.218 0.256 0.216 0.222
n=12 0.517 0.452 0.250 0.268 0.293 0.300 0.259
n=36 0.628 0.771 0.308 0.313 0.312 0.386 0.309
n=60 0.676 0.935 0.314 0.316 0.316 0.357 0.307
n=120 0.711 1.093 0.293 0.289 0.289 0.289 0.282

Panel B: 6-months ahead forecasts
n=1 0.601 0.707 0.779 0.745 0.838 1.189 0.856
n=6 0.603 0.898 0.904 0.871 0.931 0.977 0.853
n=12 0.694 1.040 1.006 0.958 0.981 1.059 0.876
n=36 0.753 1.278 1.021 0.958 0.922 0.962 0.873
n=60 0.789 1.377 0.969 0.915 0.870 0.848 0.830
n=120 0.823 1.435 0.872 0.764 0.720 0.671 0.696

Panel C: 12-months ahead forecasts
n=1 0.919 1.307 1.366 1.448 1.357 1.741 1.395
n=6 0.977 1.542 1.613 1.569 1.458 1.487 1.417
n=12 1.053 1.652 1.728 1.633 1.495 1.506 1.391
n=36 1.062 1.769 1.599 1.504 1.349 1.264 1.236
n=60 1.066 1.813 1.464 1.359 1.233 1.076 1.138
n=120 1.072 1.806 1.313 1.108 1.022 0.853 0.942
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Table 10: RMSEs Relative to Random Walk - Forecast Period 1994:01-2003:09

This table summarizes the root mean squared errors obtained from out-of-sample yield forecasts. The
models have been estimated using data from 1983:01 until the period when the forecast is made. The fore-
casting period is 1994:01-2003:09. “FAVAR” refers to the No-Arbitrage Factor-Augmented VAR model;

“VAR” denotes an arbitrage-free model with IP growth, the index of help-wanted adds in newspapers,
CPI growth, PPI growth and the short rate as factors; “VARylds” refers to a VAR(1) on yield levels;

“NS(VAR)” and “NS(AR)” denote the Diebold-Li (2006) version of the three-factor Nelson-Siegel model
with VAR and AR dynamics of the latent factors, respectively; “A0(3)” refers to the essentially affine
latent yield factor model, and “RW” denotes the random walk forecast.

y(n) FAVAR VAR VARylds NS(VAR) NS(AR) A0(3)
Panel A: 1-month ahead forecasts

n=1 1.751 1.096 0.816 0.859 0.900 2.232
n=6 2.237 1.567 0.921 0.984 1.154 0.972
n=12 1.996 1.743 0.964 1.034 1.131 1.160
n=36 2.032 2.497 0.996 1.013 1.011 1.250
n=60 2.204 3.046 1.022 1.029 1.031 1.165
n=120 2.525 3.880 1.039 1.028 1.025 1.027

Panel B: 6-months ahead forecasts
n=1 0.702 0.826 0.910 0.870 0.979 1.389
n=6 0.707 1.052 1.059 1.022 1.092 1.145
n=12 0.793 1.187 1.148 1.094 1.119 1.209
n=36 0.863 1.465 1.171 1.098 1.056 1.103
n=60 0.951 1.659 1.167 1.102 1.048 1.022
n=120 1.183 2.064 1.254 1.099 1.035 0.964

Panel C: 12-months ahead forecasts
n=1 0.659 0.937 0.979 1.038 0.973 1.249
n=6 0.689 1.088 1.139 1.107 1.029 1.049
n=12 0.757 1.187 1.242 1.174 1.075 1.083
n=36 0.860 1.431 1.293 1.217 1.091 1.023
n=60 0.937 1.594 1.287 1.194 1.084 0.946
n=120 1.138 1.916 1.393 1.175 1.085 0.905
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Table 11: White’s Reality Check Test - Forecast Period 1994:01-2003:09

This table summarizes “White’s Reality Check” test statistics based on a squared forecast error loss
function. I choose the No-Arbitrage FAVAR model as the benchmark model and compare it bilaterally
with the competitor models. Negative test statistics indicate that the average squared forecast loss of the
FAVAR model is smaller than that of the respective competitor model. Bold figures indicate significance
at the 5% interval. Significance is checked by comparing the average forecast loss differential with the
5% percentile of the empirical distribution of the loss differential series approximated by applying a
block bootstrap with 1,000 resamples and a smoothing parameter of 1/12.

y(n) VAR VARylds NS(VAR) NS(AR) A0(3) RW
Panel A: 1-month ahead forecasts

n=1 1.858 2.390 2.315 2.241 -1.915 2.057
n=6 1.355 2.205 2.143 1.950 2.153 2.126
n=12 0.697 2.222 2.123 1.971 1.924 2.172
n=36 -2.099 3.270 3.237 3.237 2.691 3.264
n=60 -4.387 3.930 3.915 3.907 3.619 3.975
n=120 -7.305 4.599 4.622 4.626 4.622 4.668

Panel B: 6-months ahead forecasts
n=1 -1.456 -2.727 -2.062 -3.581 -11.050 -3.946
n=6 -4.613 -4.942 -4.327 -5.371 -6.325 -4.003
n=12 -6.239 -5.813 -4.848 -5.173 -6.917 -3.248
n=36 -11.142 -5.281 -3.982 -3.119 -4.019 -2.359
n=60 -13.287 -3.593 -2.517 -1.559 -1.255 -0.948
n=120 -14.444 -1.081 0.727 1.516 2.216 1.832

Panel C: 12-months ahead forecasts
n=1 -8.760 -10.630 -12.891 -10.170 -22.505 -11.504
n=6 -14.341 -17.253 -15.864 -12.136 -13.404 -11.477
n=12 -16.235 -19.577 -16.546 -11.801 -12.570 -9.299
n=36 -20.234 -14.953 -12.169 -7.337 -5.467 -4.899
n=60 -21.841 -10.567 -7.692 -4.137 -0.707 -2.151
n=120 -21.456 -5.984 -1.097 0.939 4.064 2.372
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Table 12: Out-of-sample RMSEs - Forecast Period 1994:01-2000:12

This table summarizes the root mean squared errors obtained from out-of-sample yield forecasts. The
models have been estimated using data from 1983:01 until the period when the forecast is made. The fore-
cast period is 1994:01-2000:12 which is exactly the sample considered by Diebold and Li (2006). “FAVAR”
refers to the No-Arbitrage Factor-Augmented VAR model; “VAR” denotes an arbitrage-free model with
IP growth, the index of help-wanted adds in newspapers, CPI growth, PPI growth and the short rate as
factors; “VARylds” refers to a VAR(1) on yield levels; “NS(VAR)” and “NS(AR)” denote the Diebold-Li
(2006) version of the three-factor Nelson-Siegel model with VAR and AR dynamics of the latent factors,
respectively; “A0(3)” refers to the essentially affine latent yield factor model, and “RW” denotes the
random walk forecast.

y(n) FAVAR VAR VARylds NS(VAR) NS(AR) A0(3) RW
Panel A: 1-month ahead forecasts

1 0.380 0.303 0.255 0.265 0.249 0.722 0.297
6 0.349 0.345 0.194 0.186 0.215 0.209 0.192
12 0.392 0.447 0.242 0.238 0.249 0.280 0.239
36 0.563 0.731 0.281 0.286 0.272 0.368 0.277
60 0.678 0.913 0.290 0.289 0.280 0.343 0.275
120 0.796 1.158 0.270 0.256 0.249 0.254 0.253

Panel B: 6-months ahead forecasts
1 0.625 0.597 0.696 0.509 0.532 1.140 0.635
6 0.590 0.769 0.799 0.660 0.648 0.936 0.655
12 0.659 0.892 0.898 0.778 0.711 0.999 0.742
36 0.649 1.184 0.947 0.877 0.747 0.938 0.834
60 0.740 1.348 0.949 0.885 0.764 0.834 0.821
120 0.877 1.516 0.911 0.793 0.694 0.637 0.730

Panel C: 12-months ahead forecasts
1 0.900 1.006 1.025 0.899 0.812 1.654 0.945
6 0.907 1.205 1.179 1.002 0.908 1.430 0.977
12 0.955 1.288 1.268 1.078 0.932 1.414 1.017
36 0.981 1.560 1.333 1.168 0.937 1.188 1.078
60 1.056 1.714 1.331 1.179 0.979 1.007 1.072
120 1.160 1.825 1.333 1.089 0.941 0.775 0.985
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Table 13: Out-of-sample RMSEs - Forecast Period 2000:01-2003:09

This table summarizes the root mean squared errors obtained from out-of-sample yield forecasts. The
models have been estimated using data from 1983:01 until the period when the forecast is made. The
forecast period is 2000:01-2003:09. “FAVAR” refers to the No-Arbitrage Factor-Augmented VAR model;

“VAR” denotes an arbitrage-free model with IP growth, the index of help-wanted adds in newspapers,
CPI growth, PPI growth and the short rate as factors; “VARylds” refers to a VAR(1) on yield levels;

“NS(VAR)” and “NS(AR)” denote the Diebold-Li (2006) version of the three-factor Nelson-Siegel model
with VAR and AR dynamics of the latent factors, respectively; “A0(3)” refers to the essentially affine
latent yield factor model, and “RW” denotes the random walk forecast.

y(n) FAVAR VAR VARylds NS(VAR) NS(AR) A0(3) RW

Panel A: 1-month ahead forecasts
1 0.762 0.417 0.300 0.296 0.349 0.648 0.366
6 0.690 0.379 0.214 0.256 0.316 0.228 0.257
12 0.677 0.495 0.250 0.297 0.348 0.326 0.281
36 0.725 0.884 0.336 0.341 0.359 0.396 0.342
60 0.648 1.003 0.339 0.344 0.360 0.366 0.342
120 0.489 0.961 0.310 0.330 0.336 0.325 0.312

Panel B: 6-months ahead forecasts
1 0.581 0.904 0.896 1.027 1.231 1.391 1.165
6 0.611 1.071 1.038 1.148 1.298 1.085 1.118
12 0.728 1.232 1.153 1.213 1.327 1.169 1.078
36 0.873 1.420 1.150 1.095 1.158 0.972 0.956
60 0.822 1.425 1.019 0.969 1.020 0.841 0.868
120 0.656 1.284 0.798 0.716 0.759 0.709 0.634

Panel C: 12-months ahead forecasts
1 0.939 1.763 1.896 2.191 2.079 1.927 2.052
6 1.112 2.062 2.297 2.382 2.221 1.654 2.108
12 1.246 2.213 2.459 2.461 2.288 1.749 2.030
36 1.217 2.133 2.085 2.084 1.974 1.471 1.601
60 1.075 1.995 1.738 1.711 1.660 1.252 1.329
120 0.845 1.748 1.275 1.175 1.185 1.022 0.891
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Figure 1: Observed and Model Implied Average Yield Curve

This figure plots average observed yields against those implied by the No-Arbitrage FAVAR model.
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Figure 2: Observed and Model-Implied Yields

This figure provides plots of observed and model-implied time series for four selected interest rates, the
6-months yield, the 12-months yield and the 3-and 10-years yields.
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Figure 3: Risk Premia Dynamics

This figure provides a plot of the term premia for the 1-year and 5-year yield as implied by the No-
Arbitrage FAVAR model. For comparison, they are related to the first and second model factor, respec-
tively.
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Figure 4: Implied Yield Loadings

This figure provides a plot of the yield loadings bn implied by the No-Arbitrage FAVAR model. The
coefficients can be interpreted as the response of the n-month yield to a contemporary shock to the
respective factor.
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Figure 5: Observed and Predicted Yields - 1 Month Ahead

This figure provides plots of the observed and 1-month ahead predicted time series for four the 1-month,
the 12-month, the 3- and 10-year maturities. The observed yields are plotted by solid lines, whereas
dashed, dash-dotted, and dotted lines correspond to predictions of the No-Arbitrage FAVAR model, the
NS(AR) model, and the A0(3) model.

1-month yield 12-month yield

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
0

1

2

3

4

5

6

7

8

 

 

Data
FAVAR
NS(AR)
A0(3)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
0

1

2

3

4

5

6

7

 

 

Data
FAVAR
NS(AR)
A0(3)

3-year yield 10-year yield

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
0

1

2

3

4

5

6

7

8

 

 

Data
FAVAR
NS(AR)
A0(3)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
0

1

2

3

4

5

6

7

8

 

 

Data
FAVAR
NS(AR)
A0(3)

42



Figure 6: Observed and Predicted Yields - 6 Months Ahead

This figure provides plots of the observed and 6-months ahead predicted time series for four the 1-
month, the 12-month, the 3- and 10-year maturities. The observed yields are plotted by solid lines,
whereas dashed, dash-dotted, and dotted lines correspond to predictions of the No-Arbitrage FAVAR
model, the NS(AR) model, and the A0(3) model.
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Figure 7: Observed and Predicted Yields - 12 Months Ahead

This figure provides plots of the observed and 12-months ahead predicted time series for four the 1-
month, the 12-month, the 3- and 10-year maturities. The observed yields are plotted by solid lines,
whereas dashed, dash-dotted, and dotted lines correspond to predictions of the No-Arbitrage FAVAR
model, the NS(AR) model, and the A0(3) model.
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