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1 Introduction

This paper is concerned with testing hypotheses about the pre and post break value of a parameter

in a time series model with a single break. By reversing the time ordering, inference about the post

break value becomes inference about the pre break value, so that for simplicity, we will exclusively

discuss the post break case. If the break date is known, inference is straightforward, as standard

results apply after restricting attention to the stable post break data. The effect of an incorrectly

chosen break date crucially depends on whether the chosen date is earlier or later than the true

break date. On the one hand, if the chosen date is later, then a restriction to the presumed post

break data still yields a stable model, and inference remains valid. There is a cost of efficiency,

though, since more post break data could have been used. On the other hand, if the chosen date is

earlier than the true break date, then the presumed post break data stems from an unstable model.

Parameter estimators in this unstable model tend to estimate the average parameter value, which is

different from the true post break value, so standard inference yields tests and confidence intervals

with distorted size.

These distortionary effects are small if the chosen break date is sufficiently close to the true break

date. With the break date unknown, this requires a precise break date estimator. As formally shown

by Bai (1994, 1997) and Bai and Perron (1998) for linear regressions, and Hall, Han, and Boldea

(2008) for two stage least squares, the least squares break date estimator is indeed sufficiently precise

for these distortionary effects to become asymptotically negligible if the parameter shift is suffi-

ciently pronounced. Formally, these papers study asymptotics in which the break magnitude, while

possibly shrinking, is outside the local T−1/2 neighborhood. Relative to the sampling uncertainty

of the parameter estimator in a stable model, the parameter shift thus becomes infinitely large. We

consider the behavior of the 5% nominal level two-sided test based on the least squares break date

estimator under local asymptotics in Section 2.1.2 below, where the break magnitude is measured

in multiples of standard deviations of the full sample parameter estimator. With the break date

restricted to the middle 70% of the sample, the largest null rejection probability is almost 30%, a

break magnitude of less than 5 standard deviations leads to effective size of more than 10% for all

break dates, and a break of 11 standard deviations still yields size greater than 10% for some break

dates. These distortions are further exacerbated by an attempt to pre-test for parameter stability.

In other words, for any sample size T , there exists a break magnitude for which these standard

methods yield incorrect inference, so they are not uniformly valid.

It is instructive to consider these issues in the context of an example. Productivity growth

in most developed nations appears to have suffered shifts in its mean a number of times. Most

researchers agree on a downward shift in productivity following the oil crisis of 1973, typically

dated at the third quarter. In post 1973 data, there is a suggestion of a mid 1990’s upward shift
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Figure 1: Quarterly growth in non farm business productivity growth and average growth pre and

post 1995 Q4 (BLS series PRS85006092)

Table 1: Inference about current US productivitg growth
Method 95% Confidence Interval

Break date chosen [1.36,3.42]

Least squares break date estimator [1.97,3.27]

Test of this paper [1.99,3.37]

in average productivity growth and speculation about its cause. A recent summary appears in

Jorgenson, Ho, and Stiroh (2008), who informally suggest a break in the fourth quarter of 1995.

Gordon (2003) also dates the increase to 1995. Anderson and Klieson (2006) refer to the increase

in productivity as the ’defining economic event of the past decade’.

Figure 1 plots quarterly observations of US non farm business productivity growth, along with

the pre and post break means using Jorgenson, Ho, and Stiroh (2008) break date of 1995 Q4.

Based on this data, quarterly productivity growth increased by 1.1% in 1995 Q4. The least-squares

estimate of the break date is slightly later at 1997 Q1. The first two rows of Table 1 contain 95%

confidence intervals for current US productivity growth, conditional on these two break dates. The

parameter stability test of Elliott and Müller (2006) fails to reject the null hypothesis of stable mean

growth on the 10% level.

With a (long-run) standard deviation of quarterly productivity growth of approximately 3% and

a sample of T = 136 observations, 5-11 standard deviations of the full sample estimator correspond

to a 1.3-2.8% shift in quarterly productivity growth. Absent prior knowledge that the break date
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is indeed 1995 Q4, or that the change of productivity is at least of the order of, say, 1.5%, nothing

suggests that either interval has close to its nominal confidence level. More generally, it seems hard

to argue that break magnitudes of less than 11 standard deviations of the full sample estimator

are not part of the empirically relevant parameter space in most applications. One way to see this

is that shifts of, say, 8 standard deviations tend to induce highly significant rejections of the null

hypothesis of parameter stability with high probability–see Elliott and Müller (2007). Yet there

is continued debate about the stability of monetary policy, for instance, with Orphanides (2004)

arguing for rather stable relationships, while Cogley and Sargent (2005) find instabilities that they

deem ’economically important’, but of a magnitude that would be detected by a formal parameter

stability test less than 25% of the time.

Simple adjustments to the standard procedure that ensure size control over all break magnitudes

do not deliver reasonable tests. For instance, in the set-up mentioned above and described in detail

in Section 2.1.2, the critical value for the 5% two-sided t-statistic would need to be increased from

1.96 to approximately 4.9 to ensure uniform size control, with obvious adverse effects on power.1

A Bonferroni procedure based on uniformly valid confidence sets for the break date developed by

Elliott and Müller (2007) performs well for large breaks, but has poor power for breaks of moderate

magnitude.

The main contribution of this paper is the construction of a powerful test about the post break

parameter value in a general GMM time series model with unknown break date that controls size

uniformly over the break magnitude. This test follows a switching rule: if there is strong evidence

for a large break, then the test essentially reduces to standard inference using post break data

determined by the least squares break date estimator, with a slight increase of the 5% critical value

from 1.96 to 2.01. In absence of strong evidence for a large break, the test switches to a likelihood

ratio test. This likelihood ratio test is carefully constructed to ensure both overall size control

and approximate efficiency in the sense that for a particular weighting function, (local asymptotic)

weighted average power of the suggested test is demonstrably at most 1.0% smaller than the weighted

average power of any test that controls size.

From a statistical point of view, the problem is one of constructing powerful tests in the presence

of a nuisance parameter under the null hypothesis–the nuisance parameter being the break data and

break magnitude, neither of which can be consistently estimated under local asymptotics. We extend

the algorithm of Müller and Watson (2008) to identify the approximate least favorable distribution

for this nuisance parameter. This approximate least favorable distribution identifies the null density

for the likelihood ratio part of the test statistic, and, using the insight of Müller and Watson (2008)

1This adjustment to the critical value is also the end result of the size corrected hybrid subsampling method

recently advanced by Andrews and Guggenberger (2007a, 2007b) when applied to this problem.
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and Andrews, Moreira, and Stock (2007), allows the construction of an upper bound on the power

of all tests that control size.2 Beyond overcoming the substantial ’engineering’ challenges in this

example with a two dimensional nuisance parameter, exacerbated by the impossibility of accurately

representing continuous time Gaussian processes on a discrete computer, a further contribution of

this paper to this methodology is a careful consideration of size control. A test controls size if

the rejection probability, viewed as a function on the null parameter space, takes on values below

or at the nominal level. The standard approach is to evaluate the rejection probability for a grid

of parameter points by Monte Carlo, and to conclude size is controlled if none of the estimates is

larger than the nominal level. We develop an alternative algorithm that, while still based on Monte

Carlo estimation, instead estimates (an upper bound on) the whole rejection probability function,

ensuring that no additional implicit smoothness assumptions are necessary. It is important to note,

however, that all of these ’engineering’ challenges only concern the derivation of the suggested test;

its application for a given sample is essentially no more difficult than the estimation of the GMM

model over 142 subsamples, for any sample size.

In many ways, the analysis in this paper mirrors the developments in the weak instrument

literature over the last decade: Similar to Staiger and Stock (1997), we consider an alternative

asymptotic embedding that formalizes the lack of uniform validity of the standard method. Akin

to their rule of thumb that standard asymptotics are approximately reliable when the first stage

F-statistic is sufficiently large, we suggest a formal switching rule to least squares break date based

inference when a parameter stability test is highly significant. Finally, as Andrews, Moreira and

Stock (2006, 2007), we consider tests that are efficient relative to a weighted average power criterion,

and identify an approximately optimal test.

Returning to the US productivity example, the last row in Table 1 shows the 95% confidence

interval constructed by inverting the test suggested here. In this example, the interval is only

slightly wider than the one based on the least squares based break date estimator, and remains

informative about current US productivity.

The remainder of the paper is organized as follows. The next section defines the asymptotic

analogues to the small sample post break parameter inference problem, quantifies the lack of size

control of inference based on the least squares break date estimator, summarizes our solution and

discusses the relationship of the small sample problem in parametric and GMM models to the

limiting problem. In Section 3, we discuss in detail the construction of the suggested test, the

determination of its size and the bound on power. The test statistic is defined in terms of partial

sample GMM statistics (cf. Andrews (1993)) in Section 4, where we also consider its asymptotic

2By reframing the issue of identifying a powerful test with uniform size control in general decision theoretic terms

(see Section 3.2 below), this power bound is closely related to the bound on the minimax value generated by the

least favorable distribution over a subset of possible distributions, as analyzed by Chamberlain (2000).
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and small sample properties. Proofs not given in the main text are collected in an appendix.

2 Limiting Problem and Underlying Models

The natural large sample analogue to small sample post break parameter inference is an inference

problem about the drift component of a Gaussian process on the unit interval. The scalar version

of this limiting problem is discussed first. We investigate the corresponding asymptotic properties

of least squares break date based inference, and provide an overview of our line of attack, along

with the key properties of the suggested test. The second subsection considers the multivariate

limiting problem, and shows in which sense the approximate efficiency of our solution in the scalar

case carries over to the multivariate case. Finally, Section 2.3 provides a formal link between the

underlying small sample problem to the multivariate limiting problem for both parametric and

GMM time series models.

2.1 Scalar Limiting Problem

2.1.1 Statement of the problem

The main focus of this paper is the following hypothesis testing problem: Suppose we observe the

scalar Gaussian process G(·) on the unit interval (a random element with values in D[0,1], the space

of cadlag functions on the unit interval)

G(s) =W (s) + βs+ δmin(ρ, s), s ∈ [0, 1] (1)

where W (·) is standard Wiener process and β, δ ∈ R, and ρ ∈ [0.15, 0.85]. The process G(s) is a
Wiener process with drift β + δ for s < ρ, and drift β for s ≥ ρ. The testing problem is H0 : β = 0

against H1 : β 6= 0, so that geometrically, the question is whether the slope of the deterministic

component βs+ δmin(ρ, s) is equal to zero after the (potential) kink at s = ρ. The location ρ and

magnitude δ of the kink are nuisance parameters. This composite nature of the hypotheses can

be made more explicit by introducing the notation θ = (β, δ, ρ), Θ0 = {θ = (0, δ, ρ) : δ ∈ R and
ρ ∈ [0.15, 0.85]} and Θ1 = {θ = (β, δ, ρ) : β 6= 0, δ ∈ R and ρ ∈ [0.15, 0.85]}, so that the hypothesis
testing problem becomes

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1. (2)

Let ϕ : D[0,1] 7→ [0, 1] be a possibly randomized test of (2), where ϕ(g) indicates the conditional

probability of rejecting the null hypothesis test conditional on observing G = g. If the range of

ϕ only consists of the two values {0, 1}, then ϕ is not randomized. The unconditional rejection
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probability is then simply the expectation of ϕ(G), which we write as Eθ[ϕ(G)] to indicate that this

expectation depends on the value of θ. With these definitions, a test ϕ is of level 5% if

Eθ[ϕ(G)] ≤ 5% for all θ ∈ Θ0. (3)

To illustrate the link to the post break parameter inference problem, consider observations

{yt}Tt=1 from a scalar Gaussian model with a break in the mean at time τ

yt = μ+∆1[t ≤ τ ] + εt, εt ∼ N (0, 1). (4)

We then have the following equality in distribution

T−1/2
sTX
t=1

yt ∼ G(s) for any s ∈ { t
T
}Tt=1

where ρ = τ/T , β = T 1/2μ and δ = T 1/2∆. Except for the scaling by T−1/2 and the discretization

s ∈ { t
T
}Tt=1, the testing problem (2) involving the observation G is therefore identical to inference

about the post-break mean in Gaussian location model (4), with the break date restricted to be

in the middle 70% of all observations. We argue below how the testing problem (2) based on

the observation G(·) naturally arises as the asymptotically relevant problem in more complicated

settings, but first discuss this limiting problem in more detail.

2.1.2 Tests Based on Least-Square Break Date Estimator

As discussed in the introduction, Bai (1994, 1997) and Bai and Perron (1998) suggest and analyze

the following procedure for conducting inference about the post break value of a coefficient in a

linear regression that is subject to a break: Estimate the break date by least-squares, construct

a post break dummy using this estimate, and perform the usual t-test on that dummy. These

papers show that this procedure results in asymptotically correct inference for break magnitudes

that diverge when multiplied by the square root of the sample size. This corresponds to |δ| → ∞
in the notation developed here. Another procedure, arguably most prevalent in applied work, first

performs a pretest for a break on some conventional significance level, followed by standard full

sample inference about the post break value if no significant break is found, and performs least-

squares based post break inference as above if the pretest rejects.

In the limiting problem (1), the nominally 5% level least squares and pretest procedure (based

on the supF statistic) correspond to the test

1[supF > cvpre(αpre)]1[|t̂| > Φ(0.975)] + 1[supF < cvpre(αpre)]1[|G(1)| > Φ(0.975)] (5)
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where cvpre(αpre) is the critical value of the supF statistic of level αpre as tabulated in Andrews

(1993), (and cvpre(1) = 0 corresponds to always using the least squares break date estimator, with

no pretest), Φ(0.975) ' 1.96 is the 97.5th percentile of a standard normal and

ρ̂ = argmaxr∈[0.15;0.85]
(G(r)− rG(1))2

r(1− r)
, supF =

(G(ρ̂)− ρ̂G(1))2

ρ̂(1− ρ̂)
, t̂ =

G(1)−G(ρ̂)√
1− ρ̂

. (6)

Under standard assumptions, the large sample properties of the small sample pretest and least

square based tests in a linear regression with a single coefficient converge in distribution to those

in (5) for breaks of magnitude T−1/2–this follows, for instance, from Proposition 1 of Elliott and

Müller (2007).

Figure 1 displays the null rejection probability of (5) for αpre = 1 (no pretest), αpre = 0.10,

αpre = 0.05 and αpre = 0.01 as a function of δ for selected values of ρ, based on 50,000 Monte Carlo

draws and 1,000 step random walk approximations to Wiener processes. None of these tests comes

close to controlling size uniformly over δ. The approximately largest null rejection probability of the

pure least-squares break date based test is approximately 29% at (ρ, δ) = (0.85, 2.6). Pre-testing for

a break seems to both substantially exacerbate and shift the size control problem to larger values

of δ.3

In fact, to obtain a 5% level test in the no pretest case, one must employ a critical value

of approximately 4.9 instead of Φ(0.975) ' 1.96 for the t-statistic, with size still approximately

equal to the nominal 5% level at the point (ρ, δ) = (0.85, 6.8). Denote this size corrected test

ϕLS. Because the worst size distortion occurs for a strictly positive break magnitude, the size

corrected hybrid subsampling method of Andrews and Guggenberger (2007a, 2007b) reduces to the

size corrected fixed critical value test ϕLS. Alternatively, one could always use the test ϕ0.85(G) =

1[|G(1) − G(0.85)|/
√
0.15 > 1.96] which corresponds to a usual 5% level t-test based on the last

15% of the data. As one would expect, though, the power of both ϕLS and ϕ0.85 is quite poor (we

provide power computations in Section 4 below), motivating the construction of an alternative test.

2.1.3 Approximately Weighed Average Power Maximizing Test

No uniformly most powerful test exists for inference about β in absence of knowledge of ρ and δ.

Some tests will have good power for certain ranges of value of ρ and δ, while performing poorly for

other values. To obtain a reasonable assessment of the overall quality of tests, we therefore adopt

a weighted average power criterion, as, for instance, in Wald (1943) and Andrews and Ploberger

(1994). Specifically, we seek to determine a 5% level test ϕ that comes close to maximizing

WAP(ϕ) =
Z

Eθ[ϕ(G)]dF (θ) (7)

3Unreported results show that these asymptotic results provide very good approximations for the small sample

Gaussian location problem (4) with T = 100.
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Figure 2: Asymptotic null rejection probabilities of nominal 5% level tests for post break parameter

value based on least squares break date estimator.

8



where the weighting function F is chosen as follows.

Condition 1 Under F , ρ is distributed uniform over [0.15, 0.85] and (β, δ) is bivariate normal

independent of ρ, with β ∼ N (0, σ2β), δ ∼ N (0, σ2δ) and β independent of β + δ, where σ2β = 22 and

σ2δ = 400.

The Gaussianity of the marginal distribution of β and δ in F under Condition 1 is chosen for

analytical convenience, and the independence of the pre and post break parameter values β and

β+δ mirrors the independence of the pre and post break sample information G(ρ) and G(1)−G(ρ).
The value of σ2β = 22 is motivated by King’s (1988) discussion of overall reasonable point-optimal

tests, since it turns out that for σ2β = 22, the best 5% level test has approximately 50% weighted

average power. The uniform weighting over ρ accords to the choice in Andrews and Ploberger (1994)

and is intended to generate reasonable power for all break dates ρ ∈ [0.15, 0.85]. Finally, the value
σ2δ = 400 is motivated as follows: For large δ, (say, |δ| > 12 or so) there is a lot of information

about the break date ρ, and good tests can come close to performing as well as if ρ was known.

By putting enough weight on rather large values of δ, the choice σ2δ = 400 ensures that tests that

perform well according to WAP share this desirable feature. At the same time, the distribution

N (0, 400) concentrates about half of its mass on |δ| < 12, so tests with high WAP must also perform
reasonably in the arguably empirically relevant region for δ where the lack of knowledge of the break

date severely complicates good inference about β.

By Girsanov’s Theorem, the Radon-Nikodym derivative of the measure of G in (1) with para-

meter θ ∈ Θ0 ∪Θ1 relative to the measure ν of the standard Wiener process W , evaluated at G, is

given by

fθ(G) = exp[δG(ρ) + βG(1)− 1
2
(β2 + 2βδρ+ δ2ρ)]. (8)

Expressed in terms of the density fθ, the hypothesis test (2) becomes

H0 : The density of G is fθ, θ ∈ Θ0

H1 : The density of G is fθ, θ ∈ Θ1

(9)

and, as noted above, both the null and alternative hypothesis involve the two nuisance parameters

δ and ρ. Note, however, that weighted average power can be rewritten as

WAP(ϕ) =
Z

Eθ[ϕ(G)]dF (θ) =

Z
ϕ(

Z
fθdF (θ))dν

as Fubini’s Theorem justifies the change of order of integration. Thus, maximizing weighted average

power is equivalent to maximizing power against the single alternative

HF : The density of G is h =
Z

fθdF (θ) (10)
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and the remaining challenge is to deal with the composite nature of the null hypothesis. The key

insight that allows us to make further progress is Lemma 2 of Müller and Watson (2008),4 which

we reproduce here for convenience.

Lemma 1 Let Λ be a probability distribution on Θ0, and let ϕΛ be the best level α test of the null

hypothesis HΛ : "The density of G is
R
fθdΛ(θ)" against HF . Then for any level α test ϕ of H0

against HF ,
R
ϕΛhdν ≥

R
ϕhdν.

Proof. Since ϕ is a level α test of H0,
R
ϕfθdν ≤ α for all θ ∈ Θ0. Therefore,

R R
ϕfθdνdΛ(θ) =R R

ϕfθdΛ(θ)dν ≤ α (where the change in the order of integration is allowed by Fubini’s Theorem),

so that ϕ is also a level α test of HΛ against H1. The result follows by the definition of a best test.

Lemma 1 formalizes the perfectly intuitive result that replacing the composite null hypothesis

H0 with the single mixture null hypothesis HΛ can only simplify the testing problem in the sense

of allowing for more powerful tests. Its appeal lies in the fact that the best test of HΛ against HF

is easily constructed: by the Neyman-Pearson Lemma, the best test rejects for large values of the

likelihood ratio statistic h/
R
fθdΛ(θ). Thus, Lemma 1 provides a set of explicit power bounds on

the original problem, indexed by the distribution Λ.

Lemma 1 can usefully be thought of as generalizing a standard result concerning tests with a

composite null hypothesis; see, for instance, Theorem 3.8.1 of Lehmann and Romano (2005): A

distribution Λ∗∗ is least favorable if the best level α test of HΛ∗∗ against the single alternative HF

is also of level α in the testing problem with the composite null hypothesis H0 against HF , so

that–using the same reasoning as in the proof of Lemma 1–this test is also the best test of H0

against HF . In contrast to this standard result, Lemma 1 is formulated without any restriction on

the probability distribution Λ. This is useful because in many contexts, it is difficult to identify the

least favorable distribution Λ∗∗ (and it may not even exist).

The strategy suggested by Lemma 1 is to work instead with a numerically determined approxi-

mately least favorable distribution Λ∗: Suppose we knew of a Λ∗ such that (i) the best 5% level test

of HΛ∗ against HF , ϕΛ∗, has power 50.0% and (ii) the best 4.7% level test ϕ̃Λ∗ of HΛ∗ against HF

has power 49.0% and ϕ̃Λ∗ is a 5% level test of H0. Using Lemma 1, this would imply that no 5%

level test of H0 against H1 can exist with weighted average power larger than 50.0%, and at the

same time, we would have identified the 5% level test ϕ̃Λ∗ of H0 against H1 whose weighted average

power is only 1.0% lower than this bound.

This is the basic idea underlying the construction of our suggested test ϕ∗ detailed in Section 3.

For reasons discussed there, the test ϕ∗ is only roughly equivalent to a Neyman-Pearson test ϕ̃Λ∗

4The same insight was applied independently by Andrews, Moreira, and Stock (2007) in the weak instrument

problem.
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relative to an approximately least favorable distribution. This is irrelevant for the logic outlined

above, only the validity of the power bound via Lemma 1 depends on its derivation from a best (i.e.

Neyman-Pearson) test.

We postpone further details of the construction of the power bound and the test ϕ∗ to Section

3 below. The following proposition summarizes the main finding.

Proposition 1 Under Condition 1,

(i) any 5% level test ϕ of (2) has WAP(ϕ) ≤ π̄ ' 50.0%;
(ii) the (nonrandomized) test ϕ∗ defined in the appendix is of level α∗ ' 5%, and has WAP(ϕ∗) =

π∗ ' 49.0%.

The numbers for π̄, α∗ and π∗ in Proposition 1 are estimated based on 50,000 independent Monte

Carlo draws. As discussed in detail in Section 3, they are not subject to any other qualifications,

such as a replacement of the level requirement (3) by a finite set of values for (δ, ρ) or a finite step

Random Walk approximation for draws of G.

Figure 3 plots, for selected values of ρ and δ, the power of the suggested test ϕ∗, of the size

corrected least squares break date based test ϕLS, of the test using the last 15% of the sample ϕ0.85
only, and the infeasible test using actual post break data ϕρ introduced in Section 2.1.2 above. All

tests are invariant under the transformation G → −G, so there is not need to plot the the power
for negative δ. As one might expect given the large critical value of 4.9, ϕLS has very low power. In

contrast, ϕ∗ is almost always more powerful than ϕ0.85, often substantially so, and comes close to

the power of the infeasible benchmark ϕρ for large |δ|.
We also investigated size control of ϕ∗ in models that correspond to a local break where the

transition to the post break parameter value is smooth rather than a sudden shift at ρ. In particular,

we considered parameter paths of the form f(s) = δ(Φ0.05(s − ρ) − 1), so that the deterministic
part of G(s) equals βs +

R s
0
f(λ)dλ, where Φ0.05 is the cdf of a mean zero normal with standard

deviation 0.05. For large |δ|, ϕ∗ turns out to be substantially oversized, but for |δ| < 15, the rejection
probability of ϕ∗ is always below 7%, at least for ρ ∈ {0.25, 0.5, 0.75}. These results suggest that
small sample analogues to ϕ∗ discussed below continue to yield approximately valid inference about

the post break parameter value even if the transition to the post break value takes place over a

nonnegligible fraction of the sample.

2.2 Multivariate Limiting Problem

Now assume that in the hypothesis testing problem (2) we observe a multivariate version of (1),

with Ã
G(s)

G̃(s)

!
=

Ã
1 0

A21 A22

!Ã
W (s)

W̃k(s)

!
+

Z s

0

Ã
β + δ1[λ ≤ ρ]

f̃(λ)

!
dλ (11)
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Figure 3: Asymptotic power of approximately optimal test ϕ∗ and of the size corrected least-squares

date estimator based test ϕLS, compared to the infeasible test ϕρ with break date known, and the

test using only the last 15% of the observations ϕ0.85
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where G̃ is k × 1, the k × 1 vector A21 and the k × k full rank matrix A22 are known, W̃k is a

k vector standard Wiener process independent of W , and f̃(λ) is a D[0,1] 7→ Rk cadlag function,

so that (G, G̃0)0 ∈ Dk+1
[0,1]. Except for Var[G(1)] = 1, the transformation by A21 and A22 allows for

any full rank covariance matrix of (G(1), G̃(1)0)0. With (G, G̃0)0 as the observation, tests ϕ are now

mappings from Dk+1
[0,1] 7→ [0, 1], and the rejection probability is given by Eθ,f̃ [ϕ(G, G̃)] (the rejection

probability also depends on A21 and A22, but we omit this dependence for ease of notation).

For the link to the post break parameter inference problem, think again of a Gaussian location

problemÃ
yt

ỹt

!
=

Ã
μ+∆1[t ≤ τ ]

μ̃t

!
+ εt, εt ∼ N (0,Σ) with Σ =

Ã
1 A021

A21 A21A
0
21 +A22A

0
22

!
(12)

where ỹt, μ̃t ∈ Rk, so that partial sums T−1/2
Ps

t=1(yt, ỹ
0
t)
0 have the same distribution as

(G(s), G̃(s)0)0 for s ∈ {t/T}Tt=1, where ρ = τ/T , β = T 1/2μ, δ = T 1/2∆ and f̃(t/T ) = T 1/2μ̃t.

The first element in (11), G, is distributed exactly as in the scalar problem (1) above. Thus, if

we define ϕ∗ to be the same test as above, that is, ϕ∗ is a function of G only, then ϕ∗ continues to

have the properties indicated in Proposition 1. The rejection probability of ϕ∗ obviously does not

depend on the distribution of G̃, so that in particular

Eθ,f̃ [ϕ
∗(G)] ≤ α∗ for all f̃ and θ ∈ Θ0 (13)

inf
f̃(·)∈Dk

[0,1]

WAPf̃(ϕ
∗) = sup

f̃(·)∈Dk
[0,1]

WAPf̃(ϕ
∗) = π∗ (14)

where for a generic test ϕ : Dk+1
[0,1] 7→ [0, 1], WAPf̃ (ϕ) =

R
Eθ,f̃ [ϕ(G, G̃)]dF (θ). In other words, ϕ

∗

is a robust test of H0 : θ ∈ Θ0 from observing (11) in the sense that its size and weighted average

power does not depend on the nuisance function f̃ .

In the following, we restrict attention to the case where f̃ is known to be of the form f̃(λ) =

β̃ + δ̃1[λ ≤ ρ] for β̃, δ̃ ∈ Rk. This corresponds to a Gaussian location problem (12) where ỹt

undergoes a single mean shift at the same time as yt. Write Eθ,β̃,δ̃ for the expectation with respect

to the distribution of (G, G̃0)0 with f̃ of this form, so that a 5% level test ϕ : Dk+1
[0,1] 7→ [0, 1] now

satisfies Eθ,β̃,δ̃[ϕ(G, G̃)] ≤ 0.05 for all θ ∈ Θ0, β̃, δ̃ ∈ Rk.5

Proposition 2 (i) For any unbiased 5% level test ϕ,

Eθ,β̃,δ̃[ϕρ(G)]−Eθ,β̃,δ̃[ϕ(G, G̃)] ≥ 0 for all θ ∈ Θ1, β̃, δ̃ ∈ Rk

where ϕρ(G) = 1[|G(1)−G(ρ)√
1−ρ | > Φ(0.975)].

5Propositions 2, 3 and 4 also hold for the scalar case (k = 0) with the natural interpretation of notation.
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(ii) Let F̃ be the probability distribution for (θ, β̃, δ̃) with the same marginal distribution for θ

as under Condition 1, and (β̃, δ̃) = (βA21, δA21) conditional on θ. For any 5% level testZ
Eθ,β̃,δ̃[ϕ(G, G̃)]dF̃ (θ, β̃, δ̃) ≤ π̄ ' 50.0%.

(iii) Suppose in addition that δ̃ = 0 known, so that tests ϕ : Dk+1
[0,1] 7→ [0, 1] are of 5% level if

Eθ,β̃,0[ϕ(G, G̃)] ≤ 0.05 for all θ ∈ Θ0 and β̃ ∈ Rk. Consider the group of transformationsÃ
G(s)

G̃(s)

!
→
Ã

G(s)

G̃(s) + b̃s

!
, b̃ ∈ Rk. (15)

For any 5% level test ϕ invariant to (15), the rejection probability Eθ,β̃,0[ϕ(G, G̃)] does not depend

on β̃, and under Condition 1,

WAPinv(ϕ) =
Z

Eθ,β̃,0[ϕ(G, G̃)]dF (θ) ≤ π̄inv(R̄
2)

where R̄2 ≥ R2 = A021(A21A
0
21 + A22A

0
22)

−1A21, and π̄inv(0) = π̄ ' 50.0%, π̄inv(0.2) ' 53.3%,

π̄inv(0.4) ' 56.4%, π̄inv(0.6) ' 60.0%, and π̄inv(0.8) ' 64.6%.

Part (i) of Proposition 2 establishes that the usual two-sided t-test using post break data G(1)−
G(ρ), ϕρ, is the uniformly most powerful unbiased test in the multiparameter problem with (11)

observed. With ρ unknown this test is infeasible. It nevertheless provides an arguably relevant

benchmark to assess the performance of other tests. In particular, note that ϕρ, just like ϕ
∗, does

not depend on G̃, but is a function of G only. We compare the power of ϕ∗ to that of ϕρ in detail

in Section 4 below, and find that for large |δ|, the power becomes quite close. Thus, for large |δ|,
ϕ∗ has similar rejection properties as the uniformly most powerful unbiased test, so that there is at

most a small cost in terms of power for ignoring the additional information in G̃. (Although ϕ∗ is

not unbiased, as it is not similar–see Section 3 below.)

Part (ii) of Proposition 2 shows that for a particular weighting function F̃ with the same marginal

distribution as F on θ, no 5% level test can have weighted average power larger than π̄. At the

same time, (14) implies that the weighted average power of ϕ∗ with respect to F̃ is equal to π∗, and,

by Proposition 1, π∗ is only slightly smaller than π̄. In this sense, ϕ∗ is close to being admissible

also in the hypothesis testing problem with (11) observed. Thus, any test with "substantially"

larger power than ϕ∗ for some (θ, β̃, δ̃) is less powerful for some other (θ, β̃, δ̃). Given this inevitable

trade-off, the choice of ϕ∗ of approximately maximizing weighted average power relative to F̃ has

the perhaps appealing implication of yielding a test whose weighted average power over θ does not

depend on the nuisance parameters (β̃, δ̃).

Finally, part (iii) of Proposition 2 provides bounds on the gains in weighted average power that

are possible if it is known that the other parameters do not undergo a break, δ̃ = 0 (or, more
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generally, for known δ̃) under an invariance requirement that corresponds to changes of the mean of

the additional k observations. A maximal invariant to this group is given by (G(s), G̃(s)− sG̃(1)).

Intuitively, these power gains are possible because if G̃ is correlated with G (R2 > 0), observing

G̃(s) − sG̃(1) provides information about W (s) − sW (1), which is useful for for learning about ρ

and δ. In the extreme case of perfect correlation (R2 = 1), W (s) − sW (1) is effectively observed,

and by comparing G(s)−sG(1) toW (s)−sW (1), one can back out ρ and δ and obtain as powerful

inference about β as if there was no break in the model. The numbers for π̄inv were estimated using

10,000 independent Monte Carlo draws, analogous to the power computations described in detail

in Section 3.4 below. They show that rather large values of R2 are necessary before knowledge of

δ̃ = 0 could potentially be used to generate tests with substantially larger weighted average power

than ϕ∗.

In summary, the test ϕ∗ that disregards the additional observation G̃ in (11) is (i) robust in

the sense of providing reliable inference about β regardless of the nuisance function f̃ ; (ii) for large

|δ| has a rejection profile that is close to that of the uniformly most powerful unbiased test; (iii) is
close to admissible in a model where other parameters undergo a break at the same time; (iv) as

long as R2 is small, approximately maximizes weighted average power even when it is known that

only the parameter of interest is subject to a break. For these reasons, the remainder of this paper

focusses on ϕ∗ as a reasonable test also in the multiparameter context of (11). We note, however,

that it should be possible in principle to use the numerical methods discussed in Section 3 to also

identify 5% level feasible test that comes close to maximizing weighted average power by efficiently

exploiting the additional observation G̃ when it is known that only the parameter of interest is

subject to a break, for any particular value of R2.

2.3 Asymptotic Efficiency Implications for Underlying Models

In this subsection, we discuss how the scalar and multiparameter limiting problems (1) and (11)

arise as the relevant asymptotic problems in standard small sample post break parameter inference.

We consider two distinct approaches to asymptotic efficiency of tests: On the one hand, we rely

on LeCam’s Limits of Experiments theory to derive upper bounds on power in correctly specified

parametric models. On the other hand, we exploit the recent results of Müller (2007) and provide

upper bounds on post break parameter tests in time series GMM models under an asymptotic

robustness constraint.

2.3.1 Parametric Models

Let XT = (xT,1, · · · , xT,T ) ∈ RqT be the available data in a sample of size T, so that tests ϕT

are sequences of (measurable) functions ϕT : RqT 7→ [0, 1]. The density of XT , relative to some
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σ-finite measure μT , is given by the product
QT

t=1 fT,t(Γt), when the parameter Γ ∈ Rk+1 takes

on the value Γt at time t. This form of the likelihood arises naturally when fT,t(Γt) is the density

of xT,t conditional on FT,t−1, the σ-field generated by {xT,s}t−1s=1. We will refer to the model with

density
QT

t=1 fT,t(Γ0) as the ’stable’ model. Define lT,t(Γ) = ln fT,t(Γ), sT,t(Γ) = ∂lT,t(Γ)/∂Γ and

hT,t = ∂sT,t(Γ)/∂Γ
0, and suppose T−1

P
hT,t

p→ −H in the stable model for some positive definite

(k+1)×(k+1)matrixH, so thatH is the Fisher information. In the unstable model, the parameter

vector Γ evolves as

ΓT,t = Γ0 + T−1/2ω

Ã
β

β̃

!
+ T−1/2ω

Ã
δ

δ̃

!
1[t ≤ ρT ] (16)

where ω2 is the 1,1 element of H−1, β, δ, ρ ∈ R and β̃, δ̃ ∈ Rk, and ρ ∈ [0.15; 0.85]. We assume Γ0
and H to be known; while this unrealistic, such knowledge can only increase the upper bounds on

power derived in Proposition 3 below. The hypothesis of interest is whether the post break value

of the first element of Γ equals the first element of Γ0, so under (16), this corresponds to

H0 : β = 0 against H1 : β 6= 0. (17)

The factor ω > 0 in (16) ensures that asymptotically, the small sample problem (17) maps to the

limiting problem (11) where the disturbance in G is a standard Wiener process. Tests ϕT : RqT 7→
[0, 1] of (17) have unconditional rejection probability Eθ,β̃,δ̃[ϕT (XT )] in a sample of size T , and ϕT

is defined to be of asymptotic level 5% if lim supT→∞Eθ,β̃,δ̃[ϕT (XT )] ≤ 5% for all θ ∈ Θ0, β̃, δ̃ ∈ Rk.

Under suitable regularity conditions on the parametric model, one can show that the likelihood

ratio statistic LRT between the model with parameter evolution described by (16) and the stable

model satisfies

ln LRT = T−1/2
PT

t=1(ΓT,t − Γ0)
0sT,t(Γ0) +

1
2
T−1

PT
t=1(ΓT,t − Γ0)

0hT,t(Γ0)(ΓT,t − Γ0) + op(1)

⇒
Z 1

0

Ã
β + δ1[λ ≤ ρ]

β̃ + δ̃1[λ ≤ ρ]

!0
Σ−1d

Ã
G(λ)

G̃(λ)

!
− 1

2

Z 1

0

Ã
β + δ1[λ ≤ ρ]

β̃ + δ̃1[λ ≤ ρ]

!0
Σ−1

Ã
β + δ1[λ ≤ ρ]

β̃ + δ̃1[λ ≤ ρ]

!
dλ

(18)

where Σ = ω−2H−1. The r.h.s. of (18) may be recognized as log of the Radon-Nikodym derivative

of the distribution of (G, G̃0)0 with respect to the distribution of the (k + 1) × 1 Wiener process
(W, (A21W + A22W̃k)

0)0. This suggests that the information regarding (θ, β̃, δ̃) from observing XT

converges in large samples to that contained in (G, G̃0)0. This intuition is made formally precise in

the Limit of Experiments theory pioneered by LeCam; see, for instance, van der Vaart (1998) for

an introduction.

Condition 2 in the appendix states sufficient regularity assumptions that imply convergence of

experiments in this sense. The Asymptotic Representation Theorem (see, for instance, Theorem 9.3
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of van der Vaart (1998)) and Prohorov’s Theorem then ensure that for any test ϕT : RqT 7→ [0, 1]

and any subsequence T 0 of T , there exists a further subsequence T 0 of T 00 and a test ϕ : Dk+1
[0,1] 7→ [0, 1]

such that

Eθ,β̃,δ̃[ϕT 00(XT 00)]→ Eθ,β̃,δ̃[ϕ(G, G̃)] for all θ ∈ Θ0 ∪Θ1, β̃, δ̃ ∈ Rk. (19)

Thus, along any such subsequence T 00, the asymptotic properties of ϕT are exactly equivalent to

a particular test ϕ in the limiting problem discussed in Section 2.2 above. Define a test ϕT as

asymptotically unbiased if any test ϕ satisfying (19) is unbiased. Similarly, define a test ϕT as

asymptotically invariant if any test ϕ satisfying (19) is invariant to (15).

Proposition 3 (i) For any asymptotically unbiased test ϕT of asymptotic level 5%,

lim sup
T→∞

Eθ,β̃,δ̃[ϕT (XT )] ≤ Eθ,β̃,δ̃[ϕρ(G)] for all θ ∈ Θ1, β̃, δ̃ ∈ Rk.

(ii) For any test ϕT of asymptotic level 5%,

lim sup
T→∞

Z
Eθ,β̃,δ̃[ϕT (XT )]dF̃ (θ) ≤ π̄.

(iii) For any asymptotically invariant test ϕT of asymptotic level 5%,

lim sup
T→∞

Z
Eθ,β̃,0[ϕT (XT )]dF (θ) ≤ πinv(R̄

2) for all β̃ ∈ Rk.

Proposition 3 mirrors the results of Proposition 2 above. We argue in Section 4 below that the

feasible test ϕ̂∗ : RqT 7→ [0, 1] has the same asymptotic rejection properties as the test ϕ∗ under

(16). Thus, to the extent that Proposition 2 implies ϕ∗ to be an attractive test in the context of

the multivariate liming problem (11), ϕ̂∗ is correspondingly an attractive test in the context of post

break inference in a correctly specified parametric model that is subject to a local break.

2.3.2 GMM Models

We now turn to an application of the asymptotic efficiency concept introduced by Müller (2007),

which we use here to state asymptotic power bounds on post break parameter inference in a class of

GMMmodels. Let the moment condition be the Rm-valued function g(·, ·), so that E[g(xT,t,Γ0)] = 0
when the true parameter at date t is given by Γ = Γ0. Let the R(k+1)×m valued function Υ(·,Γ) be
the partial derivative of g with respect to Γ, and write gt(Γ) = g(xT,t,Γ) and Υt(Γ) = Υ(xT,t,Γ) for

notational simplicity. Under the parameter evolution (16), conditional on τ , the natural estimators

for the pre and post break value of Γ are given by the GMM estimator using pre and post break

data,

Γ̂pre(τ) = argmin
Γ

Ã
τX
t=1

gt(Γ)

!0
V̂pre

Ã
τX
t=1

gt(Γ)

!

17



Γ̂post(τ) = argmin
Γ

Ã
TX

t=τ+1

gt(Γ)

!0
V̂post

Ã
TX

t=τ+1

gt(Γ)

!

with V̂pre and V̂post possibly data dependent m × m positive definite weighting matrices, and as-

sociated covariance matrix estimators Ω̂pre(τ) and Ω̂post(τ) of Γ̂pre(τ) and Γ̂post(τ), respectively. A

natural starting point for inference about the post break parameter value in absence of knowledge of

ρ ∈ [0.15; 0.85] are the processes {Γ̂pre(b·Tc), Γ̂post(b·Tc), Ω̂pre(b·Tc), Ω̂post(b·Tc)} ∈ D
4(k+1)
[0.15,0.85], where

bxc denotes the largest integer smaller or equal to x ∈ R. Assuming that T−1/2
Pb·T c

t=1 gt(Γ0) ⇒
Σ
1/2
g Wk+1(·) for some positive definite matrix Σg and T−1

Pb·Tc
t=1 Υt(Γ0)

p→ ·Ῡ for some full col-

umn rank matrix Ῡ, the usual Taylor expansion arguments yield, for the case of efficient GMM

estimation,

{T 1/2(Γ̂pre(bsTc)− Γ0), T
1/2(Γ̂post(bsTc)− Γ0), T Ω̂pre(bsTc), T Ω̂post(bsTc)}

⇒
(
ω

Ã
G(s)

G̃(s)

!
, ω

Ã
G(1)−G(s)

G̃(1)− G̃(s)

!
, sω2Σ, (1− s)ω2Σ

)
(20)

in D(k+1)×4
[0.15,0.85], where ω

2 now is the 1,1 element of (Ῡ0Σ−1g Ῡ)−1 and Σ = ω−2(Ῡ0Σ−1g Ῡ)−1 (cf. Andrews

(1993) and the discussion in Section 4.2 below).

Now consider the set of data generating processes for XT that satisfy (20). One might want

to choose the tests ϕT of (17) in a way that whenever (20) holds with β = 0, the test does not

overreject asymptotically, that is lim supT→∞Eθ,β̃,δ̃[ϕT (XT )] ≤ 0.05 for all θ ∈ Θ0, β̃, δ̃ ∈ Rk

for any sequence of distributions of XT that satisfies (20). Müller (2007) shows that under this

robustness constraint, the best small sample test becomes the best test in the limiting problem

(that is, with the r.h.s. of (20) assumed observed), evaluated at sample analogues (that is, at

{T 1/2Γ̂pre(b·Tc), T 1/2Γ̂post(b·Tc), T Ω̂pre(b·Tc), T Ω̂post(b·Tc)}). Proposition 2 above shows in which
sense ϕ∗ may be considered approximately best in the equivalent problem of observing directly

(G(·), G̃(·)0)0 ∈ Dk+1
[0,1] with A12 and A22 known. Thus, part (ii) of Proposition 2 implies, for instance,

that the weighted average asymptotic power (defined as in part (ii) of Proposition 3) of any 5%

level test is no larger than π̄. We discuss in detail in Section 4 below how to construct the small

sample analogue ϕ̂∗, and show in Proposition 4 that its asymptotic rejection profile is equal to the

rejection profile of ϕ∗ whenever (20) holds, so its asymptotic weighted average power is equal to π∗.

Thus, ϕ̂∗ is the approximately local asymptotic power maximizing test among all robust tests in

the sense of Müller (2007). We omit a formal statement analogous Proposition 3 to conserve space.
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3 Determination of an Approximately Efficient Test with

Uniform Size Control

This section describes the methods and algorithm that underlie the claim of Proposition 1, that

is we discuss the determination of a 5% level test of (2) based on the observation G as in (1)

that approximately maximizes weighted average power with a weighting function as described in

Condition 1.

As outlined in Section 2.1.3 above, the key challenge is to identify an approximately least fa-

vorable distribution over the two dimensional nuisance parameter of the break date and break

magnitude. Section 3.1 provides details on the numerical algorithm for obtaining this distribution,

which is a suitably modified version of what is developed in Müller and Watson (2008) for the prob-

lem considered here. The second subsection discusses the relationship and properties of the least

favorable distribution from a decision theoretic and Bayesian perspective. In the third subsection,

we introduce a new approach to the numerical study of size control of tests of a composite null

hypothesis, which underlies our claim of uniform size control of the test ϕ∗. Finally, the fourth

subsection contains details on the Monte Carlo determination of the power bound, which is compli-

cated by the impossibility of generating and representing (pseudo) random Wiener process draws

on a discrete computer.

3.1 Approximately Least Favorable Distribution

The guiding principle for the construction of an appropriate approximately least favorable distrib-

ution Λ∗ is following property discussed in Section 2.1.3: for a distribution Λ to be approximately

least favorable, it must be true that a slight adjustment of the critical value (or, equivalently, of the

level of the best test of HΛ against HF ) yields a 5% level test under H0. A violation of this property

guides how Λ should be amended, with more mass on those values of θ where the overrejection

occurred. By suitably iterating changes of Λ with computations of its rejection profile under H0,

an approximately least favorable Λ∗ can be determined numerically.

Müller and Watson (2008) directly implement this idea by considering distributions Λ that have

mass on a finite number of points {θ1, · · · , θL} ⊂ Θ0. If for a given Λ, ϕΛ overrejects at θ
0 ∈ Θ0,

then θL+1 = θ0 is added to the list. A new Λ is determined by assigning the appropriate probabilities

on {θ1, · · · , θL+1} to ensure size control at {θ1, · · · , θL+1}, and the algorithm iterates these steps

until an appropriate least favorable distribution is found. The numerical feasibility of this procedure

depends on L not to become too large (say, L < 40 or so).

For the problem studied here, this strategy turns out to not work well: If ϕΛ overrejects for a

moderately large value of |δ| and a (possibly small) interval of values for ρ, then the inclusion of
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any single point θ0 = (0, δ0, ρ0) ∈ Θ0 in Λ does not remedy the overrejection problem for all values of

ρ in the interval. The reason is that for moderately large values of |δ|, the distribution of G with ρ00

slightly different from ρ0 is already too dissimilar for size control at ρ0 to imply approximately size

control at ρ00. Roughly speaking, with large breaks, different break dates lead to almost singular

probability distributions for G, so that a very large number of points would be required to ensure

approximate overall size control.

Instead, we note that for Λ to be approximately least favorable, an equivalent condition is that

(the slightly level adjusted) test ϕΛ is of 5% level under any HΨ :"The density of G is
R
fθdΨ(θ)",

for all probability distributions Ψ on Θ0. By initially restricting this condition to a finite set

P = {Ψ1, · · · ,ΨM} with moderately largeM , the above algorithm can be successfully implemented
to identify Λ∗M , the least favorable mixture of P, such that ϕΛ∗M

controls size for all HΨ, Ψ ∈ P.
Collect the distributions Ψj that receive positive mass by Λ∗M in P∗ = {Ψ∗1, · · · ,Ψ∗M} ⊂ P. Using
Λ∗M as the new starting point, consider a further set P 0 = {Ψ0

1, · · · ,Ψ0
M 0} and again identify Λ∗0M ,

a mixture of P∗ and P 0, so that ϕΛ∗0M
controls size for all HΨ, Ψ ∈ P∗ ∪ P 0. This procedure

is then iterated, and by considering sets of probability distributions that more and more closely

approximate point masses in Θ0 (although they still average over short intervals of ρ), a suitable

Λ∗ can be determined. In our implementation, we choose Ψ’s with ρ uniform over small intervals,

and δ independent and (not necessarily mean zero) Gaussian, with smaller and smaller variances

and interval lengths in later steps of the iteration.

We relegate details on this algorithm to the appendix, but discuss here two additional issues

that are relevant to the determination of the approximate least favorable distribution Λ∗.

On the one hand, the observationG is a transformation of a Wiener process, so that computation

of the Neyman-Pearson tests and their rejection profile requires the simulation of (pseudo) random

continuous time processes. Discrete time Gaussian random walk approximation based on, say, 1000

steps are computationally expensive and of uncertain accuracy. For this reason, we approximate

all integrals over ρ by sums with ρ ∈ {1/100, 2/100, · · · , 1}. The rejection probability of the

(approximate) Neyman-Pearson test thus becomes a function of

{G( l
100
)}100l=1. (21)

The 100 random variables (21) can be simulated without any approximation error, as they are ex-

actly jointly Gaussian. What is more, the fact that ϕ∗ only depends on G through (21) significantly

simplifies the determination of the size of ϕ∗ discussed in Section 3.3 below.

A power bound on tests that are functions of (21) is not, however, in general a valid power

bound on the original problem involving the observation G. The correct implementation of the

power bound via Lemma 1 requires evaluation of the actual density (8) of G, a complication we

address in Section 3.4 below. In the end, the comparison of this power bound with the power of the
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feasible test ϕ∗ reveals whether working with (21) instead of the whole process G might have led to

substantial inaccuracies in the resulting approximately least favorable distribution, and Proposition

1 shows that these are small.

On the other hand, we chose to construct the feasible test ϕ∗ by combining two different tests,

with a supF-type statistic based on the 100 observations (21) determining to which one it switches:

For large values of supF, that is strong evidence for a break, ϕ∗ is close to the usual two-sided

t-test on least-squares estimated post break data, t̂ in (6), but with critical value of 2.01 rather

than 1.96. For small values of supF, ϕ∗ is equal to the (approximate, since it only involves the

observations (21)) Neyman-Pearson test of HΛ∗ against HF . The motivation for this switching rule

is threefold: First, it formally justifies the "rule of thumb" that for highly significant realizations of

a structural break test statistic, least-squares based inference is just fine, with a ’patch’ necessary

only for moderate break magnitudes δ. Second, it ensures that even for very large breaks (|δ|→∞),
the test has attractive properties–this cannot be ensured by construction by any weighted average

power criterion with integrable weighting function, as any such weighting concentrates almost all

of its mass on a compact set. Third, the switch to an analytically easily tractable test statistic

facilitates the study of the size properties of ϕ∗ for the (unbounded) set of large δ discussed in the

Section 3.3 below.

The adoption of this switching requires a determination of Λ∗ such that the overall test ϕ∗ is

of level 5%, rather than the critical value adjusted Neyman-Pearson test ϕ̃Λ∗ of HΛ∗ against HF in

isolation. While it is true that for large |δ|, the t-test and ϕ̃Λ∗ behave quite similarly (after all, for

|δ| large, there is ample information about ρ, so that both ϕ̃Λ∗ and the t-test are approximately

equal to the best infeasible test with ρ known), we choose a cut-off value for supF that is just large

enough to ensure that the t-test with critical value of 2.01 controls size when the probability of

switching is close to one. Thus, for values of |δ| where the switch to the t-test only occurs, say, half
the time, the t-test has null rejection probability larger than 5%. Given the switching rule, Λ∗ must

therefore induce a compensating underrejection in this region of δ. In the above algorithm, this is

achieved by requiring that the rejection probability of ϕΛ∗ is substantially lower than 5% under HΨ

for Ψ’s that concentrate on these regions (which in turn leads to a Λ∗ with substantial mass on

these Ψ’s).

3.2 Decision Theoretic and Bayesian Interpretation

From a decision theoretic perspective, the least favorable prior has a minimax interpretation in the

problem of distinguishing between H0 against HF . Suppose a false rejection of H0 induces loss 1, a
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Figure 4: Approximate Least Favorable Distribution Λ∗

false acceptance of HF induces loss LF > 0, and a correct decision has loss 0. Then risk is given by

R(θ, ϕ) = 1[θ ∈ Θ0]Eθ[ϕ(G)] + LF1[θ ∈ Θ1]

Z
Et[1− ϕ(G)]dF (t). (22)

The level α test based on the least favorable prior Λ∗∗ (supposing it exists) minimizes supθ∈ΘR(θ, ϕ)

among all tests ϕ for LF = α/(1 − WAP (ϕΛ∗∗)), and achieves supθ∈ΘR(θ, ϕ) = α. The α∗-

level test based on the approximately least favorable prior Λ∗ achieves supθ∈ΘR(θ, ϕ∗) = α∗ for

LF = α∗/(1− π∗), and infϕ supθ∈ΘR(θ, ϕ) ≥ α∗(1− π̄)/(1− π∗) ' 0.98α∗ by Proposition 1, so ϕ∗

is an approximately minimax decision rule. In this reasoning, the usual requirement of size control

becomes an endogenous solution to the desire to find a maximin decision rule under risk (22).

In assessing the appeal of (inherently pessimistic) minimax rules, it is instructive to consider

the reasonableness of the implied least favorable distribution. Figure 2 plots the approximately

least favorable distribution Λ∗ determined by the above algorithm for δ ≥ 0; by construction,

the distribution is symmetric in the sign of δ. Overall, apart from some peculiarities close to the

endpoint for the break date at ρ = 0.85, Λ∗ does not seem particularly bizarre.

From a Bayesian perspective, one might want to decide between H0 and H1 by computing pos-

terior odds. With a prior of F on Θ1, and a prior of Λ∗ on Θ0, ϕΛ∗ rejects for large values of the

resulting posterior odds, or, equivalently, for large values of the Bayes factor. Apart from the switch-

ing to a t-test discussed above, an analysis based on ϕ∗ thus also has a straightforward Bayesian
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interpretation. The prior Λ∗ on H0 and the cut-off value ' 2.41 are endogenously determined so

that Bayes factors above the cut-off value–that is, Bayes factors that occur for at most 5% of draws

under H0 for all values of θ ∈ Θ0–are as frequent as possible under HF . In this way, the rule of

rejecting for a large Bayes factor also has attractive frequentist properties.

It might be instructive to contrast this to the properties of the test that rejects for a large Bayes

factor when the prior on the null hypothesis is not endogenized in this fashion. For instance, in

this problem, a natural choice for the prior distribution Λ on Θ0 is a uniform distribution for ρ on

[0.15, 0.85], and δ ∼ N (0, 400) independent of ρ; this mirrors the prior F of Condition 1 on the

alternative Θ1, except that σ2β = 0. With that prior, one must choose a cut-off value of ' 10, rather
than 2.41, to ensure that only 5% of the time, one observes Bayes factors larger than the cut-off for

all values of θ ∈ Θ0. Correspondingly, the probability of rejection under HF falls from π∗ ' 49.0%
to 36.7% with this choice of Λ and cut-off value.

3.3 Size Control

With a candidate test ϕ∗ determined as outlined in Section 3.1 above, the question is whether it

actually controls size, i.e. whether

sup
θ∈Θ0

Eθ[ϕ
∗(G)] ≤ 0.05. (23)

By construction of ϕ∗, this is "approximately" true, but we now discuss how to establish (23) more

rigorously, that is part (ii) of Proposition 1.

The problem we face is a standard one: What is the size of a given test under a composite

null hypothesis? For some nonstandard hypothesis testing problems, the form of the test greatly

simplifies this issue. For instance, the conditional likelihood ratio statistic of Moreira and An-

drews, Moreira, and Stock (2006), or the statistic suggested in Jansson and Moreira (2006), have

by construction an (asymptotic) null rejection probability that does not depend on the nuisance

parameter. For other tests or testing problems, however, essentially nothing analytical is known

about the rejection probability. The usual approach then is to resort to a Monte Carlo grid search:

Choose a finite set Θgrid ⊂ Θ0, estimate the rejection probability by Monte Carlo for each θ ∈ Θgrid,

and conclude that the test controls size if the largest of these rejection probabilities is smaller or

equal to the nominal level. Examples for this approach include Stock and Watson (1996), Bunzel

and Vogelsang (2005), Sriananthakumar and King (2006), Andrews, Moreira, and Stock (2007),

Andrews and Guggenberger (2007a, 2007b, 2007c), Guggenberger (2008), and Müller and Watson

(2008), among others.6 For the specific problem here, this approach would amount to computing

6Dufour’s (2006) Maximum Monte Carlo approach also requires the computation of an expression just like
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the Monte Carlo estimate of the null rejection probability

p̂(θ) = N−1
NX
i=1

ϕ∗(Gi) with Gi(s) =Wi(s) + δmin(ρ, s) (24)

for all θ = (0, δ, ρ) ∈ Θgrid, where Wi are N (pseudo) random draws of a standard Wiener process7

(which may or may not be the same across different θ), and to conclude that ϕ∗ is of level 5% if

supθ∈Θgrid
p̂(θ) < 0.05.

Clearly, though, this approach is not fully satisfying. Without some knowledge about the

smoothness of p̂(θ), even a fine grid search of this form does not provide any upper bound on

supθ∈Θ0 p̂(θ), simply because the rejection probability p̂(θ) could be very different between the grid

points. What is more, Θ0 is typically unbounded, so that it is impossible from the start to finely

cover Θ0. We now describe an approach that, while still based on Monte Carlo estimation,8 can

handle both these difficulties by bounding the function p̂(θ) on the whole set Θ0.

The key idea is the following change of perspective: Rather than to only regard the average p̂(θ)

in (24) as a function of θ, consider instead ϕ∗(Gi) as a function of θ = (0, δ, ρ) ∈ Θ0, conditional on

Wi. The actual data Gi is a function of the (pseudo) randomness Wi and the nuisance parameter

θ, so that for each realization of Wi, the test statistic ϕ∗(Gi) may be regarded as a function of θ,

ϕ∗(Gi) = Si(θ) with Si : Θ0 7→ {0, 1} (as long as ϕ∗ is non-randomized). The function Si(θ) is,

of course, known, and one can analytically study its properties. So suppose initially that it was

possible to exactly determine and store the "critical regions" Ci = {θ : Si(θ) = 1}, i = 1, · · · , N ,
that is the range of values for θ for which the test ϕ∗(Gi) rejects.9 For instance, if the nuisance

parameter space was one dimensional, Ci would typically be a finite union of intervals, and it would

suffice to determine their endpoints (possibly including ±∞). Clearly, the overall Monte Carlo
estimate of the null rejection probability function p̂ : Θ0 7→ [0, 1] is simply the average of these

critical regions

p̂(θ) = N−1
NX
i=1

1[θ ∈ Ci]

and size control amounts to supθ∈Θ0 p̂(θ) ≤ 0.05.
Now for our problem, the nuisance parameter space is two dimensional, and the form of ϕ∗ does

not make it possible to usefully describe the sets Ci by a small set of numbers. So consider instead

supθ∈Θ0 p̂(θ)–cf. his equation (4.22). He suggests obtaining the supremum by simulated annealing techniques,

which may also fail to yield the global maximum.
7As noted above, suffices to generate {W (l/100)}100l=1, which is actually feasible.
8In principle, one could rely on the insight of Dufour (2006) to obtain an overall randomized test of exact level 5%

by rejecting if and only if the maximized (over Θ0) p-value, computed from a new set of Monte Carlo simulations, is

below 5%.
9This terminology is meant to be suggestive only; the actual critical region, of course, is the subset of the sample

space D[0,1] for which ϕ∗ rejects.
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a finite partition Q = {Q1, Q2, · · · , QK} of Θ0, such as the rectangles of a grid, and suppose study

of Si allows one to conclude that the sets {Qj : j ∈ Ji} ⊂ Q with Ji ⊂ {1, 2, · · · ,K} cover Ci, i.e.

Ci ⊂
S

j∈Ji Qj. It then suffices to keep track of the index sets Ji, i = 1, · · · , N to establish the

bound

sup
θ∈Θ0

p̂(θ) ≤ p̂ = sup
θ∈Θ0

N−1
NX
i=1

1[θ ∈
[
j∈Ji

Qj] = max
j

N−1
NX
i=1

1[j ∈ Ji] (25)

and one can conclude that ϕ∗ is a 5% level test if p̂ ≤ 0.05. Note that this bound remains valid
(although it becomes more conservative) when the sets Ji are larger than necessary, that is if j ∈ Ji

despite Ci ∩Qj = ∅.
This approach benefits from a finer partitionQ of Θ0 withK large in two ways. On the one hand,

a fine Q allows for a relatively accurate description of the actual critical region Ci, thus making the

bound (25) less conservative. On the other hand, it will typically become easier to decide whether

or not Ci ∩Qj = ∅, for each j = 1, · · · ,K. But the computational cost of making K large is also

substantial, as the brute force implementation requires a total of NK such evaluations. For our

problem, it turns out that such a brute force implementation is not practical on today’s PCs, as K

needs to chosen of the order of magnitude of 107 for the bound (25) to become sufficiently sharp.

Thus, instead of trying to decide individually whether Ci ∩ Qj = ∅ for each Qj ∈ Q and

i = 1, · · · , N , we implement the following divide and conquer algorithm: For each i, initially try

to decide for the whole set Θ0 whether or not Ci ∩Θ0 = ∅. If such a determination can be made,
set Ji = ∅ or Ji = {1, 2, · · · ,K}, respectively. Otherwise, divide Θ0 into a coarse partition of 4

subsets Θ0 = {Qc
1, Q

c
2, Q

c
3, Q

c
4}, where each Qc

j, j = 1, · · · , 4 can be covered exactly by a subset of
Q. Try to decide for each Qc

j whether or not Ci ∩ Qc
j = ∅. If for any Qc

j such a determination

can be made, include (or not) the appropriate indices in Ji, and do not consider the subspace Qc
j

further. Otherwise, partition Qc
j again into 4 subsets that can be covered exactly by a subset of

Q, and iterate until either the determination could be made, or the partition is as fine as Q. The
advantage of this algorithm is that it "zooms in" only when necessary. In our implementation, it

cuts the number of required evaluations from 107 to around 104 to 106, depending on the draw of

Wi.

We again relegate the details of the algorithm and the arguments employed for deciding whether

or not Ci ∩ Qj = ∅ to the appendix, where we also discuss the treatment of unbounded subsets

Qj ∈ Q.
The bound p̂ in (25), of course, is still subject to Monte Carlo error, and one might wonder

about the effect of the supremum over Θ0. Let P ∗ be the distribution of the N Monte Carlo draws

of Wi, i = 1, · · · , N .

Lemma 2 For any x ∈ R, P ∗(supθ∈Θ0 p̂(θ) > x) ≥ supθ∈Θ0 P ∗(p̂(θ) > x).
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Proof. Write E∗ for the expectation with respect to P ∗. Then, applying Jensen’s inequality,

P ∗(supθ∈Θ0 p̂(θ) > x) = E∗[1[supθ∈Θ0 p̂(θ) > x]] = E∗[supθ∈Θ0 1[p̂(θ) > x]] ≥ supθ∈Θ0 E∗[1[p̂(θ) >
x]] = supθ∈Θ0 P

∗(p̂(θ) > x).

Lemma 2 shows that the P ∗ distribution of supθ∈Θ0 p̂(θ) (weakly) stochastically dominates that

of p̂(θ) for any fixed θ ∈ Θ0. Thus, the P ∗ probability of observing p̂ ≤ 0.05 is at most as large
as the probability of observing p̂(θ) ≤ 0.05, even if θ ∈ Θ0 is chosen to maximize the actual null

rejection probability Eθ[ϕ
∗(G)]. Both supθ∈Θ0 p̂(θ) and p̂ are, in general, upward biased estimates

of the size of the test ϕ∗. A finding of p̂ ≤ 0.05 is thus stronger evidence that ϕ∗ is of level 5%
compared to any other 5% nominal level test of a single null hypothesis whose critical value was

determined by N Monte Carlo draws.

3.4 Power Bound

We now turn to numerical issues that arise in the computation of the power bound via Lemma 1.

Without the approximation of integrals by sums as in (21), the Neyman-Pearson test rejects for

large values of a statistic of the form

LR =

R
fθdF (θ)R
fθdΛ∗(θ)

=

R 0.85
0.15

d0(r) exp [A0(r)G(r)
2 +B0(r)G(r)G(1) + C0(r)G(1)

2] drPL
i=1

R bi
ai
di(r) exp [Ai(r)G(r)2 +Bi(r)G(r)] dr

(26)

where di, Ai, Bi and Ci are functions [0.15, 0.85] 7→ R, and ai, bi ∈ [0.15, 0.85], i = 1, · · · , L, and L,

ai, bi, di, Ai, Bi are determined by the algorithm described in Section 3.1 above. The right hand

side in (26) arises from analytically integrating over the conditionally Gaussian distribution of (β, δ)

in F of Condition 1 in the numerator, and over a mixture of conditionally Gaussian distributions

for δ in the denominator (conditional on ρ). As mentioned above, proper application of Lemma 1

requires the determination of the power of a 5% level test of HΛ∗ : "The density of G is
R
fθdΛ

∗(θ)"

against the alternative HF : "The density of G is
R
fθdF (θ)", based on (26).

The usual approach would be to run a Monte Carlo experiment to estimate the critical value

and power, using step function approximations to G and Riemann sums instead of integrals in

(26). With enough steps (and Monte Carlo draws), this approach delivers any degree of accuracy.

However, the test statistic (26) is poorly behaved for this approach: For large breaks (large |δ|),
the exponents in (26) take on large values for some r (of the order of magnitude of 1

2
ρδ2), which

renders the integrand extremely peaked. Intuitively, for large |δ|, there is ample information about
ρ, reflected in a very peaked likelihood. This leads to potentially very poor properties of Riemann

sum approximations, casting doubt on the validity of a power bound computed in this way.

For this reason, we develop a lower and upper bound for LR that can be simulated exactly, and

use Monte Carlo draws of the lower bound for the computation of the critical value, and Monte
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Carlo draws from the upper bound for the power computation. This ensures that the resulting

upper bound on the power of the test statistic LR is only subject to the usual Monte Carlo error.

The basic element of the bounds is the following inequality: Let η : [a, b] 7→ R for some a < b

with supa≤x≤b |η(r)| < Mη, and let η̄ = 1
b−a
R b
a
η(r)dr. Then Jensen’s inequality and ex ≤ x cosh[Mη]

for all |x| < Mη implies

exp[η̄] ≤ 1

b− a

Z b

a

exp[η(r)]dr ≤ exp[η̄] cosh[Mη]. (27)

Write any of the integrals in (26) as a sum of integrals over a fine partition of [0.15; 0.85] into n

intervals [cj−1, cj], j = 1, · · · , n with cj−1 < cj for all j and c0 = 0.15 and cn = 0.85. In terms

of W (s) = G(s) − βs − δmin(ρ, s), the representative short integral over r ∈ [cj−1, cj] in the

denominator has the form Z cj

cj−1

d(r) exp
£
A(r)W (r)2 +B(r)W (r)

¤
dr

where now d(r), A(r) and B(r) are also functions of θ = (β, δ, ρ). Provided W (r) > 0 for cj−1 ≤
r ≤ cj, using (27), we have

d exp
h
AW 2

j +BW̄j

i
≤ 1

cj−cj−1

R cj
cj−1

d(r) exp [A(r)W (r)2 +B(r)W (r)] dr

≤ d̄ exp[ĀW 2
j + B̄W̄j] cosh[Mj]

(28)

where W 2
j = 1

cj−cj−1

R cj
cj−1

W (r)2dr, W̄j =
1

cj−cj−1

R cj
cj−1

W (r)dr, S1,j = supcj−1≤r≤cj |W (r) − W̄j|,
S2,j = supcj−1≤r≤cj |W (r)2 −W 2

j |, Mj = ĀS2,j + B̄S1,j, and lower and upper bars on d, A and B

indicate maximum and minimum values of d(r), A(r) and B(r) on cj−1 ≤ r ≤ cj, respectively.

Similar inequalities hold when W (r) < 0, when W (r) changes sign on cj−1 ≤ r ≤ cj, and also for

the numerator of (26). A lower bound on LR is then given by replacing integrals in the denominator

of (26) with sums over the upper bound in (28) and to replace the integrals in the numerator with

sums over corresponding lower bounds, and vice versa for an upper bound on LR.

A Monte Carlo draw from these bounds for LR requires generation of the 4n random vari-

ables {W 2
j , W̄j, S1,j, S2,j}nj=1. Although {W̄j}nj=1 is jointly Gaussian, this is non-trivial, as even the

marginal distributions of W 2
j , S1,j and S2,j are nonstandard. Fortunately, as detailed in the appen-

dix, it is possible to rely on existing analytical results on the distribution of related statistic of a

Wiener process to generate draws {W 2
j

l
,W 2

j

u
, W̄j, S

u
1,j, S

u
2,j}nj=1 where with very high probability,

W 2
j

l ≤ W 2
j ≤ W 2

j

u
, S1,j ≤ Su

1,j and S2,j ≤ Su
2,j for all j = 1, · · · , n. By amending the above bounds

accordingly, this is sufficient for the computation of a Monte Carlo estimate of an upper bound

on the power of LR, entirely avoiding any qualifications that arise through the impossibility of

generating exact draws of LR under
R
fθdΛ

∗(θ) and
R
fθdF (θ).
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4 Test Statistic and Properties

4.1 Definition of Test Statistic

We define the statistic for a general method of moments framework with the k + 1 dimensional

parameter Γ = (γ, γ̃0)0, with γ ∈ R and γ̃ ∈ Rk. The data in a sample of size T is given by XT =

(x1, · · · , xT ),10 and the population moment condition is E[g(Xt,Γ0)] = 0 when the true parameter

at date t is given by Γ = Γ0 for some known, Rm valued function g(·, ·). Write gt(Γ) = g(Xt,Γ)

for notational simplicity. The parameter Γ changes its value from Γpre = (γpre, γ̃
0
pre)

0 to Γpost =

(γpost, γ̃
0
post)

0 at some unknown date τ ∈ N in the middle 70% of the sample, τ ∈ [0.15T, 0.85T ]. The
hypotheses of interest concern the post break value of the first element γ of Γ,

H0 : γpost = γpost,0 against H1 : γpost 6= γpost,0. (29)

Denote by Γ̂pre(t) and Γ̂post(t) standard GMM estimators of Γ using data {Xs}ts=1 and {Xs}Ts=t+1,
and denote by Ω̂pre(t) and Ω̂post(t) the estimators of the covariance matrix of Γ̂pre(t) and Γ̂post(t),

respectively. These covariance matrix estimators, as well as the weighting matrix for efficient GMM

estimation in the overidentified case, are based on data {Xs}ts=1 and {Xs}Ts=t+1 for the pre and
post break estimators. If necessary, the estimators Ω̂pre(t) and Ω̂post(t) account for serial correlation

by employing a correction as in Newey and West (1987) or Andrews (1991), for instance, so that

in an overall stable model with parameter Γ0, approximately, Ω̂pre(t)
−1/2Γ̂pre(t) ∼ N (Γ0, Ik+1) and

Ω̂post(t)
−1/2Γ̂post(t) ∼ N (Γ0, Ik+1).

Our test statistic of (29) only requires evaluation of {Γ̂pre(t), Γ̂post(t), Ω̂pre(t), Ω̂post(t)} at the
71 numbers t = blT/100c for l = 15, 16, · · · , 85. Let γ̂pre(l) and γ̂post(l) be the first element

of Γ̂pre(blT/100c) and Γ̂post(blT/100c), and denote by ω̂2pre(l) and ω̂2post(l) the 1,1 element of

Ω̂pre(blT/100c) and Ω̂post(blT/100c), respectively. Define

[supF = max
16≤l≤85

¡
γ̂post(l)− γ̂pre(l − 1)

¢2
ω̂2post(l) + ω̂2pre(l − 1)

∆̂pre(l) = lγ̂pre(l)− (l − 1)γ̂pre(l − 1), ∆̂post(l) = (101− l)γ̂post(l − 1)− (100− l)γ̂post(l)

l̂ = arg min
16≤l≤85

Ã
l−1X
j=16

∆̂pre(j)
2 − (l − 1)γ̂pre(l − 1)2 +

85X
j=l+1

∆̂post(j)
2 − (100− l)γ̂post(l)

2

!

t̂post =
γ̂post(min(l̂ + 1, 85))− γpost,0q

ω̂2post(min(l̂ + 1, 85))
(30)

ω̂2 =
(l̂ − 1)2
9900

ω̂2pre(l̂ − 1) +
(100− l̂)2

9900
ω̂2post(l̂)

10We allow for double arrays in the data generating process, but omit an explicit dependence on T to ease notation

in this section.
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Table 2: Weights, Intervals, Means and Variances of the Approximate Least Favorable Distribution

j 1 2 3 4 5 6 7 8 9

pj 0.588 0.123 0.067 0.057 0.038 0.032 0.026 0.02 0.009

aj 15 85 85 20 75 20 20 75 45

bj 85 85 85 74 85 74 74 82 59

σ2δ,j 100 10 4 300 200 10 3 10 10

μj 20 5 3 16 28 9 6 7 11

j 10 11 12 13 14 15 16 17 18

pj 0.009 0.008 0.006 0.005 0.004 0.004 0.002 0.001 0.001

aj 70 15 15 60 80 60 83 85 75

bj 74 19 24 69 82 69 84 85 82

σ2δ,j 10 10 200 10 10 3 10 3 3

μj 9 5 28 12 11 8 13 15.5 13

cLR =

P85
l=15

exp[
1
2
σ2pre(γ̂pre(l)−γpost,0)

2l2

1002ω̂2v(l,σ2pre)
+
1
2

σ2β(γ̂post(l)−γpost,0)
2(100−l)2

1002ω̂2v(100−l,σ2
β
)

]

71
√

v(l,σ2pre)v(100−l,σ2β)P18
j=1

Pbj
l=aj

pj exp[−
1
2

μ2
δ,j

l

100v(l,σ2
δ,j

)
+
1
2

σ2
δ,j

(γ̂pre(l)−γpost,0)2l2

1002ω̂2v(l,σ2
δ,j

)
] cosh[

(γ̂pre(l)−γpost,0)μjl
100v(l,σ2

δ,j
)ω̂

]

(bj−aj+1)
√

v(l,σ2δ,j)

where v(l, σ2) = 1 + σ2l/100, σ2pre = 378, σ
2
β = 22, and aj, bj, pj, μj and σ2δ,j are defined in Table 2.

The test ϕ̂∗ of (29) rejects H0 if and only if either (i) [supF > 90 and |t̂post| > 2.01, or (ii) [supF ≤ 90
and cLR > 2.41.11

The intuition for these computations is roughly as follows. The statistic [supF is the largest
F-statistic of the null hypothesis that the value of γ in the first (l − 1)% is equal to the value of γ

in the last (100− l)%, maximized over 16 ≤ l ≤ 85. By leaving out the middle 1% of observations,

it is ensured that for any true break fraction within the middle 70% of the sample, one of these

F-statistics (often, the largest) only involves estimators (γ̂pre(l), ω̂
2
pre(l)) and (γ̂post(l), ω̂

2
post(l)) from

stable periods. When [supF > 90, that is, when there is strong evidence for the occurrence of a

break, the test ϕ̂∗ rejects if the usual t-statistic t̂post is larger than 2.01 (rather than the usual 1.96)

in absolute value, where t̂post uses l̂ to determine the appropriate post-break data.

In (approximately) linear and stationary models, γ̂pre(l) is centred at the average parameter

value of the first l% of the sample, blT/100c−1
PblT/100c

t=1 (γpre+(γpost− γpre)1[t > τ ]), and similarly,

γ̂post(l) is centred at the average parameter value of the last (100− l)% of the sample. The statistics
∆̂pre(l) and ∆̂post(l) thus approximately estimate the value of the parameter in the lth percent of the

11One obtains the test ϕ∗ of Proposition 1 and defined in the appendix by setting γ̂pre(l) = 100G(l/100)/l,

γ̂post(l) = (G(1)−G(l/100))/(1− l/100), ω̂2pre(l) = 100/l and ω̂2post(l) = 100/(100− l).
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sample. If the true break τ is in the l0th percent of the sample, then ∆̂pre(l) should be approximately

equal to γ̂pre(l0) for all l < l0, and similarly for ∆̂post(l). The break fraction estimator l̂ is determined

by minimizing a corresponding least squares criterion, again dropping the middle one percent. By

adding one to l̂, it is ensured that with high probability, l̂ + 1 is at least as large as the true break

fraction in percentage points, so that t̂post is based on estimates from a stable post-break period.

The advantage of the least squares criterion (30) based on (∆̂pre(l), ∆̂post(l)) over, say, an analogue

to the F-statistics that underlie [supF, is that l̂ in (30) has appealing properties under relatively
weak conditions also when the break magnitude is not small–cf. Proposition 4 below.

In absence of strong evidence for a break, that is [supF ≤ 90, the test ϕ̂∗ switches to deciding
the null hypothesis based on a likelihood ratio statistic. The numerator of this statistic is the result

of the weighting over alternative values for γpost, break dates and break magnitudes of Condition

1. The denominator is the result of a weighting over break dates and break magnitudes that make

detection of this alternative as difficult as possible, the numerically determined approximate least

favorable distribution discussed in Section 3, ensuring size control of ϕ̂∗ even when information

about the true break date is scarce. In this likelihood ratio statistic, the scale of γ̂pre(l) and γ̂post(l)

is normalized by ω̂. If the break data τ satisfies (l̂−1)/100 ≤ τ/T ≤ l̂/100, then the estimator ω̂2 is

based on variance estimators of stable models, which improves the small sample properties of cLR.
4.2 Asymptotic Properties

The following proposition establishes formally that under suitable conditions, the suggested test ϕ̂∗

is consistent for non-local alternatives for both local and non-local break magnitudes; it has local

power close to that of the infeasible test that uses only actual post break data when the break

magnitude is large; it has local asymptotic power equal to the power of ϕ∗ under a local break and

local alternative; and it controls size uniformly. In particular, this implies that the weighted average

power in Proposition 1, π∗ ' 49.0%, and the power in Figure 2 of Section 2.1.3 above is also the
(weighted average) asymptotic local power of ϕ̂∗ under local breaks.

Proposition 4 Define δT = T 1/2(γpre − γpost)/ω, βT = T 1/2(γpost − γpost,0)/ω, and ρT = τ/T for

some ω > 0.

(i) Suppose δT = δ ∈ R, ρT = ρ ∈ [0.15, 0.85] and

{T 1/2(γ̂pre(l)− γpost), T
1/2(γ̂post(l)− γpost), T ω̂

2
pre(l), T ω̂

2
post(l)}85l=15

⇒ {ωG0(l/100)
l/100

, ωG0(1)−G0(l/100)
1−l/100 , ω2

l/100
, ω2

1−l/100}85l=15
(31)

where G0(s) =W (s) + δmin(ρ, s). (i.a) If βT = β ∈ R, then ϕ̂∗(XT )⇒ ϕ∗(G). (i.b) If βT → ±∞,
then ϕ̂∗(XT )

p→ 1.
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(ii) Suppose δT → ±∞, ρT = ρ ∈ [0.15, 0.85], and, for some ωpre > 0,

{T 1/2(γ̂pre(l)− γpre), T ω̂
2
pre(l)}

b100ρc
l=15 ⇒ {ωpre

G0(l/100)
l/100

,
ω2pre
l/100

}b100ρcl=15

{T 1/2(γ̂post(l)− γpost), T ω̂
2
post(l)}85l=d100ρe ⇒ {ωG0(1)−G0(l/100)

1−l/100 , ω2

1−l/100}85l=d100ρe
P (T 1/2(γ̂pre(b100ρc+ 1)− γpre) > M)→ 1, P (T 1/2(γ̂post(d100ρe− 1)− γpost) > M)→ 1

(32)

for any M ∈ R, where dxe = −b−xc. (ii.a) If βT = 0, then lim supT→∞E[ϕ̂∗(XT )] ≤ 5%. (ii.b) If
βT = β ∈ R and ρ /∈ Rgrid = {0.15, 0.16, · · · , 0.84}, then ϕ̂∗(XT )⇒ 1[|Z+β

p
0.98− b100ρc/100| >

2.01], where Z ∼ N (0, 1). (iii.c) If βT → ±∞, then ϕ̂∗(XT )
p→ 1.

(iii) Suppose βT = 0; (31) holds for all sequences (ρT , δT )→ (ρ, δ) ∈ [0.15, 0.85]×R; (32) holds
for all sequences (ρT , δT )→ (ρ, δ) ∈ ([0.15, 0.85]\Rgrid)× {−∞,+∞}; and for all for all sequences
(ρT , δT )→ (ρ, δ) ∈ Rgrid×{−∞,+∞}, there exists a subsequence (ρT 0, δT 0)→ (ρ, δ) such that along

this subsequence, (32) holds except for

(T 1/2(γ̂pre(l0)− γpre), T ω̂
2
pre(l0))⇒ (ωpre

G0(l0/100)
l0/100

+ νpre(l0),
ω2pre
l0/100

)

(T 1/2(γ̂post(l0)− γpre), T ω̂
2
pre(l0))⇒ (ωG0(1)−G0(l0/100)

1−l0/100 + νpost(l0),
ω2

1−l0/100)
(33)

where l0 = 100ρ and νpre(l0), νpost(l0) ∈ R∪{−∞,+∞} are nonrandom constants, of which at most
one is nonzero. Then lim supT→∞ supθT∈Θ0 EθT [ϕ̂

∗(XT )] ≤ α∗ ' 5%.

Part (i) of Proposition 4 considers the case where the pre and post break value of γ only differ of

the order T−1/2. In that neighborhood, the GMM estimators do not contain enough information to

pin down the true break fraction exactly, even asymptotically. This asymptotic embedding mirrors

the small sample problem with substantial uncertainty about the true break date. The proposition

establishes that for local alternatives, where correspondingly, the true value γpost differs by the order

T−1/2 from the hypothesized value γpost,0, the asymptotic properties of ϕ̂
∗ are just like those of ϕ∗

in the limiting problem discussed in Section 2.1. So in particular, by Proposition 1, the test ϕ̂∗

has asymptotic level α∗ ' 5%, and it has asymptotic weighted average power under Condition 1

of π∗ ' 49%. Furthermore, ϕ̂∗ is consistent in this scenario against any alternative where γpost is
outside the T−1/2 neighborhood of the hypothesized value.

These results rely on the high level condition (31). The sequence of statistics

{γ̂pre(l),γ̂post(l),ω̂pre(l),ω̂(l)} are a special case of partial sample GMM estimators analyzed by An-

drews (1993). In particular, his primitive Assumption 1 with an appropriate modification to account

for the local break in the parameter value imply (31)–see the appendix for details. Alternatively,

the approach of Li and Müller (2007) could be amended to yield (31) under a different set of assump-

tions. Also, for the special case of maximum likelihood estimation, Condition 2 in the appendix

can be shown to imply (31) for both the average Hessian and outer product of scores covariance

estimators Ω̂pre and Ω̂post. The conclusions of part (i) thus hold for a wide range of models.12

12As pointed out by Hansen (2000b), most tests for parameter stability do not control asymptotic size under

’global’ heterogeneity of the average variance across different parts of the sample. This also applies to ϕ̂∗, at least
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Part (ii) of Proposition 4 establishes the asymptotic properties of ϕ̂∗ when the break is (very)

large relative to the sample information about γ. The test again controls size and is consistent

against any non-local alternative. Under local alternatives βT = β 6= 0, it asymptotically corre-

sponds to a two-sided t-test about the mean of a unit variance Gaussian variate with non-centrality

parameter β
p
0.98− b100ρc/100 and critical value 2.01, at least as long ρ 6= Rgrid.13 In compari-

son, the two-sided 5% level t-test based on post break data (assuming the break date was known)

converges to ϕρ(G) = 1[|G(1)−G(ρ)√
1−ρ | > Φ(0.975)], and thus has non-centrality parameter β

√
1− ρ.

With β ∼ N (0, 22) as in Condition 1, the average asymptotic power loss of ϕ̂∗ relative to ϕρ over

ρ ∈ [0.15, 0.85] is approximately 1.7 percentage points, with a largest difference of 3.6 percentage
points occurring at ρ→ 0.83.

The results in part (ii) of Proposition 4 require two sets of assumptions. On the one hand, the

statistics {γ̂pre(l), ω̂2pre(l)} and {γ̂post(l), ω̂2post(l)} have to behave in the usual way over the stable
pre and post break periods, respectively, and be asymptotically independent. Note that the limiting

variance may change at the parameter break date; this accommodates, say, changes in the variance

of the AR(1) coefficient estimator that are induced by a non-local break in the AR(1) coefficient.

One can again invoke the primitive conditions of Andrews (1993) to justify these convergences. On

the other hand, the estimators γ̂pre(l) and γ̂post(l) must diverge from the T
−1/2 neighborhood of the

pre and post parameter values γpre and γpost for two values of l that involve a positive fraction of post

and pre break data, respectively.14 For a non-local but shrinking break magnitude |γpre−γpost|→ 0

and T 1/2(γpre − γpost) → ±∞, γ̂pre(l) typically estimates the average parameter value in the first
l% of the sample, that is

γ̂pre(l)− γpre
γpost − γpre

p→ 1[l > b100ρc] l − b100ρc
l

6= 0, (34)

and similarly for γ̂post(l), which is clearly sufficient for the purposes of Proposition 4 (ii). The

convergence (34) can be shown to hold, for instance, under the high-level Condition 1 of Li and

Müller (2007) by proceeding as in their Theorem 1. For a fixed break magnitude γpost − γpre,

the distortionary effects of the break becomes even stronger, of course, and barring pathological

cancellations, one would expect the condition in Proposition 4 (ii) to be satisfied. We refrain from

a detailed discussion of sufficient primitive conditions for the sake of brevity.

for local breaks. However, by picking the 71 grid points in the definition of ϕ̂∗ not relative to the sample proportion,

but relative to a suitably chosen cumulative information (that typically would be need to be estimated with sufficient

precision), one could induce the convergence (31) even for models with ’global’ variance heterogeneity.
13This qualification is necessary because if ρ ∈ Rgrid, l̂ potentially takes on the two values b100ρc+1 and b100ρc+2

with positive probability, even asymptotically, despite the diverging break magnitude T 1/2(γpre − γpost).
14Note, however, that nothing is assumed about the behavior of the variance estimators {ω̂pre(l), ω̂post(l)} that

involve subsets of unstable periods.
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Finally, part (iii) of Proposition 4 shows that the test ϕ̂∗ controls size uniformly in large

samples–for T large enough, no choice of θ ∈ Θ0 leads to a rejection probability substantially

above 5%. This result is established under the assumption that for local breaks δT = O(1), the con-

vergences in part (i) hold for all converging sequences (ρT , δT )→ (ρ, δ). We show in the appendix

that the primitive assumptions of Andrews (1993) are again sufficient. For non-local breaks, care

must be taken for the case ρT → ρ ∈ Rgrid. If ρT → ρ = l0/100 ∈ Rgrid with ρT < ρ, then γ̂pre(l0) is

an estimator from an unstable model, with a shrinking fraction of the data stemming from the post

break model. Depending on the rate at which δT → ±∞, this contamination shifts the center of
the asymptotic distribution of γ̂pre(l0) by νpre(l0)–typically, given the arguments above (34), one

would expect νpre(l0) ∈ R if δT (ρT − ρ) → ξ ∈ R, and it is sufficient for the last assumption in
Proposition 4 (iii) to assume that when (ρT , δT ) → (ρ, δ) ∈ Rgrid × {−∞ +∞}, (32) holds except
for (33) for all sequences δT (ρT − ρ)→ ξ ∈ R ∪ {−∞,+∞}.15

4.3 Small Sample Properties

We now turn to the small sample properties of the test ϕ̂∗ suggested here, and compare it to the

infeasible test ϕ̂ρ that corresponds to standard inference using actual post break data only. We

consider two Monte Carlo designs: Inference about the post break mean of an otherwise stationary

scalar time series, and inference about the post break value of the moving average parameter of a

scalar time series.

For inference about the mean, we consider a series of T = 180 observations (think of 45 years of

quarterly data) {yt}Tt=1, where

yt = β + δT−1/21[t ≤ ρT ] + ut

and the zero mean disturbance ut is either i.i.d. standard normal, or follows a stationary Gaussian

AR(1) with coefficient 0.4, or follows a (positively autocorrelated) stationary MA(1) with coefficient

0.4. In all cases, we estimate the variance of the sample means by the quadratic spectral long run

variance estimator with automatic bandwidth selection based on an AR(1) model, as suggested in

Andrews (1991). Table 3 shows size and power of ϕ̂∗ in this scenario, along with the properties of

ϕ̂ρ (the usual t-test using only actual post break data), and of ϕ̂0.85 (the usual t-test using only

the last 15% of the data). With autocorrelated disturbances ut, there are some size distortions for

15Inspection of the proof of Proposition 4 shows that these assumptions are only needed to ensure that

({γ̂pre(l)}l0l=1, ∆̂post(l0 + 1)) are asymptotically independent of {γ̂post(l), ω̂2post(l)}l0+2l=l0+1
, as this independence is

enough to establish that the mixture of the two t̂post statistics with l̂ = l0 + 1 and l̂ = l0 + 2 controls size. The

condition could dispensed with entirely by increasing the critical value of t̂post to 2.07, since P (|Z1| < 2.07 and

|Z2| < 2.07) > 0.95 for all bivariate normal Z1, Z2 with Z1 ∼ Z2 ∼ N (0, 1) and correlation of at least
p
15/16, so

that no mixture of the two t̂post-statistics can induce overrejections.
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Table 3: Small Sample Size and Power of Suggested Test in Location Model

Size (β = 0) Power (β = 4)

ρ ϕ̂∗, δ = ϕ̂ρ ϕ̂∗, δ = ϕ̂ρ

1 4 8 16 1 4 8 16

i.i.d. disturbances

0.25 4.9 5.1 4.8 4.2 5.3 41.6 53.2 78.2 89.8 93.2

0.50 4.8 5.1 5.2 4.8 5.7 41.3 50.7 68.0 74.6 80.7

0.75 4.7 4.5 5.6 5.9 6.0 41.6 42.0 44.6 44.2 52.7

AR(1) disturbances

0.25 8.9 9.0 8.1 7.4 8.2 52.2 63.8 83.2 92.6 94.6

0.50 9.1 8.7 8.4 7.9 9.0 51.5 60.5 74.4 80.1 85.0

0.75 9.0 7.9 8.6 10.3 11.6 51.1 49.6 52.5 55.3 63.1

MA(1) disturbances

0.25 7.0 7.3 6.4 5.8 6.9 48.0 59.5 80.9 91.2 93.6

0.50 7.1 7.2 7.0 6.3 7.3 47.5 56.3 71.4 77.8 82.5

0.75 6.8 7.0 7.7 8.3 8.9 47.5 46.6 48.7 50.0 58.1

Notes: All entries are based on asymptotic critical values. The variance

of the sample means is estimated by a quadratic spectral kernel with

automatic bandwidth selection based on an AR(1) model, as suggested

by Andrews (1991). Based on 25,000 replications.

ϕ̂∗, although they are smaller than those of the infeasible benchmark statistic ϕ̂ρ. In comparison,

unreported simulations show that (non-size corrected) inference based on the least squares break

date estimator is subject to large size distortions; in the MA(1) case, for instance, the null rejection

probability ranges from 8.1% to 22.5% for the values of ρ and δ considered in Table 3. The (not

size corrected) power results of Table 3 at least qualitatively correspond closely to the asymptotic

results in Figure 4.

In the MA(1) design, we generate data from the model

yt = μ+ εt + 1[t ≤ ρT ]ψpreεt−1 + 1[t > ρT ]ψpostεt−1

with εt ∼i.i.d.N (0, σ2) and T = 480 (think of 40 years of monthly data). We test the hypothesis

H0 : ψpost = 0. Table 4 shows the null and alternative rejection probabilities of ϕ̂∗, where the

parameters are estimated by maximum likelihood. It can be shown that Condition 2 in the appendix

holds for this model. By Propositions 3 and 4, ϕ̂∗ is therefore the approximately weighted average

local asymptotic power maximizing test of current forecastability of yt. Small sample size distortions
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Table 4: Small Sample Size and Power of Suggested Test in MA(1) Model

Size (ψpost = 0) Power (ψpost = 0.2)

ρ ϕ̂∗, ψpre = ϕ̂ρ ϕ̂∗, ψpre = ϕ̂ρ

0.1 0.3 0.5 0.7 −0.1 0.1 0.3 0.5

0.25 5.7 5.6 5.0 5.2 5.2 60.3 85.5 96.9 96.9 97.5

0.50 6.0 7.1 8.4 8.3 5.9 61.3 85.4 88.6 89.1 89.7

0.75 5.7 8.9 12.0 13.3 7.0 53.6 51.0 56.7 66.6 64.4

Notes: All entries are based on asymptotic critical values. The variance

of the unconditional maximum likelihood estimators ψ̂ is estimated by

(1− ψ̂
2
)/brTc in a sample of size brTc. Based on 10,000 replications.

are mostly larger for ϕ̂∗ compared to ϕ̂ρ, but remain modest for most considered parameter values.

We experimented with smaller sample sizes and found worse size control, sometimes substantially

so. Good properties of ϕ̂∗ rely on reasonable accuracy of the usual large sample approximations

over all partial sample estimators. But with small sample sizes T , the estimators over, say, the

first and last 15% are based on very few observations, which leads to well known problems with the

MA(1) maximum likelihood estimator.

5 Conclusion

Models with discrete breaks in the parameters at an unknown or uncertain date have become

popular in empirical work in recent years. This paper shows that inference about pre and post

break parameters using the estimated break date as the true break date leads to substantially

oversized tests and confidence intervals as long as the break magnitude is not very large relative to

the sampling uncertainty about the parameters. For the important special case of a single break

at an unknown date and a single parameter of interest, we derive an alternative test with uniform

asymptotic size control that demonstrably comes close to maximizing a weighted average power

criterion.

While the test is entirely straightforward to apply and not very burdensome computationally,

the test statistic is certainly not particularly elegant. Most previous advances in problems involving

nuisance parameters under the null hypothesis, such as Jansson and Moreira (2006) or Andrews,

Moreira, and Stock (2006), exploit the specific form of the statistical model. No such method

appears to apply here. The strength of our approach is precisely its generic nature. The suggested

algorithm is computationally intensive and heavily involves numerical approximations. But its

output is a test that demonstrably comes close to maximizing weighted average power, and given
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our algorithm to check its size, it is as valid a test as any whose critical value is determined by

Monte Carlo simulation.

In many ways, the problem of pre and post break parameter inference has a number of features–

such as the very peaked likelihood for large breaks, the two dimensions in the nuisance parameter

space and the dependence on an infinite dimensional disturbance–that arguably make the engineer-

ing challenges particularly severe. We would therefore expect that many aspects of the approach

here could be successfully applied in other testing problems with nuisance parameters under the null

hypothesis that cannot be estimated consistently. For instance, in the context of inference in models

with parameters undergoing a single break, one might consider inference about the magnitude of

the change (leading to the break date as the single nuisance parameter after invoking invariance to

eliminate the average value of the parameter), or optimal inference about the break date (leaving

the break magnitude as the only relevant nuisance parameter after invoking the same invariance).

Also, inference about the post break parameter value has a very similar structure to inference about

model parameters above and below the threshold in models with unknown threshold, which have

applications in both time series and cross section settings (see, for instance, Hansen (2000a)). The

one clearly binding constraint in the applicability of the approach suggested here is the dimension

of the nuisance parameter space, as it is unclear how one could numerically check whether a given

test controls size for all values of a high dimensional nuisance parameter.

6 Appendix

Definition of ϕ∗:

ϕ∗(G) = 1[supF0 > 90]1[|t̂0| > 2.01] + 1[supF0 ≤ 90]1[LR0 > 2.41], where

supF0 = max
16≤l≤85

100

99

((100− l)G( l−1100 )− (l − 1)(G(1)−G( l
100)))

2

(100− l)(l − 1)

S0(l) =
100(100G( l

100)− lG(1))2

l(100− l)
+ 1002

(lG( l−1100 )− (l − 1)G(
l
100))

2

l(l − 1)
l̂0 = arg max

16≤l≤85
S0(l)

t̂0 =
G(1)−G(min(l̂0 + 1, 85)/100)q

1−min(l̂0 + 1, 85)/100

LR0 =

P85
l=15 v(l, σ

2
pre)

−1/2v(100− l, σ2β)
−1/2 exp[12

σ2preG(l/100)
2

v(l,σ2pre)
+ 1

2

σ2β(G(1)−G(l/100))2

v(100−l,σ2β)
]P18

j=1

Pbj
l=aj

pj
bj−aj+1v(l, σ

2
δ,j)

−1/2 exp[−12
μ2δ,j l

100v(l,σ2δ,j)
+ 1

2

σ2δ,jG(l/100)
2

v(l,σ2δ,j)
] cosh[

μjG(l/100)

v(l,σ2δ,j)
]
.

and v(l, σ2) = 1 + σ2l/100, σ2pre = 378, σ
2
β = 22, and pj , aj, bj , σ

2
δ,j and μj are defined in Table 2.
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Proof of Proposition 2:

By Girsanov’s Theorem, the log of the Radon-Nikodym (RN) derivative of the distribution of (G, G̃0)0 with

respect to the distribution of (W, (A21W +A22W̃k)
0)0 is the r.h.s. of (18).

(i) Fix arbitrary values ρ0 ∈ [0.15, 0.85], δ0 ∈ R, β̃0, δ̃0 ∈ Rk, and consider the construction of the most
powerful unbiased test against the specific alternative Hs

1(b) : β = b, δ = δ0−b, β̃ = β̃0+bA21, δ̃ = δ̃0−bA21
ρ = ρ0, which is indexed by b ∈ R. Any 5% level test for the unrestricted null hypothesis is also of level

5% under the specific null hypothesis Hs
0 : β = 0, δ = δ0, β̃ = β̃0, δ̃ = δ̃0, ρ = ρ0. The log of the

RN derivative of the distribution of (G, G̃0)0 under Hs
1(b) with respect to the distribution under H

s
0 then

becomes b(G(1)−G(ρ0))− 12(1−ρ0)b2. The experiment of testingHs
0 againstH

s
1(b) based on the observation

(G, G̃0)0 is therefore equivalent (in the sense of equivalence of statistical experiments) to inference about b

in the Gaussian shift experiment of observing X ∼ N (b, 1− ρ0). In particular, for any test of H
s
0 against

Hs
1(b), there exists a test ϕX : R 7→ [0, 1] that has the same distribution for all b ∈ R (this follows, for

instance, from Theorem 3.1 of van der Vaart (1998)). It is well known that the best 5% level unbiased

test in the Gaussian shift experiment is ϕ∗X = 1[|X/
√
1− ρ0| > Φ(0.975)], so that the best unbiased 5%

level test of Hs
0 against H

s
1(b) is ϕρ0(G). Since ϕρ0(G) does not depend on δ0, β̃0, δ̃0, and ρ0, δ0, β̃0, δ̃0 were

arbitrary, this proves the claim.

(ii) The bound π̄ in Proposition 1 is constructed via Lemma 1, i.e., π̄ is the power of the Neyman-

Pearson test ϕΛ∗ of HΛ∗ against HF , treating G as the observation, with Λ∗ the approximately least

favorable distribution Λ∗ determined as described in Section 3.1.

Now let Λ̃∗ be the probability distribution for (θ, β̃, δ̃) with the same marginal distribution of θ as Λ∗,

and (β̃, δ̃) = (βA21, δA21) conditional on θ. The Neyman-Pearson test of HΛ̃∗ against HF̃ , based on the

observation (G, G̃0)0, is then seen to be identical to ϕΛ∗ . The result thus follows from Lemma 1.

(iii) A maximal invariant is (Ψ, G(1)), where Ψ(s) = (G(s) − G(1), G̃(s)0 − sG̃(1)0)0. Note that the

distribution of (Ψ, G(1)) does not depend on β̃, and that G(1) is independent of Ψ. The log of the RN

derivative of (Ψ, G(1)) with respect to the distribution of (Bk+1, Z), where Bk+1 is a k+1 Brownian Bridge

with covariance matrix Σ and Z ∼ N (0, 1) independent of Bk+1, is equal to

δe01Σ
−1Ψ(ρ) + (β + δρ)G(1)− 1

2ρ(1− ρ)e01Σ
−1e1δ

2 − 1
2(β + δρ)2

where e1 is the first column of Ik+1. By the same arguments as employed in part (i), this experiment is

seen to be equivalent to the observation of (Ψ̄, G(1)), where Ψ̄(s) = W (s) − sW (1) + (ρ(1 − s) + 1[s ≤
ρ](s − ρ))δ/

√
1−R2. A calculation yields that the RN derivative of the distribution of (Ψ̄, G(1)) under

θ ∼ F with respect to the distribution of (B1,W (1)) (where B1(s) =W (s)− sW (1)) is

1

0.70

Z 0.85

0.15

Ã
(1 + (1− r)σ2β)(1 + r(σ2δ − σ2β))−R2(1 + σ2β(1− 2r) + r2σ2δ)

1−R2

!−1/2

× exp

⎡⎢⎣12v(r)0
⎛⎝ 1 + 1

σ2β
− r−(2−r)rR2

1−R2 − (1−r)rR
2

1−R2

− (1−r)rR
2

1−R2
1

σ2δ−σ2β
+ r(1−rR2)

1−R2

⎞⎠−1 v(r)
⎤⎥⎦ dr
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where v(r) = ((1− r)G(1)− Ψ̄(r)/
√
1−R2, rG(1) + Ψ̄(r)/

√
1−R2)0, and under δ ∼ N (μ1, σ21) and ρ = r,

it is µ
1 +

r(1−R2r)σ21
1−R2

¶−1/2
exp

⎡⎣−12 μ21σ21 + 1
2

σ21(
Ψ̄(ρ)√
1−R2 + rG(1) + μ1/σ

2
1)
2

1 + σ21
r(1−R2r)
1−R2

⎤⎦ .
The power bounds π̄inv were computed via Lemma 1 using these densities as described in Section 3.4.

The inequality π̄inv(R
2) ≤ π̄inv(R̄

2) for R2 ≤ R̄2 holds because one can always reduce the information of

the experiment with R̄2 to that with R2 by adding a data independent Brownian Bridge of appropriate

variance to Ψ̄.

Condition 2 In the stable model with parameter Γ0
(i) in some neighborhood B0 of Γ0, lT,t(Γ) is twice differentiable a.s. with respect to Γ for t = 1, · · · , T ,

T ≥ 1;
(ii) for all s ∈ [0.15, 0.85] and � > 0 there exists K(s, �) > 0 such that

P (sup||Γ−Γ0||≥� T
−1PbsTc

t=1 (lT,t(Γ)− lT,t(Γ0)) < −K(s, �))→ 1 and P (sup||Γ−Γ0||≥� T
−1PT

t=bsT c+1(lT,t(Γ)−
lT,t(Γ0)) < −K(s, �))→ 1;

(iii) {sT,t(Γ0),FT,t} is a square-integrable martingale difference array with

T−1
PbsT c

t=1 E[sT,t(Γ0)sT,t(Γ0)
0|FT,t−1]

p→ sH for all 0 ≤ s ≤ 1 and some (k + 1) × (k + 1) dimen-

sional matrix H, T−1 supt≤T ||E[sT,t(Γ0)sT,t(Γ0)0|FT,t−1]||
p→ 0 and there exists ν > 0 such that

T−1
PT

t=1E[||sT,t(Γ0)||2+ν |FT,t−1] = Op(1);

(iv) T−1
PT

t=1 ||hT,t(Γ0)|| = Op(1), T
−1 supt≤T ||hT,t(Γ0)||

p→ 0 and for any decreasing neighborhood BT
of Γ0 contained in B0, T−1

PT
t=1 supΓ∈BT ||hT,t(Γ)− hT,t(Γ0)||

p→ 0;

(v) For all 0 ≤ s ≤ 1, T−1
PbsTc

t=1 hT,t(Γ0)
p→ −sH.

Part (ii) of Condition 2 is an identification condition that ensures consistency of the pre and post

potential break maximum likelihood estimator–cf., for instance, Condition 6 on page 436 of Schervish

(1995). Parts (ii)-(v) are a special case of Condition 2 in Li and Müller (2007) and Condition 1 in Müller

and Petalas (2007), who provide further discussion and references.

Proof of Proposition 3:

We first show convergence of the experiment involving observation XT as T → ∞ to that of observing

(G, G̃0)0 in the sense of Definition 9.1 of van der Vaart (1998).

By Lemma 1 of Li and Müller (2007), any unstable model with parameter evolution (16) is contiguous

to the stable model. Furthermore, by the same reasoning as employed in the proof of Lemma 1 of Li and

Müller (2007), under the stable model,

ln LRT =

Z 1

0

Ã
β + δ1[λ ≤ ρ]

β̃ + δ̃1[λ ≤ ρ]

!0
Σ−1dŴT (λ)−12

Z 1

0

Ã
β + δ1[λ ≤ ρ]

β̃ + δ̃1[λ ≤ ρ]

!0
Σ−1

Ã
β + δ1[λ ≤ ρ]

β̃ + δ̃1[λ ≤ ρ]

!
dλ+op(1)

where ŴT (·) = T−1/2ωΣ
Pb·T c

t=1 sT,t(Γ0). Define J̃(·) = A21W (·) + A22W̃k(·). By Theorem 3.6 in McLeish

(1974) and the functional Cramer Wold device (Theorem 29.16 in Davidson (1994)), under Condition 2
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(iii), ŴT (·) ⇒ (W (·), J̃(·)0)0. Thus, by the Continuous Mapping Theorem (CMT), also (ŴT , ln LRT ) ⇒
((W, J̃ 0)0, ln LR) in the stable model, where ln LR is the r.h.s. of (18) with (G, G̃0)0 replaced by (W, J̃ 0)0.

Since LR is the RN derivative of the distribution of (G, G̃0)0 with respect to the distribution of (W, J̃ 0)0,

a general version of LeCam’s Third Lemma (see, for instance, Lemma 27 of Pollard (2001)) thus implies

that ŴT ⇒ (G, G̃0)0 in the unstable model (16). The convergence of the experiments now follows from the

same arguments as employed in the proof of Theorem 9.4 of van der Vaart (1998).

Now for part (i), fix arbitrary θ1 ∈ Θ1, β̃1, δ̃1 ∈ Rk. Let T 0 be a subsequence of T such that

lim supT→∞Eθ1,β̃1,δ̃1
[ϕT (XT )] = limT 0→∞Eθ1,β̃1,δ̃1

[ϕT 0(XT 0)]. By (19), there exists a further subsequence

T 00 and test ϕ such that Eθ,β̃,δ̃[ϕT 00(XT 00)] → Eθ,β̃,δ̃[ϕ(G, G̃)] for all θ ∈ Θ0 ∪ Θ1, β̃, δ̃ ∈ Rk. Since ϕT is

asymptotically unbiased and of asymptotic level 5%, this implies ϕ to be a 5% level unbiased test. By

Proposition 2 part (i), the most powerful unbiased test is ϕρ, so that lim supT→∞Eθ1,β̃1,δ̃1
[ϕT (XT )] =

Eθ1,β̃1,δ̃1
[ϕ(G, G̃)] ≤ Eθ1,β̃1,δ̃1

[ϕρ(G)].

Parts (ii) and (iii) follow analogously.

Details on Determination of Approximate Least Favorable Distribution:

The distributions Ψ on Θ0 mentioned in the main text are of the form "ρ is uniform on [max(0.15, a/100−
1
2),min(0.85, b/100 +

1
2)] and δ is an equal probability mixture of δ ∼ N (μδ, σ2δ) and δ ∼ N (−μδ, σ2δ)" for

some integers a, b ∈ {15, · · · , 85}, b ≥ a, and μδ ∈ R, σ2δ > 0. Collect the four determining numbers of

Ψ = Ψς in the vector ς = (a, b, μδ, σ
2
δ). The density of G(·) under Ψς , with respect to the distribution of

W (·), is given by 1
min(0.85,b/100+1/2)−max(0.15,a/100−1/2)

Rmin(0.85,b/100+1/2)
max(0.15,a/100−1/2) f̃(r, μδ, σ

2
δ ;G)dr, where

f̃(r, μδ, σ
2
δ ;G) = (rσ

2
δ + 1)

−1/2 exp[12
σ2δG(r)

2 − rμ2δ
rσ2δ + 1

] cosh[
G(r)2μδ
rσ2δ + 1

]

and the density of G(·) with (β, δ, ρ) ∼ F as in Condition 1 is given by 1
0.70

R 0.85
0.15 h̃(r;G)dr, where

h̃(r;G) = (rσ2δ + 1)
−1/2((1− r)σ2β + 1)

−1/2 exp[12
σ2δG(r)

2

rσ2δ + 1
+ 1

2

σ2β(G(1)−G(r))2

(1− r)σ2β + 1
].

As discussed in the main text, we approximate integrals with sums over the 100 point grid r ∈
{ 1
100 ,

2
100 , · · · , 1}. Thus, we replace 1

0.70

R 0.85
0.15 h̃(r;G)dr by h(G) = 1

71

P85
l=15 h(l/100,G), and for the

distribution Ψς , we approximate the resulting density by f(ς;G) = 1
b−a+1

Pb
l=a f̃(l/100, μδ, σ

2
δ ;G) for

ς = (a, b, μδ, σ
2
δ). All Λ we consider are mixtures of Ψς ’s. Let ς = (ς1, · · · , ςN ), p = (p1, · · · , pN ) withPN

j=1 pj = 1. Thus, Neyman-Pearson tests can be written as ϕ(ς,p, cv) = 1[h(G)/
PN

j=1 pjf(ς;G) < 1/ cv]

for some cv ∈ R, with null rejection probability π0(ς,p, cv; ς) =
R
Eθ[ϕ(ς,p, cv;G)]dΨς(θ) under HΨς . In

the following, write Hς for HΨς to ease notation. We approximate π0 with the Monte Carlo estimator

π̂0(ς,p, cv; ς) =
1

20000

20000X
i=1

⎛⎝1 +
⎛⎝cv NX

j=1

pj
f(ςj;G

∗
i )

h(G∗i )

⎞⎠10⎞⎠−1 (35)

where G∗i are (pseudo) random draws from G under Ψς . Because h and f only depend on {G(l/100)}100l=1,

one can generate G∗i by suitably transforming Gaussian Random Walks with 100 steps. In contrast to
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the standard Monte Carlo estimator based on averaging ϕ(ς,p, cv) directly, the numerically close analogue

(35) is a differentiable function of (p, cv), which facilitates the computations below.

The algorithm calls three subroutines SR1, SR2 and SR3.

SR1 The routine takes a set ς = (ς1, · · · , ςN ) and levels α = (α1, · · · , αN ) as given, and returns an
estimate of the least favorable distribution Λ∗ς and corresponding critical value cv that describes the

Neyman-Pearson test of the composite null hypothesisHς : "G has density Ψς for some ς ∈ ς" against
HF , which is of level αj under Hςj , j = 1, · · · , N . The distribution Λ∗ς is a mixture of the Ψς ’s, ς ∈ ς.
By the same argument as in Theorem 3.8.1 of Lehmann and Romano (2005), the least favorable

mixing weights p∗ = (p∗1, · · · , p∗N ) have the two properties (i) π0(ς,p∗, cv; ςj) ≤ αj for j = 1, · · · ,N ;
and (ii) π0(ς,p∗, cv; ςj) < αj only if pj = 0 for j = 1, · · · , N . This motivates the joint determination
of p and cv as numerical solutions to

π̂0(ς,p, cv; ςj) ≤ αj and pj(π̂0(ς,p, cv; ςj)− αj) = 0 for j = 1, · · · , N. (36)

Specifically, we determine appropriate p and cv by minimizing the objective function

NX
j=1

(a0pj + exp[a1(π̂0(ς,p, cv; ςj)− αj)])(π̂0(ς,p, cv; ςj)− αj)
2 (37)

where a0 = 100 and a1 = 2000. As a function of p and cv, (37) is continuous and with known first

derivative, so that a standard quasi-Newton optimizer can be employed. Also, the 20000N2 numbers

f(ςj ;G
∗
i )/h(G

∗
i ) for G

∗
i drawn under ς l for j, l = 1, · · · , N , and i = 1, · · · , 20000 can be computed

and stored once to speed up the the evaluation of π̂0(ς,p, cv; ςj) and its partial derivatives.

SR2 The routine takes (ς,p) as inputs and returns (ς 0,p0) of length N 0 ≤ N by eliminating values (ςj , pj)

with pj approximately equal to zero. The first three elements of (ς,p) are ’locked’ and are never

eliminated.

SR3 The routine takes a test ϕ described by the triple (ς,p, cv), a set grid of values ςg = (ςg,1 · · · , ςg,Ng)

and a nominal level αn ∈ [0, 1] as given, and determines whether ϕ(ς,p, cv) is of level αn under
all null hypotheses Hς0 , ς 0 ∈ ς 0. Specifically, it evaluates π̂0(ς,p, cv; ς 0) for all ς 0 ∈ ς 0 in a random
order until π̂0(ς,p, cv; ς 0) > αn, in which case ς 0 is returned. Otherwise, the routine returns a flag

indicating that the test is of level αn.

The three ’locked’ values of ς serve to induce a rejection probability sufficiently below the nominal

level, so that in combination with the switching to the t-test described in the main text, the resulting test

controls size overall.

The algorithm iterates between the subroutines as follows:

1. Initialize ς = ((15, 24, 28, 200), (75, 85, 28, 200), (15, 85, 20, 4), (85, 85, 3, 4), (15, 85, 0, 300)} and

αlocked = (0.033, 0.028, 0.034). Call SR1 with α = (αlocked, 0.0445) and SR2 to obtain (ς,p, cv).
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Table 5: Grids for Computation of Approximate Least Favorable Distribution
i a, b μδ σ2δ αn,i

1 15, 20, 75, 83, 85 0, 2, · · · , 20 300 4.45%

2 15, 20, 75, 83, 85 0, 2, · · · , 16 50 4.45%

3 15, 20, 75, 83, 85 0, 2, · · · , 22 10 4.50%

4 15, 20, 75, 83, 85 0, 2, · · · , 22 3 4.55%

5 15, 20, 30, 45, 60, 70, 75, 80, 83, 85 0, 2, · · · , 22 10 4.55%

6 83, 84, 85 0, 12 , · · · , 18 1 4.60%

7 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 83, 85 0, 1, · · · , 22 10 4.60%

2. For i = 1 to 7:

(a) Call SR3 with (ς,p, cv), αn = αn,i and ςg = ςg,i.

(b) If SR3 returns ς, extend ς by ς and call SR1 with α = (αlocked, αn, αn, · · · , αn), and SR2 to
obtain new (ς,p, cv). Go to step a.

The 7 grids ςg,i and αn,i are described in Table 5. The grid contains all possible combinations of

ς = (a, b, μδ, σ
2
δ) with a and b consecutive values in column 2, and μδ as in column 3. The randomization

in SR3 prevents cycles that arise through the thinning operation in SR2.

Details on Size Control Computations:

The test ϕ∗ as defined above only depends on {G(l/100)}100l=1, and conditional on the Monte Carlo draw of

the random walk {Wi(l)}100l=1, Gi(l/100) =Wi(l/100)+δmin(ρ, l/100) is a function of δ and ρ. Write Si(δ, ρ)

for the induced function ϕ∗(Gi). The approach outlined in Section 3.3 requires that for any given values 0 ≤
δ1 < δ2 and 0.15 ≤ ρ1 < ρ2 ≤ 0.85, an algorithm must (attempt to) determine minδ1≤δ<δ2,ρ1≤ρ<ρ2 Si(δ, ρ)

and maxδ1≤δ<δ2,ρ1≤ρ<ρ2 Si(δ, ρ) (it suffices to consider non-negative δ, because ϕ
∗(G) = ϕ∗(−G)). For this

determination, we now consider how supF0, l̂0, t̂0 and LR0 in the definition of ϕ
∗ at the beginning of the

appendix behave as functions of (δ, ρ) on the rectangles δ1 ≤ δ < δ2, ρ1 ≤ ρ < ρ2 where ρ1 and ρ2 are such

that l0 − 1 ≤ 100ρ1 and 100ρ2 < l0 for some l0 ∈ {16, · · · , 85}, conditional on Wi.

For supF0, note that ((100 − l)G( l−1100 ) − (l − 1)(G(1) − G( l
100)))/

p
(100− l)(l − 1) = asupF(l,Wi) +

δ · bsupF(l, ρ), where asupF(l,Wi) does not depend on (ρ, δ), and bsupF(l, ρ) = bsupFpre (l, ρ) =p
(l − 1)/(100− l)(1 − ρ) for l < l0, bsupF(l, ρ) = bsupFmid (l) =

p
(100− l)(l − 1)/100 for l = l0 and

bsupF(l, ρ) = bsupFpost (l, ρ) =
p
(100− l)/(l − 1)ρ for l > l0. Thus,

δ1b
supF
pre (l, ρ2) ≤ δbsupF(l, ρ) ≤ δ2b

supF
pre (l, ρ1) for 16 ≤ l < l0

δ1b
supF
mid (l) ≤ δbsupF(l, ρ) ≤ δ2b

supF
mid (l) for l = l0

δ2b
supF
post (l, ρ1) ≤ δbsupF(l, ρ) ≤ δ2b

supF
pre (l, ρ2) for l0 < l ≤ 85

which in turn allows the construction of straightforward bounds
p
supF0.
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For l̂0, note that with ξ = ρδ, S0(l) is of the form S0(l) = S0(l, δ, ξ) =
P2

j=1(a
S
j (l,Wi)+b

S
i,j(l)δ+c

S
i,j(l)ξ)

2

for i ∈ {pre,mid, post} in self-explanatory notation. In particular, bSpre,1(l) = l, bSpost,1(l) = bSmid,1(l) = 0,

bSpre,2(l) = 0, bSmid,2(l) = (l − 1)l/100, bSpost,2(l) = 0, cSpre,1(l) = −l, cSpost,1(l) = cSmid,1(l) = 100 − l,

cSpre,2(l) = 0, c
S
mid,2(l) = −(l − 1), and cSpost,2(l) = 1. Let ρ̄ =

1
2(ρ1 + ρ2), δ̄ =

1
2(δ1 + δ2), and ξ̄ = ρ̄δ̄, and

define b̄l = argmax16≤l≤85 S0(l, δ̄, ξ̄). With S∆(l, δ, ξ) = S0(l, δ, ξ) − S0(
b̄l, δ, ξ) and T = [δ1, δ2) × [ξ1, ξ2),

ξ1 = δ1ρ1, ξ2 = δ2ρ2, the set of possible values for l̂0 is a (possibly proper) subset of L̂0 = {16 ≤ l ≤ 85 :
sup(δ,ξ)∈T S∆(l, δ, ξ) ≥ 0}, because the range of S∆(l, δ, ξ) on T is at least as large as the range of S∆(l, δ, ρδ)
on [δ1, δ2)× [ρ1, ρ2), for each l. Since S∆(l, δ, ξ), viewed as a function of δ and ξ, is a quadratic polynomial,
the minimum and maximum occur either in a corner (δ, ξ) ∈ C = {(δ1, ξ1), (δ1, ξ2), (δ1, ξ2), (δ2, ξ2)}, or,
possibly, at a local maximum along one of the four sides, or, possibly, at an interior extremum. The five

potential interior local extrema are easily computed by solving the appropriate linear first order conditions.

Given L̂0, it is straightforward to construct upper and lower bounds on t̂0.

Finally, for LR0, note that the exponents in the numerator is a positive definite quadratic polynomial in

δ and ξ = ρδ. Expanding cosh(x) = 1
2 exp(x)+

1
2 exp(−x), also the denominator can be written as a sum of

exponentials where each exponent is a positive definite quadratic polynomial in (δ, ξ). Since positive definite

quadratic polynomials are convex, and the sum of log-convex functions is log convex, both the numerator

and denominator are log-convex functions of (δ, ξ), say, NLR(δ, ξ) and DLR(δ, ξ). Let v̄D be the 2×1 vector
of partial derivatives of lnDLR(δ, ξ) at (δ, ξ) = (δ̄, ξ̄). Since lnDLR(δ, ξ)− (δ − δ̄, ξ − ξ̄)v̄D is convex with

zero derivative at (δ, ξ) = (δ̄, ξ̄), it takes on its minimum at (δ̄, ξ̄), and since lnNLR(δ, ξ)− (δ− δ̄, ξ − ξ̄)v̄D

is convex, it takes on its maximum in one of the corners. Thus,

max
δ1≤δ<δ2,ρ1≤ρ<ρ2

LR0 ≤
max
(δ,ξ)∈C

NLR(δ, ξ) exp[−(δ − δ̄, ξ − ξ̄)v̄D]

DLR(δ̄, ξ̄)

and, reversing the role of the numerator and denominator, we can construct an analogous lower bound.

These arguments were applied in the context of the divide and conquer algorithm on (ρ, δ) ∈
[0.15, 0.85] × [0, 110], with rectangles of width 1/7000 × 1/100. For δ ∈ (110,∞), consider a rectangle
[ρ1, ρ2]×(110,∞) with l0−1 ≤ 100ρ1 and 100ρ2 < l0 for some l0 ∈ {16, · · · , 85}, and width ρ2−ρ1 = 1/7000.
If l̂0 ∈ {l0 − 1, l0} occurred with certainty, then t̂0 is based on a stable model, and the same arguments

as employed in the proof of Proposition 4 (ii) below show that the rejection probability is slightly smaller

than 5% for all l0. It thus suffices to employ the (appropriately modified) algorithm for the determination

of L̂0 above to check that l̂0 /∈ {l0 − 1, l0} rarely enough.

Details on Power Bound Computations:

A standardWiener process on the unit intervalW can be decomposed asW (s) = Dτ
W (s)+αW+(s−1/2)βW ,

where αW and βW are the coefficients of a continuous time least squares regression of W (s) on (1, s−1/2),
andDτ

W (s) are the residuals. LetD
sq
W =

R 1
0 D

τ
W (s)

2ds. With these definitions, a straightforward calculation

yields
R 1
0 W (s)2ds = Dsq

W +α2W +
1
12β

2
W . Further, define DW (s) as the demeaned Brownian Bridge W (s)−

sW (1), DW (s) =W (s)− sW (1)−αW + 1
2W (1), and note that ∆W = sup0≤s≤1 |W (s)−αW | ≤ 1

2 |W (1)|+
sup0≤s≤1 |DW (s)| and∆sqW = sup0≤s≤1 |W (s)2−

R 1
0 W (s)2ds| ≤ 2∆W |αW |+∆2W+|

R 1
0 W (s)2ds−α2W |. These
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expressions are useful because (i) (W (1), αW , βW ) are jointly Gaussian with known covariance matrix and

independent of Dτ
W (·) (and thus D

sq
W ); (ii) the distribution of D

sq
W can be computed exactly by inverting the

characteristic function derived in Theorem 9.12 of Tanaka (1996); (iii) Darling (1983) provides a formula

for the c.d.f. of sup0≤s≤1DW (s).

Evaluation of the expression in Darling (1983) yields P (sup0≤s≤1DW (s) > 2.2) < εD = 5·10−12, so that
P (sup0≤s≤1 |DW (s)| > 2.2) < 2εD. Also, evaluation of the c.d.f. of D

sq
W at the 15 points 0.1, 0.2, · · · , 1.5

by inverting the characteristic function, as discussed in Chapter 6 of Tanaka (1996), permits the straight-

forward construction of the two random variables Dsq l
W and Dsqu

W such that P (Dsq l
W ≤ Dsq

W ≤ Dsqu
W ) = 1

by suitably transforming uniform random variable on the unit interval (with Dsqu
W taking on the value

+∞ with probability P (Dsq
W > 1.5) ' 4 · 10−14). Let (Zj , αWj, βWj) be n i.i.d. Monte Carlo draws

from the distribution of (W (1), αW , βW ), and let (D
sq l
Wj ,D

squ
Wj ) be n independent i.i.d. Monte Carlo

draws from the distribution of (Dsq l
W ,Dsqu

W ), j = 1, · · · , n. Then define Su
1,j = 2.2 + 0.5|Zj | and

Su
2,j = 2|αWj|Su

1,j + (S
u
1,j)

2 + |Dsqu
Wj +

1
12β

2
Wj|, Wb,j+1 = Wb,j + Zj/

√
n, W̄j = Wbj + αWj/

√
n, W 2

j

l
=

(Dsq l
Wj +α2Wj +

1
12β

2
W )/n+2αWjWbj/

√
n+W 2

bj and W
2
j

u
=W 2

j

l
+(Dsqu

Wj −Dsq l
Wj)/n for j = 1, · · · , n, where

Wb,0 = 0. With the implemented number of n = 800, 000 intervals, a draw {W 2
j

l
,W 2

j

u
, W̄j, S

u
1,j , S

u
2,j}nj=1

satisfies W 2
j

l
≤ W 2

j ≤ W 2
j

u
, S1,j ≤ Su

1,j and S2,j ≤ Su
2,j for all j = 1, · · · , n with probability of at least

(1 − 2εD)n > 1 − 7 · 10−5 by construction. Thus, very slight corrections to the estimated critical value
and Monte Carlo rejection probability yields an unconditionally conservative Monte Carlo estimator of the

power bounds.

Proof of Proposition 4:

(i) The CMT, and, in the case of l̂, some tedious algebra, imply that l̂⇒ l̂0 and [supF⇒ supF0 with l̂0 and

supF0 as defined the definition of ϕ
∗ above (note that replacing G by G0 leaves l̂0 and supF0 unchanged).

(i.a) Since G(s) = G0(s) + βs, the result follows from the CMT.

(i.b) We have t̂post/βT
p→ 1/

q
1−min(l̂0 + 1, 85)/100 and a calculation yields β−2T ln cLR p→ c > 0, so

that P (|t̂post| > 2.01)→ 1 and P (cLR > 2.41)→ 1.

(ii) Define l0 = d100ρe. Note that δ−2T
¡
γ̂post(l0)− γ̂pre(l0 − 1)

¢2 p→ ω2 > 0, T ω̂2post(l0)
p→ ω2/(1 −

l0/100) > 0, and T ω̂2pre(l0 − 1)
p→ 100ω2pre/(l0 − 1) > 0 so that P ([supF > 90)→ 1. Let

Ŝ(l) =
l−1X
j=1

(∆̂pre(j)− γ̂pre(l − 1))2 +
100X

j=l+1

(∆̂post(j)− γ̂post(l))
2

where ∆̂pre(j) = γ̂pre(15) for j ≤ 15 and ∆̂post(j) = γ̂post(85) for j > 85. Note that l̂ = argmin16≤l≤85 Ŝ(l),

because
Pl

j=1 ∆̂pre(j) = lγ̂pre(l) and
P100

j=l+1 ∆̂post(j) = (100 − l)γ̂post(l). If ρ 6= Rgrid, then Ŝ(l0) =

Op(T
−1), and for all l 6= l0, P (T Ŝ(l) > M)→ 1 for any M ∈ R, so that l̂ p→ l0. Part (ii.b), and part (ii.a)

for ρ /∈ Rgrid, now follow from the CMT.

Consider thus the proof of part (ii.a) if ρ ∈ Rgrid. By the same argument, P (l̂ /∈ {l0, l0+1})→ 0. Define

tpost(l0+1) = (W (1)−W ( l0+1100 ))/
q
1− l0+1

100 ∼ N (0, 1) and tpost(l0+2) = (W (1)−W ( l0+2100 ))/
q
1− l0+2

100 ∼
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N (0, 1), and consider

Ŝ(l0)− Ŝ(l0 + 1) = Apre + ∆̂post(l0 + 1)
2 − (100− l0)γ̂post(l0)

2 + (99− l0)γ̂post(l0 + 1)
2

⇒ ∆S(l0) = a · tpost(l0 + 1)2 + tpost(l0 + 1)B(l0) + C(l0)

where Apre is a function of {γ̂pre(l)}l0−1l=15, the convergence follows from the CMT, a is a positive constant,

and B(l0) and C(l0) are random variables that are independent of tpost(l0 + 1) and tpost(l0 + 2). Thus, by

a further application of the CMT, we obtain

t̂post ⇒ 1[∆S(l0) ≥ 0]1[|tpost(l0 + 2)| > 2.01] + 1[∆S(l0) < 0]1[|tpost(l0 + 1)| > 2.01]. (38)

Consider now the rejection probability of the r.h.s. of (38) conditional on B(l0) = b and C(l0) = c.

Noting that ∆S(l0) is a quadratic function of tpost(l0 + 1) with positive coefficient on the square term,

one obtains that the rejecting probability is bounded from above by the replacement of 1[∆S(l0) ≥ 0] by
1[tpost(l0 + 1) < −2.01], for any value of b, c. A numerical calculation now shows that the conditional

rejection probability remains below 5% even in that case for all l0 = 15, · · · , 83, and the result follows.
(ii.b) Immediate from P (l̂ /∈ {l0, l0 + 1})→ 0 and β−1T (γ̂post(l)− γpost,0)/ω̂post(l)

p→
p
1− l/100/σ > 0

for all l ≥ l0.

(iii) The claim is essentially a special case of Theorem 1 of Andrews and Guggenberger (2007c). Let

θT be a parameter sequence such that lim supT→∞EθT [ϕ̂
∗(XT )] = lim supT→∞ supθ∈Θ0 Eθ[ϕ̂

∗(XT )]. Pick

a subsequence T 0 of T such that limT 0→∞EθT 0 [ϕ̂
∗(XT 0)] = lim supT→∞EθT [ϕ̂

∗(XT )]. Since Θ̄0 = Θ0 ∪
{(0, ρ, δ) : ρ ∈ [0.15, 0.85], δ ∈ {+∞,−∞}} is compact under an appropriate metric, there exists a further
subsequence θT 00 of θT 0 such that θT 00 → θ̃ = (0, ρ̃, δ̃) ∈ Θ̄0. If ρ̃ /∈ Rgrid, then the result follows as

in parts (i) and (ii). If ρ̃ ∈ Rgrid, then by assumption, there is a further subsequence such that (32)

holds, except for (33). Proceeding as in the proof of part (ii.a) now again yields the result (and for

the case νpre(l0) ∈ {+∞,−∞} or νpost(l0) ∈ {+∞,−∞}, P (|∆S(l0)| < M) → 0 for all M , so that

1[∆S(l0) ≥ 0]
p→ 0 or 1[∆S(l0) ≥ 0]

p→ 1).

Justification of (31) via Andrews (1993):

The true parameters are given by ΓT,t = Γpost + T−1/21[τ ≤ 100ρT ]∆T , where ∆T = −(ωδT , ωδ̃T ) →
∆0 ∈ Rk+1 and ρT → ρ0 ∈ [0.15, 0.85], so that E[g(XT,t,ΓT,t)] = 0. Write gt(Γ) for g(XT,t,Γ), and

define Υt(Γ) = ∂gt(Γ)/∂Γ
0. Our set-up corresponds to what Andrews (1993) refers to as ’pure’ struc-

tural change. We now show that under Assumption 1 of Andrews (1993), with the assumption in part

(b) E[gt(Γ0)] = 0 replaced by E[gt(ΓT,t)] = 0, (31) holds. These computations closely correspond to

what is derived in Section 5.4 of Andrews (1993), with two differences: (i) we do not assume that

maxt≤T sup||Γ−Γpost||≤T−1/2K ||E[Υt(Γ)] − Ῡ|| → 0 for some K > 0 (cf. first line on page 832), where

in his Assumption 1(f), Ῡ is defined as the unique limit T−1
Pb·T c

t=1 EΥt(Γpost)
p→ ·Ῡ; (ii) we consider

sequences for ∆T and ρT , so that (∆T , ρT )→ (∆0, ρ0). (We note that there is a typo in Assumption 1-LP

of Andrews (1993); it should read supπ∈Π ||
√
TEm̄T (θ0, π)− μ(π)||→ 0 in his notation.)
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Define ηT : [0, 1] 7→ Rk+1 as ηT (x) = 1[x ≤ ρT ]∆T for T = 0, 1, . . .. By the argument in Andrews’ proof

of his Theorem 4 (a), it suffices to show that sup0≤s≤1 ||T−1/2E[
PbsTc

t=1 gt(Γpost)− Ῡ
R s
0 η0(l)dl]||→ 0. Now

clearly sup0≤s≤1 || limT→∞ T−1
PbsTc

t=1 ηT (t/T )−
R s
0 η0(l)dl||→ 0. Also,

T−1/2E[

bsTcX
t=1

gt(Γpost)− T−1/2ῩηT (t/T )] = T−1/2E[

bmin(s,ρT )TcX
t=1

gt(Γpost)− T−1/2ῩηT (t/T )]

= (E[Υ̃T (min(s, ρT ))]− Ῡ)∆T

where Υ̃T (r) is equal to T−1
PbrT c

t=1

R 1
0 Υt(Γpost + λT−1/2∆T )dλ. Furthermore,

sup
0≤s≤1

||E[Υ̃T (min(s, ρT )− Υ̃T (min(s, ρ0)]|| ≤ T−1E

bmax(ρ0,ρT )TcX
t=bmin(ρ0,ρT )T c

||
Z 1

0
Υt(Γpost + λT−1/2∆T )dλ||

≤ (bmax(ρ0, ρT )Tc− bmin(ρ0, ρT )T c) sup
t≤T

E[ sup
Γ∈G0

||Υt(Γ)||]→ 0

where the convergence follows, since by Andrews’ Assumption 1(f), supt≤T E[supΓ∈G0 ||Υt(Γ)||] = O(1) for

some neighborhood G0 of Γpost. Finally, sup0≤s≤1 ||E[Υ̃T (min(s, ρ0))] − Ῡ|| → 0 follows from the same

reasoning as below Andrews’ equation (A.11).
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