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Abstract

This paper analyzes equilibrium and welfare for a tractable class of economies with exter-

nalities, strategic complementarity or substitutability, and incomplete information. First, we

characterize the equilibrium use of information; the key result is that complementarity height-

ens the sensitivity of equilibrium actions to public noise relative to private, while the converse

is true for substitutability. Next, we define and characterize an efficiency benchmark designed

to address whether such heightened sensitivity is socially undesirable; the key result is that the

efficient use of information trades off aggregate volatility for cross-sectional dispersion. Finally,

we examine the social value of information, that is, the comparative statics of equilibrium wel-

fare with respect to the information structure; the key result is that the latter is determined by

the relation between the equilibrium and efficient use of information. We conclude with a few

applications, including production externalities, beauty contests, Keynesian frictions, inefficient

fluctuations, and large Cournot and Bertrand games.
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1 Introduction

In many environments—including economies with production or network externalities, incomplete

financial markets, or monopolistic competition—a coordination motive emerges: the optimal action

of an agent depends on his expectation, not only of the underlying fundamentals, but also of

other agents’ actions. Furthermore, different agents may have different information about the

fundamentals and hence different beliefs about what other agents are doing. Although an extensive

literature examines the equilibrium properties of such environments, the welfare implications are

far less understood. Filling this gap is the goal of this paper.

To fix ideas, consider the following example. A large number of investors are choosing how

much to invest in a new sector. The profitability of this sector depends on an uncertain exogenous

productivity parameter, as well as on the aggregate investment in that sector. Each investor thus

tries to align his investment choice with other investors’ choices. Because of this coordination

motive, and because public information is a better predictor of what others do relatively to private

information, investment choices are highly sensitive to public information. Furthermore, more

precise public information, by reducing investors’ reliance on private information and increasing

their reliance on public information, may dampen the sensitivity of aggregate investment to the

true fundamental and amplify its sensitivity to the noise in public information. The economy can

thus exhibit high non-fundamental volatility, and the more so the stronger the complementarity in

investment decisions.

It is tempting to give a normative connotation to these properties, but their welfare implications

are not obvious. Is the heightened sensitivity to public information due to coordination undesirable

from a social perspective? And does this mean that public information disseminated, for example,

by policy makers or the media can reduce welfare?

To answer the first question, one needs to understand the efficient use of information; to

answer the second question, one needs to understand the social value of information. In this paper

we undertake these two tasks in a tractable yet flexible framework that permits us to uncover some

general principles, while also capturing a variety of applications.

The environment. A large number of ex-ante identical small agents takes a continuous action.

Individual payoffs depend, not only on one’s own action, but also on the mean, and possibly the dis-

persion, of actions in the population—this is the source of external and strategic effects in the model.

Agents observe noisy private and public signals about the underlying economic fundamentals—this

is the source of dispersed heterogeneous information. We allow for either strategic complementar-

ity or strategic substitutability, but restrict our attention to economies in which the equilibrium

is unique. Finally, we assume that payoffs are quadratic and that information is Gaussian, which

makes the analysis tractable.
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Since our framework allows for various strategic and external effects, the welfare properties

of equilibrium are ambiguous in general. For example, there are economies where the heightened

sensitivity to public information is socially desirable, and economies where the opposite is true;

similarly, there are economies where welfare increases with both private and public information,

economies where only one type of information is socially valuable, and economies where neither

type is socially valuable. All this is consistent with the folk theorem that in a second-best world

anything can happen. Our contribution is to identify a clear structure for what happens when.

We are able to identify such a structure by comparing the equilibrium with an appropriate

constrained efficiency benchmark. We first isolate the inefficiencies that pertain when information is

complete from those that emerge only when information is incomplete. The former are manifested in

a discrepancy between the complete-information equilibrium and the first-best allocation; the latter

in a discrepancy between the equilibrium degree of coordination, which summarizes the private value

of aligning one’s action with those of others, and the socially optimal degree of coordination, which

summarizes the social value of such alignment. We next show how the social value of information

is best understood by classifying economies according to these two forms of inefficiency.

Preview of the results. Consider first the equilibrium use of information. Strategic comple-

mentarity raises the sensitivity of equilibrium actions to public information; symmetrically, strategic

substitutability raises the sensitivity to private information. Noise in public information generates

aggregate non-fundamental volatility (that is, common variation in actions due to common noise);

noise in private information generates cross-sectional dispersion (that is, idiosyncratic variation in

actions due to idiosyncratic noise). It follows that, in equilibrium, complementarity contributes to

higher volatility, substitutability to higher dispersion.1

We next introduce an efficiency benchmark, aimed at understanding the normative content of

the aforementioned positive properties. We consider the strategy that maximizes ex-ante utility

under the sole constraint that information cannot be centralized or otherwise communicated among

the agents. Our efficiency benchmark thus corresponds to a situation where the “planner” can

perfectly control the agents’ incentives, and hence can dictate how the agents use their information,

but cannot affect the information available to them, for example, by asking them to report their

information, aggregating this information, and then sending them informative recommendations

(or new signals). We call this benchmark the efficient use of information.

We characterize this benchmark and show that it can be represented as the equilibrium of

a fictitious game where best responses reflect social incentives. The slope of these fictitious best

responses with respect to the mean activity measures the complementarity [or substitutability]

that agents must perceive for the equilibrium of the fictitious game to coincide with the efficient

1The amplification effects of various sorts of complementarities are the subject of a vast literature. See Cooper

(1990) for a review of complete-information applications and Morris and Shin (2002, 2003) for incomplete information.
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allocation of the true economy; it defines what we call the socially optimal degree of coordination.

The idea behind this concept is the following. When the planner can perfectly control the

agents’ incentives, he can induce them to play a game with an arbitrary degree of complementar-

ity/substitutability in actions—that is, when choosing the efficient use of information, it is as if the

planner controls the degree of coordination perceived by the agents.

A higher degree of coordination leads to a higher sensitivity of actions to public information

relative to private information. Higher sensitivity to public information raises aggregate non-

fundamental volatility, while lower sensitivity to private information decreases cross-sectional dis-

persion. It follows that, when choosing the optimal degree of coordination, the planner faces a

trade-off between volatility and dispersion.

This explains our first characterization result: the socially optimal degree of coordination in-

creases with social aversion to dispersion, and decreases with social aversion to volatility. Equiva-

lently, the efficient use of information requires a higher sensitivity of actions to public information

the higher the social aversion to dispersion, or the lower the social aversion to volatility.

But then the question is how social aversion to dispersion and volatility relate to the primitives

of the economy, which is what we address next.

Social aversion to both volatility and dispersion originates in the curvature of individual payoffs.

When there are no payoff interdependencies across agents, all that matters is the level of noise, not

its composition. As a result, the welfare costs of dispersion and volatility are totally symmetric and

the socially optimal degree of coordination is zero. Complementarity, on the other hand, reduces

social aversion to volatility by alleviating concavity at the aggregate level—if we think of concavity

as diminishing returns, this is the familiar property that complementarity alleviates diminishing

returns at the aggregate level. As a result, complementarity alone contributes to a lower aversion to

volatility and thereby to a positive optimal degree of coordination—equivalently, to a socially desir-

able heightened sensitivity to public information. Symmetrically, substitutability contributes to a

negative optimal degree of coordination—equivalently, to a socially desirable heightened sensitivity

to private information.

The impact of complementarity or substitutability on the optimal degree of coordination thus

parallels its impact on the equilibrium degree of coordination. However, the optimal degree also de-

pends on second-order external but non-strategic payoff effects, namely external effects that directly

affect social preferences over volatility and dispersion without affecting private incentives. Clearly,

such external effects can tilt the optimal degree of coordination one way or another, without affect-

ing equilibrium. In the absence of such external effects, the optimal degree of coordination—and

hence the sensitivity of efficient allocations to public information—is higher than the equilibrium

one when agents’ actions are strategic complements [and lower when they are strategic substitutes].

This is because of the internalization of the externality introduced by the complementarity.
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These results highlight the danger in extrapolating normative properties from positive ones: a

heightened sensitivity to public noise due to a coordination motive need not be socially undesirable,

even if it amplifies volatility. Instead, to evaluate whether such heightened sensitivity is inefficient,

one has to understand how the equilibrium degree of coordination compares to the socially optimal

one, which in turn requires to evaluate the social cost of dispersion relative to volatility.

We finally characterize the social value of information in equilibrium. For this purpose, we

find it illuminative (i) to classify economies according to the type of inefficiency—if any—exhibited

by the equilibrium, and (ii) to decompose any change in the information structure into a change in

accuracy and a change in commonality . We identify the former with the precision of the agents’

forecasts (that is, the reciprocal of total noise), and the latter with the correlation of forecast errors

across agents (that is, the extent to which noise is common). While only the accuracy of available

information matters in the absence of payoff interdependencies, its commonality plays a special role

in the presence of strategic effects because it affects the agents’ ability to align their choices.

First, consider economies in which the equilibrium is efficient under both complete and incom-

plete information—these are economies in which the complete-information equilibrium coincides

with the first best and, in addition, the equilibrium degree of coordination coincides with the op-

timal one. When this is the case, welfare necessarily increases with the accuracy of information.

Moreover, welfare increases with the commonality of information if and only if the agents’ actions

are strategic complements [and decreases if and only if they are substitutes].

Private and public information have symmetric effects on accuracy but opposite effects on

commonality. In economies where the equilibrium is efficient, the accuracy effect necessarily dom-

inates, so that welfare increases with either private or public information. This is because the

equilibrium coincides with the solution to the planner’s problem, in which case an argument anal-

ogous to Blackwell’s theorem ensures that any source of information is welfare-improving. At the

same time, complementarity contributes to a higher social value to public information relative to

private [and substitutability to a lower]. This is because public information increases commonality,

whereas private information decreases it, and because the social value of commonality is positive

[negative] in efficient economies with strategic complementarity [substitutability].

Next, consider economies in which inefficiency emerges only due to the incompleteness of

information—that is, economies where the equilibrium degree of coordination is different than

the socially optimal one, but the complete-information equilibrium coincides with the first best.

In this case, welfare continues to increase monotonically with accuracy, as in the case of efficient

economies. The welfare effect of commonality, on the other hand, is tilted relative to the efficiency

benchmark as a function of the gap between the equilibrium and the optimal degree of coordination.

In particular, when agents’ actions are strategic complements, the welfare effect of commonality re-

mains positive as long as the socially optimal degree of coordination is higher than the equilibrium
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one, but turns negative once the equilibrium degree of coordination is excessively high.

To recap, in economies where inefficiency emerges only under incomplete information, more

accuracy is necessarily socially valuable, while more commonality can be socially undesirable only

to the extent that coordination is socially undesirable. By implication, more precise public or

private information can decrease welfare only to the extent that they adversely affect commonality.

Finally, consider economies where inefficiency pertains even under complete information. This

is the case when distortions other than incomplete information create a gap between the complete-

information equilibrium and the first best. In this case, information affects, not only volatility

and dispersion, but also the covariation between the equilibrium and the efficiency gap. This in

turn raises the possibility that welfare decreases with accuracy: less noise necessarily brings the

incomplete-information equilibrium activity closer to its complete-information counterpart, but now

this may mean taking it further away from the first best. As a result, in economies in which the

complete-information equilibrium is inefficient, welfare may decrease with the precision of either

public or private information.

Applications. We conclude the paper by illustrating how our results can help understand the

potential inefficiencies in the equilibrium use of information, and the social value of information, in

specific applications.

We start with two examples where the equilibrium is efficient under both complete and incom-

plete information. The first one is an economy in which agents value being close to each other. The

other is an incomplete-market, competitive, production economy. In the first, actions are strategic

complements, so that the equilibrium features heightened sensitivity to public information and am-

plified volatility. In the second, actions are strategic substitutes, so that the equilibrium features

heightened sensitivity to private information and high cross-sectional dispersion. But in both cases

the equilibrium use of information is efficient, implying that any heightened sensitivity to noise is

just right, and ensuring that no source of information can reduce welfare.

We next consider a typical model of production spillovers, like the one outlined at the beginning

of the introduction. Complementarities emerge in investment choices, thus amplifying the volatility

of aggregate investment, but the equilibrium degree of coordination is actually too low, so that the

amplified volatility is anything but excessive. Moreover, welfare unambiguously increases with

either the accuracy or the commonality of information, which ensures that welfare necessarily

increases with the precision of public information, despite the adverse effect the latter can have on

the volatility of investment.

In contrast, the equilibrium degree of coordination is inefficiently high in economies that re-

semble Keynes’ beauty-contest metaphor for financial markets and that are stylized in the example

of Morris and Shin (2002). As a result, more precise public information can reduce welfare in these

economies—but this is only because coordination, and hence commonality, is socially undesirable.
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Keynesian frictions such as monopolistic competition or incomplete markets are at the heart of

various macroeconomic complementarities (a.k.a. “multipliers” or “accelerators”). These frictions

share with beauty contests the property that complementarity originates in some market imperfec-

tion. However, they need not share the property that coordination is socially unwarranted. Indeed,

new-Keynesian models of the business cycle typically feature a disutility from cross-sectional price

dispersion (Woodford, 2001; Hellwig, 2005; Roca, 2005). This effect—which is also the one that

micro-founds the social cost of inflation—heightens social aversion to dispersion and thereby raises

the social value of coordination. As a result, in these models the optimal degree of coordination is

higher than the equilibrium one—exactly the opposite than in beauty-contest economies.

This result appears to provide a case for transparency in central bank communication (if

we interpret transparency as dissemination of public information). However, the social value of

information—and hence the desirability of central-bank transparency—may critically depend on

the source of the business cycle. We highlight this point by constructing an example that features

two types of shocks: one that affects equilibrium and first best symmetrically, and another that

drives fluctuations in the gap between the two. Whereas information about the former shock

increases welfare, information about the latter decreases it. This suggests a case for “constructive

ambiguity” in central bank communication, to the extent that the business cycle is driven by shocks

to “mark-ups”, “wedges”, or other distortions.

The above examples have a macro flavor. However, our results may also be relevant for mi-

cro applications, such as oligopolistic markets with a large number of firms. We show that ex-

pected industry profits increase with both the accuracy and the commonality of information in

Bertrand-like games (where firms compete in prices), whereas they increase with accuracy but

decrease with commonality in Cournot-like games (where firms compete in quantities). As a re-

sult, information-sharing among firms, or other improvements in commonly available information,

necessarily increases profits in Bertrand games, but not in Cournot games.

Related literature. To the best of our knowledge, this paper is the first one to conduct a

complete welfare analysis for the class of economies considered here. The closest ascendants are

Cooper and John (1988), who examine economies with complementarities but complete information,

and Vives (1988), who examines a class of limit-competitive economies that is a special case of the

more general class considered here (see Section 6.2). Related are also Vives (1990) and Raith

(1996), who examine the value of information sharing in oligopolies (see Section 6.6).

The social value of information, on the other hand, has been the subject of a vast literature, go-

ing back at least to Hirshleifer (1971). More recently, and more closely related to this paper, Morris

and Shin (2002) show that public information can reduce welfare in an economy that resembles a

“beauty contest” and that features strategic complementarity. Angeletos and Pavan (2004) and

Hellwig (2005), on the other hand, provide counterexamples where public information is socially
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valuable despite strategic complementarity—a real economy with investment complementarities in

the first paper, a monetary economy with pricing complementarities in the second. These works

illustrate the non-triviality of the welfare effects of information within the context of specific ap-

plications, but do not explain the general principles underlying the question of interest. We fill

the gap here by showing how the social value of information depends, not only on the form of

strategic interaction, but also on other external effects that determine the gap between equilibrium

and efficient use of information.

The literature on rational expectations has emphasized how the aggregation of dispersed private

information in markets can improve allocative efficiency (e.g., Grossman, 1981). Laffont (1985) and

Messner and Vives (2001), on the other hand, highlight how informational externalities can generate

inefficiency in the private collection and use of information. Although the information structure

here is exogenous, the paper provides an input into this line of research by studying how the welfare

effects of information depend on payoff externalities.

The paper also contributes to the debate about central-bank transparency. While earlier work

focused on incentive issues (e.g., Canzoneri, 1985; Atkeson and Kehoe, 2001; Stokey, 2002), recent

work emphasizes the role of coordination. Morris and Shin (2002, 2005) and Heinemann and

Cornand (2004) argue that central-bank disclosures can reduce welfare if financial markets behave

like beauty contests; Svensson (2005) and Woodford (2005) question the practical relevance of this

result; Hellwig (2005) and Roca (2005) argue that disclosures improve welfare by reducing price

dispersion. While all these papers focus exclusively on whether coordination is inefficiently high or

not, we argue that perhaps a more important dimension is the source of the business cycle.

The rest of the paper is organized as follows. We introduce the model in Section 2. We examine

the equilibrium use of information in Section 3, the efficient use of information in Section 4, and

the social value of information in Section 5. We turn to applications in Section 6 and conclude in

Section 7. The Appendix contains proofs omitted in the main text.

2 The model

Actions and payoffs. Consider an economy with a measure-one continuum of agents, each

choosing an action k ∈ R. Let Ψ denote the cumulative distribution function for k in the cross-

section of the population, K ≡
∫

kdΨ(k) the mean action, and θ = (θ1, ..., θN ) ∈ R
N a vector

of exogenous payoff-relevant variables (the fundamentals). The analysis is simplest when N = 1,

but N > 1 allows us to capture the possibility that there are fundamentals that are relevant for

equilibrium but not for efficient allocations, and vice versa—a possibility that, as shown in Section

5, is important in determining the social value of information.

An individual’s payoff depends on his own action and on the fundamentals θ; it also depends
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on the distribution Ψ of others’ actions through the mean action K. Payoffs are thus given by

u = U(k,K, θ), (1)

where U : R
N+2 → R. For notational convenience, we let W (K, θ) ≡ U(K,K, θ) denote utility

(also, welfare) when all agents choose the same action.

With complete information, the analysis could easily proceed under a general specification for

U. With incomplete information, however, maintaining the analysis tractable requires some sacrifice

in generality. We impose that U is quadratic, which ensures linearity of best responses as well as

linearity in the structure of the efficient allocations.2

We further impose concavity at both the individual and aggregate level in the sense that

Ukk < 0 and WKK ≡ Ukk + 2UkK + UKK < 0. Given our assumptions of quadratic payoffs and

unbounded k, if U were not concave, best responses would not be well-defined; similarly, if W were

not concave, the first-best allocation would not be well-defined. We finally restrict −UkK/Ukk < 1.

Since −UkK/Ukk will turn out to be the slope of the best response of an agent with respect to

aggregate K, this condition is essentially equivalent to imposing that the equilibrium is unique.3

To recap, the key restrictions that our model imposes on the payoff structure are concavity

of payoffs and uniqueness of equilibrium. Other than these restrictions, the payoff structure is

quite flexible: it allows for either strategic complementarity (UkK > 0) or strategic substitutability

(UkK < 0), as well as for positive or negative externality (UK 6= 0). As for the quadratic specifica-

tion, this is certainly crucial for the tractability of our analysis, but (we conjecture) not key to our

results. It might be viewed as a second-order approximation of a more general class of concave,

unique-equilibrium, economies.

Information. Following the pertinent literature, we introduce incomplete information by

assuming that agents observe noisy private and public signals about the underlying fundamentals.

2Suppose that there are finitely many agents, say J < ∞, and that agent i has a payoff Ũ(ki, k−i, θ), where k−i ≡

(kj)j 6=i. Also assume that Ũ is symmetric in k−i in the sense that, for any k−i and k′
−i such that k′

−i is a permutation

of k−i, Ũ(ki, k−i, θ) = Ũ(ki, k
′
−i, θ). Then, if Ũ is quadratic, it can always be written as Ũ = U(ki, K−i, σ

2
−i, θ),

where U is quadratic in (ki, K−i, θ) and linear in σ2
−i, with K−i ≡

1
J−1

P
j 6=i kj and σ2

−i ≡
1

J−1

P
j 6=i(kj −K−i)

2. The

continuum-player limit is U(k, K, θ, σ2
k) where σ2

k ≡
R
(k − K)2dΨ(k) is the second moment of Ψ and U is quadratic

in (k, K, θ, ) and linear in σ2
k. To simplify, we initially drop the dependence of U on σ2

k, but reintroduce it at the end

of Section 4.
3Let α ≡ −UkK/Ukk. To be precise, our model admits a unique equilibrium, under complete information, whenever

α 6= 1; but for α > 1 this uniqueness is an artifact of the simplifying assumption that the action space is unbounded.

To see this, consider a variant of our model where k is restricted to [−M, +M ] for some M ∈ (0,∞). Then, the

equilibrium is unique if and only if α < 1. This is true no matter M , provided that M < ∞. Since taking literally

the simplifying assumption that M = ∞ would be naive, we view the restriction α < 1 as essentially equivalent to

uniqueness. See the Supplementary Material for a detailed discussion of this issue, as well as for a discussion of the

role that the restriction α < 1 plays for comparative statics.
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Before agents move, nature draws θn, for n ∈ N ≡ {1, ..., N}, from independent Normal

distributions with mean µn and variance σ2
θn

. The realization of θ = (θn) is not observed by the

agents. Instead, for each n, agents observe private signals xi
n = θn + ξi

n and a public signal

yn = θn + εn, where ξi
n and εn are, respectively, idiosyncratic and common noises, independent of

one another as well as of θ, with variances σ2
xn

and σ2
yn

. (Throughout, we use the convenient vector

notation x = (xn), y = (yn), and similarly for all other variables; we also drop the superscript i

whenever it does not create confusion.)4

The common posterior for θn given public information alone is Normal with mean zn ≡

E[θn|y] = λnyn + (1 − λn)µn and variance σ2
zn

, where λn ≡ σ−2
yn

/σ−2
zn

and σzn ≡ (σ−2
yn

+ σ−2
θn

)−1/2.

In what follows we will often identify public information with z rather than y. Private poste-

riors, on the other hand, are Normal with mean E[θn|x
i, y] = (1 − δn)xi

n + δnzn and variance

V ar[θn|x
i, y] = σ2

n, where

σ−2
n ≡ σ−2

xn
+ σ−2

yn
+ σ−2

θn
> 0 and δn ≡

σ−2
yn

+ σ−2
θn

σ−2
xn + σ−2

yn + σ−2
θn

∈ (0, 1). (2)

Accuracy and commonality. If we let ωi
n ≡ θn − E[θn|x

i, y] denote agent i’s forecast error

about θn, then we can show that

σ2
n = V ar

(

ωi
n

)

and δn = Corr(ωi
n, ωj

n), i 6= j.

That is, σ2
n measures the total noise in agents’ forecasts about the fundamentals, while δn measures

the extent to which noise is correlated across agents. We accordingly identify σ−2
n with the accuracy

of information and δn with its commonality.

Note that any given change in the information structure can be decomposed to a change

in accuracy and a change in commonality. For example, an increase in the precision of public

information σ−2
zn

(for given private σ−2
xn

) combines an increase in accuracy with an increase in

commonality, whereas an increase in the precision of private information (for given public) combines

an increase in accuracy with a reduction in commonality. For many applied questions, one is

interested in comparative statics with respect to the precision of public and private information—

and this is also what we do when we turn to applications in Section 6. However, for our main

theoretical analysis, we prefer to parametrize the information structure by (δn, σn) for two reasons.

First, as we show in Section 3, this is most appropriate for understanding the properties of

the equilibrium use of information. When there are no payoff interdependencies across agents,

the distinction between private and public information is irrelevant—all that matters for welfare

4The assumption that (θn) are orthogonal to each other is only a normalization: if (θn) were correlated, there

would exist a linear one-to-one transformation (θn) 7→ (θ′
n) such that (θ′

n) are orthogonal. The orthogonality in the

errors (ξn, εn) across n, on the other hand, permits us to interpret (xn, yn) as signals about θn: if the errors were

correlated across n, then (xn, yn) would include information also for n′ 6= n.
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is the level of noise, not its composition. With strategic interactions, instead, the commonality of

information becomes crucial, for it affects the agents’ ability to forecast one another’s actions—and

it is only in this sense that public information is different than private.

Second, as we show in Sections 5 and 6, decomposing the effects of public and private in-

formation into those of accuracy and commonality turns out to be illuminative even when one

is ultimately interested in the total effect. For example, in economies where inefficiency emerges

only due to the incompleteness of information, welfare unambiguously increases with accuracy,

and hence more precise private or public information can possibly reduce welfare only through an

adverse common effect through the commonality of information.

3 Equilibrium use of information

Definition and characterization. Each agent chooses k so as to maximize his expected util-

ity, E[U(k,K, θ)|x, y]. The solution to this optimization problem gives the best response for the

individual. The fixed point is the equilibrium.

Definition 1 An equilibrium is any strategy k : R
2N → R such that, for all (x, y),

k (x, y) = arg max
k′

E[ U(k′,K(θ, y), θ) | x, y ], (3)

where K(θ, y) = E[k (x, y) |θ, y] for all (θ, y).5 A linear equilibrium is any strategy satisfying (3)

that is linear in x and y.

It is useful to consider first the complete-information benchmark. When θ is known, the

(unique) equilibrium is k = κ (θ) , where κ (θ) is the unique solution to Uk (κ, κ, θ) = 0. Since U

is quadratic, κ is linear: κ (θ) = κ0 + κ1θ1 + ... + κNθN , where κ0 ≡ −Uk (0, 0, 0) /(Ukk + UkK)

and κn ≡ −Ukθn
/(Ukk + UkK), n ∈ N. It follows that κn 6= 0 if and only if Ukθn

6= 0. The

incomplete-information equilibrium is then characterized as follows.

Proposition 1 Let κ (θ) = κ0 + κ1θ1 + ... + κNθN denote the complete-information equilibrium

allocation and

α ≡
UkK

|Ukk|
. (4)

(i) A strategy k : R2N → R is an equilibrium if and only if, for all (x, y),

k(x, y) = E[ (1 − α) · κ (θ) + α · K (θ, y) | x, y ] (5)

where K(θ, y) = E[k (x, y) | θ, y] for all (θ, y).

5A state of the world is given by the realizations of θ, y, and {xi}i∈[0,1]. However, since ξi are i.i.d. across agents,

K, as well as any other aggregate variable, is a function of (θ, y) alone.
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(ii) A linear equilibrium exists, is unique, and is given by

k(x, y) = κ0 +
∑

n∈N

κn [(1 − γn)xn + γnzn] , (6)

where N ≡ {n ∈ N : κn 6= 0}6 and

γn = δn +
αδn(1 − δn)

1 − α(1 − δn)
∀n ∈ N . (7)

Part (i) states that any equilibrium (linear or not) has to be a fixed point to condition (5). This

condition has a simple interpretation: it says that an agent’s best response is an affine combination

of his expectation of some given “target” and his expectation of aggregate activity. The target is

simply the complete-information equilibrium, κ (θ). The slope of the best response with respect to

aggregate activity, α, is what we identify with the equilibrium degree of coordination.

Part (ii) establishes that there exists a unique linear fixed point to (5), but leaves open the

possibility that there exist other non-linear fixed points. Since the best response of an agent is

linear in his expectations of θ and K, and since his expectation of θ in turn is linear in x and y (or,

equivalently, in x and z), it is natural to conjecture that there do not exist fixed points other than

the linear one, so that the equilibrium is unique even outside the linear class. This conjecture can

be verified for the case α ∈ (−1, 1), following the same argument as in Morris and Shin (2002).7 ,8

As evident in (7), the sensitivity of the equilibrium to private and public information depends,

not only on the relative precision of the two (captured by δn), but also on the degree of coordination,

α. When α = 0, (6) reduces to

k (x, y) = E[κ (θ) |x, y].

That is, when α = 0, the incomplete-information equilibrium strategy is simply the best predictor of

the complete-information equilibrium allocation and the weights on signals xn and zn are simply the

Bayesian weights: γn = δn if α = 0. When, instead, α 6= 0, equilibrium behavior is tilted towards

public or private information depending on whether agents’ actions are strategic complements or

substitutes: γn > δn if α > 0, and γn < δn if α < 0.

To understand why this is the case, consider the best response of an agent to a given strategy

by the other agents. To simplify, let N = 1 and κ (θ) = θ. When other agents follow a linear

6In the sequel, we restrict attention to economies in which N 6= ∅ which rules out the trivial case where the

fundamentals are irrelevant for equilibrium.
7To be precise, the argument in Morris and Shin (2002) is incomplete in that it presumes that αtE

t
K → 0 as

t → ∞, which was not proved. (Here E
t
denotes the t−th order iteration of the average-expectation operator.) With

α ∈ (−1, 1), αt → 0 as t → ∞, but one needs also to ensure that E
t
K remains bounded. Since K is unbounded

in Morris and Shin (2002), this is not obvious; however, this problem is easily bypassed by imposing bounds on the

action space.
8None of our results relies on α ≤ −1. Hence, if uniqueness is a concern, one can restrict our analysis to the case

α ∈ (−1, +1).
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strategy k (x, y) = (1 − γ)x + γz, then the mean action is K (θ, y) = (1 − γ)θ + γz, and hence an

agent’s best response to this strategy is

k′ (x, y) = E [(1 − α) θ + αK (θ, y) | x, y]

= (1 − αγ)E [θ|x, y] + αγz

= (1 − γ′)x + γ′z

where γ′ = δ +αγ(1− δ). Thus, as long as other agents put a positive weight on public information

(γ > 0) and actions are strategic complements (α > 0), the best response is to put a weight on z

higher than the Bayesian one (γ′ > δ) , and the more so the higher the other agents’ weight or the

stronger the complementarity. And, symmetrically, the converse is true for the case of strategic

substitutability (α < 0). The reason is that public information is a relatively better predictor of

others’ activity than private information: this leads an agent to adjust upwards his reliance on

public information when he wishes to align his choice with other agents’ choices (which is the case

when α > 0), and downwards when he wishes to differentiate his choice from others’ (which is the

case when α < 0).

This property of the best responses is reflected in the equilibrium strategy: when α > 0,

the term αδn(1−δn)
1−α(1−δn) in condition (7) measures the excess sensitivity of equilibrium allocations to

public information as compared to the case where there are no strategic effects; and when α < 0,

it measures the excess sensitivity to private information. This term is increasing in α : stronger

complementarity leads to higher relative sensitivity to public information, stronger substitutability

to lower.

Volatility and dispersion. If information were complete (i.e., σn = 0 for all n ∈ N, or at

least for all n ∈ N ), then all agents would choose k = K = κ (θ) . Incomplete information affects

equilibrium behavior in two ways. First, common noise generates non-fundamental volatility, that

is, variation in aggregate activity around the complete-information level. Second, idiosyncratic noise

generates dispersion, that is, variation in the cross-section of the population. The first is measured

by V ar(K − κ), the second by V ar(k − K). Their dependence on the degree of coordination and

the information structure is characterized below.

Proposition 2 (i) A higher complementarity α decreases dispersion and increases volatility.

(ii) A higher accuracy σ−2
n decreases both dispersion and volatility.

(iii) A higher commonality δn decreases dispersion if and only if α > − 1
1−δn

, whereas it

increases volatility if and only if α < 1
1+δn

.

Higher complementarity, by leading to a better alignment of individual choices, mitigates dis-

persion, but amplifies volatility. Higher accuracy necessarily reduces both volatility and dispersion.

Higher commonality tends to reduce dispersion, but at the expense of higher volatility. This trade
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off between dispersion and volatility emerges provided that −1/(1− δn) ≤ α ≤ 1/(1+ δn), which in

turn is the case for all δn when α ∈ [−1,+1/2] and for a region of δn when α < −1 or α ∈ (+1/2, 1).

In what follows, we consider the case that higher commonality decreases dispersion at the expense

of volatility as the canonical case for our informal discussion; our formal results, however, cover the

other case as well.

We will examine in more detail the welfare effects of information—and the special role that

volatility and dispersion play in this respect—in Section 5. In the next section, we first turn to the

characterization of the efficient use of information, and its comparison to equilibrium.

4 Efficient use of information

Our efficiency concept. The property that complementarity amplifies volatility by heightening

the sensitivity of equilibrium to common noise [or, symmetrically, that substitutability raises dis-

persion by heightening the sensitivity to idiosyncratic noise] is interesting on its own. But this is

only a positive property. To address the normative question of whether these effects are socially

undesirable, one needs to compare the equilibrium use of information to some efficiency bench-

mark. The one we propose here is the allocation that maximizes ex-ante utility subject to the sole

constraint that information cannot be communicated across agents.

Definition 2 An efficient allocation is a strategy k : R
2N → R that maximizes ex-ante utility,

Eu =

∫

(θ,y)

∫

x
U(k(x, y),K(θ, y), θ)dP (x|θ, y)dP (θ, y),

with

K(θ, y) =

∫

x
k (x, y) dP (x|θ, y), for all (θ, y),

where P (θ, y) stands for the c.d.f. of the joint distribution of (θ, y) and P (x|θ, y) for the conditional

distribution of x given θ and y.

The allocation defined above can be understood as the solution to a “team problem”, where

agents get together before they receive their information, choose cooperatively a strategy for how

to use the information they will receive, and then follow this strategy. Equivalently, this allocation

is the solution to a “planner’s problem”, where the planner can not make an agent’s action depend

on other agents’ private information, but can otherwise perfectly control how an agent’s action

depend on his own information.9

9It is as if the planner can send a supervisor to each agent, with the instruction to perfectly monitor how the

latter uses his information, but where the supervisors cannot exchange information.
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Our efficiency concept thus answers exactly the question of interest here, namely what is the

best a society could do if agents were to internalize their payoff interdependencies and appropri-

ately adjust their use of available information, but without aggregating information beyond what

is already done in the available public information. We believe that this notion of efficiency is

appropriate for the purposes of this paper. An alternative could have been to allow the planner

to solicit information from the agents and possibly communicate some (or all) of it to them. If

the planner could also perfectly control the agents’ actions, he could then obtain the first best.10

However, comparing the first best to the incomplete-information equilibrium does not permit us

to separate the inefficiency that originates in the incompleteness of information from the one that

originates in the way equilibrium processes available information. Since our goal here is precisely

to isolate the latter, we find our notion of efficiency more useful.

In certain environments, our efficiency benchmark may also admit an appealing implementa-

tion. In particular, suppose that we extend agents’ preferences to Ũ (k,K, θ, t) = U (k,K, θ) + t,

where t is a monetary transfer from the government. Suppose further that the government can

observe individual choices ex post and can commit ex ante (before agents receive any informa-

tion) to a budget-balanced transfer scheme, according to which an agent will receive a net transfer

t = T (k,K, θ) . As we show after Proposition 4 below, the transfer scheme that maximizes ex-ante

welfare implements our efficiency benchmark. What is more, the optimal scheme turns out to be

linear in k; that is, our efficiency benchmark can be implemented with the combination of a linear

tax/subsidy and a lump-sum transfer. Our efficiency concept may thus provide guidance also for

policy. However, this is beyond the scope of this paper—here we only use it to identify the sources

of inefficiency in the decentralized use of information, which, as we show in the next section, help

us understand the social value of information in equilibrium.

Once again, the emphasis here is on the decentralization of information rather than on moral

hazard. Our efficiency concept is thus different from more standard constrained-efficiency concepts

that assume costless communication and instead focus on incentive constraints (e.g., Mirrlees, 1971;

Holmstrom and Myerson, 1983). Instead, it shares with Hayek (1945) and Radner (1962) the idea

that information is dispersed and can not be communicated to a “center”.

Characterization. We now turn to the characterization of the efficient use of information.

Lemma 1 An allocation k : R
2N → R is efficient if and only if, for almost all (x, y) ,

E[ Uk(k(x, y),K(θ, y), θ) + UK(K(θ, y),K(θ, y), θ) | x, y ] = 0, (8)

where K(θ, y) = E[k (x, y) |θ, y] for all (θ, y).

10To see this, note that the planner could simply ask each agent to report his private signal x, learn the true state

θ by aggregating the private signals, and then dictate to each agent to take the first-best action κ∗ (θ) . Since, with a

continuum of agents, the allocation κ∗ (θ) does not depend on any particular agent’s own report, truthful revelation

is a weakly dominant strategy.
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This result has a simple interpretation. Recall that the first-best allocation κ∗(θ) maximizes

W (K, θ) ≡ U(K,K, θ). It thus solves the first-order condition WK(K, θ) = 0, or equivalently

Uk(K,K, θ) + UK(K,K, θ) = 0.11 The incomplete-information counterpart of this condition is (8).

We can then expand this condition to characterize the efficient allocation under incomplete

information in a similar fashion as with equilibrium.

Proposition 3 Let κ∗ (θ) = κ∗
0 + κ∗

1θ1 + ... + κ∗
NθN denote the first-best allocation and

α∗ ≡
2UkK + UKK

|Ukk|
= 2α +

UKK

|Ukk|
. (9)

(i) An allocation k : R
2N → R is efficient if and only if, for almost all (x, y),

k(x, y) = E[ (1 − α∗)κ∗(θ) + α∗K(θ, y) | x, y ] (10)

where K(θ, y) = E[k (x, y) |θ, y] for all (θ, y).

(ii) The efficient allocation exists, is unique,12 and is given by

k(x, y) = κ∗
0 +

∑

n∈N ∗

κ∗
n [(1 − γ∗

n)xn + γ∗
nzn] , (11)

where N ∗ ≡ {n ∈ N : κ∗
n 6= 0} and

γ∗
n = δn +

α∗δn(1 − δn)

1 − α∗(1 − δn)
for all n ∈ N ∗. (12)

This result characterizes the efficient allocation among all possible strategies, not only linear

ones; that the efficient strategy turns out to be linear is because of the combination of quadratic

payoffs and Gaussian information structure.

In equilibrium, each agent’s action was an affine combination of his expectation of κ, the

complete-information equilibrium, and of his expectation of aggregate activity. The same is true

for the efficient allocation if we replace κ with κ∗ and α with α∗. In this sense, condition (10) is

the analogue for efficiency of what the best response is for equilibrium. This idea is formalized by

the following.

Proposition 4 Given an economy e = (U ;σ, δ, µ, σθ), let U (e) be the set of payoffs U ′ such that

the economy e′ = (U ′;σ, δ, µ, σθ) admits an equilibrium that coincides with the efficient allocation

for e.

(i) For every e, U (e) is non-empty.

(ii) For every e, U ′ ∈ U (e) only if α′ ≡ −U ′
kK/U ′

kk = α∗.

11Since U and hence W is quadratic, κ∗ (θ) = κ∗
0 + κ∗

1θ1 + ... + κ∗
NθN , where κ∗

0 = −WK (0, 0) /WKK and κ∗
n =

−WKθn
/WKK , n ∈ N. It follows that κ∗

n 6= 0 if and only if WKθn
≡ Ukθn

+ UKθn
6= 0.

12To be precise, the efficient allocation is uniquely determined for almost every (x, y) .
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Part (i) says that the efficient allocation of any given economy e can be implemented as a

linear equilibrium of a fictitious game e′ in which the information structure is the same as in e

but where individual incentives are manipulated so as to coincide with the social incentives of the

actual economy. Indeed, since our efficiency concept allows the planner to perfectly control the

incentives of the agents, it is as if the planner (whose objective is the true U) can design the payoffs

U ′ perceived by the agents. Part (ii) then explains why we identify α∗ with the optimal degree of

coordination: α∗ describes the level of complementarity (if α∗ > 0) or substitutability (if α∗ < 0)

that the planner would like the agents to perceive for the equilibrium of the fictitious game to

coincide with the efficient allocation of the true economy.13

In this paper we use Proposition 4 only to give a precise meaning to our notion of the socially

optimal degree of coordination. However, this proposition also provides an implementation result

for environments where preferences can be extended to Ũ (k,K, θ, t) = U (k,K, θ) + t, with t

being a monetary transfer, and where the planner can control the incentives of the agents through

a (contingent) transfer scheme t = T (k,K, θ).14 The payoffs perceived by the agents are then

U ′ (k,K, θ) ≡ U (k,K, θ) + T (k,K, θ) and hence the degree of coordination can be controlled

by appropriately choosing TkK , the cross-partial of the transfer with respect to (k,K) . Consider

then the transfer scheme defined by T ∗ (k,K, θ) ≡ τ∗ (K, θ) k − τ∗ (K, θ) K, where τ∗ (K, θ) ≡

UK (K,K, θ) . By construction, T ∗ balances the budget and is linear in k. Moreover, the payoff

function U∗ defined by U∗ (k,K, θ) ≡ U (k,K, θ) + T ∗ (k,K, θ) belongs to U (e) , which means

that T ∗ implements the efficient allocation (see the Appendix for details). This transfer scheme is

thus the analogue for incomplete-information economies of what a Pigou scheme is for complete-

information economies.

The counterpart of the optimal degree of coordination is the efficient sensitivity to public infor-

mation: by condition (12), the higher the optimal degree of coordination, the higher the sensitivity

of efficient allocations to public information relative to private. Comparing the equilibrium to the

efficient use of information then gives the following result.

Corollary 1 The sensitivity of the equilibrium allocation to public noise is inefficiently high if and

only if the equilibrium degree of coordination is higher than the optimal one, which in turn is true

if and only if the complementarity is low enough relative to second-order non-strategic effects: for

all n ∈ N ∩N ∗,

γn ≥ γ∗
n ⇐⇒ α ≥ α∗ ⇐⇒ UkK ≤ −UKK. (13)

13Note that only the linear equilibrium of the fictitious game e
′ can coincide with the efficient allocation of the true

economy e This is because the (unique) efficient allocation of e is linear. Part (ii) of Proposition 4 thus also implies

that, whenever α∗ ∈ (−1, +1), for any U ′ ∈ U(e), the equilibrium of e
′ is unique.

14Think of this transfer taking place at the very end of the game, after agents’ decisions have been committed and

uncertainty resolved.
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Proposition 3 and Corollary 1 show how the efficient use of information depends on the prim-

itives of the environment, and how it compares to the equilibrium one. As with equilibrium, the

optimal degree of coordination is increasing in UkK , the level of complementarity. But unlike equi-

librium, the optimal degree of coordination depends also on UKK, a second-order external effect

that does not affect private incentives. In the absence of such an effect, α∗ = 2α : the optimal degree

of coordination is higher (in absolute value) than the equilibrium one, reflecting the internalization

of the externality associated with the complementarity.

The volatility-dispersion trade-off, and the optimal degree of coordination. To

understand better the forces behind the determination of the optimal degree of coordination, an

alternative representation is useful. Welfare (ex-ante utility) at the efficient allocation can be

expressed as Eu = EW (κ∗, θ) − L∗, where

L∗ =
|WKK |

2
V ar(K − κ∗) +

|Ukk|

2
V ar(k − K). (14)

Note that EW (κ∗, θ) is expected welfare at the first-best allocation, whereas L∗ captures the welfare

losses associated with incomplete information, namely those due to aggregate volatility and cross-

sectional dispersion.15

That volatility and dispersion generate welfare losses follows directly from concavity of prefer-

ences. Naturally, the weight on volatility is given by WKK , the curvature of welfare with respect

to aggregate activity, while the weight on dispersion is given by Ukk, the curvature of utility with

respect to individual activity. Note that WKK = Ukk + 2UkK + UKK . When there are no strategic

and second-order external effects (in the sense that UkK = UKK = 0), aggregate welfare inherits the

curvature of individual utility (WKK = Ukk), so that volatility and dispersion contribute equally to

welfare losses. Complementarity (UkK > 0) alleviates aggregate concavity by offsetting the dimin-

ishing returns faced at the individual level, and therefore lowers social aversion to volatility. The

converse is true for substitutability (UkK < 0) or external concavity (UKK < 0).

When the planner controls how agents use information, it is as if he controls the degree of

coordination perceived by the agents. In choosing the optimal degree of coordination, the planner

then faces a trade off between dispersion and volatility. Indeed, as shown in Proposition 3, a higher

degree of coordination means a higher sensitivity to public information and a lower sensitivity

to private information; and since noise in public information generates volatility whereas noise in

private information generates dispersion, a higher degree of coordination trades off higher volatility

for lower dispersion. It is then not surprising that the optimal degree of coordination reflects social

preferences over volatility and dispersion.

15Condition (14) follows from a Taylor expansion around k = K = κ∗(θ); see the Appendix.
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Corollary 2 The optimal degree of coordination increases with the social aversion to dispersion

and decreases with the social aversion to volatility:

α∗ = 1 −
WKK

Ukk
. (15)

Extension: external effect from dispersion. In some applications of interest, cross-

sectional dispersion has a direct external effect on individual utility. For example, dispersion

in prices has a negative effect on individual utility in New-Keynesian monetary models (see the

discussion in Section 6.4 below).

We can easily accommodate such an effect—and we do so for the rest of the paper—provided

that dispersion enters linearly in the utility function:

u = U(k,K, θ, σ2
k),

where σ2
k ≡

∫

(k − K)2dΨ(k) is the cross-sectional dispersion and Uσ2
k

is a scalar. In analogy to

WKK < 0, we impose Ukk+2Uσ2
k

< 0; this is necessary and sufficient for the total effect of dispersion

on welfare to be negative. Then all our results go through once we replace the welfare weight on

dispersion with Ukk + 2Uσ2
k
. In particular, the welfare losses due to volatility and dispersion are

now given by

L∗ =
|WKK |

2
V ar(K − κ∗) +

|Ukk + 2Uσ2
k
|

2
V ar(k − K). (16)

Accordingly, the optimal degree of coordination is

α∗ = 1 −
WKK

Ukk + 2Uσ2
k

= 1 −
Ukk + 2UkK + UKK

Ukk + 2Uσ2
k

.

And finally, condition (13) becomes

γn ≥ γ∗
n ⇐⇒ α ≥ α∗ ⇐⇒ UkK ≤ −UKK + 2Uσ2

k
.

Note that α∗ is increasing in UKK and decreasing in Uσ2
k
. This is intuitive. A higher UKK

decreases the social cost of volatility, while a higher Uσ2
k

decreases the social cost of dispersion.

Both effects are external and non-strategic: they affect the social value of coordination without

affecting private incentives. The former contributes to a higher optimal degree of coordination, the

latter to a lower.

5 Social value of information

We now examine the comparative statics of equilibrium welfare with respect to the information

structure. Throughout this section, when we refer to equilibrium, we mean the linear equilibrium

characterized in Proposition 1.16

16As discussed earlier, uniqueness can be guaranteed for α ∈ (−1, +1), but we expect this to be the unique

equilibrium even when α ≤ −1.
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Definition 3 Let Eu denote ex-ante utility evaluated at the equilibrium allocation. The social value

of commonality [resp. accuracy] is given by the partial derivative ∂Eu/∂δn [resp., ∂Eu/∂σ−2
n ]. Simi-

larly, the social value of public [resp., private] information is given by ∂Eu/∂σ−2
zn

[resp., ∂Eu/∂σ−2
xn

].

We start with economies that are efficient under both complete and incomplete information,

continue with economies that are inefficient only when information is incomplete, and conclude

with the general case.

Three principles emerge through this taxonomy. First, even if one is ultimately interested in

the comparative statics of equilibrium welfare with respect to the precisions of private and public

information, it seems useful to decompose these comparative statics into their effects through

the accuracy and the commonality of information. Second, the social value of accuracy relies

crucially on the inefficiency (if any) of the complete-information equilibrium: accuracy can not

reduce welfare if the complete-information equilibrium is efficient, no matter the equilibrium and

optimal degrees of coordination. Third, the impact of commonality relies crucially on the relation

between the equilibrium and the socially optimal degree of coordination: when the equilibrium

degree of coordination is inefficiently high, commonality can reduce welfare even if the complete-

information equilibrium is efficient.

Efficient economies. We first provide necessary and sufficient conditions for an economy to

be efficient under incomplete information, that is, for its linear equilibrium to coincide with the

efficient allocation.

Proposition 5 The economy e = (U ;σ, δ, µ, σθ) is efficient if and only if U is such that

κ(θ) = κ∗(θ) ∀θ and α = α∗.

That is, if and only if U satisfies

UkK + UKK − 2Uσ2
k

= 0, UK (0, 0, 0) =
UkK

Ukk
Uk (0, 0, 0) , and UKθn

=
UkK

Ukk
Ukθn

∀n ∈ N.

The condition κ = κ∗ means that the equilibrium is efficient under complete information.

But efficiency under complete information alone does not guarantee efficiency under incomplete

information. What is also needed is efficiency in the equilibrium degree of coordination, namely

α = α∗. Note that whether these two conditions are satisfied for any given economy depends on

the payoff structure—indeed, κ, κ∗, α, and α∗ are all functions of U—but not on the information

structure. Also note that strategic effects alone do not imply inefficiency: the equilibrium can be

efficient despite the fact that α 6= 0.

We next show that efficient economies exhibit a clear relation between the form of strategic

interaction and the social value of information.
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Proposition 6 Consider the class of economies in which the equilibrium is efficient under both

complete and incomplete information (i.e., κ = κ∗ and α = α∗). The following are true for any

n ∈ N = N ∗ :

(i) Welfare necessarily increases with accuracy σ−2
n ;

(ii) Welfare increases with commonality δn if α > 0 , decreases with δn if α < 0, and is

independent of δn if α = 0.

As highlighted in the previous section, the impact of information on welfare at the efficient

allocation is summarized by the impact of noise on volatility and dispersion (see Condition (16)).

An increase in accuracy (for given commonality) reduces both volatility and dispersion and therefore

necessarily increases welfare. On the other hand, an increase in commonality (for given accuracy) is

equivalent to a reduction in dispersion, at the expense of volatility. Such a substitution is welfare-

improving if and only if the social cost of dispersion is higher than that of volatility, which is the

case in efficient economies if and only if α (= α∗) is positive.17

Consider now the welfare effects of an increase in the precision of private or public information.

Both private and public information have symmetric effects on the accuracy of information, but

opposing effects on commonality; and while accuracy necessarily increases welfare, the impact of

commonality depends on α. Nevertheless, the accuracy effect necessarily dominates, thus ensuring

that welfare increases with either private or public information. To see why this is the case, note

that, when the equilibrium allocation is efficient, it coincides with the solution to a planner’s

problem. This planner can never be worse off with an increase in either σ−2
zn

or σ−2
xn

, for he could

always replicate the initial distributions of y and x by simply adding noise to the new distributions.18

This argument, which is essentially Blackwell’s theorem applied to our planner’s problem, ensures

that any source of information is welfare-improving when the equilibrium use of information is

efficient, no matter the form of strategic interaction.

At the same time, the form of strategic interaction matters for the relative value of different

sources of information. Complementarity, by generating a positive value for commonality, raises the

value of public information relative to that of private, while the converse holds for substitutability.

Proposition 7 Consider economies in which the equilibrium is efficient under both complete and

incomplete information. The following are true for any n ∈ N = N ∗ :

(i) Welfare increases with the precision of either private or public information about θn, no

matter the degree of complementarity or substitutability.

17The informal discussion here refers to the canonical case α ∈ (− 1
1−δn

, 1
1+δn

). From Proposition 2, both volatility

and dispersion increase with δn when α < − 1
1−δn

, whereas they both decrease when α > 1
1+δn

. Thus welfare

necessarily decreases with commonality in the former case and increases in the latter, no matter α∗.
18The planner’s problem we defined in the previous section did not give the planner the option to add such noise.

However, if we were to give the planner such an option, he would never use it, because of concavity of W.
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(ii) The relative value of public information is given by

∂Eu/∂σ−2
zn

∂Eu/∂σ−2
xn

=
σ−2

xn

(1 − α) σ−2
zn

and is increasing in the complementarity α.

To recap, economies where the equilibrium use of information is efficient provide a very clear

benchmark for the welfare effects of information: first, any source of information is welfare improv-

ing; second, complementarity favors public sources of information, while substitutability favors

private ones.

Economies that are efficient under complete information. Consider next the case α 6=

α∗ but κ = κ∗. This case is of special interest, for it identifies economies where inefficiency emerges

only because of the incompleteness of information—these are economies where the equilibrium

coincides with the first best on average (in the sense that EK = Eκ∗) but it fails to be efficient in

its response to noise (in the sense that γ 6= γ∗). As we show below, this type of inefficiency crucially

affects the social value of commonality, but not that of accuracy.

In this class of economies, the welfare losses associated with incomplete information continue to

be the weighted sum of volatility and dispersion, as in (16).19 Once again, consider the “canonical”

case where a higher commonality reduces dispersion at the expense of higher volatility. For given

α, and hence given equilibrium strategies and given volatility and dispersion, a higher α∗ means

only a lower relative weight on volatility, and hence a lower social cost associated with an increase

in δn. It follows that, relatively to the case where α∗ = α, inefficiently low coordination (α∗ > α)

increases the social value of commonality, whereas inefficiently high coordination (α∗ < α) reduces

it. Combined with the result in Proposition 6 that, when α∗ = α, welfare increases with δn if and

only if α > 0, we have that α∗ ≥ α > 0 suffices for the social value of commonality to be positive,

whereas α∗ ≤ α < 0 suffices for it to be negative.

As for the social value of accuracy, since a higher σ−2
n reduces both volatility and dispersion,

welfare continues to increase with accuracy. Thus, the possibility that the equilibrium degree of

coordination is inefficient critically affects the social value of commonality, but not that of accuracy.

Proposition 8 Consider the class of economies in which the equilibrium is inefficient only when

information is incomplete (i.e., α 6= α∗ but κ = κ∗). The following are true for any n ∈ N = N ∗ :

(i) Welfare necessarily increases with the accuracy σ−2
n .

(ii) Welfare increases with the commonality δn if α∗ ≥ α > 0 and decreases if α∗ ≤ α < 0.

19As obvious from the derivation of (14) in the Appendix, (14) and similarly (16) extend to α 6= α∗ as long as

κ = κ∗. This can also be seen from (17) below noting that WK(κ, θ) = 0 when κ = κ∗.
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When the equilibrium sensitivity to different sources of noise is inefficient , it is possible that

welfare decreases with an increase in the precision of a specific source of information; the result

above sheds light on when this is possible.

Corollary 3 Consider the class of economies in which the equilibrium is inefficient only when

information is incomplete. The following are true for any n ∈ N = N ∗ :

(i) Welfare can decrease with the precision of public [private] information about θn only if it

decreases [increases] with its commonality.

(ii) α∗ ≥ α ≥ 0 suffices for welfare to increase with the precision of public information, whereas

α∗ ≤ α ≤ 0 suffices for it to increase with the precision of private information.

General case. Finally, consider the case in which κ 6= κ∗. This identifies economies in which

the equilibrium remains inefficient even under complete information—that is, economies in which

the equilibrium is inefficient not only in its sensitivity to different sources of noise but also on its

average response to the true fundamentals. As we show next, the latter crucially affects the social

value of accuracy.

Equilibrium welfare can now be expressed as Eu = EW (κ, θ) −L, where

L = −Cov (K − κ,WK(κ, θ)) +
|WKK |

2
· V ar(K − κ) +

|Ukk + 2Uσ2
k
|

2
· V ar(k − K) (17)

are the losses due to incomplete information (relative to the complete-information equilibrium).20

The last two terms in L are the familiar losses associated with volatility and dispersion (second-

order effects). The covariance term, on the other hand, captures a novel first-order effect. When

the complete-information equilibrium is efficient (κ = κ∗ and hence WK(κ, θ) = 0), the covariance

term is zero; this is merely an implication of the fact that small deviations around a maximum

have zero first-order effects. But when the complete-information equilibrium is inefficient due to

distortions other than incomplete information (WK(κ, θ) 6= 0), the covariance term contributes to

a welfare gain [or loss]; this is because a positive [negative] correlation between K − κ, the “error”

in aggregate activity due to incomplete information, and WK(κ, θ), the social return to activity,

mitigates [exacerbates] the first-order losses associated with these distortions.

As shown in the Appendix (see the proof of Propositions 9 and 10), this covariance term can

be expressed as

Cov (K − κ,WK(κ, θ)) = |WKK |Cov (K − κ, κ∗ − κ) = |WKK |
∑

n∈N

φnvn (18)

where, for all n ∈ N ,

φn ≡
κ∗

n − κn

κn
=

Cov ( κ∗ − κ, κ | θ−n )

V ar ( κ | θ−n )
,

vn ≡ −
1

1 − α + αδn
κ2

nσ2
n = Cov ( K − κ, κ | θ−n ) ,

20Condition (17) follows from a Taylor expansion around K = κ(θ); see the Appendix.
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with θ−n standing for (θj)j 6=n. The coefficients vn capture the covariance between K − κ, the

aggregate “error” due to incomplete information, and κ, the complete-information equilibrium,

whereas the coefficients φn capture the covariance between the latter and κ∗−κ, the efficiency gap

under complete information.

Note that the coefficients φn do not depend on the information structure—they only depend

on U—and effectively parameterize the inefficiency of the complete-information equilibrium. To

see this more clearly, consider the case N = 1 (a single fundamental variable). Then φ = 0 means

either that κ = κ∗, or that the efficiency gap is constant, while φ > 0 means that the efficiency gap

increases in the same direction with equilibrium, and the opposite for φ < 0.

The value of φn is crucial for the welfare effect of accuracy. To see this, note that a higher σ−2
n

always implies a vn closer to zero, since more accuracy brings the incomplete-information activity

K closer to its complete-information counterpart κ for any given θ. But how this affects welfare

depends on whether getting K closer to κ also means getting K closer to κ∗; this in turn depends

on the correlation between the complete-information equilibrium and the first best. Intuitively,

less noise brings K closer to κ∗ when φn > 0, but further away when φn < 0. As a result, the

welfare contribution of a higher σ−2
n through the covariance term in (17) is positive when φn > 0,

but negative when φn < 0. Combining this with the effect of σ−2
n on volatility and dispersion, we

conclude that higher accuracy necessarily increases welfare when φn > 0 (i.e., when the correlation

between complete-information equilibrium and first best is positive), but can reduce welfare when

φn is sufficiently negative.

Proposition 9 (accuracy) There exist functions φ′, φ̄′ : (−∞, 1)2 → R, with φ′ ≤ φ̄′ < 0, such

that the following is true for any n ∈ N :

Welfare increases with accuracy σ−2
n for all (σn, δn) if φ > φ̄′ (α,α∗) , and decreases if φ <

φ′ (α,α∗) .

This result opens the door to the possibility that welfare decreases with any source of infor-

mation, private or public—a possibility that contrasts sharply with the Blackwell-like result we

discussed above for efficient economies. As the following result shows, this is indeed the case when

the covariance of the complete-information equilibrium with the first best is sufficiently low, in

which case the first-order effects of accuracy dominate any other effects.

Corollary 4 For any α, α∗ and n ∈ N , φn sufficiently high ensures that welfare increases with

both the precision of private and public information about θn , whereas φn sufficiently low ensures

the converse.

Consider now the social value of commonality. While the sign of the social value of accuracy

relies on φn, that of commonality relies on the product of φn with α. Indeed, the impact of δn on
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second-order welfare losses (i.e., volatility and dispersion) remains the same as in Proposition 8;

but now this must be combined with the impact of δn on first-order losses, which is captured by

the product φnvn. The impact of δn on vn depends on the sign of α: higher commonality increases

the covariance between K and κ when α > 0, but decreases it when α < 0. How this in turn

affects welfare depends on the sign of φn, the covariance between κ and the efficiency gap κ∗ − κ.

It follows that the sign of the first-order effect of δn is given by the sign of the product of α and

φn . Combining these observations, and noting that the first-order effect dominates when φn is

sufficiently away from zero, we conclude that φn sufficiently high [low] suffices for the overall welfare

effect of commonality to have the same [opposite] sign as α.

Proposition 10 (commonality) There exist functions φ, φ̄ : (−∞, 1)×(−∞, 1) → R, with φ ≤ φ̄,

such that the following are true for any n ∈ N :

Strategic Independence. When α = 0, welfare increases with δn for all (σn, δn) if and only if

α∗ > 0, and decreases if and only if α∗ < 0.

Strategic Complementarity. When α ∈ (0, 1), welfare increases with δn for all (σn, δn) if and

only if φn > φ̄(α,α∗), and decreases if and only if φn < φ(α,α∗).

Strategic Substitutability. When α ∈ (−∞, 0), welfare increases with δn for all (σn, δn) if and

only if φn < φ(α,α∗), and decreases if and only if φn > φ̄(α,α∗).

The functions φ, φ̄ satisfy the following properties: (i) φ = φ̄ = −1/2 when α = α∗; (ii) for

α ∈ (0, 1), φ < 0 if and only if α > 1/2 or α∗ > −α2/(1 − 2α), whereas φ̄ < 0 if and only

if α∗ > α2; (iii) for α ∈ (−∞, 0), φ < 0 if and only if α∗ < α2, whereas φ̄ < 0 if and only if

α∗ < −α2/(1 − 2α).

Other special cases. Proposition 8 and Corollary 3 applied to economies where κ = κ∗. As

a direct implication of Propositions 9 and 10, these results extend to economies where κ∗ 6= κ,

provided that efficiency gap κ∗ − κ is either invariant or positively correlated with κ. To see this,

note that, since φ̄′ < 0, φn ≥ 0 suffices for welfare to increase with accuracy. Furthermore, since

φ̄ < 0 when either α∗ ≥ α > 0 or α∗ ≤ α < 0, we have that φn ≥ 0 also suffices for welfare to

increase with the commonality of information in the first case and to decrease with it in the latter.

Corollary 5 The properties established in Proposition 8 and Corollary 3 extend to economies that

are inefficient also under complete information (κ∗ 6= κ), provided that φn ≥ 0.

Finally, consider economies where κ 6= κ∗ but α = α∗; these are economies where the equilib-

rium degree of coordination is socially optimal, and hence there is no inefficiency in the relative

sensitivity of equilibrium actions to public information, although there is inefficiency in the overall
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response to the underlying fundamentals. In the Appendix we show that in this case, as in the case

of the Blackwell-like result for efficient economies, the accuracy effect of a change in the precision of

private or public information necessarily dominates the associated commonality effect. Combining

this result with Propositions 9 and 10 and the property that φ = φ̄ = φ′ = φ̄′ = −1/2 when α = α∗,

we have the following complete characterization of the social value of information for economies

where coordination is optimal.

Corollary 6 Consider the class of economies in which the equilibrium degree of coordination is

optimal (α = α∗, but possibly κ 6= κ∗) . The following are true for any n ∈ N :

(i) Welfare decreases with accuracy σ−2
n if φn > −1/2, and decreases if φn < −1/2.

(ii) Welfare increases with commonality δn if either (α, φn) > (0,−1/2), or (α, φn) < (0,−1/2);

and decreases in all other cases.

(iii) When φn > −1/2, welfare increases with the precision of either private or public infor-

mation and a higher complementarity raises the relative value of public information.

(iv) When φn < −1/2, welfare decreases with the precision of either private or public informa-

tion and a higher complementarity raises the relative cost of public information.

This result thus extends the properties of efficient economies to economies where α = α∗

but κ 6= κ∗, as long as the correlation between the efficiency gap and the complete-information

equilibrium is either positive or not too negative (φn > −1/2); it also reverses these properties for

the alternative case where the correlation is sufficiently negative (φn < −1/2).

6 Applications

In the previous section we showed how understanding the inefficiency (if any) in the equilibrium

use of information sheds light also on the social value of information. In this section, we show how

the results above can guide welfare analysis in specific contexts of interest.

An important applied question is what are the gains (or losses) to society from institutions that

aggregate and then publicly disseminate information—these institutions may range from public

media and opinion polls, to central banks and financial markets. The answer to this question is not

trivial—if the equilibrium use of information is inefficient, the society may prefer not to have such

institutions, even if the cost of setting them up is zero.

In what follows, we thus focus primarily on the social value of public information, showing

how this can be understood in relation to the inefficiency (if any) of equilibrium, and through our

decomposition of its effects on the accuracy and the commonality of information.
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6.1 Efficient coordination economies

We start with an example designed to illustrate how efficiency of the equilibrium can be consistent

with any arbitrarily high level of complementarity—and hence how the amplification of volatility

due to complementarity need not have any negative normative content.

Consider an economy where agents suffer a loss from taking an action away from either some

unknown target fundamental θ or from the mean action K in the population:

U (k,K, θ) = −1/2[(1 − r) (k − θ)2 + r (k − K)2],

where r > 0 parameterizes the importance of the distance from the mean action relative to the

distance from θ.

It is easy to check that κ∗(θ) = κ(θ) = θ, so that the complete-information equilibrium coincides

with the first best, as well as that Ukk = −1, UkK = r, UKK = −r, Uσ2
k

= 0, and therefore

α∗ = α = r > 0, so that the equilibrium degree of coordination is optimal. The following is then

an immediate implication of Proposition 7.

Corollary 7 In the coordination economy described above, the equilibrium exhibits heightened sen-

sitivity to public noise, but is efficient. Welfare increases with both private and public information,

but public information is more valuable when the two have equal precisions.

6.2 Efficient competitive economies

We now turn to an incomplete-market competitive economy in which agents’ choices are strategic

substitutes.

There is a continuum of households, each consisting of a consumer and a producer, and two

commodities. Let q1i and q2i denote the respective quantities purchased by consumer i (the con-

sumer living in household i). His preferences are given by

ui = v(q1i, θ) + q2i, (19)

where v(q, θ) = θq − bq2/2, θ ∈ R, and b > 0. His budget is

pq1i + q2i = e + πi, (20)

where p is the price of good 1 relative to good 2, e is an exogenous endowment of good 2, and πi

are the profits of producer i (the producer living in household i), which are also denominated in

terms of good 2. Profits in turn are given by

πi = pki − C(ki) (21)
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where ki denotes the quantity of good 1 produced by household i and C(k) the cost in terms of

good 2, with C(k) = k2/2.21

The random variable θ represents a shock in the relative demand for the two goods. Exchange

and consumption take place once θ has become common knowledge. On the contrary, production

takes place at an earlier stage, when information is still incomplete.

Consumer i chooses (q1i, q2i) so as to maximize (19) subject to (20), which gives p = θ − bq1i.

Clearly, all households consume the same quantity of good 1, which together with market clearing

gives q1i = K for all i and p = θ − bK, where K =
∫

kdΨ(k). It follows that i’s utility can be

restated as ui = v(K, θ)−pK +e+πi = bK2/2+e+πi, where πi = pki−C(ki) = (θ−bK)ki−k2
i /2.

This example is thus nested in our model with

U(k,K, θ, σ2
k) = (θ − bK)k − k2/2 + bK2/2 + e,

in which case κ∗(θ) = κ(θ) = θ/ (1 + b) , Ukk = −1, UkK = −b, UKK = b, Uσ2
k

= 0, and therefore

φ = 0 and α∗ = α = −b < 0.

That the complete-information equilibrium is efficient (κ = κ∗) should not be a surprise.

Under complete information, the economy is merely an example of a complete-markets competitive

economy in which the first welfare theorem applies. What is interesting is that the equilibrium

remains efficient even under incomplete information and despite the absence of ex-ante complete

markets. This is because the strategic substitutability perceived by the agents coincides with the

one that the planner would like them to perceive (α∗ = α) . The following is then a direct implication

of Proposition 7.

Corollary 8 In the competitive economy described above, the equilibrium exhibits heightened sen-

sitivity to private noise, but is efficient. Welfare increases with both private and public information,

but private information is more valuable when the two have equal precisions.

The competitive economy considered above is essentially the same as the one in Vives (1988).

In particular, Vives considers an incomplete-information quadratic Cournot game with perfect sub-

stitutability across firms. He then shows that the maximal expected social surplus (sum of producer

and consumer surpluses) is obtained by the equilibrium allocation in the limit as the number of

firms goes to infinity. Since the limit case in Vives coincides with the economy analyzed above, the

efficiency of equilibrium for this economy follows directly from Vives’ analysis. Thus, with respect

to this example, our contribution is only to recast this result in relation to the coincidence between

the equilibrium and optimal degrees of coordination, and then to spell out the implications for the

welfare effects of information.

21Implicit behind this cost function is a quadratic production frontier. The resource constraints are therefore given

by
R

i
q1i =

R
i
ki and

R
i
q2i = e − 1

2

R
i
k2

i for good 1 and 2, respectively.
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6.3 Investment complementarities

The prototypical model of production externalities can be nested in our framework by interpreting

k as investment and defining individual payoffs as follows:

U(k,K, θ) = A(K, θ)k − C(k), (22)

where A(K, θ) = (1 − a)θ + aK represents the private return to investment, with a ∈ (0, 1/2) and

θ ∈ R, whereas C(k) = k2/2 represents the private cost of investment. Variants of this specification

appear in Bryant (1983), Romer (1986), Matsuyama (1992), Acemoglu (1993), and Benhabib and

Farmer (1994), as well as models of network externalities and spillovers in technology adoption.22

The important ingredient is that the private return to investment increases with the aggregate level

of investment—the source of both complementarity and externality in this class of models.

It is easy to verify that the complete-information equilibrium level of investment is κ(θ) = θ,

whereas the first best is κ∗(θ) = 1−a
1−2aθ, and hence φ = Cov(κ∗−κ,κ)

V ar(κ) = a
1−2a > 0. That is, because

of the positive spillover, the private return to investment is lower than the social one for all θ > 0,

and the more so the higher θ. Furthermore, apart from the complementarity, there are no other

second-order external effects: UkK = a > 0, but UKK = Uσ2
k

= 0 (and Ukk = −1). It follows that

α = a > 0 and α∗ = 2α > α. That is, in this economy the agents’ private incentives to coordinate,

and the consequent amplification of volatility featured in equilibrium, are anything but excessive

from a normative perspective. The following is then an immediate implication of Corollary 5.

Corollary 9 In the investment example described above, the complete-information equilibrium is

positively correlated with the efficiency gap and the equilibrium degree of coordination is inefficiently

low, ensuring that welfare increases with both the accuracy and the commonality of information.

By implication, welfare necessarily increases with the precision of public information.

Economies with frictions in financial markets—where complementarities emerge through col-

lateral constraints, missing assets, or other types of market incompleteness—are often related to

economies with investment complementarities like the one considered here. Although this anal-

ogy is appropriate for many positive questions, it need not be so for normative purposes. As the

examples in the next two sections highlight, the result in Corollary 9 depends on the absence of

certain second-order external effects and on positive correlation between equilibrium and first-best

activity. Whether these properties are shared by mainstream incomplete-market models is an open

question.

22This is also the example we examined in Angeletos and Pavan (2004, Section 2), although there we computed

welfare conditional on θ, thus omitting the effect of φ 6= 0 on welfare losses.
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6.4 “Beauty contests” versus other Keynesian frictions

Keynes contended that financial markets often behave like “beauty contests” in the sense that

traders try to forecast and outbid one another’s forecasts, but this motive is (presumably) not

warranted from a social perspective because it is due to some (unspecified) market imperfection.

Capturing this idea with proper micro-foundations is an open question, but one possible shortcut,

following Morris and Shin (2002), is to define a beauty-contest economy as an economy in which

α > 0 = α∗ and κ(·) = κ∗(·). The first condition means that the private motive to coordinate

is not warranted from a social perspective; the second means that the inefficiency of equilibrium

vanishes as information becomes complete. By Proposition 8 we then have that welfare necessarily

increases with the accuracy of information, while by Proposition 10 that it is non-monotonic with

its commonality (since φ < 0 = φ < φ̄).

Corollary 10 In beauty-contest economies (defined as above), welfare can decrease with the preci-

sion of public information, but only when it decreases with the commonality of information—and

this is possible only because coordination is socially unwarranted.

The specific payoff structure assumed by Morris and Shin (2002) is given by

ui = −(1 − r) · (ki − θ)2 − r · (Li − L̄)

where θ ∈ R is the underlying fundamental, Li = L(ki) ≡
∫

(k′ − ki)
2 dΨ(k′) = (ki − K)2 + σ2

k is

the mean square-distance of other agents’ actions from agent i’s action, L̄ =
∫

L(k)dΨ(k) = 2σ2
k

is the cross-sectional mean of Li, and r ∈ (0, 1).The first term in ui captures the value of taking

an action close to a fundamental “target” θ. The Li term introduces a private value for taking an

action close to other agents’ actions, whereas the L̄ term ensures that there is no social value in

doing so. Indeed, aggregating across agents gives w = −(1 − r)
∫

(k − θ)2dΨ(k), so that, from a

social perspective, it is as if utility were simply u = −(k − θ)2, in which case there is of course no

social value to coordination.

This example is nested in our framework with

U(k,K, θ, σ2
k) = −(1 − r) · (k − θ)2 − r · (k − K)2 + r · σ2

k.

It follows that κ∗(θ) = κ(θ) = θ, Ukk = −2, UkK = 2r, UKK = −2r, Uσ2
k

= r, and hence

α = r > 0 = α∗. That is, the complete-information equilibrium is efficient, but the equilibrium

degree of coordination is inefficiently high.

The point of Morris and Shin (2002) was precisely to highlight how socially unwarranted coor-

dination can lead to a negative welfare effect of public information. However, one should be careful

in extrapolating the normative properties highlighted above to environments that resemble beauty

contests in that the complementarity emerges through some sort of market friction.

29



Consider, for example, incomplete-information variants of standard Keynesian business-cycle

models, recently examined by Woodford (2002), Hellwig (2005), Lorenzoni, (2005), and Roca

(2005). In these models, complementarity emerges in monopolistic competition—a market fric-

tion, or a “real rigidity” as some authors have called it. However, imperfect substitutability across

goods implies that cross-sectional dispersion in prices creates a negative externality (Uσ2
k

< 0).

This in turn contributes to a higher optimal degree of coordination—exactly the opposite of what

happens in the beauty-contest economy examined above.

Hellwig (2005) provides an excellent analysis of this class of models for the case that the

business cycle is driven by monetary shocks. He shows that the efficient sensitivity to public

information is higher than the equilibrium one, because of the adverse effect of cross-sectional price

dispersion discussed above. This property alone does not guarantee that public information is

welfare-improving—but it does so once combined with the property that, in his model, the business

cycle is efficient under complete information, in the sense that the gap between first best and

equilibrium does not vary with the business cycle. Translating these properties in our framework

gives α∗ > α > 0 and φ = 0, in which case, by Corollary 5, welfare increases with both accuracy and

commonality. The same is true for the model of Roca (2005). This helps understand why, unlike

in Morris and Shin (2002), public information is necessarily welfare improving in these works.

6.5 Inefficient fluctuations

The focus in the previous section was on how the complementarity and second-order external

effects tilt the trade-off between volatility and dispersion. We now focus on first-order effects. In

particular, we consider an economy where the efficiency gap κ∗−κ covaries negatively with κ. This

permits us to capture the possibility that recessions are inefficiently deep—a possibility that turns

out to have important implications for the social value of information.

To isolate the impact of first-order effects (φ 6= 0), we abstract from strategic and second-order

external effects (UkK = UKK = Uσ2
k

= 0), so that α∗ = α = 0. The latter ensures that welfare is

independent of commonality, while φ < 0 opens the door to the possibility that welfare can decrease

with accuracy.

There are two types of fundamentals in the economy: one that generates fluctuations in equi-

librium without affecting the efficiency gap, and another that generates covariation between equi-

librium and the efficiency gap. In particular, agents engage in an investment activity for which

private and social returns differ:

U(k,K, θ, σ2
k) = (θ1 + θ2) k − k2/2 − λθ2K,

for some λ ∈ (0, 1). One can interpret the last term as the impact of a “wedge” or “mark-up” that

introduces a gap between private and social returns. Indeed, the private return to investment is
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θ1 + θ2, the wedge is λθ2, and the social return is θ1 + (1 − λ) θ2; the coefficient λ parameterizes

the covariation between the private return and the wedge.

The complete-information equilibrium is κ(θ) = θ1 + θ2, whereas the first best is κ∗(θ) =

θ1 + (1 − λ) θ2, and hence φ1 = 0 but φ2 = −λ. The fact that φ1 = 0 ensures that any information

about θ1 is welfare-improving; but φ2 < 0 raises the possibility that information about θ2 is

welfare-damaging. In particular, if λ > 1/2 and hence φ2 < −1/2 , then welfare decreases with the

precision of either private or public information about θ2. The following is then a direct translation

of Corollary 6.23

Corollary 11 Consider the economy described above and suppose the correlation between the equi-

librium and the wedge is sufficiently negative (i.e. φ2 < −1/2). Then welfare necessarily increases

with either private or public information about the efficient source of the business cycle (θ1) ,

whereas it necessarily decreases with private or public information about the inefficient source of

the business cycle (θ2).

The recent debate on the merits of transparency in central bank communication has focused

on the role of complementarities in new-Keynesian models (e.g., Morris and Shin, 2002; Svensson,

2005; Woodford, 2005; Hellwig, 2005; Roca, 2005). The example here suggests that this debate

might be missing a critical element—the potential inefficiency of equilibrium fluctuations under

complete information.

For example, we conjecture that the result in Hellwig (2005) and Roca (2005) that public infor-

mation has a positive effect on welfare relies on the property that, under complete information, the

business cycle is efficient in these models. In standard new-Keynesian models, the monopolistic

mark-up introduces an efficiency gap. But as long as this mark-up is constant over the business

cycle—which is the case in the models of Hellwig and Roca—the efficiency gap also remains con-

stant. If, instead, business cycles are driven primarily by shocks in mark-ups or “labor wedges,” it

seems possible that providing markets with information that helps predict these shocks can reduce

welfare. This is an interesting question that we leave open for future research.

6.6 Cournot versus Bertrand

We now turn to two IO applications, with a large number of firms: a Cournot-like game, where firms

compete in quantities and actions are strategic substitutes; and a Bertrand-like game, where firms

compete in prices and actions are strategic complements. Efficiency and value of information are

now evaluated from the perspective of firms: for this section “welfare” is identified with expected

total profits.

23A special case of this is when λ = 1 and σθ1
= 0, so that κ∗ is constant and the entire fluctuation in κ is inefficient.
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Consider first Cournot. The demand faced by a firm is given by p = a0+a1θ−a2q−a3Q, where

p denotes the price at which the firm sells each unit of its product, q the quantity it produces, Q the

average quantity in the market, and θ an exogenous demand shifter (a0, a1, a2, a3 > 0). Individual

profits are u = pq − C (q) , with a quadratic cost function, C(q) = c1q + c2q
2 (c1, c2 > 0).

This is nested in our framework with k ≡ q, K ≡ Q (actions are quantities), and

U
(

k,K, θ, σ2
k

)

= (a0 − c1 + a1θ − a3K) k − (a2 + c2)k
2,

It follows that UkK = −a3 < 0, Ukk = −(a2 + c2) < 0, and UKK = Uσ2
k

= 0, so that the equilibrium

degree of coordination is α = − a3
a2+c2

< 0, while the optimal one is α∗ = 2α < a < 0. That is, a

planner interested in maximizing expected producer surplus would like the firms to increase their

reliance on private information, and decrease their reliance on public information. Moreover, under

complete information the total profit-maximizing (i.e., monopoly) quantity is κ∗ (θ) = a0−c1+a1θ
2(a2+c2+a3) ,

whereas the equilibrium (i.e., Cournot) quantity is κ (θ) = a0−c1+a1θ
2(a2+c2)+a3

, so that φ = α
2(1−α) < 0.

That is, both the monopoly and the Cournot quantity increase with the demand intercept, but the

monopoly one less so than the Cournot one.

Using α∗ = 2α < α < 0 with the formulas for the bounds φ̄′ and φ̄ derived in the proof of

Propositions 9 and 10 (see Appendix), we have that φ̄′ = −(1−α)
2(1−2α) > −2+α

2(1−2α) = φ̄. Together with

φ = α
2(1−α) , this ensures that φ > φ̄′ and φ > φ̄. By Proposition 9 and 10, total profits increase with

accuracy and decrease with commonality. This in turn ensures that expected profits necessarily

increase with the precision of private information, but opens the door to the possibility that they

decrease with that of public. In the Appendix we verify that the latter is possible if the degree of

strategic substitutability is strong enough, namely if α < −1.

Corollary 12 In the Cournot game described above, firms’ actions are strategic substitutes, but

less so than what is collectively optimal ( i.e., α∗ < α < 0). Expected total profits necessarily

increase with the precision of private information, but can decrease with that of public.

Next, consider Bertrand. Demand is now given by q = b0 + b1θ
′ − b2p + b3P, where q denotes

the quantity sold by the firm, p the price the firm sets, P the average price in the market, and

θ′ again an exogenous demand shifter (b0, b1, b2, b3 > 0); we naturally impose b3 < b2, so that an

equal increase in p and P reduces q. Individual profits are u = pq − C (q) , with C(q) = c1q + c2q
2

(c1, c2 > 0).

This is nested in our framework with k ≡ p − c1, K ≡ P − c1 (actions are now prices), and

U
(

k,K, θ, σ2
k

)

= b2[(θ − k + bK) k − c (θ − k + bK)2],

where θ ≡ b0/b2 + b1/b2θ
′ − c1(1 − b), b ≡ b3/b2 ∈ (0, 1), and c ≡ c2b2 > 0; without loss of

generality, we let b2 = 1. It follows that UkK = (1 + 2c) b > 0, Ukk = −2(1 + c) < 0, Uσ2
k

= 0, and
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UKK = −2cb2, so that the equilibrium degree of coordination is α = 1+2c
2+2cb ∈ (0, 1) and the optimal

one is α∗ = 2+2c(2−b)
2+2c b > α (as usual, we restrict α∗ < 1). Moreover, under complete information the

monopoly price is κ∗ (θ) = 1+2c(1−b)
2(1−b)[1+c(1−b)]θ, while the equilibrium price is κ (θ) = 1+2c

1+(1+2c)(1−b)θ,

so that φ > 0. That is, the Bertrand price reacts too little to θ as compared to the monopoly

price. By Corollary 5, the fact that α∗ > α > 0 together with φ > 0 ensures that welfare increases

with both the accuracy and the commonality of information. This immediately implies that more

precise public information necessarily increases expected profits. Private information, on the other

hand, has a positive effect through accuracy and a negative one through commonality—but the

fact that φ is sufficiently high turns out to ensure in this example that the positive effect of private

information through accuracy dominates.

Corollary 13 In the Bertrand game described above, firms’ actions are strategic complements, but

less so than what is collectively optimal ( i.e., α∗ > α > 0). Expected total profits increase with the

precision of either public or private information.

If we interpret information sharing among firms as an increase in the precision of public infor-

mation, then the above results imply that information-sharing is profit-enhancing under Bertrand

competition, but not necessarily under Cournot competition.

This result is closely related to Vives (1990) and Raith (1996), who examine the impact of

information-sharing in Cournot and Bertrand oligopolies with a finite number of firms.24 For

example, Proposition 4.2 in Raith’s paper shows that expected profits necessarily increase with a

uniform increase in the precision of the signals that firms receive about demand (or costs), and

that they increase with the correlation of noise across firms in the Bertrand case but decrease

in the Cournot case. Since Raith’s specification is nested in our framework with α∗ = 2α and

φ > max{φ̄, φ̄′}, this result could be read off our Propositions 9 and 10 if it were not for the

difference in the number of players and the information structure. Yet, this coincidence suggests

that the logic behind our results is not unduly sensitive to the details of the environment we used.

7 Concluding remarks

This paper examined a class of economies with externalities, strategic complementarity or substi-

tutability, and asymmetric information. For this class, we provided a complete characterization of

the equilibrium and the efficient use of information, and a complete taxonomy of the welfare effects

of information. We then showed how these results can give guidance for welfare analysis in concrete

applications.

24The payoff structures in those papers are linear-quadratic, as the ones considered here; a minor difference is that

these papers effectively impose UKK = 0, and hence α∗ = 2α, in both the Cournot and the Bertrand case.
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Certain modeling choices—namely the quadratic specification for the payoffs and the Gaussian

specification for the signals—were dictated by the need for tractability, but do not appear to be

essential for the main insights; we expect our analysis to be a good benchmark also for more general

environments with a unique equilibrium and concave payoffs. Indeed, an interesting extension is to

check whether our results are second-order approximations of this more general class of economies.

On the other hand, the restrictions to unique equilibrium and concave payoffs are clearly

essential for our results.

First, when the complementarity is strong enough that multiple equilibria emerge under com-

mon knowledge—a possibility that is important for certain applications but ruled out here by the

restriction α < 1—then the information structure matters not only for the local properties of any

given equilibrium but also for the determinacy of equilibria (e.g., Morris and Shin, 2003). In partic-

ular, more precise public information contributes towards multiplicity, while more precise private

information contributes towards uniqueness. The social value of information may then critically

depend on equilibrium selection (e.g., Angeletos and Pavan 2004, Sec. 2).

Second, when aggregate welfare exhibits convexity (a.k.a. increasing aggregate returns) over

some region—a possibility ruled out here by the restriction WKK < 0—then the planner may prefer

a lottery to the complete-information equilibrium.25 When this is the case, more noise in public

information may improve welfare to the extent that aggregate volatility mimics such a lottery.

Therefore, multiple equilibria and payoff convexities introduce effects that our analysis has

ruled out. Extending the analysis in these directions is an interesting, but also challenging, next

step for future research.

Another promising direction for future research is extending the analysis to environments with

endogenous information structures. This is interesting, not only because the endogeneity of infor-

mation is important per se, but also because inefficiencies in the use of information are likely to

interact with inefficiencies in the collection or aggregation of information. For example, in economies

with a high social value for coordination, the private collection of information can reduce welfare

by decreasing the correlation of expectations across agents and thereby hampering coordination.

Symmetrically, in environments where substitutability is important, the aggregation of information

through prices or other channels could reduce welfare by increasing correlation in beliefs. 26

The aforementioned extensions are important for developing a more complete picture of the

welfare properties of large economies with dispersed heterogeneous information. The use of the

efficiency benchmark identified here as an instrument to assess these welfare properties is the core

methodological contribution of this paper.

25Indeed, this is necessarily the case when welfare is locally convex around the complete-information equilibrium

and the lottery has small variance and expected value equal to the complete-information equilibrium.
26The role of prices in coordination environments is also the theme of Angeletos and Werning (2004), but there the

focus is on how information aggregation can lead to multiplicity.
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Appendix

Proof of Proposition 1. Part (i). Take any strategy k : R
2N → R (not necessarily a linear one)

and let K(θ, y) = E[k(x, y)|θ, y]. A best-response is a strategy k′(x, y) that solves, for all (x, y), the

first-order condition

E[Uk(k
′,K, θ)|x, y] = 0. (23)

Since U is quadratic, Uk is linear and hence Uk(k
′,K, θ) = Uk(κ, κ, θ)+Ukk ·(k

′−κ)+UkK ·(K−κ),

where κ stands for the complete-information equilibrium allocation. By definition, the latter solves

Uk(κ, κ, θ) = 0 for all θ, which implies that (23) reduces to

E[Ukk · (k
′ − κ) + UkK · (K − κ)|x, y] = 0,

or equivalently k′(x, y) = E[(1−α)κ+αK|x, y]. In equilibrium, k′(x, y) = k(x, y) for all x, y, which

gives (5).

Part (ii). Since E[θ|x, y], and hence E[κ|x, y], is linear in (x, z), it is natural to look for a fixed

point that is linear in x and z, where, for any n, zn = λnyn + (1 − λn)µn. Thus suppose27

k(x, y) = a + b · x + c · z (24)

for some a ∈ R and b, c ∈ R
N . Then K (θ, y) = a + b · θ + c · z and (5) reduces to

k(x, y) = (1 − α)κ0 + αa + ((1 − α)κ + αb) · E[θ|x, y] + αc · z

where κ ≡ (κ1, ..., κn). Substituting E[θ|x, y] = (I − ∆)x + ∆z, where I is the N × N identity

matrix and ∆ is the N × N diagonal matrix with n-th element equal to δn, we conclude that (24)

is a linear equilibrium if and only if a, b and c solve

a = (1 − α)κ0 + αa, b = (I − ∆) [(1 − α)κ + αb] , and c = ∆ [(1 − α)κ + αb] + αc.

Equivalently a = κ0, bn = κn(1 − α)(1 − δn)/[1 − α(1 − δn)], and cn = κnδn/[1 − α(1 − δn)],

n ∈ {1, ..., N}. Note that bn + cn = κn always; bn = cn = 0 whenever κn = 0; and bn ∈ (0, κn) and

cn ∈ (0, κn) otherwise. Letting γn ≡ cn/κn ∈ (0, 1) for any n ∈ N gives (6)-(7).

Proof of Proposition 2. From condition (6),

k(x, y) = κ0 +
∑

n∈N

κn [(1 − γn)xn + γnzn] ,

K(θ, y) = κ0 +
∑

n∈N

κn [(1 − γn)θn + γnzn] ,

27A dot between two vectors denotes inner product, whereas a dot between two scalars denotes standard multipli-

cation.
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and therefore k − K =
∑

n∈N κn [(1 − γn)(xn − θn)] and K − κ =
∑

n∈N κnγn(zn − θn). Using

V ar(xn − θn) = σ2
xn

, V ar(zn − θn) = σ2
zn

=
(

σ−2
yn

+ σ−2
θn

)−1
and δn = σ−2

zn
/σ−2

n , together with (7),

we have

V ar(k − K) =
∑

n∈N

κ2
n

[

(1 − γn)2σ2
xn

]

=
∑

n∈N

κ2
n

[

(1 − α)2(1 − δn)

(1 − α + αδn)2
σ2

n

]

,

V ar(K − κ) =
∑

n∈N

κ2
nγ2

nσ2
zn

=
∑

n∈N

κ2
n

[

δn

(1 − α + αδn)2
σ2

n

]

,

from which we get that

∂V ar(k − K)

∂α
= −2(1 − α)

∑

n∈N

κ2
n

(1 − δn)δn

(1 − α + αδn)3
σ2

n

∂V ar(K − κ)

∂α
= 2

∑

n∈N

κ2
n

(1 − δn)δn

(1 − α + αδn)3
σ2

n

∂V ar(k − K)

∂δn
= −

(1 − α)2(1 + α(1 − δn))

(1 − α + αδn)3
κ2

nσ2
n

∂V ar(K − κ)

∂δn
=

1 − α(1 + δn)

(1 − α + αδn)3
κ2

nσ2
n

It follows that dispersion decreases whereas volatility increases with α. Furthermore, both dispersion

and volatility increase with the noise σn (and hence decrease with the accuracy σ−2
n ). Finally,

dispersion decreases with δn if and only if α > − 1
1−δn

, whereas volatility increases with δn if and

only if α < 1
1+δn

.

Proof of Lemma 1. The Lagrangian of the problem in Definition 2 can be written as

Λ =
∫

(θ,y)

∫

x U(k(x, y),K(θ, y), θ)dP (x|θ, y)dP (θ, y)+

+
∫

(θ,y) λ(θ, y)
[

K(θ, y)−
∫

x k (x, y) dP (x|θ, y)
]

dP (θ, y).

The first order conditions for K(θ, y) and k(x, y) are therefore given by
∫

x
UK(k(x, y),K(θ, y), θ)dP (x|θ, y) + λ(θ, y) = 0 for almost all (θ, y) (25)

∫

(θ,y)
[Uk(k(x, y),K(θ, y), θ) − λ(θ, y)]dP (θ, y|x, y) = 0 for almost all (x, y) (26)

Noting that UK is linear in its arguments and that K(θ, y) =
∫

x k (x, y) dP (x|θ, y), condition (25)

can be rewritten as −λ(θ, y) = UK(K(θ, y),K(θ, y), θ). Replacing this into (26) gives (8). Since U

is strictly concave and the constraint is linear, (8) is both necessary and sufficient, which completes

the proof.

Proof of Proposition 3. Part (i). Since U is quadratic, condition (8) can be rewritten as

E[ Uk(κ
∗, κ∗, θ) + Ukk · (k(x, y) − κ∗) + UkK · (K − κ∗)+

+UK(κ∗, κ∗, θ) + (UkK + UKK) · (K − κ∗) | x, y ] = 0.

36



Using Uk(κ
∗, κ∗, θ) + UK(κ∗, κ∗, θ) = 0, by definition of first best, the above reduces to

E[ Ukk (k(x, y) − κ∗) + (2UkK + UKK)(K − κ∗) | x, y ] = 0,

which gives (10).

Part (ii). Uniqueness follows from the fact that the planner’s problem in Definition 2 is strictly

concave. The characterization follows from the same steps as in the proof of Proposition (1)

replacing α with α∗ and κ(·) with κ∗(·).

Proof of Proposition 4. Consider first part (ii). Since the (unique) efficient allocation of

e is linear, only the linear equilibrium of the economy e′ can coincide with the efficient allocation

of the true economy e. Now, take any U ′ satisfying α′ ≡ −U ′
kK/Ukk < 1. By Proposition 1, any

equilibrium of e′ = (U ′;σ, δ, µ, σθ) is a function k(x, y) that solves

k(x, y) = E[ (1 − α′)κ′ + α′K(θ, y) | x, y ] ∀(x, y), (27)

where κ′(θ) = κ′
0 + κ′

1θ1 + ... + κ′
NθN is the unique solution to U ′

k(κ
′, κ′, θ) = 0 and K(θ, y) =

E[k (x, y) | θ, y]. The unique linear solution to (27) is the function

k(x, y) = κ′
0 +

∑

n∈N ′

κ′
n

[

(1 − γ′
n)xn + γ′

nzn

]

,

where

γ′
n = δn +

α′δn(1 − δn)

1 − α′(1 − δn)
∀n ∈ N ′ ≡ {n ∈ N : κ′

n 6= 0}.

For this function to coincide with the efficient allocation of e for all (x, y) ∈ R
2N , it is necessary

and sufficient that κ′(·) = κ∗(·) and α′ = α∗, which proves part (ii).

For part (i), it suffices to let U ′(k,K, θ) = U(k,K, θ) + UK(K,K, θ)k, in which case it is

immediate that κ′(·) = κ∗(·) and α′ = α∗.

Proof of Condition (14). Since U is quadratic, a second-order Taylor expansion around

k = K is exact:

U(k,K, θ) = U(K,K, θ) + Uk(K,K, θ) · (k − K) +
Ukk

2
· (k − K)2.

It follows that ex-ante utility is given by

Eu = E[W (K, θ)] +
Ukk

2
E[(k − K)2],

where k = k(x, y) and K = K(θ, ε) are shortcuts for the efficient allocation and W (K, θ) ≡

U(K,K, θ). A quadratic expansion of W (K, θ) around κ∗, which is exact since U and thus W are

quadratic, gives

W (K, θ) = W (κ∗, θ) + WK(κ∗, θ) · (K − κ∗) +
WKK

2
· (K − κ∗)2.
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By definition of κ∗, WK(κ∗, θ) = 0. It follows that

Eu = EW (κ∗, θ) +
WKK

2
· E[(K − κ∗)2] +

Ukk

2
· E[(k − K)2].

At the efficient allocation, k − κ∗ =
∑

n∈N ∗ κ∗
n [(1 − γ∗

n)(xn − θn) + γ∗
n(zn − θn)] implying that

Ek = EK = Eκ∗ and therefore E[(K −κ∗)2] = V ar(K−κ∗) and E[(k−K)2] = V ar(k−K), which

gives the result.

Proof of Proposition 5. The result follows directly from the proof of Proposition 4 together

with the definitions of κ(·), κ∗(·), α and α∗.

Proof of Proposition 6. Suppose κ(·) = κ∗(·) and α = α∗ and consider the set K of

allocations that satisfy

k(x, y) = E[(1 − α′)κ + α′K|x, y]

for some α′ < 1, or equivalently k(x, y) = κ0 +
∑

n∈N κn [(1 − γ′
n)xn + γ′

nzn] , where

γ′
n = δn +

α′δn(1 − δn)

1 − α′(1 − δn)
for all n ∈ N .

Clearly, the equilibrium (and efficient) allocation is nested with α′ = α(= α∗). Since for any

allocation in K EK = Ek = Eκ, ex-ante welfare can be written as Eu = EW (κ, θ) − L, where

L =
|WKK|

2
V ar (K − κ) +

|Ukk + 2Uσ2
k
|

2
V ar(k − K) =

|Ukk + 2Uσ2
k
|

2
Ω,

with

Ω ≡ (1 − α∗)V ar (K − κ) + V ar(k − K).

Using

V ar (K − κ) =
∑

n∈N

κ2
nγ

′2
n σ2

zn
=

∑

n∈N

κ2
nγ

′2
n

(

σ2
n
/δn

)

,

V ar(k − K) =
∑

n∈N

κ2
n

[

(1 − γ′
n)2σ2

xn

]

=
∑

n∈N

κ2
n

[

(1 − γ′
n)2

(

σ2
n
/(1 − δn

)

)
]

,

we have that

Ω =
∑

n∈N

κ2
n

{

(1 − α∗)
γ

′2
n

δn
+

(1 − γ′
n)2

1 − δn

}

σ2
n.

Note that Eu depends on α′ and (δn, σn), for n ∈ N , only through Ω. Since the efficient

allocation is nested with α′ = α∗, it must be that α′ = α∗ maximizes Eu, or equivalently that

γ′
n = γ∗

n solves ∂Ω/∂γ′
n = 0; that is,

(1 − α∗)
γ∗

n

δn
=

1 − γ∗
n

1 − δn
. (28)
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Next note that Ω increases with σn, and hence Eu decreases with σn (equivalently, increases with

the accuracy σ−2
n ). Finally, consider the effect of δn. By the envelope theorem,

dΩ

dδn
=

∂Ω

∂δn

∣

∣

∣

∣

γ′
n=γ∗

n

= κ2
n

{

−
(1 − α∗)γ∗2

n

δ2
n

+
(1 − γ∗

n)2

(1 − δn)2

}

σ2
n

Using (28), we thus have that dEu/dδn > [<]0 if and only if γ∗
n/(1 − γ∗

n) > [<] δn/(1 − δn), which

is the case if and only if α∗ > [<]0. Using α = α∗ (by efficiency) then gives the result.

Proof of Proposition 7. Part (i) follows from the Blackwell-like argument in the main text;

it can also be obtained by noting that

L = ω
∑

n∈N

κ2
n

{

(1 − α) σ2
xn

σ2
zn

σ2
xn

+ (1 − α) σ2
zn

}

,

where ω ≡ |Ukk + 2Uσ2
k
|/2, and hence

∂Eu

∂σ−2
zn

= −
∂L

∂σ2
zn

(−
1

[σ−2
zn ]2

) = ωκ2
n

(1 − α) σ2
xn

σ4
zn

[

σ2
xn

+ (1 − α) σ2
zn

]2 > 0

∂Eu

∂σ−2
xn

= −
∂L

∂σ2
xn

(−
1

[σ−2
xn ]2

) = ωκ2
n

(1 − α)2 σ2
zn

σ4
xn

[

σ2
xn

+ (1 − α) σ2
zn

]2 > 0

Part (ii) is then immediate.

Proof of Proposition 8. Using |WKK |/|Ukk + 2Uσ2
k
| = (1 − α∗) , we have that equilibrium

welfare is Eu = EW (κ, θ) −L∗, where

L∗ =
|Ukk+2U

σ2
k
|

2 {(1 − α∗)V ar(K − κ) + V ar(k − K)} . (29)

= −
|Ukk+2U

σ2
k
|

2 (α∗ − α) V ar(K − κ) +
|Ukk+2U

σ2
k
|

2 {(1 − α) V ar(K − κ) + V ar(k − K)}(30)

are the losses due to incomplete information.

(i) Since V ar(K − κ) and V ar(k − K) are both increasing in σn, welfare necessarily decreases

with σn (equivalently, increases in accuracy σ−2
n ).

(ii) Consider the ”canonical case” in which V ar(k−K) is decreasing and V ar(K−κ) increasing

in δn. By Proposition 6, the second term in (30) decreases with δn if α > 0 and increases if α < 0. It

follows that α∗ ≥ α > 0 suffices for L∗ to decrease (and hence welfare to increase) with δn, whereas

α∗ ≤ α < 0 suffices for L∗ to increase (and hence welfare decrease) with δn.

Proof of Condition (17). Since U
(

k,K, θ, σ2
k

)

is quadratic in k and linear in σ2
k,

U
(

k,K, θ, σ2
k

)

= U(K,K, θ, 0) + Uk(K,K, θ, 0)(k − K) +
Ukk

2
(k − K)2 + Uσ2

k
σ2

k.
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Using the fact that σ2
k = E[(k−K)2|θ, ε] and hence Eσ2

k = E[(k−K)2], we have that ex-ante utility

is given

Eu = EW (K, θ) +
Ukk + 2Uσ2

k

2
· E[(k − K)2].

A Taylor expansion of W (K, θ) around K = κ then gives

W (K, θ) = W (κ, θ) + WK(κ, θ)(K − κ) +
WKK

2
(K − κ)2

and hence

Eu = EW (κ, θ) + E[WK(κ, θ) · (K − κ)] +
WKK

2
· E[(K − κ)2] +

Ukk + 2Uσ2
k

2
· E[(k − K)2].

In equilibrium, Ek = EK = Eκ and therefore, E[WK(κ, θ) · (K − κ)] = Cov[WK(κ, θ), (K − κ)],

E[(K − κ)]2 = V ar(K − κ) and E[(k − K)2] = V ar(k − K), which gives the result.

Proof of Corollary 4. Using the formula for the L function given in the proof of Propositions

9 and 10 below, we have that, after some tedious algebra,

∂L

∂σ2
zn

= ωκ2
nσ4

xn

{

(1 − α∗)σ2
xn

+ (1 − α) (1 − 2α + α∗) σ2
zn

[

σ2
xn

+ (1 − α) σ2
zn

]3 + 2φn
(1 − α∗)

[

σ2
xn

+ (1 − α) σ2
zn

]2

}

∂L

∂σ2
xn

= ωκ2
nσ4

zn
(1 − α)

{

(1 − α − 2α∗)σ2
xn

+ (1 − α)2 σ2
zn

[

σ2
xn

+ (1 − α) σ2
zn

]3 + 2φn
(1 − α∗)

[

σ2
xn

+ (1 − α) σ2
zn

]2

}

where ω ≡ |Ukk + 2Uσ2
k
|/2. The result then follows immediately.

Proof of Propositions 9 and 10. We prove the two result together, in three steps. Step 1

computes the welfare losses due to incomplete information. Step 2 derives the comparative statics.

Step 3 characterizes the bounds φ, φ̄, φ′, φ̄′.

Step 1. The property that W is quadratic, along with WK(κ∗, θ) = 0 (by definition of the first

best), and WKK < 0, imply that

WK(κ, θ) = WK(κ∗, θ) + WKK · (κ − κ∗) = |WKK | · (κ∗ − κ) .

It follows that

Cov(K − κ,WK(κ, θ)) = |WKK | · Cov (K − κ, κ∗ − κ) . (31)

Since K − κ =
∑

n∈N
κnγn(zn − θn), zn − θn = [λn(εn) + (1 − λn)(µθn

− θn)] , and (εn, εj , θn, θj)

are mutually orthogonal whenever n 6= j, we have

Cov (K − κ, κ∗ − κ) = Cov
(

∑

κnγn(zn − θn) ,
∑

(κ∗
n − κn) θn

)

=

=
∑

(κ∗
n − κn)κnγnCov (θn, zn − θn) =

=
∑

n∈N

(

κ∗
n − κn

κn

)

κ2
nγn [− (1 − λn) V ar (θn)]
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Using φn ≡ (κ∗
n − κn)/κn, γn = δn/(1 − α + αδn), and (1 − λn) V ar (θn) = (σ−2

θn
/σ−2

zn
)σ2

θn
= σ2

zn
=

σ2
n/δn, we have that

Cov (K − κ, κ∗ − κ) =
∑

n∈N

φn

{

−
1

1 − α + αδn
κ2

nσ2
n

}

(32)

while

Cov ( K − κ, κ | θ−n ) = κ2
nγnCov (zn − θn, θn) = −

1

1 − α + αδn
κ2

nσ2
n.

Next, as in the proof of Proposition 2,

V ar(K − κ) =
∑

n∈N

δn

(1 − α + αδn)2
κ2

nσ2
n (33)

V ar(k − K) =
∑

n∈N

(1 − α)2(1 − δn)

(1 − α + αδn)2
κ2

nσ2
n. (34)

Substituting (31)-(34) into (17), using v = (1 − α∗)|Ukk + 2Uσ2
k
|, and rearranging, we get

L = ω
∑

n∈N

Λ (α,α∗, φn, δn) κ2
nσ2

n (35)

where ω ≡ |Ukk + 2Uσ2
k
|/2 and

Λ (α,α∗, φ, δ) ≡
(1 − α∗) [2φ(1 − α + αδ) + δ] + (1 − α)2(1 − δ)

(1 − α + αδ)2
. (36)

Step 2. EW (κ, θ) is independent of (δn, σn) and hence the comparative statics of welfare with

respect to (δn, σn) coincide with the opposite of those of L. Also note that

∂L

∂σ2
n

= ωκ2
nΛ (α,α∗, φn, δn)

∂L

∂δn
= ωκ2

nσ2
n

∂Λ (α,α∗, φn, δn)

∂δn

where ω ≡ |Ukk + 2Uσ2
k
|/2 > 0. We thus only need to understand the sign of Λ and that of ∂Λ/∂δn.

Note that Λ > [<] 0 if and only if φ > [<] g(α,α∗, δ), where

g(α,α∗, δ) = −
(1 − α)2(1 − δ) + δ(1 − α∗)

2(1 − α + αδ)(1 − α∗)
< 0.

Letting

φ′(α,α∗) ≡ min
δ∈[0,1]

g(α,α∗, δ) and φ̄′(α,α∗) ≡ max
δ∈[0,1]

g(α,α∗, δ),

we then have that ∂L/∂σ2
n > 0 [< 0] for all δn ∈ [0, 1] if φn > φ̄′ [< φ′], whereas ∂L/∂σ2

n alternates

sign as δn varies if φn ∈ (φ′, φ̄′).

Next, consider the effect of commonality. By condition (36),

∂Λ

∂δn
=

α2[(1 − δn)(1 − α) − δn] − α∗(1 − α − αδn) − 2αφ(1 − α∗)(1 − α + αδn)

(1 − α + αδn)3
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When α = 0, this reduces to
∂Λ

∂δn
= −α∗

and hence, for any n ∈ N , ∂L/∂δn > [<]0 if and only if α∗ < [>]0.

When instead α 6= 0,

∂Λ

∂δn
=

2(1 − α∗)

[1 − α + αδn]2
α[f(α,α∗, δn) − φn],

where

f(α,α∗, δ) ≡
α2[(1 − δ)(1 − α) − δ] − α∗(1 − α − αδ)

2α(1 − α + αδ)(1 − α∗)
.

Since α∗ < 1, sign[∂L/∂δn] = sign[α] · sign[f(α,α∗, δn) − φn]. Let

φ(α,α∗) ≡ min
δ∈[0,1]

f(α,α∗, δ) and φ̄(α,α∗) ≡ max
δ∈[0,1]

f(α,α∗, δ).

If φn ∈ (φ, φ̄), then ∂L/∂δn alternates sign as δn varies between 0 and 1, no matter whether α > 0

or α < 0. Hence, φn < φ is necessary and sufficient for ∂L/∂δn > 0 ∀δn when α > 0 and for

∂L/∂δn < 0 ∀δn when α < 0, whereas φn > φ̄ is necessary and sufficient for ∂L/∂δn < 0 ∀δn when

α > 0 and for ∂L/∂δn > 0 ∀δn when α < 0.

Step 3. Note that both f and g are monotonic in δ, with

∂f

∂δ
= 2

∂g

∂δ
=

(1 − α)

(1 − α∗)(1 − α + αδ)2
(α∗ − α)

When α∗ = α, both f and g are independent of δ, and

φ′(α,α∗) = φ(α,α∗) = φ̄(α,α∗) = φ̄′(α,α∗) = −
1

2
< 0.

When instead α∗ > α, both f and g are strictly increasing in δ, so that

φ(α,α∗) = f(α,α∗, 0) < φ̄(α,α∗) = f(α,α∗, 1),

φ′(α,α∗) = g(α,α∗, 0) < φ̄′(α,α∗) = g(α,α∗, 1),

and when α∗ < α, both f and g are strictly decreasing in δ, so that

φ(α,α∗) = f(α,α∗, 1) < φ̄(α,α∗) = f(α,α∗, 0)

φ′(α,α∗) = g(α,α∗, 1) < φ̄′(α,α∗) = g(α,α∗, 0).

Consider first the case α ∈ (0, 1). If α∗ > α, then α2 + (1 − 2α)α∗ > 0 (using the fact that

α∗ < 1) and therefore

φ(α,α∗) < φ̄(α,α∗) = f(α,α∗, 1) = −
α2 + (1 − 2α)α∗

2α(1 − α∗)
< 0.
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If instead α∗ < α, then

φ(α,α∗) = f(α,α∗, 1) = −
α2 + (1 − 2α)α∗

2α(1 − α∗)
< φ̄(α,α∗) = f(α,α∗, 0) = −

α∗ − α2

2α(1 − α∗)

and therefore φ < 0 if and only if α > 1/2 or α∗ > −α2/(1−2α), while φ̄ < 0 if and only if α∗ > α2.

Since −α2/(1 − 2α) < 0 whenever α < 1/2, we conclude that, for α ∈ (0, 1), φ < 0 if and only if

α > 1/2 or α∗ > −α2/(1 − 2α), and φ̄ < 0 if and only if α∗ > α2.

Next, consider the case α ∈ (−∞, 0). If α∗ > α, then

φ(α,α∗) = f(α,α∗, 0) =
α∗ − α2

(−2α)(1 − α∗)
< φ̄(α,α∗) = f(α,α∗, 1) =

α2 + (1 − 2α)α∗

(−2α)(1 − α∗)

and hence φ < 0 if and only if α∗ < α2, while φ̄ < 0 if and only if α∗ < −α2/(1 − 2α). If instead

α∗ < α, then α∗ < 0 < α2 and hence

φ(α,α∗) < φ̄(α,α∗) = f(α,α∗, 0) =
α∗ − α2

(−2α)(1 − α∗)
< 0.

We conclude that, for α ∈ (−∞, 0), φ < 0 if and only if α∗ < α2, and φ̄ < 0 if and only if

α∗ < −α2/(1 − 2α).

Finally, note that

g(α,α∗, 0) = −
(1 − α)

2(1 − α∗)
< 0 and g (α,α∗, 1) = −

1

2
< 0.

Hence, φ′ = − (1−α)
2(1−α∗) < −1/2 = φ̄′ for α∗ > α, φ′ = φ̄′ = −1

2 for α = α∗, and φ′ = −1/2 < φ̄′ =

− (1−α)
2(1−α∗) < 0 for α∗ < α.

Proof of Corollary 6. Parts (i) and (ii) follow directly from Propositions 9 and 10, noting

that φ = φ̄ = φ′ = φ̄′ = −1/2 when α = α∗. For parts (iii) and (iv), note that α = α∗ implies that

L = ω
∑

n∈N

κ2
n

{

(1 + 2φn)
(1 − α) σ2

xn
σ2

zn

σ2
xn

+ (1 − α) σ2
zn

}

,

where ω ≡ |Ukk + 2Uσ2
k
|/2. The above is identical to the formula for L in the proof of Proposition

7, except for the multiplication by the term (1 − 2φn) . The result then follows immediately from

the proof of Proposition 7.

Proof of Corollary 12. That welfare increases with private information follows from the

property that α < 0 and φ > φ̄ (which ensures that welfare decreases with commonality) and the

property that φ > φ̄′ (which ensures that welfare increases with accuracy). As for the effect of

public information, substituting α∗ = 2α and φ = α
2(1−α) in (35)-(36 ), we have that

L =
σ2

xσ2
z

[

(1 − 2α) σ2
x +

(

1 − 2α + α3
)

σ2
z

]

(1 − α) (σ2
x + σ2

z) (σ2
x + (1 − α) σ2

z)
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and hence

∂L

∂σ2
z

=
σ2

x

[

(

1 − α2
)

(1 − α)2 σ4
z + (1 − 2α) σ4

x + 2
(

1 − 2α + α3
)

σ2
xσ2

z

]

(1 − α) (σ2
x + σ2

z)
2 [σ2

x + (1 − α) σ2
z ]

2

Note that the denominator is always positive. When α ∈ [−1, 0), the numerator is also positive for

all σx and σz. When instead α < −1, we can find values for σx and σz such that the numerator is

negative. (Indeed, it suffices to take σz high enough, for then the term
(

1 − α2
)

(1 − α)2 σ4
z , which

is negative when α < −1, necessarily dominates the other two terms in the numerator.) It follows

that the social value of public information is necessarily positive when α ∈ [−1, 0), but can be

negative when α < −1.

Proof of Corollary 13. That welfare necessarily increases with public information follows

directly from Corollary 5 since α∗ > α > 0 and φ > 0. For the social value of private information,

after some tedious algebra, it is possible to show that

∂L

∂σ2
x

=
σ4

z

[

λ1σ
4
x + λ2σ

2
xσ

2
z + λ3σ

4
z

]

2 (1 + c) (1 + 2c) (σ2
x + σ2

z)
2 [(b + 2bc) σ2

z − 2 (1 + c) (σ2
x + σ2

z)]
2

where λ1, λ2, and λ3 are positive functions of b and c. (This result has been obtained with Math-

ematica; the code and the formulas for the λ’s are available upon request.) It follows that welfare

also increases with the precision of private information.
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