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Abstract

In this paper, we prove that, under full rank, every perfect public equilib-

rium payoff (above some Nash equilibrium in the two-player case, and above

the minmax payoff with more players) can be achieved with strategies that have

bounded memory. This result is then used to prove that a version of the folk

theorem remains valid under private but almost-public monitoring.

1. Introduction

The study of repeated games with imperfect public monitoring has significantly af-

fected our understanding of intertemporal incentives. The concepts and techniques

developed by Abreu et al. (1990) have proved especially and enormously helpful.

Building on their work, Fudenberg et al. (1994) have shown that, when players are

sufficiently patient, imperfect monitoring imposes virtually no restriction on the set

of equilibrium payoffs, provided that some (generally perceived as mild) identifiability

conditions are satisfied.
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Recent progress in the study of games with private monitoring has raised, how-

ever, some issues regarding the robustness of these concepts and techniques. When

monitoring is private, players can no longer perfectly coordinate their continuation

play. This inability is compounded over time, to the extent that the construction of

equilibria from Abreu et al. may unravel under private monitoring no matter how

close it is from being public.

Mailath and Morris (2002) show that uniformly strict perfect public equilibria are

robust to sufficiently small perturbations in the monitoring structure provided that

strategy profile has finite memory, i.e. it only depends on the last M observations, for

some integer M . Unfortunately, the strategies used in establishing the folk theorem

need not be uniformly strict, and fail to have finite memory. Indeed, a strategy profile

as simple as grim-trigger does not have finite memory.

In a related contribution, Cole and Kocherlakota (2005) provide an example of

a game with imperfect public monitoring in which the assumption of finite memory

reduces the set of equilibrium payoff vectors. In their example, the set of equilib-

rium payoff vectors that can be achieved under finite memory, no matter how large

the bound may be, is bounded away from the set of payoff vectors attainable with

unbounded memory. Unfortunately, their analysis is restricted to strongly symmet-

ric strategies, and their monitoring structure violates the identifiability conditions

imposed by Fudenberg et al.

The purpose of this paper is to show that the restriction to finite memory Perfect

Public Equilibria is to a large extent inconsequential. We establish a version of the folk

theorem with imperfect public monitoring that only involves public strategies with

finite memory. However, we strengthen the identifiability conditions of Fudenberg et

al., and we further assume that a public randomization device is available. In the

case of two players, our result is also weaker, in the sense that we show that every

payoff vector that dominates a (static) Nash equilibrium payoff vector (as opposed

to the minmax payoff vector) can be achieved in some equilibrium by sufficiently

patient players. A final caveat involves the order of quantifiers. We prove that, for

every sufficiently high discount factor, a given payoff can be achieved by using some
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strategy profile having finite memory. That is to say, the size of the memory depends

on the discount factor, and tends to infinity as the discount factor tends to one.

We build on this result to prove that the folk theorem remains valid under almost-

public private monitoring. This result is not a simple application of the results of

Mailath and Morris, because our construction under imperfect public monitoring

fails to be uniformly strict. Indeed, it is important for our construction that some

players be indifferent across several actions after particular histories. Nevertheless,

our proof is largely inspired by their insights and results. As in the case of imperfect

public monitoring, we rely on a strong version of the identifiability conditions, on

the existence of a public randomization device, and we only show that every payoff

vector that dominates a strict Nash equilibrium payoff vector is achievable under

private almost-public monitoring in the case of two players.

These results prove that the example of Cole and Kocherlakota either relies on

the restriction to strongly symmetric strategies, or the failure of the identifiability

conditions (or a combination of both). More importantly, our construction relies on

the key ideas from Abreu et al. and Fudenberg et al., so that our result does not only

establish the robustness of (a version of) their folk theorem, but also shows that their

methods, in particular the strategy profiles they use, require only minor adjustments

to be robust as well.

The present folk theorem with imperfect private monitoring differs from those

from the existing literature. Mailath and Morris (2002) assume that monitoring is

not only almost public but also almost perfect. More importantly, they incorrectly

claim that the profile described in the proof of their Theorem 6.1 has bounded recall.1

Hörner and Olszewski (2005) also assume almost perfect monitoring; moreover, they

use substantially different strategies than those from Abreu et al. and Fudenberg et

al. On the other hand, almost public signals are typically very correlated (even condi-

tionally on action profiles), while Hörner and Olszewski (2005) allow for any pattern of

correlation conditional on action profiles. Matsushima (2004) and Yamamoto (2006)

1See Section 13.6 in Mailath and Samuelson (2006) for a detailed discussion of the flaw in their

proof.
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do not assume almost perfect monitoring either, but they obtain the folk theorem

only for the Prisoner’s Dilemma and games with very similar structure; also, they as-

sume conditionally independent signals (or signals that differ from public monitoring

by conditionally independent components). Finally, other constructions of equilib-

ria under private not almost perfect monitoring either do not yield the folk theorem

(Ely et al. (2005)), or allow players to communicate (Compte (1998), Kandori and

Matsushima (1998), Aoyagi (2002), Fudenberg and Levine (2004), Obara (2006)), or

allow players to obtain, at a cost, perfect signals (Miyagawa et al. (2005)).

2. The Model

In the present paper, we study both public and private (but almost-public) monitor-

ing. We first introduce the notation for public monitoring, used throughout Section

3, and then slightly modify the notation to accommodate private monitoring, studied

in Section 4.

2.1. Public Monitoring

We follow most of the notation from Fudenberg et al. (1994). In the stage game,

player i = 1, ..., n chooses action ai from a finite set Ai. We denote by mi the number

of elements of Ai, and we call a vector a ∈ A =
∏n

i=1 Ai a profile of actions. Profile

a induces a probability distribution over the possible public outcomes y ∈ Y , where

Y is a finite set with m elements. Player i’s realized payoff ri(ai, y) depends on the

action ai and the public outcome y. We denote by π(y | a) the probability of y given

a. Player i’s expected payoff from action profile a is

gi(a) =
∑
y∈Y

π(y | a)ri(ai, y).

A mixed action αi for each player i is a randomization over Ai, i.e. an element of

4Ai. We denote by αi(ai) the probability that αi assigns to ai. We define ri(αi, y),

π(y | α), gi(α) in the standard manner. We often denote the profile in which player

i plays αi and all other players play a profile α−i by (αi, α−i).
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Throughout the paper, we assume that different action profiles induce linearly

independent probability distributions over the set of possible public outcomes. That

is, we assume that the set {π(y | a): a ∈ A} consists of linearly independent vectors;

we call this assumption full-rank condition.

Note that the full-rank condition implies that every (including mixed) action pro-

file has both individual and pairwise full rank in the sense of Fudenberg et al. (1994).

The full-rank condition also implies that there are at least as many outcomes y as

action profiles a, i.e. m ≥ ∏n
i=1 mi. Thus, the full-rank condition is stronger than the

conditions typically imposed in the studies of repeated games with imperfect public

monitoring. However, given a number of signals m ≥ ∏n
i=1 mi, it is satisfied by all

monitoring structures {π(y | a) : a ∈ A, y ∈ Y } but a non-generic set of them.

We do not know if the folk theorems presented in this paper hold true if the

full-rank condition gets relaxed to a combination of individual and pairwise full rank

conditions assumed by Fudenberg et al. (1994).

For each i, the minmax payoff vi of player i (in mixed strategies) is defined as

vi := min
α−i∈4A−i

max
ai∈Ai

gi (ai, α−i) .

Pick α−i ∈ 4A−i so that

vi = max
ai∈Ai

gi

(
ai, α−i

)
.

The payoff vi is the smallest payoff that the other players can keep player i below

in the static game, and the profile α−i is an action profile that keeps player i below

this payoff.

Let:

U := {(v1, . . . , vn) | ∃a ∈ A, ∀i, gi (a) = vi} ,

V := Convex Hull of U ,

and

V := Interior of {(v1, . . . , vn) ∈ V | ∀i, vi > vi} .
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The set V consists of the feasible payoffs, and V is the set of payoffs in the interior

of V that strictly Pareto-dominate the minmax point v := (v1, . . . , vn). We assume

throughout that V is non-empty.

Given a stage-game (pure or mixed) equilibrium payoff vector v∗ := (v∗1, . . . , v
∗
n),

we also study the set

V ∗ := Interior of {(v1, . . . , vn) ∈ V | ∀i, vi > v∗i } ,

and we then assume that V ∗ is also non-empty.

We assume that players have access to a public randomization device. We will

henceforth suppose that in each period, all players observe a public signal x ∈ [0, 1];

the public signals are i.i.d. draws from the uniform distribution. We do not know

whether the folk theorem presented in this paper is valid without a public random-

ization device.

We now turn to the repeated game. At the beginning of each period t = 1, 2, ...,

players observe a public signal xt. Then the stage game is played, resulting in

a public outcome yt. The public history at the beginning of period t is ht =

(x1, y1, ..., xt−1, yt−1, xt); player i’s private history is ht
i = (a1

i , ..., a
t−1
i ). A strategy

σi for player i is a sequence of functions (σt
i)
∞
t=1 where σt

i maps each pair (ht, ht
i) to a

probability distribution over Ai.

Players share a common discount factor δ < 1. All repeated game payoffs are

discounted and normalized by a factor 1− δ. Thus, if (gt
i)
∞
t=1 is player i’s sequence of

stage-game payoffs, the repeated game payoff is

(1− δ)
∞∑

t=1

δt−1gt
i .

A strategy σi is public if in every period t it depends only on the public history ht

and not on player i’s private history ht
i. We focus on equilibria in which all players’

strategies are public, called perfect public equilibria (PPE). Given a discount factor δ,

we denote by E (δ) the set of repeated game payoff vectors that correspond to PPE’s

when the discount factor is δ.
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A strategy σi has finite memory of length T if it depends only on public (random-

ization device) outcomes and signals in the last T periods, i.e. on (xt−T , yt−T , ..., xt−1,

yt−1, xt) and (at−T
i , ..., at−1

i ). We denote by E (δ) the set of repeated game payoff vec-

tors that can by achieved by a PPE, and by ET (δ) the set of repeated game payoff

vectors achievable by PPE’s in which all players’ strategies have finite memory of

length T .

2.2. Private (Almost-Public) Monitoring

Studying games with private monitoring, we shall henceforth make the assumption (as

in Mailath and Morris (2002)) that the public monitoring structure has full support.

Assumption. π(y|a) > 0 for all y ∈ Y and a ∈ A.

For each i, the minmax payoff vP
i in pure strategies of player i is defined as

vP
i := min

α−i∈A−i

max
ai∈Ai

gi (ai, α−i) .

We further define the set V P by

V P := Interior of
{
(v1, . . . , vn) ∈ V | ∀i, vi > vP

i

}
.

In Section 4, we assume that v∗ corresponds to the equilibrium payoff vector of a

strict Nash equilibrium.

A private monitoring structure is a collection of distributions {ρ (·|a) : a ∈ A} over

Y n. The interpretation is that each player receives a signal yi ∈ Y , and each signal

profile (y1, . . . , yn) obtains with some probability ρ(y1, . . . , yn|a). Player i’s realized

payoff ri(ai, yi) depends on the action ai and the private signal yi. Player i’s expected

payoff from action profile a is therefore

gi(a) =
∑

(y1,...,yn)∈Y n

ρ(y1, . . . , yn|a)ri(ai, yi).
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The private monitoring structure ρ is ε-close to the public monitoring structure

π if |ρ(y, . . . , y|a) − π(y|a)| < ε for all y and a. Let ρi(y−i|a, yi) denote the implied

conditional probability of y−i := (y1, . . . , yi−1, yi+1, . . . , yn).

We maintain the assumption that players have access to a public randomization

device in every period.

3. The Finite-Memory Folk Theorem under Public Monitoring

3.1. Result

We establish the following theorem.

Theorem 3.1.

(i) (n = 2) For any payoff v ∈ V ∗, there exists δ̄ < 1, for all δ ∈ (
δ̄, 1

)
, there exists

T < ∞ such that v ∈ ET (δ).

(ii) (n > 2) For any payoff v ∈ V , there exists δ̄ < 1, for all δ ∈ (
δ̄, 1

)
, there exists

T < ∞ such that v ∈ ET (δ).

Observe that the statement is stronger in the case of more than two players. Also,

observe the order of quantifiers. In particular, we do not know whether we can take

T independently of δ. In the proof presented below, the length of memory T is such

that

lim
δ→1

T = ∞.

3.2. Sketch of the Proof

The proofs of the two cases are very similar. In both cases, we modify the proof

of the folk theorem from Fudenberg et al. (1994), hereafter FLM. In particular,

we take a set W that contains v and show that W ⊂ ET (δ). Our proof starts

from the observation that matters would be relatively simple if players could publicly

communicate, and communication was (i) cheap (i.e., not directly payoff-relevant),

(ii) perfect (i.e., players observe precisely the opponents’ message) and (iii) rich (i.e.,

players’ message space is as rich as the set of possible continuation payoff vectors). In
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this case, players could regularly communicate each others’ continuation payoff, and

they could then ignore the history that led to those continuation payoffs.

However, even when communication is cheap, rich and perfect, one cannot ignore

the issue of truth-telling incentives. This is particularly problematic with two players:

since no player i has an incentive to report truthfully his own continuation payoff in

the case it is the lowest possible in the set W that is considered, each player must have

a message that would force his opponent’s continuation payoff to be as low as possible

in the set W . In turn, this implies that the set W that is considered includes a payoff

vector w that is simultaneously the lowest possible for both players, and therefore it

must have a ‘kink’, precluding the smoothness of W assumed in the construction of

equilibria from FLM. Observe however that a ‘kink’ of that kind is not a problem if

it only occurs at the “bottom left” of the set W , provided that it Pareto-dominates a

Nash-equilibrium payoff vector of the stage game. If the continuation payoff vector is

equal or close to w, then players play the stage-game equilibrium profile, followed by a

continuation payoff vector from the set W that is independent of the public outcome

observed in the current period. This, roughly speaking, explains why we only have a

Nash-threat folk theorem in the case of two players.

We will proceed in steps. We first show that for some particular sets W , if com-

munication is cheap, perfect and rich, then there exist protocols in which players

truthfully reveal the continuation payoff vector in equilibrium; moreover, we con-

struct a protocol where players take turns in sending messages, as it is easier to

extend such protocols to the case of imperfect communication. Of course, there is

no cheap, perfect and rich communication in the repeated game. Players can use

actions as signals (the meaning of which may depend on the outcome of the public

randomization), but they satisfy neither of the three properties. Therefore, even if

players wish to truthfully reveal continuation payoff vectors, they can only reveal a

finite number of those, they do so imperfectly, and possibly at the cost of flow payoffs.

[As it turns out, the major problem is that communication is imperfect, and actions

used to send signals have direct payoff consequences. This is where the strengthen-

ing of full-rank is convenient.] We will show that this does not create any essential
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problem, but this will require modifying the construction from FLM and performing

some computations.

The strategy profile that we specify alternates phases of play signaling future

continuation payoffs, with phases of play generating those payoffs:

Regular Phase (of length M(δ)): in the periods of this phase, play proceeds as in

FLM, given a continuation vector;

Communication Phase (of length N(δ)): in the periods of this phase, players use

their actions to signal a continuation payoff vector.

As, the public histories from a communication phase contain information regarding

the continuation payoff vector for the following regular phase, the strategies need only

to have memory of length 2N(δ) + M(δ). One can easily check that then we obtain

the folk theorem in finite-memory strategies by the argument from FLM, assuming

that the communication phase is short enough and the regular phase is long enough;

more precisely, it suffices to obtain the following condition:

lim
δ→1

δN(δ) = 1 and lim
δ→1

δM(δ) = 0. (3.1)

Indeed, disregarding the flow payoffs and incentives during communication phases,

one can slightly modify the construction from FLM to prove an analogue of their folk

theorem for repeated games in which players’ discount factor changes over time: it is

δ for M(δ)− 1 periods, and then it drops, for one period, to δN(δ). Alternatively, let

δ′ := δN(δ); taking any set W that is self-generated both for discount factors δ and

δ′, we can mimic the proof of Theorem 1 in Abreu et al. (1990) to show that this

implies that any payoff in W is an equilibrium payoff of our repeated game with the

discount factor changing over time.

Condition (3.1) also guarantees that the flow payoffs during a communication

phase do not affect the equilibrium payoff vector in the limit as δ → 1.

To deal with the problem that communication is not cheap, we prescribe strategies

such that the play in a communication phase affects the continuation payoff vector
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differently in two complementary events, determined by public randomization. In

one event, players will proceed as in FLM, given the continuation payoff vector that

just has been communicated; in the other event, the continuation payoff vector will

be contingent on the public outcomes observed in the communication phase, so that

it makes every player indifferent (with respect to flow payoffs of the communication

phase) across all actions (in every period of the communication phase), given any

action profile of his opponents. The probability of this former event will be of the

order of δN(δ), and the probability of this latter event will be only of the order of

1 − δN(δ). This latter event can be therefore disregarded (in the analysis of the

repeated game that begins in the communication phase) as it does not affect the

equilibrium payoff vector in the limit as δ → 1, and its presence can be treated as an

additional discount factor (that also tends to 1 with δ) in the period that follows the

communication phase.

It is not a serious problem that communication is not rich, because it suffices to

communicate only a finite number of continuation payoff vectors; indeed, given any

discount factor δ, any payoff vector from the boundary of W can be represented as the

weighted average of a vector of flow payoffs in the current period and a continuation

payoff from the interior of W . The set of all those continuation payoff vectors from the

interior of W is a compact subset of W . Therefore there exists a (convex) polyhedron

P (δ) ⊆ W that strictly contains all those vectors. Thus, one can communicate any

such continuation payoff vector from the interior of W by randomizing (using the

public randomization device from the first period of the communication phase) over

the vertices of P (δ) with appropriate probabilities.

However, when the discount factor δ increases, the number of vertices of P (δ)

typically increases as well, and so does the length of the communication phase. So,

calculations must be performed to ensure that (3.1) is satisfied.

Finally, to deal with the problem that communication is not perfect, notice that

any desired vertex of P (δ) can be communicated with high probability by repeating

for a number of times the message (playing for a number of times the action profile)

that corresponds to this vertex. Suppose that players communicate in a similar man-
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ner vertices of another polyhedron Q(δ) that contains P (δ) in its interior. When the

number of repetitions of the message that corresponds to any desired vertex of Q(δ)

increases, the expected value of the distribution over the vertices of Q(δ) induced by

this sequence of messages converges to the desired vertex. Ultimately, the polyhe-

dron spanned by those expected values contains P (δ), and so the continuation payoff

vectors for all payoff vectors from the boundary of W .

However, the length of the communication phases raises as well with the number

of repetitions of any message. Thus, we again need some calculations to make sure

that the condition (3.1) will be satisfied.

4. Details of the Proof

4.1. The definition of the set W

Given any payoff vector v in V ∗ (n = 2) or V (n > 2), we define a set W as follows.

• (n = 2) The set W contains v and is contained in V ∗. It is assumed closed and

convex, and having a non-empty interior. Let

wi := min {wi : w ∈ W} (i = 1, 2) .

That is, wi is the i-th coordinate of any vector in W that minimizes the value

of this coordinate over the set W . Given any vector w̃ = (w̃1, w̃2) in W , let

also: w̃1
2 = w̃2 and

w̃1
1 := min {w1 : w = (w1, w2) ∈ W and w2 = w̃2} .

That is, w̃1 = (w̃1
1, w̃

1
2) is the horizontal projection of w̃ onto the boundary of

W that minimizes the first coordinate over W . Finally, given w̃ in W , and thus

w̃1, let w̃12
1 = w̃1

1 and

w̃12
2 := min

{
w2 : w = (w1, w2) ∈ W and w1 = w̃1

1

}
.

That is, w̃12 = (w̃12
1 , w̃12

2 ) is the vertical projection of w̃1 onto the boundary of

W that minimizes the second coordinate over W . See the right panel of Figure

1.
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The set W is chosen so that:

(i) for any vector w̃ ∈ W ,

w̃12
2 = w2,

and

(ii) the boundary of W is smooth except at the point w := (w1, w2).

Observe that (i) implies that w ∈ W . To be concrete, we assume that the

boundary of W consists of three quarters of a circle and a quarter of a square,

as it is depicted in the right panel of Figure 1.

r2

2

w̃

1

NoYes

w̃12
r

w̃1w̃

w̃1

w̃

NoYes

w̃12

v∗2

v2

v∗1
v1

W

-

6
r

Figure 1

• (n > 2) The set W is any closed ball such that v ∈ W and W ⊆ V . In what

follows, we let wi denote the vector that minimizes the i-th coordinate over W :

wi := min {wi : w ∈ W} (i = 1, 2, 3) .
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Also, given any vector w̃ in W , we let w̃2 denote the vector in W that minimizes

the second coordinate over all vectors w in W such that w1 = w̃1. Formally,

w̃2
1 = w̃1,

w̃2
2 := min {w2 : w = (w1, w2, ..., wn) ∈ W and w1 = w̃1} ,

and w̃2 ∈ W is the unique vector whose the first two coordinates are equal to

w̃2
1 and w̃2

2, respectively. Observe that

∀w ∈ W , w3
2 ≥ w̃2

2. (4.1)

That is, identifying coordinate i with player i’s payoff, player 2 always weakly

prefers the payoff vector w3 to the vector w̃2. See the right panel of Figure 2.
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4.2. Truthful Communication of Continuation Payoffs

4.2.1. Cheap, rich and perfect sequential communication

The problem we address here is the following: Can we design an extensive-form,

perfect information game, such that, for any w ∈ W , there exists a (subgame-perfect)

equilibrium of this game in which the equilibrium payoff is equal to w? The difficulty,

of course, is that the extensive form itself does not depend on the specific w. The

equilibrium strategies, on the other hand, are allowed to depend on w.

The answer is affirmative, for sets W as defined above. In fact, the properties of

W are essentially motivated by this problem.

Notice first that it is straightforward to give a simultaneous-move game with the

required properties. It suffices if players report a payoff vector, and the actual payoff

vector coincides with the reported one if all reports are identical. In the case of two

players, the payoff vector minimizes the payoff of both players over the set W (i.e.

it is equal to w) if the two reports differ; in the case of three or more players, the

payoff vector minimizes the payoff of the player whose report differs from otherwise

identical reports (it is unimportant what payoff vector is prescribed in other cases).

We shall now slightly modify this simultaneous-move game to obtain a game in

which only one player moves at a time. Consider both cases in turn.

• (n = 2) The extensive form is described in the left panel of Figure 1. Player 2

moves first, choosing any action w̃ ∈ W . Player 1 moves second, and chooses

Yes or No. If player 1 chose Yes, player 2 moves a last time, and chooses Yes

or No. Payoff vectors are as follows. If the history is (w̃, Yes, Yes), the payoff

vector is w̃. If it is (w̃, Yes, No), the payoff vector is w̃1. If the history is (w̃,

No), the payoff vector is w̃12.
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Given w, the equilibrium strategies σ := (σ1, σ2) are as follows:

σ2 (∅) = w,

σ2 (w̃, Yes) =

{
Yes if w = w̃,

No otherwise,

σ1 (w̃) =

{
Yes if w = w̃,

No otherwise.

To check that this is an equilibrium, observe that player 2 is indifferent between

both outcomes if the history reaches (w̃, Yes) by definition of w̃1. Therefore,

his continuation strategy is optimal. Given this, after history w̃ = w, player

1 chooses between getting w̃1 (if he chooses Yes) or w̃12
1 (if he chooses No), so

that choosing Yes is optimal; after history w̃ 6= w, he chooses between w̃1
1 (if he

chooses Yes) or w̃12
1 (if he chooses No), and choosing No is optimal as well. Given

this, player 2 faces an initial choice between getting w2 by choosing w̃ = w or

getting w̃12
2 = w2 by choosing another action. Since w2 ≥ w2, choosing w̃ = w

is optimal.

• (n > 2) The extensive form is described in the left panel of Figure 2. While

there may be more than three players, only three of them take actions. Player

3 moves first, choosing any action w̃ ∈ W . Player 2 moves second, and chooses

Yes or No. Player 1 then moves a last time, and chooses either Yes or No. Payoff

vectors are as follows. If the history is (w̃, Yes, Yes), the payoff vector is w̃.

If it is (w̃, Yes, No), the payoff vector is w̃2. If the history is (w̃, No,Yes), the

payoff vector is w3. If the history is (w̃, No, No), the payoff vector is w2.
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Given w, the equilibrium strategies σ := (σ1, σ2, σ3) are as follows:

σ3 (∅) = w,

σ2 (w̃) =

{
Yes if w = w̃,

No otherwise,

σ1 (w̃, Yes) =

{
Yes if w = w̃,

No otherwise,

σ1 (w̃, No) =

{
No if w = w̃,

Yes otherwise.

Again, it is straightforward to verify that this is an equilibrium. Player 1 is

indifferent between his actions after both histories he may face, by definition of

w̃2, and since w3
1 = w2

1 (because W is a ball). Given this, after history w̃ = w,

player 2 chooses between getting w̃2 (if he chooses Yes) or w2
2 (if he chooses No),

so that choosing Yes is optimal; after history w̃ 6= w, he chooses between w̃2
2

(if he chooses Yes) or w3
2 (if he chooses No), and choosing No is optimal as well

given (4.1). Given this, player 3 faces an initial choice between getting w3 by

choosing w̃ = w or getting w3
3 by choosing another action. Choosing w̃ = w is

optimal.

It is not difficult to see that similar constructions exist for some sets W which

do not have the properties specified earlier. However, the only feature that has been

assumed which turns out to be restrictive for our purposes (namely, that w ∈ W in

case n = 2) cannot be dispensed with: if w /∈ W , there exists no game (extensive-

forms or simultaneous-move) solving the problem described in this subsection. Indeed,

since there must be an equilibrium in which player 1 receives his minimum over the

set W , player 2 must have a strategy s2 such that player 1’s payoff equals (at best) to

this lowest payoff independently of his own strategy; similarly, player 1 must have a

strategy s1 such that player 2’s payoff equals to his lowest payoff independently of his

own strategy. The pair of strategies (s1, s2) must yield a payoff vector from the set
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W , and so it must be the vector that minimizes simultaneously the payoffs of both

players.

4.2.2. Sequential communication with simultaneous actions

One problem with the repeated game is that all players take actions in every period,

not just whichever player is most convenient for the purpose of our construction. To

address this issue, we must ensure that there exists a mapping from public signals to

messages such that a player can (at least probabilistically) get his intended message

across, through his choice of actions, independently of his opponents’ actions.

Binary messages, say a or b, are good enough. We address next the following

problem: Given some mapping f : Y → [0, 1], consider the one-shot game where each

player j chooses an action αj ∈ 4Aj, but his payoff depends only on the message,

which is equal to a with probability f (y), where y is the public signal that results

from the action profile that is chosen; in the repeated game, the message is equal to a

if the public randomization device takes (in the following period) a value x ∈ [0, f(y)].

Fix one player, say player i. Can we find f and action profiles α∗ and β∗ such that

(i) for every j 6= i, actions of player j do not affect the probability of message a,

given that his opponents take the action profile α∗−j or β∗−j;

(ii) player i maximizes the probability of message a by taking action α∗i , given

that his opponents take the action profile α∗−i, and player i maximizes the probability

of message b by taking action β∗i , given that his opponents take the action profile β∗−i;

(iii) the probability of message a is (strictly) higher under α∗ than under β∗?

We argue here that the answer is positive, under the identifiability assumption

(full-rank condition) that we have imposed. We take first an arbitrary pure action

profile α∗. Then we define β∗ as an arbitrary pure action profile that differs from α∗

only by the action of player i. Finally, we will define the values {f(y) : y ∈ Y } as a

solution of a system of

mi + 2
∑

j 6=i

(mj − 1)

18



linear equations. In this system of equations, there is one equation that corresponds

to the action profile α∗, one equation that corresponds to β∗, one equation for every

pure action profile that differs from α∗ (and so from β∗) only by the action of player

i, and one equation for every pure action profile that differs from α∗ or β∗ only by the

action of one of the players j 6= i. Every pure action profile determines a probability

distribution over public signals y ∈ Y . We take the probability assigned to the public

signal y as the coefficient of the unknown f(y), and the right-hand constant is equal

to one of two numbers l or h, where l < h. It is h for α∗ and any pure action profile

that differs from α∗ only by the action of one of the players j 6= i, and it is l for the

remaining action profiles.

This system of equations has a solution because the vectors of coefficients of

particular equations are linearly independent (by the full-rank condition). If it hap-

pens that the values {f(y) : y ∈ Y } do not belong to [0, 1], we replace them with

{f ′(y) : y ∈ Y } where

f ′(y) = cf(y) + d;

we pick some positive c and d to make sure that the values {f ′(y) : y ∈ Y } belong to

[0, 1]. This changes the right-hand constants to l′ = cl + d and h′ = ch + d, but the

property that l′ < h′ is preserved.

By construction, if player i takes action α∗i the probability of message a is equal

to h given the other players take the action profile α∗−i; if he takes any other action,

it is equal to l. On the other hand, no other player j 6= i can unilaterally affect the

probability of message a; it is h independently of his action. Similarly, if player i takes

action β∗i (or any action other than α∗i ) the probability of message a is equal to l given

that the other players take the action profile β∗−i = α∗−i (it is h if he takes action α∗i ),

and no other player j 6= i can unilaterally affect the probability of message a. This

yields properties (i)-(ii); the probability of message a is equal to h and l contingent

on α∗ and β∗, respectively; thus, (iii) follows from the assumption that l < h.

Notice finally that the method of interpreting signals as messages described in this

section could be relatively simple due to the communication protocol that allowed only

one player to speak at a time. If several players were allowed to speak at a time, we
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would have to design a method of interpreting signals as message profiles such that

players can choose their own messages but cannot affect the messages of other players.

4.2.3. The communication phase

We now design the communication phase in the repeated game. Flow payoffs are still

ignored, so we assume that the payoff vector is equal to the continuation payoff that

will be communicated.

Suppose players want to communicate the vector w (a vertex of the polyhedron

P (δ)). In the communication phase, players send binary messages by the means of a

number of periods in which they play α∗ or β∗. This should be interpreted as follows:

In every single period, the public outcome translates into a message (a or b) in the

way we have just described. We fix a threshold number of messages a and we interpret

the message of the communication phase as a if the number of single periods in which

a has been received exceeds this threshold. The threshold number and the number

of periods of the communication phase are chosen such that if players play α∗ (or

respectively, β∗) in all periods, then the message of the communication phase will be

a (respectively b) with high probability. (We will specify later what we mean by high

probability.)

Case n = 2 Begin with the case n = 2. Ignore first that every message consists

of a sequence of binary messages. However, recall that information transmission

is imperfect, messages received are equal to message prescribed by the equilibrium

strategy only with probability close to, but not equal to one, so that players face

lotteries. The extensive form is defined as follows. See also Figure 3.
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Figure 3

• Player 2 moves first, choosing any w̃ (a vertex of the polyhedron P (δ)).

• Nature (the public randomization device) moves second, choosing Left and

Right with probability ξ and 1− ξ, respectively (to be defined).

• Player 1 moves third, choosing Yes or No.

• If Nature has chosen Right and Player 1 has chosen No, Nature chooses Left

and Right with probability η (w̃) and 1− η (w̃), respectively (to be defined).
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• If Nature has chosen Right and Player 1 has chosen Yes, Player 2 chooses Yes

or No.

Payoff vectors : The payoff vector is defined as follows. If the history is (w̃,

Left, Yes), the payoff vector is w′ to be defined; if it is (w̃, Left, No), the

payoff vector is w′′ to be defined; if it is (w̃, Right, Yes, Yes), the payoff vector

is w̃; if it is (w̃, Right, Yes, No), the payoff vector is w̃1; if the history is (w̃,

Right, No, Left), the payoff vector is w̃; finally, if the history is (w̃, Right, No,

Right), it is w̃12.

The vectors w′ and w′′ are vertices of P (δ) such that player 1 is indifferent

between both, but player 2 strictly prefers w′ to w′′ (thus, any strategy of

player 1 in the event that Nature picks Left will be optimal).

Notice two differences between the communication protocol studied in this sec-

tion compared to that studied in Section 3.2.1. First, the protocol has been

extended by two moves of Nature; this turns out necessary to give players in-

centives if players can get their messages across only probabilistically. Second,

players communicate only vertices of the polyhedron P (δ). In particular, the

payoff vectors w̃1 and w̃12 are defined with respect to the polyhedron P (δ), in-

stead of the set W , and it is assumed that for every vertex w̃, those vectors as

well as the vectors w′ and w′′ are themselves vertices of P (δ). This of course

requires some regularity assumptions about the polyhedron P (δ), but it is easy

to see that such assumptions can be made with no loss of generality.

Strategies : Given w, the strategy profile σ := (σ1, σ2) defined as follows is a

22



sequential equilibrium.

σ2 (∅) = w,

σ2 (w̃, Right,Yes) =

{
Yes if w = w̃,

No otherwise,

σ1 (w̃, Right) =

{
Yes if w = w̃,

No otherwise,

σ1 (w̃, Left) =

{
Yes if w = w̃ and w minimizes player 2’s payoff over P (δ) ,

No otherwise.

Observe that, given these strategies, if the history is (w̃, Right), with w 6= w̃,

player 1 faces a lottery between getting w̃ with low probability and w̃1 with high

probability (by choosing Yes), and a lottery between w̃ and w̃12 (by choosing No),

with probability η and 1−η, respectively. We can thus pick η so as to guarantee that

player 1 is indifferent between both choices in this event. Note that η is accordingly

low (it is equal to the probability of receiving message Yes when players intend to

communicate message No).

In case w minimizes player 2’s payoff over P (δ), player 2’s incentive for revealing

truthfully w̃ = w comes from the event that Nature picks Left in the second round,

since in that case truth-telling (resp. lying) gives a lottery between w′ and w′′ with

high (resp. low) probability on w′. Since in the event that Nature picks Right in

the second round, player 2 gets w̃12
2 = w2

2 with very high probability, we can ensure

truthful revelation by picking ξ > 0, but low nevertheless (again, this probability can

be set proportional to the probability of receiving the opposite message to one that

players intend to communicate).

The remaining equilibrium conditions are immediate to verify, given the definitions

of w̃1and w̃12. The argument is analogous to that from Section 3.2.1. It is, however,

important to emphasize that, for that argument to work, the probability of receiving
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the opposite message to one that players intend to communicate (through the sequence

of action profiles α∗ or β∗) must be low compared to the differences in coordinates of

P (δ) whenever they are different.

Notice that the action profiles α∗ and β∗ have been constructed so that the actions

of players other than one who is supposed to move do not affect messages. Thus, only

the player who is supposed to move has to be given incentives. Further, recall that

any message w̃ consists of a sequence of binary messages. It may therefore happen

that player 2 who is supposed to communicate w̃ = w learns for sure that he failed

to send the prescribed binary message in one of the rounds. Then player 2’s strategy

prescribes, in the remaining rounds, binary messages that maximize player 2’s payoff

(among payoff vectors that still can be communicated).

Case n > 2 Consider now the case n > 2. As before, ignore that any message

w̃ requires several periods of binary messages. This problem can be dealt with in a

manner similar to that for the two-player case. Recall again that messages are only

equal to the prescription of the equilibrium strategy with probability close to, but not

equal to one, so that players face lotteries. The extensive form is defined as follows.

See also Figure 3.

• Player 3 moves first, choosing any w̃ (a vertex of the polyhedron P (δ)).

• Nature (the public randomization device) moves second, choosing Left and

Right with probability ξ and 1− ξ, respectively (to be defined).

• Player 2 moves third, choosing Yes or No.

• If Nature has chosen Right in the second stage, Nature then moves again,

choosing Left and Right with probability ξ and 1− ξ, respectively.

• If Nature has chosen Right in the second stage, player 1 moves last, choosing

Yes or No.
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Payoff vectors : The payoff vector is defined as follows. If the history is (w̃,

Left, Yes), the payoff vector is w′ to be defined; if it is (w̃, Left, No), the

payoff vector is w′′ to be defined; if it is (w̃, Right, Yes, Right, Yes), the payoff

vector is w̃; if it is (w̃, Right, Yes, Right, No), the payoff vector is w̃2; if the

history is (w̃, Right, m2, Left, Yes), the payoff vector is w2 for m2 = Yes,No; if

the history is (w̃, Right, m2, Left, No), it is w̄2 (to be defined), ; if the history

is (w̃, Right, No, Right, Yes), it is w3; finally, if the history is (w̃, Right, No,

Right, No), it is w2. Modifying the polyhedron P (δ) if necessary, we can assume

that all payoff vectors are vertices of this polyhedron.

The vertices w′, w′′ are such that both player 1 and 2 are indifferent between

them and player 3 strictly prefers w′ to w′′. Therefore, any strategy of player 2

when Nature chooses Left in the second stage will be optimal.

The vertex w̄2 is defined as the element of W that gives the highest payoff to

player 2 within the ball W ; therefore, player 1 is indifferent between w̄2 and w2.

Since player 1 is also indifferent between w3 and w2 as well as between w̃ and w̃2, this

ensures that any strategy of player 1 will be optimal for every possible history.

Similarly to the case of two players, vectors w̃2 are defined with respect to the

polyhedron P (δ), instead of the set W , and it is assumed that all terminal payoff

vectors are vertices of P (δ).

• Strategies : Given w, the strategy profile σ := (σ1, σ2, σ3) defined as follows is a
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sequential equilibrium.

σ3 (∅) = w,

σ2 (w̃, Left) =

{
Yes if w = w̃ and w minimizes 3’s payoff over P (δ) ,

No otherwise,

σ2 (w̃, Right) =

{
Yes if w = w̃,

No otherwise,

σ1 (w̃, Right, Yes, Right) =

{
Yes if w = w̃

No otherwise,

σ1 (w̃, Right, Yes, Left) =

{
No if w = w̃ = w2

Yes otherwise,

σ1 (w̃, Right, No, Right) =

{
No if w = w̃

Yes otherwise,

σ1 (w̃, Right, No, Left) =

{
No if w 6= w̃ and w̃ = ŵ1 or ŵ2

Yes otherwise,

where ŵ1, ŵ2 are to be defined.

To verify incentives of player 2 when Nature has chosen Right, we consider the

cases w = w̃ and w 6= w̃ separately.

• w = w̃: By choosing Yes, player 2 faces a compound lottery; with probability

1 − ξ, the compound lottery yields a lottery on {w̃, w̃2} with high probability

on w̃; with probability ξ, the compound lottery yields a lottery on {w̄2, w2};
by choosing No, player 2 also faces a compound lottery; with probability 1− ξ,

it yields a lottery on {w3, w2} with high probability on w2; with probability

ξ, it yields a lottery on {w̄2, w2}. Therefore, it is clear that player 2 prefers

Yes, unless w = w2. In that case, however, choosing Yes is optimal because it

guarantees that the probability of w̄2 is high, while it is low otherwise.

• w 6= w̃: By choosing No, player 2 faces a compound lottery; with probability 1−
ξ, it yields a lottery on {w3, w2} with high probability on w3; with probability ξ,
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it yields a lottery on {w̄2, w2}; by choosing Yes, player 2 also faces a compound

lottery; with probability 1−ξ, it yields a lottery on {w̃, w̃2} with high probability

on w̃2; with probability ξ, it yields a lottery on {w̄2, w2}. Therefore, player 2

prefers No, unless w̃ is one of the two extreme points ŵ1, ŵ2 for which both

w̃2
2 = w3

2. In that case, however, choosing No is optimal because it guarantees

that the probability of w̄2 is high, while it is low otherwise.

Finally, the incentives of player 3 are immediate to verify.

4.3. The Effect of Flow Payoffs on Incentives

Finally, repeated game payoffs depend also on flow payoffs in the communication

phase. Those flow payoffs may affect players’ incentives to communicate the contin-

uation payoff vector truthfully. However, this problem is easy to deal with.

Suppose that in the first period that follows the communication phase, the players

play with some probability φ > 0 not strategies that yield the continuation payoff

vector that they just have communicated, but strategies that yield another payoff

vector v ∈ W . It is decided by the public signal x observed in the first period

that follows the communication phase which of the two continuation payoff vectors

will be played. The vector v is contingent on the public outcomes observed in the

communication phase, so that it makes every player indifferent (in every period of the

communication phase) across all actions given any action profile of the opponents.

The full-rank condition and the full-dimensionality condition guarantee the existence

of vector v, provided that the differences in flow payoffs in the communication phase

are small enough compared to the continuation payoff vector v, even if it is received

only with the probability φ. However, it is indeed the case for every φ > 0 if δ is large

enough. Further, if φ is small and communication phases are sufficiently infrequent,

the repeated game payoff vector converges to that for φ = 0.

More precisely, we can assume that φ is of order proportional to the flow payoffs

during the communication phase, i.e. it is proportional to

1− δN(δ).
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4.4. The Length of Communication Phase

We have prescribed strategies that give players incentives to communicate the contin-

uation payoff vector truthfully, assuming that the communication phase is sufficiently

short (i.e. N(δ) satisfies the first part of (3.1)2). We have to check now that play-

ers indeed need only this short communication phase for the prescribed protocol. It

suffices to show that

lim
m→∞

(δm)N(δm+1) = 1 (4.2)

where

δm := 1− 1

2m
.

Indeed, we shall construct a specific sequence of polyhedra P (δm), m = 1, 2, ..., and

we shall define P (δ) as P (δm+1) for every δ such that δm ≤ δ < δm+1. Then

(δm)N(δm+1) ≤ (δ)N(δ) ≤ 1,

and the first part of (3.1) follows from (4.2).

Observe first that the polyhedron P (δm) can be chosen so that its number of

vertices is proportional to km, i.e. it is equal to c · km where c and k are constants,

independent of m. Indeed, denote the boundary of the set W by bdW ; consider the

standard Euclidean distance in the set W , and define the distance of a vector w ∈ W

from a compact set V ⊂ W by

dist(w, V ) = min
v∈V

dist(w, v).

It follows directly from FLM (or the proof of Theorem 1 in APS) that any given

payoff vector from the boundary of W is represented as the weighted average of

the current period payoff vector taken with weight 1 − δm and a linear (convex)

combination of continuation payoff vectors taken with weight δm. Those continuation

2The second part of (3.1) is straightforward, as we can specify the regular phase to be arbitrarily

long.
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payoff vectors converge (as δm → 1) to the given payoff vector from the boundary

approximately along straight lines, and so their distance from the boundary of W is

proportional to 1− δm. Recall that we modify in the present paper the construction

of FLM to repeated games in which players discount payoffs by δm for M(δm) − 1

periods, and then their discount factor drops, for one period, to δN(δm)
m . One can

easily see, however, that this makes the distance of continuation payoff vectors (in

the period follows the communication phase) from the boundary of W even of a larger

order that 1− δm.

By continuity and compactness arguments, the set of continuation payoff vectors

for the entire boundary of W is contained in the set

W ′
m = {w ∈ W : dist(w, bdW ) ≥ d · (1− δm)},

where d is a constant, independent of m. We shall now construct a polyhedron P (δm)

such that

W ′
m ⊂ P (δm) ⊂ W .

Consider the case n = 2. In this case, we assume that the boundary of W (and so

the boundary of W ′
m) consists of three quarters of a circle and a quarter of a square,

as it is depicted in the right panel of Figure 1. We shall first construct the polyhedron

P (δm) with the required properties under the assumption that the boundary of W

is a circle, and then we shall argue that the construction generalizes to the shape in

which one of the quarters of this circle is replaced with a quarter of a square.

Define P (δm) so that it has 2m vertices that belong to the boundary of the ball W ,

and the edges of the boundary of P (δm) have equal length, as it is shown in Figure

4(a). Denote by xm the distance between the middle of an edge and the boundary of

W . Notice that

xm = r
(
1− cos

π

2m

)
,

where r denotes the radius of W , and so

xm

2−m
= r

1− cos π
2m

1
2m

;
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this expression converges to 0 (as m →∞), because

1− cos πx

x
→x→0 0.

Thus, xm converges to 0 faster than 2−m, which yields that W ′
m ⊂ P (δm) (at least

when m is large enough).

If the boundary of W consists of three quarters of a circle and a quarter of a

square, then the polyhedron P (δm) may have even fewer vertices, as we need only

three vertices, independently of m, for the entire square quarter. In the case of n > 2,

we can take as P (δm) a polyhedron whose boundary consists of regular simplices (i.e.

simplices with equal edges) of the same size, such that all vertices of P (δm) belong to

the boundary of W . Actually, the number of vertices P (δm) need not be exponential;

there exist polyhedra P (δm) with the required properties, and a polynomial number

of vertices. See Böröczky (2001), which also contains the proof for the general case

of n ≥ 2.3

Our construction from Section 3.2.3 requires that for every vertex w̃, the payoff

vectors w̃1 and w̃12 (or w̃2) as well as the vectors w′ and w′′ (and w2, w̄2, w3) are

themselves vertices of P (δm). It can, however, be seen that the construction of P (δm)

given above can easily achieve this goal.4

Thus, players need only a number of binary message that is proportional to m (say

c ·m, for a constant c > 0) to communicate a desired vertex of P (δm). Indeed, the

set of all vertices of P (δm) can be divided into halves, and the first binary message

reveals which half contains the vertex to be communicated; then each half is divided

into halves again, and the second binary message reveals which half within that half

contains the vertex, and so forth. If players were able to communicate binary messages

accurately, this would already conclude the proof of (4.2), as

(
1− 1

2m

)m+1

→m 1.

3We are indebted to Rakesh Vohra for this reference.
4Of course, there cannot then be only three vertices corresponding to the square quarter, but

this number of vertices must be equal to that corresponding to every circle quarter.
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However, players communicate only by means of sequences of action profiles α∗

and β∗; in every single period, the public outcome translates into a single-period

message (a or b). When α∗ is played the probability of message a is higher compared

to when β∗ is played; the message of the communication phase is interpreted as a if

the number of single periods in which a has been received exceeds a threshold number.

This sort of communication imposes the following problem: Since players do not

communicate accurately, when they take the sequence of action profiles that corre-

sponds to a vertex of P (δm), they end up only with a probability distribution over

the messages that correspond to various vertices of P (δm), and the expected value of

this probability distribution typically does not coincide with the vertex to be com-

municated.

To address this problem, we first slightly modify the polyhedron P (δm) so that the

distance of any vertex of P (δm) to the boundary of W can be bounded by a number

proportional to 1 − δm. In the case of n = 2, replace each vertex of P (δm) with a

vertex that lies on the line joining the original vertex with the origin of W whose

distance from the boundary of W is equal to a half of the distance between W and

W ′
m; moreover, for every edge of the boundary of P (δm), add a vertex that lies on

the line joining the origin of W and the middle of this edge whose distance from the

boundary of W is also equal to a half of the distance between W and W ′
m (see Figure

4(b)). The modified polyhedron P (δm) contains W ′
m, because the point from its edge

that is closest to bdW ′
m coincides with the intersection point of this edge and an edge

of the original P (δm). Moreover the modified P (δm) has only twice as many vertices

as the original P (δm), so its number of vertices is proportional to km for a constant

k.

The argument is analogous in the case of n > 2; the distance of each vertex of the

modified P (δm) from the boundary of W is equal to a half of the distance between

W and W ′
m, and each regular simplex that the boundary of the original P (δm) is

composed of is replaced with 2n−1 regular simplices in the modified P (δm). Again,

see Böröczky (2001) for a rigorous proof that a modified polyhedron P (δm) with

the required properties exists in the general case of n ≥ 2. It can also be assumed
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without loss of generality that all terminal payoff vectors of the communication game

described in Section 3.2.3 are vertices of P (δm).

Now, suppose that players communicate the vertices of another, larger and homo-

thetic polyhedron Q(δm).5 If the communication is sufficiently accurate, the sequence

of action profiles that corresponds to a vertex of Q(δm) induces a probability distribu-

tion over the messages that correspond to various vertices of Q(δm) with the expected

value that is close to the desired vertex; if the desired vertex is communicated suc-

cessfully at least with probability 1−ε, then the distance of this expected value to the

desired vertex is proportional to ε (of course, this expected value belongs to the (con-

vex) polyhedron Q(δm)). Denote by Q′(δm) the polyhedron spanned by the expected

values of the probability distributions induced by sequences of action profiles that

correspond to all vertices of Q(δm). By taking ε small enough, but still proportional

to 1− δm, we can make sure that the polyhedron Q′(δm) contains P (δm). Thus, the

vertices of P (δm) can be communicated in expectation in the communication phase

in which players communicate the vertices of Q(δm), and the vertex to be communi-

cated is determined by the public randomization device from the first period of the

communication phase.

Recall from Section 3.2.3 that we require ε to be small also for another reason:

The probability of receiving the opposite message to one that players intend to com-

municate (through the sequence of action profiles α∗ or β∗) must be low compared to

the differences in coordinates of Q (δ) whenever they are different. However, Q(δm)

can be easily constructed such that those differences are of order

x′m = r′
(
1− cos

π

2m+1

)
,

where r′ stands for the “radius” of the polyhedron Q(δm), or higher (in Figure 4(c),

we depict the case in which the difference is the lowest possible if the extreme points

5The assumption that Q(δm) and P (δm) are homothetic guarantees all payoff vectors used the

communication phase described in Section 3.2.3 are vertices of this polyhedron Q(δm), as so they

were for the polyhedron P (δm).
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of the circle are vertices of Q(δm)). Since

x′m
r′( π

2m+1 )2
→m

1

2
,

it suffices to take an ε proportional to 2−2m−2.

The sufficient accuracy of communication can be achieved only if the action pro-

files α∗ and β∗ (corresponding to each binary message) are played repeatedly for a

sufficiently large number of periods. We shall now estimate that number of periods.

By Hoeffding’s inequality, players need a number of periods (in which they play

α∗ or β∗) that is proportional to − log ε to make sure that the binary message is

interpreted as a or b at least with probability 1 − ε. Therefore it suffices to have a

number of periods that is proportional to

−m log
( ε

m

)

to communicate successfully any vertex of Q(δm) at least with probability 1 − ε;

indeed, if every binary message (out of c ·m) is successful at least with probability

1− ε

cm
,

then the desired vertex is communicated successfully at least with probability

(
1− ε

cm

)cm

≥ 1− ε.

Since we take an ε proportional to (2−m−1)2, one needs only a number of periods

that is proportional to

−m log

(
1

m22m+2

)
= m log

(
m22m+2

)

to communicate any desired vertex of P (δm) in expectation, and so (4.2) follows from

the fact that (
1− 1

2m

)(m+1) log[(m+1)22m+4]
→m 1.
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xm

rπ
2m

Figure 4(a): The polyhedron P (δm)

bdB

bdB′
m

d
2m+1

d
2m

Figure 4(b): The modified polyhedron P (δ). The boundary of the original P (δ) is depicted

by the straight line, and the boundary of the modified P (δ) is depicted by the kinked line.
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π
2m+1

x′m

r′

Figure 4(c)

5. The Folk Theorem under Private (Almost-Public) Monitor-

ing

5.1. Result

In this section, we use the folk theorem under imperfect public memory and bounded

memory to prove that a folk theorem remains valid under almost-public monitoring.

The proof follows the line of reasoning of Mailath and Morris (2002), although their

result is not directly applicable, as the equilibrium with bounded memory used in the

previous section is not uniformly strict. Indeed, our construction critically relies on

the indifference of some players during the communication phase.

We may now state the main result of this section.

Theorem 5.1. Fix a public monitoring structure π satisfying full rank and full

support.
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(i) (n = 2) Suppose that v∗ corresponds to the equilibrium payoff vector of a strict

Nash equilibrium. For any payoff v ∈ V ∗, there exists δ̄ < 1, for all δ ∈ (
δ̄, 1

)
, there

exists ε > 0 such that v ∈ E (δ) for all private monitoring structures that are ε-close

to π.

(ii) (n > 2) For any payoff v ∈ V P , there exists δ̄ < 1, for all δ ∈ (
δ̄, 1

)
, there

exists ε > 0 such that v ∈ E (δ) for all private monitoring structures that are ε-close

to π.

5.2. A Modification of the Public Monitoring Strategies

Before proving the result, we modify the construction in the case of public monitoring.

First, we take the action profiles α∗ and β∗ to be pure; notice that we have actually

constructed them as pure action profiles in Section 3.2.2. Additionally, we wish to

modify the construction from Section 3.3 ensuring that flow payoffs do not affect

incentives during the communication phase. Recall that, with some small probability

φ > 0, right after the communication phase (say in period t), the realization of the

public randomization device, xt, is such that continuation payoff vector is not equal

to one determined in the communication phase. Rather, as before, continuation play

in this event is determined so as to guarantee that all players are indifferent over all

actions during all periods of the communication phase that has just finished. Now,

we will require the value xt also to determine a period of the communication phase

and a player. The interpretation is that continuation play in the event that period τ

and player i have been determined is supposed to guarantee that player i is indifferent

across all his actions in period τ .

Observe that there exists at most one player, say player j, whose action in period

τ depends on the continuation payoff vector to be communicated (namely, the player

who is sending a binary message in period τ). Pick some player k as follows (in the

interpretation player k will control that player i is indifferent across all his actions in

period τ of the communication phase). If i 6= j, let k = j, and if i = j, let k be some

player different than i. It is an important property that player k always knows all

equilibrium actions that were taken in period τ , except possibly the action of player
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i (when j = i).

Fix some pure action profiles a, a′ ∈ A, with a−k = a′−k, ak 6= a′k; these will be

action profiles to be taken in period t, by means of which player k controls that player

i is indifferent across all his actions in period τ . By full-rank, we can find continuation

payoff vectors γ (y) ∈ Rn, for all y ∈ Y , such that:

(i) for all players j 6= k, aj strictly maximizes

(1− δ) uj (ãj, a−j) + δ
∑

y

π (y|ãj, a−j) γj (y) ,

and

(1− δ) uj

(
ãj, a

′
−j

)
+ δ

∑
y

π
(
y|ãj, a

′
−j

)
γj (y) ;

(ii) player k’s payoff

(1− δ) uk (ãk, a−k) + δ
∑

y

π (y|ãk, a−k) γk (y)

is maximized both by ak and a′k;

(iii) player i’s payoff is under a exceeds that under a′:

(1− δ) ui(a) + δ
∑

y

π (y|a) γi (y)− (1− δ) ui (a
′) + δ

∑
y

π (y|a′) γi (y) > K,

for some constant K > 0 to be specified.

That is, the action aj is players j 6= k’s best-reply to a−j = a′−j in the game

in which public-outcome dependent continuation payoffs are given by γ; player k is

indifferent between both actions ak and a′k, given a−k = a′−k, and player i strictly

prefers action profile a to a′.

The constant K is assumed not to be too small for a given δ, but any positive K

is sufficient for our purposes and sufficiently large discount factors. More precisely,

we require that there exists fk : Ak × Y → (0, 1), mapping the action played by

player k in period τ and the signal player k received in period τ into the probability

of him taking action ak in period t with the following property: Player i is indifferent

in period τ across all his actions, given that in the event that xt picks player i and
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period τ in period t, player k chooses action ak (rather than a′k) with the probability

given by fk (and given that, in this event, continuation payoff vectors are given from

period t + 1 on by γ). Notice that, by full-rank, fk can be chosen so that the actions

(in period τ) of players other than i and k do not affect the expected value of fk.

Thus, in the event that xt has picked player i and period τ , player k randomizes

in period t between actions ak and a′k so as to ensure that player i is indifferent across

all his actions in period τ . Meanwhile, players j 6= k play their strict best-reply

aj = a′j. Continuation payoffs are then chosen according to γ, which can, without

loss of generality, always be picked inside the polyhedron P (δ). Play then proceeds

as before, given the public signal y observed in period t, players use the outcome xt+1

of the public randomization device to coordinate on some vertex of P (δ) giving γ (y)

as an expected value (where the expectation is taken over xt+1), and we may as well

assume that each vertex is assigned strictly positive probability.

5.3. Proof

We now return to private monitoring. The proof begins with the observation that

the strategies in regular phases can be chosen uniformly strict, in the sense that there

exists an ν > 0 such that each player prefers his equilibrium action by at least ν to

any other action. Indeed, Theorem 6.4 of FLM (and the remark that follows that

theorem) establish that for any smooth set W ⊆ V ∗, or W ⊆ V P , there exists a

minimal discount factor above which all elements of W correspond to strict perfect

public equilibria. (A PPE is strict if each player strictly prefers his equilibrium action

to any other action). Because in our construction, continuation payoffs can be drawn

from a finite set of vertices (of the polyhedron P (δ)), it follows that all elements of

W correspond to uniformly strict perfect public equilibria, i.e. there exists ν > 0

such that for any history of the regular phase for which the continuation value is not

given by w (in the case of n = 2), each player prefers his equilibrium action by at

least ν to any other action.6 The assumption that v∗ corresponds to the equilibrium

6McLean, Obara and Postlewaite (2005) provides an alternative proof that the equilibrium strate-

gies used in the construction of FLM can be chosen to be uniformly strict.
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payoff vector of a strict Nash equilibrium implies that some ν > 0 also applies to the

histories for which the continuation value is given by w.

The following lemma is borrowed from Mailath and Morris (2002):

Lemma 1. (Mailath and Morris) Given η, there exists ε > 0 such that if ρ is ε-close

to π, then for all a ∈ A and y ∈ Y ,

ρi(y, . . . , y|a, y) > 1− η.

This lemma states that each player assigns probability arbitrarily close to one to

all other players having observed the same signal as he has, independently of the

action profile that has been played and the signal he has received, provided that

private monitoring is sufficiently close to public monitoring. [Note that this result

relies on the full support assumption.] For each integer T , this lemma immediately

carries over to finite sequences of action profiles and signals of length no more than

T ; it implies that, if all players use strategies of finite memory at most T , each

player assigns probability arbitrarily close to one to all other players following the

continuation strategy corresponding to the same sequence of signals he has himself

observed (see Theorem 4.3 in Mailath and Morris).

This implies that we can pick ε > 0 so that player i’s continuation value to

any of his strategies, given a private history ht
i, is within ν/3 of the value obtained

by following the equilibrium strategy under public monitoring; we identify here the

private history ht
i under imperfect private monitoring with the corresponding history

under public monitoring. (This is Lemma 3 of Mailath and Morris (2002)). This

implies that, for this or lower ε > 0 , by the one-shot deviation principle, players’

actions in the regular phase under public monitoring remain optimal under imperfect

private monitoring, since incentives were uniformly strict under public monitoring by

the constant of ν.

It remains to prove that we can preserve players’ incentives to play their public

monitoring strategies during the communication phase under private monitoring, as

well as in the period t right after the communication phase if the realization of xt is
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such that continuation play will be making players indifferent over all actions during

all periods of the communication phase that has just finished.

Consider first the communication phase. We claim that player k can still pick

his action, ak or a′k, according to some function f̃k : Ak × Y → (0, 1) (presumably

different from fk under public monitoring), so that to ensure that player i is indifferent

between all his actions in period τ , and so that the action of players other than i and

k do not affect the expected value of f̃k. Indeed, player k knows precisely the actions

of all players j 6= i in period τ , and the event that the outcome xt selects player

i and period τ is commonly known in period t, so that the expected continuation

payoff vector in this event is independent of private histories up to period τ , given

the prescribed strategies.

Consider now a realization of xt in period t such that player k makes player i

indifferent over all actions in period τ . First, observe that in period t all players’

incentives were strict, except for player k. So, the same action aj remains optimal

for all players j 6= k under private monitoring (even if vertices in the next period

are chosen according to distributions that are only close to those used under public

monitoring). Recall that, under public monitoring, the signal y observed in period t

determines a vertex v of the polyhedron according to a distribution q (v|y) on which

all players coordinate by means of the public randomization xt+1.

Let v1,. . . ,vL denote the set of vertices. Observe that, under public monitoring,

each public history determines a vertex, and the corresponding vertex determines the

players’ continuation play. Therefore, we can identify each player’s strategy with a

finite automaton, as in Mailath and Morris, and the private states can be identified

with the vertices. Let v (xt+1|yi) denote the function mapping the outcome of the

randomization device in period t + 1 given i’s signal in period t into the vertex

determining his continuation play (the same function applies for all players). For

definiteness, assume that, if y 6= y′,

Pr {xt+1|v (xt+1|y) = v, v (xt+1|y′) = v′} =

= Pr {xt+1|v (xt+1|y) = v}Pr {xt+1|v (xt+1|y′) = v′} ,

40



that is, conditional on two different signals, players choose their vertices indepen-

dently. To see that this is possible, we can view the randomization device as consist-

ing of m independent uniform draws from [0, 1] (recall that m is the number of public

outcomes), with players using one distinct draw for each distinct public outcome. (Of

course, the randomization device has been assumed so far to be a unique draw x from

[0, 1], but to see that this is equivalent, we can consider the dyadic expansion of x and

split this expansion in m infinite expansions, from which we obtain m independent

and uniform draws). While this assumption is inessential, it simplifies the argument.

Let q (v|y) := Pr {xt+1|v (xt+1|y) = v}.
Under imperfect private monitoring, players do not necessarily observe the same

signal. Therefore each player j may select different vertices (or states) v (xt+1|yj)

based on the same realization of xt+1, since the signal yj is private.

Our objective is to show that, if monitoring is sufficiently close to public, we

can find distributions {q (v|y) : v, y} such that, if players use these distributions

in period t + 1 (and in all corresponding periods for other communication phases),

player k is indifferent between the two actions ak or a′k (in the event that he must

make player i indifferent), and prefers those actions to all others. We shall prove

that such distributions exist, using the implicit function theorem, given that ρ is in

a neighborhood of π.

Observe that player k’s payoff from, say, action profile a is:

(1− δ) gk (a) + δ
∑

(y1,...,yn)

ρ (y1, . . . , yn|a)Ext+1 {Vk (v (xt+1|y1) , . . . , v (xt+1|yn))} ,

(5.1)

where Vk (v (xt+1|y1) , . . . , v (xt+1|yn)) is player k’s expected continuation payoff from

the equilibrium strategy, given that each player j is in private state v (xt+1|yj). By

making player k’s payoffs from all actions equal to those with public monitoring,

we obtain the number of equations equal to mk, the number of actions of player

k. The variables of choice are {q (v|y) : v = v1, . . . , vL−1, y = y1, . . . , ym}; they will

be a function of the monitoring structure {ρ(y1, . . . , yn|a) : a ∈ A, (y1, . . . , yn) ∈ Y n}.
(Observe that we omit vL, since q (vL|y) is pinned down by the other values). Con-
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sider the Jacobi matrix whose rows correspond to the equations and whose columns

correspond to the variables of choice, evaluated at the public monitoring structure

{π (y|a) : y, a}. The entry corresponding to the equation for action ãk and column

for v = vl and y = ym′ is equal to:

π (ym′| (ãk, a−k)) (Vk,l − Vk,L) + λ,

where Vk,l is player k’s continuation payoff under public monitoring if vertex l is

selected, and λ is the remainder involving only terms premultiplied by δM(δ). This

expression is easy to obtain due to the assumption that conditional on two different

signals players choose their vertices independently.

By construction, Vk,l 6= Vk,L for some l. Since δM(δ) → 0, also λ → 0. Thus,

since π satisfies individual full rank, the rank of our Jacobi matrix is equal to mk. It

is easy to see that the expression (5.1) is continuously differentiable with respect to

each q (v|y) (it is actually analytic). That is, the assumptions of the implicit function

theorem are satisfied. This guarantees the existence of distributions {q (v|y) : v, y}
such that the payoff to player k under public and almost-public monitoring are equal

(for each of his actions). Finally, since the values of q (v|y) under public monitoring

are in (0, 1), it follows that there exists a neighborhood of the public monitoring

structure in which the values of q (v|y) under private monitoring are in (0, 1) as well.
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