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1 Introdu
tionIn this paper we show that Walrasian equilibria in semi-algebrai
 ex
hange e
onomies 
anbe 
hara
terized as subset of the �nite set of solutions to a system of polynomial equations.We argue that from a pra
ti
al point of view the assumption of semi-algebrai
 preferen
esimposes few restri
tions on the e
onomi
 fundamentals and explore mathemati
al resultsand algorithms that 
hara
terize all solutions to systems of polynomial equations. Underthe assumption that all agents have CES utility we give examples that show that one 
anoften show uniqueness of equilibria for a large set of pro�les of individual endowments.It is now well understood in general equilibrium analysis that suÆ
ient assumptionsfor the global uniqueness of 
ompetitive equilibria are too restri
tive to be appli
able tomodels used in pra
ti
e. However, it remains an open problem whether non-uniquenessof 
ompetitive equilibrium poses a serious 
hallenge to applied equilibrium modeling orwhether non-uniqueness is a problem that is unlikely to o

ur in so-
alled `realisti
ally
alibrated' models. Given spe
i�
ations for endowments, te
hnology and preferen
es, thefa
t that the known suÆ
ient 
onditions for uniqueness do not hold obviously does not implythat there must be several 
ompetitive equilibrium in the model e
onomy. As a matter offa
t, there seem to be few known examples of multipli
ity for spe
i�
ations of preferen
es,endowments and te
hnologies 
ommonly used in applied general equilibrium models.However, given that algorithms whi
h are used in pra
ti
e to solve for equilibrium inapplied models are never designed to sear
h for all solutions of the model, there is noproof that there might not be several equilibria in these models after all. The fundamentalproblem is that for general preferen
es, one 
annot prove that equilibria are unique for agiven set of endowments. An obvious remedy for this problem is to 
onsider semi-algebrai
e
onomies, i.e. to assume that preferen
es and te
hnologies 
an be des
ribed by �nitelymany polynomial inequalities and equalities. In this 
ase, the Tarski-Seidenberg theoremimplies that it is de
idable whether 
ompetitive equilibria are unique. In fa
t, it followsfrom the theorem that for any semi-algebrai
 
lass of e
onomies, one 
an algorithmi
allydetermine whether there are e
onomies in this 
lass for whi
h multipli
ity of equilibriao

urs. Unfortunately, the Tarski-Seidenberg pro
edure is known highly intra
table andwhile it o�ers interesting theoreti
al results it is not appli
able to even the smallest ex
hangee
onomies.On the other hand, if one 
an redu
e the system of equations des
ribing 
ompetitiveequilibria to a polynomial system, all-solution algorithms 
an be used to approximate allroots to this system numeri
ally. Re
ent advan
es in 
omputational algebrai
 geometryhave led to the development of relatively eÆ
ient algorithms for the 
omputation of allzeros of a polynomial system of equations. In parti
ular, if one 
an 
ompute a Gr�obnerbasis (see e.g. Cox et al. (1997) for a basi
 introdu
tion) asso
iated with a polynomialsystem the task of �nding all roots to that system essentially redu
es to �nding all rootsof a single polynomial equation in one unknown. With the development of fast 
omputers2



and eÆ
ient algorithms Gr�obner bases 
an now be 
omputed even for fairly large systemsof polynomial equations (see Faug�ere (1999)). To the best of our knowledge, there has sofar not been an attempt to use these methods to make statements about the number ofequilibria in general equilibrium models.The �rst problem one fa
es when trying to apply all solution algorithms for polynomialsystems to general equilibrium models is that these algorithms �nd all 
omplex solutionsto the system while in general only a subset of the real solutions des
ribes 
ompetitiveequilibrium (those who are asso
iated with non-negative 
onsumption and positive pri
es).Evidently, there are many di�erent polynomial systems whose real solutions in
lude the
ompetitive equilibrium. The question is then whether one 
an �nd a `minimal' system ofequations that des
ribes all equilibria of the e
onomy but has not too many solutions whi
hare not equilibria. Developing a general method for this is beyond the s
ope of this paper,but we give an example in Se
tion 4 to show how to set up shu
h minimal systems.Having formulated any equilibrium system, it is easy to determine whether there aremultiple equilibria for a given e
onomy. However, in this paper we want to go a step furtherand show that within a given 
lass of preferen
es, equilibrium is unique for `most' realisti
spe
i�
ations of endowments, i.e. for some 
ompa
t set of endowments. It turns out that ingeneral the Gr�obner base representation of the system does allow us to bound the numberof zeros, but often does not guarantee that there is a unique equilibrium.It is not 
lear how the idea that multipli
ity of equilibria is rare in `realisti
ally 
al-ibrated' e
onomies 
ould possibly be formalized. The �rst observation is that one mustimpose joint restri
tion on preferen
es, endowments and te
hnology in order to have anyhope to guarantee uniqueness. For any pro�le of endowments, one 
an 
onstru
t preferen
essu
h that the resulting e
onomy has an arbitrary (odd) number of equilibria. Moreover,Gjerstad (1996) shows that in a pure ex
hange e
onomy, for CES utility fun
tions withelasti
ities of substitution above 2 (arguably realisti
ally 
alibrated utility fun
tions), mul-tipli
ity of equilibrium is a prevalent problem. The question then be
omes whether for`most' endowments and preferen
e parameters, these e
onomies have unique equilibria. In-tuitively, in the 
ase of Arrow-Debreu pure ex
hange e
onomies one might think that sin
eno-trade equilibria are always unique, one needs a large departure from Pareto-eÆ
ientendowments to obtain non-uniqueness. Balasko (1979) formalizes the idea that the set ofendowments for whi
h there are n equilibria, shrinks as n in
reases. Going beyond thisresult in the general 
ase seems impossible. Instead, we use an idea due to Dakhlia (1999)and test whether there any 
riti
al e
onomies in the spe
i�ed 
onvex set of parameters. Inthe absen
e of su
h, it suÆ
es to prove uniqueness for a single e
onomy in that set to inferthat equilibrium must be unique in the entire set. Rouillier et al. (2000) and Aubry et al.(2002) develop algorithms whi
h allows us to test for the presen
e of a 
riti
al point byinvestigating whether a positive dimensional system of equations has a solution in the setof interest.The 
omputations in this paper were all performed with the 
omputer algebra system3



SINGULAR, available free of 
harge at www.singular.uni-kl.de. In Se
tion 4, we dis
uss asimple 
omputational example in some detail. The rest of the paper is more 
on
eptual andless geared towards parti
ular appli
ations.The paper is organized as follows. In Se
tion 2 we introdu
e semi-algbrai
 ex
hangee
onomies and show that equilibria 
an be 
hara
terized as solutions to polynomial equa-tions. In Se
tion 3, we use results from real algebrai
 geometry to 
hara
terize all solutionsto polynomial systems of equations. In Se
tion 4, we examine uniqueness in Arrow Debreue
onomies with CES utility fun
tions.2 Semi-algebrai
 Arrow Debreu e
onomiesThere areH agents, h 2 H, trading L 
ommodities. Agents have endowments (eh)h2 2 RHL+and preferen
es represented by utility fun
tionsuh : RL+! R:Commodity pri
es are denoted by p 2 RL+. Throughout we take 
ommodity 1 as thenum�eraire and set p1 = 1. A Walrasian equilibrium 
onsists of a 
onsumption allo
ation(
h)h2H and pri
es p su
h that markets 
lear and ea
h individual maximizes utility subje
tto the budget 
onstraint, i.e. Xh2H(
h � eh) = 0and for ea
h agent h 
h 2 arg max
2RL+uh(
) s.t. p � (
� eh) = 0:A fun
tion � : Rn ! Rm is 
alled semi-algebrai
 if its graph f(x; y) 2 Rn � Rm : y =�(x)g is a �nite union and interse
tion of sets of the formf(x; y) 2 Rm+n : g(x; y)> 0g or f(x; y) 2 Rm+n : f(x; y) = 0gfor polynomialsf and g with real 
oeÆ
ients.We 
all preferen
es semi-algebrai
ally smooth if they 
an be represented by a utilityfun
tion u(:) that is C2 on RL++, stri
tly in
reasing and stri
tly 
on
ave and if �
uh : RL+ !RL is a semi-algebrai
 fun
tion. In a slight abuse of notation, we 
all an e
onomy semi-algebrai
 if if ea
h agent has semi-algebrai
ally smooth preferen
es.Throughout this paper, we will fo
us on interior equilibria. In order to guarantee thatall equilibria are interior, one 
an make the additional assumption that indi�eren
e 
urvesdo not 
ut the axes, i.e. that for ea
h h and all y, 
l(fx : u(x) > yg) � RL++. The examplein Se
tion 4 will satisfy this assumption, but it is not needed for the general analysis if onekeeps in mind that we fo
us only on interior equilibria.4



2.1 Semi-algebrai
 e
onomiesHow general is the assumption of semi-algebrai
 marginal utility? First note, that if afun
tion is semi-algebrai
, so are all its derivatives (the 
onverse is not true, as the examplef(x) = log(x) shows).It follows from Blume and Zame (1993) that semi-algebrai
 preferen
es (i.e. the as-sumption that better sets are semi-algebrai
 sets) implies semi-algebrai
 utility.From a pra
ti
al point, it is easy to see that Cobb-Douglas and CES utility fun
tions withrational elasti
ities of substitution, � 2 Q, represent semi-algebrai
ally smooth preferen
es.From a theoreti
al point, by Afriat's theorem (Afriat (1967)), any �nite number of ob-servations that 
an be rationalized by arbitrary non-satiated preferen
es 
an be rationalizedby a pie
e-wise linear, hen
e semi-algebrai
 fun
tion. While Afrait's 
onstru
tion does notyield a semi-algebrai
, C2, and stri
tly 
on
ave fun
tion, the 
onstru
tion in Chiappori andRo
het (1987) 
an be modi�ed to our framework and we obtain the following lemma.Lemma 1 Given N observations (xn; pn) 2 R2l++ with pi 6= pj for all i 6= j = 1; :::; N , thefollowing are equivalent.(1) There exists a stri
tly in
reasing, stri
tly 
on
ave and 
ontinuous utility fun
tion u(x)su
h that xn = arg maxx2Rl+u(x) s.t. pn � x � pn � xn:(2) There exists a stri
tly in
reasing, stri
tly 
on
ave, semi-algebrai
 and C2 utility fun
tionv(x) su
h that xn = arg maxx2Rl+ v(x) s.t. pn � x � pn � xn:To prove the lemma, observe that if statement (1) holds, the observations must satisfy the
ondition 'SSARP' from Chiappori and Ro
het (1987). Given this one 
an follow theirproof 
losely to show that there exists a C2 semi-algebrai
 utility fun
tion that rationalizesthe data. The only di�eren
e to their proof is that in the proof of their Lemma 2, oneneeds to use a polynomial '
ap'-fun
tion whi
h is at least C2. In parti
ular, the argumentin Chiappori and Ro
het goes through if one repla
es C1 everywhere with C2 and usesthe 
ap-fun
tion �(x) = max(0; 1�Pl x2l )3. Sin
e the integral of a polynomial fun
tion ispolynomial, the resulting utility fun
tion is pie
e-wise polynomial, i.e. semi-algebrai
.2.1.1 The equilibrium set of semi-algebrai
 e
onomiesThe general assumption on semi-algebrai
 preferen
es imposes almost no restri
tion on theequilibrium set of ex
hange e
onomies.In the light of the theorems of Sonnens
hein,Mantel and Debreu, Mas-Colell (1977)shows that for any 
ompa
t (non-empty) set of positive pri
es P � �l�1 there exists anex
hange e
onomy with l households, ((uh)lh=1; (eh)lh=1), with uh stri
tly in
reasing, stri
tly5




on
ave and 
ontinuous su
h that the equilibrium pri
es of this e
onomy 
oin
ide pre
iselywith P .Given Lemma 1 above, this dire
tly implies that for any �nite set of pri
es P � �,there exists an ex
hange e
onomy ((uh)lh=1; (eh)lh=1), with uh stri
tly in
reasing, stri
tly
on
ave, semi-algebrai
 and C2 su
h that the equilibrium pri
es of this e
onomy 
oin
idepre
isely with P . Therefore, the abstra
t assumption of semi-algebrai
 preferen
es imposesno restri
tions of multipli
ity of equilibria. Mas-Colell (1977) also shows that if the numberof equilibria is odd, one 
an 
onstru
t a regular e
onomy and that there exist open sets ofindividual endowments for whi
h the number of equilibria 
an be an arbitrary odd number.SuÆ
ient 
onditions for the uniqueness of Walrasian equilibrium are very restri
tive. Itis well known that equilibrium is unique if all agents have identi
al homotheti
 utility. Moreinterestingly, W.E. is unique if for all agents and all 
 2 RL++,
0�2uh(
)

0�
uh(
) < 1or, if individual endowments are all 
ollinear, if these expressions are smaller than 4. Theseare the bounds by Mijutshin and Polterovit
h. Mas-Colell (1992) shows that the boundson the expressions are tight.2.2 Walrasian equilibria and polynomial systems of equationsIt follows from the Tarski-Seidenberg theorem that for a given semi-algebrai
 e
onomy it isde
idable whether Walrasian equilibrium is unique(see e.g. Basu et al. (2003)). Unfortu-nately, the algorithmi
 
omplexity of quanti�er-elimination based methods is too large forthese methods to be of any use for e
onomi
 appli
ations.Instead, we want to derive a system of polynomial equations that has �nitely manysolutions whi
h in
lude all Walrasian equilibria of the e
onomy. An important 
ompli
a-tions 
omes in from the fa
t that available algorithms that �nd all solutions to systems ofpolynomial equations in fa
t �nd all 
omplex solutions. We therefore need to ensure thatthe system of polynomial equations that 
hara
terizes equilibria has �nitely many 
omplexsolutions and have to use some 
omplex analysis.An interior Walrasian equilibrium is 
hara
terized by the following equations.�uh(
)� �p = 0; h 2 HXl pl(
l � ehl ) = 0; h 2 HXh 
hl � ehl = 0; l = 1; :::; L� 1The derivatives �uh(x) are semi-algebrai
 fun
tions but of 
ourse in general not poly-nomial. Neyman (2003, Corollary 1) makes the following useful observation. The graph of6



any semi-algebrai
 fun
tion � : V ! R, V � Rn 
an be written a the union of �nitely manysets Gi = ffi(x; y) = 0 and gi(x; y) > 0g; i = 1; :::; N;with fi : V � R ! R and gi : V � R ! Rk polynomials. The polynomial fun
tionh(x; y) = �Ni=1fi(x; y) then is a non-zero polynomial that satis�esh(x; �(x)) = 0 for all x 2 V:Of 
ourse, for many (x; y) whi
h satisfy h(x; y) = 0, we might have y 6= �(x). However, itfollows from the 
onstru
tion that we 
an assume without loss of generality that for anyx; y with fi(x; y) = fj(x; y) = 0 for some i; j there is a ~x arbitrarily 
lose to x su
h thatfi(~x; �(~x)) = 0 and fj(~x; �(~y)) 6= 0. Moreover, we 
an assume that for ea
h i, �fi(x;�(x))�y 6= 0whenever fi(x; �(x)) = 0Denote bymh(
; y) the L-ve
tor of polynomials 
onstru
ted as above that satisfymhl (
; �
luh(
)) =0 for ea
h l = 1; :::; L. Sin
e these are polynomials, we 
an write them as fun
tion from
omplex spa
e, mh : C L+1 ! C L . De�ne the 'demand system' to beDh(
; �; p) = 0B� mh1(
1; : : : ; 
L; �)mhl (
1; : : : ; 
L; �pl); l = 2; : : : ; LPLl=2 pl(
l � ehl ) + 
1 � eh1 1CA : (1)It is then 
lear thatWalrasian equilibria are solutions to the following polynomial systemof equations Dh(
h; �h; p) = 0; h = 1; : : : ; H (2)HXh=1(
hl � ehl ) = 0 l = 1; :::; L� 1 (3)Note that throughout the paper, we work with �rst order 
onditions. Of 
ourse, Tarski-Seidenberg implies that aggregate ex
ess demand is also semi-algebrai
. While it is oftendiÆ
ult to 
ompute demand analyti
ally it 
an always be written impli
itly as a solution ofa triangular polynomial system. However, it turns out that using aggregate ex
ess demandfun
tion, although it redu
es the number of unknowns and equations 
onsiderably, usuallydoes not lead to eÆ
ien
y gains in 
omputing all Walrsian equilibria.In order to guarantee that the system (2)-(3) only has �nitely many 
omplex solutions,we need to add the requirement that �
;�Dh(
h; �h; p) has full rank L + 1. This gives thefollowing additional equation.1� th � det��
;�Dh(
h; �h; p)� = 0; h = 1; : : : ; H (4)We have the following theorem that 
hara
terizes the solutions to these equations.7



Theorem 1 There is an open set of full measure of (e1; :::; eH) 2 RHL+ su
h that the systemof equations (2)-(4) has at most �nitely many 
omplex solutions and su
h that all Walrasianequilibria are solutions to the equations.To prove the theorem we need two lemmas.Lemma 2 Consider the fun
tion f : C n � Cm ! C n . Suppose that f(z; e) = 0 with e 2 Rmimplies that �z;ef(z; e) has full rank. Then for generi
 �e 2 Rm, 0 is a regular value of f�e(x).Lemma 3 Suppose � : RL! R is a di�erentiable semi-algebrai
 fun
tion and fi : RL�R! R,i = 1; 2 are non-zero polynomials su
h that whenever f1(x; �(x)) = f2(x; �(x)) = 0, there is a�x arbitrarily 
lose to x su
h that f1(�x; �(�x)) = 0 and f2(�x; �(�x)) 6= 0.For an open and full measure set of e1; :::; eH and for ea
h h = 1; :::; H there is no Walrasianequilibrium for whi
h f1(xh; �(xh)) = f2(xh; �(xh)) = 0.Proof of the theoremWe �rst prove that there are �nitely many 
omplex solutions. Using Lemma (2), itsuÆ
es to prove that the derivative of the system of equations under 
onsideration withrespe
t to x1; �1; :::; xH; �H; p; e1 has full rank H(L+1)+H +L� 1. Equation (4) ensuresthat the derivative of ea
h Dh(xh; �h; p) with respe
t to x1; :::; xL and � has rank L + 1.The derivatives of Equation (3) with respe
t to the th, h = 1; :::; H give rank H . FollowingDebreu (1972) and 
onsidering dire
tional derivatives for those e1l for whi
h pl 6= 0 as wellas dire
t derivatives for the other e1l , the derivatives with respe
t to e1 give additional rankL� 1.To prove that ea
h Walrasian equilibrium solves equations (2)-(4), re
all that we 
anwrite ea
h ea
h mhl (
; y), h 2 H, l = 1; :::; L, as a produ
t of �nitely many polynomialsmhl (
; y) = �kj=1fhj;l(
; y) with f(
; y) : fhj;l(
; y) = 0g 6= f(
; y) : fhj0 ;l = 0g for all j, j0.Moreover for ea
h 
 and ea
h l, there is a jl su
h that fhjl;l(
; �
luh(
)) = 0. If for ea
h l,fhj0 ;l(
; �
luh(
)) 6= 0 for all j 0 6= jl, we obtain, by the impli
it fun
tion theorem that thematrix 0BBB� � 1�ymh1 (
;�h)�
mh1(
; �h)...� 1�ymhL(
;�hpL)�
mhL(
; �hpL) 1CCCAis negative de�nite. Therefore, D
;�Dh(
; �) must have full rank L+ 1.By lemma 3, the set of individual endowments (eh) for whi
h there are h, j, j 0 and ywith fhj (
h; y) = fhj0(
h; y) = 0 for some Walrasian equilibrium 
onsumption 
h is a 
losedset with Lebesgue measure zero. �.In addition to solving the equilibrium equations, 
ompetitive equilibrium will be 
har-a
terized by a system of polynomial inequalities gi(x) � 0, i = 1; :::;M . Given individual8



endowments (eh), we are thus interested in the set of 
ompetitive equilibria,E = f((xh); p) 2 RH(L+1)+L�1 that solve (2)� (4) : g((xh; �h); p) � 0g (5)Obviously we 
an obtain an upper bound on the number of equilibria by bounding thenumber of 
omplex solutions of Equations (2)� (4).2.3 Maximal number of solutions to polynomial systemsThe following theorem provides a well known upper bound for the number of lo
ally isolatedsolutions that is easy to 
ompute.Theorem 2 (B�ezout) Suppose f : C n ! C n are n polynomials of degrees d1; :::; dn. Thenumber of lo
ally isolated solutions in C n is bounded by d1 : : : dn.Unfortunately, even for very simple e
onomies, the B�ezout bound 
an be quite large.For example, 
onsider an e
onomy with two agents and two 
ommodities and Cobb-Douglasutility fun
tions. Walrasian equilibrium is unique, but the equilibrium equations read as1� �1
11 = 01� �1p
12 = 0
11 � e11 + p(
12 � e12) = 01� �2
21 = 01� �2p
21 = 0
11 + 
21 � e11 � e21 = 0
12 + 
22 � e12 � e22 = 0The Bezout bound on the number of solutions is 72! This seems to indi
ate that evenfor simple e
onomies, it is hopeless to try to solve for all 
omplex solutions and then identifythose who 
orrespond to a Walrasian equilibrium.However, the Bezout bound on the number of solutions is generi
ally only obtained forso-
alled 'dense' systems of equations, i.e. for polynomials for whi
h all monomial termsappear with non-zero 
oeÆ
ients (see Sturmfels (2002)).The root 
ount developed by Bernshtein, Kushnirenko and Khovanskii 
ounts the num-ber of isolated zeros of a 'sparse' polynomial system (see Sturmfels (2002)). In the followingwe refer to this as 'BKK-bound'. The theory underlying this bound turns out not to berelevant for this paper. Although the resulting sharper upper bounds a mu
h more diÆ
ultto obtain than just multiplying degrees, there are freely downloadable software pa
kages for
omputing these bounds in arbitrary high dimensions (the 
omputations in this paper wereperformed with the pa
kage by Tangan Gao, T. Y. Li, and Xing Li). For the Cobb-Douglase
onomy, this a
tually gives a bound of at most one 
omplex solutions, whi
h obviously9



implies that equilibrium is always unique. Unfortunately, it is easy to see that in e
onomi
problems even the BKK bound is often not very good.For Pareto-optimal endowments, equilibria are always unique. The BKK bound is uni-form over pro�le of endowments. We show in examples below, that even uniformly a
rosspro�les of endowments, the bound is often not sharp.We therefore now turn to algorithms whi
h 
ompute all (
omplex) solutions to polyno-mial systems.3 Gr�obner bases for the 
omputation of all solutionsGiven a polynomial system of equations f : CM ! CM there are now a variety of algorithmto approximate numeri
ally all 
omplex and real zeros of f . Sturmfels' (2002) monographprovides an ex
ellent overview. The two most important approa
hes are homotopy 
ontin-uation methods and solution methods based on Gr�obner bases. Both approa
hes are tooineÆ
ient to be appli
able to large e
onomi
 models, but they 
an be used for models with4-5 households and 9-10 
ommodities. To �nd all equilibria for a given e
onomy, homotopymethods seem slightly more eÆ
ient, while Gr�obner bases allow for statements about entire
lasses of e
onomies. In this paper, we therefore fo
us on Gr�obner bases.A Gr�obner basis is a set of multivariate polynomials whi
h has desirable algorithmi
properties - in parti
ular, given a Gr�obner basis it is often possible to solve polynomialequations by solving a univariate polynomial. Every set of polynomials 
an be transformedinto a Gr�obner basis. Loosely speaking, this pro
ess generalizes Gaussian elimination forsolving linear equations.The following theorem provides the basis for our algorithms.Theorem 3 Given utility fun
tions (uh)h2H that represent semi-algebrai
ally smooth prefer-en
es, there exist equationsG = fx1 � q1(xn; (eh)); x2� q2(xn; (eh)); : : : ; xn�1 � qn�1(xn; (eh)); r(xn; (eh))gwhere for ea
h (eh) 2 RHL+ , r is a polynomial of some �xed degree d (independent of (eh)) andthe qi are polynomials of at most degree d� 1, su
h that for generi
 (eh) 2 RHL+ , the solutionsof equations (2)-(4) are identi
al to the 
ommon solutions of the equations in G.The theorem is proved in the appendix, using methods from real algebrai
 geometry.It turns out that G forms a so-
alled 'Gr�obner' basis under the lexi
ographi
 monomialordering. Bu
hberger's algorithm is guaranteed to produ
e this basis in a �nite numberof steps. Computer algebra systems su
h as SINGULAR have implementations of thisalgorithm. It is noteworthy to stress that the qi and r are rational fun
tions in eh and thatthe 
al
ulations produ
e an exa
t Gr�obner basis if all 
oeÆ
ients in Equations (2) - (4) arerational numbers. 10



We 
all the fun
tion r(:) the `univariate representation' of the 
lass of Arrow-Debreue
onomies with utilities (uh).The 'rational univariate representation' of Rouiller (1999) often has mu
h smaller 
oeÆ-
ients and is therefore numeri
ally better behaved. However, for the purposes of this paper,we use the lexi
ographi
 Groebner basis to examine a system of polynomial equations. Moresophisti
ated methods are subje
t to further resear
h.3.1 Algorithms3.1.1 Finding all 
ompetitive equilibriaIt follows dire
tly from Theorem 3 that in order to �nd all equilibria for a given generi
semi-algebrai
 e
onomy, it suÆ
es to 
ompute the lexi
ographi
 Groebner basis and to�nd all real solutions to a univariate polynomial equation. Sturm's algorithm providesan exa
t method to determine the number of solutions to a univariate polynomial in theinterval [0;1). Therefore, one 
an determine the exa
t number of solutions of the univariatepolynomial. Using simple bra
keting, one 
an then approximate all solutions numeri
ally,up to arbitrary pre
ision! Given the solutions to the univariate representation, the othersolutions 
an then be 
omputed with arbitrary pre
ision by evaluating polynomials up toarbitrary pre
ision. Therefore, equilibria in this model are Turing 
omputable (in 
ontrast,see Ri
hter and Wong (199x) who show that without restri
tions on preferen
es Walrasianequilibria are generally not Turing 
omputable).3.1.2 A test for uniquenessDakhlia (1999) makes the following observation for Arrow-Debreu ex
hange e
onomies.Given smooth utility fun
tions (uh)h2H, if for a 
onvex set of individual endowments E �RHL+ , there exists an (�eh)h2H su
h that the e
onomy (uh; eh)h2H has a unique equilibriumand if there are no 
riti
al e
onomies in E, then Walrasian equilibrium must be unique for allpro�les of individual endowments (eh) 2 E. This follows dire
tly from the impli
it fun
tiontheorem and is in itself not hugely helpful, sin
e it is generally not feasible (although forpossible for semi-algebrai
 e
onomies) to determine if su
h a 
riti
al e
onomy in E exists.However, for a single polynomial r(x; (eh)) it often is feasible to determine if r(x; (eh)) =0 and r0(x; (eh)) := �r(x;(eh))�x = 0 has a solution for positive x and for (eh) 2 
, with
 = feh 2 RHL+ : gi(eh) � 0; i = 1; :::; Jg; (6)where gi are polynomials for all i. The trouble is that in order for this test to be of any use,one needs to ensure that real positive solutions to the univariate representation 
orrespondto 
ompetitive equilibria or at least one needs to be able to easily identify those that do not
orrespond to Walrasian equilibria.Rouillier et al. (2000) and Aubry et al. (2002) develop algorithms whi
h �nd one pointin ea
h 
onne
ted 
omponent of the variety by minimizing the distan
e fun
tion between11



the variety and a point. Their main result is used in the Appendix to prove the followingtheorem.Theorem 4 Suppose that Walrasian equilibria are 
hara
terized by the positive real solutionsof the univariate representation r(x; (eh)) that satisfy h(x) � 0 for polynomials h : R! RMand suppose that there 
annot be solutions with h(x) = 0. Suppose that there exists a (eh) 2 
,as de�ned in Equation 6 for whi
h there is a unique Walrasian equilibrium. Then there 
annot bean open set of endowments in 
 with multiple equilibria unless the following system of equationshas a solution for some (eh) 2 
.(eh)� (�e)h � �D(eh)r(x; (eh))� �D(eh)r0(x; (eh))� �D(eh)k(eh) = 0r(x; (eh)) = 0r0(x; (eh)) = 01� tk(eh) = 0where k(eh) = �igi(eh).While the theorem obviously only provides a suÆ
ient 
ondition, it turns out that themethod 
an be applied to a variety of examples. We illustrate this point in Se
tion XXYbelow.3.2 Bounding the Number of Real ZerosWhile we explained above that bounds on the number of solutions to polynomial equationsare usually bounds on the number of 
omplex solutions, it turns out that the use of Gr�obnerbasis sometimes allows for the derivation of bounds on the number of positive real solutions.The reason for this is that the number of real solutions to f1 = : : : = fn = 0 is equalto the number of real roots of r(x) = 0, where r(x) is the representing polynomial fromTheorem 3 and that there exist simple bounds on the number of real solutions for univariatepolynomials.Given any univariate polynomial, Pdi=0 aixi, with ai 2 R for all i, the number of its
omplex zeros is obviously bounded by its degree d. However, there a better bounds availablefor the number of real zeros. De�ne the number of sign 
hanges of r to be the number ofelements of fai 6= 0; i = 0; : : : ; d � 1 : sign(ai) = �sign(ai+1)g. The 
lassi
al Des
artes'sRule of Signs, see Sturmfels (2002), states that the number of real positive zeros of r doesnot ex
eed the number of sign 
hanges. This bound is remarkable be
ause it bounds thenumber of real zeros. It is possible that a polynomial system is of very high degree andhas many solutions but the Des
artes bound on the number of zeros of the representingpolynomial proves that the system has a single real positive solution.12



4 Appli
ation to CES utilityFrom now on we make the restri
tive (but in poli
y work very 
ommon) assumption thatutility exhibits 
onstant elasti
ities of substitution and is of the formuh(
) = LXl=1 11� �h���hhl 
1��hl ; (7)with rational �h 6= 1 and �hl > 0.With �h = NhMh , the partial derivatives 
an be written asmhl (
; �uh(
)�
l ) � 0;where mhl (
; y) = yMh�Nhhl 
Nhl � 1. Note that this is also the 
orre
t representation for theCobb-Douglas 
ase with �h = 1. Note that for Mh even, the equation mhl (
; y) = 0 also hasa solution with y < 0 whi
h does not des
ribe the 
orre
t marginal utility. Therefore, onewould expe
t additional solutions to Equation (2)-(4) whi
h do not 
orrespond to Walrasianequilibria.In the CES-framework the Equations (2)-(3) 
an be written as follows�Nhh1 (
h1)Nh(�h)Mh � 1 = 0; h = 1; :::; H�Nhhl (
hl )Nh(�h)MhpMhl � 1 = 0; h = 1; :::; H
h1 � eh1 + LXl=1 pl(
hl � ehl ) = 0; h = 1; :::; HHXh=1 
hl � ehl = 0; l = 1; :::; L� 1Note that sin
e �mh(
;y)�y 6= 0 for all 
 > 0 and all y for whi
h mh(
; y) = 0, Equation (4)is satis�ed automati
ally.Without loss of generality we 
an write �h = NMh for some N 
onstant a
ross h. De�ningql = p1=Nl , and eliminating the �h, we obtain a similar system of equations, whi
h has thesame real positive solutions but often fewer 
omplex solutions.�Mhh1 
h1 � �Mhhl 
hl qMhl � 1 = 0; h 2 H; l = 2; :::; L (8)
11 � e11 + LXl=2 qNl (
hl � ehl ) = 0; h = 1; :::; H (9)HXh=1 
hl � ehl = 0; l = 1; :::; L� 1 (10)The following theorem is indi
ative in how to order the variables13



Theorem 5 All positive and real (
h); q that solve (8)-(10) satisfy 
h � 0 whenever q � 0.Moreover, if N and Mh are odd for all h 2 H, all real solutions satisfy q � 0.Proof. Suppose (
h); q solve (8)-(10), q � 0 but 
hl < 0 for some h; l. Then Equation(8) implies that 
h � 0, but then (9) 
annot hold.Now assume N , Mh odd and ql < 0 for at least one l. De�ne �H = fh : 
h1 > 0g. Market
learing implies that this set and its 
omplement are non-empty. By (8), whenever ql < 0,for all h 2 �H, 
hl < 0 and for all h =2 �H, 
hl > 0. Again using market 
learing, we obtainPh2 �H 
hl >Ph2H eh whenever ql > 0. Adding the budget 
onstraint (9) for all h 2 �H thenyields a 
ontradi
tion, sin
e P �H phl (
hl � ehl ) is positive for all l �.4.1 Two 
lasses of e
onomies with few equilibriaTo examine whether there are interesting 
lasses of e
onomies with 'few'Walrasian equilibriawe �rst present two examples. In the examples we give upper bounds on the number ofWalrasian equilibria a
ross all possible pro�les4.2 Example 1First suppose that H = L = 2, and both agents have CES utility fun
tions. As above, let
h = N=Mh and de�ne �h = (�h2=�h1)Mh for h = 1; 2. De�ne K1 = N+ jM2�M1j, K2 = N ,K3 = N �min[M1;M2℄, K4 = max[M1;M2℄ and K5 = jM2 �M1j and assume thatK1 > K2 > K3 > K4 > K5: (11)Let y = p1=N2 . The univariate representing polynomial is then given byr(y) = �e22�2yK1 � e12�1yK2 + (e21 + e11)yK3 � �1�2(e12 + e22)yK4 + e11�2yK5 + e21�1:By Des
artes' bound, the number of positive real solutions is uniformly bounded bythree! Evidently for large Nm but also for large Mh this is substantially below the BKKbound whi
h goes to in�nity as some 
h !1. The result is intuitivly appealing: one wouldnot expe
t the number of Walrasian equilibria to go up, if some 
h 
hanges from being 2 tobeing 180=179. In the univariate representation, this is indeed not the 
ase.If the above 
onditions (11) on N and M1;M2 do not hold, the results are very similar.A notable spe
ial 
ase results if one agent has log-utility, e.g. if M1 = N . In this 
ase therepresenting polynomial simpli�es as followsr(x3) = �e22�2yK1 � e12�1yK2 + (e21 + e11)yK3 + e21�1;and Des
artes' bound implies that equilibria are unique for all endowments and all �1; �2.This is independent of 
2, the elasti
ity of substitution of the se
ond agents.For arbitrary parameters the bound of three equilibria is tight, as the following simple
ase illustrates 14



Suppose 
1 = 
2 = 3, �1 = 4; �2 = 1=4 and e12 = e21 = 1. If e11 = e22 = f > 44 thee
onomy has three equilibria, the univariate representation is given byr(y) = (f + 16)y3 � (4f + 4)y2 + (4f + 4)y � f � 16whose 3 positive real solutions for f > 44 
orrespond to 3 Walrasian equilibria.The fa
t that in the example, there are always at most 3 equilibria, independently ofpreferen
e parameters or endowments 
an only be explained by the fa
t that we looked at avery spe
ial 
lass of preferen
es, CES utility is both homotheti
 and separable! Moreover,as the next example shows, it is 
ru
ial for the result that there are two goods and twoagents.4.2.1 Example 2Now suppose H and L is arbitrary, but assume thatN = 
h = 
1 2Z++ for all h = 2; :::; H,i.e. all agents have identi
al integer- valued and identi
al elasiti
ities of substitution. Asthe above example shows this is not a guarantee for uniqueness.Using standard software for the 
omputation of the BKK bound, it 
an be easliy veri�edthat the BKK bound on the number of 
omplex solutions of this system is given by 
H�11 .Interestingly, this bound is independent of the number of 
ommodities, L, but in
reasesexponentially in the number of agents.In this example, it 
annot be easily shown that the number of 
ompetitive equilibriaalways lies below the number of 
omplex solutions to the equations. In the univariate repre-sentation, Des
artes' bound does not have any bite sin
e the number of sign-
hanges 
annotbe bounded. Furthermore, even for moderate H and L, it is not 
omputationally feasible touse SINGULAR to 
ompute a univariate representation as a fun
tion pri
es and allo
ationsand pro�les of endowments. For spe
i�
 given endowments and �h, 
omputations 
an beperformed on models with up to 5 
ommodities and 5 agents. In all examples 
onsidered,the number of Walrasian equilibria was always not larger than 3, in most 
ases, Walrasianequilibria were unique.4.3 A test for uniquenessIn order to illustrate our test for uniqueness, we return to Example 1 and assume furthermorethat �1 = 1:25; �2 = 0:75. For 
1 = 
2 = 3, the univariate representation be
omesr(y; e12; e21; e22) = (�20e22 � 12e21)y3 + (16e21 + 16) � y2 + (�15e22 � 15e12)y + 12e21 + 20and we want to examine the real solutions to r(y; e) = 0 and �r=�y = 0. Clearly, given The-orem 5, if this system has no real solution, equilibria are unique for all endowment pro�les.Moreover, if there is a real solution, multipli
ty of equilibria is likely in a neighnorhood ofthese solutiosn. 15



As explained above, for this we 
onsider the �rst order 
onditions for minimizing thedistan
e between the solution set and a point. The solution set to this is zero-dimensional,but unfortunately, there are many negative solutions. We need to rule out that they aresemi-algebrai
ally 
onne
ted to some point in the positive orthant. For this, we 
onsiderthe following system of equationse12 � 10� �(�12y3 � 15y)� �(�36y2 � 15) = 0e21 � 10� �(16y2+ 12)� �32 � y � �te22 = 0e22 � 10� �(�20y3 � 15y)� �(�60y2 � 15)� �te21 = 0y � 1� �(�60e22 � 36e12)y2 + 2(16e21 + 16)y + (�15e22 � 15e12))��(�120 � e22 � 72e12)y + 32e21 + 32 = 0(�20e22 � 12e21)y3 + (16e21 + 16)y2 + (�15e22 � 15e12)y + 12e21 + 20 = 0(�60e22 � 36e21)y2 + (32e21 + 32)y + (�15e22 � 15e12) = 0�1 + te21e22 = 0(1� t)� �e22e21 = 0It turns out that this system does not have a real solution with positive y; e22 and e21. Thisimplies that there 
annot be a pro�le of endowments for whi
h multipli
ity arises. Thesolutions with negative e2 
annot be 
onne
ted to solutions with positive e2 be
ause weimpose �1 + te21e22 = 0 for some t. Furthermore, negative pri
es 
annot be 
onne
ted topositive pri
es.We have thus proven that equilibrium is globally unique for the e
onomy with 'small'taste-sho
ksAppendix A: Basi
 Algebrai
 GeometryFor the des
ription of a polynomial f in the n variables x1; x2; : : : ; xn we �rst need to de�nemonomials. A monomial in x1; x2; : : : ; xn is a produ
t x�11 � x�22 : : : x�nn where all exponents�i; i = 1; 2; : : : ; n; are nonnegative integers. It will be 
onvenient to write a monomialas x� � x�11 � x�22 : : :x�nn with � = (�1; �2; : : : ; �n) 2 ZN+ , the set of nonnegative integerve
tors of dimension n. A polynomial is a linear 
ombination of �nitely many monomialswith 
oeÆ
ients in a �eld K. We 
an write a polynomial f asf(x) =X�2S a�x�; a� 2 K; S �ZN+ �nite:We denote the 
olle
tion of all polynomials in the variables x1; x2; : : : ; xn with 
oeÆ
ientsin the �eld K by K[x1 ; : : : ; xn℄, or, when the dimension is 
lear from the 
ontext, by K[x℄.The set K[x℄ satis�es the properties of a 
ommutative ring and is 
alled a polynomial ring.In this paper we do not need to allow for arbitrary �elds of 
oeÆ
ients but instead we
an fo
us on three 
ommonly used �elds. These are the �eld of rational numbers Q, the�eld of real numbers R, and the �eld of 
omplex numbers C .16



Throughout this paper we order monomials a

ording to the lexi
ographi
 ordering, thatis, x� > x� () � > � () The left-most non-zero entry of � � � is positive:For this parti
ular monomial order we 
an de�ne for any polynomial f 2 K[x℄ the multide-gree of f = P� a�x�, md(f) = maxf� 2 Zn+ : a� 6= 0g. That is, the multidegree of f isthe largest ve
tor of exponents among the monomials in f a

ording to the monomial (herelexi
ographi
) ordering. The monomial with the multidegree as its ve
tor of exponents giverise to the leading term of f , LT(f) = amd(f)xmd(f).A subset I of the polynomial ring K[x℄ is 
alled an ideal if it is 
losed under sums,f + g 2 I for all f; g 2 I , and it satis�es the property that h � f 2 I for all f 2 I andh 2 K[x℄. For given polynomials f1; : : : ; fk, the setI = f kXi=1 hifi : hi 2 K[x℄g = hf1; : : : ; fki;is an ideal. It is 
alled the ideal generated by f1; : : : ; fk. This ideal hf1; : : : ; fki is the setof all linear 
ombinations of the polynomials f1; : : : ; fk, where the \
oeÆ
ients" in ea
hlinear 
ombination are themselves polynomials in the polynomial ring K[x℄. The HilbertBasis Theorem states that for any ideal I � K[x℄ there exist �nitely many polynomials thatgenerate I .We denote by LT (I) the set of leading terms of elements of I , that is, LT (I) = f
x� :9f 2 I with LT (f) = 
x�g and by hLT (I)i the ideal generated by all the elements of LT (I).For an ideal I the radi
al of I is de�ned as pI = ff 2 K[x℄ : 9m � 1 su
h that fm 2 Ig.The radi
al pI is itself an ideal and 
ontains I , I � pI . We 
all an ideal I radi
al if I = pI.Gr�obner BasisObserve that if I = hf1; : : : ; fki, it is true hLT (f1); : : : ; LT (fk)i � hLT (I)i but the 
onverseoften does not hold. The question is if there are some g1; : : : ; gk whi
h generate I and forwhi
h in fa
t hLT (g1); : : : ; LT (gk)i = hLT (I)i. One 
an show that these polynomials existand they are 
alled a Gr�obner basis for I .Definition 1 A �nite subset g1; : : : ; gs of an ideal I is 
alled a Gr�obner basis of I ifhLT (g1); : : : ; LT (gk)i = hLT (I)iWhile the de�nition does not require that g1; : : : ; gk forms a basis for I this 
an be shownfairly easily.A Gr�obner basis, G, is 
alled `redu
ed' if for all distin
t p; q 2 G no monomial appearingin p is a multiple of LT (q). Ea
h ideal in K[x1 ; : : : ; xn℄ has a unique redu
ed Gr�obner basisin whi
h the 
oeÆ
ient of the leading term of every polynomial is one.17



(Lexi
ographi
) Gr�obner bases are interesting be
ause they redu
e the problem of �ndingall solutions of a polynomial system of equations to �nding all zeros of a single univariatepolynomial.Bu
hberger's AlgorithmThere are now a variety of methods to 
ompute Gr�obner basis. The original algorithm byBu
hberger implies a 
onstru
tive existen
e proof for Gr�obner basis and allows us to derivesome important properties. Therefore we brie
y outline the algorithm in this se
tion.Given any k polynomials f1; : : : ; fk 2 K[x1 ; : : : ; xn℄, every f 2 K[x1 ; : : : ; xn℄ 
an bewritten as f = a1f1 + : : :+ akfk + r; ai; r 2 K[x1 ; : : : ; xn℄;where for ea
h i, aifi = 0 or LT (f) � LT (aifi) and where either r = 0 or r is a linear
ombination of monomials, none of whi
h is divisible by LT (fi) for any i = 1; : : : ; k. Thepolynomial r is 
alled the remainder of f on division by (f1; : : : ; fk). A simple generalizationof the one-dimensional algorithm for polynomial division 
onstru
ts the above terms. Seee.g. Cox et al. (1997) for a detailed des
ription.To outline Bu
hberger's algorithm, we need to de�ne an S-polynomial. For this, letf; g 2 K[x1 ; : : : ; xn℄ with md(f) = � and md(g) = �. De�ne 
 by 
i = maxf�i; �ig,i = 1; : : :n and de�ne S(f; g) = x
LT (f)f � x
LT (g)gIt is relatively easy to prove that the following algorithm always produ
es a Gr�obnerbasis in �nitely many steps (see e.g. Cox et al (1997)). Let F = f1; : : : ; fk be a basis forthe ideal I . We 
onstru
t a set G whi
h is a Gr�obner basis.1. Set G := F2. G0 := G3. For ea
h pair p; q 2 G0, p 6= q, let S denote the remainder of S(f; g) on division byG0. If S 6= 0 then G := G [ fSg4. If G 6= G0 goto step 2Note that while this algorithm is well de�ned independently of the �eld K, it 
an beperformed exa
tly over Q. Furthermore, if the 
oeÆ
ients in the polynomials f1; : : : ; fkare parameters, the algorithm 
an be applied to obtain a a set of polynomials g1; : : : ; gmwhose 
oeÆ
ients themselves are polynomial fun
tions of the parameters. If the 
oeÆ-
ients of f1; : : : ; fk are real parameters, the 
oeÆ
ients of g1; : : : ; gm will be polynomialfun
tions in these parameters. The result of Bu
hberger's algorithm forms a Gr�obner basisfor hf1; : : : ; fki for all values of the parameters, ex
ept for a set that is a �nite union ofsets de�ned by polynomial equations. The division set is generi
 in that for spe
i�
 values18



of the parameters (satisfying some polynomial equation) it implies division by zero and istherefore not valid. However, it is 
lear that if we take the parameters to lie in Rk, thepolynomials resulting from Bu
hberger's algorithm for a Gr�obner basis for a Zariski-opensubset of Rk. Unless some of the polynomial fun
tions are identi
al equal to zero (and thesubset of valid parameters is the empty set), the set of parameters for whi
h the resultingfun
tions do not form a Gr�obner basis has k-dimensional Lebesgue measure zero. This doesnot 
hange if one 
onsiders a redu
ed Gr�obner basis. In this 
ase, one simply eliminatessome of the generating polynomials.The following lemma (see e.g. Be
ker et al. (1994)) is key to the proof of Theorem 3.Lemma 4 (Shape lemma) Let I be a zero-dimensional radi
al ideal in Q[x1; : : : ; xn℄ with alld 
omplex roots of I having distin
t xn 
oordinates. Then the redu
ed Groebner basis of I inthe lexi
ographi
 term order has the shapeG = fx1 � q1(xn); x2� q2(xn); : : : ; xn�1 � qn�1(xn); r(xn)gwhere r is a polynomial of degree d and the qi are polynomials of degree d� 1.In parts of the analysis, we need to test whether a positive dimensional system ofequations has real solutions. The basi
 idea to do this is to 
onsider the �rst order 
onditionsof minimizing the distan
e between the variety de�ned by the equations and some point inthe reals. For an ideal I we denote by V (I) the aÆne variety of I , the set of points whereall the elements of I vanish. If I = hf1; : : : ; fki then we 
an simply write V (I) = fy 2 Kn :f1(y) = : : : = fk(y) = 0g. Aubry et al. (2002) prove the following result whi
h we use forthe test.Lemma 5 Let V � C n be a variety of dimension d with I(V ) = hf1; :::; fsi, fi 2 Q[x℄ for alli = 1; :::; s. Given a point a 2 Qn, a =2 V , letC(V; a) = fx 2 V : rank �xf(x)a� x ! � n� dg:The set C(V; a) meets every semi-algebrai
ally 
onne
ted 
omponent of V \Rn, moreover, forgeneri
 a 2 Qn, the dimension of C(V; a) is smaller than d.Appendix B: ProofsIn this appendix, we give detailed proofs of the results not proven in the main body of thepaper.Proof of Lemma 2Given a polynomial fun
tion g : C n ! C one 
an de�ne partial derivatives with respe
t to
omplex numbers in the usual way. Writeg = 
0(z�j) + 
1(z�j)zj + : : :+ 
d(z�j)zdj ;19



where the 
i are polynomials in the variables z�j = (z1; :::; zj�1; zj+1; :::; zn). Then,�g�zj := 
1(z�j) + : : :+ d
d(z�j)zd�1j :Given a system of polynomial equations f : C n ! C n , the Ja
obian �xf(x) is de�ned asusual as the matrix of partial derivatives. A solution �x 2 C n , f(�x) = 0, is 
alled lo
allyunique if det(�xf(�x)) 6= 0. We say zero is a regular value of f if all solutions are lo
allyunique.Instead of working with 
omplex derivatives, one 
an alternatively 
onsider the realexpansion of f de�ned as the map f̂ : R2n ! R2n whi
h maps real and imaginary parts toreal an imaginary parts.The Cau
hy-Riemann equations (see any textbook on 
omplex analysis) imply that ifg(z1; :::; zn) is a 
omplex polynomial with zj = xj + iyj and g = gr + igi then�g�zj = �gr�xj + i �gi�xjand �gr�xj = �gi�yj and �gr�yj = � �gi�xj :Therefore the Ja
obian of a polynomial system has full rank if and only if the Ja
obianof the real expansion has full rank. We will work alternately with the original system andthe expansion. In order to prove the parametri
 transversality theorem for fun
tions from
omplex spa
e with real parameters, 
onsider the fun
tion f : C n � Cm ! C n . We areinterested in (z; e) for whi
h e 2 Rm and f(z; e) = 0. De�ning z = x + iy and e = u + iv,we 
an de�ne a real fun
tion f̂ : R2n�R2m! R2n+m as follows.f̂(x; y; u; v) = 8><>: f̂ r(x; y; u; v)f̂ i(x; y; u; v)vClearly f(z; e) = 0; e 2 Rm if and only if f̂(x; y; u; v) = 0. The parametri
 transversalitytheorem states that if �x;y;u;v f̂(x; y; u; v) has full rank 2n + m whenever f̂ (x; y; u; v) = 0then for a set of full Lebesgue measure of �u 2 Rm, 0 is a regular value of f̂�u. This impliesin parti
lar that for generi
 �e 2 Rm, 0 is a regular value of f sin
e if 0 is a regular value off̂�u, it must also be true that�x;y  f̂ r(x; y; �u; 0)f̂ i(x; y; �u; 0) ! has full rank wheneverf̂(x; y; �u; 0) = 0:20



Proof of Lemma 3Consider the system of equations in (
h); p; eh�
uh(
h)� �hp = 0; h 2 H (12)p � (
h � eh) = 0; h = 2; :::; H (13)HXh=1 
h � eh = 0 (14)It suÆ
es to show that that� = f(eh) 2 RHL+ : 9(
h); p s.t. (
h); p solve (12)�(14) and f1(
1; �(
1)) = f2(
1; �(
1)) = 0gis a 
losed set of zero Lebesgue measure. By assumption �yf1 6= 0 and there exists a dire
tionÆ
 su
h that the n'th dire
tional derivative of f2(
1; phi(
1))� f1(
1; �(
1)) is non-zero. We
an partition � into �nitely many sets of the formf(eh) 2 RHL+ : 9(
h); p s.t. (
h); p solve (12)�(14) and �(n)f2�f1 6= 0; �(i)Æ
 f2�f1 = 0; i < ng;where �n 
onsists of all n'th partial derivatives. By the parametri
 transverality theoremea
h of these sets has measure zero. �Proof of Theorem 3Given Lemma 4, it suÆ
es to show that the equilibrium equations generate a zero dimen-sional radi
al ideal with all d 
omplex roots having distin
t xn 
oordinates for generi
 (eh).Given that Bu
hberger's algorithm gives the 
orre
t Groebner basis for generi
 (eh) thetheorem then follows from that. But in the proof of Theorem 1 we already showed thatgeneri
ally in eh, 0 is a regular value for the equilibrium system. The preimage theoremthen implies that generi
ally in eh all 
omplex solutions have distin
t xi 
oordinates for alli = 1; :::; n. the ideal generated by the equations must then be radi
al sin
e To see thatthe ideal generated by the equations must then be radi
al, let I = hf1; : : : ; fni � C [x℄,following Be
ker et al. (1994, Proof of Proposition 5), denote its zeros by (a1j ; :::; anj),j = 1; :::; J . Sin
e all zeros are lo
ally unique, I must be the interse
tion of D ideals of theform hx1 � a1i; x2� a2i; xn � anii, i = 1; :::; D { if any of the primary 
omponents had as abasis fun
tion (xm � ami)d for some m; i and some d = 2; 3; :::, all derivatives with respe
tto xm at the i'th zero would be zero whi
h violates lo
al uniqueness. But this interse
tionmust be radi
al.Proof of Theorem 4By Lemma (5), the solution of the system meets every semi-algebrai
ally 
onne
ted 
om-ponent of the set of 
riti
al e
onomies for whi
h g(eh) 6= 0. The result follows.21
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