Multiplicity of Competitive Equilibria

in Semi-Algebraic Exchange Economies”

Felix Kubler
Department of Economics
University of Mannheim

fkubler@rummes.uni-mannheim.de

Karl Schmedders
Kellogg — MEDS
Northwestern University

k-schmedders@kellogg.northwestern.edu

Version 0.9 — October 10, 2006

Abstract

In this paper, we examine multiplicity of equilibria in semi-algebraic exchange economies.
We give examples of models that give rise to systems of polynomial equations that have
few real solutions, independently of the degree of the polynomials or the number of
unknown variables.

We introduce computational methods to find all competitive equilibria for semi-
algebraic equilibrium models. We develop a test for uniqueness of equilibria over semi-
algebraic and convex set of endowments and preference parameters. The computational
methods allow us to bound the maximal number of competitive equilibria for all possible
profiles of individual endowments, given semi-algebraic preferences.

We illustrate the method and some mathematical details in a model where all agents

have constant elasticity of subsitution utility.

- VERY PRELIMINARY -

*We thank Gerhard Pfister for help with SINGULAR and Grobner bases.



1 Introduction

In this paper we show that Walrasian equilibria in semi-algebraic exchange economies can
be characterized as subset of the finite set of solutions to a system of polynomial equations.
We argue that from a practical point of view the assumption of semi-algebraic preferences
imposes few restrictions on the economic fundamentals and explore mathematical results
and algorithms that characterize all solutions to systems of polynomial equations. Under
the assumption that all agents have CES utility we give examples that show that one can
often show uniqueness of equilibria for a large set of profiles of individual endowments.

It is now well understood in general equilibrium analysis that sufficient assumptions
for the global uniqueness of competitive equilibria are too restrictive to be applicable to
models used in practice. However, it remains an open problem whether non-uniqueness
of competitive equilibrium poses a serious challenge to applied equilibrium modeling or
whether non-uniqueness is a problem that is unlikely to occur in so-called ‘realistically
calibrated’” models. Given specifications for endowments, technology and preferences, the
fact that the known sufficient conditions for uniqueness do not hold obviously does not imply
that there must be several competitive equilibrium in the model economy. As a matter of
fact, there seem to be few known examples of multiplicity for specifications of preferences,
endowments and technologies commonly used in applied general equilibrium models.

However, given that algorithms which are used in practice to solve for equilibrium in
applied models are never designed to search for all solutions of the model, there is no
proof that there might not be several equilibria in these models after all. The fundamental
problem is that for general preferences, one cannot prove that equilibria are unique for a
given set of endowments. An obvious remedy for this problem is to consider semi-algebraic
economies, i.e. to assume that preferences and technologies can be described by finitely
many polynomial inequalities and equalities. In this case, the Tarski-Seidenberg theorem
implies that it is decidable whether competitive equilibria are unique. In fact, it follows
from the theorem that for any semi-algebraic class of economies, one can algorithmically
determine whether there are economies in this class for which multiplicity of equilibria
occurs. Unfortunately, the Tarski-Seidenberg procedure is known highly intractable and
while it offers interesting theoretical results it is not applicable to even the smallest exchange
economies.

On the other hand, if one can reduce the system of equations describing competitive
equilibria to a polynomial system, all-solution algorithms can be used to approximate all
roots to this system numerically. Recent advances in computational algebraic geometry
have led to the development of relatively efficient algorithms for the computation of all
zeros of a polynomial system of equations. In particular, if one can compute a Grébner
basis (see e.g. Cox et al. (1997) for a basic introduction) associated with a polynomial
system the task of finding all roots to that system essentially reduces to finding all roots

of a single polynomial equation in one unknown. With the development of fast computers



and efficient algorithms Grébner bases can now be computed even for fairly large systems
of polynomial equations (see Faugere (1999)). To the best of our knowledge, there has so
far not been an attempt to use these methods to make statements about the number of
equilibria in general equilibrium models.

The first problem one faces when trying to apply all solution algorithms for polynomial
systems to general equilibrium models is that these algorithms find all complex solutions
to the system while in general only a subset of the real solutions describes competitive
equilibrium (those who are associated with non-negative consumption and positive prices).
Evidently, there are many different polynomial systems whose real solutions include the
competitive equilibrium. The question is then whether one can find a ‘minimal’ system of
equations that describes all equilibria of the economy but has not too many solutions which
are not equilibria. Developing a general method for this is beyond the scope of this paper,
but we give an example in Section 4 to show how to set up shuch minimal systems.

Having formulated any equilibrium system, it is easy to determine whether there are
multiple equilibria for a given economy. However, in this paper we want to go a step further
and show that within a given class of preferences, equilibrium is unique for ‘most’ realistic
specifications of endowments, i.e. for some compact set of endowments. It turns out that in
general the Grébner base representation of the system does allow us to bound the number
of zeros, but often does not guarantee that there is a unique equilibrium.

It is not clear how the idea that multiplicity of equilibria is rare in ‘realistically cal-
ibrated” economies could possibly be formalized. The first observation is that one must
impose joint restriction on preferences, endowments and technology in order to have any
hope to guarantee uniqueness. For any profile of endowments, one can construct preferences
such that the resulting economy has an arbitrary (odd) number of equilibria. Moreover,
Gjerstad (1996) shows that in a pure exchange economy, for CES utility functions with
elasticities of substitution above 2 (arguably realistically calibrated utility functions), mul-
tiplicity of equilibrium is a prevalent problem. The question then becomes whether for
‘most’ endowments and preference parameters, these economies have unique equilibria. In-
tuitively, in the case of Arrow-Debreu pure exchange economies one might think that since
no-trade equilibria are always unique, one needs a large departure from Pareto-efficient
endowments to obtain non-uniqueness. Balasko (1979) formalizes the idea that the set of
endowments for which there are n equilibria, shrinks as n increases. Going beyond this
result in the general case seems impossible. Instead, we use an idea due to Dakhlia (1999)
and test whether there any critical economies in the specified convex set of parameters. In
the absence of such, it suffices to prove uniqueness for a single economy in that set to infer
that equilibrium must be unique in the entire set. Rouillier et al. (2000) and Aubry et al.
(2002) develop algorithms which allows us to test for the presence of a critical point by
investigating whether a positive dimensional system of equations has a solution in the set
of interest.

The computations in this paper were all performed with the computer algebra system



SINGULAR, available free of charge at www.singular.uni-kl.de. In Section 4, we discuss a
simple computational example in some detail. The rest of the paper is more conceptual and
less geared towards particular applications.

The paper is organized as follows. In Section 2 we introduce semi-algbraic exchange
economies and show that equilibria can be characterized as solutions to polynomial equa-
tions. In Section 3, we use results from real algebraic geometry to characterize all solutions
to polynomial systems of equations. In Section 4, we examine uniqueness in Arrow Debreu

economies with CES utility functions.

2 Semi-algebraic Arrow Debreu economies

There are H agents, h € H, trading L commodities. Agents have endowments (e),¢ € REL

and preferences represented by utility functions
h .ol
u” :RY = R.

Commodity prices are denoted by p € Rf_. Throughout we take commodity 1 as the
numéraire and set p; = 1. A Walrasian equilibrium consists of a consumption allocation

(Ch)hey and prices p such that markets clear and each individual maximizes utility subject

Z(Ch—eh):()

to the budget constraint, i.e.

and for each agent h

" € argmaxu”(c) s.t. p-(c—e") = 0.
cERi

A function ¢ : R® — R™ is called semi-algebraic if its graph {(z,y) € R» X R™ : y =

¢(2)} is a finite union and intersection of sets of the form

{(z,y) €R™ " g(a,y) > 0} or {(x,y) ER™": f(x,y) =0}

for polynomials f and ¢ with real coefficients.

We call preferences semi-algebraically smooth if they can be represented by a utility
function u(.) that is C? on Rf__l_, strictly increasing and strictly concave and if d.uy, : RE_ —
R” is a semi-algebraic function. In a slight abuse of notation, we call an economy semi-
algebraic if if each agent has semi-algebraically smooth preferences.

Throughout this paper, we will focus on interior equilibria. In order to guarantee that
all equilibria are interior, one can make the additional assumption that indifference curves
do not cut the axes, i.e. that for each h and all y, cl({z : u(z) > y}) C R{IZ--I-' The example
in Section 4 will satisfy this assumption, but it is not needed for the general analysis if one

keeps in mind that we focus only on interior equilibria.



2.1 Semi-algebraic economies

How general is the assumption of semi-algebraic marginal utility? First note, that if a
function is semi-algebraic, so are all its derivatives (the converse is not true, as the example
f(z) = log(x) shows).

It follows from Blume and Zame (1993) that semi-algebraic preferences (i.e. the as-
sumption that better sets are semi-algebraic sets) implies semi-algebraic utility.

From a practical point, it is easy to see that Cobb-Douglas and CES utility functions with
rational elasticities of substitution, ¢ € Q, represent semi-algebraically smooth preferences.

From a theoretical point, by Afriat’s theorem (Afriat (1967)), any finite number of ob-
servations that can be rationalized by arbitrary non-satiated preferences can be rationalized
by a piece-wise linear, hence semi-algebraic function. While Afrait’s construction does not
yield a semi-algebraic, C'?, and strictly concave function, the construction in Chiappori and

Rochet (1987) can be modified to our framework and we obtain the following lemma.

LEMMA 1 Given N observations (z",p") € R3_1_|_ with p* # 7 foralli # j = 1,...,N, the

following are equivalent.

(1) There exists a strictly increasing, strictly concave and continuous utility function u(zx)
such that

2" = arg max u(x) s.t. p" -z <p"-z”.

wERl_I_
(2) There exists a strictly increasing, strictly concave, semi-algebraic and C? utility function
v(x) such that

2" = argmax v(z) s.t. p" - < p"-a”.

zeRY
To prove the lemma, observe that if statement (1) holds, the observations must satisfy the
condition 'SSARP’ from Chiappori and Rochet (1987). Given this one can follow their
proof closely to show that there exists a C'? semi-algebraic utility function that rationalizes
the data. The only difference to their proof is that in the proof of their Lemma 2, one
needs to use a polynomial 'cap’-function which is at least C'?. In particular, the argument
in Chiappori and Rochet goes through if one replaces €' everywhere with C'? and uses
the cap-function p(z) = max(0,1— Y, 27)>. Since the integral of a polynomial function is

polynomial, the resulting utility function is piece-wise polynomial, i.e. semi-algebraic.

2.1.1 The equilibrium set of semi-algebraic economies

The general assumption on semi-algebraic preferences imposes almost no restriction on the
equilibrium set of exchange economies.

In the light of the theorems of Sonnenschein,Mantel and Debreu, Mas-Colell (1977)
shows that for any compact (non-empty) set of positive prices P C Al~! there exists an

exchange economy with [ households, ((uh)élz17 (eh)élzl)7 with «” strictly increasing, strictly



concave and continuous such that the equilibrium prices of this economy coincide precisely
with P.

Given Lemma 1 above, this directly implies that for any finite set of prices P C A,
there exists an exchange economy ((u")!_,, (e™))_,), with u” strictly increasing, strictly
concave, semi-algebraic and C? such that the equilibrium prices of this economy coincide
precisely with P. Therefore, the abstract assumption of semi-algebraic preferences imposes
no restrictions of multiplicity of equilibria. Mas-Colell (1977) also shows that if the number
of equilibria is odd, one can construct a regular economy and that there exist open sets of
individual endowments for which the number of equilibria can be an arbitrary odd number.

Sufficient conditions for the uniqueness of Walrasian equilibrium are very restrictive. It
is well known that equilibrium is unique if all agents have identical homothetic utility. More

. . . . . L
interestingly, W.E. is unique if for all agents and all c € Ry,

d*u"(c)e

o.uh(c) <1

or, if individual endowments are all collinear, if these expressions are smaller than 4. These
are the bounds by Mijutshin and Polterovitch. Mas-Colell (1992) shows that the bounds

on the expressions are tight.

2.2 Walrasian equilibria and polynomial systems of equations

It follows from the Tarski-Seidenberg theorem that for a given semi-algebraic economy it is
decidable whether Walrasian equilibrium is unique(see e.g. Basu et al. (2003)). Unfortu-
nately, the algorithmic complexity of quantifier-elimination based methods is too large for
these methods to be of any use for economic applications.

Instead, we want to derive a system of polynomial equations that has finitely many
solutions which include all Walrasian equilibria of the economy. An important complica-
tions comes in from the fact that available algorithms that find all solutions to systems of
polynomial equations in fact find all complex solutions. We therefore need to ensure that
the system of polynomial equations that characterizes equilibria has finitely many complex
solutions and have to use some complex analysis.

An interior Walrasian equilibrium is characterized by the following equations.

ou(c)=dp = 0,heH
Zpl(Cl—ef) = 0,heH
]
dt—ef =0, I=1,.,L-1
h

The derivatives du”(x) are semi-algebraic functions but of course in general not poly-

nomial. Neyman (2003, Corollary 1) makes the following useful observation. The graph of



any semi-algebraic function ¢ : V— R, V C R” can be written a the union of finitely many

sets
G ={fi(z,y) =0 and g;(z,y) >0}, i=1,...,N,

with f; : VxR — R and ¢; : V x R — R* polynomials. The polynomial function

h(z,y) = Y, fi(z,y) then is a non-zero polynomial that satisfies
h(z,¢(z)) =0 forall z € V.

Of course, for many (2, y) which satisfy h(z,y) = 0, we might have y # ¢(2). However, it
follows from the construction that we can assume without loss of generality that for any
z,y with fi(z,y) = f;(z,y) = 0 for some 1, j there is a Z arbitrarily close to such that
fi(Z,¢(2)) = 0and f;(Z,#(y)) # 0. Moreover, we can assume that for each 1, file d(=) (b 7£ 0
whenever f;(z,$(z)) =0

Denote by m” (¢, y) the L-vector of polynomials constructed as above that satisfy mf (¢, 0.,u"(c)) =
0 for each [ = 1,..., L. Since these are polynomials, we can write them as function from

complex space, m” : CE+1 — CF. Define the ’demand system’ to be

mh(er, ... cn, )
Dh(C,A7p): mf(cl,...,cL,/\pl), l=2,....L |. (1)
Yiopilc—ef) +er —ef

It is then clear that Walrasian equilibria are solutions to the following polynomial system

of equations

DM Np)y = 0, h=1,....H (2)

Cl —61 = 0 121771/—1 (3)

||Mm

Note that throughout the paper, we work with first order conditions. Of course, Tarski-
Seidenberg implies that aggregate excess demand is also semi-algebraic. While it is often
difficult to compute demand analytically it can always be written implicitly as a solution of
a triangular polynomial system. However, it turns out that using aggregate excess demand
function, although it reduces the number of unknowns and equations considerably, usually
does not lead to efficiency gains in computing all Walrsian equilibria.

In order to guarantee that the system (2)-(3) only has finitely many complex solutions,
we need to add the requirement that 8C7ADh(Ch7 A p) has full rank L 4 1. This gives the

following additional equation.

1—t" . det (GCAD}L(C}L,/\}L,]))) —0, h=1,....H (4)

We have the following theorem that characterizes the solutions to these equations.



THEOREM 1 There is an open set of full measure of (e!,...,eM) € REL such that the system
of equations (2)-(4) has at most finitely many complex solutions and such that all Walrasian

equilibria are solutions to the equations.

To prove the theorem we need two lemmas.

LEMMA 2 Consider the function f : C" x C™ — C". Suppose that f(z,e) = 0 with e € R™
implies that 0, . f(z, ) has full rank. Then for generic € € R™, 0 is a regular value of fz(z).

LEMMA 3 Suppose ¢ : RY — R is a differentiable semi-algebraic function and f; : R‘xR — R,
i = 1,2 are non-zero polynomials such that whenever fi(z,¢(x)) = fao(z, $(z)) =0, there is a
T arbitrarily close to « such that fi(z,¢(z)) = 0 and f5(Z, ¢(z)) # 0.

For an open and full measure set of €', ..., ¢! and for each h = 1, ..., H there is no Walrasian

equilibrium for which f (2", #(z")) = f2(z", o(2")) = 0.

Proof of the theorem

We first prove that there are finitely many complex solutions. Using Lemma (2), it
suffices to prove that the derivative of the system of equations under consideration with
respect to a!, AL, .. af AT p el has full rank H (L4 1)+ H + L — 1. Equation (4) ensures
that the derivative of each Dh(avh7 /\h,p) with respect to zy,...,27 and A has rank L + 1.
The derivatives of Equation (3) with respect to the t*, h = 1, ..., H give rank H. Following
Debreu (1972) and considering directional derivatives for those e} for which p; # 0 as well
as direct derivatives for the other ell, the derivatives with respect to e! give additional rank
L—1.

To prove that each Walrasian equilibrium solves equations (2)-(4), recall that we can
write each each mf(c7 y), h € H,l =1,...,L, as a product of finitely many polynomials
mi(e,y) = W, fhileyy) with {(e,y) : fyley) = 0} # {(e,y) = fhy = 0} for all j, j.
Moreover for each ¢ and each [, there is a j; such that f]%(c, d,u"(c)) = 0. If for each [,

]h,J(c7 de,u(c)) # 0 for all j' # j;, we obtain, by the implicit function theorem that the
matrix

= Gylteany e (A7)

1 h h
= Bytepn) 0L (e ATPL)

is negative definite. Therefore, D.\D"(c, \) must have full rank L + 1.
By lemma 3, the set of individual endowments (e*) for which there are h, j, j' and y

h

with f]h(ch7 y) = f]h,(ch7 y) = 0 for some Walrasian equilibrium consumption ¢” is a closed

set with Lebesgue measure zero. .

In addition to solving the equilibrium equations, competitive equilibrium will be char-

acterized by a system of polynomial inequalities g;(z) > 0, ¢ = 1,..., M. Given individual



endowments (€), we are thus interested in the set of competitive equilibria,
€ = {((z"),p) € R¥EADH that solve (2) — (4) : g((=", A"), p) > 0} (5)

Obviously we can obtain an upper bound on the number of equilibria by bounding the

number of complex solutions of Equations (2) — (4).

2.3 Maximal number of solutions to polynomial systems

The following theorem provides a well known upper bound for the number of locally isolated

solutions that is easy to compute.

THEOREM 2 (BEzZOUT) Suppose f : C* — C" are n polynomials of degrees dy,...,d,. The

number of locally isolated solutions in C" is bounded by dy . ..d,.

Unfortunately, even for very simple economies, the Bézout bound can be quite large.
For example, consider an economy with two agents and two commodities and Cobb-Douglas

utility functions. Walrasian equilibrium is unique, but the equilibrium equations read as

1Al =

1—Alped =

e tple—e) =
1Mt =

1—Ape? =

c% + c% — e% — e% =

1 2 1 2
Cotcy—ey—e€y =

o o o o o o o

The Bezout bound on the number of solutions is 72! This seems to indicate that even
for simple economies, it is hopeless to try to solve for all complex solutions and then identify
those who correspond to a Walrasian equilibrium.

However, the Bezout bound on the number of solutions is generically only obtained for
so-called ’dense’ systems of equations, i.e. for polynomials for which all monomial terms
appear with non-zero coefficients (see Sturmfels (2002)).

The root count developed by Bernshtein, Kushnirenko and Khovanskii counts the num-
ber of isolated zeros of a ’sparse’ polynomial system (see Sturmfels (2002)). In the following
we refer to this as 'BKK-bound’. The theory underlying this bound turns out not to be
relevant for this paper. Although the resulting sharper upper bounds a much more difficult
to obtain than just multiplying degrees, there are freely downloadable software packages for
computing these bounds in arbitrary high dimensions (the computations in this paper were
performed with the package by Tangan Gao, T. Y. Li, and Xing Li). For the Cobb-Douglas

economy, this actually gives a bound of at most one complex solutions, which obviously



implies that equilibrium is always unique. Unfortunately, it is easy to see that in economic
problems even the BKK bound is often not very good.

For Pareto-optimal endowments, equilibria are always unique. The BKK bound is uni-
form over profile of endowments. We show in examples below, that even uniformly across
profiles of endowments, the bound is often not sharp.

We therefore now turn to algorithms which compute all (complex) solutions to polyno-

mial systems.

3 Grobner bases for the computation of all solutions

Given a polynomial system of equations f : CM — CM there are now a variety of algorithm
to approximate numerically all complex and real zeros of f. Sturmfels’ (2002) monograph
provides an excellent overview. The two most important approaches are homotopy contin-
uation methods and solution methods based on Grébner bases. Both approaches are too
inefficient to be applicable to large economic models, but they can be used for models with
4-5 households and 9-10 commodities. To find all equilibria for a given economy, homotopy
methods seem slightly more efficient, while Grobner bases allow for statements about entire
classes of economies. In this paper, we therefore focus on Grébner bases.

A Grobner basis is a set of multivariate polynomials which has desirable algorithmic
properties - in particular, given a Grobner basis it is often possible to solve polynomial
equations by solving a univariate polynomial. Every set of polynomials can be transformed
into a Grébner basis. Loosely speaking, this process generalizes Gaussian elimination for
solving linear equations.

The following theorem provides the basis for our algorithms.

THEOREM 3 Given utility functions (u"),cy that represent semi-algebraically smooth prefer-

ences, there exist equations

G=Az1—q ($n§ (eh))7 Ty — (]2($n§ (eh))v ceey -1 — Qn—l(wm (eh))v r(xn; (eh))}

where for each (¢") € R¥L, r is a polynomial of some fixed degree d (independent of (¢")) and
the ¢; are polynomials of at most degree d — 1, such that for generic (¢") € REL, the solutions

of equations (2)-(4) are identical to the common solutions of the equations in G.

The theorem is proved in the appendix, using methods from real algebraic geometry.
It turns out that G forms a so-called ’Grébner’ basis under the lexicographic monomial
ordering. Buchberger’s algorithm is guaranteed to produce this basis in a finite number
of steps. Computer algebra systems such as SINGULAR have implementations of this
algorithm. It is noteworthy to stress that the ¢; and r are rational functions in e” and that
the calculations produce an exact Grobner basis if all coefficients in Equations (2) - (4) are

rational numbers.

10



We call the function r(.) the ‘univariate representation’ of the class of Arrow-Debreu
economies with utilities (u").

The ’rational univariate representation’ of Rouiller (1999) often has much smaller coeffi-
cients and is therefore numerically better behaved. However, for the purposes of this paper,
we use the lexicographic Groebner basis to examine a system of polynomial equations. More

sophisticated methods are subject to further research.

3.1 Algorithms
3.1.1 Finding all competitive equilibria

It follows directly from Theorem 3 that in order to find all equilibria for a given generic
semi-algebraic economy, it suffices to compute the lexicographic Groebner basis and to
find all real solutions to a univariate polynomial equation. Sturm’s algorithm provides
an exact method to determine the number of solutions to a univariate polynomial in the
interval [0, c0). Therefore, one can determine the exact number of solutions of the univariate
polynomial. Using simple bracketing, one can then approximate all solutions numerically,
up to arbitrary precision! Given the solutions to the univariate representation, the other
solutions can then be computed with arbitrary precision by evaluating polynomials up to
arbitrary precision. Therefore, equilibria in this model are Turing computable (in contrast,
see Richter and Wong (199x) who show that without restrictions on preferences Walrasian

equilibria are generally not Turing computable).

3.1.2 A test for uniqueness

Dakhlia (1999) makes the following observation for Arrow-Debreu exchange economies.
Given smooth utility functions (u")ey, if for a convex set of individual endowments F C
REL, there exists an (€"),cy such that the economy (u”, e"),cs has a unique equilibrium
and if there are no critical economies in F/, then Walrasian equilibrium must be unique for all
profiles of individual endowments (e?) € E. This follows directly from the implicit function
theorem and is in itself not hugely helpful, since it is generally not feasible (although for
possible for semi-algebraic economies) to determine if such a critical economy in F exists.

However, for a single polynomial r(z, (¢?)) it often is feasible to determine if r(z, (€)) =
0 and 7/(x, (")) = %ﬂgﬁh)) = 0 has a solution for positive z and for (¢?) € Q, with

Q={e" e R gi(e") <0,i=1,...,T}, (6)

where ¢; are polynomials for all . The trouble is that in order for this test to be of any use,
one needs to ensure that real positive solutions to the univariate representation correspond
to competitive equilibria or at least one needs to be able to easily identify those that do not
correspond to Walrasian equilibria.

Rouillier et al. (2000) and Aubry et al. (2002) develop algorithms which find one point

in each connected component of the variety by minimizing the distance function between

11



the variety and a point. Their main result is used in the Appendix to prove the following

theorem.

THEOREM 4 Suppose that Walrasian equilibria are characterized by the positive real solutions
of the univariate representation r(z, (e")) that satisfy h(z) < 0 for polynomials h : R — RM
and suppose that there cannot be solutions with h(x) = 0. Suppose that there exists a (¢"') € ,
as defined in Equation 6 for which there is a unique Walrasian equilibrium. Then there cannot be
an open set of endowments in ) with multiple equilibria unless the following system of equations

has a solution for some (") € Q.

(eh) - (é)h - /\D(eh)r(x, (eh)) - ,uD(eh)r'(x, (eh)) - I/D(eh)k‘(eh) =

o o o O

where k(") = ®;g:(e").

While the theorem obviously only provides a sufficient condition, it turns out that the
method can be applied to a variety of examples. We illustrate this point in Section XXY

below.

3.2 Bounding the Number of Real Zeros

While we explained above that bounds on the number of solutions to polynomial equations
are usually bounds on the number of complex solutions, it turns out that the use of Grébner
basis sometimes allows for the derivation of bounds on the number of positive real solutions.
The reason for this is that the number of real solutions to f; = ... = f, = 0 is equal
to the number of real roots of r(z) = 0, where r(z) is the representing polynomial from
Theorem 3 and that there exist simple bounds on the number of real solutions for univariate
polynomials.

Given any univariate polynomial, Z?:o a;x’, with a; € R for all 7, the number of its
complex zeros is obviously bounded by its degree d. However, there a better bounds available
for the number of real zeros. Define the number of sign changes of r to be the number of
elements of {a; # 0,i = 0,...,d — 1 : sign(a;) = —sign(a;41)}. The classical Descartes’s
Rule of Signs, see Sturmfels (2002), states that the number of real positive zeros of r does
not exceed the number of sign changes. This bound is remarkable because it bounds the
number of real zeros. It is possible that a polynomial system is of very high degree and
has many solutions but the Descartes bound on the number of zeros of the representing

polynomial proves that the system has a single real positive solution.

12



4 Application to CES utility

From now on we make the restrictive (but in policy work very common) assumption that

utility exhibits constant elasticities of substitution and is of the form

L

1 —op 1—0
up(c) = Z o e, (M)

1—o0y

with rational oj, # 1 and aj; > 0.

With o, = ]\]\47—2, the partial derivatives can be written as

dup(c)
ahcl )

mf(c7 0,

NP N

= thO‘hl e " _ 1. Note that this is also the correct representation for the

where m!'(c, y)
Cobb-Douglas case with o, = 1. Note that for M" even, the equation mf(c7 y) = 0 also has
a solution with y < 0 which does not describe the correct marginal utility. Therefore, one
would expect additional solutions to Equation (2)-(4) which do not correspond to Walrasian
equilibria.

In the CES-framework the Equations (2)-(3) can be written as follows

AN OMMY = 0, =1, H
h h h h
af (N AMIMY 1 = 0, h=1,.,H

L
C?—@?—FZ[U(C?—@?) = 07 h:177H
=1

H

dt—ef =0, I=1,.,L-1
h=1

Note that since %&C’y) #£ 0 for all ¢ > 0 and all y for which m” (¢, y) = 0, Equation (4)

is satisfied automatically.

N
Mhb
q = pll/N7 and eliminating the A", we obtain a similar system of equations, which has the

Without loss of generality we can write oj, = for some N constant across h. Defining

same real positive solutions but often fewer complex solutions.

a%hc?—a%hchth—l =0, heHl=2,..,L (8)
L
C% —6%{—2(]1]\7(6?—6?) = 07 h = 17"'7H (9)
=2
H
dd—ep =0, I=1,.,L-1 (10)
h=1

The following theorem is indicative in how to order the variables
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TurorREM 5 All positive and real (c"), ¢ that solve (8)-(10) satisfy ¢ > 0 whenever ¢ > 0.
Moreover, if N and M" are odd for all h € H, all real solutions satisfy ¢ >> 0.

Proof. Suppose (c”), ¢ solve (8)-(10), ¢ > 0 but cf < 0 for some h,[. Then Equation
(8) implies that ¢ < 0, but then (9) cannot hold.

Now assume N , M" odd and ¢; < 0 for at least one [. Define H = {h : ¢} > 0}. Market
clearing implies that this set and its complement are non-empty. By (8), whenever ¢; < 0,
for all h € H, Cf < 0 and for all A ¢ H, Cf > 0. Again using market clearing, we obtain
> oher & > D pen € whenever ¢ > 0. Adding the budget constraint (9) for all € # then

yields a contradiction, since )4 pl(c} — €l is positive for all [ O.

4.1 Two classes of economies with few equilibria

To examine whether there are interesting classes of economies with few’” Walrasian equilibria
we first present two examples. In the examples we give upper bounds on the number of

Walrasian equilibria across all possible profiles

4.2 Example 1

First suppose that H = I = 2, and both agents have CES utility functions. As above, let
v, = N/M" and define ¢* = (ag/a?)Mh for h = 1,2. Define Ky = N+|My— M|, Ka = N,
K3 = N — min[My, Ms], K4 = max[M;, M;] and K5 = |My — M| and assume that

K> Ky > K3 > K4 > Ks. (11)

/

Let y = p% N The univariate representing polynomial is then given by

r(y) = —es&y™ — sy 4 (e + el)y™e — Gi&(eh + ed)y™ + elay™® 4 e3¢y,

By Descartes’ bound, the number of positive real solutions is uniformly bounded by
three! Evidently for large Nm but also for large M" this is substantially below the BKK
bound which goes to infinity as some 7y, — co. The result is intuitivly appealing: one would
not expect the number of Walrasian equilibria to go up, if some 4" changes from being 2 to
being 180/179. In the univariate representation, this is indeed not the case.

If the above conditions (11) on N and Mj, M3 do not hold, the results are very similar.
A notable special case results if one agent has log-utility, e.g. if My = N. In this case the

representing polynomial simplifies as follows
r(rs) = —€36y™ — 36yt + (ef +en)y™ + i,

and Descartes’ bound implies that equilibria are unique for all endowments and all &, &.
This is independent of ~5, the elasticity of substitution of the second agents.
For arbitrary parameters the bound of three equilibria is tight, as the following simple

case illustrates
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Suppose 71 = 2 = 3, & = 4,& = 1/4and el =€ = 1. If e} = € = f > 44 the

economy has three equilibria, the univariate representation is given by

ry) = (F4+16)y° — (4f +D)y* + (4f +4)y— f— 16

whose 3 positive real solutions for f > 44 correspond to 3 Walrasian equilibria.

The fact that in the example, there are always at most 3 equilibria, independently of
preference parameters or endowments can only be explained by the fact that we looked at a
very special class of preferences, CES utility is both homothetic and separable! Moreover,
as the next example shows, it is crucial for the result that there are two goods and two

agents.

4.2.1 Example 2

Now suppose H and L is arbitrary, but assume that N =y, =y, € Zy forall h =2, ..., H,
i.e. all agents have identical integer- valued and identical elasiticities of substitution. As
the above example shows this is not a guarantee for uniqueness.

Using standard software for the computation of the BKK bound, it can be easliy verified
that the BKK bound on the number of complex solutions of this system is given by 7{1_1.
Interestingly, this bound is independent of the number of commodities, L, but increases
exponentially in the number of agents.

In this example, it cannot be easily shown that the number of competitive equilibria
always lies below the number of complex solutions to the equations. In the univariate repre-
sentation, Descartes” bound does not have any bite since the number of sign-changes cannot
be bounded. Furthermore, even for moderate H and L, it is not computationally feasible to
use SINGULAR to compute a univariate representation as a function prices and allocations
and profiles of endowments. For specific given endowments and &", computations can be
performed on models with up to 5 commodities and 5 agents. In all examples considered,
the number of Walrasian equilibria was always not larger than 3, in most cases, Walrasian

equilibria, were unique.

4.3 A test for uniqueness

In order to illustrate our test for uniqueness, we return to Example 1 and assume furthermore

that & = 1.25, & = 0.75. For ;1 = 79 = 3, the univariate representation becomes
r(y; ey, €1, €3) = (—20e3 — 12e])y” + (16€7 + 16) * y* + (—15e3 — 15ed)y + 12¢7 + 20

and we want to examine the real solutions to r(y, e) = 0 and dr/dy = 0. Clearly, given The-
orem b, if this system has no real solution, equilibria are unique for all endowment profiles.
Moreover, if there is a real solution, multiplicty of equilibria is likely in a neighnorhood of

these solutiosn.
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As explained above, for this we consider the first order conditions for minimizing the
distance between the solution set and a point. The solution set to this is zero-dimensional,
but unfortunately, there are many negative solutions. We need to rule out that they are
semi-algebraically connected to some point in the positive orthant. For this, we consider

the following system of equations

ey — 10 — \(—12y° — 15y) — u(—36y* —15) = 0
e} — 10 — A(16y* + 12) — u32 %y — rte; = 0
e3 — 10 — A\(—20y° — 15y) — u(—60y* — 15) — kte; = 0
y — 1 — M\(—60e3 — 36e3)y? + 2(16€7 + 16)y + (—15¢3 — 15¢3)) —
(=120 % €3 — 72e3)y +32¢; +32 = 0
(—20€e3 — 12€3)y° + (16€] 4+ 16)y* + (—15€5 — 15e3)y +12e7 +20 = 0
(—60e3 — 36€3)y? + (32¢] 4+ 32)y + (—15€5 — 15e3) = 0
—1+tefes = 0
(1—1t) —keze; = 0

It turns out that this system does not have a real solution with positive y, €2 and e?. This
implies that there cannot be a profile of endowments for which multiplicity arises. The

2 cannot be connected to solutions with positive e? because we

solutions with negative e
impose —1 + te?e2 = 0 for some ¢t. Furthermore, negative prices cannot be connected to
positive prices.

We have thus proven that equilibrium is globally unique for the economy with ’small’

taste-shocks

Appendix A: Basic Algebraic Geometry

For the description of a polynomial f in the n variables zq, xo, ..., 2, we first need to define

On

. A . a1 an
monomials. A monomial in zq,z2,...,%, is a product 27" - 25% ... 2}

where all exponents
;¢ = 1,2,...,n, are nonnegative integers. It will be convenient to write a monomial
as ¢ = 2{" - 252 . .z with o = (ag,09,...,04y) € Z]_l\_f, the set of nonnegative integer
vectors of dimension n. A polynomial is a linear combination of finitely many monomials
with coeflicients in a field K. We can write a polynomial f as
flz)= Z az”, a, €K S C Z]_?_f finite.
a€S

We denote the collection of all polynomials in the variables z, 4, ..., 2, with coefficients
in the field K by K[zy,...,2,], or, when the dimension is clear from the context, by Klz].
The set K[x] satisfies the properties of a commutative ring and is called a polynomial ring.

In this paper we do not need to allow for arbitrary fields of coefficients but instead we
can focus on three commonly used fields. These are the field of rational numbers @, the

field of real numbers R, and the field of complex numbers C.
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Throughout this paper we order monomials according to the lexicographic ordering, that

is,
@ > 2’ = a>p < The left-most non-zero entry of o — 3 is positive.

For this particular monomial order we can define for any polynomial f € K[z] the multide-
gree of f =3 a,2®, md(f) = max{a € Z} : a, # 0}. That is, the multidegree of f is
the largest vector of exponents among the monomials in f according to the monomial (here
lexicographic) ordering. The monomial with the multidegree as its vector of exponents give
rise to the leading term of f, LT(f) = amd(f)gcmd(f).

A subset I of the polynomial ring K[z] is called an ideal if it is closed under sums,
f+g e I forall f,¢g € I, and it satisfies the property that A - f € [ for all f € I and

h € Klz]. For given polynomials fi,..., fr, the set

k
I= {Zhifi thi € Kz} = (fiy- ooy Jr),

is an ideal. It is called the ideal generated by fi,..., fr. This ideal (fi,..., fi) is the set
of all linear combinations of the polynomials fi,..., fz, where the “coefficients” in each
linear combination are themselves polynomials in the polynomial ring K[z]. The Hilbert
Basis Theorem states that for any ideal I C K[x] there exist finitely many polynomials that
generate [.

We denote by LT(I) the set of leading terms of elements of I, that is, LT(I) = {cz® :
df € I with LT(f) = cz®} and by (LT (1)) the ideal generated by all the elements of LT'(1).

For an ideal I the radical of I is defined as /I = {f € K[z] : 3m > 1 such that f™ € I}.
The radical v/T is itself an ideal and contains I,1C V1. We call an ideal I radical if T = v/I.

Grobner Basis

Observe that if T = (f1,..., fi), it is true (LT(f1),..., LT (fx)) C (LT(I)) but the converse
often does not hold. The question is if there are some ¢, ..., gr which generate I and for
which in fact (LT(¢1),...,LT(gx)) = (LT(I)). One can show that these polynomials exist

and they are called a Grobner basis for 1.

DEFINITION 1 A finite subset gy, ..., qs of an ideal I is called a Grobner basis of I if

(LT(q1),---, LT (gr)) = (LT(I))

While the definition does not require that ¢y, ..., gx forms a basis for I this can be shown
fairly easily.

A Grobner basis, G, is called ‘reduced’ if for all distinct p, ¢ € G no monomial appearing
in p is a multiple of LT (q). Each ideal in K[z, ..., 2,] has a unique reduced Grébner basis

in which the coeflicient of the leading term of every polynomial is one.

17



(Lexicographic) Grobner bases are interesting because they reduce the problem of finding
all solutions of a polynomial system of equations to finding all zeros of a single univariate

polynomial.

Buchberger’s Algorithm

There are now a variety of methods to compute Grobner basis. The original algorithm by
Buchberger implies a constructive existence proof for Grobner basis and allows us to derive
some important properties. Therefore we briefly outline the algorithm in this section.

Given any k polynomials fi,..., fr € Klay,...,2,], every f € K[zy,...,2,] can be
written as

f:alfl‘I'---‘l'akfk—l'rv aierK[xlw"van

where for each ¢, a;f; = 0 or LT(f) > LT(a;f;) and where either r = 0 or r is a linear
combination of monomials, none of which is divisible by LT(f;) for any ¢ = 1,..., k. The
polynomial r is called the remainder of f on division by (f1,..., fx). A simple generalization
of the one-dimensional algorithm for polynomial division constructs the above terms. See
e.g. Cox et al. (1997) for a detailed description.

To outline Buchberger’s algorithm, we need to define an S-polynomial. For this, let
fr9 € Klay,...,2z,] with md(f) = « and md(g) = §. Define v by v, = max{w;, 3},

1= 1,...n and define
¥ ¥
x x

= T !

It is relatively easy to prove that the following algorithm always produces a Grébner

S(f,9)

basis in finitely many steps (see e.g. Cox et al (1997)). Let F' = fi,..., fr be a basis for

the ideal I. We construct a set (G which is a Grobner basis.
1. Set G := F
2. ' =¢G

3. For each pair p,q € G', p # ¢, let S denote the remainder of S(f,g) on division by
G'.If S # 0 then G :=GU{S}

4. If G # G’ goto step 2

Note that while this algorithm is well defined independently of the field K, it can be
performed exactly over . Furthermore, if the coefficients in the polynomials fi,..., fz
are parameters, the algorithm can be applied to obtain a a set of polynomials gy,..., ¢,
whose coefficients themselves are polynomial functions of the parameters. If the coeffi-
cients of fi,..., fr are real parameters, the coefficients of ¢q,...,¢, will be polynomial
functions in these parameters. The result of Buchberger’s algorithm forms a Grobner basis
for (f1,..., fr) for all values of the parameters, except for a set that is a finite union of

sets defined by polynomial equations. The division set is generic in that for specific values
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of the parameters (satisfying some polynomial equation) it implies division by zero and is
therefore not valid. However, it is clear that if we take the parameters to lie in R¥, the
polynomials resulting from Buchberger’s algorithm for a Grobner basis for a Zariski-open
subset of R*. Unless some of the polynomial functions are identical equal to zero (and the
subset of valid parameters is the empty set), the set of parameters for which the resulting
functions do not form a Grébner basis has k-dimensional Lebesgue measure zero. This does
not change if one considers a reduced Grébner basis. In this case, one simply eliminates
some of the generating polynomials.

The following lemma (see e.g. Becker et al. (1994)) is key to the proof of Theorem 3.

LEMMA 4 (SHAPE LEMMA) Let [ be a zero-dimensional radical ideal in Q[z+, ..., z,] with all
d complex roots of I having distinct x,, coordinates. Then the reduced Groebner basis of I in

the lexicographic term order has the shape
g = {$1 —q1 (xn)v L2 — q2($n)7 ceyp—1 — qn—l(wn)v T‘($n)}
where r is a polynomial of degree d and the ¢; are polynomials of degree d — 1.

In parts of the analysis, we need to test whether a positive dimensional system of
equations has real solutions. The basic idea to do this is to consider the first order conditions
of minimizing the distance between the variety defined by the equations and some point in
the reals. For an ideal I we denote by V(I) the affine variety of I, the set of points where
all the elements of I vanish. If I = (fi,..., fx) then we can simply write V(I) = {y € K" :

fily) = ... = fi(y) = 0}. Aubry et al. (2002) prove the following result which we use for
the test.

LEMMA 5 Let V. C C" be a variety of dimension d with (V') = (f1,..., fs), fi € Q[z] for all
i=1,...,s. Givenapointac Q", a ¢V, let

C(V,a)={z € V:rank( 01 () ) <n-—d}.

a—x
The set C(V, a) meets every semi-algebraically connected component of V N R", moreover, for

generic a € Q", the dimension of C(V, a) is smaller than d.

Appendix B: Proofs

In this appendix, we give detailed proofs of the results not proven in the main body of the
paper.
Proof of Lemma 2

Given a polynomial function g : C* — C one can define partial derivatives with respect to

complex numbers in the usual way. Write

g=-colz—;)+ci(z—;)z+ ...+ cd(z_j)z?,
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where the ¢; are polynomials in the variables z_; = (21, ..., zj_1, Zj41, .., 2,). Then,

g—i =c(zj)+...+ dcd(z_j)z;l_l.
Given a system of polynomial equations f : C* — C", the Jacobian d,f(z) is defined as
usual as the matrix of partial derivatives. A solution z € C*, f(z) = 0, is called locally
unique if det(d,f(z)) # 0. We say zero is a regular value of f if all solutions are locally
unique.

Instead of working with complex derivatives, one can alternatively consider the real
expansion of f defined as the map f : R?" - R*" which maps real and imaginary parts to
real an imaginary parts.

The Cauchy-Riemann equations (see any textbook on complex analysis) imply that if
g(z1, ..., 2,) 1s a complex polynomial with z; = 2; +iy; and ¢ = ¢" + ig' then

dg 99" g

82’]‘ - 8$]‘ —I_Zaw]‘

and . .
897* 8!]2 4 897* B 8!]2

dx; Oy o dy; O

Therefore the Jacobian of a polynomial system has full rank if and only if the Jacobian

of the real expansion has full rank. We will work alternately with the original system and
the expansion. In order to prove the parametric transversality theorem for functions from
complex space with real parameters, consider the function f : C* x C* — C*. We are
interested in (z,e) for which e € R™ and f(z,e) = 0. Defining z = z + 1y and e = u + iv,

we can define a real function f :R?" x R?™ — R?™™ as follows.

. .f:r($7y7u7/v)
f(xvyvuvv): fi(x,y,u,v)
v

Clearly f(z,e) = 0,e € R™ if and only if f(ac, y,u,v) = 0. The parametric transversality
theorem states that if 8x7y7u7vf($,y,u,v) has full rank 2n + m whenever f(w,y,u,v) =0
then for a set of full Lebesgue measure of © € R™, 0 is a regular value of fa This implies
in particlar that for generic e € R™, 0 is a regular value of f since if 0 is a regular value of

fa, it must also be true that

. 0 )
Ory .. iL has full rank whenever f(z,y, 4, 0) = 0.
Y, u,0)
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Proof of Lemma 3

Consider the system of equations in (¢*), p, "

du (") = MNp = 0, heH (12)

p-("—ehy = 0, h=2..H (13)
H

Y- =0 (14)
h=1

It suffices to show that that
® = {(") e RIF: ("), ps.t. ("), psolve (12)—(14) and fi(c', ¢(c')) = folct, o(ch)) = 0}

is a closed set of zero Lebesgue measure. By assumption d, fi # 0 and there exists a direction
5. such that the n’th directional derivative of fa(cl, phi(ct)) — fi(c!, ¢(c')) is non-zero. We

can partition ® into finitely many sets of the form
{(eM) € REL :3(c"), ps.t. (M), psolve (12)—(14) and 9™ f,— f; # 0, aéi)fz—fl =0,7< n},

where 0" consists of all n’th partial derivatives. By the parametric transverality theorem

each of these sets has measure zero. O

Proof of Theorem 3

Given Lemma 4, it suffices to show that the equilibrium equations generate a zero dimen-
sional radical ideal with all d complex roots having distinct z,, coordinates for generic (").
Given that Buchberger’s algorithm gives the correct Groebner basis for generic (e") the
theorem then follows from that. But in the proof of Theorem 1 we already showed that
generically in €, 0 is a regular value for the equilibrium system. The preimage theorem
then implies that generically in " all complex solutions have distinct z; coordinates for all
t = 1,...,n. the ideal generated by the equations must then be radical since To see that
the ideal generated by the equations must then be radical, let I = (f1,..., f.) C C[z],
following Becker et al. (1994, Proof of Proposition 5), denote its zeros by (a1;, ..., @, ),

j=1,...,J. Since all zeros are locally unique, I must be the intersection of D ideals of the
form (@1 — a1;, 22 — a2, T — i), © = 1,..., D — if any of the primary components had as a
basis function (z,, — @,;)¢ for some m, i and some d = 2,3, ..., all derivatives with respect

to x,, at the i’th zero would be zero which violates local uniqueness. But this intersection

must be radical.

Proof of Theorem 4

By Lemma (5), the solution of the system meets every semi-algebraically connected com-

ponent of the set of critical economies for which g(e") # 0. The result follows.
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