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1 IntrodutionIn this paper we show that Walrasian equilibria in semi-algebrai exhange eonomies anbe haraterized as subset of the �nite set of solutions to a system of polynomial equations.We argue that from a pratial point of view the assumption of semi-algebrai preferenesimposes few restritions on the eonomi fundamentals and explore mathematial resultsand algorithms that haraterize all solutions to systems of polynomial equations. Underthe assumption that all agents have CES utility we give examples that show that one anoften show uniqueness of equilibria for a large set of pro�les of individual endowments.It is now well understood in general equilibrium analysis that suÆient assumptionsfor the global uniqueness of ompetitive equilibria are too restritive to be appliable tomodels used in pratie. However, it remains an open problem whether non-uniquenessof ompetitive equilibrium poses a serious hallenge to applied equilibrium modeling orwhether non-uniqueness is a problem that is unlikely to our in so-alled `realistiallyalibrated' models. Given spei�ations for endowments, tehnology and preferenes, thefat that the known suÆient onditions for uniqueness do not hold obviously does not implythat there must be several ompetitive equilibrium in the model eonomy. As a matter offat, there seem to be few known examples of multipliity for spei�ations of preferenes,endowments and tehnologies ommonly used in applied general equilibrium models.However, given that algorithms whih are used in pratie to solve for equilibrium inapplied models are never designed to searh for all solutions of the model, there is noproof that there might not be several equilibria in these models after all. The fundamentalproblem is that for general preferenes, one annot prove that equilibria are unique for agiven set of endowments. An obvious remedy for this problem is to onsider semi-algebraieonomies, i.e. to assume that preferenes and tehnologies an be desribed by �nitelymany polynomial inequalities and equalities. In this ase, the Tarski-Seidenberg theoremimplies that it is deidable whether ompetitive equilibria are unique. In fat, it followsfrom the theorem that for any semi-algebrai lass of eonomies, one an algorithmiallydetermine whether there are eonomies in this lass for whih multipliity of equilibriaours. Unfortunately, the Tarski-Seidenberg proedure is known highly intratable andwhile it o�ers interesting theoretial results it is not appliable to even the smallest exhangeeonomies.On the other hand, if one an redue the system of equations desribing ompetitiveequilibria to a polynomial system, all-solution algorithms an be used to approximate allroots to this system numerially. Reent advanes in omputational algebrai geometryhave led to the development of relatively eÆient algorithms for the omputation of allzeros of a polynomial system of equations. In partiular, if one an ompute a Gr�obnerbasis (see e.g. Cox et al. (1997) for a basi introdution) assoiated with a polynomialsystem the task of �nding all roots to that system essentially redues to �nding all rootsof a single polynomial equation in one unknown. With the development of fast omputers2



and eÆient algorithms Gr�obner bases an now be omputed even for fairly large systemsof polynomial equations (see Faug�ere (1999)). To the best of our knowledge, there has sofar not been an attempt to use these methods to make statements about the number ofequilibria in general equilibrium models.The �rst problem one faes when trying to apply all solution algorithms for polynomialsystems to general equilibrium models is that these algorithms �nd all omplex solutionsto the system while in general only a subset of the real solutions desribes ompetitiveequilibrium (those who are assoiated with non-negative onsumption and positive pries).Evidently, there are many di�erent polynomial systems whose real solutions inlude theompetitive equilibrium. The question is then whether one an �nd a `minimal' system ofequations that desribes all equilibria of the eonomy but has not too many solutions whihare not equilibria. Developing a general method for this is beyond the sope of this paper,but we give an example in Setion 4 to show how to set up shuh minimal systems.Having formulated any equilibrium system, it is easy to determine whether there aremultiple equilibria for a given eonomy. However, in this paper we want to go a step furtherand show that within a given lass of preferenes, equilibrium is unique for `most' realistispei�ations of endowments, i.e. for some ompat set of endowments. It turns out that ingeneral the Gr�obner base representation of the system does allow us to bound the numberof zeros, but often does not guarantee that there is a unique equilibrium.It is not lear how the idea that multipliity of equilibria is rare in `realistially al-ibrated' eonomies ould possibly be formalized. The �rst observation is that one mustimpose joint restrition on preferenes, endowments and tehnology in order to have anyhope to guarantee uniqueness. For any pro�le of endowments, one an onstrut preferenessuh that the resulting eonomy has an arbitrary (odd) number of equilibria. Moreover,Gjerstad (1996) shows that in a pure exhange eonomy, for CES utility funtions withelastiities of substitution above 2 (arguably realistially alibrated utility funtions), mul-tipliity of equilibrium is a prevalent problem. The question then beomes whether for`most' endowments and preferene parameters, these eonomies have unique equilibria. In-tuitively, in the ase of Arrow-Debreu pure exhange eonomies one might think that sineno-trade equilibria are always unique, one needs a large departure from Pareto-eÆientendowments to obtain non-uniqueness. Balasko (1979) formalizes the idea that the set ofendowments for whih there are n equilibria, shrinks as n inreases. Going beyond thisresult in the general ase seems impossible. Instead, we use an idea due to Dakhlia (1999)and test whether there any ritial eonomies in the spei�ed onvex set of parameters. Inthe absene of suh, it suÆes to prove uniqueness for a single eonomy in that set to inferthat equilibrium must be unique in the entire set. Rouillier et al. (2000) and Aubry et al.(2002) develop algorithms whih allows us to test for the presene of a ritial point byinvestigating whether a positive dimensional system of equations has a solution in the setof interest.The omputations in this paper were all performed with the omputer algebra system3



SINGULAR, available free of harge at www.singular.uni-kl.de. In Setion 4, we disuss asimple omputational example in some detail. The rest of the paper is more oneptual andless geared towards partiular appliations.The paper is organized as follows. In Setion 2 we introdue semi-algbrai exhangeeonomies and show that equilibria an be haraterized as solutions to polynomial equa-tions. In Setion 3, we use results from real algebrai geometry to haraterize all solutionsto polynomial systems of equations. In Setion 4, we examine uniqueness in Arrow Debreueonomies with CES utility funtions.2 Semi-algebrai Arrow Debreu eonomiesThere areH agents, h 2 H, trading L ommodities. Agents have endowments (eh)h2 2 RHL+and preferenes represented by utility funtionsuh : RL+! R:Commodity pries are denoted by p 2 RL+. Throughout we take ommodity 1 as thenum�eraire and set p1 = 1. A Walrasian equilibrium onsists of a onsumption alloation(h)h2H and pries p suh that markets lear and eah individual maximizes utility subjetto the budget onstraint, i.e. Xh2H(h � eh) = 0and for eah agent h h 2 arg max2RL+uh() s.t. p � (� eh) = 0:A funtion � : Rn ! Rm is alled semi-algebrai if its graph f(x; y) 2 Rn � Rm : y =�(x)g is a �nite union and intersetion of sets of the formf(x; y) 2 Rm+n : g(x; y)> 0g or f(x; y) 2 Rm+n : f(x; y) = 0gfor polynomialsf and g with real oeÆients.We all preferenes semi-algebraially smooth if they an be represented by a utilityfuntion u(:) that is C2 on RL++, stritly inreasing and stritly onave and if �uh : RL+ !RL is a semi-algebrai funtion. In a slight abuse of notation, we all an eonomy semi-algebrai if if eah agent has semi-algebraially smooth preferenes.Throughout this paper, we will fous on interior equilibria. In order to guarantee thatall equilibria are interior, one an make the additional assumption that indi�erene urvesdo not ut the axes, i.e. that for eah h and all y, l(fx : u(x) > yg) � RL++. The examplein Setion 4 will satisfy this assumption, but it is not needed for the general analysis if onekeeps in mind that we fous only on interior equilibria.4



2.1 Semi-algebrai eonomiesHow general is the assumption of semi-algebrai marginal utility? First note, that if afuntion is semi-algebrai, so are all its derivatives (the onverse is not true, as the examplef(x) = log(x) shows).It follows from Blume and Zame (1993) that semi-algebrai preferenes (i.e. the as-sumption that better sets are semi-algebrai sets) implies semi-algebrai utility.From a pratial point, it is easy to see that Cobb-Douglas and CES utility funtions withrational elastiities of substitution, � 2 Q, represent semi-algebraially smooth preferenes.From a theoretial point, by Afriat's theorem (Afriat (1967)), any �nite number of ob-servations that an be rationalized by arbitrary non-satiated preferenes an be rationalizedby a piee-wise linear, hene semi-algebrai funtion. While Afrait's onstrution does notyield a semi-algebrai, C2, and stritly onave funtion, the onstrution in Chiappori andRohet (1987) an be modi�ed to our framework and we obtain the following lemma.Lemma 1 Given N observations (xn; pn) 2 R2l++ with pi 6= pj for all i 6= j = 1; :::; N , thefollowing are equivalent.(1) There exists a stritly inreasing, stritly onave and ontinuous utility funtion u(x)suh that xn = arg maxx2Rl+u(x) s.t. pn � x � pn � xn:(2) There exists a stritly inreasing, stritly onave, semi-algebrai and C2 utility funtionv(x) suh that xn = arg maxx2Rl+ v(x) s.t. pn � x � pn � xn:To prove the lemma, observe that if statement (1) holds, the observations must satisfy theondition 'SSARP' from Chiappori and Rohet (1987). Given this one an follow theirproof losely to show that there exists a C2 semi-algebrai utility funtion that rationalizesthe data. The only di�erene to their proof is that in the proof of their Lemma 2, oneneeds to use a polynomial 'ap'-funtion whih is at least C2. In partiular, the argumentin Chiappori and Rohet goes through if one replaes C1 everywhere with C2 and usesthe ap-funtion �(x) = max(0; 1�Pl x2l )3. Sine the integral of a polynomial funtion ispolynomial, the resulting utility funtion is piee-wise polynomial, i.e. semi-algebrai.2.1.1 The equilibrium set of semi-algebrai eonomiesThe general assumption on semi-algebrai preferenes imposes almost no restrition on theequilibrium set of exhange eonomies.In the light of the theorems of Sonnenshein,Mantel and Debreu, Mas-Colell (1977)shows that for any ompat (non-empty) set of positive pries P � �l�1 there exists anexhange eonomy with l households, ((uh)lh=1; (eh)lh=1), with uh stritly inreasing, stritly5



onave and ontinuous suh that the equilibrium pries of this eonomy oinide preiselywith P .Given Lemma 1 above, this diretly implies that for any �nite set of pries P � �,there exists an exhange eonomy ((uh)lh=1; (eh)lh=1), with uh stritly inreasing, stritlyonave, semi-algebrai and C2 suh that the equilibrium pries of this eonomy oinidepreisely with P . Therefore, the abstrat assumption of semi-algebrai preferenes imposesno restritions of multipliity of equilibria. Mas-Colell (1977) also shows that if the numberof equilibria is odd, one an onstrut a regular eonomy and that there exist open sets ofindividual endowments for whih the number of equilibria an be an arbitrary odd number.SuÆient onditions for the uniqueness of Walrasian equilibrium are very restritive. Itis well known that equilibrium is unique if all agents have idential homotheti utility. Moreinterestingly, W.E. is unique if for all agents and all  2 RL++,0�2uh()0�uh() < 1or, if individual endowments are all ollinear, if these expressions are smaller than 4. Theseare the bounds by Mijutshin and Polterovith. Mas-Colell (1992) shows that the boundson the expressions are tight.2.2 Walrasian equilibria and polynomial systems of equationsIt follows from the Tarski-Seidenberg theorem that for a given semi-algebrai eonomy it isdeidable whether Walrasian equilibrium is unique(see e.g. Basu et al. (2003)). Unfortu-nately, the algorithmi omplexity of quanti�er-elimination based methods is too large forthese methods to be of any use for eonomi appliations.Instead, we want to derive a system of polynomial equations that has �nitely manysolutions whih inlude all Walrasian equilibria of the eonomy. An important omplia-tions omes in from the fat that available algorithms that �nd all solutions to systems ofpolynomial equations in fat �nd all omplex solutions. We therefore need to ensure thatthe system of polynomial equations that haraterizes equilibria has �nitely many omplexsolutions and have to use some omplex analysis.An interior Walrasian equilibrium is haraterized by the following equations.�uh()� �p = 0; h 2 HXl pl(l � ehl ) = 0; h 2 HXh hl � ehl = 0; l = 1; :::; L� 1The derivatives �uh(x) are semi-algebrai funtions but of ourse in general not poly-nomial. Neyman (2003, Corollary 1) makes the following useful observation. The graph of6



any semi-algebrai funtion � : V ! R, V � Rn an be written a the union of �nitely manysets Gi = ffi(x; y) = 0 and gi(x; y) > 0g; i = 1; :::; N;with fi : V � R ! R and gi : V � R ! Rk polynomials. The polynomial funtionh(x; y) = �Ni=1fi(x; y) then is a non-zero polynomial that satis�esh(x; �(x)) = 0 for all x 2 V:Of ourse, for many (x; y) whih satisfy h(x; y) = 0, we might have y 6= �(x). However, itfollows from the onstrution that we an assume without loss of generality that for anyx; y with fi(x; y) = fj(x; y) = 0 for some i; j there is a ~x arbitrarily lose to x suh thatfi(~x; �(~x)) = 0 and fj(~x; �(~y)) 6= 0. Moreover, we an assume that for eah i, �fi(x;�(x))�y 6= 0whenever fi(x; �(x)) = 0Denote bymh(; y) the L-vetor of polynomials onstruted as above that satisfymhl (; �luh()) =0 for eah l = 1; :::; L. Sine these are polynomials, we an write them as funtion fromomplex spae, mh : C L+1 ! C L . De�ne the 'demand system' to beDh(; �; p) = 0B� mh1(1; : : : ; L; �)mhl (1; : : : ; L; �pl); l = 2; : : : ; LPLl=2 pl(l � ehl ) + 1 � eh1 1CA : (1)It is then lear thatWalrasian equilibria are solutions to the following polynomial systemof equations Dh(h; �h; p) = 0; h = 1; : : : ; H (2)HXh=1(hl � ehl ) = 0 l = 1; :::; L� 1 (3)Note that throughout the paper, we work with �rst order onditions. Of ourse, Tarski-Seidenberg implies that aggregate exess demand is also semi-algebrai. While it is oftendiÆult to ompute demand analytially it an always be written impliitly as a solution ofa triangular polynomial system. However, it turns out that using aggregate exess demandfuntion, although it redues the number of unknowns and equations onsiderably, usuallydoes not lead to eÆieny gains in omputing all Walrsian equilibria.In order to guarantee that the system (2)-(3) only has �nitely many omplex solutions,we need to add the requirement that �;�Dh(h; �h; p) has full rank L + 1. This gives thefollowing additional equation.1� th � det��;�Dh(h; �h; p)� = 0; h = 1; : : : ; H (4)We have the following theorem that haraterizes the solutions to these equations.7



Theorem 1 There is an open set of full measure of (e1; :::; eH) 2 RHL+ suh that the systemof equations (2)-(4) has at most �nitely many omplex solutions and suh that all Walrasianequilibria are solutions to the equations.To prove the theorem we need two lemmas.Lemma 2 Consider the funtion f : C n � Cm ! C n . Suppose that f(z; e) = 0 with e 2 Rmimplies that �z;ef(z; e) has full rank. Then for generi �e 2 Rm, 0 is a regular value of f�e(x).Lemma 3 Suppose � : RL! R is a di�erentiable semi-algebrai funtion and fi : RL�R! R,i = 1; 2 are non-zero polynomials suh that whenever f1(x; �(x)) = f2(x; �(x)) = 0, there is a�x arbitrarily lose to x suh that f1(�x; �(�x)) = 0 and f2(�x; �(�x)) 6= 0.For an open and full measure set of e1; :::; eH and for eah h = 1; :::; H there is no Walrasianequilibrium for whih f1(xh; �(xh)) = f2(xh; �(xh)) = 0.Proof of the theoremWe �rst prove that there are �nitely many omplex solutions. Using Lemma (2), itsuÆes to prove that the derivative of the system of equations under onsideration withrespet to x1; �1; :::; xH; �H; p; e1 has full rank H(L+1)+H +L� 1. Equation (4) ensuresthat the derivative of eah Dh(xh; �h; p) with respet to x1; :::; xL and � has rank L + 1.The derivatives of Equation (3) with respet to the th, h = 1; :::; H give rank H . FollowingDebreu (1972) and onsidering diretional derivatives for those e1l for whih pl 6= 0 as wellas diret derivatives for the other e1l , the derivatives with respet to e1 give additional rankL� 1.To prove that eah Walrasian equilibrium solves equations (2)-(4), reall that we anwrite eah eah mhl (; y), h 2 H, l = 1; :::; L, as a produt of �nitely many polynomialsmhl (; y) = �kj=1fhj;l(; y) with f(; y) : fhj;l(; y) = 0g 6= f(; y) : fhj0 ;l = 0g for all j, j0.Moreover for eah  and eah l, there is a jl suh that fhjl;l(; �luh()) = 0. If for eah l,fhj0 ;l(; �luh()) 6= 0 for all j 0 6= jl, we obtain, by the impliit funtion theorem that thematrix 0BBB� � 1�ymh1 (;�h)�mh1(; �h)...� 1�ymhL(;�hpL)�mhL(; �hpL) 1CCCAis negative de�nite. Therefore, D;�Dh(; �) must have full rank L+ 1.By lemma 3, the set of individual endowments (eh) for whih there are h, j, j 0 and ywith fhj (h; y) = fhj0(h; y) = 0 for some Walrasian equilibrium onsumption h is a losedset with Lebesgue measure zero. �.In addition to solving the equilibrium equations, ompetitive equilibrium will be har-aterized by a system of polynomial inequalities gi(x) � 0, i = 1; :::;M . Given individual8



endowments (eh), we are thus interested in the set of ompetitive equilibria,E = f((xh); p) 2 RH(L+1)+L�1 that solve (2)� (4) : g((xh; �h); p) � 0g (5)Obviously we an obtain an upper bound on the number of equilibria by bounding thenumber of omplex solutions of Equations (2)� (4).2.3 Maximal number of solutions to polynomial systemsThe following theorem provides a well known upper bound for the number of loally isolatedsolutions that is easy to ompute.Theorem 2 (B�ezout) Suppose f : C n ! C n are n polynomials of degrees d1; :::; dn. Thenumber of loally isolated solutions in C n is bounded by d1 : : : dn.Unfortunately, even for very simple eonomies, the B�ezout bound an be quite large.For example, onsider an eonomy with two agents and two ommodities and Cobb-Douglasutility funtions. Walrasian equilibrium is unique, but the equilibrium equations read as1� �111 = 01� �1p12 = 011 � e11 + p(12 � e12) = 01� �221 = 01� �2p21 = 011 + 21 � e11 � e21 = 012 + 22 � e12 � e22 = 0The Bezout bound on the number of solutions is 72! This seems to indiate that evenfor simple eonomies, it is hopeless to try to solve for all omplex solutions and then identifythose who orrespond to a Walrasian equilibrium.However, the Bezout bound on the number of solutions is generially only obtained forso-alled 'dense' systems of equations, i.e. for polynomials for whih all monomial termsappear with non-zero oeÆients (see Sturmfels (2002)).The root ount developed by Bernshtein, Kushnirenko and Khovanskii ounts the num-ber of isolated zeros of a 'sparse' polynomial system (see Sturmfels (2002)). In the followingwe refer to this as 'BKK-bound'. The theory underlying this bound turns out not to berelevant for this paper. Although the resulting sharper upper bounds a muh more diÆultto obtain than just multiplying degrees, there are freely downloadable software pakages foromputing these bounds in arbitrary high dimensions (the omputations in this paper wereperformed with the pakage by Tangan Gao, T. Y. Li, and Xing Li). For the Cobb-Douglaseonomy, this atually gives a bound of at most one omplex solutions, whih obviously9



implies that equilibrium is always unique. Unfortunately, it is easy to see that in eonomiproblems even the BKK bound is often not very good.For Pareto-optimal endowments, equilibria are always unique. The BKK bound is uni-form over pro�le of endowments. We show in examples below, that even uniformly arosspro�les of endowments, the bound is often not sharp.We therefore now turn to algorithms whih ompute all (omplex) solutions to polyno-mial systems.3 Gr�obner bases for the omputation of all solutionsGiven a polynomial system of equations f : CM ! CM there are now a variety of algorithmto approximate numerially all omplex and real zeros of f . Sturmfels' (2002) monographprovides an exellent overview. The two most important approahes are homotopy ontin-uation methods and solution methods based on Gr�obner bases. Both approahes are tooineÆient to be appliable to large eonomi models, but they an be used for models with4-5 households and 9-10 ommodities. To �nd all equilibria for a given eonomy, homotopymethods seem slightly more eÆient, while Gr�obner bases allow for statements about entirelasses of eonomies. In this paper, we therefore fous on Gr�obner bases.A Gr�obner basis is a set of multivariate polynomials whih has desirable algorithmiproperties - in partiular, given a Gr�obner basis it is often possible to solve polynomialequations by solving a univariate polynomial. Every set of polynomials an be transformedinto a Gr�obner basis. Loosely speaking, this proess generalizes Gaussian elimination forsolving linear equations.The following theorem provides the basis for our algorithms.Theorem 3 Given utility funtions (uh)h2H that represent semi-algebraially smooth prefer-enes, there exist equationsG = fx1 � q1(xn; (eh)); x2� q2(xn; (eh)); : : : ; xn�1 � qn�1(xn; (eh)); r(xn; (eh))gwhere for eah (eh) 2 RHL+ , r is a polynomial of some �xed degree d (independent of (eh)) andthe qi are polynomials of at most degree d� 1, suh that for generi (eh) 2 RHL+ , the solutionsof equations (2)-(4) are idential to the ommon solutions of the equations in G.The theorem is proved in the appendix, using methods from real algebrai geometry.It turns out that G forms a so-alled 'Gr�obner' basis under the lexiographi monomialordering. Buhberger's algorithm is guaranteed to produe this basis in a �nite numberof steps. Computer algebra systems suh as SINGULAR have implementations of thisalgorithm. It is noteworthy to stress that the qi and r are rational funtions in eh and thatthe alulations produe an exat Gr�obner basis if all oeÆients in Equations (2) - (4) arerational numbers. 10



We all the funtion r(:) the `univariate representation' of the lass of Arrow-Debreueonomies with utilities (uh).The 'rational univariate representation' of Rouiller (1999) often has muh smaller oeÆ-ients and is therefore numerially better behaved. However, for the purposes of this paper,we use the lexiographi Groebner basis to examine a system of polynomial equations. Moresophistiated methods are subjet to further researh.3.1 Algorithms3.1.1 Finding all ompetitive equilibriaIt follows diretly from Theorem 3 that in order to �nd all equilibria for a given generisemi-algebrai eonomy, it suÆes to ompute the lexiographi Groebner basis and to�nd all real solutions to a univariate polynomial equation. Sturm's algorithm providesan exat method to determine the number of solutions to a univariate polynomial in theinterval [0;1). Therefore, one an determine the exat number of solutions of the univariatepolynomial. Using simple braketing, one an then approximate all solutions numerially,up to arbitrary preision! Given the solutions to the univariate representation, the othersolutions an then be omputed with arbitrary preision by evaluating polynomials up toarbitrary preision. Therefore, equilibria in this model are Turing omputable (in ontrast,see Rihter and Wong (199x) who show that without restritions on preferenes Walrasianequilibria are generally not Turing omputable).3.1.2 A test for uniquenessDakhlia (1999) makes the following observation for Arrow-Debreu exhange eonomies.Given smooth utility funtions (uh)h2H, if for a onvex set of individual endowments E �RHL+ , there exists an (�eh)h2H suh that the eonomy (uh; eh)h2H has a unique equilibriumand if there are no ritial eonomies in E, then Walrasian equilibrium must be unique for allpro�les of individual endowments (eh) 2 E. This follows diretly from the impliit funtiontheorem and is in itself not hugely helpful, sine it is generally not feasible (although forpossible for semi-algebrai eonomies) to determine if suh a ritial eonomy in E exists.However, for a single polynomial r(x; (eh)) it often is feasible to determine if r(x; (eh)) =0 and r0(x; (eh)) := �r(x;(eh))�x = 0 has a solution for positive x and for (eh) 2 
, with
 = feh 2 RHL+ : gi(eh) � 0; i = 1; :::; Jg; (6)where gi are polynomials for all i. The trouble is that in order for this test to be of any use,one needs to ensure that real positive solutions to the univariate representation orrespondto ompetitive equilibria or at least one needs to be able to easily identify those that do notorrespond to Walrasian equilibria.Rouillier et al. (2000) and Aubry et al. (2002) develop algorithms whih �nd one pointin eah onneted omponent of the variety by minimizing the distane funtion between11



the variety and a point. Their main result is used in the Appendix to prove the followingtheorem.Theorem 4 Suppose that Walrasian equilibria are haraterized by the positive real solutionsof the univariate representation r(x; (eh)) that satisfy h(x) � 0 for polynomials h : R! RMand suppose that there annot be solutions with h(x) = 0. Suppose that there exists a (eh) 2 
,as de�ned in Equation 6 for whih there is a unique Walrasian equilibrium. Then there annot bean open set of endowments in 
 with multiple equilibria unless the following system of equationshas a solution for some (eh) 2 
.(eh)� (�e)h � �D(eh)r(x; (eh))� �D(eh)r0(x; (eh))� �D(eh)k(eh) = 0r(x; (eh)) = 0r0(x; (eh)) = 01� tk(eh) = 0where k(eh) = �igi(eh).While the theorem obviously only provides a suÆient ondition, it turns out that themethod an be applied to a variety of examples. We illustrate this point in Setion XXYbelow.3.2 Bounding the Number of Real ZerosWhile we explained above that bounds on the number of solutions to polynomial equationsare usually bounds on the number of omplex solutions, it turns out that the use of Gr�obnerbasis sometimes allows for the derivation of bounds on the number of positive real solutions.The reason for this is that the number of real solutions to f1 = : : : = fn = 0 is equalto the number of real roots of r(x) = 0, where r(x) is the representing polynomial fromTheorem 3 and that there exist simple bounds on the number of real solutions for univariatepolynomials.Given any univariate polynomial, Pdi=0 aixi, with ai 2 R for all i, the number of itsomplex zeros is obviously bounded by its degree d. However, there a better bounds availablefor the number of real zeros. De�ne the number of sign hanges of r to be the number ofelements of fai 6= 0; i = 0; : : : ; d � 1 : sign(ai) = �sign(ai+1)g. The lassial Desartes'sRule of Signs, see Sturmfels (2002), states that the number of real positive zeros of r doesnot exeed the number of sign hanges. This bound is remarkable beause it bounds thenumber of real zeros. It is possible that a polynomial system is of very high degree andhas many solutions but the Desartes bound on the number of zeros of the representingpolynomial proves that the system has a single real positive solution.12



4 Appliation to CES utilityFrom now on we make the restritive (but in poliy work very ommon) assumption thatutility exhibits onstant elastiities of substitution and is of the formuh() = LXl=1 11� �h���hhl 1��hl ; (7)with rational �h 6= 1 and �hl > 0.With �h = NhMh , the partial derivatives an be written asmhl (; �uh()�l ) � 0;where mhl (; y) = yMh�Nhhl Nhl � 1. Note that this is also the orret representation for theCobb-Douglas ase with �h = 1. Note that for Mh even, the equation mhl (; y) = 0 also hasa solution with y < 0 whih does not desribe the orret marginal utility. Therefore, onewould expet additional solutions to Equation (2)-(4) whih do not orrespond to Walrasianequilibria.In the CES-framework the Equations (2)-(3) an be written as follows�Nhh1 (h1)Nh(�h)Mh � 1 = 0; h = 1; :::; H�Nhhl (hl )Nh(�h)MhpMhl � 1 = 0; h = 1; :::; Hh1 � eh1 + LXl=1 pl(hl � ehl ) = 0; h = 1; :::; HHXh=1 hl � ehl = 0; l = 1; :::; L� 1Note that sine �mh(;y)�y 6= 0 for all  > 0 and all y for whih mh(; y) = 0, Equation (4)is satis�ed automatially.Without loss of generality we an write �h = NMh for some N onstant aross h. De�ningql = p1=Nl , and eliminating the �h, we obtain a similar system of equations, whih has thesame real positive solutions but often fewer omplex solutions.�Mhh1 h1 � �Mhhl hl qMhl � 1 = 0; h 2 H; l = 2; :::; L (8)11 � e11 + LXl=2 qNl (hl � ehl ) = 0; h = 1; :::; H (9)HXh=1 hl � ehl = 0; l = 1; :::; L� 1 (10)The following theorem is indiative in how to order the variables13



Theorem 5 All positive and real (h); q that solve (8)-(10) satisfy h � 0 whenever q � 0.Moreover, if N and Mh are odd for all h 2 H, all real solutions satisfy q � 0.Proof. Suppose (h); q solve (8)-(10), q � 0 but hl < 0 for some h; l. Then Equation(8) implies that h � 0, but then (9) annot hold.Now assume N , Mh odd and ql < 0 for at least one l. De�ne �H = fh : h1 > 0g. Marketlearing implies that this set and its omplement are non-empty. By (8), whenever ql < 0,for all h 2 �H, hl < 0 and for all h =2 �H, hl > 0. Again using market learing, we obtainPh2 �H hl >Ph2H eh whenever ql > 0. Adding the budget onstraint (9) for all h 2 �H thenyields a ontradition, sine P �H phl (hl � ehl ) is positive for all l �.4.1 Two lasses of eonomies with few equilibriaTo examine whether there are interesting lasses of eonomies with 'few'Walrasian equilibriawe �rst present two examples. In the examples we give upper bounds on the number ofWalrasian equilibria aross all possible pro�les4.2 Example 1First suppose that H = L = 2, and both agents have CES utility funtions. As above, leth = N=Mh and de�ne �h = (�h2=�h1)Mh for h = 1; 2. De�ne K1 = N+ jM2�M1j, K2 = N ,K3 = N �min[M1;M2℄, K4 = max[M1;M2℄ and K5 = jM2 �M1j and assume thatK1 > K2 > K3 > K4 > K5: (11)Let y = p1=N2 . The univariate representing polynomial is then given byr(y) = �e22�2yK1 � e12�1yK2 + (e21 + e11)yK3 � �1�2(e12 + e22)yK4 + e11�2yK5 + e21�1:By Desartes' bound, the number of positive real solutions is uniformly bounded bythree! Evidently for large Nm but also for large Mh this is substantially below the BKKbound whih goes to in�nity as some h !1. The result is intuitivly appealing: one wouldnot expet the number of Walrasian equilibria to go up, if some h hanges from being 2 tobeing 180=179. In the univariate representation, this is indeed not the ase.If the above onditions (11) on N and M1;M2 do not hold, the results are very similar.A notable speial ase results if one agent has log-utility, e.g. if M1 = N . In this ase therepresenting polynomial simpli�es as followsr(x3) = �e22�2yK1 � e12�1yK2 + (e21 + e11)yK3 + e21�1;and Desartes' bound implies that equilibria are unique for all endowments and all �1; �2.This is independent of 2, the elastiity of substitution of the seond agents.For arbitrary parameters the bound of three equilibria is tight, as the following simplease illustrates 14



Suppose 1 = 2 = 3, �1 = 4; �2 = 1=4 and e12 = e21 = 1. If e11 = e22 = f > 44 theeonomy has three equilibria, the univariate representation is given byr(y) = (f + 16)y3 � (4f + 4)y2 + (4f + 4)y � f � 16whose 3 positive real solutions for f > 44 orrespond to 3 Walrasian equilibria.The fat that in the example, there are always at most 3 equilibria, independently ofpreferene parameters or endowments an only be explained by the fat that we looked at avery speial lass of preferenes, CES utility is both homotheti and separable! Moreover,as the next example shows, it is ruial for the result that there are two goods and twoagents.4.2.1 Example 2Now suppose H and L is arbitrary, but assume thatN = h = 1 2Z++ for all h = 2; :::; H,i.e. all agents have idential integer- valued and idential elasitiities of substitution. Asthe above example shows this is not a guarantee for uniqueness.Using standard software for the omputation of the BKK bound, it an be easliy veri�edthat the BKK bound on the number of omplex solutions of this system is given by H�11 .Interestingly, this bound is independent of the number of ommodities, L, but inreasesexponentially in the number of agents.In this example, it annot be easily shown that the number of ompetitive equilibriaalways lies below the number of omplex solutions to the equations. In the univariate repre-sentation, Desartes' bound does not have any bite sine the number of sign-hanges annotbe bounded. Furthermore, even for moderate H and L, it is not omputationally feasible touse SINGULAR to ompute a univariate representation as a funtion pries and alloationsand pro�les of endowments. For spei� given endowments and �h, omputations an beperformed on models with up to 5 ommodities and 5 agents. In all examples onsidered,the number of Walrasian equilibria was always not larger than 3, in most ases, Walrasianequilibria were unique.4.3 A test for uniquenessIn order to illustrate our test for uniqueness, we return to Example 1 and assume furthermorethat �1 = 1:25; �2 = 0:75. For 1 = 2 = 3, the univariate representation beomesr(y; e12; e21; e22) = (�20e22 � 12e21)y3 + (16e21 + 16) � y2 + (�15e22 � 15e12)y + 12e21 + 20and we want to examine the real solutions to r(y; e) = 0 and �r=�y = 0. Clearly, given The-orem 5, if this system has no real solution, equilibria are unique for all endowment pro�les.Moreover, if there is a real solution, multiplity of equilibria is likely in a neighnorhood ofthese solutiosn. 15



As explained above, for this we onsider the �rst order onditions for minimizing thedistane between the solution set and a point. The solution set to this is zero-dimensional,but unfortunately, there are many negative solutions. We need to rule out that they aresemi-algebraially onneted to some point in the positive orthant. For this, we onsiderthe following system of equationse12 � 10� �(�12y3 � 15y)� �(�36y2 � 15) = 0e21 � 10� �(16y2+ 12)� �32 � y � �te22 = 0e22 � 10� �(�20y3 � 15y)� �(�60y2 � 15)� �te21 = 0y � 1� �(�60e22 � 36e12)y2 + 2(16e21 + 16)y + (�15e22 � 15e12))��(�120 � e22 � 72e12)y + 32e21 + 32 = 0(�20e22 � 12e21)y3 + (16e21 + 16)y2 + (�15e22 � 15e12)y + 12e21 + 20 = 0(�60e22 � 36e21)y2 + (32e21 + 32)y + (�15e22 � 15e12) = 0�1 + te21e22 = 0(1� t)� �e22e21 = 0It turns out that this system does not have a real solution with positive y; e22 and e21. Thisimplies that there annot be a pro�le of endowments for whih multipliity arises. Thesolutions with negative e2 annot be onneted to solutions with positive e2 beause weimpose �1 + te21e22 = 0 for some t. Furthermore, negative pries annot be onneted topositive pries.We have thus proven that equilibrium is globally unique for the eonomy with 'small'taste-shoksAppendix A: Basi Algebrai GeometryFor the desription of a polynomial f in the n variables x1; x2; : : : ; xn we �rst need to de�nemonomials. A monomial in x1; x2; : : : ; xn is a produt x�11 � x�22 : : : x�nn where all exponents�i; i = 1; 2; : : : ; n; are nonnegative integers. It will be onvenient to write a monomialas x� � x�11 � x�22 : : :x�nn with � = (�1; �2; : : : ; �n) 2 ZN+ , the set of nonnegative integervetors of dimension n. A polynomial is a linear ombination of �nitely many monomialswith oeÆients in a �eld K. We an write a polynomial f asf(x) =X�2S a�x�; a� 2 K; S �ZN+ �nite:We denote the olletion of all polynomials in the variables x1; x2; : : : ; xn with oeÆientsin the �eld K by K[x1 ; : : : ; xn℄, or, when the dimension is lear from the ontext, by K[x℄.The set K[x℄ satis�es the properties of a ommutative ring and is alled a polynomial ring.In this paper we do not need to allow for arbitrary �elds of oeÆients but instead wean fous on three ommonly used �elds. These are the �eld of rational numbers Q, the�eld of real numbers R, and the �eld of omplex numbers C .16



Throughout this paper we order monomials aording to the lexiographi ordering, thatis, x� > x� () � > � () The left-most non-zero entry of � � � is positive:For this partiular monomial order we an de�ne for any polynomial f 2 K[x℄ the multide-gree of f = P� a�x�, md(f) = maxf� 2 Zn+ : a� 6= 0g. That is, the multidegree of f isthe largest vetor of exponents among the monomials in f aording to the monomial (herelexiographi) ordering. The monomial with the multidegree as its vetor of exponents giverise to the leading term of f , LT(f) = amd(f)xmd(f).A subset I of the polynomial ring K[x℄ is alled an ideal if it is losed under sums,f + g 2 I for all f; g 2 I , and it satis�es the property that h � f 2 I for all f 2 I andh 2 K[x℄. For given polynomials f1; : : : ; fk, the setI = f kXi=1 hifi : hi 2 K[x℄g = hf1; : : : ; fki;is an ideal. It is alled the ideal generated by f1; : : : ; fk. This ideal hf1; : : : ; fki is the setof all linear ombinations of the polynomials f1; : : : ; fk, where the \oeÆients" in eahlinear ombination are themselves polynomials in the polynomial ring K[x℄. The HilbertBasis Theorem states that for any ideal I � K[x℄ there exist �nitely many polynomials thatgenerate I .We denote by LT (I) the set of leading terms of elements of I , that is, LT (I) = fx� :9f 2 I with LT (f) = x�g and by hLT (I)i the ideal generated by all the elements of LT (I).For an ideal I the radial of I is de�ned as pI = ff 2 K[x℄ : 9m � 1 suh that fm 2 Ig.The radial pI is itself an ideal and ontains I , I � pI . We all an ideal I radial if I = pI.Gr�obner BasisObserve that if I = hf1; : : : ; fki, it is true hLT (f1); : : : ; LT (fk)i � hLT (I)i but the onverseoften does not hold. The question is if there are some g1; : : : ; gk whih generate I and forwhih in fat hLT (g1); : : : ; LT (gk)i = hLT (I)i. One an show that these polynomials existand they are alled a Gr�obner basis for I .Definition 1 A �nite subset g1; : : : ; gs of an ideal I is alled a Gr�obner basis of I ifhLT (g1); : : : ; LT (gk)i = hLT (I)iWhile the de�nition does not require that g1; : : : ; gk forms a basis for I this an be shownfairly easily.A Gr�obner basis, G, is alled `redued' if for all distint p; q 2 G no monomial appearingin p is a multiple of LT (q). Eah ideal in K[x1 ; : : : ; xn℄ has a unique redued Gr�obner basisin whih the oeÆient of the leading term of every polynomial is one.17



(Lexiographi) Gr�obner bases are interesting beause they redue the problem of �ndingall solutions of a polynomial system of equations to �nding all zeros of a single univariatepolynomial.Buhberger's AlgorithmThere are now a variety of methods to ompute Gr�obner basis. The original algorithm byBuhberger implies a onstrutive existene proof for Gr�obner basis and allows us to derivesome important properties. Therefore we briey outline the algorithm in this setion.Given any k polynomials f1; : : : ; fk 2 K[x1 ; : : : ; xn℄, every f 2 K[x1 ; : : : ; xn℄ an bewritten as f = a1f1 + : : :+ akfk + r; ai; r 2 K[x1 ; : : : ; xn℄;where for eah i, aifi = 0 or LT (f) � LT (aifi) and where either r = 0 or r is a linearombination of monomials, none of whih is divisible by LT (fi) for any i = 1; : : : ; k. Thepolynomial r is alled the remainder of f on division by (f1; : : : ; fk). A simple generalizationof the one-dimensional algorithm for polynomial division onstruts the above terms. Seee.g. Cox et al. (1997) for a detailed desription.To outline Buhberger's algorithm, we need to de�ne an S-polynomial. For this, letf; g 2 K[x1 ; : : : ; xn℄ with md(f) = � and md(g) = �. De�ne  by i = maxf�i; �ig,i = 1; : : :n and de�ne S(f; g) = xLT (f)f � xLT (g)gIt is relatively easy to prove that the following algorithm always produes a Gr�obnerbasis in �nitely many steps (see e.g. Cox et al (1997)). Let F = f1; : : : ; fk be a basis forthe ideal I . We onstrut a set G whih is a Gr�obner basis.1. Set G := F2. G0 := G3. For eah pair p; q 2 G0, p 6= q, let S denote the remainder of S(f; g) on division byG0. If S 6= 0 then G := G [ fSg4. If G 6= G0 goto step 2Note that while this algorithm is well de�ned independently of the �eld K, it an beperformed exatly over Q. Furthermore, if the oeÆients in the polynomials f1; : : : ; fkare parameters, the algorithm an be applied to obtain a a set of polynomials g1; : : : ; gmwhose oeÆients themselves are polynomial funtions of the parameters. If the oeÆ-ients of f1; : : : ; fk are real parameters, the oeÆients of g1; : : : ; gm will be polynomialfuntions in these parameters. The result of Buhberger's algorithm forms a Gr�obner basisfor hf1; : : : ; fki for all values of the parameters, exept for a set that is a �nite union ofsets de�ned by polynomial equations. The division set is generi in that for spei� values18



of the parameters (satisfying some polynomial equation) it implies division by zero and istherefore not valid. However, it is lear that if we take the parameters to lie in Rk, thepolynomials resulting from Buhberger's algorithm for a Gr�obner basis for a Zariski-opensubset of Rk. Unless some of the polynomial funtions are idential equal to zero (and thesubset of valid parameters is the empty set), the set of parameters for whih the resultingfuntions do not form a Gr�obner basis has k-dimensional Lebesgue measure zero. This doesnot hange if one onsiders a redued Gr�obner basis. In this ase, one simply eliminatessome of the generating polynomials.The following lemma (see e.g. Beker et al. (1994)) is key to the proof of Theorem 3.Lemma 4 (Shape lemma) Let I be a zero-dimensional radial ideal in Q[x1; : : : ; xn℄ with alld omplex roots of I having distint xn oordinates. Then the redued Groebner basis of I inthe lexiographi term order has the shapeG = fx1 � q1(xn); x2� q2(xn); : : : ; xn�1 � qn�1(xn); r(xn)gwhere r is a polynomial of degree d and the qi are polynomials of degree d� 1.In parts of the analysis, we need to test whether a positive dimensional system ofequations has real solutions. The basi idea to do this is to onsider the �rst order onditionsof minimizing the distane between the variety de�ned by the equations and some point inthe reals. For an ideal I we denote by V (I) the aÆne variety of I , the set of points whereall the elements of I vanish. If I = hf1; : : : ; fki then we an simply write V (I) = fy 2 Kn :f1(y) = : : : = fk(y) = 0g. Aubry et al. (2002) prove the following result whih we use forthe test.Lemma 5 Let V � C n be a variety of dimension d with I(V ) = hf1; :::; fsi, fi 2 Q[x℄ for alli = 1; :::; s. Given a point a 2 Qn, a =2 V , letC(V; a) = fx 2 V : rank �xf(x)a� x ! � n� dg:The set C(V; a) meets every semi-algebraially onneted omponent of V \Rn, moreover, forgeneri a 2 Qn, the dimension of C(V; a) is smaller than d.Appendix B: ProofsIn this appendix, we give detailed proofs of the results not proven in the main body of thepaper.Proof of Lemma 2Given a polynomial funtion g : C n ! C one an de�ne partial derivatives with respet toomplex numbers in the usual way. Writeg = 0(z�j) + 1(z�j)zj + : : :+ d(z�j)zdj ;19



where the i are polynomials in the variables z�j = (z1; :::; zj�1; zj+1; :::; zn). Then,�g�zj := 1(z�j) + : : :+ dd(z�j)zd�1j :Given a system of polynomial equations f : C n ! C n , the Jaobian �xf(x) is de�ned asusual as the matrix of partial derivatives. A solution �x 2 C n , f(�x) = 0, is alled loallyunique if det(�xf(�x)) 6= 0. We say zero is a regular value of f if all solutions are loallyunique.Instead of working with omplex derivatives, one an alternatively onsider the realexpansion of f de�ned as the map f̂ : R2n ! R2n whih maps real and imaginary parts toreal an imaginary parts.The Cauhy-Riemann equations (see any textbook on omplex analysis) imply that ifg(z1; :::; zn) is a omplex polynomial with zj = xj + iyj and g = gr + igi then�g�zj = �gr�xj + i �gi�xjand �gr�xj = �gi�yj and �gr�yj = � �gi�xj :Therefore the Jaobian of a polynomial system has full rank if and only if the Jaobianof the real expansion has full rank. We will work alternately with the original system andthe expansion. In order to prove the parametri transversality theorem for funtions fromomplex spae with real parameters, onsider the funtion f : C n � Cm ! C n . We areinterested in (z; e) for whih e 2 Rm and f(z; e) = 0. De�ning z = x + iy and e = u + iv,we an de�ne a real funtion f̂ : R2n�R2m! R2n+m as follows.f̂(x; y; u; v) = 8><>: f̂ r(x; y; u; v)f̂ i(x; y; u; v)vClearly f(z; e) = 0; e 2 Rm if and only if f̂(x; y; u; v) = 0. The parametri transversalitytheorem states that if �x;y;u;v f̂(x; y; u; v) has full rank 2n + m whenever f̂ (x; y; u; v) = 0then for a set of full Lebesgue measure of �u 2 Rm, 0 is a regular value of f̂�u. This impliesin partilar that for generi �e 2 Rm, 0 is a regular value of f sine if 0 is a regular value off̂�u, it must also be true that�x;y  f̂ r(x; y; �u; 0)f̂ i(x; y; �u; 0) ! has full rank wheneverf̂(x; y; �u; 0) = 0:20



Proof of Lemma 3Consider the system of equations in (h); p; eh�uh(h)� �hp = 0; h 2 H (12)p � (h � eh) = 0; h = 2; :::; H (13)HXh=1 h � eh = 0 (14)It suÆes to show that that� = f(eh) 2 RHL+ : 9(h); p s.t. (h); p solve (12)�(14) and f1(1; �(1)) = f2(1; �(1)) = 0gis a losed set of zero Lebesgue measure. By assumption �yf1 6= 0 and there exists a diretionÆ suh that the n'th diretional derivative of f2(1; phi(1))� f1(1; �(1)) is non-zero. Wean partition � into �nitely many sets of the formf(eh) 2 RHL+ : 9(h); p s.t. (h); p solve (12)�(14) and �(n)f2�f1 6= 0; �(i)Æ f2�f1 = 0; i < ng;where �n onsists of all n'th partial derivatives. By the parametri transverality theoremeah of these sets has measure zero. �Proof of Theorem 3Given Lemma 4, it suÆes to show that the equilibrium equations generate a zero dimen-sional radial ideal with all d omplex roots having distint xn oordinates for generi (eh).Given that Buhberger's algorithm gives the orret Groebner basis for generi (eh) thetheorem then follows from that. But in the proof of Theorem 1 we already showed thatgenerially in eh, 0 is a regular value for the equilibrium system. The preimage theoremthen implies that generially in eh all omplex solutions have distint xi oordinates for alli = 1; :::; n. the ideal generated by the equations must then be radial sine To see thatthe ideal generated by the equations must then be radial, let I = hf1; : : : ; fni � C [x℄,following Beker et al. (1994, Proof of Proposition 5), denote its zeros by (a1j ; :::; anj),j = 1; :::; J . Sine all zeros are loally unique, I must be the intersetion of D ideals of theform hx1 � a1i; x2� a2i; xn � anii, i = 1; :::; D { if any of the primary omponents had as abasis funtion (xm � ami)d for some m; i and some d = 2; 3; :::, all derivatives with respetto xm at the i'th zero would be zero whih violates loal uniqueness. But this intersetionmust be radial.Proof of Theorem 4By Lemma (5), the solution of the system meets every semi-algebraially onneted om-ponent of the set of ritial eonomies for whih g(eh) 6= 0. The result follows.21



Referenes[1℄ Aubry, P., F. Rouillier, and M. Safey, 2002, Real solving for positive dimensionalsystems, Journal of Symboli Computation, 34, 543-560.[2℄ Auerbah, A. and L. Kotliko� (1987), Dynami Fisal Poliy, Cambridge UniversityPress, Cambridge.[3℄ Balasko, Y., 1979, Eonomies with a �nite but large number of equilibria, Journal ofMathematial Eonomis 6, 145-147.[4℄ Basu, S., R. Pollak and M.-F. Roy, 2003, Algorithms in Real Algebrai Geometry,Springer Verlag.[5℄ Beker, E., M.G. Marianari, T. Mora and C. Treverso, 1994, The shape of the ShapeLemma, International Symposium on Symboli and Algebrai Computation, 129{133.[6℄ Chiappori, P.-A. and J.-C. Rohet, 1987, Revealed Preferenes and Di�erentiable De-mand, Eonometria 55, 687{691.[7℄ Codenotti, B., B. MCune, S. Penumatha and K. Varadarajan, 2005, Market Equilib-rium for CES Exhange Eonomies: Existene, Multipliity and Computations, ToyotaInstitute disussion paper.[8℄ Cox, D.A., J.B. Little and D.B. O'Shea, Ideals, Varieties and Algorithms: An Introdu-tion to Computational Algebrai Geometry and Commutative Algebra, UndergraduateTexts in Mathematis, Springer-Verlag, New York.[9℄ Cox, D.A., J.B. Little and D.B. O'Shea, 1998, Using Algebrai Geometry, GraduateTexts in Mathematis, Springer-Verlag, New York.[10℄ Dakhlia, S., 1999, Testing for a Unique Equilibrium in Applied General EquilibriumModels, Journal fo Eonomi Dynamis and Control, 23, 1281{1297.[11℄ Debreu, G., 1972, Loal Uniqueness...[12℄ DuÆe, D., 1988, Seurity Markets: Stohasti Models, Aademi Press, London.[13℄ Faug�ere, J.C., 1999, A new eÆient algorithm for omputing Gr�obner bases (f4), Jour-nal of Pure and Applied Algebra, 139, 61-88.[14℄ Gjerstad, S., 1996, Mutliple Equilibria in Exhange Eonomies with Homotheti,Nearly Idential Preferenes, University of Minnesota, Center of Eonomi ResearhDisussion Paper 288.[15℄ Mas-Colell, A., 1977, On the equilibrium prie set of an exhange eonomy, Journal ofMathematial Eonomis 4, 117{126. 22



[16℄ Mas-Colell, A., 1991, On the Uniqueness of Equilibrium one again, in, W.Barnett elal. (eds) Equilibrium Theory and Appliations, Cambridge University Press.[17℄ Neyman, A., 2003, Real algebrai tools in stohasti games, in A. Neyman and S. Sorin(eds.) Stohasti Games and Appliations NATO ASI series 2003, Kluwer AademiPublishers , 58-75.[18℄ Rouillier,F., 1999, Solving zero-dimensional systems through the rational univariaterepresentation, Journal of Appliable Algebra in Engineering, Communiation andComputing, 9, 433-461.[19℄ Rouillier, F., M.-F. Roy and M. Safey El Din, 2000, Finding at least one point in eahonneted ompenent of a real algebrai set de�ned by a single equations, Journal ofComplexity, 16, 716-750.[20℄ Sturmfels, B., Solving Systems of Polynomial Equations, CBMS Regional ConfereneSeries in Mathematis No. 97.

23


