
On the Existence of Monotone Pure Strategy
Equilibria in Bayesian Games�

Philip J. Reny
Department of Economics
University of Chicago

January 2006

Abstract

We extend and strengthen both Athey�s (2001) and McAdams�(2003) results on
the existence of monotone pure strategy equilibria in Bayesian games. We allow action
spaces to be compact locally-complete metrizable semilatttices and can handle both
a weaker form of quasisupermodularity than is employed by McAdams and a weaker
single-crossing property than is required by both Athey and McAdams. Our proof
� which is based upon contractibility rather than convexity of best reply sets �
demonstrates that the only role of single-crossing is to help ensure the existence of
monotone best replies. Finally, we do not require the Milgrom-Weber (1985) absolute
continuity condition on the joint distribution of types.

1. Introduction

In an important paper, Athey (2001) demonstrates that a monotone pure strategy equilib-

rium exists whenever a Bayesian game satis�es a Spence-Mirlees single-crossing property.

Athey�s result is now a central tool for establishing the existence of monotone pure strat-

egy equilibria in auction theory (see e.g., Athey (2001), Reny and Zamir (2004)). Recently,

McAdams (2003) has shown that Athey�s results, which exploit the assumed total ordering

of the players�one-dimensional type and action spaces, can be extended to settings in which

type and action spaces are multi-dimensional and only partially ordered. This permits new

existence results in auctions with multi-dimensional signals and multi-unit demands (see

McAdams (2004)).

At the heart of the results of both Athey (2001) and McAdams (2003) is a single-crossing

assumption. Roughly, the assumption says that if a player prefers a high action to a low one
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bene�tted from comments provided by participants of the August 2004 theory conference at The University
of British Columbia. I am especially grateful to Sergiu Hart and Benjamin Weiss for providing an example of
a compact metrizable semilattice that is not locally complete. Financial support from the National Science
Foundation (SES-9905599, SES-0214421) is gratefully acknowledged.



given his type, then the high action remains better than the low one when his type increases.

That is, as a function of his type, the di¤erence in a player�s payo¤ from a high action versus

a low one crosses zero at most once and from below � it undergoes a �single crossing�of

zero.

It is not di¢ cult to see that a single-crossing condition of the sort described above is

virtually necessary if one�s goal is to establish the existence of a monotone pure strategy

equilibrium. After all, if the condition fails, then a higher type sometimes prefers a lower

action, and ruling this out in equilibrium would require very special additional assumptions.

One of the roles of single-crossing, therefore, is to ensure that players possess monotone

best replies. However, previous research suggests that this is not its only role, and perhaps

not even its most central role. Indeed, McAdams remarks (2003, p. 1202), �... existence of

a monotone best response is far from guaranteeing monotone equilibrium.�This comment

re�ects the fact that the proof techniques of both Athey and McAdams rely on a su¢ ciently

strong version of single-crossing, one that not only helps ensure that monotone best replies

exist, but also helps ensure that each player�s entire set of optimal actions is, as a function

of his type, increasing in the strong set order.1 The import of the latter requirement is that

it renders a player�s set of monotone pure-strategy best-replies convex, in a sense pioneered

by Athey and extended by McAdams. Speci�cally, Athey observed that monotone functions

from the unit interval into a �nite totally ordered action set are characterized by their jump

points and that even though sets of monotone best reply functions need not be convex,

their associated sets of jump points are convex when the strong set-order property holds.

This impressive convexity result permits Athey and McAdams to establish the existence of

a monotone pure strategy equilibrium through an application of Kakutani�s theorem in the

case of Athey, and Glicksberg�s theorem in the case of McAdams.

In the present paper, we provide a generalization of the results of both Athey and

McAdams and we do so through a new route which, by avoiding the convexity issue al-

together, furnishes additional insights into the role of the single-crossing assumption and

eliminates the need to view monotone strategies as a collection of jump points, a view that

is helpful only when action spaces are restricted to �nite sets. In particular, our main result

(Theorem 4.1) can be specialized to show that when action spaces are one-dimensional (as

in Athey) or are such that distinct dimensions of a player�s own action vector are comple-

mentary (as in McAdams), then the existence of monotone best replies alone does guarantee

the existence of a monotone pure strategy equilibrium.2 Hence, we �nd that the role of the

1When actions are real numbers, this means that if some action is optimal given one�s type and another
action is optimal when one�s type changes, then the higher of the two actions is optimal for the higher type
and the lower of the two actions is optimal for the lower type.

2Actions of distinct players need not be complementary. That is, we do not require the game to be one
of strategic complements.
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single-crossing assumption in establishing the existence of monotone pure strategy equilibria

is simply to ensure the existence of monotone best replies, nothing more. In particular, there

is no need to impose a more restrictive single-crossing assumption so as to ensure that play-

ers�sets of optimal actions are increasing in the strong set order as their types vary. Thus,

while the strong set-order property remains important for comparative statics exercises (see

Milgrom and Shannon (1994)), we �nd that it is unrelated to the existence of monotone

pure strategy equilibria per se. Moreover, because we work with the monotone strategies

themselves, not their jump points, we are able to handle in�nite action spaces simply and

directly without the need to �rst discretize them and then take limits, as is necessitated by

the techniques of Athey (2001) and McAdams (2003).

The key to our result is to abandon the use of both Kakutani�s and Glicksberg�s theo-

rems. In their place, we instead employ a corollary (Theorem 5.1) of a �xed point theorem

due to Eilenberg and Montgomery (1946). Whereas Athey and McAdams impose additional

assumptions to obtain convexity of the players�sets of best replies, we instead take advantage

of the fact that the Eilenberg-Montgomery corollary only requires best reply sets to be con-

tractible, a property that is remarkably straightforward to establish in the class of Bayesian

games we study. In particular, so long as action spaces are compact locally-complete metriz-

able semilattices, our approach applies whether action spaces are �nite or in�nite; whether

they are one dimensional and totally ordered (as in Athey), �nite dimensional and par-

tially ordered (as in McAdams), or in�nite dimensional and partially ordered; and whether

they are sublattices of Euclidean space (as in both Athey and McAdams) or not. Further,

the transparency of our proof of contractibility is in rather stark contrast to the technique

cleverly employed by McAdams to extend Athey�s convexity results from one-dimensional

totally-ordered to �nite-dimensional partially-ordered types and actions. By focusing on

contractibility rather than convexity of best reply sets, and by relying upon a more powerful

�xed point theorem, we obtain a more direct proof under strictly weaker hypotheses.

If in addition to our assumptions on payo¤s, the actions of distinct players are strate-

gic complements, Van Zandt and Vives (2003) have shown that even stronger results can

be obtained. They prove that monotone pure strategy equilibria exist under more general

distributional, type-space and action-space assumptions than we impose here, and demon-

strate that such an equilibrium can obtained through iterative application of the best reply

map.3 In our view, Van Zandt and Vives (2003) have obtained perhaps the strongest pos-

sible results for the existence of monotone pure strategy equilibria in Bayesian games when

strategic complementarities are present. Of course, while many interesting economic games

exhibit strategic complements, many do not. Indeed, most auction games satisfy the single-

crossing property required to apply our result here (see e.g., Athey (2001), McAdams (2004),

3Related results can be found in Milgrom and Roberts (1990) and Vives (1990).
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Reny and Zamir (2003)), but fail to satisfy the strategic complements condition.4 The two

approaches are therefore complementary.

The remainder of the paper is organized as follows. Section 2 provides a simple �rst-price

auction example satisfying the hypotheses of our main result but not those of Athey (2001)

or McAdams (2003). The essential ideas behind the present technique are also provided here.

Section 3 describes the formal environment, including semilattices and related issues. Section

4 contains our main result and a corollary which itself strictly generalizes the results of both

Athey and McAdams. Section 5 provides the corollary of Eilenberg and Montgomery�s (1946)

�xed point theorem that is central to our approach, and Section 6 contains the proof of our

main result.

2. An Example

We begin with a simple example highlighting the essential di¤erence between the approach

taken by Athey and McAdams and that which we adopt here.

Consider a �rst-price auction between two bidders for a single item. Bidder 1�s value is

v1 = 7=2 and is public information. Bidders 1 and 2 each receive a private signal, x and y;

respectively. Bidder 2�s value, v2(x; y); depends upon both x and y; and is nondecreasing

in each argument. The signals x and y are either each drawn independently and uniformly

from [0; 1=2); or each drawn independently and uniformly from [1=2; 1]; with each of these

two possibilities being equally likely. Consequently, the signals are a¢ liated.

For the purposes of this example, bidder 1 must submit a bid from the set f1; 2; 3g,
while bidder 2 must submit a bid from the set f0; 1; 2; 3; 4g: Ties are broken randomly and
uniformly.

There is no reason not to expect a monotone pure strategy equilibrium to exist here, and

in fact, at least one does exist. Nevertheless, the proof techniques of Athey and McAdams,

which rely upon the convexity (up to a homeomorphism) of the players�monotone best reply

sets, cannot be directly applied.5 Indeed, we will show that, in this example, there is a

monotone bid function for bidder 2 against which bidder 1�s set of monotone best replies

is not mapped onto a convex set by the ingenious mapping introduced by Athey (2001).

Indeed, we will show that there is no homeomorphism mapping 1�s set of monotone best

4In a �rst-price IPV auction, for example, you might increase your bid if your opponent increases his
bid slightly when his private value is high. However, for su¢ ciently high increases in his bid at high private
values, you might be better o¤ reducing your bid (and chance of winning) to obtain a higher surplus when
you do win. Such non monotonic responses to changes in the opponent�s strategy are not possible under
strategic complements.

5It is possible to perturb this simple example so that the Athey-McAdams approach can be applied to
the perturbed game, and then take limits to obtain existence in the unperturbed game. In general, however,
our main result cannot be obtained through a limiting argument based upon Athey�s or Mcadams�results
(e.g., see Remark 5).
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replies onto a convex set.

2.1. A Nonconvex Set of Monotone Best Replies

Consider the following monotone bid function for bidder 2, as a function of his signal, y:

�(y) =

8>><>>:
0;

3;

4;

if y 2 [0; 1=18);
if y 2 [1=18; 1=2);
if y 2 [1=2; 1]:

Our interest lies in the set of monotone best replies for bidder 1, as a function of his

signal, x: Note that when x < 1=2; bidder 1 knows that y is uniform on [0; 1=2) and so

knows that 2�s bid is 0 with probability 1=9 and 3 with probability 8=9. Consequently,

bidder 1 is indi¤erent between bidding 1 and 3, each of which is strictly better than bidding

2. On the other hand, when x > 1=2; bidder 1 knows that y is uniform on [1=2; 1] and so

knows that bidder 2 bids 4. Hence any bid, 1, 2, or 3, is optimal since each bid loses with

probability one. All in all, bidder 1�s best reply correspondence is as follows:

B(x) =

(
f1; 3g;
f1; 2; 3g;

if x 2 [0; 1=2);
if x 2 [1=2; 1]:

Consequently, a monotone best reply for bidder 1 is any monotone step function of x taking

the values 1, 2, or 3, such that a bid of 2 occurs only when x � 1=2:
As observed by Athey, totally-ordered actions and signals permit monotone step functions

to be represented by the signals at which they jump from one action to the next. With three

actions, namely the bids 1, 2, and 3, just two jump points are required. Therefore, every

monotone bid function for bidder 1 can be mapped into a vector in [0; 1]2 lying weakly above

the diagonal. Conversely, each vector in [0; 1]2 lying weakly above the diagonal, let is call

this set D; determines a monotone bid function for bidder 1.6 Consequently, each monotone

bid function for bidder 1 can be mapped to a vector in the compact convex set D and vice

versa. Moreover, for an appropriate topology on monotone bid functions, the mapping is

continuous in both directions and so is a homeomorphism. Following McAdams (2003), let

us call this very useful map the �Athey-map.�

The Athey-map shows that 1�s set of monotone bid functions (and similarly 2�s) is home-

omorphic to a convex set. Athey�s (2001) main insight is noting that, under a su¢ ciently

strong form of single-crossing, each player�s set of best replies is increasing in the strong set

order as a function of his type, and that this implies that each player�s set of monotone best

6For the purposes of determining ex-ante payo¤s, it is not necessary to specify bids at the �nitely many
jump points themselves because each particular jump point has prior probability zero.
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Figure 2.1: Non-Convex Best Reply Set

replies is also homeomorphic (again via the Athey-map) to a convex set. This permits Athey

to apply Kakutani�s �xed point theorem to obtain the existence of a monotone pure strategy

equilibrium.

In the present example however, Athey�s technique (and therefore McAdams�also) does

not work. The underlying reason is that 1�s best reply correspondence is not increasing in

the strong set order. Indeed, a bid of 3 is best for any particular signal less than 1/2 and

a bid of 2 is best for any particular signal greater than 1/2. However, the smaller of these

two bids, namely 2, is not best for the smaller of the two particular signals, which is less

than 1/2. A consequence of this is that the image under the Athey-map of bidder 1�s set of

monotone best replies against bidder 2�s strategy is not convex, and this precludes the all

important application of Kakutani�s theorem. Let us now demonstrate the nonconvexity.

According to the Athey-map, bidder 1�s set of monotone best replies against the above

monotone bidding function of bidder 2 is mapped into those vectors, (x1; x2) 2 [0; 1]2; in the
set

f0 � x1 = x2 � 1=2g [ f1=2 � x1 � x2 � 1g:7

This �ag-shaped set, depicted in Figure 2.1, is clearly not convex.

But just because one particular homeomorphism, the Athey-map, fails to map 1�s set of

monotone best replies into a convex set, does not mean that some other homeomorphism

might not do so. That is, it may still be the case that bidder 1�s set of monotone best

replies is homeomorphic to a convex set and so one might still ultimately be able to apply

Kakutani�s theorem, which, in some sense, is the heart of the Athey-McAdams approach.

But this too fails, as we show next.

7The �rst set corresponds to monotone best replies that jump from a bid of 1 to a bid of 3 at some signal
weakly less than 1/2. The second set corresponds to monotone best replies that either jump from 1 to 3 at
a signal weakly above 1/2, or that jump from 1 to 2 at a signal x1 � 1=2 and then from 2 to 3 at a signal
x2 > x1:
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To see that bidder 1�s set of monotone best replies is not homeomorphic to a convex

set, it su¢ ces to show that the set in Figure 2.1, to which it is homeomorphic, is itself not

homeomorphic to a convex set. To see this, let us suppose that it were. Then, the convex set

would have to be two dimensional, because dimension is preserved under a homeomorphism.

Hence, the Figure 2.1 set, let us call it C; would have to be homeomorphic to a disc. But then

Cnf(1=2; 1=2)g would be homeomorphic to the disc minus the image of (1=2; 1=2): But this is
impossible since the latter set is connected, while Cnf(1=2; 1=2)g is not, and connectedness
is preserved under a homeomorphism.

2.2. An Alternative Approach

Perhaps the main contribution of the approach taken here lies in moving away from imposing

conditions that ensure that sets of best replies are homeomorphic to convex sets as in Athey

(2001) and McAdams (2003)). Indeed, the only reason for insisting upon convexity of best

reply sets is to prepare for an application of Kakutani�s (or Glicksberg�s) �xed point theorem.

But there are more powerful �xed point theorems one can instead rely upon, theorems which

do not require convexity. Rather, these theorems rely upon the more permissive condition

of contractibility.

Loosely, a set is contractible if it can be continuously shrunk, within itself, to one of

its points. Formally, a subset X of a topological space is contractible if for some x0 2 X
there is a continuous function h : [0; 1] � X ! X such that for all x 2 X; h(0; x) = x and
h(1; x) = x0: We then say that h is a contraction for X:

Note that every convex set is contractible since, choosing any point x0 in the set, the

function h(� ; x) = (1� �)x+ �x0 is a contraction. On the other hand, there are contractible
sets that are not convex (e.g., any curved line in R2 that does not intersect itself). Hence,
contractibility is a strictly more permissive condition than convexity.

Returning to the auction example, it is not di¢ cult to show that, against the given

bidding function for bidder 2, bidder 1�s set of best replies, while not homeomorphic to a

convex set, is contractible. One way to see this is to �rst apply the Athey-map to 1�s set of

best replies, leading to the homeomorphic set in Figure 2.1. It then su¢ ces to show that this

latter set is contractible since contractibility is preserved under homeomorphism. But the

set in Figure 2.1 is clearly contractible. Consider, for example, the contraction that shrinks

the set radially into the point (1=2; 1=2):

But is this a general property? That is, is each bidder�s set of monotone best replies con-

tractible no matter what monotone strategy is employed by the other bidder? Establishing

the contractibility of a set is not, in general, trivial. However, establishing the contractibility

of each bidder�s set of monotone best replies, for any given monotone bidding function of the
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other, is rather simple. Indeed, contractibility can be established without referring to the

Athey map and without considering jump points at all. The simplest approach is to consider

the monotone bidding functions themselves.

So, �x some monotone bidding function for bidder 2, and suppose that b0 : [0; 1] !
f1; 2; 3g is a monotone best reply for bidder 1.8 We shall provide a contraction that shrinks
bidder 1�s set of monotone best replies, within itself, to the function b0: The simple, but key,

observation is that a bidding function is a best reply if and only if it it is an interim best

reply for almost every signal x 2 [0; 1]:
Consider the following candidate contraction map (see Figure 2.2). For � 2 [0; 1] and

any monotone best reply, b; for bidder 1, de�ne h(� ; b) : [0; 1]! f1; 2; 3g as follows:

h(� ; b)(x) =

8>><>>:
b(x);

b0(x);

max(b0(x); b(x));

if x � j1� 2� j and � < 1=2;
if x � j1� 2� j and � � 1=2;
if x > j1� 2� j :

Note that h(0; b) = b; that h(1; b) = b0; and that h(� ; b)(x) is always either b0(x) or b(x); and

so is a best reply given the signal x. The function h(� ; b)(�) is also clearly monotone. It can
also be shown that the monotone function h(� ; b)(�) varies continuously in the arguments �
and b; when the set of monotone functions is endowed with the topology of almost everywhere

pointwise convergence.9 Consequently, h is a contraction, and we have established that,

given any monotone bidding function for bidder 2, bidder 1�s set of monotone best replies is

contractible.

Figure 2.2 shows how the contraction works. Three step functions are shown in each

panel. The thin dashed line step function (black) is b; the thick solid line step function

(green) is b0; and the very thick solid line step function (red) is the step function determined

by the contraction.

In panel (a), � = 0 and so the very thick (red) step function coincides with b. The

position of the vertical line (blue) appearing in each panel represents the value of � : When

� = 0 the vertical line is at the far right-hand side, as shown in panel (a). As indicated by

the arrow, the vertical line moves continuously toward the origin as � moves from 0 to 1=2.

The very thick (red) step function determined by the contraction is b(x) for values of x to

the left of the vertical line and is max(b0(x); b(x)) for values of x to the right; see panels

(a)-(c). Note that this step function therefore changes continuously with � ; in a pointwise

sense, and that when � = 1=2 this function is max(b0(�); b(�)):
In panels (d)-(f), � increases from 1=2 to 1 and the vertical line moves from the origin

8We assume that a monotone best reply exists, which in fact it does. The existence of monotone best
replies will be explicitly considered in the general setup of the sequel (see Section 4.1).

9That is, bn(�)! b(�) if and only if bn(x)! b(x) for a.e. x 2 [0; 1]:
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continuously to the right. For these values of � ; the very thick (red) step function deter-

mined by the contraction is now b0(x) for values of x to the left of the vertical line and

is max(b0(x); b(x)) for values of x to the right. Hence, when � = 1; the contraction yields

b0(�); see panel (f). So altogether, as � moves continuously from 0 to 1; the image of the

contraction moves continuously from b to b0:

(a) (b) (c)

(d) (e) (f)

Figure 2.2: The Contraction

It can similarly be shown that, for any monotone bidding function of bidder 1, bidder 2�s

set of monotone best replies is contractible. Consequently, so long as each player possesses a

monotone best reply whenever the other employs a monotone bidding function, an appropriate

generalization of Kakutani�s theorem � relying on contractible-valuedness instead of convex-

valuedness � can be employed to establish that the example possesses a monotone pure

strategy equilibrium.10 Note that this is so even though the strong set order property fails

to hold. Our approach goes through in general, whether or not the strong set order property

holds.

Note also that single-crossing plays no role in the demonstration that best reply sets are

contractible. In this totally-ordered action space example, best reply sets are contractible

whether or not single-crossing holds since contractibility follows from the pointwise nature of

best replies. But this does not mean that the single-crossing assumption is not useful. Recall

that, for simplicity, we assumed the existence of monotone best replies. When single-crossing

holds, one can prove their existence (as we shall do in Section 4.1). But note well that when

we do assume single-crossing, we shall do so only to ensure the existence of monotone best

10The appropriate generalization is due to Eilenberg and Montgomery (1946). See Section 4 below.
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replies, nothing more. This permits us to employ a weaker single-crossing assumption than

both Athey and McAdams. The remainder of the paper is based entirely upon these simple

ideas.

3. The Environment

3.1. Lattices and Semilattices

Let A be a non empty set and let � be a partial order on A:11 For a; b 2 A; if the set fa; bg
has a least upper bound (l.u.b.) in A; then it is unique and will be denoted by a _ b, the
join of a and b: In general, such a bound need not exist. However, if every pair of points in

A has an l.u.b. in A; then we shall say that (A;�) is a semilattice. It is straightforward to
show that, in a semilattice, every �nite set, fa; b; :::; cg; has a least upper bound, which we
denote by _fa; b; :::; cg or a _ b _ ::: _ c:
If the set fa; bg has a greatest lower bound (g.l.b.) in A; then it too is unique and it will

be denoted by a ^ b; the meet of a and b: Once again, in general, such a bound need not
exist. If every pair of points in A has both an l.u.b. in A and a g.l.b. in A, then we shall

say that (A;�) is a lattice.12

Clearly, every lattice is a semilattice. However, the converse is not true. For example,

employing the coordinatewise partial order on vectors in Rm; the set of vectors whose sum
is at least one is a semilattice, but not a lattice.

A topological semilattice is a semilattice endowed with a topology under which the join

operator, _; is continuous as a function fromA�A intoA.13 ;14 Clearly, every �nite semilattice
is a topological semilattice. Note also that because in a semilattice b � a if and only if

a _ b = b, in a topological semilattice f(a; b) 2 A� A : b � ag is closed. When the topology
on A rendering the join operator continuous is metrizable we say that (A;�) is a metrizable
semilattice. When the topology on A renders A compact, we say that (A;�) is compact.
A semilattice (A;�) is complete if every non empty subset S of A has a least upper

bound, _S; in A: A topological semilattice (A;�) is locally complete if for every a 2 A and
every neighborhood U of a; there is a neighborhood W of a contained in U such that every

non empty subset S of W has a least upper bound, _S; contained in U:15

11That is, � is transitive (a � b and b � c imply a � c); re�exive (a � a); and antisymmetric (a � b and
b � a imply a = b):
12De�ning a semilattice in terms of the join operation, _, rather than the meet operation, ^; is entirely a

matter of convention.
13Product spaces are endowed with the product topology throughout the paper.
14For example, the set A = f(x; y) 2 R2+ : x + y = 1g [ f(1; 1)g is a semilattice with the coordinatewise

partial order. But it is not a topological semilattice when supplemented with, say, the Euclidean metric
because whenever an 6= bn and an; bn ! a; we have (1; 1) = lim(an _ bn) 6= (lim an) _ (lim bn) = a.
15We have not found a reference to the concept of local completeness in the lattice-theoretic literature.
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Many metrizable semilattices are locally complete. For example, local completeness holds

trivially in any �nite semilattice, and more generally in any metrizable semilattice (A;�)
where A is a compact subset of RK and � is the coordinatewise partial order (see Lemma

C.3). On the other hand, in�nite-dimensional compact metrizable semilattices need not be

locally complete.16 Indeed, it can be shown (see Lemma C.2) that a compact metrizable

semilattice (A;�) is locally-complete if and only if for every a 2 A and every sequence

an ! a; limm(_n�man) = a:17 A distinct su¢ cient condition for local completeness is given
in Lemma C.4.

Finally, we wish to mention that because our main result requires only a notion of least

upper bound, we have found it natural to consider semilattices rather than lattices in most

of our formal development. On the other hand, a development within the con�nes of a

lattice structure would entail little loss of generality since any complete semilattice becomes

a complete lattice when supplemented with single point that is deemed less than all others.18

However, our assumptions would then have to be stated with explicit reference to the join

operator. For example, local completeness in a semilattice as de�ned above is equivalent to

local completeness �with respect to the join operator�in a lattice. Such a quali�cation would

be important since local completeness �with respect to the meet operator,�is a substantive

additional restriction that is not necessary for our results. Our choice to employ semilattices

is therefore largely a matter of convenience as it avoids the need for such quali�cations.

3.2. A Class of Bayesian Games

Consider any Bayesian game, G; described as follows. There are N players, i = 1; 2; :::; N:

Player i�s type space is Ti = [0; 1]ki endowed with the Euclidean metric and the coordinate-

wise partial order, and i�s action space is a partially ordered topological space Ai: All partial

orders, although possibly distinct, will be denoted by � : Player i�s bounded and measurable
payo¤ function is ui : A � T ! R; where A = �Ni=1Ai and T = �Ni=1Ti: The common prior
over the players�types is a probability measure � on the Borel subsets of T: This completes

the description of G:

A subset C of [0; 1]m is a strict chain if for any two distinct points in C; one of them is

16Whether or not every compact metrizable semilattice is locally complete was to us an open question
until a 2005 visit to The Center for the Study of Rationality at The Hebrew University of Jerusalem. Shortly
after we posed the question, Sergiu Hart and Benjamin Weiss settled the matter by graciously providing
a subtle and beautiful example of a compact metrizable semilattice that is not locally complete (see Hart
and Weiss (2005)). In contrast, such examples are not di¢ cult to �nd if compactness is not required. For
instance, no Lp space is locally complete when p < +1:
17Hence, compactness and metrizability of a lattice under the order topology (see Birkoh¤ (1967, p.244)

is su¢ cient, but not necessary, for local completeness of the corresponding semilattice.
18Given any subset B of a complete semilattice, its set of lower bounds is either non empty or empty. In

the former case, completeness implies that the join of the lower bounds exists and is then the g.l.b. of B: In
the latter case, the added point is the g.l.b. of B:
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strictly greater, coordinate by coordinate, than the other. We shall make use of the following

assumptions, where �i denotes the marginal of � on Ti: For every player i; and every Borel

subset B of Ti;

G.1 �i(B) = 0 if B \ C is countable for every strict chain C in Ti.

G.2 (Ai;�) is a compact locally-complete metrizable semilattice.

G.3 ui(�; t) : A! R is continuous for every t 2 T:

Assumptions G.1-G.3 strictly generalize the assumptions in Athey (2001) and McAdams

(2003) who assume that each Ai is a sublattice of Euclidean space and that � is absolutely

continuous with respect to Lebesgue measure.19

Note that G.1 implies that each �i is atomless because we may set B = ftig for any
ti 2 Ti. Note also that we do not require the familiar absolute continuity condition on �
introduced in Milgrom and Weber (1985). For example, when each player�s type space is

[0; 1] with its usual total order, G.1 holds if and only if �i is atomless. In particular, G.1

holds when there are two players, each with unit interval type space, and the types are

drawn according to Lebesgue measure conditional on any one of �nitely many positively or

negatively sloped lines in the unit square. Assumption G.1 helps ensure the compactness

of the players� sets of monotone pure strategies (see Lemma 6.1) in a topology in which

ex-ante payo¤s are continuous. This assumption therefore plays the same role for monotone

pure strategies as the Milgrom-Weber (1985) absolute-continuity assumption plays for mixed

strategies.

It can be shown (see Lemma A.1) that every compact metrizable semilattice is equivalent

to a compact semilattice in the Hilbert cube, [0; 1]1; with the coordinatewise partial order

and the coordinatewise Euclidean metric.20 On the other hand, assumption G.2 as stated

above is more easily veri�ed in practice than its Hilbert cube counterpart because the natural

description of the players�action spaces might not be as subsets of the Hilbert cube (e.g.,

when players are consumers in an exchange economy with private information and their

actions are demand functions to submit to an auctioneer). As mentioned in the previous

subsection, G.2 holds for example whenever (Ai;�) is a compact metrizable semilattice in
Euclidean space with the coordinatewise partial order (see Lemma C.3).

19Absolute continuity of � implies G.1 because, if for some Borel subset B of i�s type space, B \ C is
countable for every strict chain C; then B \ C is countable for every strict chain of the form [0; 1]ti with
ti 2 Ti: But then Fubini�s theorem implies that B has Lebesgue measure zero, and so �i(B) = 0 by absolute
continuity.
20However, the join of two points need not be their coordinatewise maximium since such a point need not

be a member of the semilattice.
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A pure strategy for player i is a measurable function, si : Ti ! Ai: Such a pure strategy

is monotone if t0i � ti implies si(t0i) � si(ti):21

An N -tuple of pure strategies, (ŝ1; :::; ŝN) is an equilibrium if for every player i and every

pure strategy s0i; Z
T

ui(ŝ(t); t)d�(t) �
Z
T

ui(s
0
i(ti); ŝ�i(t�i); t)d�(t);

where the left-hand side, henceforth denoted by Ui(ŝ); is player i�s payo¤ given the joint

strategy ŝ; and the right-hand side is his payo¤ when he employs s0i and the others employ

ŝ�i.

It will sometimes be helpful to speak of the payo¤ to player i�s type ti from the action

ai given the strategies of the others, s�i: This payo¤, which we will refer to as i�s interim

payo¤, is

Vi(ai; ti; s�i) �
Z
T

ui(ai; s�i(t�i); t)d�i(t�ijti);

where �i(�jti) is a version of the conditional probability on T�i given ti: A single such version
is �xed for each player i once and for all.

4. The Main Result

Call a set of player i�s pure strategies join-closed if for any pair of strategies, si; s0i; in the

set, the strategy taking the action si(ti) _ s0i(ti) for each ti 2 Ti is also in the set.22 We can
now state our main result, whose proof is provided in Section 6.

Theorem 4.1. If G.1-G.3 hold, and each player�s set of monotone pure best replies is non

empty and join-closed whenever the others employ monotone pure strategies, then G pos-

sesses a monotone pure strategy equilibrium.

Remark 1. In any setting in which the action sets are totally ordered (as in Athey (2001)),

each player�s set of monotone best replies is automatically join-closed.

Remark 2. Athey (2001) assumes that the Ai are totally ordered, and McAdams (2003)

assumes that each (Ai;�) is a sublattice of Rk with the coordinatewise partial order. This
21Note that both de�nitions involve the entire set Ti; not merely a set of full �i-measure. This is simply

a matter of convention. In particular, if a strategy, si; is monotone on a subset, C; having full �i-measure,
the strategy, ŝi; de�ned by ŝi(ti) = _fsi(t0i) : t0i � ti; t0i 2 Cg, coincides with si on C and is monotone on all
of Ti. When (Ai;�) is a compact metrizable semilattice, as we shall assume, Lemma C.1 ensures that ŝi is
well-de�ned, and Lemma A.4 takes care of measurability.
22Note that when the join operator is continuous, as it is in a metrizable semilattice, the resulting function

is measurable, being the composition of measurable and continuous functions.
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additional structure, which we do not require, is necessary for their Kakutani-Glicksberg-

based approach.23

It is well-known that within the con�nes of a lattice, quasisupermodularity and single-

crossing conditions on interim payo¤s guarantee the existence of monotone best replies and

that sets of monotone best replies are lattices and hence join-closed. In the next section, we

provide slightly weaker versions of these conditions and, for completeness, show that they

too guarantee that the players�sets of monotone best replies are non empty and join-closed.

4.1. Su¢ cient Conditions on Interim Payo¤s

Suppose that for each player i; (Ai;�) is a lattice. We say that player i�s interim payo¤

function Vi is weakly quasisupermodular if for all monotone pure strategies s�i of the others,

all ai; a0i 2 Ai; and every ti 2 Ti

Vi(ai; ti; s�i) � Vi(ai ^ a0i; ti; s�i) implies Vi(ai _ a0i; ti; s�i) � Vi(a0i; ti; s�i):

This weakens slightly Milgrom and Shannon�s (1994) concept of quasisupermodularity by

not requiring the second inequality to be strict if the �rst happens to be strict. McAdams

(2003) requires the stronger condition of quasisupermodularity. When actions are totally

ordered, as in Athey (2001), interim payo¤s are automatically supermodular, and hence

both quasisupermodular and weakly quasisupermodular.

A simple way to verify weak quasisupermodularity is to verify supermodularity. For

example, it is well-known that Vi is supermodular in actions (hence weakly quasisupermod-

ular) when Ai = [0; 1]K is endowed with the coordinatewise partial order, and the second

cross-partial derivatives of Vi(ai1; :::; aiK ; ti; s�i) with respect distinct action dimensions are

nonnegative. Thus, complementarities in the distinct dimensions of a player�s own actions

are natural economic conditions under which weak quasisupermodularity holds.24

We say that i�s interim payo¤ function Vi satis�es weak single-crossing if for all monotone

pure strategies s�i of the others, for all player i action pairs a0i � ai; and for all player i type
pairs t0i � ti;

Vi(a
0
i; ti; s�i) � Vi(ai; ti; s�i)

23Indeed, consider the lattice A = f(0; 0); (1; 0); (1=2; 1=2); (0; 1); (1; 1)g in R2; with the coordinatewise
partial order and note thatA is not a sublattice of R2. It can be shown that the set of monotone functions from
[0; 1] into A; endowed with the topology of almost everywhere pointwise convergence, is not homeomorphic to
a convex set. Indeed, it is instead homeomorphic to three triangles joined at a common edge to form a three-
bladed arrowhead in R3: Hence, if each player has action set A; then neither Kakutani�s nor Glicksberg�s
theorems can be applied to the game�s monotone best-reply correspondence. On the other hand, the set
of monotone functions in this example is an absolute retract (see Lemma 6.2), which is su¢ cient for our
approach.
24Complementarities between the actions of distinct players is not required. This is useful because, for

example, many auction games satisfy only own-action complementarity.
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implies

Vi(a
0
i; t

0
i; s�i) � Vi(ai; t0i; s�i):25

To ensure that each player�s set of monotone best replies is homeomorphic to a convex

set, both Athey (2001) and McAdams (2003) assume that Vi satis�es a more stringent single-

crossing condition. In particular they each require that, in addition to the above, the second

single-crossing inequality is strict whenever the �rst one is. Returning to the example of

Section 2, bidder 1�s interim payo¤ function there satis�es weak single-crossing but it fails

to satisfy Athey�s and McAdams�single-crossing condition because, for example, a bid of 3

is strictly better than a bid of 2 for bidder 1 when his signal is low, but it is only weakly

better when his signal is high. Because of this, bidder 1�s set of monotone best replies is not

homeomorphic to a convex set and the results of Athey and McAdams cannot be directly

applied.

In contrast, the following corollary of Theorem 4.1 states that pure monotone equilibria

exist if each Vi is weakly quasisupermodular and satis�es weak single-crossing.

Corollary 4.2. If G.1-G.3 hold, each (Ai;�) is a lattice, and the players�interim payo¤s

are weakly quasisupermodular and satisfy weak single-crossing, then G possesses a monotone

pure strategy equilibrium.

Proof. By Theorem 4.1, it su¢ ces to show that weak quasisupermodularity and weak

single-crossing imply that whenever the others employ monotone pure strategies, player i�s

set of monotone pure best replies is non empty and join-closed. To see join-closedness, note

that if against some monotone pure strategy of the others, actions ai and a0i are interim

best replies for i when his type is ti; then weak quasisupermodularity implies that so too is

ai _ a0i: Since two pure strategies are best replies for i if and only if they specify interim best
replies for almost every ti; join-closedness follows. (Because the join operator is continuous

in a metrizable semilattice, the join of two measurable functions is measurable, being the

composition of measurable and continuous functions.)

Fix a monotone pure strategy, s�i; for player i�s opponents, and let Bi(ti) denote i�s

interim best reply actions against s�i when his type is ti: By action-continuity, Bi(ti) is

compact and non empty, and by the argument in the previous paragraph Bi(ti) is a subsemi-

lattice of (Ai;�). De�ne �si : Ti ! Ai by setting �si(ti) = _Bi(ti) for each ti 2 Ti: Lemma C.1
together with the compactness and subsemilattice properties of Bi(ti) imply that, for every

ti; �si(ti) is well de�ned and �si(ti) 2 Bi(ti):
25For conditions on the joint distribution of types, �; and the players�payo¤ functions, ui(a; t); leading

to the weak single-crossing property, see Athey (2001, pp.879-81), McAdams (2003, p.1197) and Van Zandt
and Vives (2005).
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We next show that �si is monotone. Suppose that t0i � ti: Then

Vi(�si(ti); ti; s�i) � Vi(�si(ti) ^ �si(t0i); ti; s�i); (4.1)

since �si(ti) 2 Bi(ti): By weak single-crossing, (4.1) implies that

Vi(�si(ti); t
0
i; s�i) � Vi(�si(ti) ^ �si(t0i); t0i; s�i): (4.2)

Hence, applying weak quasisupermodularity to (4.2) we obtain

Vi(�si(t
0
i) _ �si(ti); t0i; s�i) � Vi(�si(t0i); t0i; s�i);

from which we conclude that �si(t0i)_�si(ti) 2 Bi(t0i): But �si(t0i) = _Bi(t0i) is the largest member
of Bi(t0i): Hence �si(t

0
i) _ �si(ti) = �si(t0i); implying that �si(t0i) � �si(ti) as desired.

Lastly, we must ensure measurability. But for this we may appeal to Lemma A.4, which

states that, because �si is monotone, there exists a measurable and monotone ŝi that coincides

with �si �i almost everywhere on Ti: Hence, ŝi is a monotone pure strategy and is a best reply.

Player i�s set of monotone pure best replies is therefore non empty.

Remark 3. Weak quasisupermodularity is used to ensure both join-closedness and that

monotone best replies exist. On the other hand, weak single-crossing is employed only in

the proof of the latter.

Remark 4. Compact Euclidean sublattices are automatically compact, locally complete,

metrizable semilattices. Hence, Corollary 4.2 generalizes the main results of Athey (2001)

and McAdams (2003). In fact, the corollary is a strict generalization because its hypotheses

are satis�ed in the example of Section 2, whereas the stronger hypotheses of Athey (2001)

and McAdams (2003) are not.

Corollary 4.2 will often su¢ ce in applications. However, the additional generality pro-

vided by Theorem 4.1 is sometimes important. For example, Reny and Zamir (2004) have

shown in the context of asymmetric �rst-price auctions with �nite bid sets that monotone

best replies exist even though weak single-crossing fails. Since action sets (i.e., bids) are

totally ordered, best reply sets are necessarily join-closed and so the hypotheses of Theorem

4.1 are satis�ed while those of Corollary 4.2 are not.

5. A Useful Fixed Point Theorem

The proof of Theorem 4.1 relies on a corollary of Eilenberg and Montgomery�s (1946) �xed

point theorem. This corollary is interesting in its own right because it is a substantial
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generalization of Kakutani�s theorem, yet, like Kakutani�s theorem, its hypotheses require

only elementary topological concepts, which we now review.

Recall from Section 2 that a subset X of a metric space is contractible if for some x0 2 X
there is a continuous function h : [0; 1] � X ! X such that for all x 2 X; h(0; x) = x and
h(1; x) = x0: We then say that h is a contraction for X:

A subsetX of a metric space Y is said to be a retract of Y if there is a continuous function

mapping Y ontoX leaving every point ofX �xed. A metric space (X; d) is an absolute retract

if for every metric space (Y; �) containing X as a closed subset and preserving its topology,

X is a retract of Y: Examples of absolute retracts include closed convex subsets of Euclidean

space or of any metric space, and many non convex sets as well (e.g., any contractible

polyhedron).26

Theorem 5.1. (Eilenberg and Montgomery (1946)) Suppose that a compact metric space

(X; d) is an absolute retract and that F : X � X is an upper hemicontinuous, non empty-

valued, contractible-valued correspondence. Then F has a �xed point.

Proof. The result follows directly from Eilenberg and Montgomery (1946) Theorem 1, be-

cause every absolute retract is a contractible absolute neighborhood retract (Borsuk (1966),

V (2.3)) and every non empty contractible set is acyclic (Borsuk (1966), II (4.11)).

6. Proof of Theorem 4.1

Let Mi denote the set of monotone pure strategies for player i; and let M = �Ni=1Mi: Let

Bi : M�i � Mi denote player i�s best-reply correspondence when players are restricted to

monotone pure strategies. Because, by hypothesis, each player possesses a monotone best

reply (among all measurable strategies) when the others employ monotone pure strategies,

any �xed point of �ni=1Bi :M �M is a monotone pure strategy equilibrium. The following

steps demonstrate that such a �xed point exists.

6.1. The Mi are Compact Absolute Retracts

We �rst demonstrate that each player�s space of monotone pure strategies can be metrized

so that it is a compact absolute retract. Without loss, we may assume that the metric dAi
26Indeed, a compact subset, X; of Euclidean space is an absolute retract if and only if it is contractible

and locally contractible. The latter means that for every x0 2 X and every neighborhood U of x0; there is
a neighborhood V of x0 and a continuous h : [0; 1] � V ! U such that h(0; x) = x and h(1; x) = x0 for all
x 2 V:
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on Ai is bounded:27 Given dAi ; de�ne a metric �Mi
on Mi as follows:28

�Mi
(si; s

0
i) =

Z
Ti

dAi(si(ti); s
0
i(ti))d�i(ti):

This metric does not distinguish between strategies that are equal �i almost everywhere.

This is natural since, from each player�s ex-ante viewpoint, such strategies are payo¤ equiv-

alent.

Now, suppose that sni is a sequence in Mi: Then, by the semilattice-extension of Hel-

ley�s theorem given in Lemma A.5, sni has a �i almost everywhere pointwise convergent

subsequence. That is, there exists a subsequence, snki ; and si 2Mi such that

snki (ti)!k si(ti) for �i almost every ti 2 Ti:

Consequently, dAi(s
nk
i (ti); si(ti)); a bounded function of ti; converges to zero �i almost every-

where as k ! 1, so that, by the dominated convergence theorem, �Mi
(snki ; si) !k 0: We

have therefore established the following result.

Lemma 6.1. The metric space (Mi; �Mi
) is compact.

The metric �Mi
also renders (Mi; �Mi

) an absolute retract, as stated in the next lemma,

whose proof follows directly from Lemma B.3 in Appendix B.

Lemma 6.2. The metric space (Mi; �Mi
) is an absolute retract.

Remark 5. One cannot improve upon Lemma 6.2 by proving, for example, thatMi;metrized

by �Mi
; is homeomorphic to a convex set. It need not be (e.g., see footnote 21). Evidently,

our approach can handle action spaces that the Athey-McAdams approach cannot easily ac-

commodate, if at all. An economic example of this type would certainly be of some interest.

6.2. Upper-Hemicontinuity

We next demonstrate that, given the metric �j on each Mj; each player i�s payo¤ function,

Ui : M ! R; is continuous under the product topology. This immediately yields upper-
hemicontinuity of best reply correspondences. To see payo¤ continuity, suppose that sn is a

sequence of joint strategies in M; and that sn ! s 2 M: By Lemma B.1, this implies that
27For any metric, d(�; �); an equivalent bounded metric is min(1; d(�; �)):
28Formally, the resulting metric space (Mi; �Mi

) is the space of equivalence classes of strategies in Mi

that are equal �i almost everywhere. Nevertheless, analogous to the standard treatment of Lp spaces, in
the interest of notational simplicity we focus on the elements of the orginal space Mi rather than on the
equivalence classes themselves.
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for each player i; sni (ti) ! si(ti) for �i a.e. ti in Ti. Consequently, s
n(t) ! s(t) for � a.e.

t 2 T: Hence, since ui is bounded, Lebesgue�s dominated convergence theorem yields

Ui(s
n) =

Z
T

ui(s
n(t); t)d�(t)!

Z
T

ui(s(t); t)d�(t) = Ui(s);

establishing the continuity of Ui:

Now, because each player i�s payo¤ function, Ui; is continuous and each Mi is compact,

an application of Berge�s theorem of the maximum immediately yields the following result.

Lemma 6.3. Each player i�s best-reply correspondence, Bi : M�i � Mi; is non empty-

valued and upper-hemicontinuous.

6.3. Contractible-Valuedness

The simple observation at the heart of the present paper is that each player i�s set of

monotone best replies is contractible. A straightforward contraction map follows, where

the vector of 1�s is denoted by 1:

De�ne h : [0; 1]�Mi �Mi !Mi as follows: For every ti 2 [0; 1]ki ;

h(� ; f; g)(ti) =

8>><>>:
f(ti);

g(ti);

f(ti) _ g(ti);

if 1 � ti � j1� 2� j ki and � < 1=2
if 1 � ti � j1� 2� j ki and � � 1=2
if 1 � ti > j1� 2� j ki

(6.1)

Note that h(� ; f; g) is indeed monotone because, if for example � < 1=2; then h(� ; f; g)(ti)

is f(ti); a monotone function of ti, when 1 � ti � j1� 2� j ki; and is f(ti)_ g(ti), which is both
monotone and larger than f(ti), when 1 � ti > j1� 2� j ki: Also, note that h(0; f; g) = f and
h(1; f; g) = g: Continuity will be established below.

Figure 6.1 provides snapshots of h(� ; f; g) as � moves from zero to unity when ki = 2:

The axes are the two dimensions of the type vector and the arrow within the �gures depicts

the direction in which the diagonal line, fti : 1 � ti = j1� 2� j kig; moves as � increases locally.
For example, panel (a) shows that when � = 0; h(� ; f; g) is equal to f over the entire unit

square. On the other hand, panel (f) shows that when � = 5=6; h(� ; f; g; ) is equal to g

below the diagonal line and equal to f _ g above it.

Lemma 6.4. Bi :M�i �Mi is contractible-valued.

Proof. Fix s�i 2 M�i: To establish the contractibility of Bi(s�i); suppose that f; g 2
Bi(s�i): Because, by hypothesis, Bi(s�i) is join-closed, the monotone function, f _ g; taking
the action f(ti) _ g(ti) for each ti 2 [0; 1]ki is also in Bi(s�i): Consequently, [h(� ; f; g)](ti);
being equal to either f(ti); g(ti); or f(ti)_g(ti); must maximize Vi(ai; ti; s�i) over ai 2 Ai for
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5/6(f) =

g

Figure 6.1: h(� ; f; g) as � varies from 0 (panel (a)) to 1 (panel (g)) and the domain is the
unit square.

almost every ti 2 [0; 1]ki ; because this �i almost-everywhere maximization property holds,
by hypothesis, for every member of Bi(s�i) and so separately for each of f; g; and f _ g.
But this implies that for every � 2 [0; 1]; h(� ; f; g) 2 Bi(s�i): So, because h(0; f; g) = f;

h(1; f; g) = g and h(�; �; �) is, by Lemma B.2, continuous, h(�; �; g) is a contraction for Bi(s�i):

6.4. Completing the Proof.

The following lemma completes the proof of Theorem 4.1.

Lemma 6.5. The product of the players�best reply correspondences, �ni=1Bi : M � M;

possesses a �xed point.

Proof. By Lemmas 6.1 and 6.2, each (Mi; �Mi
) is a compact absolute retract. Consequently,

under the product topology, M is both compact and, by Borsuk (1966) IV (7.1), an absolute

retract. By Lemmas 6.3 and 6.4, �ni=1Bi : M � M is u.h.c., non empty-valued, and

contractible-valued. Hence, applying Theorem 5.1 to �ni=1Bi : M � M yields the desired

result.

Appendices
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A. Canonical Semilattices

It is not di¢ cult to see that any �nite semilattice (A;�) can be represented as a �nite
semilattice in Euclidean space with the coordinatewise partial order.29 Thus, for �nite
semilattices, Euclidean space with its coordinatewise partial order is canonical. We now
describe a similar result for arbitrary compact metrizable semilattices.
Say that two metrizable semilattices (A;�A) and (B;�B) are equivalent if there is a

homeomorphism � mapping A onto B such that for all a; b 2 A;

a �A b if and only if �(a) �B �(b) (A.1)

Recall that the Hilbert cube is the normed space [0; 1]1 with norm kxk =
P

n
1
2n
xn: It

is partially ordered by the coordinatewise partial order (i.e., x � y i¤ xn � yn all n): The
following result states that given any compact metrizable semilattice (A;�); one can assume
without loss of generality that A is a compact subset of the Hilbert cube and that � is the
coordinatewise partial order.30

Lemma A.1. Every compact metrizable semilattice is equivalent to a compact semilattice
in the Hilbert cube.

Proof. Let (A;�A) be a compact metrizable semilattice with metric d and suppose without
loss that d(a; b) � 1 for all a; b 2 A: Let A0 = fa1; a2; :::g be a countable dense subset
of A: De�ne the function � from A into the Hilbert cube [0; 1]1; by �(a) = (mina0 d(a

0 _
a; a1);mina0 d(a

0 _ a; a2); :::); where each minimum is taken over all a0 2 A: To see that �
is continuous, note that, for each n; Berge�s theorem of the maximum and the fact that
the join operator is continuous imply that the n-th coordinate function mina0 d(a0 _ a; an) is
continuous in a:
We next wish to show that

a �A b if and only if �(a) � �(b); (A.2)

where � is the coordinatewise partial order on [0; 1]1. Before proving this, note that a
corollary is that � is one to one and hence, by compactness, a homeomorphism from A onto
�(A): Hence, the proof will be complete once we prove (A.2).
So, suppose �rst that a �A b: Then, for each n;

min
a0
d(a0 _ a; an) = min

a0�Aa
d(a0; an)

� min
a0�Ab

d(a0; an)

= min
a0
d(a0 _ b; an);

and so �(a) � �(b): Conversely, suppose that �(a) � �(b): Then for each n; mina0 d(a0 _
a; an) � mina0 d(a

0 _ b; an): In particular, this holds true along a subsequence, ank of an;
converging to a: Consequently, 0 = mina0 d(a0 _ a; a) � mina0 d(a0 _ b; a); so that a0 _ b = a
for some a0 2 A: But this means that a �A b; as desired.
29Assign to each a 2 A the vector x 2 RA where xa0 = 1 if a � a0 and xa0 = 0 otherwise.
30But note that x _ y = (max(xn; yn))

1
n=1 need not hold since the coordinatewise max need not be a

member of A.
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Lemma A.1 is useful because it permits one to prove results about compact metrizable
semilattices by considering compact semilattices in the Hilbert cube. The lemmas below can
be proved by �rst proving them when (A;�) is a compact semilattice in the Hilbert cube
and then applying Lemma A.1. Since the Hilbert cube proofs amount to separate proofs for
each of the countably many copies of [0; 1]; and the proofs for [0; 1] are standard, the proofs
are omitted.
In each of the lemmas below, it is assumed that (A;�) is a compact metrizable semilattice

and � is a probability measure on [0; 1]m satisfying assumption G.1 from Section 3. Assump-
tion G.1 is used to ensure that every measurable and monotone function f : [0; 1]m ! A is
continuous � almost everywhere. This is a consequence of the fact that the restriction of f
to any strict chain C is discontinuous at no more than countably many points in C; which
itself implies that D \ C is countable for all strict chains C; where D denotes the set of
discontinuity points of f: These latter two results are standard and so we omit their proofs.

Lemma A.2. If an; cn are sequences in A converging to a; and an � bn � cn for every n;
then bn converges to a:

Lemma A.3. Every nondecreasing sequence and every nonincreasing sequence in (A;�)
converges.

Lemma A.4. If f : [0; 1]m ! A is monotone, then there is a measurable and monotone
g : [0; 1]m ! A such that f and g are equal and continuous � almost everywhere on [0; 1]m.

Lemma A.5. (Helley�s Theorem). If fn : [0; 1]m ! A is a sequence of monotone functions,
then there is a subsequence, fnk ; and a measurable monotone function, f : [0; 1]

m ! A; such
that fnk(t)!k f(t) for � almost every t 2 [0; 1]m:

B. The Space of Monotone Functions

Throughout this appendix it is assumed that (A;�) is a compact metrizable semilattice with
metric d which is assumed without loss to satisfy d(a; b) � 1 for all a; b 2 A: We also letM
denote the set of measurable monotone functions from [0; 1]m into A; and de�ne the metric,
�; onM by

�(f; g) =

Z
[0;1]m

d(f(t); g(t))d�(t);

where � is a probability measure on [0; 1]m satisfying assumption G.1 from Section 3.

Lemma B.1. In (M; �); fk converges to f if and only if in (A;�); fk(t) converges to f(t)
for � almost every t 2 [0; 1]m:

Proof. (only if) Suppose that �(fk; f)! 0: By Lemma A.4 it su¢ ces to show that fk(t)!
f(t) for all interior continuity points, t; of f:
Suppose that t0 is an interior continuity point of f: Because A is compact, it su¢ ces

to show that an arbitrary convergent subsequence, fkj(t0); of fk(t0) converges to f(t0). So,
suppose that fkj(t0) converges to a 2 A: By Lemma A.5, there exists a further subsequence,
fk0j and a monotone function, g 2M; such that fk0j(t)! g(t) for a.e. t in [0; 1]m: Because d is
bounded, the dominated convergence theorem implies that �(fk0j ; g)! 0: But �(fk0j ; f)! 0

then implies that �(f; g) = 0 and so fk0j(t)! f(t) for a.e. t in [0; 1]m:
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Because t0 is in the interior of [0; 1]m; for every " > 0 there exist t"; t0" each within " of
t0 such that t" � t0 � t0" and such that fk0j(t")!j f(t") and fk0j(t

0
")!j f(t

0
"): Consequently,

fk0j(t") � fk0j(t0) � fk0j(t
0
"); and taking the limit as j ! 1 yields f(t") � a � f(t0"); and

taking next the limit as "! 0 yields f(t0) � a � f(t0); so that a = f(t0); as desired.
(if) To complete the proof, suppose that fk(t) converges to f(t) for � almost every

t 2 [0; 1]m: Then, because d is bounded, the dominated convergence theorem implies that
�(fk; f)! 0:

Lemma B.2. The function h : [0; 1]�M�M!M de�ned by

h(� ; f; g)(t) =

8<:
f(t);
g(t);
f(t) _ g(t);

if 1 � t � j1� 2� jm and � < 1=2
if 1 � t � j1� 2� jm and � � 1=2
if 1 � t > j1� 2� jm

(B.1)

is continuous, where 1 denotes the vector of 1�s.

Proof. Suppose that (� k; fk; gk) ! (� ; f; g) 2 [0; 1] �M�M: By Lemma B.1, there is a
full � measure subset, D; of [0; 1]m such that fk(t)! f(t) and gk(t)! g(t) for every t 2 D:
There are three cases: � = 1=2, � > 1=2 and � < 1=2:
Suppose that � < 1=2: For each t 2 D such that 1 � t < j1� 2� jm; we have 1 � t <

j1� 2� kjm for all k large enough. Hence, h(� k; fk; gk)(t) = fk(t) for all k large enough, and
so h(� k; fk; gk)(t) = fk(t) ! f(t) = h(� ; f; g)(t): Similarly, for each t 2 D such that 1 � t >
j1� 2� jm; h(� k; fk; gk)(t) = fk(t)_gk(t)! f(t)_g(t) = h(� ; f; g)(t); where the limit follows
because (A;�) is a metrizable semilattice. By G.1, �(ft 2 [0; 1]m : 1 � t = j1� 2� jmg) = 0:
Consequently, if � < 1=2; h(� k; fk; gk)(t) ! h(� ; f; g)(t) for � a.e. t 2 [0; 1]m and so, by
Lemma B.1, h(� k; fk; gk)! h(� ; f; g):
Because the case � > 1=2 is similar to � < 1=2; we need only consider the remaining

case in which � = 1=2: In this case, j1� 2� kj ! 0: Consequently, for any nonzero t 2
[0; 1]m; because 1 � t > 0; we have h(� k; fk; gk)(t) = fk(t) _ gk(t) for k large enough and so
h(� k; fk; gk)(t) = fk(t) _ gk(t) ! f(t) _ g(t) = h(1=2; f; g)(t) for every non zero t 2 [0; 1]m:
Hence, by G.1, h(� k; fk; gk)(t)! h(1=2; f; g)(t) for � a.e. t 2 [0; 1]m, and so again by Lemma
B.1, h(� k; fk; gk)! h(� ; f; g):

Lemma B.3. The metric space (M; �) is an absolute retract.

Proof. As a matter of notation, for f; g 2 M; write f � g if f(t) � g(t) for � a.e. t in
[0; 1]m: Also, for any sequence of monotone functions f1; f2; :::; inM; denote by f1 _ f2 _ :::
the monotone function taking the value limn[f1(t) _ f2(t) _ ::: _ fn(t)] for each t in [0; 1]m:
This is well-de�ned by Lemma A.3.
Let h : [0; 1]�M�M!M be the continuous function de�ned by (B.1). Since for any

g 2M; h(�; �; g) is a contraction forM, (M; �) is contractible. Hence, by Borsuk (1966, IV
(9.1)) and Dugundji (1965), it su¢ ces to show that for each f 0 2M and each neighborhood
U of f 0; there exists a neighborhood V of f 0 and contained in U such that the sets V n; n � 1;
de�ned inductively by V 1 = h([0; 1]; V; V ); V n+1 = h([0; 1]; V; V n); are all contained in U:31

For each V , note that if g 2 V 1; then g = h(� ; f0; f1) for some � 2 [0; 1] and some
f0; f1 2 V: Hence, by the de�nition of h; we have g � f0_ f1 and either f0 � g or f1 � g:We
31This condition, which is intimately related to the local contractibility ofM; can more easily be related

to local convexity. For example, ifM is convex, instead of merely contractible, and h(�; f; g) = �f+(1��)g
is the usual convex combination map, the condition follows immediately ifM is, in addition, locally convex.
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may choose the indices so that f0 � g � f0 _ f1: Inductively, it can similarly be seen that if
g 2 V n; then there exist f0; f1; :::; fn 2 V such that

f0 � g � f0 _ ::: _ fn: (B.2)

Suppose now, by way of contradiction, that there is no open set V containing f 0 2M and
contained in the neighborhood U of f 0 such that all the V n as de�ned above are contained in
U: Then, successively for each k = 1; 2; :: , taking V to be B1=k(f 0); the 1=k ball around f 0,
there exists nk such that some gk 2 V nk is not in U: Hence, by (B.2), there exist fk0 ; :::; fknk 2
V = B1=k(f

0) such that
fk0 � gk � fk0 _ ::: _ fknk : (B.3)

Consider the sequence f 10 ; :::; f
1
n1
; f20 ; :::; f

2
n2
; ::: . Because fkj is in B1=k(f

0); this sequence
converges to f 0: Let us reindex this sequence as f1; f2; ::: . Hence, fj ! f 0:
Because for every n the set ffn; fn+1; :::g contains the set ffk0 ; :::; fknkg whenever k is large

enough, we have
fk0 _ ::: _ fknk � _j�nfj;

for every n and all large enough k. Combined with (B.3), this implies that

fk0 � gk � _j�nfj (B.4)

for every n and all large enough k.
Now, fk0 ! f 0 as k ! 1: Hence, by Lemma B.1, fk0 (t) ! f 0(t) for � a.e. t in [0; 1]m:

Consequently, if for � a.e. t in [0; 1]m; _j�nfj(t)! f 0(t) as n!1; then (B.4) and Lemma
A.2 would imply that for � a.e. t in [0; 1]m; gk(t) ! f 0(t): Then, Lemma B.1 would imply
that gk ! f 0 contradicting the fact that no gk is in U; and completing the proof that (M; �)
is an absolute retract.
It therefore remains only to establish that for � a.e. t 2 [0; 1]m; _j�nfj(t)! f 0(t) as n!

1: But, by Lemma C.2, because (A;�) is locally complete this will follow if fj(t)!j f
0(t)

for � a.e. t; which follows from Lemma B.1 because fj ! f 0:

C. Completeness and Local Completeness

In each of the lemmas below, it is assumed that (A;�) is a compact metrizable semilattice.

Lemma C.1. (A;�) is a complete semilattice.

Proof. Because A is compact and metrizable, S has a countable dense subset, fa1; a2; :::g:
Let a� = limn a1 _ ::: _ an; where the limit exists by Lemma A.3. Now, suppose that b is
an upper bound for S and that a is an arbitrary element of S: Then, some sequence, ank ;
converges to a: Moreover, ank � a1 _ ::: _ ank � b for every k: Taking the limit as k ! 1
yields a � a� � b: Hence, a� = _S:

Lemma C.2. (A;�) is locally complete if and only if for every a 2 A and every sequence
an converging to a; limn(_k�nak) = a:

Proof. We �rst demonstrate the �only if�direction. Suppose that (A;�) is locally complete,
that U is a neighborhood of a 2 A; and that an ! a: By local completeness, there exists a
neighborhood W of a contained in U such that every subset of W has a least upper bound
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in U: In particular, because for n large enough fan; an+1; :::g is a subset ofW; the least upper
bound of fan; an+1; :::g; namely _k�nak; is in U for n large enough. Since U was arbitrary,
this implies limn(_k�nak) = a:
We now turn to the �if�direction. Fix any a 2 A; and let B1=n(a) denote the open ball

around a with diameter 1=n: For each n; _B1=n(a) is well-de�ned by Lemma C.1. More-
over, because _B1=n(a) is nondecreasing in n; limn _B1=n(a) exists. We �rst argue that
limn _B1=n(a) = a: For each n; we may construct, as in the proof of Lemma C.1, a sequence
fan;mg of points in B1=n(a) such that limm(an;1 _ ::: _ an;m) = _B1=n(a): We may therefore
choose mn su¢ ciently large so that the distance between an;1_ :::_an:mn and _B1=n(a) is less
than 1=n: Consider now the sequence fa1;1; :::; a1;m1 ; a2;1; :::; a2;m2 ; a3;1; :::; a3;m3 ; :::g: Because
an;m is in B1=n(a); this sequence converges to a: Consequently, by hypothesis,

lim
n
(an;1 _ ::: _ an;mn _ a(n+1);1 _ ::: _ a(n+1);m(n+1)

_ :::) = a:

But because every ak;j in the join in parentheses on the left-hand side above (denote this
join by bn) is in B1=n(a); we have

an;1 _ ::: _ an;mn � bn � _B1=n(a):

Therefore, because for every n the distance between an;1 _ ::: _ a1;mn and _B1=n(a) is less
than 1=n; Lemma A.2 implies that limn _B1=n(a) = limn bn: But since limn bn = a; we have
limn _B1=n(a) = a, as desired. Next, for each n; let Sn be an arbitrary non empty subset
of B1=n(a); and choose any sn 2 Sn: Then sn � _Sn � _B1=n(a): Because sn 2 B1=n(a);
Lemma A.2 implies that limn _Sn = a: Consequently, for every neighborhood U of a; there
exists n large enough such that _S (well-de�ned by Lemma C.1) is in U for every subset S
of B1=n(a): Since a was arbitrary, (A;�) is locally complete.

Lemma C.3. If A is a subset of RK and � is the coordinatewise partial order, then (A;�)
is locally complete.

Proof. Suppose that an ! a: By Lemma C.2, it su¢ ces to show that limn(_k�nak) = a: By
Lemma A.3, limn(_k�nak) exists and is equal to limn limm(an _ ::: _ am) since an _ ::: _ am
is nondecreasing in m; and limm(an _ ::: _ am) is nonincreasing in n: For each dimension
k = 1; :::; K; let akn;m denote the �rst among an; an+1; :::; am with the largest kth coordinate.
Hence, an_ :::_am = a1n;m_ :::_aKn;m; where the right-hand side consists of K terms. Because
an ! a, limm a

k
n;m exists for each k and n; and limn limm a

k
n;m = a for each k: Consequently,

limn limm(an _ ::: _ am) = limn limm(a
1
n;m _ ::: _ aKn;m) = a _ ::: _ a = a, as desired.

Lemma C.4. If for all a 2 A; every neighborhood of a contains a0 such that b0 � a0 for all
b0 close enough to a; then (A;�) is locally complete.

Proof. Suppose that an ! a: By Lemma C.2, it su¢ ces to show that limn(_k�nak) = a:
For every n and m; am � am _ am+1 _ ::: _ am+n, and so taking the limit �rst as n ! 1
and then as m ! 1 gives a � limm _k�mak; where the limit in n exists by Lemma A.3
because the sequence is monotone. Hence, to show that limsupmam = a; it su¢ ces to show
that limm _k�mak � a.
Let U be a neighborhood of a and let a0 be chosen as in the statement of the lemma. For

m large enough, am 2 U and so am � a0: Consequently, for m large enough and for all n,
am_am+1_ :::_am+n � a0: Taking the limit �rst in n and then inm yields limm _k�mak � a0:
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Because for every neighborhood U of a this holds for some a0 in U; limm _k�mak � a; as
desired.
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