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Abstract

When two agents hold di¤erent priors over an unveri�able state of nature,
which a¤ects the outcome of a game they are about to play, they have an incen-
tive to bet on the game�s outcome. We pose the following question: what are
the limits to the agents�ability to realize gains from such speculative bets when
their priors are private information? We apply a �mechanism design�approach
to this question. We characterize interim-e¢ cient bets and discuss their imple-
mentability in terms of the underlying game�s payo¤ structure. In particular, we
show that as the costs of unilaterally manipulating the bet�s outcome become
more symmetric across states and agents, implementation becomes easier.

1 Introduction

A primary task of the mechanism-design literature has been to draw the barriers to

trade due to asymmetric information. A milestone in this literature was the result due

to Myerson and Satterthwaite (1983), which stated that in a natural class of bilateral-

trade environments, there exists no mechanism that weakly implements e¢ cient trade

in Bayesian Nash equilibrium. This result, like the rest of the literature that followed

in its wake, focuses exclusively on trade that is motivated by di¤erences in tastes. In

principle, one could pose the same set of questions when the motivation for trade is
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di¤erences in beliefs. What are the limits to the ability to realize gains from speculative

trade, when the agents�beliefs are not common knowledge? What are the mechanisms

that enable agents to realize these gains?

The mechanism-design literature has neglected these questions, probably because

of the ubiquity of the common-prior assumption in economic modeling. As the no-

trade theorems (e.g., Milgrom and Stokey (1982)) have shown, common priors coupled

with standard solution concepts rule out speculative trade. In this paper, we focus on

environments in which agents have di¤erent prior beliefs regarding a state of Nature

that may a¤ect the outcome of their future actions. This creates a motive among the

agents to bet on the future outcome. However, we assume that the agents�priors are

private information. We apply a �mechanism-design approach� in order to examine the

extent to which this form of asymmetric information creates a barrier to speculative

bets.

The observation that asymmetric information may act as a barrier to speculative

trade, even when the common-prior assumption is relaxed, has at least two precedents

in the literature. Morris (1994) provides necessary and su¢ cient conditions (in terms

of the structure of the agents�beliefs) for no-trade results to persist in environments

with heterogeneous priors. Chung and Ely (2005) study the design of auctions in an

environment with non-trivial high-order beliefs. In particular, they allow for heteroge-

neous priors, and show that incentive-compatibility constraints exclude bets as part of

the revenue-maximizing mechanism.

We demonstrate our approach with a simple two-period model. In period 2, a pair

of agents plays a game whose payo¤s depend on an unveri�able state of Nature. The

state is commonly known in period 2. However, in period 1 it is unknown to the agents,

who hold di¤erent prior beliefs over the state and therefore might bene�t from betting

on it. Since the state is unveri�able, the agents cannot bet on its realization. The

set of veri�able contingencies is captured by a partition over the set of action pro�les

in the game. A bet signed in period 1 is a function that assigns a budget-balanced

transfer to each cell in the partition. The agents�priors are private information, but

it is common knowledge that they are independently drawn from some distribution F .

We de�ne a notion of a �constrained interim-e¢ cient�bet and ask whether it can be

implemented in Bayesian equilibrium by some mechanism.

An important feature of this model is that the outcome of a bet can be manipulated

by the agents, through their choice of action in period 2. Thus, in order for a bet

to be sustainable, its stakes cannot exceed the cost of unilateral manipulation of its

outcome. But this means that potential gains from speculative bets are bounded as
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well. A constrained interim-e¢ cient bet in such an environment maximizes these gains

(formally, the sum of the agents� interim expected utilities, calculated according to

their own priors), subject to the constraint that neither agent wishes to manipulate its

outcome.

Bounded bets could be generated by alternative assumptions, such as risk aversion

or liquidity constraints. We �nd our method appealing for a number of reasons. First,

from a methodological point of view, quasi-linear utility and unbounded transfers are

standard assumptions in the mechanism design literature. Second, there are many

real-life situations in which agents with heterogenous beliefs bet on outcomes they can

manipulate. For instance, a contract signed between an investor and an entrepreneur

may re�ect their di¤erent degrees of optimism regarding the future success of their

business venture. At the same time, the contract a¤ects the entrepreneur�s incentives

to undertake risky projects. Gambling over the outcome of sporting contests provides

another example. Di¤erent prior beliefs regarding the contest�s outcome provide a

motive to bet. However, when the stakes are high, a contestant may deliberately tilt

the score in order to win a side bet. Finally, when market speculators trade in �nancial

derivatives, they may be driven by di¤erent prior beliefs over market fundamentals that

a¤ect future stock prices. When the stock market is imperfectly competitive, traders

are able to manipulate stock prices, and this a¤ects the positions that they take in the

derivative market.

Third, the bounds on the stakes of bets in our model are endogenous. This allows

us to establish a link between the implementability of constrained interim-e¢ cient

bets and the payo¤ structure of the underlying game. The main result in the paper

is that when a constrained interim-e¢ cient bet is �purely speculative� (in the sense

that it does not a¤ect the game�s outcome), it can be implemented for a larger set of

distributions F when the costs of unilateral manipulation of the bet�s outcome become

more symmetric across states and agents.

The technical basis for this result is a formal analogy to a more conventional

mechanism-design model due to Cramton, Gibbons and Klemperer (1987) - CGK

henceforth - which extends the Myerson-Satterthwaite analysis to general initial own-

ership structures, namely �partnerships�. The problem of implementing optimal bets

turns out to be analogous to the problem of dissolving a partnership e¢ ciently. We

demonstrate the usefulness of this analogy with a pair of applications, in which agents

are able to bet on the market price that results from some market interaction in which

they take part.
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2 An example: betting on an agent�s future action

Before presenting our model in generality, we wish to convey some of its main ideas

through a simple special case. Consider an agent who faces a choice between two

actions: a or b: His payo¤ from each action depends on the state of Nature. There are

two possible states. The agent�s vNM utility function is u in one state and v in the

other. With slight abuse of notation, we denote states by the utility functions that

characterize them. The payo¤s are given by the following table:

a b

u A C

v D B

where A � C and B � D, with at least one strict inequality.
The agent privately learns the state of Nature before making his decision. A period

before the realization of the state, the agent and another party, referred to as a �spec-

ulator�, hold di¤erent beliefs regarding the realization of the state. These are purely

di¤erences in prior opinions. Let �1 and �2 be the prior probability assigned to state

u by the speculator and the agent, respectively.

Because the two parties have di¤erent priors, they �nd it mutually bene�cial to bet

on the future state of Nature. However, since the state is privately observed by the

agent, such a bet is unenforceable. Instead, the parties can bet on the agent�s action,

which is veri�able. We refer to the period in which the state is realized and the action

is taken as period 2. The period in which the bet is negotiated is referred to as period

1:

A bet t is a function that assigns a pair of monetary transfers, t1(x) and t2(x), to

every x 2 fa; bg, where ti(x) is the amount that party i receives if the agent chooses
x in period 2. The transfers are budget-balanced - i.e., t1(x) = �t2(x). If the parties
agree on a bet t, it a¤ects the decision problem faced by the agent, such that the agent�s

utility from an action x is u(x) + t2(x) in state u and v(x) + t2(x) in state v, and the

speculator�s utility from the agent�s action x is t1(x), regardless of the state. If no

bet is signed, the agent faces the �bare�decision problem and the speculator receives

nothing.

This example �ts a number of real-life situations. The parties can be interpreted

as a buyer and a seller. In period 1, the buyer does not know which of two varieties of

a product will �t his needs in period 2. A bet is essentially an advance contract which

speci�es a price for each variety (if no deal is signed in period 1, the buyer purchases
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the product from an alternative supplier). Alternatively, the agent can be interpreted

as a central bank of a small economy, facing a decision whether or not to devalue the

currency, depending on the state of the economy. The speculator can be interpreted

as a big trader in the exchange market, who intends to earn speculative gains, due to

con�icting beliefs regarding the state of the economy.

Consider a bet t, and suppose that both parties expect that the agent�s actions

in states u and v will be xu and xv. Denote x = (xu; xv). Then, the speculator�s

interim expected payo¤ from (x; t) is �1 � t1(xu) + (1� �1) � t1(xv), while the agent�s is
�2 � [u(xu)� t1(xu)] + (1� �2) � [v(xv)� t1(xv)]. The term �interim�is �tting because

it refers to the parties�expected payo¤s upon learning their prior. The sum of the

parties�interim expected payo¤s can be conveniently written as

�2 � u(xu) + (1� �2) � v(xv) + (�1 � �2) � [t1(xu)� t1(xv)] (1)

If the agent could commit to play xu 6= xv, there is no upper bound on the stakes
of the bet that the two parties would want to sign: if �1 > �2, they would set t1(xu)�
t1(x

v), and if �1 < �2, they would set t1(xv) � t1(x
u). However, because the agent

cannot commit to his second-period action, the parties must take into account his

ability to manipulate the bet�s outcome. For instance, suppose that the parties agree

on a bet that satis�es t1(b)� t1(a) > B �D. Then, regardless of the state, the agent
will prefer to choose a, because the amount he saves in side payments outweighs the

loss from taking the wrong action in the �bare� decision problem. But if the agent

takes the same action in both states, the parties cannot bene�t from betting on the

agent�s action. Thus, in order to be sustainable, a non-trivial bet must provide the

agent with incentives to take di¤erent actions in di¤erent states.1

A pair (x; t) is constrained interim-e¢ cient (CIE) if it maximizes (1) subject to
the constraints:

u(xu)� t1(xu) � u(xv)� t1(xv)
v(xv)� t1(xv) � v(xu)� t1(xu)

which we call �second-period incentive compatibility� (SPIC) constraints. The e¢ -
ciency criterion employed here is standard Pareto e¢ ciency: for any non-CIE (x; t),

1Can the upper bound on the bet�s stakes be overcome by some general message game that the
players could carry out in the second period? Even if the state is commonly known in period 2, the
assumption that there are only two players and the restriction to budget-balanced transfers imply
that it cannot. Without a third player or the ability to �burn money�, a second-period mechanism is
unable to punish players for submitting untruthful messages.
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there is another pair (x0; t0) which satis�es the SPIC constraints and yields higher

interim expected utility for both parties. If (x; t) is a solution to the constrained opti-

mization problem, we refer to t as a CIE bet. We refer to the expression (1), evaluated

at a CIE pair (x; t); as the CIE surplus.

It follows from (1) that if �1 > �2; the parties would want to set t1(xu) � t1(xv)
to be equal to the upper bound implied by the SPIC constraints, u(xu) � u(xv): In
contrast, if �1 < �2, they would want to set t1(xu) � t1(xv) to be equal to the lower
bound implied by the SPIC constraints, v(xu)� v(xv): Both bounds on t1(xu)� t1(xv)
are relaxed to their utmost when xu = a and xv = b: Thus, we have the following

characterization.

Remark 1 A pair (x; t) is CIE if and only if the following two conditions hold:

(i) x is ex-post e¢ cient - i.e., xu = a and xv = b:

(ii) t satis�es:

t1(a)� t1(b) =
(
A� C if �1 > �2

D �B if �1 < �2

We now turn to the question of whether the CIE surplus can be implemented when

the parties�priors are not common knowledge. We assume that each party privately

and independently draws his prior on u from a continuous cdf F with support [0; 1]. To

see why privately known priors could act as a barrier to mutually bene�cial speculative

bets, let A� C = B �D, and suppose that in period 1, the parties play the following
naïve mechanism: each party guesses the agent�s second-period action; when exactly

one party guesses correctly, he receives (A�C)=2 from the other party; otherwise, no

payments are made in period 2. Since �1 6= �2 with probability one, the two parties can
always earn speculative gains, if the party with the higher prior on u guesses a while

the other guesses b. However, note that when �1; �2 > 1
2
, both parties would want to

guess a. Similarly, when �1; �2 < 1
2
, both parties would want to guess b. Consequently,

for this range of (�1; �2), the fact that the parties�priors are private information implies

that they forgo potential speculative gains.

We consider the problem of implementing the CIE surplus via a direct mechanism.

This means that the parties play a two-period game, denoted �. In the �rst period,

each party i submits a report �̂i 2 [0; 1] (interpreted as his stated prior on u), or

chooses not to participate. If at least one party chooses the latter, the agent faces the

�bare�decision problem. If both parties choose to participate, every pair of reports

�̂ = (�̂1; �̂2) is assigned a bet t(�̂); which is disclosed to the agent. In period 2, after
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the state of Nature is realized, the agent chooses an action x and pays t1(x j �̂): In
state u, he chooses x to maximize u(x)� t1(x j �̂), whereas in state v, he chooses x to
maximize v(x)� t1(x j �̂).
We identify the direct mechanism with t(�̂), and say that it implements the CIE

surplus for a distribution of priors F if given this distribution, the game � has a Perfect

Bayesian Nash Equilibrium (PBNE) such that for every pro�le of priors �, expression

(1) is equal to the CIE surplus.

Proposition 1 There exists a distribution F for which the CIE surplus is imple-

mentable, if and only if both A � C > 0 and B � D > 0. Moreover, as the ratio
A�C
B�D becomes closer to one, the set of distributions for which the CIE surplus is imple-

mentable expands. When A�C = B �D, the CIE surplus is implementable for every
distribution F .2

The main lesson from this result is that implementability of the CIE surplus dimin-

ishes as the agent�s incentives to manipulate the outcome of the CIE bet become more

uneven across states. To develop an intuition for this result, consider a mechanism

that satis�es t1(a j �̂)� t1(b j �̂) = A� C if �̂1 � �̂2 and t1(a j �̂)� t1(b j �̂) = D � B
if �̂1 < �̂2: Then, regardless of the �rst-period outcome, the agent takes the ex-post

e¢ cient action in each state. Moreover, if �̂ = �, the bet t is CIE. The problem is

to design such a mechanism t(�̂), which also ensures that the parties participate and

report their true priors.

Our approach to analyzing this problem involves reinterpreting it as a problem of

allocating an asset to the person who values it the most. Suppose that both parties

report their true priors in period 1 and consider the agent�s decision problem in period

2. What is his gain from choosing the e¢ cient action relative to choosing b? By

de�nition, the gain is zero in state v, regardless of whether �1 is higher or lower than

�2. However, in state u the gain is (A�C)� [t1(a j �)� t1(b j �)]: By our construction
of t(�̂) and the assumption that �̂ = �, this di¤erence is equal to zero when �1 � �2

and equal to (A� C) + (B �D) when �1 < �2.
Thus, the agent�s gain may be interpreted as a right to receive a prize of (A �

C) + (B � D) conditional on choosing a in period 2. Put di¤erently, the right is
an asset of size (A � C) + (B � D), whose �rst-period valuation by each party i is
�i � [(A�C) + (B �D)]. Note that the agent receives this asset if and only if �1 < �2.

2This result is a special case of Corollary 1 (see Section 4). Therefore, we do not provide a speci�c
proof for it. All proofs appear in the Appendix.
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This is analogous to allocating the asset to the party who values it the most. What

happens when no bet is signed in period 1? The agent�s gain from choosing the e¢ cient

action relative to choosing b is zero in state v and A � C in state u. Thus, it is as if

the agent initially holds a share of A�C in the asset described above. His �rst-period
valuation of this asset is �2(A�C). By signing the bet with the speculator, the agent
increases his share by B �D, as long as �2 > �1.
These observations suggest that the problem of implementing the CIE surplus is

analogous to the problem of dissolving a partnership e¢ ciently. In this problem, two

parties jointly hold an asset of size (A�C)+ (B�D). The parties�shares in the asset
are A � C and B � D. Each party privately and independently draws a valuation of
the asset. The problem is to design a mechanism that allocates the entire asset to the

party with the highest valuation, subject to the constraint that both parties agree to

participate in this mechanism.

CGK showed that implementing this objective depends on the initial ownership

structure. When A�C � B�D - that is, if the agent enters the negotiation mostly a

�seller�of the asset - the same forces that underlie the Myerson-Satterthwaite theorem

make it hard to allocate the asset e¢ ciently. As the gap between A � C and B � D
shrinks, each party enters the negotiation both as a seller and a buyer, and thus he has

�countervailing incentives�when reporting his valuation. Translated into the language

of our model, this result means that implementing the CIE bet becomes easier when

the agent�s costs of unilaterally manipulating the bet become more equal across states.

3 The model

A bilateral speculation problem has the following components. There are two periods. In

period 2 a pair of agents, i = 1; 2; play a normal form game with complete information

denoted by G: The set of actions available to agent i is denoted Ai. A partition X is

de�ned on the set of action pro�les A1 � A2, such that x(a1; a2) denotes the cell in
the partition that contains the action pro�le (a1; a2). We interpret X as the set of

�veri�able outcomes�. For example, when G represents a sports competition, a cell in

X may consist of all action pro�les which induce a particular �nal score. When G is

a market game, a cell in X may consist of all action pro�les which induce a particular

trading price.

The payo¤s in G depend on the state of Nature, which is common knowledge in

period 2. There are two possible states, u and v. In one state, player i�s utility function

from each action pair is ui : A1 � A2 ! R; while in the second state this function is

8



vi : A1�A2 ! R: Let G(!) denote the second-period game played in state ! 2 fu; vg.
We assume that G(!) has a pure-strategy NE for every state !. Let a! denote the

action pro�le that is played in state !. Denote x! = x(a!).

In period 1, before the state is realized, the two agents hold di¤erent prior beliefs

over the states of Nature: agent i assigns probability �i to state u. These are purely

di¤erences in prior opinions. This means that if agent i knew �j, this would not cause

him to update his belief regarding the state of Nature. Each agent independently and

privately draws his prior from the same, commonly known continuous cdf on [0; 1],

denoted F:We represent a bilateral speculation problem by the tuple h(u; v); G;X; F i.
A bet t is a function that assigns a pair of budget-balanced transfers (t1; t2) to

every cell in X. Let ti[x(a1; a2)] denote the transfer that agent i receives from agent j;

when the action pair (a1; a2) is played. Budget-balancedness means that t1[x(a1; a2)] =

�t2[x(a1; a2)]. Given a bet t; the payo¤ of agent i from the action pro�le a = (a1; a2) is
ui(a) + ti[x(a)] in state u and vi(a) + ti[x(a)] in state v: We refer to the second-period

game induced by a bet t as the �modi�ed game�, and denote it by G(!; t):

De�nition 1 A triple (au; av; t) is constrained interim-e¢ cient (CIE) for a given pair
of priors (�1; �2); if it solves the optimization problem

max
(au;av ;t)

2X
i=1

f�i[ui(au) + ti(x(au))] + (1� �i)[vi(av) + ti(x(av))]g (2)

subject to the constraints

ui(a
u
i ; a

u
j ) + ti[x(a

u
i ; a

u
j )] � ui(a

0
i; a

u
j ) + ti[x(a

0
i; a

u
j )] (SPIC)

vi(a
v
i ; a

v
j ) + ti[x(a

v
i ; a

v
j )] � vi(a

0
i; a

v
j ) + ti[x(a

0
i; a

v
j )]

for i = 1; 2 and for all a0i 2 Ai.

As in the example of Section 2; we refer to the value of the objective function (2),

evaluated at a CIE tuple (au; av; t); as the CIE surplus. We refer to a bet t as CIE if

there exist action pro�les au and av such that (au; av; t) is CIE.3

3Note that if the modi�ed game G(!; t) does not have a pure-strategy NE, then t is ruled out as far
as constrained interim-e¢ ciency is concerned. Since the bare game is assumed to have a pure-strategy
NE in each state, the constrained optimization problem has a solution.
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Proposition 2 A bilateral speculation problem h(u; v); G;X; F i with bounded u and v
has a �nite CIE surplus.

Thus, as long as u and v are bounded, the CIE surplus is well-de�ned - that is, the

in�nite-bets problem does not exist in our model.

Discussion of our epistemic assumptions
A key ingredient in our model is the assumption that the agents�con�icting beliefs are

due to heterogeneous prior opinions. In particular, their beliefs cannot be derived from

a common prior via Bayes�rule. To see why, assume that the agents shared a common

prior belief, where p(!; �1; �2) denotes the prior probability that the state of Nature is

!, agent 1�s type is �1 and agent 2�s type is �2. The posterior probability that type �i
of agent i assigns to u is �i. Our assumption that knowing the opponent�s type does

not cause an agent to update his beliefs regarding the state of Nature implies that for

every �i; �j; �
0
j, pi(u j �i; �j) = pi(u j �i; �0j). That is:

p(u; �i; �j)

p(u; �i; �j) + p(v; �i; �j)
=

p(u; �i; �
0
j)

p(u; �i; �
0
j) + p(v; �i; �

0
j)

But since agent j�s belief regarding the state of Nature is una¤ected by knowledge of

�i, the L.H.S and R.H.S of this equation are the posterior probabilities that types �j
and �0j assign to u. Thus, �j = �

0
j, a contradiction.

The assumption that F is common knowledge is made mainly for methodological

reasons, since we wish to parallel the simplest textbook mechanism-design models.

One interpretation of this assumption is that in many instances, �i is best viewed as

agent i�s degree of optimism. For instance, when G is a price-competition game, u

may be characterized by a lower cost of production than v. Alternatively, when G is a

bilateral-trade game, there may be larger gains from trade in u than in v. Optimism is

a personal trait which is as characteristic of an individual as his valuation of a tradable

object in a standard model. Thus, the question of whether F is common knowledge is

as pertinent to our model as it is to standard models of trade based on di¤erences in

tastes.4

An alternative interpretation is that there is a distribution of prior opinions in

the general population. Agents become familiar with this distribution by observing a

4However, Yildiz (2004) argues that the there is a tension between equilibrium analysis and the
interpretation of an agent�s prior over states of nature as re�ecting his degree of optimism. The reason
is that it is unclear why the agent�s optimism does not extend to the formation of beliefs regarding
the opponent�s strategy.
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public poll. The common-knowledge assumption means that all agents share the same

beliefs regarding the poll�s accuracy.

3.1 Purely speculative CIE bets

Since bets are essentially side transfers that modify the payo¤s of the second-period

game, they can be used not only for speculation, but also as means for sustaining

collusion. The speculative role of bets can best be isolated when the agents attain the

CIE surplus with a bet that does not a¤ect their second-period behavior, in the sense

that their choice of actions is the same as in the absence of bets. Such a CIE bet

may be viewed as �purely speculative�, since it serves purely as a means for realizing

speculative gains.

De�nition 2 We say that the CIE surplus is attained by pure speculation if there exists
a pair of action pro�les, (au; av); with the following properties: (i) au and av are Nash

equilibria in G(u) and G(v) respectively, and (ii) for every pair of priors �; there exists

a bet t(�) such that [au; av; t(�)] is CIE for �. In this case, we say that [au; av; t(�)] is

a purely speculative CIE tuple and that t(�) is a purely speculative CIE bet.

Note that in general, attaining the CIE surplus may require au and av to vary with

�. However, when the CIE surplus is attained with a purely speculative bet, au and

av are not only independent of the priors, but also a NE of the bare game.

In order to characterize purely speculative CIE bets, we shall need the following

notation. For each veri�able outcome x and for each action aj 2 Aj; de�ne Ai(x; aj) �
fai 2 Ai : x(ai; aj) = xg. That is, Ai(x; aj) is the (possibly empty) set of actions for
agent i that induce the veri�able outcome x whenever agent j plays aj: Let di(a! ! x)

be the minimal cost that agent i incurs (in terms of his bare-game payo¤) when he

unilaterally changes the outcome of G(!), from a! = (a!i ; a
!
j ) to an action pro�le that

belongs to the veri�able outcome x 2 X: Formally:

di(a
u ! x) �

(
mina0i2Ai(x;auj )[ui(a

u
i ; a

u
j )� ui(a0i; auj )] if Ai(x; a

u
j ) 6= ?

1 if Ai(x; a
u
j ) = ?

De�ne di(av ! x) in a similar manner. Note �rst that if (au; av; t) is a CIE tuple,

then di(a! ! x(a!)) = 0, because t is constant over all action pro�les in x: If di(a! !
x(a!)) < 0; then agent i would have a pro�table deviation from a!i ; in contradiction
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to a! being a NE of G(!; t): Also note that if [au; av; t(�)] is a purely speculative CIE

tuple, then di(a! ! x) � 0, because a! is a NE of G(!).
For the �nal piece of notation, let

D1(a
u; av) � min

y2X
d1(a

u ! y) + d2(a
v ! y)

D2(a
u; av) � min

y2X
d2(a

u ! y) + d1(a
v ! y)

D�(au; av j �) =

(
D2(a

u; av) if �1 � �2
�D1(a

u; av) if �1 < �2

When G is not �nite, we assume that u and v are such that D1(a
u; av) and D2(a

u; av)

are well-de�ned.

Proposition 3 A purely speculative CIE bet t satis�es the following property for every
pair of priors �:

t1(x
u)� t1(xv) = D�(au; av j �) (3)

Thus, the stakes of purely speculative CIE bets are determined by how costly it is

for agents (in terms of bare-game payo¤s) to manipulate the bet�s outcome unilaterally.

To understand the meaning of D�(au; av j �), consider two special cases. First, recall
the example of Section 2, in which one of the agents, agent 1, has a degenerate action

set, while the opponent has a pair of available actions. In this case, D1(a
u; av) =

v2(a
v)� v2(au) and D2(a

u; av) = u2(a
u)� u2(av). The stakes of the purely speculative

CIE bet are thus determined by agent 2�s costs of unilaterally manipulating the bet�s

outcome from au into av in state u, and from av into au in state v.

Second, consider a symmetric Bertrand model, in which the �rms�marginal cost in

state ! is c!, ! 2 fL;Hg, cL < cH . Assume that a veri�able outcome is the market
price induced by the �rms�bids. We analyze this example in detail in Section 4. In

particular, we show that the CIE surplus can be sustained if �rms play the bare-game

NE in each state. While neither �rm can manipulate the market price in state L

upward, each �rm can manipulate the market price in state H, from cH downwards

to cL. Other market prices turn out not to matter. Thus, the stakes of the purely

speculative CIE bet are determined by the two �rms�cost of unilaterally manipulating

the bet�s outcome from xH into xL. Speci�cally, D1(a
u; av) = D2(a

u; av) = cH � cL.
In more complicated situations, we also need to take into account manipulation

of the bet�s outcome from a! into an outcome y which never occurs in any state in

equilibrium. To see the origin of the expression for D1(a
u; av) in this more general

12



case, suppose that agent 1 has bet against xu, presumably because he thought that

u was unlikely. Now, when the state u occurs and the outcome xu is expected to

be realized, agent 1 may wish to manipulate the bet�s outcome. One possibility is to

impose an outcome in xv, in which case agent 1 su¤ers a bare-game loss of d1(au ! xv).

Clearly, the side-bet di¤erence t1(xv)� t1(xu) cannot exceed this amount. But another
way is to impose an outcome y 6= xv, in which case agent 1 su¤ers a bare-game loss

of d1(xu ! y). By budget-balancedness, this a¤ects the bounds on t1(xv) � t1(xu),
through the possibility that agent 2 will manipulate the bet�s outcome from av to y.

3.2 Implementation of purely speculative CIE bets

As in Section 2, we study implementation by a direct mechanism. In period 1, each

agent i submits a report �̂i 2 [0; 1] or chooses not to participate. If at least one agent
chooses the latter, the agents play G(!) in state !. Otherwise, every pro�le of reports

�̂ = (�̂1; �̂2) is assigned a bet t(�̂), and the agents play G(!; t(�̂)) in period 2. Thus, a

direct mechanism t(�̂) induces a two-stage game with incomplete information, denoted

�(t).

De�ne T ui (�
0
i) � E�j ti(xu j �0i; �j) and T vi (�0i) � E�j ti(xv j �0i; �j): That is, if agent i

reports a prior �0i; while agent j is truthful, then T
!
i (�

0
i) is agent i�s expected transfer

in state ! under the mechanism t(�):

De�nition 3 Suppose that the CIE surplus is attained by pure speculation. A direct
mechanism t(�̂) implements the CIE surplus for a given distribution F if:

(EFF) t(�̂) satis�es (3);

and there exists a PBNE in �(t) satisfying:

(PS-SPIC) The second-period action pro�le in state ! is a! after every history, where

a! is a pure-strategy NE in G(!).

(IC) Each agent reports his true prior in period 1, conditional on participating. That

is, for every i = 1; 2 and every �i; �
0
i:

�i[T
u
i (�i)� T vi (�i)] + T vi (�i) � �i[T ui (�0i)� T vi (�0i)] + T vi (�0i)

(IR) Each agent chooses to participate in period 1. That is, for every i = 1; 2 and

every �i:

�i[T
u
i (�i)� T vi (�i)] + T vi (�i) � 0

13



The EFF condition means that if the agents report truthfully, then t(�̂) is a CIE

bet. Condition PS-SPIC means that in the second stage of �(t), the agents play a NE

of the bare game, independently of the �rst-stage outcome. This means that we are

forcing the mechanism to be purely speculative. The IC and IR constraints refer to the

agents��rst-period decisions. Note that because of the pure speculation assumption,

these constraints suppress any reference to the bare-game payo¤s, .

Our goal is to establish a relation between implementation of the pure specula-

tion CIE surplus in a bilateral speculation problem and implementation of e¢ cient

dissolution of a partnership. This latter problem is de�ned as follows. A two-member

partnership is a triple hr1; r2; F i, where ri is partner i�s initial share in the jointly
owned asset and F is the continuous distribution on [0; 1] from which both partners

independently (but privately) draw their valuations of the asset. The partners are

assumed to be risk neutral with quasi-linear preferences, where �i denotes partner i�s

value for a unit of the asset. A partnership is dissolved e¢ ciently if the entire asset

r1 + r2 is allocated to the partner with the highest valuation.

A direct mechanism for dissolving a partnership is a pair of functions (q(�̂);m(�̂))

that assign, for each pair of reported values �̂; an allocation of shares, q1(�̂) and q2(�̂);

and a pair of monetary transfers, m1(�̂) and m2(�̂); such that for all �̂, qi(�̂) � 0,

q1(�̂) + q2(�̂) = r1 + r2 and m1(�̂) +m2(�̂) = 0:

De�nition 4 A mechanism (q(�̂);m(�̂)) e¢ ciently dissolves a partnership hr1; r2; F i
if it satis�es the following properties for i = 1; 2:

(EFF�) Whenever �̂ = �,

qi(�) =

(
r1 + r2 if �1 � �2
0 if �1 < �2

(IC�) There is a Bayesian NE in which every partner reports his true value. That is,

for every i = 1; 2 and every �i; �
0
i:

�iQi(�i) +Mi(�i) � �iQi(�0i) +Mi(�
0
i)

where Qi(�̂i) � E�jqi(�̂i; �j) and Mi(�̂i) � E�jmi(�̂i; �j):

(IR�) Each partner�s interim-expected payo¤ in the truth-telling Bayesian NE is at least

as high as the value he assigns to his initial share. That is, for every i = 1; 2 and every
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�i :

�iQi(�i) +Mi(�i) � �iri

We say that a partnership can be dissolved e¢ ciently if there exists a direct mech-

anism that implements its e¢ cient dissolution. We are now ready for the main result

of this paper.

Proposition 4 Let h(u; v); G;X; F i be a bilateral speculation problem with a CIE sur-
plus that is attained by pure speculation and sustains a! in state !. The CIE surplus

is implementable for F if and only if the partnership hD1(a
u; av); D2(a

u; av); F i can be
e¢ ciently dissolved.

Thus, implementing a pure speculation CIE surplus is equivalent to implement-

ing e¢ cient dissolution of a partnership, where the size of the jointly owned asset is

D1(a
u; av)+D2(a

u; av), and the partners�shares are D1(a
u; av) and D2(a

u; av). We can

therefore utilize Propositions 1-3 in CGK, and obtain the following corollary. Let

� =
D1(a

u; av)

D1(au; av) +D2(au; av)

Corollary 1 Suppose that the bilateral speculation problem h(u; v); G;X; F i has a CIE
surplus that is attained by pure speculation. Then, there exists a distribution F for

which the CIE surplus is implementable, if and only if � 2 (0; 1). Moreover, as �

becomes closer to 1
2
, the set of such distributions F expands. When � = 1

2
, the CIE

surplus is implementable for every F .

To see the meaning of this result, suppose that we can ignore the possibility that

agents manipulate the bet�s outcome into some y 6= xu; xv. In this case:

D1(a
u; av) � min fd1(au ! xv); d2(a

v ! xu)g
D2(a

u; av) � min fd2(au ! xv); d1(a
v ! xu)g

This means that implementability of the CIE surplus depends on either: (i) the extent

to which the costs of manipulating the bet in one of the states are asymmetric across

agents; or (ii) the extent to which the costs of manipulating the bet for one of the agents
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are asymmetric across states. As these asymmetries vanish, the set of distributions F

for which the CIE surplus is implementable expands.5

When G(u) and G(v) are symmetric games, and au and av are symmetric NE in

G(u) and G(v), we have D1(a
u; av) = D2(a

u; av). In this case, our implementation

problem is equivalent to the equal-share partnership dissolution problem, which CGK

show to be implementable for any F . Thus, symmetric speculation problems occupy a

special place in our model.

4 Applications

In this section we apply the main result to environments in which agents play a market

game in period 2, and bet on its outcome in period 1.

4.1 Bertrand competition

In this sub-section, the second-period bare game G is a standard Bertrand competition,

where each seller i 2 f1; 2g chooses a price ai 2 R (we allow for negative prices). The
market price induced by a! is p! = min(a!1 ; a

!
2 ). The sellers have identical marginal

costs, which are �xed and may be cH > 0 in state H or cL 2 [0; cH) in state L. Let �i
denote seller i�s prior on L: In period 1, the sellers can sign a bet that is contingent

only on the second-period market price. Thus, x(a1; a2) = minfa1; a2g:

Proposition 5 In the above bilateral speculation problem, the CIE surplus is attained
by pure speculation. Moreover:

(i) The CIE surplus is sustained by a triple (aL; aH ; t) such that:

a! = (c!; c!) for every ! = L;H

ti(p) = ti(c
H) for all p > cL

ti(p) = ti(c
H) + cH � cL for all p � cL

where i = argmax(�1; �2).

(ii) The CIE surplus is j�1 � �2j � (cH � cL).

5When deviations to outcomes y 6= xu; xv cannot be ignored, the exact form of asymmetry which
is relevant for the corollary is somewhat harder to interpret.
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Under the purely speculative CIE bet, both sellers play a! = c! in each state !.

Therefore, their bare-game payo¤ is zero, and their interim surplus is derived from

the side bets only. The stakes of their bet are determined by the cost of unilaterally

lowering the price in state H, from cH to cL. In contrast, no seller can unilaterally

manipulate the market price in state L upward.

The proof of this result is not trivial. Pure speculation implies pH = cH and pL = cL.

One could imagine that if we extended the gap between pH and pL, we might be able

to relax the SPIC constraints and thereby increase the stakes of CIE bets. However,

we show that in order for this to be sustainable, there must be a state ! for which

p! < c!. The challenging part in the proof is to show that the SPIC constraints that

are required in order to sustain a price below the marginal cost are too stringent.

Corollary 2 In the above bilateral speculation problem, the CIE surplus is imple-

mentable for every F .

The reason for this result is that D1(a
H ; aL) = D2(a

H ; aL) = cH � cL, and by
Corollary 1, our implementation problem is equivalent to an equal-share partnership

dissolution problem.

4.2 Bilateral trade

In this sub-section, the second-period bare game involves bilateral trade. A seller,

denoted s, owns one unit of an indivisible good. The value of the good to the seller

is c. A potential buyer, denoted b, evaluates the good at l or h, where h > c > l. In

period 2, when the buyer�s valuation becomes common knowledge, the two agents play

a double auction: they simultaneously submit ask and bid prices, ps and pb; if pb � ps;
trade takes place at a price 1

2
pb +

1
2
ps; and if pb < ps; there is no trade. Thus, if there

is trade at a price p when the buyer�s valuation is ! 2 fl; hg, then the buyer�s payo¤
is ! � p and the seller�s payo¤ is p� c. If there is no trade, both agents earn a payo¤
of zero. We allow bid and ask prices to be arbitrarily positive or arbitrarily negative.

We assume that the agents can only bet on whether trade takes place, and at what

price. Thus, if (pb; ps) and (p0b; p
0
s) induce the same market price, or if both result in

no trade, then x(pb; ps) = x(p0b; p
0
s). We use the following abbreviated notation. If

(pb; ps) induces trade at a price p, we write x = p. If (pb; ps) induces no trade, we write

x = NT . Let �b and �s denote the prior probabilities that the buyer and seller assign

to h.
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Proposition 6 In the above bilateral speculation problem, the CIE surplus is attained
by pure speculation. Moreover:

(i) The value of the CIE surplus is

max(�s; �b) � (h� c)

(ii) The CIE surplus is sustained by any (al; ah; t) for which:

pls � 0, plb � 0 (hence xl = NT )

phs = phb =
h+ c

2

ts(x) =

(
ts(NT ) +

h�c
2

if �s > �b

ts(NT )� h�c
2

if �s < �b
for any x 6= NT

Observe that the CIE bet conditions only on whether trade takes place, and does

not distinguish between di¤erent trading prices.

Corollary 3 The CIE surplus is implementable for every F .

To see why this corollary holds, note that the action pro�les (pls; p
l
b) and (p

h
s ; p

l
b) are

bare-game NE in states l and h, respectively. Also note that part (ii) in Proposition 6

implies D1(a
l; ah; t) = D2(a

l; ah; t) = h�c
2
. Therefore, by Corollary 1, the CIE surplus

is implementable for any F .

This result relies on a suitable selection of the equilibrium market price in state h.

The bare game G(h) has a continuum of NE. It can be shown that for each of these

equilibria ah, there exists a purely speculative CIE bet t. However, these alternative

equilibria would imply D1(a
l; ah) 6= D2(a

l; ah), and therefore we would not be able to

claim that implementation is possible for all distributions F . It turns out that there is

a unique trading price ph = h+c
2
for which we can construct a tuple (ah; al; t) such that

D1(a
l; ah) = D2(a

l; ah). Thus, the requirement that the CIE surplus be implementable

for all F pins down the market price in state h.

5 Discussion

In this section, we discuss extensions and elaborations of our model, as well as related

literature.
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An indirect mechanism
The purely speculative, CIE tuples (au; av; t) derived in the applications of Section 4

share two properties. First, D1(a
u; av) = D2(a

u; av). Second, t has only two values in

its range. In other words, there is a two-cell partition of the set of veri�able outcomes,

fXu; Xvg, such that t(x) = t(xu) for every x 2 Xu, and t(x) = t(xv) for every x 2 Xv.

In the example of Section 2, the �rst property holds whenever A� C = B �D, while
the second property holds automatically because the agent has only two actions.

It can be shown that these properties imply that for any F , the CIE surplus can

be implemented by the following indirect mechanism. In period 1, the agents play a

sealed-bid, �rst-price auction in which: (i) the revenues are equally shared among the

bidders; (ii) the highest-bidding agent wins the right to receive a transfer of D2(a
u; av)

from the other agent if and only if the second-period outcome is in Xu. The proof of

this result, which is omitted for the sake of brevity, adapts Propositions 5 and 6 in

CGK to the language of our model.

In the Bertrand example of Sub-Section 4.1, this indirect mechanism means that

the sellers play a �rst-price auction for the right to receive a prize of cH � cL as long as
the market price does not exceed cL. In the bilateral trade example of Sub-Section 4.2,

the two parties play a �rst-price auction for the right to receive a prize of h�c
2
whenever

trade occurs. In the example of Section 2, the mechanism means that the parties play

a �rst-price auction in order to determine which of them wins the right to a prize of

A� C conditional on the agent choosing a in period 2.
In all three cases, the CIE bet may be interpreted as a future contract (which is

essentially a step function of the market price in the Bertrand example, or a function

of whether the market clears in the bilateral trade example, or a function of the agent�s

action in the example of Section 2), competed for in a market which is designed as a

�rst-price auction. Thus, the indirect mechanism may serve as a theoretical benchmark

for the design of market institutions for speculative trade in derivatives.

Impurely speculative bets
Our main result concerns the implementability of pure-speculation CIE surplus. We

have given a number of examples, in which the CIE bets are indeed purely speculative,

and therefore the main result applies. However, in some cases, constrained interim-

e¢ ciency is inconsistent with pure speculation: second-period behavior depends on the

bet signed in the �rst period, and therefore on the agents�priors. For instance, modify

the bilateral trade example of Sub-Section 4.2 such that l > c. The ex-post e¢ cient

outcome now involves trade in both states. Using the same methods of derivation as
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in Sub-Section 4.2, it can be shown that the CIE surplus is

max(�s; �b) � (h� c) + [1�min(�s; �b)] � (l � c)

and in particular, the market outcome is ex-post e¢ cient in both states.

In order for CIE bets to be purely speculative, the assignment of market prices to

states must be independent of the agents�priors. Thus, for every ! = l; h, there must

be a trading price p! which is independent of (�s; �b). Denote p� = max(pl; ph) and

p� = min(p
l; ph). If p� = p�, then total surplus is �bh+(1� �b)l� c, which is below the

CIE surplus. Therefore, p� > p�.

Suppose that p� = ph and p� = pl. The seller can unilaterally lower the price in

state h from ph to pl. The following SPIC constraint prevents him from doing so:

ph � c+ ts(ph) � pl � c+ ts(pl)

Therefore, ph + ts(ph)� pl � ts(pl) � 0. The expression for total surplus is:

[�bh+ (1� �b)l � c] + (�s � �b) � [ph + ts(ph)� pl � ts(pl)]

It follows that when �s < �b, we are unable to attain the CIE surplus.

Now suppose that p� = pl and p� = ph. The buyer can unilaterally raise the price

in state h from ph to pl. The following SPIC constraint prevents him from doing so:

h� ph � ts(ph) � h� pl � ts(pl)

Therefore, ph + ts(ph)� pl � ts(pl) � 0. It follows that when �s > �b, we are unable to
attain the CIE surplus.

It can be shown that the CIE surplus can be attained if the assignment of trading

prices to states depends on the identity of the agent with the highest �. This means

that CIE bets cannot be purely speculative. It turns out that although we are unable

to apply our main result, the same methods can be adapted to demonstrate that the

CIE surplus is implementable for every F . The key to this adaptation is to view the

trading price p! as part of the transfer that takes place in state ! (and as such to

allow it to depend on �), and then use the SPIC constraints to derive bounds on

ph+ ts(p
h)� pl� ts(pl), rather than on ts(ph)� ts(pl). For the sake of brevity, we omit

the proof of this claim.
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Multilateral speculation problems
We have restricted attention to bilateral speculation problems. Extending the model

to games with more than two agents is straightforward. However, Proposition 2 ceases

to hold in this case. For instance, suppose that the partition X is the �nest possible

- that is, the agents can sign bets that condition on the second-period action pro�le.

Then, under mild assumptions on the bare-game payo¤ structure, in�nite bets become

possible, by letting agents 1 and 2 bet on agent 3�s action. Agents 1 and 2 are thus

unable to manipulate the bet�s outcome, and therefore the stakes of their bet are

unlimited. The only problem is to provide agent 3 with incentives to play di¤erent

actions in the two states. But since agents 1 and 2 earn unlimited speculative gains,

they can use these gains to provide the necessary incentives.

Our approach, however, remains fruitful in some special cases. One simple case is

when the partition X consists of only two cells. For instance, suppose that in period

2, the agents play a voting game. There are two candidates, A and B. Unless all

agents vote for candidate B, the elected candidate is A. The agents have quasi-linear,

state-dependent utility. In state u, ui(A) � ui(B) for all i. In state v, vi(B) � vi(A)
for all i. In period 1, the agents can only bet on the identity of the elected candidate.

The CIE surplus can be attained only if all agents vote B in state v, and at least two

agents vote A in state u.

The structure of CIE bets is such that agent i� = argmini �i - i.e., the agent who

has the biggest faith in the election of candidate B - essentially signs a bilateral side

bet with every other agent. The stakes of the bilateral bet between i� and j are

vj(B) � vj(A), namely j�s cost of unilaterally imposing A as the elected candidate in
state v. It can be shown that the problem of implementing the CIE surplus in this

case is equivalent to the problem of implementing e¢ cient dissolution of an n-player

partnership of size �i[vi(B) � vi(A)], in which the share of partner i in the jointly
owned asset is vi(B) � vi(A). Thus, using Propositions 1-3 in CGK, it can be shown
that as the utility di¤erences vi(B) � vi(A) become more symmetric across agents, it
becomes possible to implement the CIE surplus for a larger set of distributions from

which the agents�priors are drawn.

Speculation problems with more than two states
Our model of bilateral speculation problems assumes two states of Nature. This is a

greatly simplifying device, since it implies that an agent�s type is a scalar. When we

extend the model to environments with K > 2 states of Nature, an agent�s type is an

element in the K-dimensional simplex, and therefore the problem of implementing CIE

bets is a mechanism-design problem with multi-dimensional types.
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The idea that CIE bets may be formally equivalent to e¢ cient dissolution of a

partnership may be extended to these environments. However, new considerations

arise. First, the partnership may involve up to K�1 assets, and the parties�ownership
shares may be asset-speci�c. Second, the values that a party attaches to any pair of

these assets are negatively correlated. Third, the bilateral speculation problem may be

characterized by a large number of SPIC constraints, which translate into additional

constraints on the �nal allocations of the assets in the analogous multi-asset partnership

dissolution problem (for instance, giving di¤erent parties full ownership of di¤erent

assets may be infeasible).

Thus, when there are more than two states, our model may be formally equiva-

lent to a multi-asset partnership dissolution problem, with constraints on the agents�

valuations and the set of feasible �nal allocations. A general characterization of this

equivalence lies beyond the scope of the present paper.

Non-common priors versus state-dependent utility
Our main result utilizes a formal equivalence between our model of speculative trade

and a model of trade motivated by di¤erences in tastes. The question arises, whether

our model could be re-interpreted as a standard model in the �rst place, since it

is well-known that state-dependent utility and subjective probability are impossible

to distinguish behaviorally. At �rst glance, the answer is a¢ rmative: our model is

behaviorally equivalent to a model in which every agent i assigns probability 1
2
to each

state, and his utility function is multiplied by a state-dependent constant (�i in one

state and 1��i in the other state). However, this re-interpretation requires us to make
two assumptions: (i) the agents�utility from money is state-dependent ; (ii) the agents�

trade-o¤ between money and bare-game outcomes is state-independent. We �nd it

extremely hard to imagine a reasonable justi�cation for such preferences. Therefore,

�i is more convincingly interpreted as a prior belief than as a taste parameter.

Related literature
This paper follows up Eliaz and Spiegler (2005,2006), in which we analyze the problem

of designing a pro�t-maximizing menu of contracts for a monopolist facing a popula-

tion of consumers who di¤er in their ability to forecast their future tastes. In Eliaz and

Spiegler (2006), the agent�s preferences are dynamically inconsistent, and agent types

di¤er in the prior probability they assign to the possibility that their tastes will not

change (interpreted as their degree of naivete). Eliaz and Spiegler (2005) analyze a sim-

ilar problem with dynamically consistent preferences. Both papers study environments

in which non-common priors are necessary for price discrimination.
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A distinctive feature of our model is the focus on bets made between parties who

can manipulate the bet�s outcome. Bets are essentially side payments that modify the

second-period game. We are aware of a number of precedents for this aspect of our

paper. Allaz and Vila (1993) show that producers may wish to use forward contracts

in order to improve their situation in a future, imperfectly competitive spot market. In

their model, producers �rst trade in forward contracts, and then play a Cournot game

in which their payo¤ functions are modi�ed by the positions they took in the forward

market. Jackson and Wilkie (2005) study two-stage games, in which players commit

to unilateral transfers conditional on the outcome of a later �bare game�. They study

the properties of subgame perfect equilibria in such games. Both works assume away

any uncertainty regarding second-period payo¤s.

Wilson (1968) investigates the problem faced by a group of agents who need to make

a collective decision that generates a surplus whose value depends on an uncertain state

of Nature. The question is, how should this surplus be divided among the agents in

order to ensure Pareto optimality of the collective decision? Wilson allows for non-

common priors. Therefore, e¢ cient sharing rules may involve side bets on the value of

future surplus. The outcome of these bets can be manipulated by the agents, because

the surplus depends on the collective decision that is made. Wilson (1968) provides

a necessary and su¢ cient condition for Pareto optimality of a sharing rule, and gives

examples of such rules in speci�c environments.

The partnership dissolution model studied by CGK was taken up by Fieseler,

Kittsteiner and Moldovanu (2003) and Jehiel and Pauzner (2004), who extended the

informational structure to allow for interdependent valuations. Neeman (1999) studies

the closely related problem of characterizing the structure of property rights for which

voluntary bargaining can resolve a public good problem e¢ ciently.
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Appendix: Proofs

Proof of Proposition 2
Consider some CIE tuple (au; av; t). By the SPIC constraints and budget-balancedness,

t1[x(a
v
1; a

u
2)]� t1[x(au1 ; au2)] � u1(a

u
1 ; a

u
2)� u1(av1; au2)

t1[x(a
u
1 ; a

u
2)]� t1[x(au1 ; av2)] � u2(a

u
1 ; a

u
2)� u2(au1 ; av2)

t1[x(a
v
1; a

v
2)]� t1[x(av1; au2)] � v2(a

v
1; a

v
2)� v2(av1; au2)

t1[x(a
u
1 ; a

v
2)]� t1[x(av1; av2)] � v1(a

v
1; a

v
2)� v1(au1 ; av2)
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These inequalities together imply:

t1[x(a
v
1; a

v
2)]� t1[x(au1 ; au2)] � [u1(a

u
1 ; a

u
2)� u1(av1; au2)] + [v2(av1; av2)� v2(av1; au2)]

t1[x(a
u
1 ; a

u
2)]� t1[x(av1; av2)] � [u2(a

u
1 ; a

u
2)� u2(au1 ; av2)] + [v1(av1; av2)� v1(au1 ; av2)]

Because u and v are bounded, �iui(au) + (1 � �i)vi(av) is �nite for each agent
i. Moreover, the R.H.S in the last two inequalities are �nite. But this means that

t1[x(a
u
1 ; a

u
2)]� t1[x(av1; av2)] is �nite. �

Proof of Proposition 3
Assume that the CIE surplus is attained by pure speculation and consider some purely

speculative CIE tuple (au; av; t0(�)): Then for all � = (�1; �2); the bet t0(�) maximizes

(�1 � �2) � [t01(xu)� t01(xv)] (4)

subject to the SPIC constraints.

We proceed in two steps. First, we show that we can construct a bet t that sat-

is�es (3) as well as the SPIC constraints. Second, we show that (3) is necessary for

maximizing (4) subject to the SPIC constraints.

The �rst step of our proof relies on the following lemma.

Lemma 1 Let au and av be pure-strategy NE of G(u) and G(v); respectively, and let
t be a bet that satis�es

t1(y)� t1(xv) = min[d1(av ! y); D̂ + d1(a
u ! y)] (5)

for all y 2 X, where D̂ 2 fD2(a
u; av);�D1(a

u; av)g. Then au and av are also pure-
strategy NE of G(u; t) and G(v; t); respectively.

Proof of Lemma 1. The SPIC constraints, which ensure that au and av are also pure-
strategy NE of G(u; t) and G(v; t), may be summarized by the following inequalities

(which use budget-balancedness). For every y 2 X:

t1(y)� t1(xu) � d1(a
u ! y) (6)

t1(y)� t1(xv) � d1(a
v ! y) (7)

t1(x
v)� t1(y) � d2(a

v ! y) (8)

t1(x
u)� t1(y) � d2(a

u ! y) (9)
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Suppose that d1(au ! y) + D̂ � d1(av ! y). Then, by (5), inequalities (6) and (7)

are satis�ed. Assume that (8) is violated. Then, by (5):

�D̂ > d1(au ! y) + d2(a
v ! y) (10)

If D̂ = �D1(a
u; av), then by the de�nition of D1(a

u; av); the L.H.S of (10) cannot

exceed its R.H.S., a contradiction. If D̂ = D2(a
u; av); then by our assumption that

[au; av; t0(�)] is a purely speculative CIE tuple,

�D2(a
u; av) � 0 � d1(au ! y) + d2(a

v ! y)

contradicting (10). Therefore, (8) must hold. Finally, to see that (9) is satis�ed, note

that the L.H.S of this inequality is equal to �d1(au ! y) and by our pure speculation

assumption,

�d1(au ! y) � 0 � d2(au ! y)

Alternatively, suppose that d1(au ! y)+D̂ > d1(a
v ! y). Then, by (5), inequalities

(6) and (7) are satis�ed. Assume that (9) is violated. Then, by (5):

D̂ > d1(a
v ! y) + d2(a

u ! y) (11)

If D̂ = D2(a
u; av); then by de�nition, it cannot exceed the R.H.S. of (11), a contra-

diction. If D̂ = �D1(a
u; av), then by our assumption that [au; av; t0(�)] is a purely

speculative CIE tuple,

�D1(a
u; av) � 0 � d1(av ! y) + d2(a

u ! y)

contradicting (11). Therefore, (9) must hold. Finally, (8) follows from our pure spec-

ulation assumption, which implies that

�d1(av ! y) � 0 � d2(av ! y)

This concludes the proof of the lemma. �

Construct a bet t that satis�es (5) for every y 2 X. Note that the only restriction on
D̂ is that it has only two possible values, D2(a

u; av) or �D1(a
u; av): Let D̂ = D�(au; av j

�): Then for y = xu; the bet t satis�es (3). By Lemma 1, t also satis�es the SPIC

constraints. This completes the �rst step of our proof.
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Our next step is to show that if t satis�es the SPIC constraints, then:

�D1(a
u; av) � t1(xu)� t1(xv) � D2(a

u; av) (12)

The SPIC constraints, summarized by (6)-(9), imply that for every y 2 X:

�d1(au ! y)� d2(av ! y) � t1(xu)� t1(xv) � d2(au ! y) + d1(a
v ! y)

But this boils down to (12). Therefore, (3) is necessary for constrained interim-

e¢ ciency. �

Proof of Proposition 4
We proceed in two steps. First, let us show that implementation of the CIE sur-

plus is su¢ cient for e¢ cient dissolution of the partnership hD1(a
u; av); D2(a

u; av); F i.
Assume the CIE surplus of h(u; v); G;X; F i is implementable .Consider the following
mechanism: for i = 1; 2; and for every pair of reports �̂,

qi(�̂) = Di(a
u; av) + tui (�̂)� tvi (�̂)

mi(�̂) = tvi (�̂)

where, for notational ease, we let t!i (�̂) � ti(x!j �̂) for ! = u; v: Because tui (�̂) and tvi (�̂)
satisfy (EFF), (PS-SPIC), (IC) and (IR) it follows that the mechanism (q(�̂);m(�̂))

has the following properties. First, by (EFF), whenever �̂ = �,

q1(�) =

(
D1(a

u; av) +D2(a
u; av) if �1 � �2

0 if �1 < �2

Hence, q(�̂) satis�es (EFF�). Second, by (IC) and (IR), we have that for i = 1; 2; and

�0i 2 [0; 1];

�i[Qi(�i)�Di(a
u; av)] +Mi(�i) � �i[Qi(�0i)�Di(a

u; av)] +Mi(�
0
i)

and

�i[Qi(�i)�Di(a
u; av)] +Mi(�i) � 0

These two inequalities imply that (q(�̂);m(�̂)) satis�es (IC�) and (IR�).

We now show that implementation of the CIE surplus is necessary for e¢ cient
dissolution of the partnership hD1(a

u; av); D2(a
u; av); F i. Let (q(�̂);m(�̂)) be a direct
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mechanism that e¢ ciently dissolves the partnership hD1(a
u; av); D2(a

u; av); F i. Then,
for every realization of � 2 [0; 1]2; this mechanism satis�es (EFF�), (IC�) and (IR�).

Now consider a bilateral speculation problem h(u; v); G;X; F i where the CIE surplus is
attained by pure speculation and sustained by (au; av; t). By the proof of Proposition

3, t satis�es (5), without loss of generality.

Let t(x j �̂) be a direct mechanism for h(u; v); G;X; F i such that for every i = 1; 2;
and for all pro�les of reports �̂:

t1(x
v j �̂) = m1(�̂) (13)

and for every y 6= xv :

t1(y j �̂)� t1(xv j �̂) = min[d1(av ! y); d1(a
u ! y) + q1(�̂)�D1(a

u; av)] (14)

Because (q(�̂);m(�̂)) satis�es (EFF�), q1(�̂)�D1(a
u; av) = D�(au; av j �). In par-

ticular, this means that q1(�̂)�D1(a
u; av) is equal to either D2(a

u; av) or �D1(a
u; av).

In either case, if y = xu, then by the de�nition of D1(a
u; av) and D2(a

u; av), d1(au !
xu) + q1(�̂)�D1(a

u; av) cannot exceed d1(av ! xu). Hence,

t1(x
u j �̂)� t1(xv j �̂) = q1(�̂)�D1(a

u; av) (15)

The observation that q1(�̂) � D1(a
u; av) = D�(au; av j �) implies that equation

(14) becomes equation (3). This means that when y = xu, t(x j �̂) satis�es (EFF).
By Lemma 1, this also means that t(x j �̂) satis�es (PS-SPIC). It remains to show
that t(x j �̂) satis�es (IC) and (IR). Since (q(�̂);m(�̂)) satis�es (IC�) and (IR�), the
following inequalities must hold for i = 1; 2; and for all �0i 2 [0; 1];

�iQi(�i) +Mi(�i) � �iQi(�
0
i) +Mi(�

0
i)

�iQi(�i) +Mi(�i) � �iDi(a
u; av)

Rewriting these inequalities, we obtain

�i[Qi(�i)�Di(a
u; av)] +Mi(�i) � �i[Qi(�

0
i)�Di(a

u; av)] +Mi(�
0
i)

�i[Qi(�i)�Di(a
u; av)] +Mi(�i) � 0

By the de�nitions of Qi(�
0
i) and Mi(�

0
i); and the relation between t(x j �̂) and q1(�̂)

given by (15), the last two inequalities imply (IC) and (IR), respectively. �
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Proof of Proposition 5
We prove the result stepwise.

Step 1. For every t, it is impossible to sustain a market price p! > c! in a NE of

G(!; t).

Proof . Let (a!1 ; a
!
2 ) be a NE of G(!; t) that satis�es minfa!1 ; a!2 g = p! > c!: Then, for

all i and for all " > 0;

si(a
!
1 ; a

!
2 ) � (p! � c!) + ti(p!) � p! � "� c! + ti(p! � ")

where

si(a
!
1 ; a

!
2 ) =

8><>:
1 if ai < aj
1
2
if ai = aj

0 if ai > aj

Summing over i and using budget-balancedness, we obtain:

p! � c! � 2(p! � "� c!)

for all " > 0: But this implies that (p!; p!) is a NE of G(!), a contradiction.

Step 2. If the CIE surplus is attained by pure speculation, then the CIE surplus is

j�1 � �2j � (cH � cL) (16)

Proof . If the CIE surplus is attained by pure speculation, then any CIE tuple

(aL; aH ; t) satis�es p! = c!. Since this means that the sellers� bare-game payo¤ is

zero in both states, the CIE surplus may be written as (�1 � �2)(tL1 � tH1 ), where
tL1 � t1(cL) and tH1 � t1(cH): In state H, each seller can unilaterally lower the price to
cL. This deviation is not pro�table if the following SPIC constraint holds: for every

seller i, tHi � cL � cH + tLi . By budget-balancedness,

cL � cH � tL1 � tH1 � cH � cL (17)

Therefore, the CIE surplus is bounded from above by j�1 � �2j � (cH � cL). To see
that this expression can be attained, de�ne t(x j �) as follows. When �1 � �2, let

tL1 � tH1 = cH � cL. Conversely, when �1 < �2, let tL1 � tH1 = cL � cH . In both cases, let
t1(p) = t

L
1 for every p � cL, and let t1(p) = tH1 for every p > c

L. Because t is a step
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function, and because a! is a NE in G(!), all SPIC constraints hold, and the surplus

is j�1 � �2j � (cH � cL).

Step 3. Total interim surplus evaluated at any (aL; aH ; t), with t satisfying the SPIC,
is at most j�1 � �2j � (cH � cL):
Proof. Denote p� � maxfpH ; pLg and p� � minfpH ; pLg. Let !� and !� denote the
states in which p� and p� occur, and let c� and c� denote the marginal costs in states

!� and !� respectively. Let �
�
i be seller i�s prior on !

�, and denote his market share in

!� by si.

By Step 1, p� � c� and p� � c�. If p� = c� and p� = c�, then by Step 2; the proof
is complete. Now assume that one of these inequalities holds strictly. Because both

sellers can unilaterally lower the market price from p� to p� in state !�, the following

SPIC constraints must hold:

s1 � (p� � c�) + t1(p�) � p� � c� + t1(p�)
s2 � (p� � c�) + t2(p�) � p� � c� + t2(p�)

Using budget-balancedness, we obtain:

p� � c� � s1 � (p� � c�) � t1(p�)� t1(p�) � s2 � (p� � c�) + c� � p� (18)

Suppose p� = c�. Then, p� < c� and c� < c�: Because cH > cL it follows that

!� = H. But in this case the SPIC constraints given by (18) imply that total surplus

is less than (16). It follows that p� < c�. This means that there is exactly one seller i

who plays ai = p� in state !�. If both sellers played p�, then either one of them could

deviate upward. This deviation would leave market price (and therefore the transfers)

una¤ected, but it would save the deviator a bare-game loss. Without loss of generality,

assume that seller 1 sustains the market price p� in state !�. Let a2 > p� denote seller

2�s action in this state.

It follows that the sellers�total interim surplus is given by the following expression:

(p� � c�) � (s1��1 + s2��2) + (1� ��1) � (p� � c�) + (��1 � ��2) � [t1(p�)� t1(p�)]

Note that the �rst two terms are non-positive, and one of them is strictly negative,

by assumption. Therefore, if we prove that the third term does not exceed (16), we

complete the proof.

Suppose that ��2 � ��1. Then, by (18), total interim surplus is bounded from above
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by

(p� � c�) � (s1��1 + s2��2) + (1� ��1) � (p� � c�) + (��1 � ��2) � [p� � c� � s1 � (p� � c�)]

Because s2 = 1� s1, this expression may be rewritten as

(p� � c�) � ��2 + p� � (1� ��2)� c� � (1� ��1) + c� � (��2 � ��1)

Since c� � cH , this expression is at most

(p� � c�) � ��2 + p� � (1� ��2)� c� � (1� ��1) + cH � (��2 � ��1)

By adding and subtracting c��
�
2, we may rewrite this expression as

(p� � c�) � ��2 + (p� � c�) � (1� ��2) + (��2 � ��1) � (cH � c�)

Because p� � c� and p� < c�; the above expression is strictly below (��2� ��1) � (cH � c�):
But since ��2 � ��1 and c� � cL;

(��2 � ��1) � (cH � c�) < (��2 � ��1) � (cH � cL)

Our assumption that ��2 � ��1 implies that whether !� = !H or !� = !L; the R.H.S. of
the above inequality is j�1 � �2j � (cH � cL).

Now suppose that ��1 > �
�
2. In addition to the SPIC constraints given by (18), there

is an additional SPIC constraint, which prevents seller 1 from raising the market price

from p� to a2. There are three cases to consider.

Case 1 : a2 < p�. Seller 1 can deviate from a1 = p� to a01 2 (a2; p�). The SPIC
constraint that prevents him from doing so is

p� � c� + t1(p�) � t1(a2)

But note that in state !�, seller 2 can unilaterally lower the market price from p� to

a2. The SPIC constraint that prevents him from doing so is

s2 � (p� � c�)� t1(p�) � a2 � c� � t1(a2)
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Combining these two constraints, we obtain

t1(p
�)� t1(p�) � c� � c� + p� � a2 + s2 � (p� � c�)

but the R.H.S of this inequality is lower than cH � cL.

Case 2 : a2 > p�. Seller 1 can deviate from a1 = p� to a01 = p
�. The SPIC constraint

that prevents him from doing so is

p� � c� + t1(p�) � p� � c� + t1(p�)

This constraint implies t1(p�)� t1(p�) � p� � p� < 0 < cH � cL.

Case 3 : a2 = p�. Seller 1 can deviate from a1 = p� to a01 > a2 or a01 = a2: The

SPIC constraint that prevents him from carrying out either of these deviations is

p� � c� + t1(p�) � max[0;
1

2
(p� � c�)] + t1(p�)

This constraint implies t1(p�)� t1(p�) � p� � c� �max[0; 12(p
� � c�)] < 0 < cH � cL.

We have thus established that the SPIC constraints that result from setting p� < c�
imply that total interim surplus is below (16). �

Proof of Proposition 6
If there is no trade in both states, there is no scope for speculation. Let ! denote

a state with trade and let p! denote the market price in this state. Each agent can

unilaterally impose no trade in ! (the seller can submit an ask price above the buyer�s

bid price, and the buyer can submit a bid price below the seller�s ask price). Therefore,

the SPIC constraints that prevent these deviations are:

p! � c+ ts(p!) � ts(NT ) (19)

! � p! � ts(p!) � �ts(NT )

Hence,

c� p! � ts(p!)� ts(NT ) � ! � p! (20)

Suppose there is trade in only one state. Then the total interim-expected surplus

is given by

�s(p
! � c) + �b(! � p!) + (�s � �b) � [ts(p!)� ts(NT )] (21)
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where �i denotes agent i�s prior on !:

By (20), total surplus cannot exceed maxf�b; �sg � (! � c). Since we are free to
choose the state in which trade occurs, we can set ! = h. Therefore, total surplus is

at most:

maxf�b; �sg � (h� c) (22)

Now suppose that trade occurs in both states. Then the inequalities in (19) are the

SPIC constraints that prevent each agent from unilaterally imposing no trade in each

state. Hence,

pl � ph + c� l � ts(ph)� ts(pl) � pl � ph + h� c (23)

while total surplus is

�c+ �bh+ (1� �b)l + (�s � �b) � [ph � pl + t(ph)� t(pl)]

By (23), total surplus is bounded from above by:

maxf�b; �sg(h� c) + (1�minf�b; �sg)(l � c) (24)

which is below (22), since l < c. It follows that the value of the CIE surplus is given

by (22), and that the market outcome induced by the CIE surplus is ex-post e¢ cient.

We now proceed to prove part (ii). It is easy to see that when we plug the values

of ph and ts(T ) � ts(NT ), as stated in part (ii), into expression (2), we obtain (22).
Therefore, it remains to show that the SPIC constraints are satis�ed. Consider state

h. The buyer�s payo¤ is h�c
2
� ts(T ). If the buyer raises his bid price, he raises the

market price, and therefore loses in terms of bare-game payo¤s, without a¤ecting the

transfer. If he lowers his bid price, he imposes no trade, in which case his net payo¤ is

�ts(NT ). Because ts(T ) � ts(NT ) is h�c
2
if �s > �b and c�h

2
otherwise, this deviation

is not pro�table. The seller�s payo¤ is h�c
2
+ ts(T ). If he lowers his ask price, he loses

in terms of bare-game payo¤s, without a¤ecting the transfer. If he raises his ask price,

he imposes no trade, in which case his net payo¤ is ts(NT ). It follows that neither

deviation is pro�table. Now consider state l. Since pls is arbitrarily high and p
l
b is

arbitrarily low, neither agent has an incentive to enforce trade unilaterally. �
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