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Abstract

We forecast a single time series using many predictor variables with a new estima-
tor called the three-pass regression filter (3PRF). It is calculated in closed form and
conveniently represented as a set of ordinary least squares regressions. 3PRF forecasts
converge to the infeasible best forecast when both the time dimension and cross section
dimension become large. This requires only specifying the number of relevant factors
driving the forecast target, regardless of the total number of common (including poten-
tially irrelevant) factors driving the cross section of predictors. We derive inferential
theory including limiting distributions for estimated relevant factors, predictive coef-
ficients and forecasts, and provide consistent standard error estimators. We explore
two empirical applications: Forecasting macroeconomic aggregates with a large panel
of economic indices, and forecasting stock market aggregates with many individual as-
sets’ price-dividend ratios. These, combined with a range of Monte Carlo experiments,
demonstrate the 3PRF’s forecasting power.
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1 Introduction

A common interest among economists and policymakers is harnessing vast predictive in-

formation to forecast important economic aggregates like national product or stock market

value. However, it can be difficult to use this wealth of information in practice. If the pre-

dictors number near or more than the number of observations, the standard ordinary least

squares (OLS) forecaster is known to be poorly behaved or nonexistent.1

How, then, does one effectively use vast predictive information? A solution well known

in the economics literature views the data as generated from a model in which latent factors

drive the systematic variation of both the forecast target, y, and the matrix of predictors,

X. In this setting, the best prediction of y is infeasible since the factors are unobserved. As

a result, a factor estimation step is required. The literature’s benchmark method extracts

factors that are significant drivers of variation in X and then uses these to forecast y.

Our procedure springs from the idea that the factors that are relevant to y may be a

strict subset of all the factors driving X. Our method, called the three-pass regression filter

(3PRF), selectively identifies only the subset of factors that influence the forecast target

while discarding factors that are irrelevant for the target but that may be pervasive among

predictors.

In addition to proposing the estimator, this paper makes four main contributions. The

first is to develop asymptotic theory for the 3PRF. We begin by proving that the estimator

converges in probability to the infeasible best forecast in the (simultaneous) limit as cross

section size N and time series dimension T become large. This is true even when variation

in predictors is dominated by target-irrelevant factors. We then derive the limiting distri-

butions for the estimated relevant factors, predictive coefficients, and forecasts, and provide

consistent estimators of asymptotic covariance matrices that can be used to perform infer-

ence. Second, we compare the 3PRF to other methods in order to illustrate the source of

its improvement in forecasting performance. We show that the 3PRF is the solution to a

constrained least squares problem, that the 3PRF resembles a restricted Kalman filter, and

that the method of partial least squares is a special case of the 3PRF. Throughout we develop

numerous comparisons with principal components regression, which is the economics litera-

ture’s benchmark method of forecasting using many predictors. The third contribution of the

paper is to investigate the finite sample accuracy of our asymptotic theory through Monte

Carlo simulations. We find that the 3PRF accurately estimates the (infeasible) best possible

forecast in a variety of experimental designs and in small samples. The final contribution of

1See Huber (1973) on the asymptotic difficulties of least squares when the number of regressors is large
relative to the number of data points.
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the paper is to provide empirical support for the 3PRF’s strong forecasting performance in

two separate applications. The first applies the procedure to a well-known macroeconomic

data set in order to forecast key macroeconomic aggregates. The second application is an

asset-pricing study linking the cross section of price-dividend ratios to market expectations.

1.1 Existing Procedures

The fact that the 3PRF is a constrained least squares forecast is closely tied to the original

motivation for dimension reduction: Unconstrained least squares forecasts are poorly behaved

when N is large relative to T . The 3PRF imposes an intuitive constraint which ensures that

the factors irrelevant to y drop out of the 3PRF forecast.

There is a link between the 3PRF and the Kalman filter, which is the theoretically opti-

mal state space method (see Maybeck (1979) and Hamilton (1994)) but sometimes carries a

debilitating computational burden.2 We show that the 3PRF acts like a restricted Kalman

filter. The restrictions implicit in this interpretation of the 3PRF include using OLS in

place of generalized least squares, using observable proxies in lieu of more computationally-

expensive factor estimates, and ignoring the temporal pooling of past information. Impor-

tantly, the 3PRF retains the Kalman filter’s cross-sectional combination of information via

least squares.3 Imposing these restrictions is valuable because they achieve an accurate and

easily implemented estimator while sacrificing theoretical (though often infeasible) efficiency.

As N and T grow, the cost of these restrictions vanishes since the 3PRF converges to the

optimal forecast, while the computational benefit becomes increasingly valuable.

We also show that the method of partial least squares (PLS) is a special case of the

3PRF. Like partial least squares, the 3PRF can use the forecast target to discipline its di-

mension reduction. This emphasizes the covariance between predictors and target in the

factor estimation step. The important distinction from PLS is that the 3PRF also allows the

econometrician to select alternative disciplining variables, or factor proxies, on the basis of

economic theory. Furthermore, because it is a special case of our methodology, the asymp-

2The Kalman filter likelihood-based parameter estimates are not available in closed form and must be ob-
tained via numerical optimization. Computational demands become substantial as the number of predictors
grows. As Bai (2003) notes, “As N increases, the state space and the number of parameters to be estimated
increase very quickly, rendering the estimation problem challenging, if not impossible.” Accordingly, large
N forecasting applications often avoid the Kalman filter due to the difficulty of parameter estimation. Jung-
backer and Koopman (2008) show that, in some applications, the filtering algorithm may be rewritten to
speed up these computations and restore feasibility of Kalman filter maximum likelihood estimation.

3Watson and Engle’s (1983) EM algorithm approach to state space estimation illustrates how the cross
sectional pooling of information in a Kalman may be obtained from GLS regressions. See Section 3 and
Appendix A.8 for further detail.
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totic theory we develop for the 3PRF applies directly to partial least squares. To the best

of our knowledge, these joint N and T asymptotics are a new result to the PLS literature.

The economics literature relies on principal component regression (PCR) for many-predictor

forecasting problems, exemplified by Stock and Watson (1989, 1998, 2002a,b, 2006, 2009),

Forni and Reichlin (1996, 1998), Forni, Hallin, Lippi and Reichlin (2000, 2004, 2005), Bai

and Ng (2002, 2006, 2008, 2009) and Bai (2003), among others. Like the 3PRF, PCR can be

calculated instantaneously for virtually any N and T . Stock and Watson’s key insight is to

condense information from the large cross section into a small number of predictive factors

before estimating a linear forecast. PCR condenses the cross section according to covariance

within the predictors. This identifies the factors driving the panel of predictors, some of

which may be irrelevant for the dynamics of the forecast target, and uses those factors to

forecast.

The key difference between PCR and 3PRF is their method of dimension reduction. The

3PRF condenses the cross section according to covariance with the forecast target. To do

so, the 3PRF first assesses how strongly each predictor is related to the relevant factors.

This is achieved by calculating predictors’ covariances with either theoretically motivated or

automatically selected proxies for the relevant latent factors (as we prove, automatic proxies

are always available by construction). Next, a linear combination of predictors is constructed

to mimic each relevant factor. The weights of individual predictors in this linear combination

are based on the strength of predictors’ estimated covariance with the proxies. This step

consistently estimates a rotation of the relevant factors that is in turn used to forecast the

target. The ultimate prediction is a discerningly constructed linear combination of individual

predictors with powerful forecast performance.

We are not the first to investigate potential improvements upon PCR forecasts. Bai and

Ng (2008) tackle this issue with statistical thresholding rules that drop variables found to

contain irrelevant information. Thresholding requires that irrelevant factors only affect a

relatively small subset of predictors since dropping predictors works against the large N

feature of PCR. Bai and Ng’s (2009) statistically boosted PCR forecasts are closer in spirit

to our paper. This approach recognizes that some principal components may not help in

forecasting the target, then uses forecast error to guide its component selection. In a simi-

lar vein, Stock and Watson (2011) use shrinkage methods to downweight components that

are unrelated to the target. Each of those papers first uses principal components to reduce

the dimension of the predictors. Our approach differs in that we explicitly allow irrelevant

information to be pervasive among all predictors within the basic model specification. Be-

cause of this, the notion of “relevance” is directly incorporated into the way we perform our

3



dimension reduction. Furthermore, this allows us to directly derive the limiting distribution

of our estimator despite the presence of irrelevant factors.

1.2 Empirical Results

In the first empirical investigation, we forecast macroeconomic aggregates using a well-known

panel of quarterly macroeconomic variables that has been explored in PCR forecasting stud-

ies (see Stock and Watson (2002b, 2006, 2011) and Ludvigson and Ng (2009), among others).

There we find that the 3PRF uncovers factors that significantly improve upon the perfor-

mance of autoregressive forecasts for key macroeconomic variables. These results link our

paper to macroeconomic theories built upon dynamic factor models including Geweke (1977),

Sargent and Sims (1977), Stock and Watson (1989), Bernanke, Boivin and Eliasz (2005) and

Aruoba, Diebold and Scotti (2009), among others. We consider forecasts that are purely

statistical, similar to PCR, and derived from our automatic procedure described below. We

also consider forecasts that improve upon purely statistical forecasts by exploiting the unique

ability of the 3PRF to directly incorporate economic theory within its procedure.

A second and separate application analyzes asset prices. We use a factor model that

ties individual assets’ price-dividend ratios to aggregate stock market fluctuations in order

to uncover investors’ discount rates and dividend growth expectations. There we find an

unprecedented level of predictability, even out-of-sample. These results highlight the link

between this paper and the pricing theories of Sharpe (1964), Lintner (1965), Treynor (1961),

Merton (1973) and Ross (1976), among others, each of which suggests that the cross section

of individual asset prices contains information about a few common factors. This literature

prompted the use of principal components in Connor and Korajczyk (1988, 1993), building

upon Ross’s arbitrage pricing theory and the approximate factor formulation of Chamberlain

and Rothschild (1983). Kelly and Pruitt (2011) investigate asset pricing applications of the

3PRF in more detail.

Finally, we explore the finite sample properties of the 3PRF in Monte Carlo experiments,

as well as analyze its performance relative to PCR and OLS under a variety of specifications.

1.3 Outline

The paper is structured as follows. Section 2 defines the 3PRF and proves its asymptotic

properties. Section 3 reinterprets the 3PRF as a constrained least squares solution, then com-

pares and contrasts it with state space methods and partial least squares. Section 4 explores

the finite sample performance of the 3PRF, PCR and OLS in Monte Carlo experiments.
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Section 5 reports empirical results for 3PRF forecasts in asset pricing and macroeconomic

applications. All proofs and supporting details are placed in the appendix.

2 The Three-Pass Regression Filter

2.1 The Estimator

There are several equivalent approaches to formulating our procedure, each emphasizing

a related interpretation of the estimator. We begin with what we believe to be the most

intuitive formulation of the filter, which is the sequence of OLS regressions that gives the

estimator its name. Here and throughout, matrices and vectors are shown in boldface.

First we establish the environment wherein we use the 3PRF. There is a target variable

which we wish to forecast. There exist many predictors which may contain information useful

for predicting the target variable. The number of predictors N may be large and number

near or more than the available time series observations T , which makes OLS problematic.

Therefore we look to reduce the dimension of predictive information, and to do so we assume

the data can be described by an approximate factor model. In order to make forecasts, the

3PRF uses proxies : These are variables driven by the factors (and as we emphasize below,

driven by target-relevant factors in particular). The target is a linear function of a subset

of the latent factors plus some unforecastable noise. The optimal forecast therefore comes

from a regression on the true underlying relevant factors. However, since these factors are

unobservable, we call this the infeasible best forecast.

We write y for the T × 1 vector of the target variable time series from h, h + 1, . . . , T +

h, where h is the forecast horizon. Let X be the T × N matrix of predictors, X =

(x′1,x
′
2, . . . ,x

′
T )′ = (x1,x2, · · · ,xN) that have been variance standardized. Note that we

are using two different typefaces to denote the N -dimensional cross section of predictors

observed at time t (xt), and the T -dimensional time series of the ith predictor (xi). We

denote the T × L matrix of proxies as Z, which stacks period-by-period proxy data as

Z = (z′1, z
′
2, . . . ,z

′
T )′. We make no assumption on the relationship between N and T . We

provide additional details regarding the data generating processes for y, X and Z in As-

sumption 1 below.

With this notation in mind, the 3PRF’s regression-based construction is defined in Table

1. The first pass runs N separate time series regressions, one for each predictor. In these

first pass regressions, the predictor is the dependent variable, the proxies are the regressors,

and the estimated coefficients describe the sensitivity of the predictor to factors represented
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Table 1: The Three-Pass Regression Filter

Pass Description

1. Run time series regression of xi on Z for i = 1, . . . , N ,

xi,t = φ̃0,i + z′tφ̃i + ε̃it, retain slope estimate φ̂i

2. Run cross section regression of xt on φ̂i for t = 1, . . . , T,

xi,t = φ̈0,t + φ̂
′
iF̈ t + ε̈it, retain slope estimate F̂ t

3. Run time series regression of yt+h on predictive factors F̂ t,

yt+h = β̆0 + F̂
′
tβ̆ + η̆t+h, delivers forecast ŷt+h

Notes: All regressions use OLS.

by the proxies. As we show later, proxies need not represent specific factors and may be

measured with noise. The important requirement is that their common components span

the space of the target-relevant factors.

The second pass uses the estimated first-pass coefficients in T separate cross section

regressions. In these second pass regressions, the predictors are again the dependent variable

while the first-pass coefficients are the regressors. Fluctuations in the latent factors cause

the cross section of predictors to fan out and compress over time. First-stage coefficient

estimates map the cross-sectional distribution of predictors to the latent factors. Second-

stage cross section regressions use this map to back out estimates of the factors at each point

in time.4

We then carry forward the estimated second-pass predictive factors F̂ t to the third pass.

This is a single time series forecasting regression of the target variable yt+h on the second-

pass estimated predictive factors F̂ t. The third-pass fitted value β̂0 + F̂
′
tβ̂ is the 3PRF

time t forecast. Because the first-stage regression takes an errors-in-variables form, second-

stage regressions produce an estimate for a unique but unknown rotation of the latent factors.

Since the relevant factor space is spanned by F̂ t, the third-stage regression delivers consistent

forecasts.

The following proposition gives an alternative representation for the 3PRF. It shows that

4If coefficients were observable, this mapping would be straightforward since factors could be directly
estimated each period with cross section regressions of predictors on the loadings. While the loadings in our
framework are unobservable, the same intuition for recovering the factor space applies to our cross section
regressions. The difference is that we use estimated loadings as stand-ins for the unobservable true loadings.
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the estimator is available in a condensed, one-step closed form. We denote JN ≡ IN− 1
N
ιNι

′
N

where IN is the N -dimensional identity matrix and ιN is a N -vector of ones. These J

matrices enter because each regression pass is run with a constant.

Proposition 1. The three-pass regression filter forecast of y using cross section X and

proxies Z is

ŷ = ιȳ + JTXJNX
′JTZ (Z ′JTXJNX

′JTXJNX
′JTZ)

−1
Z ′JTXJNX

′JTy. (1)

where ȳ is the sample mean of y. The second stage factor estimate used to construct this

forecast is

F̂
′
= Z ′JTZ (Z ′JTXJNX

′JTZ)
−1
Z ′JTXJNX

′. (2)

The third stage predictive coefficient estimate is

β̂ = (Z ′JTZ)
−1
Z ′JTXJNX

′JTZ (Z ′JTXJNX
′JTXJNX

′JTZ)
−1
Z ′JTXJNX

′JTy.

(3)

The implied predictive coefficient on the cross section of predictors is

α̂ = JNX
′JTZ (Z ′JTXJNX

′JTXJNX
′JTZ)

−1
Z ′JTXJNX

′JTy. (4)

Proposition 1 provides a convenient closed form for 3PRF estimates that is useful in the

theoretical development that follows. Nonetheless, the regression-based procedure in Table

1 remains useful for two reasons. First, it is useful for developing intuition behind the

procedure and for understanding its relation to the Kalman filter and partial least squares.

Second, in practice (particularly with many predictors) one often faces unbalanced panels

and missing data. The 3PRF as described in Table 2 easily handles these difficulties.5 In

addition to the formula for the vector of forecasts ŷ, Proposition 1 also provides formulas

for estimates of the underlying factors, F̂ , the predictive coefficients for the factors, β̂, and

the vector of estimated predictive loadings on each individual predictor, α̂. Equation (4)

shows that forecasts may be equivalently written as ŷ = ιȳ + JTXα̂, interpreting α̂ as the

predictive coefficient for individual predictors. We further discuss the properties of these

estimators in detail below.

5In contrast, PCR requires more involved EM techniques when data are missing, as Stock and Watson
(2002b) explain.
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2.2 Assumptions

We next detail the modeling assumptions that provide a groundwork for developing asymp-

totic properties of the 3PRF.

Assumption 1 (Factor Structure). The data are generated by the following:

xt = φ0 + ΦF t + εt yt+h = β0 + β′F t + ηt+h zt = λ0 + ΛF t + ωt

X = ιφ′0 + FΦ′ + ε y = ιβ0 + Fβ + η Z = ιλ′0 + FΛ′ + ω

where F t = (f ′t, g
′
t)
′, Φ = (Φf ,Φg), Λ = (Λf ,Λg), and β = (β′f ,0

′)′ with |βf | > 0. Kf > 0

is the dimension of vector f t, Kg ≥ 0 is the dimension of vector gt, L > 0 is the dimension

of vector zt, and K = Kf +Kg.

Assumption 1 gives the factor structure that allows us to reduce the dimension of predictor

information. The structure of the target’s factor loadings (β = (β′f ,0
′)′) allows the target

to depend on a strict subset of the factors driving the predictors. We refer to this subset

as the relevant factors, which are denoted f t. In contrast, irrelevant factors, gt, do not

influence the forecast target but may drive the cross section of predictive information xt.

The proxies zt are driven by the factors as well as proxy noise. Since ηt+h is a martingale

difference sequence with respect to all information known at time t (see Assumption 2.5

below), β0 +β′ff t gives the best time t forecast. But it is infeasible since the relevant factors

f t are unobserved.

Assumption 2 (Factors, Loadings and Residuals). Let M <∞. For any i, s, t

1. E‖F t‖4 < M , T−1
∑T

s=1 F s
p−−−→

T→∞
µ and T−1F ′JTF

p−−−→
T→∞

∆F

2. E‖φi‖4 ≤ M , N−1
∑N

j=1φj
p−−−→

T→∞
φ̄, N−1Φ′JNΦ

p−−−→
N→∞

P and N−1Φ′JNφ0

p−−−→
N→∞

P 1
6

3. E(εit) = 0,E|εit|8 ≤M

4. E (ωt) = 0,E||ωt||4 ≤M,T−1/2
∑T

s=1ωs = Op(1) and T−1ω′JTω
p−−−→

N→∞
∆ω

5. Et(ηt+h) = E(ηt+h|yt, Ft, yt−1, Ft−1, ...) = 0, E(η2
t+h) = δη <∞ for any h > 0, and ηt is

independent of φi(m) and εi,s.

6‖φi‖ ≤M can replace E‖φi‖4 ≤M if φi is non-stochastic.
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We require factors and loadings to be cross-sectionally regular insofar as they have well-

behaved covariance matrices for large T and N , respectively, and these matrices are finite

and nonsingular. Assumption 2.4 is the only assumption that materially differs from the

work of Stock and Watson or Bai and Ng. This is because proxy noise, ωt, does not play a

role in principal components. We bound the moments of ωt in a manner analogous to the

bounds on factor moments.

Assumption 3 (Dependence). Let x(m) denote the mth element of x. For M < ∞ and

any i, j, t, s,m1,m2

1. E(εitεjs) = σij,ts, |σij,ts| ≤ σ̄ij and |σij,ts| ≤ τts, and

(a) N−1
∑N

i,j=1 σ̄ij ≤M

(b) T−1
∑T

t,s=1 τts ≤M

(c) N−1
∑

i,s |σii,ts| ≤M

(d) N−1T−1
∑

i,j,t,s |σij,ts| ≤M

2. E
∣∣∣N−1/2T−1/2

∑T
s=1

∑N
i=1 [εisεit − E (εisεit)]

∣∣∣2 ≤M

3. E
∣∣∣T−1/2

∑T
t=1 Ft(m1)ωt(m2)

∣∣∣2 ≤M

4. E
∣∣∣T−1/2

∑T
t=1 ωt(m1)εit

∣∣∣2 ≤M .

Assumption 4 (Central Limit Theorems). For any i, t

1. N−1/2
∑N

i=1φiεit
d−→ N (0,ΓΦε), where ΓΦε = plimN→∞N

−1
∑N

i,j=1 E
[
φiφ

′
jεitεjt

]
2. T−1/2

∑T
t=1 F tηt+h

d−→ N (0,ΓFη), where ΓFη = plimT→∞T
−1
∑T

t=1 E
[
η2
t+hF tF

′
t

]
> 0

3. T−1/2
∑T

t=1 F tεit
d−→ N (0,ΓFε,i), where ΓFε,i = plimT→∞T

−1
∑T

t,s=1 E [F tF
′
sεitεis] > 0.

Assumption 3 allows the factor structure to be approximate in the sense that some cross

section correlation among εit is permitted, following Chamberlain and Rothschild (1983).

Similarly, we allow for serial dependence among εit (including GARCH) as in Stock and

Watson (2002a). In addition, we allow some proxy noise dependence with factors and id-

iosyncratic shocks. Assumption 4 requires that central limit theorems apply, and is satisfied

when various mixing conditions hold among factors, loadings and shocks.

Assumption 5 (Normalization). P = I, P 1 = 0 and ∆F is diagonal, positive definite, and

each diagonal element is unique.
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Assumption 5 recognizes that there exists an inherent unidentification between the factors

and factor loadings.7 It therefore selects a normalization in which the covariance of predictor

loadings is the identity matrix, and in which factors are orthogonal to one another. As with

principal components, the particular normalization is unimportant. We ultimately estimate

a vector space spanned by the factors, and this space does not depend upon the choice of

normalization.

Assumption 6 (Relevant Proxies). Λ = [ Λf 0 ] and Λf is nonsingular.

Assumption 6 states that proxies (i) have zero loading on irrelevant factors, (ii) have lin-

early independent loadings on the relevant factors, and (iii) number equal to the number of

relevant factors. Combined with the normalization assumption, this says that the common

component of proxies spans the relevant factor space, and that none of the proxy varia-

tion is due to irrelevant factors. We prove in Theorem 7 that automatic proxies satisfying

Assumption 6 are generally available.

With these assumptions in place, we next derive the asymptotic properties of the three-

pass filter.

2.3 Consistency

Theorem 1. Let Assumptions 1-6 hold. The three-pass regression filter forecast is consistent

for the infeasible best forecast, ŷt+h
p−−−−−→

T,N→∞
β0 + F ′tβ.

Theorem 1 says that the 3PRF is “asymptotically efficient” in the words of Stock and

Watson (2002a): For large cross section and time series dimensions, the difference between

this feasible forecast and the infeasible best vanishes. This and our other asymptotic results

are based on simultaneous N and T limits. As discussed by Bai (2003), the existence of a

simultaneous limit implies the existence of coinciding sequential and pathwise limits, but the

converse is not true. We refer readers to that paper for a more detailed comparison of these

three types of joint limits.

7Stock and Watson (2002a) summarize this point (we have replaced their symbols with our notation):

[B]ecause ΦF t = ΦRR−1F t for any nonsingular matrix R, a normalization is required to
uniquely define the factors. Said differently, the model with factor loadings ΦR and factors
R−1F t is observationally equivalent to the model with factor loadings Φ and factors F t.
Assumption [5] restricts R to be orthonormal and ... restricts R to be a diagonal matrix with
diagonal elements of ±1.

We further discuss our normalization assumption in Appendix A.7. There we prove that a necessary condition
for convergence to the infeasible best forecast is that the number of relevant proxies equals the number of
relevant factors.
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The appendix also establishes probability limits of first pass time series regression coeffi-

cients φ̂i, second pass cross section factor estimates F̂ t, and third stage predictive coefficients

β̂. While primarily serving as intermediate inputs to the proof of Theorem 1, in certain ap-

plications these probability limits are useful in their own right. We refer interested readers

to Lemmas 3 and 4 in Appendix A.3.

The estimated loadings on individual predictors, α̂, play an important role in the inter-

pretation of the 3PRF. The next theorem provides the probability limit for the loading on

each predictor i.

Theorem 2. Let α̂i denote the ith element of α̂, and let Assumptions 1-6 hold. Then for

any i,

Nα̂i
p−−−−−→

T,N→∞

(
φi − φ̄

)′
β.

The coefficient α maps underlying factors to the forecast target via the observable pre-

dictors. As a result the probability limit of α̂ is a product of the loadings of X and y on the

relevant factors f . This arises from the interpretation of α̂ as a constrained least squares

coefficient estimate, which we elaborate on in the next section. Note that α̂ is multiplied by

N in order to derive its limit. This is because the dimension of α̂ grows with the number of

predictors. As N grows, the predictive information in f is spread across a larger number of

predictors so each predictor’s contribution approaches zero. Standardizing by N is necessary

to identify the non-degenerate limit.

What distinguishes these results from previous work using PCR is the fact that the 3PRF

uses only as many predictive factors as the number of factors relevant to yt+h. In contrast,

the PCR forecast is asymptotically efficient when there are as many predictive factors as the

total number of factors driving xt (Stock and Watson (2002a)). This distinction is especially

important when the number of relevant factors is strictly less than the number of total

factors in the predictor data and the target-relevant principal components are dominated

by other components in xt. In particular, if the factors driving the target are weak in the

sense that they contribute a only small fraction of the total variability in the predictors,

then principal components may have difficulty identifying them. Said another way, there is

no sense in which the method of principal components is assured to first extract predictive

factors that are relevant to yt+h. This point has in part motivated recent econometric work

on thresholding (Bai and Ng (2008)), boosting (Bai and Ng (2009)) and shrinking (Stock

and Watson (2011)) principal components for the purposes of forecasting.

On the other hand, the 3PRF identifies exactly these relevant factors in its second pass

factor estimation. This step effectively extracts leading indicators. To illustrate how this
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works, consider the special case in which there is only one relevant factor, and the sole proxy

is the target variable yt+h itself. We refer to this case as the target-proxy three-pass regression

filter. The following corollary is immediate from Theorem 1.

Corollary 1. Let Assumptions 1-5 hold. Additionally, assume that there is only one rele-

vant factor. Then the target-proxy three-pass regression filter forecaster is consistent for the

infeasible best forecast.

Corollary 1 holds regardless of the number of irrelevant factors factors driving X and

regardless of where the relevant factor stands in the principal component ordering for X.

Compare this to PCR, whose first predictive factor is ensured to be the one that explains

most of the predictors’ covariance, regardless of that factor’s relationship to yt+h. Only if

the relevant factor happens to also drive most of the variation within the predictors does the

first component achieve the infeasible best. It is in this sense that the forecast performance

of PCR may be foiled by the presence irrelevant factors.

2.4 Asymptotic Distributions

Not only is the 3PRF consistent for the infeasible best forecast, each forecast has a normal

asymptotic distribution.8 We first derive the asymptotic distribution for α̂ since this is useful

for establishing the asymptotic distribution of forecasts.

Theorem 3. Under Assumptions 1-6, as N, T →∞ we have

√
TN (SN∗α̂− SN∗Gαβ)

d−→ N (0,SN∗ΣαS
′
N∗)

where Σα = JNΦ∆−1
F ΓFη∆

−1
F Φ′JN . Furthermore,

Âvar(SN∗α̂) = Ωα,N∗

(
1

T

∑
t

η̂2
t+h(X t − X̄)(X t − X̄)′

)
Ω′α,N∗

is a consistent estimator of SN∗ΣαS
′
N∗, where

Ωα,N∗ = SN∗JN

(
1

T
X ′JTZ

)(
1

T 3N2
Z ′JTXJNX

′JTXJNX
′JTZ

)−1(
1

TN
Z ′JTXJN

)
and Gα is defined in the appendix.

8Our asymptotic theory builds upon the seminal theory of Bai (2003) and Bai and Ng (2002, 2006).
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While Theorem 2 demonstrates that α̂ may be used to measure the relative forecast

contribution of each predictor, Theorem 3 offers a distribution theory, including feasible t-

statistics, for inference. The (N∗×N) selector matrix SN∗ is present to ensure that the limit

involves a finite-dimensional object. That is, each row of SN∗ has a single element equal

to one and remaining elements zero, no two rows are identical, the highest column index

for a non-zero element is N∗ << N , and the positions of non-zero elements are fixed and

independent of N .

From here, we derive the asymptotic distribution of the 3PRF forecasts.

Theorem 4. Under Assumptions 1-6, as N, T →∞ we have

√
T (ŷt+h − Etyt+h)

Qt

d−→ N (0, 1)

where Etyt+h = β0 + β′F t and Q2
t is the tth diagonal element of 1

N2JTXÂvar(α̂)X ′JT .

This result shows that besides being consistent for the infeasible best forecast Et(yt+h) ≡
β0 + β′F t, the 3PRF forecast is asymptotically normal and provides a standard error esti-

mator for constructing forecast confidence intervals. A subtle but interesting feature of this

result is that we only need the asymptotic variance of individual predictor loadings Âvar(α̂)

for the prediction intervals. This differs from the confidence intervals of PCR forecasts in

Bai and Ng (2006), which require an estimate of the asymptotic variance for the predictive

factor loadings (the analogue of our Âvar(β̂) below) as well as an estimate for the asymp-

totic variance of the fitted latent factors, Âvar(F̂ ). Unlike PCR, our framework allows us

to represent loadings on individual predictors in a convenient algebraic form, α̂. Inspection

of α̂ reveals why variability in both β̂ and F̂ is be captured by Âvar(α̂).

Next, we provide the asymptotic distribution of predictive loadings on the latent factors

and a consistent estimator of their asymptotic covariance matrix.

Theorem 5. Under Assumptions 1-6, as N, T →∞ and T/N → 0 we have

√
T
(
β̂ −Gββ

)
d−→ N (0,Σβ)

where Σβ = Σ−1
z ΓFηΣ

−1
z and Σz = Λ∆FΛ′ + ∆ω. Furthermore,

Âvar(β̂) =
(
T−1F̂

′
JT F̂

)−1

T−1
∑
t

η̂2
t+h(F̂ t − µ̂)(F̂ t − µ̂)′

(
T−1F̂

′
JT F̂

)−1

is a consistent estimator of Σβ. Gβ is defined in the appendix.
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We also derive the asymptotic distribution of the estimated relevant latent factor rotation.

Theorem 6. Under Assumptions 1-6, as N, T →∞ we have for every t

(i) if
√
N/T → 0, then √

N
[
F̂ t − (H0 +HF t)

]
d−→ N (0,ΣF )

(ii) if lim inf
√
N/T ≥ τ ≥ 0, then

T
[
F̂ t − (H0 +HF t)

]
= Op(1)

where ΣF = (Λ∆FΛ′ + ∆ω)
(
Λ∆2

FΛ′
)−1

Λ∆FΓΦε∆FΛ′
(
Λ∆2

FΛ′
)−1

(Λ∆FΛ′ + ∆ω). H0

and H are defined in the appendix.

Theorem 5 is analogous to the first theorem of Bai and Ng (2006). Asymptotic normality of

β̂ requires the additional condition that T/N → 0. This is due to the fact that the relevant

factors must be estimated. Theorem 6 is the 3PRF analogue to the first theorem of Bai

(2003). The matrices Gβ and H are present since we are in effect estimating a vector space.

Quoting Bai and Ng (2006), Theorems 5 and 6 in fact “pertain to the difference between

[F̂ t/β̂] and the space spanned by [F t/β].” Note that we do not provide an estimator the

asymptotic variance of F̂ . While under some circumstances such an estimator is available,

this is not generally the case. In particular, when there exist irrelevant factors driving the

predictors, the 3PRF only estimates the relevant factor subspace. This complicates the

construction of a consistent estimator of Avar(F̂ ). Estimators for the asymptotic variance

of α̂, β̂ and ŷt+h do not confront this difficulty for the reasons discussed following Theorem

4.

2.5 Proxy Selection

The formulation of the filter, and its success in forecasting even when principal components

that dominate cross section variation are irrelevant to the forecast target, relies on the

existence of proxies that depend only on target-relevant factors. This begs the question: Need

we make an a priori assumption about the availability of such proxies? The answer is no –

there always exist readily available proxies that satisfy the relevance criterion of Assumption

6. They are obtained from an automatic proxy-selection algorithm which constructs proxies

that depend only upon relevant factors.
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Table 2: Automatic Proxy-Selection Algorithm

0. Initialize r0 = y.

For k = 1, . . . , L:

1. Define the kth automatic proxy to be rk−1. Stop if k = L; otherwise proceed.

2. Compute the 3PRF for target y using cross section X using statistical proxies 1
through k. Denote the resulting forecast ŷk.

3. Calculate rk = y − ŷk, advance k, and go to step 1.

2.5.1 Automatic Proxies

By definition the target variable depends only on the relevant factors and therefore satisfies

Assumption 6 when there is one relevant factor (Kf = 1). This logic is exploited to prove

Corollary 1. If Kf > 1, the target-proxy 3PRF fails to asymptotically attain the infeasible

best.9 Hence in general we can improve upon the target-proxy 3PRF forecast by select-

ing additional proxies that depend only on relevant factors. We obtain the second proxy

by noting that residuals from target-proxy 3PRF forecasts also satisfy Assumption 6 since

they have non-zero loading on relevant factors (which follows from the insufficiency of the

target-only proxy), have zero loading on irrelevant factors (by definition), and are linearly

independent of the first proxy. From here, proxy construction proceeds iteratively: Use the

residual from the target-proxy 3PRF as the second proxy, use the residual from this two-

proxy 3PRF as the third proxy, etc. The details of the automatic proxy-selection algorithm

are given in Table 2. When this algorithm is iterated to construct L predictive factors, we

call the forecaster the L-automatic-proxy 3PRF.

In order to map the automatic proxy selection approach into the consistency and asymp-

totic normality results presented above, it is necessary to show that the proxies produced by

the algorithm satisfy Assumption 6. This is established by the following result.

Theorem 7. Let Assumptions 1-5 hold. Then the L-automatic-proxy three-pass regression

filter forecaster of y satisfies Assumption 6 when L = Kf .

9While we may always recast the system in terms of a single relevant factor β′ff t and rotate the remaining
factors to be orthogonal to it, this does not generally alleviate the requirement for as many proxies as relevant
factors. As we demonstrate in Appendix A.7, this is because rotating the factors necessarily implies a rotation
of factor loadings. Taking both rotations into account recovers the original requirement for as many relevant
proxies as relevant factors.
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Theorem 7 states that as long as Assumptions 1-5 are satisfied, the 3PRF is generally

available since the final condition of Theorems 1-4 (that is, Assumption 6) can be satisfied

by construction. Moreover, the only variables necessary to implement the filter are y and

X since the proxies are constructed by the algorithm.

2.5.2 Theory-Motivated Proxies

The use of automatic proxies in the three-pass filter disciplines dimension reduction of the

predictors by emphasizing the covariance between predictors and target in the factor estima-

tion step. The filter may instead be employed using alternative disciplining variables (factor

proxies) which may be distinct from the target and chosen on the basis of economic theory

or by statistical arguments.

As a statistical example, consider a situation in which Kf is one, so that the target and

proxy are given by yt+h = β0 + βft + ηt+h and zt = λ0 + Λft + ωt. Also suppose that the

population R2 of the proxy equation is substantially higher than the population R2 of the

target equation. The forecasts from using either zt or the target as proxy are asymptotically

identical. However, in finite samples, forecasts can be improved by proxying with zt due to

its higher signal-to-noise ratio.

Next, consider the economic example of forecasting asset returns. It is well known that,

especially over short horizons of one month or one year, the bulk of variation in asset returns

comes in the form of an unpredictable shock, consistent with the theory of efficient markets

(Fama (1965, 1970)). Efficient market theory implies that the remaining predictable part

of return variation arises from persistent equilibrium fluctuations in risk compensation over

time. Many asset pricing theories have been proposed that generate a small predictable

return component of this form and link it to potentially observable “state variables” (Mer-

ton (1973) is a representative framework). An example of this framework might allow the

predictable component of returns to be a linear function of a persistent market volatility

process:

rt+1 = β0 + βσt + ηt+1, σt = σ̄ + ρσt−1 + ξt, σ̂t = σt + ωt

where σ̂t is an estimate of market volatility. Suppose further that conditional return volatility

can be accurately measured, so that the R2 of the σ̂t equation is relatively large, and by an

efficient markets argument, the R2 of the rt+1 equation is small. Then, based on this theory,

σ̂t would be a superior proxy to the automatic proxy in finite samples.

An example of the usefulness of theory-based proxies is given in Section 5.1.1. We use
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the quantity theory of money to view inflation as driven by growth in real activity and the

money supply. Using natural proxies for these factors, we find that the resulting out-of-

sample forecasts of GDP inflation are more accurate than those obtained by either PCR or

the automatic-proxy 3PRF.

3 Other Related Procedures

Comparing our procedure to other methods develops intuition for why the 3PRF produces

powerful forecasts. Adding to our earlier comparisons with PCR, this section evaluates the

link between the 3PRF and constrained least squares, the Kalman filter, and partial least

squares.

3.1 Constrained Least Squares

Proposition 1 demonstrates that in addition to representing the forecast ŷt+h in terms of a

dimension reduction (F̂
′
tβ̂), it may be equivalently represented in terms of individual pre-

dictors (x′tα̂). The ith element of coefficient vector α̂ provides a direct statistical description

for the forecast contribution of predictor xi when it is combined with the remaining N − 1

predictors. In fact, α̂ is an N -dimensional projection coefficient, and is available when N is

near or even greater than T . This object allows us to address questions that would typically

be answered by the multiple regression coefficient in settings where OLS is unsatisfactory.

As discussed by Cochrane (2011) in his presidential address to the American Finance Asso-

ciation:

[W]e have to move past treating extra variables one or two at a time, and under-

stand which of these variables are really important. Alas, huge multiple regression

is impossible. So the challenge is, how to answer the great multiple-regression

question, without actually running huge multiple regressions?

The 3PRF estimator α̂ provides an answer. It is a projection coefficient relating yt+h

to xt under the constraint that irrelevant factors do not influence forecasts. That is, the

3PRF forecaster may be derived as the solution to a constrained least squares problem, as

we demonstrate in the following proposition.

Proposition 2. The three-pass regression filter’s implied N-dimensional predictive coeffi-
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cient, α̂, is the solution to

argmin
α0,α
||y − α0 −Xα||

subject to (I − JNX ′JTZ(Z ′JTXJNX
′JTZ)−1Z ′JTXJN)α = 0. (5)

This solution is closely tied to the original motivation for dimension reduction: The

unconstrained least squares forecaster is poorly behaved when N is large relative to T . The

3PRF’s answer is to impose the constraint in equation (5), which exploits the proxies and

has an intuitive interpretation. Premultiplying both sides of the equation by JTX, we can

rewrite the constraint as (JTX − JT F̂ Φ̂
′
)α = 0. For large N and T ,

JTX − JT F̂ Φ̂
′
≈ ε+ (F − µ)(I − SKf

)Φ′

which follows from Lemma 6 in the appendix. Because the covariance between α and ε is zero

by the assumptions of the model,10 the constraint simply imposes that the product of α and

the target-irrelevant common component of X is equal to zero. This is because the matrix

I−SKf
selects only the terms in the total common component FΦ′ that are associated with

irrelevant factors. This constraint is important because it ensures that factors irrelevant to

y drop out of the 3PRF forecast. It also ensures that α̂ is consistent for the factor model’s

population projection coefficient of yt+h on xt.

3.2 Kalman Filter

The least squares prediction in the linear system of Assumption 1 is provided by the Kalman

filter (Maybeck (1979)) and the system parameters are efficiently estimated by maximum

likelihood (Hamilton (1994)). To simplify, assume that all variables are mean zero and

suppose that h = 1. The prediction of the augmented state vector Πt = (F ′t,F
′
t−1)′ can be

written

Πt|t =
(
Πt|t−1 −KtΥt|t−1

)
+KtΥt (6)

for Υt the vector of variables observed by time t. Υt includes variables that are known at

time t, which includes the predictors, target and proxies. The predictors xt depend on F t,

the target yt depends on F t−1 and the proxies may depend on either F t or F t−1 according to

their particular timing. The first term of (6) combines information both cross-sectionally and

10This follows from Theorem 2, which shows that α̂ converges to JNΦβ.
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temporally, while the second term combines information only cross-sectionally (see Appendix

A.8 for more detail). The Kalman gain can be written

Kt =
(
P−1
t|t−1 + Ψ′R−1Ψ

)−1

ΨR−1. (7)

The matrix Ψ determines how observable variables are related to the latent factors, and

P t|t−1 is the covariance matrix of the time t state vector conditional on time t−1 information.

The vector (0′,β′) is the row of Ψ corresponding to the target variable y. Then the optimal

linear predictor of yt+h conditional on {Υt,Υt−1,Υt−2, . . .} is given by (0′,β′)Πt|t.

Consider what it means to ignore the components that temporally pool information. This

affects the parts of (6) and (7) that are conditioned on past information by setting Πt|t−1 and

Υt|t−1 to their unconditional mean of zero. Moreover, the idea that past information gives no

information is expressed by an arbitrarily large P t|t−1, which implies that P−1
t|t−1 vanishes.

Restricting the Kalman filter’s information set to no longer temporally pool information

delivers

Πt|t =
(
Ψ′R−1Ψ

)−1
Ψ′R−1Υt (8)

yt+h|t = β′F t|t. (9)

Equations (8) and (9) give the restricted Kalman filter’s prediction of yt+h conditional on

Υt.

Watson and Engle’s (1983) discussion of the EM algorithm demonstrates that the maxi-

mum likelihood parameter estimates of Ψ may be obtained from GLS regressions (see Ap-

pendix A.8 for more detail) in analogy to our first pass coefficient estimates.

The predictive factor F̂ t from our second pass regression is comparable to Πt|t in (6).

By (8), the factor estimate Πt|t is a GLS regression of Υt on Ψ using the observation

equations’ error covariance matrix R as the weighting matrix. Finally, our third stage

predictive regression is the precise analogue of equation (9). Therefore, the 3PRF can be

viewed as similar to an implementation of a restricted Kalman that uses OLS in place of GLS,

replaces unobserved factors with observable proxies, and shuts down the temporal pooling

of past information. Crucially, the 3PRF retains the Kalman filter’s cross-sectional signal

extraction by least squares. In effect, large cross section asymptotics in the 3PRF substitute

for the Kalman filter’s time aggregation.
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3.3 Partial Least Squares

The method of partial least squares, or PLS (Wold (1975), described in Appendix A.9), is

a special case of the three-pass regression filter. In particular, partial least squares forecasts

are identical to those from the 3PRF when (i) the predictors are demeaned and variance-

standardized in a preliminary step, (ii) the first two regression passes are run without con-

stant terms and (iii) proxies are automatically selected. As an illustration, consider the case

where a single predictive index is constructed from the partial least squares algorithm. As-

sume, for the time being, that each predictor has been previously standardized to have mean

zero and variance one. Following the construction of the PLS forecast given in Appendix

A.9 we have

1. Set φ̂i = x′iy, and Φ̂ = (φ̂1, ..., φ̂N)′

2. Set ût = x′tΦ̂, and û = (û1, ..., ûT )′

3. Run a predictive regression of y on û.

Constructing the forecast in this manner may be represented as a one-step estimator

ŷPLS = XX ′y(y′XX ′XX ′y)−1y′XX ′y

which upon inspection is identical to the 1-automatic-proxy 3PRF forecast when constants

are omitted from the first and second passes. Repeating the comparison of 3PRF and PLS

when constructing additional predictive factors under conditions (i)-(iii) shows that this

equivalence holds more generally.

How do the methodological differences between the auto-proxy 3PRF and PLS embodied

by conditions (i)-(iii) affect forecast performance? First, since both methods (like PCR as

well) lack scale-invariance, they each work with variance-standardized predictors. For PLS,

the demeaning of predictors and omission of a constant in first pass regressions offset each

other and produce no net difference versus the auto-proxy 3PRF. The primary difference

therefore lies in the estimation of a constant in the second stage cross section regression

of the auto-proxy 3PRF. A simple example in the context of the underlying factor model

assumptions of this paper help identify when estimating a constant in cross section regressions

is useful. Consider the special case of Assumption 1 in which Kf = 1 and Kg = 1, the

predictors and factors have mean zero, and the relevant factor’s loadings are known. In this

case, xit = φi1ft + φi2gt + εit, and the second stage population regression of xit on φi1 when

including a constant yields a slope estimate of f̂t = ft + gt
Cov(φi1,φi2)
V ar(φi1)

, which reduces to ft
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by Assumption 2.2. The slope estimate omitting the constant is f̂t = ft + gt
E[φi1φi2]

E[φ2i1]
. This

is an error-ridden version of the true target-relevant factor, and thus can produce inferior

forecasts.

The most important distinction vis-à-vis PLS is the flexibility afforded by 3PRF. As

discussed in Section 2.5, the three-pass filter allows the econometrician to select proxies for

latent factors on the basis of economic theory, a feature which has no PLS analogue.

Because PLS is a special case of our methodology, the asymptotic theory we have devel-

oped for the 3PRF applies directly to PLS estimates under the minor modifications discussed

above. These include treating basic model components (factors and predictors) as mean zero

and omitting constants from first and second pass regressions (that is, replace each J matrix

with the conformable identity matrix). Our results therefore provide a means of conducting

inference when applying PLS. To the best of our knowledge, our joint N and T asymptotics

are new results for the PLS literature.

4 Simulation Evidence

To assess the finite sample accuracy of the theoretical asymptotic results derived above we

conduct a series of Monte Carlo experiments. First, we examine the accuracy of 3PRF fore-

casts relative to the infeasible best forecast. The data are generated according to Assumption

1 with Kf =1, 2 or 3 and Kg =0, 1 or 3. We use cross section and time dimensions between

25 and 500. Factors, loadings and shocks are drawn from a standard normal distribution.

We begin by comparing the relative forecasting performance of PCR and the 3PRF. We

report the ratio of the R2 obtained by either method to the infeasible best R2, which is

set equal to 50%. For large N and T , Theorem 1 states that this ratio should be close to

one for the 3PRF when we estimate the correct number of relevant factors. The rows of

Table 3 use PCL to denote the forecast using L principal components and 3PRFL to denote

the L-automatic-proxy 3PRF forecast. Across 1000 simulations, small sample estimates are

in line with the consistency results proved above. The 3PRF R2 is close to the infeasible

best as signified by ratios near one in all cases. In contrast, the performance of principal

components forecasts deteriorates substantially in the presence of irrelevant factors, as our

earlier arguments would suggest.

Our next experiment evaluates predictive coefficient estimates in addition to the forecasts

themselves. Our analysis here focuses on the accuracy of finite sample approximations based

on the asymptotic distributions we have derived. For each Monte Carlo draw, we compute

estimates for ŷ, α̂ and β̂. Then we standardize each estimate in accordance with Theorems
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Table 3: Simulated Forecast Performance, Relative to Infeasible Best

N = 25 N = 100 N = 100 N = 500 N = 25 N = 100 N = 100 N = 500
T = 70 T = 200 T = 500 T = 100 T = 70 T = 200 T = 500 T = 100

2 Relevant, 0 Irrelevant 3 Relevant, 3 Irrelevant
PC1 0.5891 0.6236 0.5962 0.6576 PC1 0.2425 0.1906 0.1404 0.2434
3PRF1 0.9255 0.9790 0.9805 1.0038 3PRF1 0.8227 0.9064 0.9232 0.9218

PC2 0.9275 0.9916 0.9854 1.0003 PC2 0.5618 0.4687 0.4046 0.5735
3PRF2 1.0379 1.0311 1.0018 1.1016 3PRF2 0.9802 1.0045 0.9933 1.0518

1 Relevant, 1 Irrelevant
PC1 0.6118 0.5843 0.5573 0.6731 PC3 0.7325 0.6993 0.6086 0.7633
3PRF1 0.9219 0.9815 0.9785 0.9961 3PRF3 1.0487 1.0330 1.0043 1.1215

PC2 0.9346 0.9848 0.9882 1.0070 PC6 0.9592 1.0038 0.9953 1.0285
3PRF2 1.0390 1.0234 1.0030 1.1002

Notes: Forecast R2 relative to infeasible best, median across 1000 simulations. PCL denotes the forecast
using L principal components; 3PRFL denotes the L-automatic-proxy 3PRF forecast.

3, 4 and 5 by subtracting off the theoretical adjustment term and dividing by the respective

asymptotic standard error estimates. According to the theory presented in Section 2, these

standardized estimates should follow a standard normal distribution for large N and T .

For each estimator (corresponding to Figures 1-3) we plot the distribution of standardized

estimates across simulations (solid line) versus the standard normal pdf (dashed line). The

four panels of each figure correspond to N = 100, T = 100 and N = 500, T = 500 in the

cases that (i) there is a single relevant factor and (ii) there is one relevant and one irrelevant

factor.

These results show that the standard normal distribution successfully describes the finite

sample behavior of these estimates, consistent with the results in Section 2. In all cases

but one we fail to reject the standard normal null hypothesis for standardized estimates.

The exception occurs for β̂ when N = 100 and T = 100, which demonstrates a minor

small sample bias (Figure 3, upper right). This bias vanishes when the sample size increases

(Figure 3, lower right). The simulated coverage rates of a 0.95 confidence interval for ŷt+1 are

also well behaved. For N = 100 and T = 100 the simulated coverage is 0.945 when there is

no irrelevant factor and 0.94 when an irrelevant factor exists. For N = 500 and T = 500 the

simulated coverage is 0.947 and 0.949, respectively. Altogether, simulations provide evidence
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N = 100, T = 100, Kf = 1, Kg = 0 N = 100, T = 100, Kf = 1, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

N = 500, T = 500, Kf = 1, Kg = 0 N = 500, T = 500, Kf = 1, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

Figure 1: Simulated Distribution, ŷt+1

Notes: 5000 simulations.

that the 3PRF accurately estimates the infeasible best forecasts and predictive coefficients,

and that its theoretical asymptotic distributions accurately approximate the finite sample

distributions for 3PRF estimates.

5 Empirical Evidence

Here we report the results of two separate empirical investigations. In the first empirical

investigation, we forecast macroeconomic aggregates using a well-known panel of quarterly

macroeconomic variables. In the second empirical investigation we use a factor model to re-

late individual assets’ price-dividend ratios to market returns and aggregate dividend growth.

We use the automatic-proxy 3PRF and compare its performance to the forecast accuracy of

PCR and OLS. In the macroeconomic investigation we additionally consider the usefulness
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N = 100, T = 100, Kf = 1, Kg = 0 N = 100, T = 100, Kf = 1, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

N = 500, T = 500, Kf = 1, Kg = 0 N = 500, T = 500, Kf = 1, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

Figure 2: Simulated Distribution, α̂
Notes: 5000 simulations.

theory-motivated proxies in forecasting inflation.11 Throughout this section, the in-sample

R2 we report is the standard, centered coefficient of determination. Out-of-sample R2 is the

ratio of explained out-of-sample variance to total out-of-sample variance around the training

sample mean (see, for example, Goyal and Welch (2008)).

5.1 Macroeconomic Forecasting

We explore the forecastability of macroeconomic aggregates based on a large number of

potential predictor variables. To maintain comparability to the literature, we take as our

predictors a set of 108 macroeconomic variables compiled and filtered by Stock and Watson

(2011). Variants of this data set have been used by those authors, as well as by Bai and

11Kelly and Pruitt (2011) consider in detail the usefulness of using theory-motivated proxies to forecast
market aggregates using price-dividend ratios, and so we omit that analysis from our second investigation.

24



N = 100, T = 100, Kf = 1, Kg = 0 N = 100, T = 100, Kf = 1, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

N = 500, T = 500, Kf = 1, Kg = 0 N = 500, T = 500, Kf = 1, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

Figure 3: Simulated Distribution, β̂
Notes: 5000 simulations.

Ng (2008, 2009) and Ludvigson and Ng (2009). Any variable that we eventually target is

removed from the set of predictors.12

Before forecasting each target, we first transform the data by partialing the target and

predictors with respect to a constant and four lags of the target, as in the studies cited

above. This generates the following variables:

ÿt+1 = yt+1 − Ê(yt+1|yt, yt−1, yt−2, yt−3)

ẍt = xt − Ê(xt|yt, yt−1, yt−2, yt−3)

12Forecasts from the three-pass regression filter, like principal components and partial least squares, depend
on the scale of predictors, thus we standardize all predictors to have a variance of one. We also standardize
proxies if they are not automatically selected. Predictors are not demeaned since constants are estimated
within the algorithm.
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Table 4: Out-of-Sample Macroeconomic Forecasting

In-Sample Out-of-Sample

Target OLS PCR1 3PRF1 OLS PCR1 3PRF1

Output 82.31 48.18 56.23 −28.48 45.48 48.43
Consumption 78.32 13.27 43.89 −32.15 9.61 32.22
Investment 77.99 45.57 49.30 −42.89 43.60 42.20
Exports 74.93 6.57 25.44 −53.02 5.07 13.96
Imports 79.08 23.70 38.22 −51.27 19.43 29.14
Industrial Production 61.24 4.84 23.13 −143.02 2.15 8.77
Capacity Utilization 90.76 66.19 69.82 38.14 62.72 62.68
Total Hours 86.32 62.80 67.16 8.74 60.01 61.43
Total Employment 73.51 29.94 40.86 −74.39 27.08 31.65
Average Hours 74.97 25.19 37.51 −63.87 21.70 28.80
Labor Productivity 71.72 0.55 33.39 −98.04 −2.85 12.63
Housing Starts 86.09 0.33 48.76 12.56 −4.45 26.37
GDP Inflation 74.13 4.37 18.68 −74.28 3.02 −0.01
PCE Inflation 75.64 1.73 24.30 −48.32 1.14 5.81

Notes: R2 in percentage. Quarterly data from Stock and Watson (2011), 1960-2009. For each dependent
variable, we work work with data “partialed” with respect to four lags of the variable: for dependent
variable yt+1, we forecast ÿt+1 ≡ yt+1 − Ê(yt+1|yt, yt−1, yt−2, yt−3) using ẍt ≡ xt − Ê(xt|yt, yt−1, yt−2, yt−3)
as predictors. The original predictors are 108 macroeconomic variables. Cross Validation drops observations
{t − 4, . . . , t, . . . , t + 4} from parameter estimation steps, where the tth observation is (ÿt+1, ẍ

′
t)
′. Bai and

Ng’s (2002) ICp2 chooses one factor in the full sample.

where Ê(·|Ω) denotes linear projection on Ω and a constant. These residuals become our

target and predictors. Forecasting results therefore have the interpretation of performance

above and beyond that provided by a simple AR(4) forecast.

In addition to applying the 3PRF in-sample, we also perform a cross-validation out-of-

sample analysis to reduce any effect of small sample bias in our results. To construct each

period-t forecast, we run the 3PRF omitting observations for nine quarters surrounding the

forecasts. That is, the training sample drops data for periods {t− 4, ..., t− 1, t, t+ 1, ..., t+

4}. The cross-validation forecast is then constructed using parameters estimated from this

restricted data set: ŷCVt = x′t−1α̂
CV,t. This cross-validation approach, which is used in the

studies cited above, is also applied for OLS and PCR forecasts in our comparisons.13

13We focus on cross validation here to remain consistent with prior literature. A second and more stark
alternative is a pure out-of-sample analysis. For instance, our asset pricing results below consider a standard
recursive out-of-sample estimation scheme which has been well-studied in the literature (see, for example,
Clark and McCracken (2001)). Recursive out-of-sample forecast results corresponding to our macro variable
forecasts corroborate our cross-validation results and are available upon request.
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Table 4 presents our macroeconomic forecasting results. OLS displays the obvious signs of

overfit: High in-sample predictability alongside extremely poor out-of-sample performance.

In contrast, 3PRF and PCR dimension reduction techniques display notable protection from

overfit.

As part of our comparison with PCR, we estimate the number of factors among the cross

section of predictors following Bai and Ng (2002). For almost all targets, the information

criterion (ICp2) chooses one factor.

We focus our discussion on out-of-sample forecasts. There are some cases in which the

3PRF finds substantially more predictability than PCR. The 3PRF R2 is more than three

times stronger for consumption, exports, industrial production and PCE inflation. Moreover,

the 3PRF provides strong positive predictive power for labor productivity and housing starts,

while PCR fails to outperform the sample mean. In all but three cases the 3PRF improves

over PCR in out-of-sample predictability. In two of these cases, investment and capacity

utilization, the difference between PCR and the 3PRF is small. The third case is GDP

inflation, where the first principal component uncovers 3.38% predictability and the 3PRF

finds 0.37%. We explore inflation in further detail next.

5.1.1 Theory-Motivated Proxies

Section 2.5.2 discussed the potential usefulness of selecting proxies on the basis of economic

theory rather than relying on the automatic selection algorithm. In this section we use

theory-motivated proxies for the purpose of inflation forecasting. Perhaps the most basic

theory of inflation comes from the quantity theory of money

∆(Money supply)×∆(Velocity of money)

∆(Real Product)
= ∆(Price level).

This equation states that product inflation is a function of money supply growth, changes in

the velocity of money and growth in real activity. Fama (1981) tests the quantity theory by

regressing future inflation on growth in output and money supply. Here we are interested in

producing inflation forecasts that are explicable in terms of this simple model while using our

new forecasting method to exploit the wealth of available macroeconomic information. We

proxy for changes in real activity using log output growth and proxy for changes in money

supply using log growth in M1. As in Fama (1981), changes in velocity, which are inherently

difficult to quantify, serve as the error term in the forecasting relationship. Timing is aligned

so that proxies observed at time t are used to extract information from the predictors at

time t for forecasting GDP inflation at time t+ 1.
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Table 5: GDP Inflation Forecasts based on Theory-Motivated Proxies

Proxies In-Sample Out-of-Sample

Output, Money Growth 7.03 4.47
Output Growth 4.71 4.04
Money Growth 1.63 −1.26

Notes: R2 in percentage. Quarterly data from Stock and Watson (2011), 1960-2009. Forecasted variable
is GDP Inflation. See notes of Table 4 for description of “partialing” and cross-validation out-of-sample
procedure.

Table 5 contains the forecasting results using these theory-motivated proxies. Real output

is particularly useful for extracting relevant information from the predictive cross section.

Money growth by itself does little, but is incrementally useful when combined with output.

Recall from Table 4 that the first principal component is strongly related to activity

measures like output, total employment and capacity utilization. The output-proxied 3PRF

builds this relationship directly into the forecast and allows us to attribute 4% to 5% of in-

flation’s variation to a real activity factor, more than the first principal component obtained.

It also achieves a higher out-of-sample forecast R2 than achieved by the target-proxy 3PRF,

and outperforms a direct regression of GDP inflation on lagged output growth and growth

in M1.14

5.2 Forecasting Market Returns and Dividend Growth

Asset return forecastability has been extensively examined in the asset pricing literature.15

Identifying return predictability is of interest to academic researchers because it measures

the extent to which risk premia fluctuate over time, and identifying the sources of risk premia

guides development of asset pricing theory.

The present value relationship between prices, discount rates and future cash flows has

proved a valuable lens for understanding price changes. It reveals that price changes are

wholly driven by fluctuations in investors’ expectations of future returns and cash flow growth

(Campbell and Shiller (1988)). Building from the present value identity, Kelly and Pruitt

(2011) map the cross section of price-dividend ratios into the approximate latent factor

model of Assumption 1. The predictors are the cross section of log price-dividend ratios,

pdi,t = φi,0 + φ′iF t + εi,t, and the targets are log returns and log dividend growth for the

14Direct regression results in an in-sample R2 of 1.97% and out-of-sample R2 of 0.4%.
15Seminal studies include Rozeff (1984), Campbell and Shiller (1988), Fama and French (1988), Stambaugh

(1986), Cochrane (1992) and Hodrick (1992).
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aggregate market, rt+1 = βr0 + F ′tβ
r + ηrt+1 and ∆dt+1 = βd0 + F ′tβ

d + ηdt+1. This structure

motivates an exploration of the predictive content of portfolios’ price ratios for market returns

and dividend growth using dimension reduction techniques.

Our analysis here considers twenty-five price-dividend ratios of portfolios sorted by size

and book-to-market characteristics over the post-war period 1946-2009 (following Fama and

French (1993); see appendix for details of our data construction). Our out-of-sample analysis

uses a recursive procedure common to this literature16 and proceeds as follows. We split the

1946-2009 sample at 1980, using the first 35 observations as a training sample and the last

29 observations as the out-of-sample horizon. Beginning with t = 35, we estimate first-stage

factor loadings using observations {1, ..., t}. Then, for each period τ ∈ {1, ..., t}, we estimate

the time τ value of our predictor variable using the cross section of valuation ratios at τ

and first-stage coefficients (which are based on data from {1, ..., t}). We then estimate the

predictive coefficient in a third-stage forecasting regression of realized returns (or dividend

growth) for periods {2, ..., t} on our predictor from {1, ..., t− 1}. Finally, our out-of-sample

forecast of the t + 1 return is the product of the third-stage predictive coefficient and the

time t second-stage factor estimate. At time t + 1, we construct our forecast of the return

at t + 2 by repeating the entire three stage procedure using data from {1, ..., t + 1}. This

process is iterated forward each year until the entire time series has been exhausted.

Additionally we consider the results of out-of-sample cross-validation as in our macro

forecasts above. Our emphasis is on factor model parsimony, hence we focus on one-factor

and two-factor implementations of PCR and the 3PRF. We also use Bai and Ng’s (2002) ICp2

to estimate the number of factors present in the cross section of value ratios and report those

results, as well as the (average) number of PCs chosen across all periods of the out-of-sample

procedure.

For both return and dividend growth forecasts in Table 6 we find that the 3PRF provides

strong in-sample and out-of-sample forecasts using one and two factors. With one or two

factors, the 3PRF demonstrates substantially better overall performance than PCR. Seven

PCR predictive factors are selected based on the ICp2 criterion in-sample. PCR forecasts

with a high number of factors as selected by ICp2 become more competitive with two-factor

3PRF forecasts. Overall, the 3PRF demonstrates the ability to extract leading indicators

with strong predictive power.

16See Goyal and Welch (2008).
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Table 6: Out-of-Sample Market Return and Dividend Growth Forecasting

Returns Dividend Growth
IS OOS-R OOS-CV IS OOS-R OOS-CV

OLS 70.77 −314.83 −22.49 72.40 −111.38 −31.18

PC1 6.20 −6.35 −6.48 0.09 −7.73 −11.80
3PRF1 15.01 17.91 2.85 26.93 12.84 −0.05

PC2 9.30 −3.05 −6.12 0.11 −10.34 −17.85
3PRF2 31.29 18.44 7.98 43.42 34.34 17.41

PC-IC 36.12 22.23 7.65 41.02 25.79 13.88
memo: 7.00 5.46 6.67 7.00 5.46 6.67

Notes: R2 in percent. Annual data 1946–2009, from CRSP. Twenty-five size/book-to-market sorted portfolios
of dividend-paying stocks. Out-of-sample recursive (OOS-R) forecasts begin in 1983. IS denotes In-sample
forecasts. Out-of-sample cross-validation (OOS-CV) forecasts leave out 3 observations from the estimation
subsample for each period. All forecasts are one year ahead: OLS denotes the forecast from simple linear
projection of the target on the twenty-five predictors; PCL denotes the forecast using L principal components;
3PRFL denotes the L-automatic-proxy 3PRF forecast. PC-IC denotes the number of PCs are chosen by
Bai and Ng’s (2002) ICp2 for each sample; memo displays the average number of factors chosen across the
subsamples entering into OOS results.

6 Conclusion

This paper has introduced a new econometric technique called the three-pass regression filter

which is effective for forecasting in a many-predictor environment. The key feature of the

3PRF is its ability to selectively identify the subset of factors that influences the forecast

target while discarding factors that are irrelevant for the target but that may be pervasive

among predictors.

We prove that 3PRF forecasts converge in probability to the infeasible best forecast as

N and T simultaneously become large. We also derive the limiting distributions of forecasts

and estimated predictive coefficients.

We compare our method to principal components regressions, which condenses cross sec-

tion information according to covariance within the predictors. The 3PRF, on the other

hand, condenses cross section information according to covariance between predictors and

the forecast target. The intuition behind the 3PRF is further illustrated through compar-

isons with constrained least squares, the Kalman filter, and partial least squares. Finally,

we demonstrate its efficacy for forecasting in Monte Carlo experiments and empirical appli-
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cations from the macroeconomics and finance literature.
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A Appendix

A.1 Assumptions

Assumption 1 (Factor Structure). The data are generated by the following:

xt = φ0 + ΦF t + εt yt+h = β0 + β′F t + ηt+h zt = λ0 + ΛF t + ωt

X = ιφ′0 + FΦ′ + ε y = ιβ0 + Fβ + η Z = ιλ′0 + FΛ′ + ω

where F t = (f ′t, g
′
t)
′, Φ = (Φf ,Φg), Λ = (Λf ,Λg), and β = (β′f ,0

′)′ with |βf | > 0. Kf > 0 is the
dimension of vector f t, Kg ≥ 0 is the dimension of vector gt, L > 0 is the dimension of vector zt, and
K = Kf +Kg.

Assumption 2 (Factors, Loadings and Residuals). Let M <∞. For any i, s, t

1. E‖F t‖4 < M , T−1
∑T
s=1 F s

p−−−−→
T→∞

µ and T−1F ′JTF
p−−−−→

T→∞
∆F

2. E‖φi‖4 ≤M , N−1
∑N
j=1 φj

p−−−−→
T→∞

φ̄, N−1Φ′JNΦ
p−−−−→

N→∞
P and N−1Φ′JNφ0

p−−−−→
N→∞

P 1
17

3. E(εit) = 0,E|εit|8 ≤M

4. E (ωt) = 0,E||ωt||4 ≤M,T−1/2
∑T
s=1 ωs = Op(1) and T−1ω′JTω

p−−−−→
N→∞

∆ω

5. Et(ηt+h) = E(ηt+h|yt, Ft, yt−1, Ft−1, ...) = 0, E(η2
t+h) = δη <∞ for any h > 0, and ηt is independent

of φi(m) and εi,s.

Assumption 3 (Dependence). Let x(m) denote the mth element of x. For M <∞ and any i, j, t, s,m1,m2

1. E(εitεjs) = σij,ts, |σij,ts| ≤ σ̄ij and |σij,ts| ≤ τts, and

(a) N−1
∑N
i,j=1 σ̄ij ≤M

(b) T−1
∑T
t,s=1 τts ≤M

(c) N−1
∑
i,s |σii,ts| ≤M

(d) N−1T−1
∑
i,j,t,s |σij,ts| ≤M

2. E
∣∣∣N−1/2T−1/2

∑T
s=1

∑N
i=1 [εisεit − E (εisεit)]

∣∣∣2 ≤M
3. E

∣∣∣T−1/2
∑T
t=1 Ft(m1)ωt(m2)

∣∣∣2 ≤M
4. E

∣∣∣T−1/2
∑T
t=1 ωt(m1)εit

∣∣∣2 ≤M .

Assumption 4 (Central Limit Theorems). For any i, t

1. N−1/2
∑N
i=1 φiεit

d−→ N (0,ΓΦε), where ΓΦε = plimN→∞N
−1
∑N
i,j=1 E

[
φiφ

′
jεitεjt

]
2. T−1/2

∑T
t=1 F tηt+h

d−→ N (0,ΓFη), where ΓFη = plimT→∞T
−1
∑T
t=1 E

[
η2
t+hF tF

′
t

]
> 0

3. T−1/2
∑T
t=1 F tεit

d−→ N (0,ΓFε,i), where ΓFε,i = plimT→∞T
−1
∑T
t,s=1 E

[
F tF

′
sεitεis

]
> 0.

Assumption 5 (Normalization). P = I, P 1 = 0 and ∆F is diagonal, positive definite, and each diagonal
element is unique.

Assumption 6 (Relevant Proxies). Λ = [ Λf 0 ] and Λf is nonsingular.

17‖φi‖ ≤M can replace E‖φi‖4 ≤M if φi is non-stochastic.
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A.2 Auxiliary Lemmas

Lemma 1. Let Assumptions 1-4 hold. Then for all s, t, i,m,m1,m2

1. E
∣∣∣(NT )−1/2

∑
i,s Fs(m) [εisεit − σii,st]

∣∣∣2 ≤M
2. E

∣∣∣(NT )−1/2
∑
i,s ωs(m) [εisεit − σii,st]

∣∣∣2 ≤M

3. N−1/2T−1/2
∑
i,t εit = Op(1)

N−1/2
∑
i εit = Op(1),

T−1/2
∑
t εit = Op(1)

4. T−1/2
∑
t ηt+h = Op(1),

5. T−1/2
∑
t εitηt+h = Op(1)

6. N−1/2T−1/2
∑
i,t εitηt+h = Op(1)

7. N−1T−1/2
∑
i,t φi(m1)εitFt(m2) = Op(1)

8. N−1T−1/2
∑
i,t φi(m1)εitωt(m2) = Op(1)

9. N−1/2T−1
∑
i,t φi(m)εitηt+h = Op(1)

10. N−1T−1/2
∑
i,s εisεit = Op(δ

−1
NT )

11. N−1T−3/2
∑
i,s,t εisεitηt+h = Op(δ

−1
NT )

12. N−1T−1/2
∑
i,s Fs(m)εisεit = Op(δ

−1
NT )

13. N−1T−1/2
∑
i,s ωs(m)εisεit = Op(δ

−1
NT )

14. N−1T−1
∑
i,s,t Fs(m)εisεitηt+h = Op(1)

15. N−1T−1
∑
i,s,t ωs(m)εisεitηt+h = Op(1)

The stochastic order is understood to hold as N,T →∞ and δNT ≡ min(
√
N,
√
T ).

Proof : Item 1: Note that

E

∣∣∣∣∣∣(NT )−1/2
∑
i,s

Fs(m) [εisεit − σii,st]

∣∣∣∣∣∣
2

= E

(NT )−1
∑
i,j,s,u

Fs(m)Fu(m) [εisεit − σii,st] [εjuεjt − σjj,ut]


≤ max

s,u
E|Fs(m)Fu(m)|E

(NT )−1
∑
i,j,s,u

[εisεit − σii,st] [εjuεjt − σjj,ut]


≤ max

s,u
E|Fs(m)|E|Fu(m)|E

∣∣∣∣∣∣(NT )−1/2
∑
i,s

[εisεit − σii,st]

∣∣∣∣∣∣
2

<∞

by Assumptions 2.1 and 3.2. The same argument applies to Item 2 using Assumptions 2.4 and 3.1

Item 3: The first part follows from

E
∣∣∣N−1/2T−1/2

∑
i,t εit

∣∣∣2 = N−1T−1
∑
i,j,t,s σij,ts ≤ N−1T−1

∑
i,j,t,s |σij,ts| ≤ M by Assumption 3.1. The

second and third parts of Item 3 follow similar rationale.

Item 4 follows from E
∣∣T−1/2

∑
t ηt+h

∣∣2 = T−1
∑
t E[η2

t+h] = Op(1) by Assumption 2.5.

Item 5: Note that E
∣∣T−1/2

∑
t εitηt+h

∣∣2 = T−1
∑
t σii,ttE[η2

t+h] ≤ T−1
∑
t E[η2

t+h]σ̄ii = Op(1) by As-
sumption 2.5 and 3.1.

Item 6: Note that E
∣∣∣N−1/2T−1/2

∑
i,t εitηt+h

∣∣∣2 = N−1T−1
∑
i,j,t σij,ttE[η2

t+h] ≤ T−1
∑
t E[η2

t+h]N−1
∑
i,j σ̄ij =

Op(1) by Assumption 2.5 and 3.1.

Item 7 is bounded by
(
N−1

∑
i φi(m1)2

)1/2 (
N−1

∑
i

[
T−1/2

∑
t εitFt(m2)

]2)1/2

= Op(1) by Assump-

tions 2.2 and 4.3. Item 8 follows the same rationale using Assumptions 2.2 3.4.

Item 9 is bounded by
(
T−1

∑
t η

2
t+h

)1/2 (
T−1

∑
t

[
N−1/2

∑
i φi(m)εit

]2)1/2

= Op(1) by Assumptions 2.5

and 4.1.

Item 10: N−1T−1/2
∑
i,s[εisεit−σii,st] +T−1/2N−1

∑
i,s σii,st = Op(N

−1/2) +Op(T
−1/2) by Assumption

3.2 and 3.1.
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Item 11: By Item 10 and Assumption 2.5,

N−1T−3/2
∑
i,s,t εisεitηt+h ≤

(
T−1

∑
t η

2
t+h

)1/2(
T−1

∑
t

[
N−1T−1/2

∑
i,s εisεit

]2)1/2

= Op(δ
−1
NT ).

Item 12: First, we have

N−1T−1/2
∑
i,s Fs(m)εisεit = N−1/2

(
N−1/2T−1/2

∑
i,s Fs(m)[εisεit − σii,st]

)
+T−1/2

(
N−1

∑
i,s Fs(m)σii,st

)
.

By Lemma Item 1 the first term isOp(N
−1/2). Because E

∣∣∣N−1
∑
i,s Fs(m)σii,st

∣∣∣ ≤ N−1 maxs E|Fs(m)|
∑
i,s |σii,st| =

Op(1) by Assumption 3.1, the second term is Op(T
−1/2). The same argument applies to Item 13 using Item

2.

Item 14: By Assumption 4.3 and Item 5,

N−1T−1
∑
i,s,t Fs(m)εisεitηt+h ≤

(
N−1

∑
i

[
T−1/2

∑
t εitηt+h

]2)1/2 (
N−1

∑
i

[
T−1/2

∑
s Fs(m)εis

]2)1/2

=

Op(1). The same argument applies to Item 15 using Assumption 3.4 and Item 5.

QED

Lemma 2. Let Assumptions 1-4 hold. Then

1. T−1/2F ′JTω = Op (1)

2. T−1/2F ′JTη = Op (1)

3. T−1/2ε′JTη = Op (1)

4. N−1/2ε′tJNΦ = Op (1)

5. N−1T−1Φ′JNε
′JTF = Op(δ

−1
NT )

6. N−1T−1/2Φ′JNε
′JTω = Op(1)

7. N−1/2T−1ΦJNε
′JTη = Op (1)

8. N−1T−3/2F ′JTεJNε
′JTF = Op

(
δ−1
NT

)
9. N−1T−3/2ω′JTεJNε

′JTF = Op

(
δ−1
NT

)
10. N−1T−3/2ω′JTεJNε

′JTω = Op

(
δ−1
NT

)
11. N−1T−1/2F ′JTεJNεt = Op

(
δ−1
NT

)
12. N−1T−1/2ω′JTεJNεt = Op

(
δ−1
NT

)
13. N−1T−3/2η′JTεJNε

′JTF = Op

(
δ−1
NT

)
14. N−1T−3/2η′JTεJNε

′JTω = Op(δ
−1
NT )

The stochastic order is understood to hold as N,T → ∞, stochastic orders of matrices are understood to
apply to each entry, and δNT ≡ min(

√
N,
√
T ).

Proof :

Item 1: T−1/2F ′JTω = T−1/2
∑
t F tω

′
t − (T−1

∑
t F t)(T

−1/2
∑
t ω
′
t) = Op(1) by Assumptions 2.1, 2.4

and 3.3.

Item 2: T−1/2F ′JTη = T−1/2
∑
t F tηt+h − (T−1

∑
t F t)(T

−1/2
∑
t ηt+h) = Op(1) by Lemma 1.4 and

Assumptions 2.1 and 4.2.

Item 3: Follows directly from Lemma 1.5 and 1.6 and Assumption 2.3.

Item 4 has mth element N−1/2
∑
i εitφi(m) − (N−1/2

∑
i εit)(N

−1
∑
i φi(m)) = Op(1) by Assumptions

2.2, 2.3 4.1 and Lemma 1.3.

Item 5 is a K ×K matrix with generic (m1,m2) element18

N−1T−1
∑
i,t

φi(m1)Ft(m2)εit −N−2T−1
∑
i,j,t

φi(m1)Ft(m2)εjt

−N−1T−2
∑
j,s,t

Fs(m2)φj(m1)εjt +N−2T−2
∑
i,j,s,t

Fs(m2)φi(m1)εjt = 5.I− 5.II− 5.III + 5.IV.

5.I = Op
(
T−1/2

)
by Lemma 1.7.

18The web appendix rearranges this and following items to cleanly show the terms.
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5.II = Op(T
−1/2) sinceN−1

∑
i φi(m1) = Op(1) by Assumption 2.2 and N−1

∑
j

(
T−1/2

∑
t Ft(m2)εjt

)
=

Op(1) by Assumption 4.3.

5.III = Op(N
−1/2) since T−1

∑
s Fs(m2) = Op(1) by Assumption 2.1 and T−1

∑
t

(
N−1/2

∑
j φj(m1)εjt

)
=

Op(1) by Assumption 4.1. For the following items in this lemma’s proof we use the argument here and in
Item 5.II without further elaboration except to change the referenced assumption or lemma items.

5.IV = Op
(
T−1/2N−1/2

)
by Assumption 2.1, 2.2 and Lemma 1.3.

Summing these terms, Item 5 is Op(δ
−1
NT ).

Item 6 is a K × L matrix with generic (m1,m2) element

N−1T−1/2
∑
i,t

φi(m1)ωt(m2)εit −N−2T−1/2
∑
i,j,t

φi(m1)ωt(m2)εjt

−N−1T−3/2
∑
j,s,t

ωs(m2)φj(m1)εjt +N−2T−3/2
∑
i,j,s,t

ωs(m2)φi(m1)εjt = 6.I− 6.II− 6.III + 6.IV.

6.I = Op (1) by Lemma 1.8.

6.II = Op(1) by Assumptions 2.2 and 3.4.

6.III = Op(N
−1/2) by Assumptions 2.4 and 4.1.

6.IV = Op
(
T−1/2N−1/2

)
by Assumption 2.2, 2.4 and Lemma 1.3.

Summing these terms, Item 6 is Op(1).

Item 7 has generic mth element

N−1/2T−1
∑
i,t

φi(m)εitηt+h −N−1/2T−2
∑
i,s,t

φi(m)εitηs+h

−N−3/2T−1
∑
i,j,t

φi(m)εjtηt+h +N−3/2T−2
∑
i,j,s,t

φi(m)εjtηs+h = 7.I− 7.II− 7.III + 7.IV.

7.I = Op(1) by Lemma 1.9.

7.II = Op(T
−1/2) by Assumption 4.1 and Lemma 1.4.

7.III = Op(T
−1/2) by Assumption 2.2 and Lemma 1.6.

7.IV = Op(T
−1) by Assumption 2.2 and Lemmas 1.3 and 1.4.

Summing these terms, Item 7 is Op(1).

Item 8 is K ×K with generic (m1,m2) element

N−1T−3/2
∑
i,s,t

Fs(m1)εisεitFt(m2)−N−1T−5/2
∑
i,s,t,u

Fs(m1)εisεitFu(m2)

−N−1T−5/2
∑
i,s,t,u

Fs(m1)εitεiuFu(m2) +N−1T−7/2
∑

i,s,t,u,v

Fs(m1)εitεiuFv(m2)

+N−2T−3/2
∑
i,j,s,t

Fs(m1)εisεjtFt(m2) +N−2T−5/2
∑

i,j,s,t,u

Fs(m1)εisεjtFu(m2)

+N−2T−5/2
∑

i,j,s,t,u

Fs(m1)εitεjuFu(m2)−N−2T−7/2
∑

i,j,s,t,u,v

Fs(m1)εitεjuFv(m2) = 8.I− · · · − 8.VIII.

8.I = T−1/2
(
N−1

∑
i,s,t

(
T−1/2

∑
s Fs(m1)εis

) (
T−1/2

∑
t Ft(m2)εit

))
= Op(T

−1/2) by Assumption 4.3.

8.II = Op(δ
−1
NT ) by Assumption 2.1 and Lemma 1.12. Item 8.III is identical.

8.IV = Op(δ
−1
NT ) by Assumption 2.1 and Lemma 1.10.
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8.V = Op(T
−1/2) by Assumption 4.3.

8.VI = Op(N
−1/2T−1/2) by Assumptions 2.1 and 4.3 and Lemma 1.3. Item 8.VII is identical.

8.VIII = Op(N
−1T−1/2) by Assumption 2.1 and Lemma 1.3.

Summing these terms, we have Item 8 is Op

(
δ−1
NT

)
.

Items 9 and 10 follow the same argument as Item 8 but replace where appropriate ws(m) for Fs(m),
Lemma 1.13 for 1.12 and Assumption 3.4 for 4.3. Substituting this way implies Items 9 and 10 are no larger
than Op

(
δ−1
NT

)
.

Item 11 has generic mth element given by

N−1T−1/2
∑
i,s

Fs(m)εisεit −N−2T−1/2
∑
i,j,s

Fs(m)εisεjt

−N−1T−3/2
∑
i,s,u

Fs(m)εiuεit +N−2T−3/2
∑
i,j,s,u

Fs(m)εiuεjt = 11.I− 11.II− 11.III + 11.IV.

11.I = Op(δ
−1
NT ) by Lemma 1.12.

11.I = Op(N
−1/2) by Assumption 4.3 and Lemma 1.3.

11.III = Op(δ
−1
NT ) by Assumption 2.1 and Lemma 1.10.

11.IV = Op(N
−1) by Assumption 2.1 and Lemma 1.3.

Summing these terms, we have Item 11 is Op

(
δ−1
NT

)
.

Item 12 follows nearly the same argument as Item 11, but replaces ws(m) for Fs(m) and Assumption 3.4
for 4.3. Substituting this way implies that Item 12 is Op(δ

−1
NT ).

Item 13 has mth element

N−1T−3/2
∑
i,s,t

Fs(m)εisεitηt+h −N−1T−3/2
∑
i,s,t,u

Fs(m)εisεitηu+h

N−1T−5/2
∑
i,s,t,u

Fs(m)εitεiuηu+h +N−1T−7/2
∑

i,s,t,u,v

Fs(m)εitεiuηv+h

−N−2T−3/2
∑
i,j,s,t

Fs(m)εisεjtηt+h +N−2T−5/2
∑

i,j,s,t,u

Fs(m)εisεjtηu+h

+N−2T−5/2
∑

i,j,s,t,u

Fs(m)εitεjuηu+h −N−2T−7/2
∑

i,j,s,t,u,v

Fs(m)εitεjuηv+h = 13.I− · · · − 13.VIII.

13.I = Op(T
−1/2) by Lemma 1.14.

13.II = Op(T
−1/2δ−1

NT ) by Lemmas 1.12 and 1.4.

13.III = Op(δ
−1
NT ) by Assumption 2.1 and Lemma 1.11.

13.IV = Op(T
−1/2δ−1

NT ) by Assumption 2.1 and Lemmas 1.3 and 1.4.

13.V = Op(N
−1/2T−1/2) by Assumption 4.3 and Lemma 1.6.

13.VI = Op(N
−1/2T−1) by Assumption 4.3 and Lemmas 1.3 and 1.4.

13.VII = Op(N
−1T−1/2) by Assumption 2.1 and Lemmas 1.3 and 1.6.

13.VIII = Op(N
−1T−1/2) by Assumption 2.1 and Lemmas 1.3 and 1.4.

Summing these terms, Item 13 is Op(δ
−1
NT ).

Item 14 follows the same argument as Item 13 replacing Lemma 1.15 for 1.14, Lemma 1.13 for 1.12 and
Assumption 3.4 for 4.3. Substituting this way implies that Item 14 is Op(δ

−1
NT ).

QED

39



A.3 Estimators

Proposition 1. The three pass regression filter forecast of y using cross section X and proxies Z is

ŷ = ιȳ + JTXJNX
′JTZ

(
Z ′JTXJNX

′JTXJNX
′JTZ

)−1
Z ′JTXJNX

′JTy. (A1)

where ȳ is the sample mean of y. The second stage factor estimate used to construct this forecast is

F̂
′

= Z ′JTZ
(
Z ′JTXJNX

′JTZ
)−1

Z ′JTXJNX
′. (A2)

The third stage predictive coefficient estimate is

β̂ =
(
Z ′JTZ

)−1
Z ′JTXJNX

′JTZ
(
Z ′JTXJNX

′JTXJNX
′JTZ

)−1
Z ′JTXJNX

′JTy. (A3)

The implied predictive coefficient on the cross section of predictors is

α̂ = JNX
′JTZ

(
Z ′JTXJNX

′JTXJNX
′JTZ

)−1
Z ′JTXJNX

′JTy. (A4)

Proof : The first stage regression is

X = ιΦ̃0 +ZΦ̃
′
+ ε̃

and the first stage coefficient estimate of Φ̃
′

is

Φ̂
′

=
(
Z ′JTZ

)−1
Z ′JTX.

The second stage regression is

X = ιφ̈0,t + F̈ Φ̂
′
+ ε̈

and the second stage coefficient estimate of F̈
′

is

F̂
′

=
(
Φ̂
′
JN Φ̂

)−1

Φ̂
′
JNX

′

=
{(
Z ′JTZ

)−1
Z ′JTXJNX

′JTZ
(
Z ′JTZ

)−1
}−1 (

Z ′JTZ
)−1

Z ′JTXJNX
′

= Z ′JTZ
(
Z ′JTXJNX

′JTZ
)−1

Z ′JTXJNX
′.

The third stage regression is
y = ιβ̆0 + F̂ β̆ + η̆

and the third stage coefficient estimate of β̆ is

β̂ =
(
F̂
′
JT F̂

)−1

F̂
′
JTy

′

=
{
Z ′JTZ

(
Z ′JTXJNX

′JTZ
)−1

Z ′JTXJNX
′JTXJNX

′JTZ
(
Z ′JTXJNX

′JTZ
)−1

Z ′JTZ
}−1

×Z ′JTZ
(
Z ′JTXJNX

′JTZ
)−1

Z ′JTXJNX
′JTy

=
(
Z ′JTZ

)−1
Z ′JTXJNX

′JTZ
(
Z ′JTXJNX

′JTXJNX
′JTZ

)−1
Z ′JTXJNX

′JTy
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with intercept estimate ιβ̂0 = T−1ιι′
(
y − F̂ β̂

)
= ιȳ − T−1ιι′F̂ β̂. The corresponding Y forecast

ŷ = ιȳ + JT F̂ β̂

= ιȳ + JTXJNX
′JTZ

(
Z ′JTXJNX

′JTZ
)−1

Z ′JTZ
(
Z ′JTZ

)−1
Z ′JTXJNX

′JTZ

×
(
Z ′JTXJNX

′JTXJNX
′JTZ

)−1
Z ′JTXJNX

′JTy

= ιȳ + JTXJNX
′JTZ

(
Z ′JTXJNX

′JTXJNX
′JTZ

)−1
Z ′JTXJNX

′JTy

which may be rewritten ŷ = ιȳ + JTXα̂.

QED

Proposition 2. The three-pass regression filter’s implied N -dimensional predictive coefficient, α̂, is the
solution to

arg min
α0,α
||y − α0 −Xα||

subject to (I − JNX ′JTZ(Z ′JTXJNX
′JTZ)−1Z ′JTXJN )α = 0.

Proof: By the Frisch-Waugh-Lovell Theorem, the value of α that solves this problem is the same as the
value that solves the least squares problem for ||JTy − JTX||. From Amemiya (1985, Section 1.4), the
estimate of α that minimizes the sum of squared residuals (JTy − JTXα)′(JTy − JTXα) subject to the
constraint Q′α = c is found by

R(R′X ′JTXR)−1R′X ′JTy + [I −R(R′X ′JTXR)−1R′X ′JTX]Q(Q′Q)−1c

for R such that R′Q = 0 and [ Q R ] is nonsingular. In our case,

c = 0 and Q = (I − JNX ′JTZ(Z ′JTXJNX
′JTZ)−1Z ′JTXJN ),

hence we can let R = JNX
′JTZ and the result follows.

QED

A.4 Probability Limits and Forecast Consistency

Lemma 3. Let Assumptions 1-4 hold. Then the probability limits of Φ̂ and F̂ t are

Φ̂
p−−−−→

T→∞

(
Λ∆FΛ′ + ∆ω

)−1
Λ∆FΦ′

and
F̂ t

p−−−−−→
T,N→∞

(
Λ∆FΛ′ + ∆ω

) (
Λ∆FP∆FΛ′

)−1
(Λ∆FP 1 + Λ∆FPF t) .

Proof : From Proposition 1, for any t the second stage 3PRF regression coefficient is

F̂ t = T−1Z ′JTZ
(
N−1T−2Z ′JTXJNX

′JTZ
)−1

N−1T−1Z ′JTXJNxt

= F̂AF̂
−1

B F̂C,t.

We handle each of these three terms individually.

F̂A = T−1Z ′JTZ

= Λ
(
T−1F ′JTF

)
Λ′ + Λ

(
T−1F ′JTω

)
+
(
T−1ω′JTF

)
Λ′ + T−1ω′JTω

p−−−−−→
T,N→∞

Λ∆FΛ′ + ∆ω.
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F̂B = N−1T−2Z ′JTXJNX
′JTZ

= Λ
(
T−1F ′JTF

) (
N−1Φ′JNΦ

) (
T−1F ′JTF

)
Λ′ + Λ

(
T−1F ′JTF

) (
N−1Φ′JNΦ

) (
T−1F ′JTω

)
+Λ

(
T−1F ′JTF

) (
N−1T−1Φ′JNεJTF

)
Λ′ + Λ

(
T−1F ′JTF

) (
N−1T−1Φ′JNεJTω

)
+Λ

(
N−1T−1F ′JTεJNΦ

) (
T−1F ′JTF

)
Λ′ + Λ

(
N−1T−1F ′JTεJNΦ

) (
T−1F ′JTω

)
+Λ

(
N−1T−2F ′JTεJNε

′JTF
)
Λ′ + Λ

(
N−1T−2F ′JTεJNε

′JTω
)

+
(
T−1ω′JTF

) (
N−1Φ′JNΦ

) (
T−1F ′JTF

)
Λ′ +

(
T−1ω′JTF

) (
N−1Φ′JNΦ

) (
T−1F ′JTω

)
+
(
T−1ω′JTF

) (
N−1T−1Φ′JNεJTF

)
Λ′ +

(
T−1ω′JTF

) (
N−1T−1Φ′JNεJTω

)
+
(
N−1T−1ω′JTεJNΦ

) (
T−1F ′JTF

)
Λ′ +

(
N−1T−1ω′JTεJNΦ

) (
T−1F ′JTω

)
+
(
N−1T−2ω′JTεJNεJTF

)
Λ′ +

(
N−1T−2ω′JTεJNεJTω

)
p−−−−−→

T,N→∞
Λ∆FP∆FΛ′.

F̂C,t = N−1T−1Z ′JTXJNxt (A5)

= Λ
(
T−1F ′JTF

) (
N−1Φ′JNφ0

)
+ Λ

(
T−1F ′JTF

) (
N−1Φ′JNΦ

)
F t + Λ

(
T−1F ′JTF

) (
N−1Φ′JNεt

)
+Λ

(
N−1T−1F ′JTεJNφ0

)
+ Λ

(
N−1T−1F ′JTεJNΦ

)
F t + Λ

(
N−1T−1F ′JTεJNεt

)
+
(
T−1ω′JTF

) (
N−1Φ′JNφ0

)
+
(
T−1ω′JTF

) (
N−1Φ′JNΦ

)
F t +

(
T−1ω′JTF

) (
N−1Φ′JNεt

)
+
(
N−1T−1ω′JTεJNφ0

)
+
(
N−1T−1ω′JTεJNΦ

)
F t +

(
N−1T−1ω′JTεJNεt

)
p−−−−−→

T,N→∞
Λ∆FP 1 + Λ∆FPF t.

Each convergence result follows from Lemma 2 and Assumptions 1-4. The final result is obtained via the
continuous mapping theorem. The result for Φ̂ proceeds similarly, using the result above for F̂A and the
fact that plimN,T→∞T

−1Z ′JTX = Λ∆FΦ′ using Lemma 2.

QED

Lemma 4. Let Assumptions 1-4 hold. Then the probability limit of estimated third stage predictive coeffi-
cients β̂ is

β̂
p−−−−−→

T,N→∞

(
Λ∆FΛ′ + ∆ω

)−1
Λ∆FP∆FΛ′

(
Λ∆FP∆FP∆FΛ′

)−1
Λ∆FP∆Fβ. (A6)

Proof : From Proposition 1, the third stage 3PRF regression coefficient is

β̂ =
(
T−1Z ′JTZ

)−1
N−1T−2Z ′JTXJNX

′JTZ

×
(
N−2T−3Z ′JTXJNX

′JTXJNX
′JTZ

)−1
N−1T−2Z ′JTXJNX

′JTy

= β̂
−1

1 β̂2β̂
−1

3 β̂4

We handle each of these three terms individually. Note that β̂1 = F̂A and β̂2 = F̂B and these probability

limits are established in Lemma 3. The expressions for β̂3 and β̂4 are more tedious and require an additional
lemma (that holds given Assumptions 1-4) which we place in the web appendix. Therefore we have that

β̂3 = N−2T−3Z ′JTXJNX
′JTXJNX

′JTZ
p−−−−−→

T,N→∞
Λ∆FP∆FP∆FΛ′

and

β̂4 = N−1T−2Z ′JTXJNX
′JTy

p−−−−−→
T,N→∞

Λ∆FP∆Fβ.
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Each convergence result follows from Lemma 2 and Assumptions 1-4. The final result is obtained via the
continuous mapping theorem.

QED

Lemma 5. Let Assumptions 1, 2 and 3 hold. Then the three pass regression filter forecast satisfies

ŷt+h
p−−−−−→

T,N→∞
β0 + µ′β + (F t − µ)′P∆FΛ′

[
Λ∆FP∆FP∆FΛ′

]−1
Λ∆FP∆Fβ. (A7)

Proof : Immediate from Proposition 1 and Lemmas 3 and 4.

QED

Theorem 1. Let Assumptions 1-6 hold. The three-pass regression filter forecast is consistent for the infeasible

best forecast, ŷt+h
p−−−−−→

T,N→∞
β0 + F ′tβ.

Proof: Given Assumptions 1, 2 and 3, Lemma 5 holds and we can therefore manipulate (A7). Partition P
and ∆F as

P =

[
P1 P12

P ′12 P2

]
, ∆F =

[
∆F,1 ∆F,12

∆′F,12 ∆F,2

]
such that the block dimensions of P and ∆F coincide. By Assumption 5, the off-diagonal blocks, P12

and ∆F,12, are zero. As a result, the first diagonal block of the term ∆FP∆FP∆F in Equation A7 is
∆F,1P1∆F,1P1∆F,1. By Assumption 6, pre- and post-multiplying by Λ = [Λf ,0] reduces the term in
square brackets to Λf∆F,1P1∆F,1P1∆F,1Λf . Similarly, P∆FΛ′ = [ΛfP1∆F,1,0]

′
and Λ∆FP∆F =

[Λf∆F,1P1∆F,1,0]. By Assumption 6, Λf is invertible and therefore the expression for ŷt+h reduces to
β0 + F ′tβ.19

QED

Corollary 1. Let Assumptions 1-5 hold. Additionally, assume that there is only one relevant factor. Then
the target-proxy three pass regression filter forecaster is consistent for the infeasible best forecast.

Proof: It follows directly from previous result by noting that the loading of y on F is β = (β1,0
′)′ with

β1 6= 0. Therefore the target satisfies the condition of Assumption 6.

QED

Theorem 2. Let α̂i denote the ith element of α̂, and let Assumptions 1-6 hold. Then for any i,

Nα̂i
p−−−−−→

T,N→∞

(
φi − φ̄

)′
β.

Proof: Rewrite α̂i = Siα̂, where Si is the (1×N) selector vector with ith element equal to one and remaining
elements zero. Expanding the expression for α̂ in Proposition 1, the first term in Siα̂ is the (1×K) matrix
SiJNΦ, which has probability limit

(
φi − φ̄

)
as N,T → ∞. It then follows directly from previous results

that
Nα̂i

p−−−−−→
T,N→∞

(
φi − φ̄

)′
∆FΛ′

(
Λ∆FP∆FP∆FΛ′

)−1
Λ∆FP∆Fβ.

Under Assumptions 5 and 6, this reduces to
(
φi − φ̄

)′
β.

QED

19This proof shows that Assumption 5 is stronger than is necessary. All we require is that P and ∆F are
block diagonal.
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Lemma 6. Define ε̂ = X − ιφ̂0 − F̂ Φ̂
′
, where φ̂0 = T−1

∑
t xt − Φ̂(T−1

∑
t F̂ t). Under Assumptions 1-6,

F̂ Φ̂
′ p−−−−−→
T,N→∞

fΦ′f and ε̂
p−−−−−→

T,N→∞
ε+ gΦ′g.

Proof : Let Sk be a K ×K selector matrix that has ones in the first Kf main diagonal positions and zeros
elsewhere. The fact that

F̂ Φ̂
′ p−−−−−→
T,N→∞

(
Λ∆FP 1 + Λ∆FPF ′

)′ (
Λ∆FP∆FΛ′

)−1
Λ∆FΦ′

follows directly from Lemma 3. By Assumptions 5 and 6, this reduces to FSkΦ
′ = fΦ′f , which also implies

the stated probability limit of ε̂.

QED

It will be useful for subsequent results to establish the asymptotic independence of F̂ t and ηt+h.

Lemma 7. Under Assumptions 1-4, plimN,T→∞T
−1
∑
t F̂ tηt+h = 0 for all h.

Proof : It suffices to show that plimN,T→∞T
−1
∑
t F̂C,tηt+h = 0 for all h, and to do so we examine each

term in Equation A5. The four terms involving φ0 becomes op(1) since each is Op(1) by Lemma 2, since
they do not possess t subscripts, and since T−1

∑
t ηt+h = op(1). By similar rationale, the four terms that

are post-multiplied by F t are op(1) since T−1
∑
t F tηt+h = op(1) by Assumption 4.3. Two of the remaining

terms depend on the expression T−1
∑
t

(
N−1Φ′JNεt

)
ηt+h, which is op(1) because∣∣∣∣∣∣T−1N−1

∑
i,t

φiεitηt+h

∣∣∣∣∣∣ ≤ N−1/2

T−1
∑
t

(
N−1/2

∑
i

φiεit

)2


1/2(
T−1

∑
t

η2
t+h

)1/2

= op(1)

The last two remaining terms depend on T−1
∑
t

(
N−1T−1ω′JTεJNεt

)
ηt+h, which is op(1) following the

same argument used to prove Lemma 2.14.

QED

A.5 Asymptotic Distributions

Lemma 8. Under Assumptions 1-4, as N,T →∞ and T/N → 0 we have

N−1T−3/2Z ′JTXJNX
′JTη

d−→ N
(
0,Λ∆FPΓFηP∆FΛ′

)
.

Proof :

N−1T−2Z ′JTXJNX
′JTη = N−1T−2ΛF ′JTFΦ′JNΦF ′JTη +N−1T−2ΛF ′JTFΦ′JNε

′JTη

+N−1T−2ω′JTFΦ′JNΦF ′JTη +N−1T−2ω′JTFΦ′JNε
′JTη +N−1T−2ΛF ′JTεJNΦF ′JTη

+N−1T−2ΛF ′JTεJNε
′JTη +N−1T−2ω′JTεJNΦF ′JTη +N−1T−2ω′JTεJNε

′JTη

= Op(T
−1/2) +Op(N

−1/2) +Op(T
−1) +Op(N

−1/2T−1) +Op(T
−1/2δ−1

NT )

+Op(T
−1/2δ−1

NT ) +Op(T
−1) +Op(T

−1/2δ−1
NT ).

As N,T → ∞ and T/N → 0, the first term is dominant and the stated asymptotic distribution obtains by
Lemma 2 and Assumption 4.2.

QED
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Theorem 3. Under Assumptions 1-6, as N,T →∞ we have

√
TN (SN∗α̂− SN∗Gαβ)

d−→ N
(
0,SN∗ΣαS

′
N∗

)
where Σα = JNΦ∆−1

F ΓFη∆
−1
F Φ′JN . Furthermore,

Âvar(SN∗α̂) = Ωα,N∗

(
1

T

∑
t

η̂2
t+h(Xt − X̄)(Xt − X̄)′

)
Ω′α,N∗

is a consistent estimator of SN∗ΣαS
′
N∗ , where

Ωα,N∗ = SN∗JN

(
1

T
X ′JTZ

)(
1

T 3N2
Z ′JTXJNX

′JTXJNX
′JTZ

)−1(
1

TN
Z ′JTXJN

)
.

Proof : Define

Gα = JN
(
T−1X ′JTZ

) (
T−3N−2Z ′JTXJNX

′JTXJNX
′JTZ

)−1 (
N−1T−2Z ′JTXJNX

′JTF
)
.

Also define SN∗ to be a (N∗ ×N) selector matrix. That is, each row of SN∗ has a single element equal to
one and remaining elements zero, no two rows are identical, the highest column index for a non-zero element
is N∗ << N , and the positions of non-zero elements are fixed and independent of N .

The first term in SN∗α̂ is the (N∗×K) matrix SN∗JNΦ, which has probability limit
(
SN∗φi − SN∗ιφ̄

)
as N,T → ∞. The asymptotic distribution and consistent variance estimator follow directly from Lemma
8 and previously derived limits, Assumptions 5 and 6, noting that η̂t+h = ηt+h + op(1) by Theorem 1, and
noting that

NSN∗α̂−NSN∗Gαβ
d
= SN∗T−1JNX

′JTZ
(
T−3N−2Z ′JTXJNX

′JTXJNX
′JTZ

)−1
T−2N−1Z ′JTXJNX

′JTη.

QED

Theorem 4. Under Assumptions 1-6, as N,T →∞ we have

√
T (ŷt+h − ỹt+h)

Qt

d−→ N (0, 1)

where ỹt+1 = ȳ + x′tGαβ and Q2
t is the tth diagonal element of 1

N2JTXÂvar(α̂)X ′JT .

Proof : The result follows directly from Theorems 2 and 3. Note that the theorem may be restated replacing

ỹt+1 with Etyt+1 since the argument leading up to Theorem 1 implies that
√
T ỹt+1

p−−−−−→
T,N→∞

Etyt+1. By

Slutsky’s theorem convergence in distribution follows, yielding the theorem statement in the paper’s text.

QED

Theorem 5. Under Assumptions 1-6, as N,T →∞ and T/N → 0 we have

√
T
(
β̂ −Gββ

)
d−→ N (0,Σβ)

where Σβ = Σ−1
z ΓFηΣ

−1
z and Σz = Λ∆FΛ′ + ∆ω. Furthermore,

Âvar(β̂) =
(
T−1F̂

′
JT F̂

)−1

T−1
∑
t

η̂2
t+h(F̂ t − µ̂)(F̂ t − µ̂)′

(
T−1F̂

′
JT F̂

)−1

is a consistent estimator of Σβ.
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Proof : Define Gβ = β̂
−1

1 β̂2β̂
−1

3

(
N−1T−2Z ′JTXJNX

′JTF
)
. The asymptotic distribution follows directly

from Lemma 8 noting that

β̂ −Gββ = β̂
−1

1 β̂2β̂
−1

3

(
N−1T−2Z ′JTXJNX

′JTη
)
.

The asymptotic covariance matrix (before employing Assumptions 5 and 6) is Σβ = ΨβΓFηΨ
′
β , where

Ψβ = Σ−1
z Λ∆FP∆FΛ′

(
Λ∆FP∆FP∆FΛ′

)−1
Λ∆FP . This expression follows from Lemma 8 and the

probability limits derived in the proof of Lemma 4. Assumptions 5 and 6 together with the derivation in the
proof of Theorem 1 reduces Σβ to the stated form.

To show consistency of Âvar(β̂), note that
√
T
(
β̂ −Gββ

)
=
(
T−1F̂

′
JT F̂

)−1

T−1/2F̂
′
JTη, which

implies that the asymptotic variance of β̂ is equal to the probability limit of(
T−1F̂

′
JT F̂

)−1

T−1F̂
′
JTηη

′JT F̂
(
T−1F̂

′
JT F̂

)−1

. (A8)

Assumption 2.5 and Lemma 7 imply that plimT,N→∞ T−1F̂
′
JTηη

′JT F̂ = plimT,N→∞T
−1
∑
t η

2
t+h(F̂ t −

µ̂)(F̂ t − µ̂)′. By Theorem 1, ηt+h = η̂t+h + op(1), which implies that Âvar(β̂) and (A8) share the same

probability limit, therefore Âvar(β̂) is a consistent estimator of Σβ .

QED

Lemma 9. Under Assumptions 1-4, as N,T →∞ we have

(i) if
√
N/T → 0, then for every t

N−1/2T−1Z ′JTXJNεt
d−→ N

(
0,Λ∆FΓΦε∆FΛ′

)
(ii) if lim inf

√
N/T ≥ τ ≥ 0, then

N−1Z ′JTXJNεt = Op(1).

Proof : From Lemma 2 we have

N−1T−1Z ′JTXJNεt = F̂ 3,t −N−1T−1Z ′JTXJN (φ0 + ΦFt)

= Λ
(
T−1F ′JTF

) (
N−1Φ′JNεt

)
+ Λ

(
N−1T−1F ′JTεJNεt

)
+
(
T−1ω′JTF

) (
N−1Φ′JNεt

)
+
(
N−1T−1ω′JTεJNεt

)
= Op(N

−1/2) +Op(δ
−1
NTT

−1/2) +Op(N
−1/2T−1/2) +Op(δ

−1
NTT

−1/2).

When
√
N/T → 0, the first term determines the limiting distribution, in which case result (i) obtains by

Assumption 4.1.

When lim inf
√
N/T ≥ τ > 0, we have T

(
N−1T−1Z ′JTXJNεt

)
= Op(1) since lim inf T/

√
N ≤ 1/τ <

∞.

QED

Define

H0 = F̂AF̂
−1

B N−1T−1Z ′JTXJNφ0 and H = F̂AF̂
−1

B N−1T−1Z ′JTXJNΦ. (A9)

Theorem 6. Under Assumptions 1-6, as N,T →∞ we have for every t

(i) if
√
N/T → 0, then √

N
[
F̂ t − (H0 +HF t)

]
d−→ N (0,ΣF )
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(ii) if lim inf
√
N/T ≥ τ ≥ 0, then

T
[
F̂ t − (H0 +HF t)

]
= Op(1)

where ΣF =
(
Λ∆FΛ′ + ∆ω

) (
Λ∆2

FΛ′
)−1

Λ∆FΓΦε∆FΛ′
(
Λ∆2

FΛ′
)−1 (

Λ∆FΛ′ + ∆ω

)
.

Proof : The result follows directly from Lemma 9, noting that F̂ t−(H0 +HF t) = F̂AF̂
−1

B N−1T−1Z ′JTXJNεt.
The asymptotic covariance matrix ΣF is found from Lemma 9, the probability limits derived in the proof of
Lemma 3, and by Assumption 5 (which sets P = I).

QED

A.6 Automatic Proxy Selection

Theorem 7. Let Assumptions 1, 2, 3, and 5 hold. Then the L-automatic-proxy three pass regression filter
forecaster of y satisfies Assumption 6 when L = Kf .

Proof: If Kf = 1, Assumption 6 is satisfied by using y has proxy (see Corollary 1).

For Kf > 1, we proceed by induction to show that the automatic proxy selection algorithm constructs
a set of proxies that satisfies Assumption 6. In particular, we wish to show that the automatically-selected
proxies have a loading matrix on relevant factors (Λf ) that is full rank, and that their loadings on irrelevant
factors are zero. We use superscript (k) to denote the use of k automatic proxies.

Denote the 1-automatic-proxy 3PRF forecast by ŷ(1). We have from Proposition 1 and Equation 1 that

r(1) = y − ŷ(1) = η + Fβ − F̂
(1)
β̂

(1)
= F

(
β −Φ′Ω(1)Fβ

)
+ η + εΩ(1)η,

where Ω(1) = JNX
′JTZ

(
Z ′JTXJNX

′JTXJNX
′JTZ

)−1
Z ′JTXJNX

′JT . For r(1), Ω(1) is con-
structed based on Z = y. Recalling that β = (β′f ,0

′)′, it follows that y has zero covariance with irrelevant

factors, so ŷ(1) also has zero covariance with irrelevant factors and therefore r(1) has population loadings of
zero on irrelevant factors. To see this, note that irrelevant factors can be represented as F [0, I]′, where the
zero matrix is Kg ×Kf and the identity matrix is dimension Kg. This, together with Assumptions 2.5 and
4.3, implies that the cross product matrix [0, I]F ′r(1) is zero in expectation.

The induction step proceeds as follows. By hypothesis, suppose we have k < Kf automatically-selected
proxies with factor loadings [Λf,k,0], where Λf,k is k × Kf and full row rank. The residual from the k-

automatic-proxy 3PRF forecast is r(k) = y − ŷ(k), which has zero population covariance with irrelevant
factors by the same argument given in the k = 1 case. It is left to show that the r(k)’s loading on relevant
factors is linearly independent of the rows of Λf,k. To this end, note that these relevant-factor loadings

take the form βf −Φ′fΩ
(k)fβf , where f = FSKf

and SKf
= [I,0]′ is the matrix that selects the first Kf

columns of the matrix that it multiplies (the form of this loading matrix follows again from β = [β′f ,0
′]′).

Also note that as part of the induction hypothesis, Ω(k) is constructed based on Z = (r(1), ..., r(k−1)).

Next, project r(k)’s relevant-factor loadings onto the column space of Λ′f,k. The residual’s loading vector

is linearly independent of Λ′f,k if the difference between it and its projection on Λ′f,k is non-zero. Calculating

this difference, we find (I −Λ′f,k(Λf,kΛ
′
f,k)−1Λf,k)

(
I −Φ′fΩ

(k)f
)
βf . Because

(
I −Φ′fΩ

(k)f
)
6= 0 with

probability one, this difference is zero only when Λ′f,k(Λf,kΛ
′
f,k)−1Λf,k = I. But the induction hypothesis

ensures that this is not the case so long as k < Kf . Therefore the difference between the r(k)’s loading vector
and its projection onto the column space of Λ′f,k is nonzero, thus its loading vector is linearly independent
of the rows of Λf,k. Therefore we have constructed proxies that satisfy Assumption 6.

QED
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A.7 Relevant Proxies and Relevant Factors

This section explores whether, given our normalization assumptions, it is possible in general to reformulate
the multi-factor system as a one-factor system, and achieve consistent forecasts with the 3PRF using a
single automatically selected proxy (that is, the target-proxy 3PRF). The answer is that this is not generally
possible. We demonstrate this both algebraically and in simulations. The summary of this section is:

I. There is a knife-edge case (which is ruled out by Assumption 5) in which the target-proxy 3PRF is
always consistent regardless of Kf .

II. In the more general case (consistent with Assumption 5) the target-proxy 3PRF is inconsistent for
Kf > 1 but the Kf -automatic-proxy 3PRF is consistent.

To demonstrate points 1 and 2, we begin from our normalization assumptions and show that three
necessary conditions for consistency must hold for any rotation of the factor model. Second, we show that in
the knife-edge case the target-proxy 3PRF is consistent (ruled out in our main development by assumption)
but that the general case consistency continues to require as many proxies as there are relevant factors. This
remains true when the multi-factor model is reformulated in terms of a single factor. Third, we provide
simulation evidence that supports these conclusions.

A.7.1 Our Original Representation

Our analysis centers on the the probability limit given in Lemma 5. For simplicity, we assume in this
appendix that y, x, F and φ are mean zero, Kf = dim(f) > 1, suppress time subscripts, and assume

E(FF ′) = ∆F =

[
∆f ∆fg

∆′fg ∆g

]
, E(fε′) = 0 , E(gε′) = 0.

The points we make in this simpler case transfer directly to the model described in the main text. The
probability limit of ŷ may therefore be rewritten as

ŷ
p−−−−−→

T,N→∞
F ′P∆FΛ′

[
Λ∆FP∆FP∆FΛ′

]−1
Λ∆FP∆Fβ. (A10)

By inspection, consistency requires three conditions to ensure that the coefficient vector post-multiplying F ′

in (A10) reduces to (β′f ,0)′. These conditions are:

1. Λ =
[

Λf 0
]

(Relevant proxies)

2. ∆fg = 0 (Relevant factors orthogonal to irrelevant factors)

3. Pfg = 0 (Relevant factors loadings orthogonal to irrelevant factors loadings).

To see that these are necessary, first note that condition 1 implies that P∆FΛ′ reduces to[
Pf∆fΛ

′
f + Pfg∆

′
fgΛ

′
f

P ′fg∆fΛ
′
f + Pg∆fgΛ

′
f

]
. (A11)

Since the same matrix (
[
Λ∆FP∆FP∆FΛ′

]−1
Λ∆FP∆Fβ) post-multiplies both of these rows, we can

here determine the necessity of conditions 2 and 3. The bottom row of (A11) must be 0 for the irrelevant
factors to drop out. Conditions 2 and 3 achieve this while avoiding degeneracy of the underlying factors and
factor loadings.

Given necessary conditions 1–3, we have that ŷ is reduced to

f ′Pf∆fΛ
′
f

[
Λf∆fPf∆fPf∆fΛ

′
f

]−1
Λf∆fPf∆fβf . (A12)
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Consistency requires that (A12) reduces to f ′βf . We are now in a position to identify the knife-edge and
general cases. The knife-edge case occurs when Pf∆f = σI and Λf = βf , for positive scalar σ. In this case
(A12) becomes

σβf
[
σ2β′f∆fβf

]−1
σβ′f∆fβf = βf .

The target-proxy 3PRF is consistent even though there are Kf > 1 relevant factors in the original system.

In the general case, we only assume P f ,∆f ,Λf are invertible (so that P f∆f need not be an equivariance
matrix). In this case (A12) reduces to f ′βf . The key condition here is the invertibility of these matrices,
which requires using Kf > 1 relevant proxies (obtainable by the auto-proxy algorithm). This is the paper’s
main result.

Recalling the discussion in Stock and Watson (2002a) and Section 2.2, it is quite natural that the final
condition required for consistency involves both the factor (time-series) variances and the (cross-sectional)
variances of the factor loadings: This is the nature of identification in factor models. The general point is
that requirements for identification and consistent estimation of factor models requires assumptions regarding
both factors and loadings. By convention we assume that factors are orthogonal to one another. The loadings
can then be rotated in relation to the factor space we’ve assumed, but not all rotations are observationally-
equivalent once we’ve pinned down the factor space.

A.7.2 A One-Factor Representation of the Multi-Factor System

Let us rewrite the factor system by condensing multiple relevant factors into a single relevant factor:

h = β′ff .

In addition, we can rotate the original factors so that the first factor h is orthogonal to all others. Let this
rotation be achieved by some matrix M such that

m = M ′f , E
[(

h
m

)(
h m

)]
=

(
β′f
M ′

)
∆f

(
βf M

)
=

[
∆h 0
0 ∆m

]
. (A13)

The new formulation therefore satisfies

y = h+ η

x = Ψhh+ Ψmm+ Ψgg + ε

Λ =
[

1 0
]
.

Now h is the single relevant factor while (m′, g′)′ are the irrelevant factors. We have represented the system
such that first two necessary conditions for consistency are satisfied. We now show that the third necessary
condition will not be satisfied in general.

Let us write the loadings in this rotated system (Ψh,Ψm,Ψg) in terms of the loadings in the original
system (Φf ,Φg). Because E(hm′),E(hg),E(mg′) are all zero, we recover

E ((x−Ψhh)h) = 0 ⇒ Ψh =
1

β′f∆fβf
Φf∆fβf

E ((x−Ψmm)m′) = 0 ⇒ Ψm = Φf∆fM
(
M ′∆fM

)−1

E ((x−Ψgg)g′) = 0 ⇒ Ψg = Φg.

The covariance matrix of loadings is therefore

N−1
N∑
i=1

 ψh,i
ψm,i
ψg,i

( ψh,i ψ′m,i ψ′g,i
)

= N−1
N∑
i=1

 ψ2
h,i ψh,iψ

′
m,i ψh,iψ

′
g,i

ψh,iψm,i ψm,iψ
′
m,i ψm,iψ

′
g,i

ψh,iψg,i ψg,iψ
′
m,i ψg,iψ

′
g,i

 .
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and the third necessary condition is determined by whether or not the matrix

N−1
N∑
i=1

[
ψh,iψ

′
m,i ψh,iψg,i

]
equals zero in the limit. The second element ψh,iψg,i has a zero limit whenever the original system satisfies its

three necessary conditions. But the first element ψh,iψ
′
m,i has a limit determined by whether the knife-edge

or the general case holds since

N−1
N∑
i=1

ψh,iψ
′
m,i

p−−−−→
N→∞

1

β′f∆fβf
β′f∆fPf∆fM

(
M ′∆fM

)−1
.

The critical term in determining whether this expression reduces to zero is β′f∆fPf∆fM . If the knife-edge

condition holds, then we have β′f∆fPf∆fM = σβ′f∆fM = 0 in light of (A13). However, in the general

case, β′f∆fPf∆fM 6= 0 even though (A13) holds and the third necessary condition cannot generally be
satisfied in this rewritten system.

A.7.3 Simulation Study

We now run a Monte Carlo to demonstrate that, when there are multiple relevant factors, a target-proxy
achieves the infeasible best only when the knife-edge case holds. Our simulation design uses the following:

y = fι+ η, X =
[
f g

]
Φ′ + ε

where ι is Kf × 1 ones vector, g (T ×Kg), Φ (N ×Kf + Kg), η (T × 1), and ε (T ×N) are iid standard
normal, and f (T ×Kf ) is iid normal with standard deviation σf .

The infeasible best forecast for this system is fι. We use six factors, three relevant and three irrelevant
(Kf = Kg = 3) and consider different values forN,T and σf . We considerN = T = 200 andN = T = 2, 000.
We use an identity covariance matrix for factor loadings (P = I) and consider two values for σf : a knife-edge
(equivariant) case

[
1 1 1

]
and a more general (non-equivariant) case

[
0.5 1 2

]
.

Table A1 lends simulation support to our algebraic proof. We focus on in-sample results since out-of-
sample results are qualitatively similar.

In the knife-edge case the target-proxy 3PRF appears consistent. For N = T = 2, 000 the correlation
between the 3PRF forecast and the infeasible best forecast is 0.993, and their relative R2 is 0.9901. For
N = T = 200 these numbers are lower, but that is attributable to the smaller sample.

In the general case the target-proxy 3PRF appears inconsistent. The relativeR2 is 0.8425 forN = T = 200
and 0.8586 for N = T = 2, 000; the correlation is 0.9169 for N = T = 200 and 0.9241 for N = T = 2, 000.
This agreement across the two sample sizes is strongly suggestive that the inconsistency is not a small sample
issue, but rather holds in large N,T for which 2,000 is a good approximation. Furthermore, the relative R2

increases notably as we move to 2 auto-proxies: 0.9736 for N = T = 200 and 0.9762 for N = T = 2, 000.
Once we have 3 auto-proxies (as our theorem states) the simulation evidence suggests that the 3PRF is
consistent. The relative R2 is 0.9938 for N = T = 200 and 0.9983 for N = T = 2, 000.
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Table A1: Simulation Study

In-Sample Out-of-Sample
# auto proxies: 1 2 3 1 2 3

N = T = 200

σf =
[

1 1 1
]

ŷR2

fιR2 0.9607 0.9316

ρ(ŷ,fι) 0.9678 0.9649
σf =

[
0.5 1 2

]
ŷR2

fιR2 0.8425 0.9736 0.9938 0.8307 0.9580 0.9735

ρ(ŷ,fι) 0.9169 0.9806 0.9892 0.9136 0.9791 0.9884

N = T = 2, 000

σf =
[

1 1 1
]

ŷR2

fιR2 0.9901 0.9850

ρ(ŷ,fι) 0.9930 0.9929
σf =

[
0.5 1 2

]
ŷR2

fιR2 0.8586 0.9762 0.9983 0.8575 0.9746 0.9962

ρ(ŷ,fι) 0.9241 0.9877 0.9981 0.9238 0.9876 0.9981

Notes: ŷR2

fιR2 denotes the average ratio of 3PRF R2 to the infeasible best R2. ρ(ŷ,fι) gives the average time
series correlation between the 3PRF forecast and the infeasible best forecast.

A.8 The Kalman Filter

This system is defined by the state space

Πt = M0 +MΠt−1 + errorFt , errorFt ∼ N (0,Q) (A14)

Υt = Ψ0 + ΨΠt + errorΥ
t , errorΥ

t ∼ N (0,R) (A15)

Πt =

(
F t
F t−1

)
(A16)

Υt =

(
z̃t
xt

)
(A17)

Πt is an augmented state vector containing both the current and lagged values of the (Kf +Kg)-dimensional
factor vector F t. We assume that each element of the proxy vector depends only on the current or the
lagged factor, not both. Given the system parameters {M ,M0,Q,Ψ,Ψ0,R}, the Kalman filter provides
the conditional expectation E(Πt|Υt,Υt−1, . . .) if initialized at E(Π0): therefore it provides the least squares
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predictor (see Maybeck (1979)). The well-known filter equations (see Hamilton (1994)) are:

P t|t−1 = MP t−1|t−1M
′ +Q (A18)

P t|t = P t|t−1 − P t|t−1Ψ
′ (ΨP t|t−1Ψ

′ +R
)−1

ΨP t|t−1 (A19)

Kt = P t|t−1Ψ
′ (ΨP t|t−1Ψ

′ +R
)−1

(A20)

Πt|t−1 = M0 +MΠt−1|t−1 (A21)

Υt|t−1 = Ψ0 + ΨΠt|t−1 (A22)

Πt|t = Πt|t−1 +Kt

(
Υt −Υt|t−1

)
(A23)

We first note that the matrix inversion lemma lets us rewrite (A19) as

P t|t =
(
P−1
t|t−1 + Ψ′R−1Ψ

)−1

Then, following Simon (2006), (A20) can be rewritten in a form similar to (7) by seeing that

Kt = P t|t−1Ψ
′ (ΨP t|t−1Ψ

′ +R
)−1

= P t|tP
−1
t|t P t|t−1Ψ

′ (ΨP t|t−1Ψ
′ +R

)−1

= P t|t

(
P−1
t|t−1 + Ψ′R−1Ψ

)
P t|t−1Ψ

′ (ΨP t|t−1Ψ
′ +R

)−1

= P t|t
(
Ψ′ + Ψ′R−1ΨP t|t−1Ψ

′) (ΨP t|t−1Ψ
′ +R

)−1

= P t|tΨ
′ (I +R−1ΨP t|t−1Ψ

′) (ΨP t|t−1Ψ
′ +R

)−1

= P t|tΨ
′R−1

(
R+ ΨP t|t−1Ψ

′) (ΨP t|t−1Ψ
′ +R

)−1

= P t|tΨ
′R−1,

where we have premultiplied by I = P t|tP
−1
t|t in the second line, we have rewritten P−1

t|t in the third line,

we have distributed in lines four and five, we have rewritten I as R−1R and then distributed in the sixth
line, and simplified in the final line.

Next, we look understand what is the maximum likelihood estimate (MLE) of the system parameters.
According to Watson and Engle (1983) the parameters that maximize the likelihood can be found using the
EM algorithm of Dempster, Laird, and Rubin (1977). To simplify, assume Ψ0 and M0 are zero. Hence, the
MLE of Ψ satisfies the following

v̂ec(Ψ) =
(
Π̂
′
Π̂⊗ R̂

−1
)−1 (

Π̂
′
Υ⊗ R̂

−1
)

(A24)

for Π̂ =
(
Π̂1, . . . , Π̂T

)′
, Υ = (Υ1, . . . ,ΥT )

′
, and

R̂ =
1

T

T∑
t=1

Υt −ΨΠ̂t (A25)

and Π̂t denotes the best possible estimate of the latent factors on the basis of the MLE of the system
parameters (this is usually given by the smoothed estimates Πt|T using the MLE parameters). Equations
(A24) and (A25) make it clear that the MLE of Ψ is obtained by a GLS regression of the observable variables
Υ on the best estimate of the latent factors.

Finally, consider the optimal linear prediction of Υt+1 on the basis of {Υt,Υt−1, . . .}, ignoring the
Kalman filter’s temporal pooling of information. We do this by considering M , which we can partition into
four square submatrices. M21 = I and M22 = 0. Ignoring the temporal pooling is equivalent to restricting
M11 and M12 to be zero. Clearly, M11 = 0 imposes that the latent factors are serially uncorrelated, a
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restriction that is almost always invalidated by the data. This restriction also forces the estimate of Πt to be
based solely on time t information from the N -dimensional cross section. As N gets large, time t information
alone is sufficient to estimate the latent factor precisely. Therefore

Υt+1|t = ΨΠt+1|t

= ΨMΠt|t

= Ψ

[
0 0
I 0

]
Πt|t (A26)

Recall that y is an element of Υ, and we can therefore let the first row of Ψ be (0′,β′), which with (A26)
says

yt+1|t = β′F t|t.

This coincides with the infeasible best forecast that we refer to throughout.

A.9 Partial Least Squares

Like the three-pass regression filter and principal components, partial least squares (PLS) constructs fore-
casting indices as linear combinations of the underlying predictors. These predictive indices are referred
to as “directions” in the language of PLS. The PLS forecast based on the first K PLS directions, ŷ(k), is
constructed according to the following algorithm (as stated in Hastie, Tibshirani, and Friedman (2009)):

1. Standardize each xi to have mean zero and variance one by setting x̃i = xi−Ê[xit]
σ̂(xit)

, i = 1, ..., N

2. Set ŷ(0) = ȳ, and x
(0)
i = x̃i, i = 1, ..., N

3. For k = 1, 2, ...,K

(a) uk =
∑N
i=1 φ̂kix

(k−1)
i , where φ̂ki = Ĉov(x

(k−1)
i ,y)

(b) β̂k = Ĉov(uk,y)/V̂ ar(uk)

(c) ŷ(k) = ŷ(k−1) + β̂kuk

(d) Orthogonalize each x
(k−1)
i with respect to uk:

x
(k)
i = x

(k−1)
i −

(
Ĉov(uk,x

(k−1)
i )/V̂ ar(uk)

)
uk, i = 1, 2, ..., N.

A.10 Portfolio Data Construction

We construct portfolio-level log price-dividend ratios from the CRSP monthly stock file using data on prices
and returns with and without dividends. Twenty-five portfolios (five-by-five sorts) are formed on the basis of
underlying firms market equity and book-to-market ratio, mimicking the methodology of Fama and French
(1993). Characteristics for year t are constructed as follows. Market equity is price multiplied by common
shares outstanding at the end of December. Book-to-market is the ratio of book equity in year t−1 to market
equity at the end of year t. Book equity is calculated from the Compustat file as book value of stockholders
equity plus balance sheet deferred taxes and investment tax credit (if available) minus book value of preferred
stock. Book value of preferred stock is defined as either the redemption, liquidation or par value of preferred
stock (in that order). When Compustat data is unavailable, we use Moodys book equity data (if available)
from Davis, Fama and French (2000). We focus on annual data to avoid seasonality in dividends, as is
common in the literature. Unlike Fama and French, we rebalance the characteristic-based portfolios each
month. Using portfolio returns with and without dividends, we calculate the log price-dividend ratio for
these portfolios at the end of December the following year.
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For a stock to be assigned to a portfolio at time t, we require that it is classified as common equity (CRSP
share codes 10 and 11) traded on NYSE, AMEX or NASDAQ, and that its t − 1 year-end market equity
value is non-missing. When forming portfolios on the basis of book-to-market we require that a firm has
positive book equity at t− 1. Because we are working with log price-dividend ratios, a firm is included only
if it paid a dividend at any time in the twelve months prior to t. We perform sorts simultaneously rather
than sequentially to ensure uniformity in characteristics across portfolios in both dimensions. Stock sorts
for characteristic-based portfolio assignments are performed using equally-spaced quantiles as breakpoints to
avoid excessively lop-sided allocations of firms to portfolios. That is, for a K-bin sort, portfolio breakpoints
are set equal to the { 100

K , 2 100
K , ..., (K − 1) 100

K } quantiles of a given characteristic.
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