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1 Introduction

Substantial process has been made on in-sample asymptotics, against the backdrop of increas-

ingly available high frequency financial data. The asymptotic analysis pertains to statistics

based on samples over finite intervals involving data observed at ever increasing frequency.

The prime example is measures of increments in quadratic variation, see Jacod (1994), Jacod

(1996) and Barndorff-Nielsen and Shephard (2002) as well as the recent survey by Barndorff-

Nielsen and Shephard (2007).1 The empirical measures attempt to capture volatility of finan-

cial markets, including possibly jumps. Moreover, a richly developed mathematical theory

of semi-martingale stochastic processes provides the theoretical underpinning for measuring

volatility in the context of arbitrage-free asset pricing models based on frictionless financial

markets.

The aforementioned literature of measuring volatility has been the underpinnings of a now

standard two-step modelling approach. The first step consists of measuring past realizations

of volatility accurately over non-overlapping intervals - typically daily - and the second

is to build models using the so called realized measures. This literature is surveyed by

Andersen, Bollerslev, and Diebold (2002). The time series models that sit on top of the

realized measures exploit the persistence properties of volatility, well documented in the prior

literature on ARCH and Stochastic Volatility (SV) models (see Bollerslev, Engle, and Nelson

(1994), Ghysels, Harvey, and Renault (1996), and Shephard (2004) for further references and

details).

While persistence in volatility has been exploited extensively to predict future outcomes,

it has not been exploited to improve upon the measurement of current and past realized

volatility. It is shown in this paper that the in-sample asymptotics can be complemented

with observations in prior intervals, that is in-sample statistics can benefit from across-sample

observations. Take for example the measure of quadratic variation which has been the most

widely studied. While in the limit in-sample observations suffice to estimate current realized

variation, there are efficiency gains for any finite sample configuration, that is, there are

gains to be made in practical applications of extracting realized volatility to use realized

volatility from the previous days. Currently, the first step of the two-step procedure is

completely detached from modelling, which is the subject of the second step. It is argued

1Other examples include measure of bi-power and power variation as well as other functional transforma-
tions of returns sampled at high frequency (see again the survey by Barndorff-Nielsen and Shephard (2007)
for relevant references).
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in this paper that measuring volatility is not necessarily confined to a single (daily) interval

and prior observations are useful thanks to persistence in volatility. The topic of this paper

was originally considered in earlier work by Andreou and Ghysels (2002) who tried to exploit

the continuous record asymptotic analysis of Foster and Nelson (1996) for the purpose of

improving realized volatility measures. At the time the paper by Andreou and Ghysels

(2002) was written the in-sample asymptotics was not taken into account by the authors, as

their paper was concurrent to that of Barndorff-Nielsen and Shephard (while the early work

of Jacod was discovered only much later). Therefore Andreou and Ghysels (2002) failed to

recognize that increased accuracy of in-sampling will diminish the need to use past data. This

does not occur in the context of Foster and Nelson (1996) who study instantaneous or spot

volatility. In the latter case persistence will remain relevant to filter current spot volatility,

which is the key difference between continuous record and in-sample asymptotics. An early

draft of Meddahi (2002) included a section which revisited Andreou and Ghysels (2002) and

where it was recognized that optimal filter weights should depend on the in-sample frequency

and ultimately become zero asymptotically. There are many important differences between

the analysis in the current paper and the filtering approach pursued by Andreou and Ghysels

and Meddahi. The most important difference is that we derive conditional filtering schemes,

dependent on the path of the volatility process, whereas Andreou and Ghysels and Meddahi

only consider unconditional, that is time-invariant, filtering. The reason why this distinction

is important is because it is often argued that volatility forecasting models are reduced form

models which combine filtering and prediction, and it is the combination that matters most.

This argument applies only to fixed parameter models, which embed fixed filtering schemes.

Our filtering is time-varying, meaning it is more efficient than unconditional filters, and most

importantly cannot be by-passed or absorbed as part of a fixed parameter prediction model.

Despite being conditional, our filtering scheme remains model-free and is based on prediction

errors, rather than linear combinations of past and present realized volatilities. The model-

free aspect is something our approach shares with Foster and Nelson (1996) and Andreou

and Ghysels (2002).

The paper is organized as follows....
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2 Main motivation

There is an abundance of data generated by the trading of financial assets around the world.

This data-rich environment of high frequency intra-daily observations has ignited a very

exciting research agenda of statistical analysis related to stochastic processes, in particular

volatility. The key motivation for our paper, is the observation that it is both possible

and relevant to improve intra-daily volatility measurements by taking advantage of previous

days’ information. Let us start with explaining why it is relevant, as one may wonder why

we need an accurate measurement of volatility based on past information. In particular,

one may argue that the prime objective is to forecast future volatility and that the use of

past information via a preliminary filtering procedure is redundant, since prediction models

capture past measurements. First, we show in this paper that even for the purpose of

forecasting volatility, it cannot hurt to improve its measurement through filtering. This is

particularly relevant for option pricing which involves nonlinear forecasts of future volatility.

However, our main motivation is that volatility measurement per se is important in its own

right for many financial applications, such as for example trading execution of limit orders,

option hedging, volatility timing for portfolio management, Value-at-Risk computations,

beta estimation, specification testing such as detecting jumps, among others.

The question remains whether it is actually possible to improve volatility measurement with

using prior days’ information as it is often argued that arbitrary frequently observed intra-

day data provide exact observation of volatility. There are at least two reasons why the use

of past information helps.

First, the actual number of intra-daily observations is not infinite and so called microstructure

market frictions may prevent us from sampling too frequently. We can take advantage of

volatility persistence in this regard. An important novel feature of our analysis is that it has

some commonality with the local-to-unity asymptotics of Bobkoski (1983), Chan and Wei

(1987), Phillips (1987) among many others. The original local-to-unity asymptotics was used

to better approximate the finite sample behavior of parameter estimates in autoregressive

models with roots near the unit circle where neither the Dickey-Fuller asymptotics nor the

standard normal asymptotics provide adequate descriptions of the finite sample properties of

OLS estimators. Here local-to-unity asymptotics is used to improve finite sample estimates

too, albeit in a context of in-sampling asymptotics. The link with local-to-unity asymptotics

is a key part of our derivations, both allowing us to remain model-free as far as filter weights
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go, and allowing us to be conditional on the volatility path. It should also be noted that the

arguments provided so far do not only apply to volatility measurement, but are also relevant

for higher moment measurements, such as kurtosis-related quarticity. The latter is used

for feasible asymptotic distribution theory of high frequency data statistics. Since, higher

moments are known to be less precisely estimated, our analysis becomes even more relevant

with finitely sampled data. For example, it has recently been documented by Gonçalves

and Meddahi (2008) that improvement of inference on realized volatility through Edgeworth

expansions is impaired by the lack of estimators for the cumulants.

Second, we do in fact not necessarily have to rely on local-to-unity asymptotic arguments. For

example, existing estimators for the measurement of leverage effects using intra-daily data are

not consistent albeit asymptotically unbiased, see e.g. Mykland and Zhang (2007). Namely,

even with an infinite number of intra-daily observations, current estimators of leverage effects

converge in distribution to a random variable centered at the true value. For such estimators

our analysis is even more relevant as it allows one to reduce the variance of measurement by

combining several days of measurement. This approach is justified by the fact that financial

leverage ought to be a persistent time series process.

3 An Introductory Example

The purpose of this section is to start with a relatively simple example that contains the core

ideas of our analysis. Hence, the example is stylized for illustrative purpose. We start with a

time index t, which we think of as daily, or weekly, monthly etc. For simplicity we will assume

a daily process, although the reader can keep in mind that ceteris paribus all the derivations

apply to any level of aggregation. Henceforth, we will we will use ’day’ and ’period’ t

interchangeably, although the former will only be used for convenience. Moreover, while

we consider exclusively equally spaced discrete sampling, one could also think of unequally

spaced data.

Within every period t, we consider returns over short equal-length intervals (i.e. intra-daily).

The return denoted as:

rn
t,j = pt−(j−1)/n − pt−j/n (3.1)

where 1/n is the (intra-daily) sampling frequency and pt−(j−1)/n is the log price of a financial

asset at the end of the jth interval of day t, with j = 1, . . . , n. For example, when dealing
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with typical stock market data we will use n = 78 corresponding to a five-minute sampling

frequency. We start with the following assumption about the data generating process:

Assumption 3.1 Within a day (period) t, given a sequence σ2
t,j, j = 1, . . . , n, the return

process in equation (3.1) is distributed independently Gaussian:

rn
t,j ∼ N(0,

1

n
σ2

t,j) (3.2)

for all j = 1, . . . , n.

For every period t the parameter of interest is:

σ2
t ≡ V ar(

n
∑

j=1

[rn
t,j]) ≡

1

n

n
∑

j=1

σ2
t,j (3.3)

and consider the following ML estimators for each t :

σ̂2
t =

n
∑

j=1

[rn
t,j]

2 (3.4)

Then conditional on the volatility path σ2
t,j, j = 1, . . . , n, we have, under Assumption 3.1

the following properties for the ML estimators:

Ec[σ̂
2
t ] = σ2

t (3.5)

V arc[σ̂
2
t ] =

2

n2

n
∑

j=1

σ4
t,j =

2

n
σ

[4]
t (3.6)

where σ
[4]
t = 1/n

∑n
j=1 σ4

t,j, Ec[·] = E[·|σ2
t,j, ∀j] and similarly for V arc[·] = V ar[·|σ2

t,j, ∀j].

In a first subsection 3.1 we address the key question of the paper in the context of the

simple example, namely to what extend can we improve the estimation of σ2
t using prior day

information. After characterizing the optimal weighting scheme we discuss estimation issues

in subsection 3.2.
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3.1 Characterizing the Optimal Weighting Scheme

The question we address is to what extend can we improve the estimation of σ2
t using prior

day information, and in particular using σ̂2
t−1. To formalize this, assume that:

Assumption 3.2 The process (σ2
t ) is weakly stationary.

Assumption 3.2 implies that we can engage in regression analysis, and in particular consider:

ϕ ≡ Cov(σ̂2
t , σ̂

2
t−1)

V ar(σ̂2
t )

(3.7)

ϕ0 ≡ Cov(σ2
t , σ

2
t−1)

V ar(σ2
t )

(3.8)

where ϕ and ϕ0 are respectively the coefficients of the optimal linear predictors of σ̂2
t given

σ̂2
t−1, and σ2

t given σ2
t−1. It is important to note the difference between equations (??) and

(3.7). In the former case, the process is contaminated by estimation noise, whereas in the

latter case we have the time series regression using population quantities.

From the above discussion it is clear that there are potentially two types of asymptotics. On

the one hand, the number of observations n per period t can increase to infinity. On the other

hand, the number of time periods t = 1, . . . , T can also become large. The asymptotics we

handle in the paper is the former. Regarding the time series process, our setting is standard

and relies on the usual assumptions. We will therefore ignore the uncertainty pertaining to

time series estimation:

Assumption 3.3 The parameters ϕ is estimated via sample equivalents of (??), denoted

ϕ̂T , and we assume that T/n is infinitely large such that all time series estimation error can

be ignored, since V arc(σ̂
2
t ) = O(1/n).

While Assumption 3.3 implies we no longer have to worry about the difference between ϕ

and ϕ̂T , it will still be the case that we need to distinguish ϕ from ϕ0 since the latter results

from estimation errors of order 1/n separating the population quantity σ2
t and its sample

counterpart σ̂2
t . For the moment we will proceed with estimated quantities σ̂2

t , and hence ϕ.

Later we will discuss the relationship between ϕ and ϕ0.
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The optimal linear predictors of σ̂2
t given σ̂2

t−1, will be written as:

σ̂2
t|t−1 = (1 − ϕ)σ2 + ϕσ̂2

t−1 (3.9)

where σ2 is the (unbiased) unconditional (time series) mean of σ̂2
t and of σ2

t as well. The goal

is to combine σ̂2
t|t−1 and σ̂2

t , to improve the estimation of σ2
t using prior day information. In

particular, we define a new estimator combining linearly σ̂2
t|t−1 and σ̂2

t :

σ̂2
t (ωt) = (1 − ωt)σ̂

2
t + ωtσ̂

2
t|t−1

= σ̂2
t − ωt(σ̂

2
t − σ̂2

t|t−1) (3.10)

Note that the weight ωt depends on t, as indeed it a conditional weighting scheme, and

its computation will be volatility path dependent. To characterize the optimal weighting

scheme, one may apply a conditional control variables principle, given the volatility path.

The optimal weighting scheme will be denoted ω∗
t . For notational simplicity, the conditioning

is not made explicit in the formulas below and the criterion to minimize will be written as:

ω∗
t ≡ Argminωt

Ec[σ̂
2
t (ωt) − σ2

t ]
2 = Argminωt

Ec{σ̂2
t − σ2

t − ωt(σ̂
2
t − σ̂2

t|t−1)}2 (3.11)

We will need to rely on a optimal control variables result to derive the optimal weighting

scheme, in particular results that take into account the possibility of bias since we need to

take into account the non-zero mean of (σ̂2
t − σ̂2

t|t−1) given the volatility path. Such a result

was derived - see Proposition 1 in Glynn and Iglehart (1989) - and we state it as the following

Lemma:

Lemma 3.1 If θ is an unbiased estimator of θ, u a zero-mean random variable and c a given

real number, an estimator of θ with minimum mean squared error in the class of estimators:

θ(ω) = θ − ω(u + c) is obtained as θ(ω∗) with: ω∗ = Cov[θ, u]/(V ar(u) + c2).

Applying Lemma 3.1 the ω∗
t is obtained as:

ω∗
t =

Covc[σ̂
2
t , σ̂

2
t − σ̂2

t|t−1]

V arc(σ̂
2
t − σ̂2

t|t−1) + [Ec(σ̂
2
t − σ̂2

t|t−1)]
2

(3.12)
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Note that ω∗
t has been shrunk with respect to the regression coefficient of σ̂2

t on (σ̂2
t - σ̂2

t|t−1),

and this is due - as noted before - to the need to take into account the non-zero mean of

(σ̂2
t − σ̂2

t|t−1) given the volatility path.

From here we proceed with specific assumptions for the data generating process that will

yield explicit expressions for the components of ω∗
t in equation (4.15). In the present section

we have a fairly simple setting for the data generating process that will allow us to derive

the optimal weighting scheme as follows:

Proposition 3.1 Consider data generated as specified in Assumption 3.1. Then, the optimal

weighting scheme equals:

ω∗
t =

2σ
[4]
t

2[σ
[4]
t + ϕ2σ

[4]
t−1] + n[σ2

t − ϕσ2
t−1 − (1 − ϕ)σ2]2

(3.13)

Proof: See Appendix A

The result of Proposition 3.1, albeit in a very stylized context, is sufficient to present the

main motivation of our paper. The key issue is to assess to what extent our preferred

modified estimator σ̂2(ω∗
t ) is preferred to the MLE σ̂2

t ≡ σ̂2
t (0) based exclusively on day t

intradaily observations. Hence, the question arises whether we want to pay the price of a

bias proportional to the conditional prediction bias Ec[σ̂
2
t − σ̂2

t|t−1] to lower the conditional

variance because of the control variables principle. This is actually an empirical question.

From Proposition 3.1, we see that, not surprisingly, ω∗
t goes to zero when n goes to infinity

for a given non-zero value of the bias:

Ec[σ̂
2
t − σ̂2

t|t−1] = σ2
t − (1 − ϕ)σ2 − ϕσ2

t−1 (3.14)

This may lead one to believe that σ̂2
t (0) should be our preferred estimator. However, in

practice, n is never infinitely large and the squared bias [Ec[σ̂
2
t − σ̂2

t|t−1]]
2 may be relatively

small with respect to the gain in variance by control variables, which is approximately

proportional to [V arc[σ̂
2
t − σ̂2

t|t−1]] = 2σ
[4]
t /n + 2ϕ2σ

[4]
t−1/n. This is precisely the bias-variance

trade off that we can notice in the denominator of the above formula for the optimal weight

ω∗
t .

Two remarks are in order. First of all, note that the optimal weight ω∗
t will automatically

become arbitrarily close to zero whenever the bias is large. Hence there is little cost to
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applying our optimal weighting strategy since, if the bias is not as small as one may have

hoped, the optimal weight ω∗
t brings us back to standard MLE. Second, both our Monte

Carlo experiments and empirical work will confirm that the optimal weight is not negligible

in general. Its order of magnitude is rather between 10 % and 30 %. We can actually set

down a formal framework to rationalize these empirical findings. To do so, note that is worth

relating the feasible bias:

BF
t ≡ σ2

t − (1 − ϕ)σ2 − ϕσ2
t−1

with the unfeasible bias:

BU
t ≡ σ2

t − (1 − ϕ0)σ
2 − ϕ0σ

2
t−1 (3.15)

The difference BU
t - BF

t = (ϕ − ϕ0)(σ
2 − σ2

t ) will be of order 1/n because of the following

result:

Proposition 3.2 Consider data generated as specified in Assumption 3.1. Then:

ϕ − ϕ0 = (2ϕ/n)E(σ
[4]
t )[V ar(σ2

t )]
−1 (3.16)

Moreover, the size of the theoretical bias BU
t is tightly related to volatility persistence. More

precisely, we can write:

BU
t ≡ σ2

t − (1 − ϕ0)σ
2 − ϕ0σ

2
t−1 = [1 − ϕ2

0]
1/2ut

where the process ut has unconditional mean zero and unconditional variance equal to [V ar(σ2
t ).

Proof: See Appendix B

Thus since:

BF
t = BU

t + O(1/n)

it is equivalent to show that the feasible bias or the unfeasible one will not necessarily

dominate the conditional standard error 2σ
[4]
t /n + 2ϕ2σ

[4]
t−1/n. The logic of our approach

starts from the observation that this dominance is not necessary maintained, provided that

the persistence parameter ϕ0 is a function of n, hence ϕ0(n), such that:

n[1 − ϕ2
0(n)] = O(1) (3.17)
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One way to achieve (3.17) is to assume:

ϕ0(n) = 1 − (c/n) c > 0 (3.18)

Hence we have a drifting Data Generating Process (ϕ0(n) is increasing with n) to capture the

notion that as n increases, we require more persistence in the volatility process to ensure that

the forecast σ̂2
t|t−1 of σ2

t - which uses past information - still improves σ̂2
t , which uses n intra-

daily observations. This approach is reminiscent of local-to-unity asymptotics of Bobkoski

(1983), Phillips (1987) and Chan and Wei (1987) among many others.2 Note however an

important difference between the original local-to-unity asymptotics and our use of it. While

the former near-to-unit root literature focuses on persistence parameters going to one at rate

1/T, where T is the length of the time series, the rate of convergence in (3.18) is governed by

n, i.e. the number of intradaily data. In this respect, what is really required for our approach

is in fact:

[1 − ϕ2
0(n)] = O(ϕ0(n) − ϕ(n))

where the notation O(.) must be understood as an upper bound. Note that [1 − ϕ2
0(n)]

and (ϕ0(n)−ϕ(n)) are two different objects and there is no obvious reason why they would

converge at the same rate. In the sequel, the rate of convergence of (ϕ0(n) − ϕ(n)) will

sometimes be slower than 1/n. It will notably depend on the quality of the volatility process

estimator which may for example be corrupted by exogenous phenomena such as microstruc-

ture noise. The key assumption of (3.19) is that, roughly speaking, the level of volatility

persistence is as least as good as the quality of our intradaily volatility estimator. It ensures

that the squared feasible bias:

(BF
t )2 = O([1 − ϕ2

0(n)]) = O(ϕ0(n) − ϕ(n)) (3.19)

does not dominates the conditional variance V arc(σ̂
2
t − σ̂2

t|t−1).

3.2 Estimating Optimal Weights

Having characterized the optimal weighting scheme we now turn to estimation issues. From

Proposition 3.1 we know that the optimal weighting scheme ω∗
t depends on σ

[4]
t and ϕ.

2A recent extension to block local-to-unity asymptotics by Phillips, Moon, and Xiao (2001) has some
resemblance with our analysis, although we focus here on integrated volatility.
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Because of Assumption 3.3 we do not need to worry about the latter, hence our focus will

be on the former.

We first turn to the estimation of V arσ̂2
t = 2σ

[4]
t /n where:

σ
[4]
t =

1

n

n
∑

j=1

σ4
t,j

To proceed we will make the following assumption:

Assumption 3.4 Assume that n is a multiple of m ≥ 1, and for (i − 1)m < j ≤ im, we

have:

σt,j = σt,[i] i = 1, . . . , n/m

Given Assumption 3.4 the MLE σ̂2
t,[i] of σ2

t,[i] is:

σ̂2
t,[i] =

n

m

mi
∑

j=m(i−1)+1

r2
t,j

Then the MLE of σ4
t,[i] is such that:

σ̂4
t,[i]

σ4
t,[i]

=
1

m2

[n
∑mi

j=m(i−1)+1 r2
t,j]

2

σ4
t,[i]

v

[χ2(m)]2

m2

with expectation (1 + 2/m).

Hence, an unbiased estimator of σ
[4]
t = m/n

∑n/m
t=1 σ4

t,[i], is defined as:

σ̂
[4]
t =

m

n

n/m
∑

i=1

σ̂4
t,[i]

1 + 2/m
(3.20)

=
n

m + 2

n/m
∑

i=1





mi
∑

j=m(i−1)+1

r2
t,j





2

(3.21)
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whereas an estimator not taking advantage of m > 1 would be the realized quarticity:

σ̃
[4]
t =

n

3

∑

j = 1nr4
t,j

=
n

3

∑

i

σ4
t,[i]

∑

j

(
rt,j

σt,[i]

)4 (3.22)

v

1

3n

∑

i

σ4
t,[i](χ

2(1))2 (3.23)

In Appendix C we compare the efficiency of the estimators σ̂4
t and σ̃4

t , showing that when m

> 1, the former will be more efficient.

Recall that we try to improve the estimation of σ2
t using prior day information, and in

particular using σ̂2
t−1. This argument is not confined to volatility measures. In particular, we

can use the arguments spelled out so far to improve upon σ̂
[4]
t by using estimates from prior

observation intervals. Namely, consider by analogy:

Ψ =
Cov(σ̂

[4]
t , σ̂

[4]
t−1)

V ar(σ̂
[4]
t )

(3.24)

Since,

σ̂4
t,[i] = σ4

t,[i]

[χ2
i (m)]2

m2

= σ4
t,[i]ε

2
i

In Appendix C we also compute the unconditional variance

V arσ̂4
t = V ar[σ4

t ] + 2
8m(m + 3)

m2(m + 2)
E[σ8

t,[i]] (3.25)

Which allows us to write

Ψ =
Ψ0

1 + 28m(m+3)
m2(m+2)

Pn/m
i=1 E[σ8

t,[i]
]

V ar[σ4
t ]

(3.26)
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4 General Theory

In the previous section we started with a relatively simple example of a piecewise constant

volatility process. We consider in this section the case of general jump diffusion models.

The theory in this section is asymptotic in nature in terms of sampling of intra-daily data

as well as the properties of the data generating process across days. Regarding the data

generating process, we rely on a new local-to-unity asymptotic argument which consists

of assuming that the persistence across days is sufficiently high to achieve a asymptotic

trade-off with the intra-daily sampling frequency going to infinity. In a first subsection 4.1

we show the theory developed in section 3 applies to the general case of jump diffusions

without leverage. Subsection 4.3 covers the estimation of quadratic variation without jumps

followed by a subsection 4.4 distinguishing conditional weighting schemes discussed so far

and unconditional schemes suggested in some of the prior literature. Subsection 4.5 covers

bi-power variation and quarticity, that is statistics measuring quadratic variation in the

presence of jumps and high order moments. More general projections in the construction

of weighting scheme appear in subsection 4.6. We then turn to the topic of forecasting

with improved measurement in subsection 4.7. A final subsection 4.8 covers the issue of

microstructure noise.

4.1 From Discrete to Continuous Time

The example in the previous section is surprisingly comprehensive. We here explain why,

and then develop a general theory.

We start with a continuous time stochastic volatility jump-diffusion model for asset returns,

namely:

dp (t) = µ (t) dt + σ (t) dW (t) + κ (t) dq (t) (4.1)

where dq (t) is a counting process with dq (t) = 1 corresponding to a jump at t and dq (t) = 0

if no jump. The (possibly time-varying) jump intensity is λ (t) and κ (t) is the jump size.

We are interested in measures such as the increments of quadratic variation:

QVt = σ
[2]
t +

∑

{s∈[t−1,t]:dq(s)=1}

κ2 (s) . (4.2)
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where σ
[2]
t =

∫ t

t−1
σ2 (s) ds corresponding to the continuous path component.

4.1.1 The Reduced Form Problem: no µ, no λ

To make the connection to Section 3, assume first that there are no jumps (λ ≡ 0), that

µt ≡ 0, and also that the σt process is independent of Ws, so that there is no leverage effect.

In this case, one can carry out ones inference conditionally of the σt process, and still retain

the structure

dp (t) = σ (t) dW (t) (4.3)

where W is a Brownian motion. pt is now a conditionally Gaussian process, and Assumption

3.1 is satisfied, by making the identification

σ2
t,j =

∫ t−j/n

t−(j−1)/n

σ2
sds (4.4)

Furthermore, one can even make the stronger Assumption 3.4, without substantial loss of

generality. The precise rationale for this is as follows. Define

σ2
t,[i] =

1

m

im
∑

j=(i−1)m+1

σ2
t,j. (4.5)

Now compare two probability distributions: P ∗ is given by Assumption 3.1, and Pn is given

by Assumption 3.4, with the link provided by (4.5). As is shown in Theorem 1 of Mykland

(2006), P ∗ and Pn are measure-theoretically equivalent, and they are also contiguous in the

strong sense that dPn/P ∗ converges in law under P ∗ to a random variable with mean 1. The

same is true for dP ∗/dPn relative to Pn.

The consequence of this is that estimators that are consistent under Assumptions 3.1 or

3.4 remain consistent for the general process 4.3. Furthermore, all rates of convergence are

preserved, as well as asymptotic variances. To be precise, for an estimator θ̂n, if n1/2(θ̂n −
θ) → N(0, a2) under Pn, then n1/2(θ̂n − θ) → N(b, a2) under P ∗ and under 4.3. The only

modification is therefore a possible bias b, which has to be found in each individual case.

In the case of the estimators of volatility (quadratic variation, bipower) and of quarticity

that are considered in this paper, it is easy to see that b = 0. For general estimators, we

14



refer to Mykland (2006), and Mykland and Zhang (2007).

In summary, the development in Section 3 remains valid for the model 4.3 so long as all

variances and MSEs are interpreted asymptotically. The precise results are given in Section

4.2-4.3.2.

4.1.2 Reinstating µ

Having shown that the development in Section 3 covers the simplified model (4.3), we now

argue that it also covers the more general case (4.1). To see this, consider first the case where

λ ≡ 0. Call P the probability distribution of the process p(t) under (4.1), while P ∗ is the

probability distribution of the process under (4.3). In this case, it follows from Girsanov’s

Theorem that P and P ∗ are, subject to weak regularity conditions, measure-theoretically

equivalent. Once again, this means that consistency and orders or convergence are preserved

from P ∗ to P . Also, just as in Section 4.1.1, the asymptotic normal distribution of n1/2(θ̂n−θ)

is preserved, with the same variance, but possibly with a bias that has to be found in each

special case. In the case of the estimators of volatility (quadratic variation, bipower) and of

quarticity that are considered in this paper, this bias is zero. The general theory is discussed

in Section 2.2 of Mykland and Zhang (2007).

4.1.3 Reinstating λ

The conceptually simplest approach is to remove these jumps before further analysis. Specif-

ically, declare a prima facie jump in all intervals (t−1+(j −1)/n, t−1+ j/n] with absolute

return |pt−1+j/n − pt−1+(j−1)/n| > log n/n1/2. [Verify] Provisionally remove these intervals

from the analysis. Then carry out the approximation described in Section 4.1.1 on the

remaining intervals.

The procedure will detect all intervals (t−1+(j−1)/n, t−1+j/n], with probability tending

to one (exponentially fast) as n → ∞. If one simply removes the detected intervals from the

analysis, it is easy to see that our asymptotic results go through unchanged. The intervals

where jumps have been detected must be handled separately.

To give a concrete example of how the approach works, consider the bipower sum. Let In
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be the intervals with a detected jump. Write

n
∑

j=1

∣

∣rn
t,j

∣

∣

∣

∣rn
t,j−1

∣

∣ =
∑

j,j−16∈In

∣

∣rn
t,j

∣

∣

∣

∣rn
t,j−1

∣

∣ +
∑

j or j−1∈In

∣

∣rn
t,j

∣

∣

∣

∣rn
t,j−1

∣

∣ (4.6)

The first term on the left hand side of (4.6) can now be handled as in Section 3; the second

term is handled separately and directly. Since there are only finitely many such terms, this

is straightforward.

The procedure is like the one described in Mancini (2001) and Lee and Mykland (2006). See

also Äıt-Sahalia and Jacod (2007). Here, however, it is used only for purposes of analysis,

and not for actual estimation.

4.2 The Continuous Time Case

We now discuss the implications of the previous discussion for the estimation of quadratic

variation (integrated volatility) for model (4.1): dp (t) = µ (t) dt + σ (t) dW (t) + κ (t) dq (t).

There is now a well established literature on the estimation and usage of such measures.

The volatility measures appearing in equation (4.2) are not observable but can be estimated

from data. The intra-daily return is then denoted rn
t,j = pt−j/n − pt−(j−1)/n where 1/n is

the (intra-daily) sampling frequency. For example, when dealing with typical stock market

data we will use n = 78 corresponding to a five-minute sampling frequency. It is possible to

consistently estimate QVt in (4.2) by summing squared intra-daily returns, yielding the so

called realized variance, namely:

QV
n

t =
n

∑

j=1

(

rn
t,j

)2
. (4.7)

When the sampling frequency increases, i.e. n → ∞, then the realized variance converges

uniformly in probability to the increment of the quadratic variation i.e.

lim
n→∞

QV
n

t →p QVt. (4.8)

To streamline the notation we will drop the superscript n. Barndorff-Nielsen and Shephard

(2002), Jacod and Protter (1998) and Zhang (2001) show that the error of realized variance
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is asymptotically √
n(QV t − QVt)√

2Qt

d→ N (0, 1) (4.9)

where Qt =
∫ t

t−1
σ(s)4ds is called the quarticity.

We note that in the case of no leverage effect, the result 4.9 follows from the simple example

in Section 3 in view of the discussion in Section 4.1. The case with leverage is discussed in

4.9.

We will consider first the case of quadratic variation without jumps, discussed in a first sub-

section 4.3. In subsection 4.3.1 we study infeasible estimation, whereas in subsection 6.1 we

study a specific example of a one-factor stochastic volatility process. Finally, subsection ??

extends our analysis to processes with jumps and processes contaminated by microstructure

noise.

4.3 The case of Quadratic Variation without Jumps

For simplicity we will focus first on the case without jumps. We want to estimate QVt =
∫ t

t−1
σ2

sds and take advantage of observations on the previous day, summarized by QV t−1,

the estimator of QVt−1. In general, we could take advantage of more than one lagged day of

observations but for the moment, we simplify the exposition to what amounts to an order

one Markov process. The key assumption is that the two estimators QV i, i = t−1 and t have

an asymptotic accuracy of the same order of magnitude and are asymptotically independent,

for a given volatility path. For purpose of later extensions it will be useful to parameterize

the rates of convergence with α. Setting α = 1, we have:

nα/2(QV t−1 − QVt−1)√
2Qt−1

d→ N(0, 1)

nα/2(QV t − QVt)√
2Qt

d→ N(0, 1) (4.10)

and the joint asymptotic distribution is the product of the marginals.3 We consider possible

improvements of our estimator of QVt, assuming for the moment that we know the correlation

3Later in the paper we will consider more general settings where the asymptotic variance is not as simple.
Throughout our analysis we will maintain the assumption that all randomness in the asymptotic variance
goes through the volatility paths (σ2

s)s∈[t−2,t−1] and (σ2
s)s∈[t−1,t].
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coefficient:

ϕ =
Cov(QVt, QVt−1)

V ar(QVt−1)
(4.11)

and the unconditional expectation E(QVt) = E(QVt−1) = E(QV ). Note that equation (4.11)

does not imply that our analysis is confined to AR(1) models. Instead, equation (4.11) only

reflects the fact that we condition predictions on a single lag QVt−1. There may potentially

be gains from considering more lags, as the underlying models would result in higher order

dynamics. Yet, for our analysis we currently focus exclusively on prediction models with a

single lag. Higher order models are a straightforward extension that will be discussed later.

The theory presented in the following will mirror the development in Section 3, but be valid

when volatility is not constant across a day.

Consider the best linear forecast of QVt using (only) QVt−1 :

QVt|t−1 = ϕQVt−1 + (1 − ϕ)E(QV )

and to compute its realized counterpart:

QV t|t−1 = ϕQV t−1 + (1 − ϕ)E(QV )

Of course, this realized forecast is infeasible in practice and, to make it feasible, estimators

of ϕ and E(QV ) are required. These estimators will be based on past time series of realized

volatilities: QVτ , τ = t − 1, ..., t − T + 1. This will introduce two additional issues: (i)

estimation error of ϕ and E(QV ) that would have been obtained if we had observed QVτ , τ

=t−1, ..., t−T +1, (ii) additional estimation error due to the fact that we only observe QVτ ,

τ= t − 1, ..., t − T + 1. While, as far as integrated volatility is concerned, the former error

will be made negligible by assuming (T/nα) goes to infinity, the latter may not be negligible

and is the subject of the paper.

4.3.1 Infeasible estimation

Our goal is to combine the two measurements QV t and QV t|t−1 of QVt to define a new

estimator:

QV t(ωt) = (1 − ωt)QV t + ωtQV t|t−1 (4.12)
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Intuitively, the more persistent the volatility process, the more QVt|t−1 is informative about

QVt and the larger the optimal weight ωt should be. Note that the weight depends on t, as

indeed its computation will be volatility path dependent. To characterize such an optimal

choice, one may apply a conditional control variable principle, given the volatility path. For

notational simplicity, the conditioning is not made explicit in the formulas below and the

criterion to minimize will be written as:

E[QV t(ωt) − QVt]
2 = E{QV t − QVt − ωt(QV t − QV t|t−1)}2 (4.13)

Then, it can be shown that:

QV t(ω
∗
t ) = QV t − ω∗

t (QV t − QV t|t−1) (4.14)

will be an optimal improvement of QV t if ω∗
t is defined according to the following control

variable formula:

ω∗
t =

Cov[QV t, QV t − QV t|t−1]

V ar(QV t − QV t|t−1) + [E(QV t − QV t|t−1)]
2

(4.15)

Note that ω∗
t has been shrunk with respect to the regression coefficient of QV t on (QV t -

QV t|t−1). This is due to the need to take into account the non-zero mean of (QV t −QV t|t−1)

given the volatility path.

To do this, we want to apply Lemma 3.1, by computing moments given the volatility path.

More precisely, we write:

QV t − QV t|t−1 = (QVt − QVt) + (QVt − QVt|t−1) − ϕ(QV t−1 − QVt−1)

Then, given the volatility path, we have:

E(QV t − QV t|t−1) = (QVt − QVt|t−1) + o(
1

n
α
2

)

V ar(QV t − QV t|t−1) =
2Qt

nα
+ ϕ2 2Qt−1

nα
+ o(

1

nα
)

Cov[QV t, QV t − QV t|t−1) =
2Qt

nα
+ o(

1

nα
)
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Therefore, ω∗
t defined by (4.15) can be rewritten as:

ω∗
t =

2Qt

2Qt + ϕ22Qt−1 + nα(QVt − QVt|t−1)2
+ o(

1

nα
)

Note that for the case of realized volatility, equation (4.15) is a corollary to Proposition 3.1,

in view of the discussion is Section 4.1.

In order to estimate volatility on day t, we thus give a non-zero weight ω∗
t to volatility

information on day t−1. This weight increases as the relative size of the asymptotic variance

2Qt/n
α of QV t is large in comparison to both (1) the asymptotic variance 2Qt−1/n

α of QV t−1

as well as (2) the quadratic forecast error (QVt − QVt|t−1)
2. However, for a given non-zero

forecast error, the optimal weight ω∗
t goes to 0 when n goes to infinity. The reason for that is

very clear: since QV t is a consistent estimator of QVt, forecasting QVt from QVt−1 becomes

irrelevant when n becomes infinitely large: even a small forecast error has more weight than

a vanishing estimation error. However, in practice, n is never infinitely large and there likely

is a sensible trade-off between estimation error as measured by the asymptotic variance 2Qt

and the forecast error (QVt−QVt|t−1)
2. To correctly assess the latter, it is worth noting that:

QVt − QVt|t−1 =
√

1 − ϕ2u (4.16)

where, by a simple argument of variance decomposition, the variable u has a zero uncon-

ditional mean and an unconditional variance equal to V ar(QVt) = V ar(QVt−1) = V ar(V ).

Therefore:

ω∗
t =

Qt

Qt + ϕ2Qt−1 + nα(1 − ϕ2)u2/2
(4.17)

The relevant trade-off is then clearly captured by the product nα(1 − ϕ2). The trade-off is

sensible because daily integrated volatility will be sufficiently persistent (ϕ sufficiently close

to 1) in comparison of the effective number nα of intraday observations.

To proceed with the formal analysis, it will be convenient to make the persistence a function

of n, hence ϕ(n). More precisely, and in analogy with the assumption (3.17), let us assume

that for some given number γ we have:

nα(1 − ϕ(n)2) = γ2 (4.18)

Hence, we have a drifting Data Generating Process (ϕ(n) increasing with n) to capture the
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idea that, the larger n is, the larger volatility persistence ϕ(n) must be, to ensure that using

the forecast QVt|t−1of QVt from QVt−1 still improves our estimator QV t based on n intraday

data. Then the optimal weight is:

ω∗
t =

Qt

Qt + (1 − γ2

nα )Qt−1 + γ2u2/2
+ o(

1

nα
) =

Qt

Qt + Qt−1 + γ2u2/2
+ O(

1

nα
) (4.19)

For large n, ω∗
t is, as expected, a decreasing function of γ2. Larger the volatility persistence

ϕ, smaller γ2 and larger the weight ω∗
t assigned to day t− 1 realized volatility to achieve day

t improved volatility estimation.

Note that the optimal weights are time varying. This sets our analysis apart from previous

work only involving time invariant, or unconditional weighting schemes. The comparison

with unconditional schemes will be discussed at length in the next section. The fact that Qt

is a stationary process, implies that ω∗
t is stationary as well. While the level of the optimal

weights depend on n, it should be noted that the temporal dependence of the weights also

depends on n, because the temporal dependence of Qt depends ϕ(n). It is also worth noting

that the weight increases with Qt (relative to Qt−1). This is also expected as the measurement

error is determined by Qt. High volatility leads to high Qt in fact. Hence, on high volatility

days we expect to put more weight on the past to extract volatility.

4.3.2 Feasible estimation

So far we presented the limit theorems and main results in terms of the infeasible estimators.

There are various ways this can be converted into a feasible limit theory. For example, in the

absence of jumps a feasible asymptotic distribution is obtained by replacing Qt with a sample

equivalent, namely, RQt =
∑n

j

(

rn
t,j

)4
. In the presence of jumps one needs to use tri- or quad-

power variation, defined as: TQt+1,n = nµ−3
4/3Σ

n
j=3 |rt,j|4/3

∣

∣rt,(j−1)

∣

∣

4/3 ∣

∣rt,(j−2)

∣

∣

4/3
, where µ4/3 =

22/3Γ (7/6) Γ (0.5)−1 . Along similar lines, the feasible asymptotic limit therefore implies that

BPV t −
∫ t

t−1
σ2 (s) ds ∼ N (0, 0.6090RQt) . These sample equivalents of quarticity will have

to be used in the determination of the optimal weights.

Besides the estimation of quarticity we face another problem. Consider equation (4.16) and

the resulting weighting scheme (4.17). Combining this with (4.18) yielded (4.19). Since
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V ar[QVt] = V ar[u], we can rewrite equation (4.19) in terms of inverse of optimal weights as:

[ω∗
t ]

−1 = 2 +
Qt−1 − Qt

Qt
+ γ2 V ar[QVt]

Qt
(4.20)

In practice the term γ2V ar[QVt]/Qt will be computed as the ratio of (1 − ϕ2)V ar[QVt] and

the asymptotic (conditional) variance Qt/n
α of the estimation error on integrated volatility.

An alternative approach to obtain a feasible estimator is to consider another expression for

(1−ϕ2)1/2u in equation (4.19). First, we should note that we don’t observe QVt −QVt|t−1 =

(1−ϕ2)1/2u but instead QV t - QV t|t−1 which may differ from the true error by an estimation

error of order O(1/
√

nα). However, such an error is of the same order as the object of interest

(1 − ϕ2)1/2u. Therefore, as a proxy we may consider the following feasible estimator:

[ωf∗
t ]−1 = 2 +

Qt−1 − Qt

Qt
+ γ2

(QV t − QV t|t−1)
2

(1 − ϕ2)Qt
(4.21)

= 2 +
Qt−1 − Qt

Qt
+

(QV t − QV t|t−1)
2

Qt/nα
(4.22)

The optimal weighting scheme ωf∗
t will be used extensively in our simulation study as well

as in the comparison with unconditional weighting schemes discussed in the next section.

4.4 A comparison with unconditional rules

What sets this paper apart from previous attempts is the introduction of conditional infor-

mation. The literature prior to our work consists of two contributions, Andreou and Ghysels

(2002) and the unpublished section of Meddahi (2002). Both used unconditional adjust-

ments, that is corrected volatility measure via time invariant schemes. The purpose of this

section is to shed light on the advantages of using conditional information. We accomplish

this goal by walking step-by-step from the unconditional to the optimal model-free weighting

scheme we introduced in the previous section.

To discuss unconditional weighting schemes we drop time subscripts to the weights ω∗
t in

equation (4.32) and consider the generic class of estimators:

QV t(ω) = QV t − ω(QV t − QV t|t−1) (4.23)
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We noted in section 4 that QVt - QVt|t−1 =
√

1 − ϕ2u and that the relevant trade-off is

captured by the product nα(1 − ϕ2), which led us to use local-to-unity asymptotics. The

analysis of Andreou and Ghysels (2002) did not recognize these trade-offs and it is perhaps

useful to start with their rule-of-thumb approach which consisted of setting ϕ = 1, which

amounts de facto to a unit root case and therefore QV t|t−1 = QVt−1. The unit root case

yields the weighting scheme ωr−th = .5 (substituting ϕ = 1 in equation (4.17)), and the

rule-of-thumb estimator:

QV t(ω
r−th) = .5QV t + .5QV t−1 (4.24)

Meddahi, instead did recognize the trade-off, and constructed a model-based weighting

scheme, denoted by (1 − β∗) and which is characterized as: 1 − β∗ = [2 + 2λ]−1 and where:

λ = nα[1 − ϕ]
V ar[QV ]

E(Q)
' γ2

2

V ar[QV ]

E(Q)
(4.25)

It should be noted that Meddahi used V ar[ut(h)], which is the unconditional variance of the

estimation error of quadratic variation, that is using our notation E(Q)/nα. Moreover, he

assumes an explicit data generating process to compute the weights, hence a model is needed

to be specified (and estimated) to compute the weights.4 The above derivations allows us to

compare:

[1 − β∗]−1 ' 2 + γ2V ar[QV ]

E(Q)
(4.26)

with our optimal estimator (4.32), slightly rewritten as:

[ω∗]−1 ' (2 + γ2 u2

Qt

) + HQt (4.27)

where HQt = (Qt−1 −Qt)/Qt, which we will refer to later as a heteroskedasticity correction.

From the above analysis we can make several observations:

• The formula in equation (4.26) of Meddahi gives a weight to past realized volatility

smaller than the rule-of-thumb weight of (1/2).5

• Equation (4.26) does not take into account the conditional heteroskedasticity that is

4To clarify the difference between our model-free approach and Meddahi, it should be noted that the
weights in our analysis are not based on a specific model. Moreover, the prediction model in our analysis
can be any, possibly misspecified, model.

5Moreover, as noted before, the weight diminishes with n.
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due to the (asymptotic) estimation error of realized volatility. For instance, when Qt >

Qt−1 that is a larger estimation error on current integrated volatility estimation than

on the past one, we may be lead to choose a weight larger than (1/2) for past realized

volatility. Typically , taking the term HQt into account should do better in the same

way WLS are more accurate than OLS in case of conditional heteroskedasticity.

• Besides the heteroskedasticity correction HQt we also observe that V ar[QV ]/E(Q) is

replaced by V ar[QV ]/Qt.

To appraise the differences between the weighting schemes we will consider various schemes

based on equation (4.23) with:

(ωunc)−1 = 2 + γ2 V ar[QV ]

E(Q)
(4.28)

(ωunc−hc)−1 = 2 +
Qt−1 − Qt

Qt
+ γ2V ar[QV ]

E(Q)

and where in practice the term (γ2V ar[QV ])/E(Q) will be again computed as the ratio of (1−
ϕ2)V ar[QV ] and the asymptotic (unconditional) variance E(Q/(nα)) of the estimation error

for integrated volatility. To obtain a feasible scheme, we will use unconditional sample means

of QVt and Qt. In this respect we deviate from the model-based approach of Meddahi, namely

we do not use any explicit model to estimate the weighting schemes. The feasible version of

ωunc will be denoted ωf−unc. Likewise, we use the sample mean to compute ωf−unc−hc.

The weighting schemes in (4.28) represent a natural progression towards the optimal (condi-

tional) weighting scheme ω∗ derived in the previous section 4. Starting with the rule-of-thumb

scheme ωr−th, we progress to ωf−unc where unconditional moments are used, followed by the

heteroskedasticity correction embedded in ωf−unc−hc. The latter is already conditional, yet

not fully optimal since V ar[QV ] is still deflated by the unconditional moment of quarticity.

Finally, in the simulations we will compare these three weighting schemes with our optimal

feasible weighting scheme (4.21).

4.5 Bi-Power Variation and Quarticity

In equation (4.1) we allowed for the presence of jumps. In order to separate the jump and

continuous sample path components of QVt Barndorff-Nielsen and Shephard (2004b) and
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Barndorff-Nielsen and Shephard (2004a) introduce the concept of bipower variation defined

as:

BPV
n

t (k) = µ−2
1

n
∑

j=k+1

∣

∣rn
t,j

∣

∣

∣

∣rn
t,j−k

∣

∣ , (4.29)

where µa = E |Z|a and Z ∼ N (0, 1), a > 0. Henceforth we will, without loss of generality ,

specialize our discussion the case k = 1, and therefore drop it to simplify notation. Barndorff-

Nielsen and Shephard (2004b) establish the sampling behavior of BPV
n

t as n →∞, and show

that under suitable regularity conditions:

lim
n→∞

BPV
n

t (k) = σ
[2]
t . (4.30)

Therefore, in the presence of jumps, BPV
n

t converges to the continuous path component of

QVt and is not affected by jumps. The sampling error of the bi-power variation is

nα/2
(

BPV t −
∫ t

t−1
σ2 (s) ds

)

√
νbbQt

∼ N (0, 1) (4.31)

where νbb = (π/4)2 + π - 5 ≈ 0.6090. Based on these results, Barndorff-Nielsen and Shephard

(2004a) and Barndorff-Nielsen and Shephard (2004b) introduce a framework to test for

jumps based on the fact that QV consistently estimates the quadratic variation, while BPV

consistently estimates the integrated variance, even in the presence of jumps. Thus, the

difference between the QV and the BPV is sum of squared jumps (in the limit). Once we

have identified the jump component, we can subtract it from the realized variance and we

will have the continuous part of the process.

Using the arguments presented earlier we can improve estimates of both QV and BPV .

This should allow us to improve estimates of integrated volatility as well as improve the

performance of tests for jumps. To do so we introduce:

BPV t(ω
∗
t ) = BPV t − ω∗

t (BPV t − BPV t|t−1) (4.32)

will be an optimal improvement of BPV t when ω∗
t is again defined according to the following

control variable formula (4.15) where QV is replaced by BPV. Note that we do not assume

the same temporal dependence for QV and BPV, as the projection of QV on its past (one

lag) and that of BPV on its own past (one lag) in general do not coincide.
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The case of bi-power variation can be generalized to measures involving more general func-

tions, as in Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006). Provided such mea-

sure feature persistence we can apply the above analysis in a more general context. One

particular case of interest is power variation, typically more persistent than quadratic vari-

ation or related measures, as discussed in detail in Forsberg and Ghysels (2006).

4.6 More general projections

So far we confined our analysis to projections on one lag. We start with generalizing the

models we considered so far. We consider higher order projections. It might be useful to

think of ADF representation to accommodate the local-to-unity asymptotics, following Stock

(1991):

∆QVt = ϕ0 + ϕQVt−1 +

p−1
∑

i=1

ϕi∆QVt−i + εt (4.33)

where ϕ is the sum of the autoregressive coefficients ϕi, i = 1,..., p. Following Stock (1991)

we can apply local-to-unity asymptotics to the sum of AR coefficients, i.e. make ϕ(n) a

function of n, as we did in the AR(1) case.

Incomplete

4.7 Forecasting

So far we focused exclusively on the measurement of high frequency data related processes

such as quadratic variation, bi-power variation and quarticity. Yet, forecasting future real-

izations of such processes is often the ultimate goal and the purpose of this subsection is to

analyze the impact of our improvement measurements on forecasting performance.

We start from the observation that standard volatility measurements feature a measurement

error that can be considered at least asymptotically as a martingale difference sequence.

Therefore, for general purposes we denote the process to forecast as Yt+1, using past obser-

vations (Xs), s ≤ t which are noisy measurements of past Y ′s. The maintained martingale

difference assumption implies that:

Cov[Yt − Xt, Xs] = 0, ∀s < t.
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Suppose now that we also consider past observations: Zt+1 = (1−ω)Xt+1+ωY ∗
t+1, where Y ∗

t+1

is an unbiased linear predictor of Xt+1. Note that this refers to the unconditional schemes

discussed earlier in subsection 4.4. Since Y ∗
t+1 is unbiased linear predictor of Xt+1 :

Xt+1 = Y ∗
t+1 + v∗

t+1, E(v∗
t+1) = 0, Cov[v∗

t+1, Y
∗
t+1] = 0

We are assessing here the impact on forecasting performance of fixed weights ω. Optimally

chosen time varying weights should ensure at least a comparable forecasting performance.

Suppose the preferred forecasting rule for (Xt) (based on say an ARFIMA model for RV

such as in Andersen, Bollerslev, Diebold, and Labys (2003)) and let us denote this as Y X
t+1.

Another unbiased linear predictor of Xt+1 would be:

Xt+1 = Y X
t+1 + vX

t+1, E(vX
t+1) = 0, Cov[vX

t+1, Y
X
t+1] = 0

It is natural to assume in addition that:

Cov[vX
t+1, Y

∗
t+1] = 0

hence, the predictor Y ∗
t+1 does not allow us to improve the preferred predictor Y X

t+1. Consider

now a modified forecaster due to the improvement measurement, and let us denote it by:

Y Z
t+1 = (1 − ω)Y X

t+1 + ωY ∗
t+1

It is easy to show that the forecasting errors obtained from respectively Y X
t+1 and Y X

t+1 satisfy:

V ar(Y X
t+1 − Yt+1) − V ar(Y Z

t+1 − Yt+1) = ω2(V ar(vX
t+1) − V ar(v∗

t+1)) (4.34)

This result has following implications: using the proxy (Z) instead of the proxy (X) we will

not deteriorate the forecasting performance, except if we build on purpose the proxy (Z)

from a predictor (Y ∗) less accurate than the preferred predictor (Y X).

Some caveats are in order about our discussion so far. Namely, our forecasting exercise only

involves fixed weights and linear forecasting rules. As it was shown in the previous subsection

4.4 and further documented later simulation we know that conditional optimal weights are

far superior to the unconditional ones. Therefore, one should expect the forecasting gains

to be more important with conditional weights. In fact, the conditional weighting schemes
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result de facto in nonlinear prediction formulas due to the time variation in the weights.

In many volatility forecasting application the object of interest is a nonlinear function of

future volatility. The most prominent example is option pricing, where the future path of

volatility until time to maturity determines the current option pricing through a conditional

expectation of a nonlinear payoff function. A simplified example is the model of ? where

the price of a European call option of time to maturity h and moneyness k equals:

Ct(h, k) = Et[BS(
1

h

∫ t+h

t

σ2(u)du, k, h)]

where BS(σ2, k, h) is the Black-Scholes option price formula. Note that the above equation

assumes no leverage and no price of volatility risk. This is a common example of deriva-

tive pricing that will be studied later via simulation. It will be shown that the improved

volatility measurement has a significant impact on option pricing. Note that the simplifying

assumption regarding leverage and risk pricing should alter these conclusions.

4.8 Microstructure noise: More general estimators of volatility

In the case if microstructure noise, instead of observing p(t) from (4.1) directly, the price is

observed with additive error. This situation has been extensively studied in recent literature.

In this case, good estimators QV t have in common that there is still a convergence of the

form (4.10), but with different values of α and different definitions of Qt. In the case of the

two scales realized volatility (TSRV) (Zhang, Mykland, and Äıt-Sahalia (2005)) α = 1/6, and

in the case of the multi-scale estimator (MSRV) (Zhang (2006)), or the kernel estimators of

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006), α = 1/4. The latter rate is efficient

since it also occurs in the parametric case (see Gloter and Jacod (2000)). The analysis in

the earlier sections for the no-jump case goes through with these modifications.

In the case of the TSRV, 2Qt is replaced by

c
4

3

∫ t

t−1

σ4
udu + 8c−2ν4,

where ν2 is the variance of the noise, and c is a smoothing parameter. For the more com-

plicated case of the MSRV and the kernel estimators, we refer to the publications cited.

We also refer to these publications for a futher review of the literature, which includes, in
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particular, Bandi and Russell (2006) and Hansen and Lunde (2006).

In the case where there are both jumps and microstructure, there are two different targets

that can be considered, either the full quadratic variation QVt, or only its continuous part.

(as in the preceding Section 4.5).

For estimation of the full quadratic variation, the estimators from the continuous case remain

consistent, and retain the same rate of convergence as before. The asymptotic variance 2Qt

needs to be modified. The results in this paper for the no-jump case therefore remain valid.

For estimation of the continuous part of QVt only, there is no fully developed theory. The

paper by Fan and Wang (2006) argues for the existence of an n−1/4-consistent estimator in

the presence of both jumps and noise, but does not display an asymptotic variance. The

work by Huang and Tauchen (2006) provides a complete theory, but under the assumption

that the microstructure noise is Gaussian.

This paper does not consider the case of infinitely many jumps. There is by now some

theory by Äıt-Sahalia and Jacod (2004), Äıt-Sahalia and Jacod (2006), Woerner (2004), and

Woerner (2006) for the situation where there is no microstructure noise.

Irregular observations can be handled using the concept of quadratic variation of time (Myk-

land and Zhang (2006)).

4.9 The case with leverage effect.

We here consider the question of how to build a theory in the case where there is leverage

effect. In its broadest formulation, what this means is that there is dependence between

σt and the jumps sizes on the one hand, and the driving Brownian motion and Poisson

process on the other. In other words, the analysis cannot be done conditionally on σt and

the jumps sizes. Equations such as (4.11), (4.13) and (4.15), with their implicit conditioning,

are therefore no longer meaningful.

The point of departure is that the convergence (4.10) remains valid even under leverage effect,

as shown in Section 5 of Jacod and Protter (1998) and Proposition 1 of Mykland and Zhang

(2006). Specifically, suppose that the underlying filtration is generated by a p-dimensional
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local martingale (χ(1), ..., χ(p)). It is them the case that

nα/2(QV t − QVt)
d→ Zt

√

2Qt, (4.35)

where Zt is standard normal, and the convergence is joint with (χ(1), ..., χ(p)) (where this is

a constant sequence). Zt is independent of (χ(1), ..., χ(p)) (the latter also occurs in the limit,

since the sequence is constant as a function of n). This is known as stable convergence, cf.

the papers cited, and also Rényi (1963), Aldous and Eagleson (1978), and Hall and Heyde

(1980). It permits, for example, Qt to appear in the limit, while being a function of the data.

As discussed in Section 5 of Zhang, Mykland, and Äıt-Sahalia (2005), the convergence also

holds jointly for days t = 0, ..., T . In this case, Z0, ..., ZT are iid.

With the convergence (4.35) in hand, one can now condition the asymptotic distribution on

the data (i.e., (χ(1), ..., χ(p)) ), and obtain that Zt

√
2Qt is (conditionally) normal with mean

zero and variance 2Qt.

One can then develop the further theory based on asymptotic rather than small sample

variances and covariances. One writes (3.17) as before, and assumes that

QVt = ϕ0QVt−1 +
√

1 − ϕ2
0Ut + (1 − ϕ0)E(QVt), (4.36)

where all the above quantities implicitly depend on n. Specifically, in analogy with (4.18),

nα(1 − ϕ0(n)2) = γ2
0 (4.37)

under which

nα/2(QVt − ϕ0(n)QVt−1) → γ0Ut. (4.38)

Consider the best linear forecast of QVt using (only) QVt−1 :

QVt|t−1 = ϕ0QVt−1 + (1 − ϕ0)E(QV )

so that

nα/2(QVt − QVt|t−1) → γ0Ut.
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and to compute its realized counterpart:

QV t|t−1 = ϕQV t−1 + (1 − ϕ)E(QV ).

If we take ϕ − ϕ0 = Op(n
−α), then

nα/2(QV t|t−1 − QVt|t−1) → Zt−1

√

2Qt−1

so that

nα/2(QV t − QV t|t−1) = nα/2(QV t − QVt) − nα/2(QV t|t−1 − QV t|t−1) + nα/2(QVt − QVt|t−1)

→
√

2QtZt −
√

2Qt−1Zt−1 + γ0Ut.

stably in law. The final estimate is now QV t(ωt) = QV t − ωt(QV t − QV t|t−1), hence

nα/2(QV t(ωt) − QVt) = nα/2(QV t − QVt) − ωtn
α/2(QV t − QV t|t−1)

→ (1 − ωt)
√

2QtZt + ωt

[

−
√

2Qt−1Zt−1 + γ0Ut

]

Hence, the asymptotic MSE (conditional on the data) is

MSEc = (1 − ωt)
22Qt + ω2

t

[

2Qt−1 + γ2
0U

2
t

]

(4.39)

One supposes that in the limit as n → ∞, QVt−1 and Ut are uncorrelated. The stable

convergence (4.35) remains valid even in this triangular array setup by invoking Proposition

3 of Mykland and Zhang (2006).

Under assumption (4.36), one can therefore do the same calculations as before, but on

asymptotic quantities. The result (4.19) then remains valid: the asymptotic mean squared

error (conditional on the data) of the overall estimate QVt(ωt) is minimized by

ω∗
t =

Qt

Qt + Qt−1 + γ2
0U

2
t /2

. (4.40)

The further development is the same as in the no-leverage case.

To summarize the difference between this procedure and the earlier one: In the no-leverage

case, one can condition on the σt process and then find the optimal estimator in terms
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of mean squared error. In the case with leverage, there is no general way of doing the

conditioning for a fixed sample size. However, the asymptotic MSE (conditionally on the

data, where the conditioning is done after the limit-taking) only depends on the σt process.

The post-limit conditioning, therefore, gives rise to exactly the same formula that comes out

of the quite different procedure used in the no-leverage case. Thus stable convergence saves

the no-leverage result for the general setting.

It should be noted that for other functionals than estimators of integrated volatility, this

phenomenon may no longer hold. The approach, however, can be used in many other setting,

see, in particular, the results on estimation of the leverage effect in Section 5, where we do

the relevant calculations explicitly.

5 Estimating the Leverage Effect

We have so far considered the relatively well posed problem of estimating volatility from

high frequency data. The use of multi day data, however, really comes into its own when

trying to estimate less well posed quantities. By way of example, we here consider how to

estimate the leverage effect. The concept of leverage effect is used to cover several concepts,

but we here take it to mean the covariance Lt = 〈p, σ2〉t − 〈p, σ2〉t−1 in the model (4.1).

(For simplicity, consider the no-jump case, λ = 0, which can be undone as in Section 4.1.3).

Specifically, if dWt = ρtdW1(t) +
√

1 − ρ2
t dW2(t), and the system is given by

dp (t) = µ (t) dt + σ (t) dW (t)

dσ2 = ν(t)dt + γ(t)dW1(t),

(where all of ρ(t), ν(t), and γ(t) can be random processes, we obtain that

Lt =

∫ t

t−1

σ(t)γ(t)ρ(t)dt.

Leverage effect is also used to mean the correlation ρ(t) between p and σ2, or, in general,

the dependence between σ2 and the Brownian motion W .
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An estimate of leverage effect is given by

L̂t =
2M

2M + 3

∑

i

(σ̂2
τn,i+1

− σ̂2
τn,i

)(pτn,i+1
− pτn,i

), (5.1)

where

σ̂2
τn,i

=
T

n(M − 1)

∑

tn,j∈(τn,i−1 ,τn,i]

(∆ptn,j+1
− ∆pτn,i

)2 (5.2)

and ∆pτn,i
= (pτn,i

− pτn,i−1
)/M , where tn,j = t − 1 + j/n and τn,i = t − 1 + iM/n. This

estimate is given in Section 4.3 of Mykland and Zhang (2007), where it is shown that the

estimate (for fixed M , as n → ∞) is asymptotically unbiased, but not consistent. To be

precise,

L̂t − Lt → v
1/2
M,tZt, (5.3)

in law, where the Zt are (independent) standard normal, and

vM,t =
4

M − 1

(

2M

2M + 3

)2 ∫ t

t−1

σ6
udu. (5.4)

It is conjectured that if M → ∞ as n → ∞, specifically M = O(n1/2), then the estimator

will be consistent with an Op(n
−1/4) rate of convergence, but the conjecture also suggests

that, for practical data sizes, M has to be so large relative to n that little is gained relative

to (5.3) by considering the consistent version.

We are now in a situation, therefore, where high frequency data is not quite as good at

providing information about the underlying quantity to be estimated. If we take the fixed

M estimator as our point of departure, we do not even need to make triangular array

type assumptions like (3.18) for our procedure to make sense asymptotically. If we let

ϕL ≡ Cov(L̂t, L̂t−1)/V ar(L̂t) (in analogy with (3.7)), we can let the optimal linear predictors

of L̂t given L̂t−1, be written as L̂t|t−1 = (1 − ϕL)L + ϕLL̂t−1, in analogy with (3.9). Again,

here L is the unconditional unbiased time series mean of Lt.

A combined linear estimator of Lt is thus L̂t(ωt) = L̂t − ωt(L̂t − L̂t|t−1), where we note that,

as n → ∞
L̂t|t−1 → (1 − ϕL)L + ϕLLt−1 + φv

1/2
M,t−1Zt−1,
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in law, and so, again in law,

L̂t(ωt) − Lt → (1 − ωt)v
1/2
M,tZt + ωt

[

(1 − ϕL)L + ϕLLt−1 − Lt + ϕLv
1/2
M,t−1Zt−1

]

.

The asymptotic MSE (conditional on the data) is therefore:

MSEc = (1 − ωt)
2vM,t + ω2

t

[

((1 − ϕL)L + ϕLLt−1 − Lt)
2 + ϕ2

LvM,t−1

]

.

The (infeasible) optimal value ω∗
t is thus

ω∗
t =

vM,t

(ϕL(Lt−1 − L) − (Lt − L))2 + ϕ2
LvM,t−1 + vM,t

. (5.5)

In this case, therefore, there is no need for ϕL to go to 1 as n → ∞.

6 A simulation study

6.1 The case of One-factor Stochastic Volatility processes

The analysis so far used a linear prediction model for QV. We did not assume this prediction

model QV t|t−1 is the true data generating process, only a particular prediction model. So far

we only considered Markov models of order one. In the next subsection we will expand the

setting to more general prediction models. Before we do, we consider the case where the first

order Markov prediction coincides with the best linear predictor, i.e. the true data generating

process is such that the linear AR(1) is the best. This setting allows us to further illustrate

the efficiency gains. We consider two example, (1) a one-factor SV model linear in the drift as

studied by Meddahi and Renault (2004) and (2) a class of non-Gaussian Ornstein-Uhlenbeck

(henceforth OU) processes highlighted in Barndorff-Nielsen and Shephard (2001). In both

cases we also exclude again the presence of jumps at this point.

Since we are dealing with a order one autoregressive process with persistence depending on

n, it is not surprising that the analysis in this section is reminiscent of the local-to-unity

asymptotics commonly used to better approximate the finite sample behavior of parameter

estimates in AR(1) models with root near the unit circle where neither the Dickey-Fuller

asymptotics nor the standard normal provide adequate descriptions of the finite sample
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properties of OLS estimators. Here local-to-unity asymptotics is used to improve finite

sample estimates too, albeit in a context of in-sampling asymptotics. The local-to-unity

approach was first proposed by Bobkoski (1983), and subsequently studied by Phillips (1987)

and Chan and Wei (1987) among many others.6

INSERT FIRST CASE HERE

A non-Gaussian Ornstein-Uhlenbeck process is defined as:

dσ(t)2 = −λσ(t)2dt + dz(λt) (6.1)

where z(t) is a Lévy process with non-negative increments and hence allows for jumps in

volatility. The specification dz(λt) allows one to keep the marginal distribution of volatility

invariant to the choice of λ, provided it is non-negative. This process yields an autocorrelation

function acf(σ(t)2, s) ≡ cor(σ(t)2, σ(t+s)2) equal to acf(σ(t)2, s) = exp(−λ|s|). Using results

from Barndorff-Nielsen and Shephard one obtains:

acf(QVt, s) =
(1 − e−λ)2e−λ(|s|−1)

2(e−λ − 1 + λ)
(6.2)

Hence, the first order autocorrelation denoted ϕ equals (1 − e−λ)2/2(e−λ − 1 + λ).

In the previous subsection it was recognized that ϕ(n) depends on the sampling frequency.

Using equation (4.18) and the second order Taylor expansion of the exponential function we

have:

λ(n) = 2(1 − (1 − 2γ2n−α)1/4) = O(n−α/4) (6.3)

so that γ appears as a non-centrality parameter as is typically the case in the local-to-unity

asymptotic analysis. Note that as n → ∞ we obtain the non-stationary OU process with

λ(n) = 0. Large values of γ lower the persistence.

The purpose of the simulation is two-fold. First we want to assess the efficiency gains of

the optimal schemes. This will allow us to appraise how much can be gained from filtering.

Second, we would like to compare the feasible optimal weighting schemes ω∗
t with the rule-

of-thumb scheme ωr−th, the unconditional scheme ωunc and the heteroskedasticity correction

embedded in ωunc−hc. This will allow us to appraise the difference between conditional and

6A recent extension to block local-to-unity asymptotics by Phillips, Moon, and Xiao (2001) has some
resemblance with our analysis, although we focus here on integrated volatility.
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unconditional filtering as well as the relative contribution of the natural progression towards

the optimal (conditional) starting with the rule-of-thumb scheme ωr−th, to ωf−unc, followed

by the heteroskedasticity correction embedded in ωf−unc−hc.

We consider a 1,000 replications, each consisting of 500 and 1,000 “days.’ We report the

results for a total of three different continuous-time models along with n = 288, 144 and 24

corresponding to the use of five-minute, ten-minute and hourly returns in a 24-hour financial

market. The class of models we simulate are based on Andersen, Bollerslev, and Meddahi

(2005) and consist of:

d log St = µdt + σtdWt (6.4)

= σt[ρ1dW1t − ρ2dW2t +
√

1 − ρ2
1 − ρ2

2dW3t]

When µ = ρ1 = ρ2 = 0, we obtain:

d log St = σtdW3t (6.5)

The dynamics for the instantaneous volatility is one of the following (with the specific pa-

rameter values taken from Andersen, Bollerslev, and Meddahi (2005)):

dσ2
t = .035(.636 − σ2

t )dt + .144σ2
t dW1t (6.6)

which is a GARCH(1,1) diffusion, or a two-factor affine model:

dσ2
1t = .5708(.3257− σ2

1t)dt + .2286σ2
1tdW1t (6.7)

dσ2
2t = .0757(.1786− σ2

2t)dt + .1096σ2
2tdW2t

All of the above models satisfy the regularity conditions of the Jacod (1994) and Barndorff-

Nielsen and Shephard (2002) asymptotics.

We start by treating the one-minute quantities as the “truth”, hence they provide us with a

benchmark for comparison. The results appear in
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7 An Empirical Application

The following empirical results are based on GM (2000-2002) using 5min returns.

• Optimal weight for QV, No JUMP

ω̂∗
t =

2Qt

2Qt + 2φ2Qt−1 + n[QV t − QV t|t−1]
2

where

– n = number of obs. in a day

– QVt =
∑n

j=1 r2
t,j

– Qt = n/3
∑n

j=1 r4
t,j

Results: mean of weight=0.286, std of weight=0.302

• Optimal weight for QV, JUMP

ω̂∗
t =

2Qt

2Qt + 2φ2Qt−1 + n[QV t − QV t|t−1]
2

where

– n = number of obs. in a day

– QVt =
∑n

j=1 r2
t,j

– Qt = n(π/2)2
∑n

j=4 |rt,jrt,j−1rt,j−2rt,j−3|

Results: mean of weight=0.227, std of weight=0.284

• Optimal weight for BPV

ω̂∗
t =

νQt

νQt + νφ2Qt−1 + n[BPV t − BPV t|t−1]2

where
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– n = number of obs. in a day

– ν = 0.609

– BPVt = (π/2)
∑n

j=2 |rt,jrt,j−1|

– Qt = n(π/2)2
∑n

j=4 |rt,jrt,j−1rt,j−2rt,j−3|

Results: mean of weight=0.153, std of weight=0.223

8 Conclusions
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Technical Appendices

A Proof of Proposition 3.1

It should first be noted that:

σ̂2
t − σ̂2

t|t−1 = σ̂2
t − ϕσ̂2

t−1 − (1 − ϕ)σ2 (A.1)

and therefore:

V arc[σ̂
2
t − σ̂2

t|t−1] = V arc[σ̂
2
t − ϕσ̂2

t−1]

=
2σ

[4]
t

n
+

2ϕ2σ
[4]
t−1

n

From equation (A.1) we also obtain that:

Ec[σ̂
2
t − σ̂2

t|t−1] = σ2
t − ϕσ2

t−1 − (1 − ϕ)σ2

Finally, using the same equation we have:

Covc[σ̂
2
t , σ̂

2
t − σ̂2

t|t−1] = Covc[σ̂
2
t , σ̂

2
t − ϕσ̂2

t−1]

=
2σ

[4]
t

n

Using equation (4.15) and collecting all the above results we obtain:

ω∗
t =

2σ
[4]
t /n

2/n[σ
[4]
t + ϕ2σ

[4]
t−1] + [σ2

t − ϕσ2
t−1 − (1 − ϕ)σ2]2

and hence equation (3.13).

B Proof of Proposition 3.2

First, consider equation (3.3), namely:

σ2
t ≡ 1

n

n
∑

j=1

σ2
t,j
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Therefore:

V arσ2
t =

1

n2

∑

i,j

Cov[σ2
t,i, σ

2
t,j ] (B.2)

Recall also from equation (3.4) that σ̂2
t =

∑n
j=1[r

n
t,j ]

2, and therefore:

V arσ̂2
t =

∑

i,j

Cov[r2
t,i, r

2
t,j ] (B.3)

where: Cov[r2
t,i, r

2
t,j ] = 1

n2 E[σ2
t,iσ

2
t,j ]E[ε2

t,iε
2
t,j ] - 1

n2 E[σ2
t,i]E[σ2

t,j ]E[ε2
t,i]E[ε2

t,j ], and therefore:

Cov[r2
t,i, r

2
t,j ] =























Cov[σ2
t,i, σ

2
t,j ] i 6= j

V ar(σ2
t,i) + 2E[σ4

t,i] i = j

Hence,

V arσ̂2
t = V arσ2

t + − 2

n2

∑

j

E[σ4
t,j ]

or by (3.15):

V arσ̂2
t = V arσ2

t +
2

n
E[σ4

t ] (B.4)

This yields the denominator of ϕ. To obtain an expression for the numerator, we derive:

Cov[σ̂2
t , σ̂

2
t−1] = Cov[

∑

j

r2
t,j ,

∑

i

r2
t−1,i]

=
1

n2

∑

i,j

[E[σ2
t,iσ

2
t−1,jε

2
t,iε

2
t−1,j ] − E[σ2

t,iε
2
t,i]E[σ2

t−1,jε
2
t−1,j ]]

=
1

n2

∑

i,j

Cov(σ2
t,i, σ

2
t−1,j)

= Cov(σ2
t , σ

2
t−1) (B.5)

Therefore:

ϕ =
Cov(σ2

t , σ
2
t−1)

V arσ2
t + (2/n)(E[σ

[4]
t ])

(B.6)

which can also be written as:

ϕ =
ϕ0V arσ2

t

V arσ2
t + (2/n)(E[σ

[4]
t ])

dividing denominator and numerator by V arσ2
t yields equation (3.16).
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C A Comparison of Two Estimators

Given the MLE estimator appearing in (3.20) we know that:

σ̂4
t,[i]

σ4
t,[i]

=
1

n2
[

ni
∑

j=n(i−1)+1

(
rt,j

σt,[i]/
√

n
)2]2 ∼ 1

n2
(χ2(n))2

Hence, the expectation of the above the expectation of the above ratio is (2n+n2)/n2 = (1+2/n).

Hence, an unbiased estimator of σ[4] = m/n
∑m/n

t=1 σ4
t,[i], is defined in equation (3.20). We can

rewrite this as,

σ̂[4] =
m

n

m/n
∑

t=1

σ̂4
t,[i]

1 + 2/n

=
m

n(1 + 2/m)

∑

i

n2

m2
(
∑

r2
t,j)

2

Which we can rewrite as:

σ̂[4] =
n

m + 2

n/m
∑

i=1

[

j=m
∑

j=n(t−1)+1

r2
t,j ]

2 (C.7)

The above estimator can be compared with the naive estimator appearing in (??). To do so we

need to derive the conditional variance of σ̂ [4]. Note that we can rewrite the estimator (3.20) as:

σ̂[4] =
1

(m + 2)n

∑

i

σ4
t,[i][

∑

j

(
rt,j

σt,[i]/
√

n
)2]2

=
1

(m + 2)n

∑

i

σ4
t,[i][χ

2
i (m)]2

Since E[χ2
i (m)]p/2 = 2p/2Γ((p + m)/2)/Γ(m/2), therefore E[χ2

i (m)]4 = 24 Γ(4 + m/2)/Γ(m/2) =

24 (3+m/2) (2+m/2) (1+m/2) m/2. Consequently, E[χ2
i (m)]4 = (m+6)(m+4)(m+2)m. Along

similar lines, one has E[χ2
i (m)]2 = m(m + 2). Therefore,

V ar[χ2
i (m)2] = (m + 6)(m + 4)(m + 2)m − m2(m + 2)2

= 8m(m + 2)(m + 3)
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The above results yield:

V ar[σ̂[4]] =
1

n2(n + 2)2

∑

i

σ8
t,[i]8m(m + 2)(m + 3)

=
8m(m + 3)

n2(n + 2)

∑

i

σ8
t,[i]

We now turn our attention to the naive estimator appearing in (??), which we rewrite as in equation

(3.23):

σ̃
[4]
t =

1

3n

∑

i

σ4
t,[i]

∑

j

(
rt,j

σt,[i]
)4

=
1

3n

∑

i

σ4
t,[i](χ

2(1))2

Therefore,

V ar(σ̃
[4]
t ) =

1

9n2

∑

i

σ8
t,[i]V ar((χ2(1))2) × m

=
32m

3n2

∑

i

σ8
t,[i]

From these results we can deduce that there will be efficiency improvements provided that (m +

3)/(m + 2) < 4/3, or 3m + 9 < 4m + 8, which implies m > 1.

To conclude, we compute the unconditional variance of σ̂4
t . First, note that

σ̂4
t,[i] = σ4

t,[i]

[χ2
i (m)]2

m2

= σ4
t,[i]ε

2
i

Hence,

σ̂4
t =

n

n(n + 2/n)

m/n
∑

i=1

σ4
t,[i]ε

2
i (C.8)

Therefore the unconditional variance of σ̂4
t can be written as:

V arσ̂4
t =

n2

n2(n + 2/n)2

m/n
∑

i=1

V ar[σ4
t,[i]](E[ε2

i ])
2 + 2(V arε2

i )E[σ8
t,[i]] (C.9)

42



Given the definition of ε2
i , we have that Eε2

i = 1 + 2/m, and V arε2
i = 8 m (m + 2)(m + 3)/m4.

Therefore,

V arσ̂4
t =

m2

n2

m/n
∑

i=1

V ar[σ4
t,[i]] + 2

8m(m + 3)

m2(m + 2)
E[σ8

t,[i]]

= V ar[σ4
t ] + 2

8m(m + 3)

m2(m + 2)
E[σ8

t,[i]] (C.10)
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Rényi, A. (1963): “On Stable Sequences of Events,” Sankyā Series A, 25, 293–302.
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Table 1: MSE Improvements, GARCH Diffusion Model

AR(1) Prediction, Sample size=500 days

MSE raw Impr: ω∗ Impr: ωrth Impr:ωunc Impr:ωunc−hc

Mean Mean Var Mean Var Mean Var Mean Var
1 Min 0.000698 0.968657 0.000569 2.933233 0.164681 0.938143 0.000324 0.938207 0.000325
5 Min 0.003468 0.688474 0.001149 0.986316 0.013489 0.835003 0.000482 0.812633 0.000994
10 Min 0.006872 0.617635 0.001208 0.745121 0.005736 0.790329 0.000432 0.749763 0.001184
1 Hour 0.040485 0.552005 0.002531 0.550450 0.001761 0.726488 0.000575 0.664082 0.002530

AR(1) Prediction, Sample size=1000 days

MSE raw Impr: ω∗ Impr: ωrth Impr:ωunc Impr:ωunc−hc

Mean Mean Var Mean Var Mean Var Mean Var
1 Min 0.000740 0.968851 0.000323 2.930422 0.093108 0.938663 0.000181 0.938735 0.000182
5 Min 0.003708 0.689292 0.000729 0.987504 0.007240 0.836202 0.000278 0.814704 0.000583
10 Min 0.007343 0.618920 0.000732 0.745429 0.003442 0.791686 0.000247 0.751894 0.000711
1 Hour 0.043333 0.552880 0.001553 0.550193 0.001067 0.729105 0.000362 0.668533 0.001619
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Table 2: Comparison of weights, GARCH Diffusion Model

Sample size=500 days
ω∗ ωunc ωunc−hc

Mean Var Mean Var meanvar Mean Var meanvar
1 Min 0.149728 0.023604 0.040616 0.000014 0.000000 0.040584 0.000014 0.000000
5 Min 0.240160 0.026001 0.104851 0.000067 0.000000 0.124912 0.000086 0.000035
10 Min 0.272482 0.026180 0.131608 0.000092 0.000000 0.169400 0.000121 0.000185
1 Hour 0.318790 0.037506 0.174333 0.000139 0.000000 0.248265 0.000327 0.003698

Sample size=1000 days
ω∗ ωunc ωunc−hc

Mean Var Mean Var meanvar Mean Var meanvar
1 Min 0.149602 0.023466 0.040369 0.000008 0.000000 0.040327 0.000008 0.000000
5 Min 0.240637 0.025864 0.104163 0.000041 0.000000 0.123741 0.000050 0.000034
10 Min 0.273390 0.025979 0.130415 0.000057 0.000000 0.167491 0.000067 0.000176
1 Hour 0.321076 0.037370 0.172181 0.000096 0.000000 0.243963 0.000214 0.003492
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Table 3: MSE, GARCH Diffusion Model

AR(1) Prediction, Sample size=500 days

MSE raw MSE: ω∗ MSE: ωrth MSE:ωunc MSE:ωunc−hc

Mean Var Mean Var Mean Var Mean Var Mean Var
1 Min 0.000698 0.000000 0.000676 0.000000 0.002047 0.000002 0.000656 0.000000 0.000656 0.000000
5 Min 0.003468 0.000005 0.002395 0.000002 0.003436 0.000006 0.002905 0.000003 0.002829 0.000003
10 Min 0.006872 0.000018 0.004260 0.000007 0.005129 0.000011 0.005447 0.000012 0.005171 0.000011
1 Hour 0.040485 0.000617 0.022478 0.000209 0.022283 0.000189 0.029580 0.000347 0.027135 0.000308

AR(1) Prediction, Sample size=1000 days

MSE raw MSE: ω∗ MSE: ωrth MSE:ωunc MSE:ωunc−hc

Mean Var Mean Var Mean Var Mean Var Mean Var
1 Min 0.000740 0.000000 0.000717 0.000000 0.002172 0.000001 0.000695 0.000000 0.000696 0.000000
5 Min 0.003708 0.000003 0.002560 0.000002 0.003659 0.000003 0.003105 0.000002 0.003025 0.000002
10 Min 0.007343 0.000011 0.004555 0.000005 0.005472 0.000007 0.005822 0.000007 0.005531 0.000007
1 Hour 0.043333 0.000414 0.024050 0.000145 0.023848 0.000131 0.031725 0.000239 0.029156 0.000216
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Table 4: Bias2+Var, GARCH Diffusion Model

AR(1) Prediction, Sample size=500 days

MSE raw MSE: ω∗ MSE: ωrth MSE:ωunc MSE:ωunc−hc

Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var
1 Min 0.000002 0.000698 0.000002 0.000676 0.000003 0.002049 0.000002 0.000655 0.000002 0.000655
5 Min 0.000012 0.003463 0.000022 0.002378 0.000015 0.003428 0.000012 0.002899 0.000014 0.002820
10 Min 0.000033 0.006853 0.000076 0.004193 0.000038 0.005101 0.000033 0.005425 0.000046 0.005135
1 Hour 0.000727 0.039838 0.002222 0.020297 0.000756 0.021570 0.000727 0.028912 0.001402 0.025785

AR(1) Prediction, Sample size=1000 days

MSE raw MSE: ω∗ MSE: ωrth MSE:ωunc MSE:ωunc−hc

Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var
1 Min 0.000001 0.000740 0.000001 0.000717 0.000001 0.002172 0.000001 0.000695 0.000001 0.000695
5 Min 0.000008 0.003703 0.000019 0.002543 0.000010 0.003653 0.000008 0.003099 0.000011 0.003017
10 Min 0.000026 0.007325 0.000072 0.004488 0.000029 0.005449 0.000026 0.005802 0.000040 0.005497
1 Hour 0.000710 0.042666 0.002263 0.021809 0.000726 0.023145 0.000710 0.031046 0.001415 0.027769
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Table 5: Forecasting scheme, GARCH Diffusion Model

AR(1) with IV AR(1) with RV IV∼RV IV∼Corrected RV

Sample size: 500 days
MSE

1 Min 0.007 0.008 0.007 0.007
5 Min 0.007 0.013 0.010 0.010
10 Min 0.007 0.019 0.013 0.012
1 Hour 0.007 0.073 0.036 0.031

R2
1 Min 0.935 0.922 0.929 0.927
5 Min 0.935 0.874 0.905 0.905
10 Min 0.935 0.820 0.876 0.881
1 Hour 0.935 0.470 0.664 0.700

Sample size: 1000 days
MSE

1 Min 0.007 0.009 0.008 0.008
5 Min 0.007 0.015 0.011 0.011
10 Min 0.007 0.022 0.014 0.013
1 Hour 0.007 0.082 0.041 0.036

R2
1 Min 0.945 0.935 0.940 0.939
5 Min 0.945 0.893 0.919 0.920
10 Min 0.945 0.845 0.894 0.900
1 Hour 0.945 0.517 0.700 0.736
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Table 6: MSE Improvements, Two-factor diffusion Model

AR(1) Prediction, Sample size=500 days

MSE raw Impr: ω∗ Impr: ωrth Impr:ωunc Impr:ωunc−hc

Mean Mean Var Mean Var Mean Var Mean Var
1 Min 0.000385 0.989081 0.000259 6.335047 0.567550 0.967679 0.000098 0.967674 0.000099
5 Min 0.001921 0.741426 0.000693 1.665778 0.028773 0.886338 0.000244 0.876034 0.000409
10 Min 0.003829 0.656901 0.000800 1.081521 0.009140 0.831873 0.000267 0.806082 0.000638
1 Hour 0.022474 0.531366 0.001562 0.605291 0.001340 0.708880 0.000253 0.626715 0.001404

AR(1) Prediction, Sample size=1000 days

MSE raw Impr: ω∗ Impr: ωrth Impr:ωunc Impr:ωunc−hc

Mean Mean Var Mean Var Mean Var Mean Var
1 Min 0.000389 0.989200 0.000132 6.255583 0.300284 0.967938 0.000052 0.967936 0.000053
5 Min 0.001941 0.740910 0.000353 1.650102 0.015274 0.886331 0.000129 0.876288 0.000216
10 Min 0.003875 0.657091 0.000420 1.073845 0.004683 0.831778 0.000139 0.806360 0.000330
1 Hour 0.022823 0.530654 0.000803 0.603472 0.000691 0.708773 0.000132 0.626347 0.000762

53



Table 7: Comparison of weights, Two-factor diffusion Model

Sample size=500 days
ω∗ ωunc ωunc−hc

Mean Var Mean Var meanvar Mean Var meanvar
1 Min 0.108224 0.019962 0.021156 0.000003 0.000000 0.021120 0.000003 0.000000
5 Min 0.195840 0.026460 0.073265 0.000023 0.000000 0.082200 0.000032 0.000014
10 Min 0.239036 0.027846 0.106603 0.000035 0.000000 0.129582 0.000058 0.000107
1 Hour 0.329995 0.038291 0.182154 0.000073 0.000000 0.267595 0.000146 0.005350

Sample size=1000 days
ω∗ ωunc ωunc−hc

Mean Var Mean Var meanvar Mean Var meanvar
1 Min 0.108309 0.019884 0.021260 0.000002 0.000000 0.021223 0.000002 0.000000
5 Min 0.195985 0.026357 0.073471 0.000012 0.000000 0.082386 0.000018 0.000014
10 Min 0.239039 0.027730 0.106674 0.000019 0.000000 0.129625 0.000032 0.000107
1 Hour 0.330089 0.038269 0.181439 0.000036 0.000000 0.266882 0.000078 0.005308
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Table 8: MSE, Two-factor diffusion Model

AR(1) Prediction, Sample size=500 days

MSE raw MSE: ω∗ MSE: ωrth MSE:ωunc MSE:ωunc−hc

Mean Var Mean Var Mean Var Mean Var Mean Var
1 Min 0.000385 0.000000 0.000381 0.000000 0.002413 0.000000 0.000373 0.000000 0.000373 0.000000
5 Min 0.001921 0.000000 0.001422 0.000000 0.003168 0.000000 0.001701 0.000000 0.001681 0.000000
10 Min 0.003829 0.000000 0.002512 0.000000 0.004109 0.000000 0.003184 0.000000 0.003083 0.000000
1 Hour 0.022474 0.000010 0.011919 0.000003 0.013568 0.000003 0.015938 0.000005 0.014070 0.000004

AR(1) Prediction, Sample size=1000 days

MSE raw MSE: ω∗ MSE: ωrth MSE:ωunc MSE:ωunc−hc

Mean Var Mean Var Mean Var Mean Var Mean Var
1 Min 0.000389 0.000000 0.000385 0.000000 0.002418 0.000000 0.000376 0.000000 0.000376 0.000000
5 Min 0.001941 0.000000 0.001438 0.000000 0.003186 0.000000 0.001720 0.000000 0.001700 0.000000
10 Min 0.003875 0.000000 0.002545 0.000000 0.004144 0.000000 0.003222 0.000000 0.003123 0.000000
1 Hour 0.022823 0.000005 0.012100 0.000002 0.013751 0.000002 0.016180 0.000003 0.014287 0.000002
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Table 9: Bias2+Var, Two-factor diffusion Model

AR(1) Prediction, Sample size=500 days

MSE raw MSE: ω∗ MSE: ωrth MSE:ωunc MSE:ωunc−hc

Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var
1 Min 0.000001 0.000385 0.000001 0.000380 0.000001 0.002416 0.000001 0.000373 0.000001 0.000373
5 Min 0.000007 0.001918 0.000016 0.001409 0.000008 0.003166 0.000007 0.001698 0.000008 0.001676
10 Min 0.000019 0.003817 0.000058 0.002459 0.000023 0.004095 0.000019 0.003170 0.000027 0.003062
1 Hour 0.000476 0.022043 0.001575 0.010365 0.000492 0.013102 0.000476 0.015494 0.000990 0.013106

AR(1) Prediction, Sample size=1000 days

MSE raw MSE: ω∗ MSE: ωrth MSE:ωunc MSE:ωunc−hc

Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var
1 Min 0.000001 0.000389 0.000001 0.000384 0.000001 0.002419 0.000001 0.000376 0.000001 0.000376
5 Min 0.000005 0.001938 0.000015 0.001424 0.000006 0.003184 0.000005 0.001717 0.000006 0.001696
10 Min 0.000016 0.003863 0.000056 0.002491 0.000017 0.004130 0.000016 0.003209 0.000024 0.003102
1 Hour 0.000455 0.022391 0.001573 0.010537 0.000463 0.013302 0.000455 0.015741 0.000978 0.013322
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Table 10: Forecasting scheme, Two-factor diffusion Model

AR(1) with IV AR(1) with RV IV∼RV IV∼Corrected RV

Sample size: 500 days
MSE

1 Min 0.008 0.009 0.008 0.008
5 Min 0.008 0.011 0.009 0.009
10 Min 0.008 0.014 0.010 0.010
1 Hour 0.008 0.037 0.016 0.016

R2
1 Min 0.670 0.650 0.660 0.656
5 Min 0.670 0.577 0.624 0.618
10 Min 0.670 0.503 0.583 0.581
1 Hour 0.670 0.177 0.350 0.363

Sample size: 1000 days
MSE

1 Min 0.008 0.009 0.008 0.008
5 Min 0.008 0.011 0.009 0.009
10 Min 0.008 0.014 0.010 0.010
1 Hour 0.008 0.038 0.016 0.016

R2
1 Min 0.679 0.658 0.668 0.665
5 Min 0.679 0.585 0.631 0.627
10 Min 0.679 0.510 0.590 0.590
1 Hour 0.679 0.179 0.353 0.368
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Table 11: Forecasting scheme, Two-factor diffusion Model with leverage effect

AR(1) with IV AR(1) with RV IV∼RV IV∼Corrected RV

Sample size: 500 days
MSE

1 Min 0.008 0.009 0.008 0.008
5 Min 0.008 0.011 0.009 0.009
10 Min 0.008 0.014 0.010 0.010
1 Hour 0.008 0.038 0.016 0.015

R2
1 Min 0.670 0.650 0.661 0.657
5 Min 0.670 0.578 0.625 0.620
10 Min 0.670 0.503 0.586 0.583
1 Hour 0.670 0.179 0.363 0.376

Sample size: 1000 days
MSE

1 Min 0.008 0.009 0.008 0.008
5 Min 0.008 0.011 0.009 0.009
10 Min 0.008 0.014 0.010 0.010
1 Hour 0.008 0.038 0.016 0.016

R2
1 Min 0.679 0.658 0.669 0.666
5 Min 0.679 0.585 0.633 0.629
10 Min 0.679 0.509 0.593 0.592
1 Hour 0.679 0.181 0.366 0.381
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Table 12: Forecasting scheme, Two-factor diffusion Model with leverage and

drfit

AR(1) with IV AR(1) with RV IV∼RV IV∼Corrected RV

Sample size: 500 days
MSE

1 Min 0.008 0.009 0.008 0.008
5 Min 0.008 0.011 0.009 0.009
10 Min 0.008 0.014 0.010 0.010
1 Hour 0.008 0.038 0.016 0.015

R2
1 Min 0.670 0.650 0.661 0.657
5 Min 0.670 0.578 0.626 0.620
10 Min 0.670 0.503 0.586 0.584
1 Hour 0.670 0.180 0.365 0.378

Sample size: 1000 days
MSE

1 Min 0.008 0.009 0.008 0.008
5 Min 0.008 0.011 0.009 0.009
10 Min 0.008 0.014 0.010 0.010
1 Hour 0.008 0.039 0.016 0.016

R2
1 Min 0.679 0.658 0.669 0.666
5 Min 0.679 0.585 0.633 0.629
10 Min 0.679 0.509 0.593 0.592
1 Hour 0.679 0.182 0.368 0.383
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Table 13: Forecasting scheme, GARCH Diffusion Model

AR(1) with IV AR(1) with RV IV∼RV IV∼Corrected RV

Sample size: 500 days
MSE

1 Min 0.007 0.008 0.007 0.007
5 Min 0.007 0.013 0.010 0.010
10 Min 0.007 0.019 0.013 0.012
1 Hour 0.007 0.073 0.036 0.031

R2
1 Min 0.935 0.922 0.929 0.927
5 Min 0.935 0.874 0.905 0.905
10 Min 0.935 0.820 0.876 0.881
1 Hour 0.935 0.470 0.664 0.700

Sample size: 1000 days
MSE

1 Min 0.007 0.009 0.008 0.008
5 Min 0.007 0.015 0.011 0.011
10 Min 0.007 0.022 0.014 0.013
1 Hour 0.007 0.082 0.041 0.036

R2
1 Min 0.945 0.935 0.940 0.939
5 Min 0.945 0.893 0.919 0.920
10 Min 0.945 0.845 0.894 0.900
1 Hour 0.945 0.517 0.700 0.736
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