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1 Introduction

Forecasts recorded at multiple horizons, e.g., from one to several quarters into the future, are com-
monly reported in empirical work. For example, the surveys conducted by the Philadelphia Federal
Reserve (Survey of Professional Forecasters), Consensus Economics or Blue Chip and the forecasts
produced by the IMF (World Economic Outlook), the Congressional Budget office, the Bank of
England and the Board of the Federal Reserve all cover multiple horizons. Similarly, econometric
models are commonly used to generate multi-horizon forecasts, see, e.g., Clements (1997), Faust
and Wright (2009) and Marcellino, Stock and Watson (2006). With the availability of such multi-
horizon forecasts, there is a growing need for tests of optimality that exploit the information in
the complete “term structure” of forecasts recorded across all horizons. By simultaneously exploit-
ing information across several horizons, rather than focusing separately on individual horizons,
multi-horizon forecast tests offer the potential of drawing more powerful conclusions about the
ability of forecasters to produce optimal forecasts. This paper derives a number of novel and sim-
ple implications of forecast optimality and compares tests based on these implications with extant
methods.

A well-known implication of forecast optimality is that, under squared error loss, the mean
squared forecast error should be a weakly increasing function of the forecast horizon, see, e.g.,
Diebold (2001) and Patton and Timmermann (2007a). A similar property holds for the forecasts
themselves: Internal consistency of a sequence of optimal forecasts implies that the variance of the
forecasts should be a weakly decreasing function of the forecast horizon. Intuitively, this property
holds because the variance of the expectation conditional on a large information set (corresponding
to a short forecast horizon) must exceed that of the expectation conditional on a smaller information
set (corresponding to a long horizon). It is also possible to show that optimal updating of forecasts
implies that the variance of the forecast revision should exceed twice the covariance between the
forecast revision and the actual value. It is uncommon to test such variance bounds in empirical

practice, in part due to the difficulty in setting up joint tests of these bounds. We suggest and



illustrate testing these monotonicity properties via tests of inequality contraints using the methods
of Gourieroux et al. (1982) and Wolak (1987, 1989), and the bootstrap methods of White (2000)
and Hansen (2005).

Tests of forecast optimality have conventionally been based on comparing predicted and “re-
alized” values of the outcome variable. This severely constrains inference in some cases since, as
shown by Croushore (2006), Croushore and Stark (2001) and Corradi, Fernandez and Swanson
(2009), revisions to macroeconomic variables can be very considerable and so raises questions that
can be difficult to address such as “what are the forecasters trying to predict?”, i.e. first-release
data or final revisions. We show that variations on both the new and extant optimality tests can
be applied without the need for observations on the target variable. These tests are particularly
useful in situations where the target variable is not observed (such as for certain types of volatility
forecasts) or is measured with considerable noise (as in the case of output forecasts).

Conventional tests of forecast optimality regress the realized value of the predicted variable on
an intercept and the forecast for a single horizon and test the joint implication that the intercept
and slope coefficient are zero and one, respectively (Mincer and Zarnowitz, 1969). In the presence of
forecasts covering multiple horizons, a complete test that imposes internal consistency restrictions
on the forecast revisions is shown to give rise to a univariate optimal revision regression. Using a
single equation, this test is undertaken by regressing the realized value on an intercept, the long-
horizon forecast and the sequence of intermediate forecast revisions. A set of zero-one equality
restrictions on the intercept and slope coefficients are then tested. A key difference from the
conventional Mincer-Zarnowitz test is that the joint consistency of all forecasts at different horizons
is tested by this generalized regression. This can substantially increase the power of the test.

Analysis of forecast optimality is usually predicated on covariance stationarity assumptions.
However, we show that the conventional assumption that the target variable and forecast are
(jointly) covariance stationary is not needed for some of our tests and can be relaxed provided

that forecasts for different horizons are lined up in “event time”, as studied by Nordhaus (1987),



Davies and Lahiri (1995), Clements (1997) and Patton and Timmermann (2010a,c). In particular,
we show that the second moment bounds continue to hold in the presence of structural breaks in
the variance of the innovation to the predicted variable and other forms of data heterogeneity.

To shed light on the statistical properties of the variance bound and regression-based tests
of forecast optimality, we undertake a set of Monte Carlo simulations. These simulations consider
various scenarios with zero, low and high measurement error in the predicted variable and deviations
from forecast optimality in a variety of directions. We find that the covariance bound and the
univariate optimal revision test have good power and size properties. Specifically, they are generally
better than conventional Mincer-Zarnowitz tests conducted for individual horizons which either
tend to be conservative, if a Bonferroni bound is used to summarize the evidence across multiple
horizons, or suffer from substantial size distortions, if the multi-horizon regressions are estimated as
a system. Our simulations suggest that the various bounds and regression tests have complementary
properties in the sense that they have power in different directions and so can identify different
types of suboptimal behavior among forecasters.

An empirical application to Greenbook forecasts of GDP growth, changes to the GDP deflator
and consumer price inflation confirms the findings from the simulations. In particular, we find that
conventional regression tests often fail to reject the null of forecast optimality. In contrast, the new
variance-bounds tests and single equation multi-horizon tests have better power and are able to
identify deviations from forecast optimality.

The outline of the paper is as follows. Section 2 presents some novel variance bound implications
of optimality of forecasts across multiple horizons and the associated tests. Section 3 considers
regression-based tests of forecast optimality and Section 4 presents some extensions of our main
results to cover data heterogeneity and heterogeneity in the forecast horizons. Section 5 presents
results from a Monte Carlo study, while Section 6 provides an empirical application to Federal

Reserve Greenbook forecasts. Section 7 concludes.



2 Multi-Horizon Bounds and Tests

In this section we derive variance and covariance bounds that can be used to test the optimality
of a sequence of forecasts recorded at different horizons. These are presented as corollaries to the
well-known theorem that the optimal forecast under quadratic loss is the conditional mean. The

proofs of these corollaries are collected in Appendix A.

2.1 Assumptions and background

Consider a univariate time series, Y = {Y;;t = 1,2, ...}, and suppose that forecasts of this variable
are recorded at different points in time, ¢t = 1,...,7T and at different horizons, h = hq, ..., hg. Fore-
casts of Y; made h periods previously will be denoted as fft‘t_h, and are assumed to be conditioned
on the information set available at time t — h, F;_p, which is taken to be the filtration of o-algebras
generated by {Zt_h_k; k> 0}, where Z;_j, is a vector of predictor variables. This need not (only)
comprise past and current values of Y. Forecast errors are given by e;;_j, = Y; — ﬁ|t,h. We con-
sider an (H x 1) vector of multi-horizon forecasts for horizons hy < hg < --+ < hp, with generic
long and short horizons denoted by hz and hg (hy > hg). Note that the forecast horizons, h;, can
be positive, zero or negative, corresponding to forecasting, nowcasting or backcasting, and further
note that we do not require the forecast horizons to be equally spaced.

We will develop a variety of forecast optimality tests based on corollaries to Theorem 1 below.
In so doing, we take the forecasts as primitive, and if the forecasts are generated by particular
econometric models, rather than by a combination of modeling and judgemental information, the
estimation error embedded in those models is ignored. In the presence of estimation error the
results established here need not hold (Schmidt (1974); Clements and Hendry (1998)). Existing
analytical results are very limited, however, as they assume a particular model (e.g., an AR(1)
specification), whereas in practice forecasts from surveys and forecasts reported by central banks

reflect considerable judgmental information. We leave the important extension to incorporate



estimation error to future research.!

The “real time” macroeconomics literature has demonstrated the presence of large and prevalent
measurement errors affecting a variety of macroeconomic variables, see Corradi, Fernandez and
Swanson (2009), Croushore (2006), Croushore and Stark (2001), Diebold and Rudebusch (1991),
and Faust, Rogers and Wright (2005). In such situations it is useful to have tests that do not require
data on the target variable and we present such tests below. These tests exploit the fact that, under
the null of forecast optimality, the short-horizon forecast can be taken as a proxy for the target
variable, from the stand-point of longer-horizon forecasts, in the sense that the inequality results
presented above all hold when the short-horizon forecast is used in place of the target variable.
Importantly, unlike standard cases, the proxy in this case is smoother rather than noisier than the
actual variable. This turns out to have beneficial implications for the finite-sample performance of
these tests when the measurement error is sizeable or the predictive R? of the forecasting model is
low.

Under squared error loss, we have the following well-known theorem (see, e.g., Granger (1969))

Theorem 1 (Optimal forecast under MSE loss) Assume that the forecaster’s loss function is
quadratic, L (y,9) = (y — ;1))2, and that the conditional mean of the target variable given the filtration

Fin, EYt|Fi_n], is a.s. finite for allt . Then

Vi = arg min & {(Y; — )2 |Fin| = E[Yi|Fia), (1)
Yy

where Y C R is the set of possible values for the forecast.

Section 4.3 shows that this result can be extended to a broader class of loss functions, but for

now w keep the more familiar assumption of quadratic loss. Some of the results derived below will

! As shown by West and McCracken (1998), parameter estimation error can lead to substantial skews in unadjusted
t-statistics. While some of these effects can be addressed when comparing the relative precision of two forecasting
models evaluated at the pseudo-true probability limit of the model estimates (West (1996)) or when comparing
forecasting methods conditionally (Giacomini and White (2006)), it is not in general possible to establish results for

the absolute forecasting performance of a forecasting model.



make use of a standard covariance stationarity assumption:

Assumption S1: The target variable, Y;, is generated by a covariance stationary process.

2.2 Monotonicity of mean squared errors and forecast revisions

From forecast rationality under squared-error loss it follows that, for any ffﬂt_h € Fin,

s (15 o5

In particular, the optimal forecast at time ¢t — hg must be at least as good as the forecast associated

with a longer horizon:

~ 2 N 2
Et hg [(Yt - tTt*hs) ] < Ei_pg [(Yt - tTt—hL) ] for all hg < hp.

In situations where the predicted variable is not observed (or only observed with error), one can
instead compare medium- and long-horizon forecasts with the short-horizon forecast. Define a

forecast revision as

* U Ok
tlhs,hr = tlt—hg - }/t‘t—hL for hS < hL'

The corollary below shows that the bounds on mean squared forecast errors that follow immediately

from forecast rationality under squared-error loss also apply to mean squared forecast revisions.
Corollary 1 Under the assumptions of Theorem 1 and S1, it follows that

(@) Elet | <Elei | forhs<hu, 2)

and

() E|dfp] SE|dfon,] Jorhs <har < hu. (3)

The inequalities are strict if more forecast-relevant information becomes available as the forecast

horizon shrinks to zero, see, e.g., Diebold (2001) and Patton and Timmermann (2007a).



2.3 Testing monotonicity in squared forecast errors and forecast revisions

Corollary 1 suggests testing forecast optimality via a test of the weak monotonicity in the “term
structure” of mean squared errors, equation (2), to use the terminology of Patton and Timmermann
(2008). This feature of rational forecasts is relatively widely known, but has, with the exception
of Capistran (2007), generally not been used to test forecast optimality. Capistran’s test is based
on Bonferroni bounds, which are quite conservative in this application. Here we advocate an
alternative procedure for testing non-decreasing MSEs at longer forecast horizons that is based on
the inequalities in (2).

We consider ranking the MSE-values for a set of forecast horizons h = hy, hs, ..., hgy. Denoting
the population value of the MSEs by u® = [u, ..., u5]’, with pg = E[e?‘t_hj], and defining the

associated MSE differentials as AY = p; — p;_ = E [e?‘tihj} - F [ }, we can rewrite the

2
€t|t7hj,1
inequalities in (2) as

A; > 0, for j = hg, ...,hH. (4)

Following earlier work on multivariate inequality tests in regression models by Gourieroux, et

al. (1982), Wolak (1987, 1989) proposed testing (weak) monotonicity through the null hypothesis:
Hy:A°>0 vs. Hy:A°#0, (5)

where the (H — 1) x 1 vector of MSE-differentials is given by A¢ = [AS,...,A%]"2 As in Patton
and Timmermann (2010a), tests can be based on the sample analogs A; = ftj — ftj_q for pi; =
+ Z?zl 6?|t—hj' Wolak (1987, 1989) derives a test statistic whose distribution under the null is a
weighted sum of chi-squared variables, Zfigl w(H — 1,i)x?(7), where w(H — 1,7) are the weights

and x2(i) is a chi-squared variable with i degrees of freedom. The key computational difficulty

*Note that the inequality in equation (2) implies a total of H (H — 1) /2 pair-wise inequalities, not just the
H — 1 inequalities obtained by comparing “adjacent” forecast horizons. In a related testing problem, Patton and
Timmermann (2010a) consider tests based both the complete set of inequalities and the set of inequalities based only
on “adjacent” horizons (portfolios, in their case) and found little different in size or power of these two approaches.

For simplicity, we consider only inequalities based on “adjacent” horizons.



in implementing this test is obtaining the weights. These weights equal the probability that the
vector Z ~ N (0,3) has exactly ¢ positive elements, where ¥ is the long-run covariance matrix
of the estimated parameter vector, A¢. One straightforward way to estimate these weights is via
simulation, see Wolak (1989, p215). An alternative® is to compute these weights in closed form,
using the work of Kudo (1963) and Sun (1988), which is faster when the dimension is not too
large (less than 10). When the dimension is large, one can alternatively use the bootstrap methods
in White (2000) and Hansen (2005), which are explicitly designed to work for high-dimension
problems. In our simulation study and empirical work below we consider both closed-form and
bootstrap approaches for this test.

Wolak’s testing framework can also be applied to the bound on the mean squared forecast
revisions (MSR). To this end, define the (H — 2) x 1 vector of mean-squared forecast revisions
Al = [Ad, - Aﬁl]/, where A;l =F [df\hl,hj] —F [d?‘h17hj—1i|‘ Then we can test the null hypothesis

that differences in mean-squared forecast revisions are weakly positive for all forecast horizons:

Hy:AY>0 vs. Hi:A%#o0. (6)

2.4 Monotonicity of mean squared forecasts

We now present a novel implication of forecast optimality that can be tested when data on the
target variable are not available or not reliable. Recall that, under optimality, F;_j [ea tfh] =0

which implies that Cov {YtTt— o ea tih} = 0. Thus we obtain the following corollary:
Corollary 2 Under the assumptions of Theorem 1 and S1, we have
14 [AtTt—hs} >V [At"‘t_hL} for any hs < hp.

This result is closely related to Corollary 1 since V [V;] = V [At""t_h} +F [e;‘ﬁ_h} . A weakly

increasing pattern in MSE directly implies a weakly decreasing pattern in the variance of the

3We thank Raymond Kan for suggesting this alternative approach to us, and for generously providing Matlab

code to implement this approach.



forecasts. Hence, one aspect of forecast optimality can be tested without the need for a measure

of the target variable. Notice again that since F [Yt"‘t_h} = E[Y;] VYh, we obtain the following

inequality on the mean-squared forecasts:
E {Y/tTE—hS] >F {Y/tTtZ—hL] for any hg < hr,. (7)

A test of this implication can again be based on Wolak’s (1989) approach by defining the vector

/ ~
Af = [Ag,...,AfH] ,where Al = E [Y*2

t|t7hj} - F [}AftTt{h]’fJ and testing the null hypothesis that

differences in mean squared forecasts (MSF) are weakly negative for all forecast horizons:
Hy: AT <0 vs. Hi: AT £o0. (8)

It is worth pointing out a limitation to this type of test. Tests that do not rely on observing
the realized values of the target variable are tests of the internal consistency of the forecasts
across two or more horizons, and not direct tests of forecast rationality. For example, forecasts
from an artificially-generated AR(p) process, independent of the actual series but constructed in a
theoretically optimal fashion, would not be identified as suboptimal by this test.

2.5 Monotonicity of covariance between the forecast and target variable

An implication of the weakly decreasing forecast variance property established in Corollary 2 is
that the covariance of the forecasts with the target variable should be decreasing in the forecast

horizon. To see this, note that
Cov [Y;ETt—h?Y;f} =Cov [YtTt—h?YtTt—h + 6I|t_h] =V [ tTt—h:| :

Similarly, the covariance of the short-term forecast with another forecast should be decreasing in

the other forecast’s horizon:

CO/U [Y;thh[l’ tTt7h5:| = COU [}/;Tt*hL’ }/;,thhL + d:|hs,hL:| =V [ tthhL:| .
Thus we obtain the following:

10



Corollary 3 Under the assumptions of Theorem 1 and S1, we have, for any hg < hr,
Cov [YtTt—hsv Yt} > Cov [f/;th—hL?Yt}
Moreover, for any hg < har < hr,

* *
CO”[ t)t— hM7Y;‘|t7hS} > COU[ t)t— hL7Y;|t7hs} .

Once again, using £ [ i h} = F'Yy], it follows that we can express the above bounds as simple

expectations of products:
E{ tTt—th;f} > E{ tTt—hLY;f}
and F [ ti—hat t|t hs} > F [ tTt—hLYtTt—hs} for any hg < hjys < hp,
As for the above cases, these implications can again be tested using Wolak’s (1989) approach by

t|t—h,

defining the vector A° = [AS, ..., A%]’, where Af=FE [Y iy

Y}} - F [Y* 1Yt} and testing:

Hy:A°<0 vs. Hi:A°£0. (9)

2.6 Bounds on covariances of forecast revisions

Combining the inequalities contained in the above corollaries, it turns out that we can place an
upper bound on the variance of the forecast revision, as a function of the covariance of the revision
with the target variable. The intuition behind this bound is simple: if little relevant information

arrives between the updating points, then the variance of the forecast revisions must be low.

Corollary 4 Denote the forecast revision between two dates as dypg p, = Yt|t he — tTt—hL for any

hs < hr. Under the assumptions of Theorem 1 and S1, we have
\%4 [dt\hs,hL] < 2Cov [Ytadﬂhs,hL] for any hg < hr.

Moreover,

\% [dt|hM,hL] <2Cov [ﬁTt—hs’dt‘hwfth} for any hg < hyr < hy. (10)

11



For testing purposes, using £ [dt‘ hS7hL] = 0, we can use the more convenient inequalities:

FE [dﬂhs’h] < 2F [Y}dt‘h&hL] , for any hg < hy or (11)

IN

E| @iy < 2B [Vivngdinyn,]  for any hs < har < by

Note also that this result implies (as one would expect) that the covariance between the target
variable and the forecast revision must be positive; when forecasts are updated to reflect new
information, the change in the forecast should be positively correlated with the target variable.
The above bound can be tested by forming the vector Ab = [Ag,...,AS’q],, where A? =
E\2Yidyp, by, — dtZ\hj,hj,l] , for j = 2,..., H and then testing the null hypothesis that this pa-

rameter is weakly positive for all forecast horizons

Hy:AY>0 wvs. Hy: A" 0.

2.7 Monotonicity of covariances with the forecast error

We finally consider bounds on the covariance of the forecast error with the target variable or with
the forecast revision, and corresponding versions of these results that may be implemented when
data on the target variable are not available or not reliable. These bounds are perhaps less intuitive

than the earlier ones and so will not be further pursued, but are included for completeness.

Corollary 5 Under the assumptions of Theorem 1 and S1, we have,
(a) For any hs < hr,

Cov [e:‘tfhs,l/}} < Cov [ejltth,Y}} .
(b) Moreover, for any hs < hyr < hy,
C0v [ s Vi) < Cov [ding Vi |
and (c)

* * * *
Cov [et|t—hM7dt\hs,hM} < Cov [€t|t—hL7dt\hs,hL} .

12



Part (a) follows from the simple intuition that as the forecast horizon grows, the forecast
explains less and less of the target variable, and thus the forecast error becomes more and more
like the target variable. Part (c) links the forecast error made a time ¢ — h to the forecast revision
made between time ¢ — h and some shorter horizon. This result may prove useful where the target
variable (and thus the forecasts) is very persistent, as the variables in the bound in part (c) are
differences between actuals and forecasts, or between forecasts, and will be less persistent than the
original variables. A corresponding result for part (c) in applications where the target variable is
not available involves using the short horizon forecast in place of the target variable. Doing so gives
a result for the variance of the forecast revision, which was already presented above in Corollary 1,

and so it is not repeated here.

2.8 Summary of test methods

The tests presented here are based on statistical properties of either the outcome variable, Y;, the

*

H—hs the forecast, Y7*

forecast error, e Hih

or the forecast revision, d;f‘ hahp The table below shows
that the tests discussed so far provide an exhaustive list of all possible bounds tests based on these

four variables and their mutual relations. The table lists results as the forecast horizon increases

(h 1), and for the forecast revision relations we keep the short horizon (hg) fixed:

A

* * *
i €un Y d

tlhs,hr
Y, ag CovT Cov| Cov bound
ejlt_h MSE T Cov=0 Cov T
Vi MSF | Cov 1
d:‘hSJLL MSFR 1

Almost all existing optimality tests focus on cell (2,3), i.e., that forecast errors are uncorrelated
with the forecast, which is what conventional rationality regressions effectively test as can be seen by
subtracting the forecast from both sides of the regression. Capistran (2007) studies the increasing

MSE property, cell (2,2). Our analysis generalizes extant tests to the remaining elements. We pay

13



particular attention to cells (3,3) (3,4) and (4,4), which do not require data on the target variable,
and thus may of use when this variable is measured with error or not available at all. Appendix
B presents a simple analytical illustration of the bounds established in this section for an AR(1)

process.

2.9 Multi-horizon bounds and model misspecification

If a forecaster uses an internally-consistent but misspecified model to predict some target variable,
will any of the tests presented above be able to detect it? We study this problem in two cases: one
where the multi-step forecasts are obtained from a suite of horizon-specific models (“direct” multi-
step forecasts), and the other where forecasts for all horizons are obtained from a single model (and
multi-step forecasts are obtained by “iterating” on the one-step model). In both cases we show that

model misspecification may indeed be detected using the multi-horizon bounds presented above.

2.9.1 Direct multi-step forecasts

If the forecaster is using different models for different forecast horizons it is perhaps not surprising
that the resulting forecasts may violate one or more of the bounds presented in the previous section.

To illustrate this, consider a target variable that evolves according to a stationary AR(2) process,
Vi = ¢ Vi1 + ¢oYio + e, e ~iid N (0,0%) (12)

but the forecaster uses a direct projection of Y; onto Y;_; to obtain an h-step forecast:
Yi=pYen + v, for h=1,2 ... (13)

Note that by the properties of an AR(2) we have:

2 2
P1:1i¢1¢27 ,02:¢11(_b2¢z¢2 (14)

For many combinations of (¢q,¢y) we obtain |py| > |p1|, e.g., for (é1,¢5) = (0.1,0.8) we find

p1 = 0.5 and py = 0.85. This directly leads to a violation of the bound in Corollary 2, that the

14



variance of the forecast should be weakly decreasing in the horizon. Further, it is simple to show

that it also violates the MSE bound in Corollary 1:
MSE, = E|(Vi— Vi) | = >(1—p}) =0.750> (15)
1 = t tlt—1 =0y pP1) = V000,
MSE, = E|(Yi— Vi) | = 2 (1 p3) = 0.2802
2 = t t]t—2 Oy P2 400,
In a situation such as this, the forecaster should recognize that his/her two-step forecasting model

is better than the one-step forecasting model, and so simply use the two-step forecast again for the

one-step forecast. (Or better yet, improve the forecasting models being used.)

2.9.2 Iterated multi-step forecasts

If a forecaster uses the same, misspecified, model to generate forecasts for all horizons it may
seem unlikely that the resulting term structure of forecasts will violate one or more of the bounds
presented above. We present here one simple example where this turns out to be true. Consider
again a target variable that evolves according to a stationary AR(2) process as in equation (12),

but the forecaster uses an AR(1) model:

Y: p1Yi—1 + v (16)

o) Yﬂt_h = p}fYt_h, for h=1,2,...
where p; = ¢/ (1 — ¢5) is the population value of the AR(1) parameter when the DGP is an AR(2).
(It is possible to show that a simple Mincer-Zarnowitz test, discussed in the next section, will not
detect the use of a misspecified model, as the population parameters of the MZ regression in this
case can be shown to satisfy («,3) = (0,1). Note, however, that a simple extension of the MZ

regression, to include a lagged forecast error would be able to detect this model misspecification.)

We now verify that this model misspecification may be detected using the bounds on MSE:

wse = B|(v Ty | =20 ) an
N 2
MSE, = E [(Yt - Yﬂt_Q) } — 02 (1= pt+20% (07 — 1) o)

15



Intuitively, if we are to find an AR(2) such that the one-step MSE from a misspecified AR(1)
model is greater than that for a two-step forecast from the AR(1) model, it is likely a case where
the true AR(1) coefficient is small relative to the AR(2) coefficient. Consider again the case that

(¢1,P2) = (0.1,0.8) . The one- and two-step MSEs from the AR(1) model are then
MSE;, = 0.7507, MSE; = 0.6407.

Thus the MSE bound is violated. It is also possible to show that a test based only on the forecasts
may also detect model misspecification, despite the fact that the model is used in an internally
consistent fashion across the forecast horizons. Consider the forecast revision, dypg 5, = Yt‘t_h =
Yﬂt,h ,» and the result established in Corollary 1 that the mean squared forecast revision is weakly

increasing in the forecast horizon. Using the same AR(2) example we obtain:

MSFRy; = E|d}y,] =t (1= p}) ol = 0.1902

MSFRi3 = FE [dflm} = p? (1 +pt — 2,0%,02) 0?2/ = 0.1605

and thus we observe that the MSFR is not increasing from (long) horizon 2 to 3, in violation
of forecast optimality. Thus tests based on the MSE or MSFR bounds would detect, at least
asymptotically, the use of a misspecified forecasting model, even though the model is being used
consistently across horizons.

The simple examples in this sub-section illustrate that our variance bounds may be used to
identify suboptimal forecasting models, even when being used consistently, and thus may help to

spur improvements of misspecified forecasting models.

3 Regression Tests of Forecast Rationality

Conventional Mincer-Zarnowitz (MZ) regression tests form a natural benchmark against which the
performance of our new optimality tests can be compared, both because they are in widespread

use and because they are easy to implement. Such regressions test directly if forecast errors are
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orthogonal to variables contained in the forecaster’s information set. For a single forecast horizon,

h, the standard MZ regression takes the form:
Yi=an+ ﬁhﬁqt—h + Vtjt—h- (18)

Forecast optimality can be tested through an implication of optimality that we summarize in the

following corollary to Theorem 1:

Corollary 6 Under the assumptions of Theorem 1 and S1, the population values of the parameters

in the Mincer-Zarnowitz regression in equation (18) satisfy
Hg cap=0NgG, =1, for each horizon h.

The MZ regression in (18) is usually applied separately to each forecast horizon. A simultaneous
test of optimality across all horizons requires developing a different approach. We next present two

standard ways of combining these results.

3.1 Bonferroni bounds on MZ regressions

One approach, adopted in Capistrén (2007), is to run MZ regressions (18) for each horizon, h =
hi, ..., hi and obtain the p-value from a chi-squared test with two degrees of freedom. A Bonferroni
bound is then used to obtain a joint test. Forecast optimality is rejected if the minimum p-value
across all H tests is less than the desired size divided by H, «/H. This approach is often quite

conservative.

3.2 Vector MZ tests

An alternative to the Bonferroni bound approach is to stack the MZ equations for each horizon

and estimate them as a system:

Yitn oy B 0 Vit Ut by |t
= + + (19)
Yithu aH 0 - By Yt+hH|t Utt+hg|t
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The relevant hypothesis is now

Hy : aj=...=ag=0Np=..=0g=1 (20)

vs. Hi @ o #0U..Uag#0UpB;#1U..UBy # 1.

For h > 1, the residuals in (19) will, even under the null, exhibit autocorrelation and will typically

also exhibit cross-autocorrelation, so a HAC estimator of the standard errors is required.

3.3 Univariate Optimal Revision Regression

We next propose a new approach to test optimality that utilizes the complete set of forecasts in
a univariate regression. The approach is to estimate a univariate regression of the target variable on
the longest-horizon forecast, Yt|t—hH» and all the intermediate forecast revisions, dyjn, ny» > dejhy_ 1 hp-
To derive this test, notice that we can represent a short-horizon forecast as a function of a long-

horizon forecast and the intermediate forecast revisions:

H-1
}/t‘tth = 1ft|t7hH + E dt|hj,hj+1'
=1

Rather than regressing the outcome variable on the one-period forecast, we propose the following

“optimal revision” regression:

H-1
}/;f =+ ﬂH}/ﬂt—hH + Z ﬁjdﬂhj,h]url + Ut.- (21)
=1

Corollary 7 Under the assumptions of Theorem 1 and S1, the population values of the parameters

in the optimal revision regression in equation (21) satisfy
Hy:a=0Nnp=...=0yg =1

Equation (21) can be re-written as a regression of the target variable on all of the forecasts,
from h; to hp, and the parameter restrictions given in Corollary 7 are then that the intercept is
zero, the coefficient on the short-horizon forecast is one, and the coefficients on all longer-horizon

forecasts are zero.
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This univariate regression tests both that agents optimally and consistently revise their forecasts
at the interim points between the longest and shortest forecast horizons and also that the long-run

forecast is unbiased. Hence it generalizes the conventional single-horizon MZ regression (18).

3.4 Regression tests without the target variable

All three of the above regression-based tests can be applied with the short-horizon forecast used
in place of the target variable. That is, we can undertake a MZ regression of the short-horizon

forecast on a long-horizon forecast
Yie-n, = a5 + BjY;tlt—hj + vyjp—p,; for all hj > hq. (22)

Similarly, we get a vector MZ test that uses the short-horizon forecasts as target variables:

Yt holt+h Q2 By - 0 Yiihot Vtthylt
= -+ + (23)
Yithylt+hu_y ap 0 - By Yiihyt Uty hyt

Finally, we can estimate a version of the optimal revision regression:

H—1
Yiton, =+ BuYii—n, + z Bintin; nysn T Ve (24)
=2

The parameter restrictions implied by forecast optimality are the same as in the standard cases,

and are presented in the following corollary:

Corollary 8 Under the assumptions of Theorem 1 and S1, (a) the population values of the para-

meters in the MZ regression in equation (22) satisfy
H(’)‘ cap=0nN Bh =1, for each horizon h > hq,
(b) the population values of the parameters in the vector MZ regression in equation (23) satisfy

Ho1542:...:5(1120032:,“:5’]_1:1’



(c) the population values of the parameters in the optimal revision regression in equation (24)

satisfy

This result exploits the fact that under optimality (and squared error loss) each forecast can
be considered a conditionally unbiased proxy for the (unobservable) target variable, where the
conditioning is on the information set available at the time the forecast is made. That is, if
Yt|t,h5 = Ei_pg V3] for all hg, then E;_j, [ﬁ“,hs} = E;_p, [Y] for any h;, > hg, and so the
short-horizon forecast is a conditionally unbiased proxy for the realization. If forecasts from multiple
horizons are available, then we can treat the short-horizon forecast as a proxy for the actual variable,
and use it to “test the optimality” of the long-horizon forecast. In fact, this regression tests the
internal consistency of the two forecasts, and thus tests an implication of the null that both forecasts

are rational.

3.5 Relation between regression and bounds tests

In this section we show that certain forms of sub-optimality will remain undetected by Mincer-
Zarnowitz regressions, even in population, but can be detected using the bounds introduced in the

previous section. Consider the following simple form for a sub-optimal forecast:
thlt—h =, + )‘hYtTt—h + uy_p, where usj_p ~ N (0, ai,h) . (25)

An optimal forecast would have </\h, Vhs 037 h) = (1,0,0) . Certain combinations of these parameters
will not lead to a rejection of the MZ null hypothesis, even when they deviate from (1,0, 0) . Consider
the MZ regression:

Yi=ap+ /Bhf/;f\t—h + &t

The population values of these parameters are

Cov {Yt, f’t\ph} AnV [Y;Tt—h}
B = - = A
Vv [Y;f\t—h} )‘%V [YtTt—h} + Ui,h
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50 thl(:)aih:)\h(l—)\h)‘/[l}*

t\t—h} . Then

an = EIYi] = BB [Vyen] = EIYi] = By (0 + ME[¥i])

so if B, = 1, then ap, = 0 & 5, = E[Y;] (1 — \p) . Thus we can choose any A\, € (0,1) and find
the parameters (*yh, Ui,h) that lead to MZ parameters that satisfy the null of rationality. We now
verify that such a parameter vector would violate one of the multi-horizon bounds. Consider the
simple bound that the variance of the forecast should be decreasing in the horizon. In this example

we have
4 [fftlt—h] = >‘i21V [AtTt—h} + Ui,h =V [}A/Jt—h} , when Ui,h =AM (1 =)V [AtTt—h}

We know by rationality that V' [}Aftthh} is decreasing in h, but since \j, can take any value in (0, 1),

and this value can change across horizons, a violation may be found. Specifically, a violation of the

decreasing forecast variance bound will be found if

)\hS < V |:}/;Tt_hL:|

>\ A~
VY]

It is also possible to construct an example where a MZ test would detect a sub-optimal forecast but a

=V [Y/ﬂtfhs] <V [th\tth} . (26)

bounds-based test would not. A simple example of this is any combination where ()\h, Vi az?h) #+
()\h,E [Yi] (1 — An), AWV [fftthh] (1-— )\h)> , and where V' [ﬁ\t—hs] >V [ﬁ\t—hL} . For example,
(Ah,’yh,ai h) = (An,0,0) for any Ap, = Ap, = Ap € (0,1). We summarize these examples in the

following proposition:

Proposition 1 The MZ regression test and variance bound tests do mot subsume one another:

Rejection of forecast optimality by one test need not imply rejection by the other.

4 Extensions

This section shows how our tests cover certain forms of non-stationary processes and heterogeneous
forecast horizons and also shows that the results can be extended to a broader class of loss functions

than squared error loss.
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4.1 Stationarity and Tests of Forecast Optimality

The literature on forecast evaluation conventionally assumes that the underlying data generating
process is covariance stationary. To see the role played by the covariance stationarity assumption,

let Y *

Fihlt—; = AIgming Ei—j[(Yern — 9)?]. By optimality, we must have

Ey[(Yern — Ytih\t_j)g} > Ey[(Yen — Ytih\t)z] for j > 1. (27)
Then, by the law of iterated expectations,
E[(Yisn — Yo )% = El(Yepn — Yiip)?] for j > 1. (28)

This result compares the variance of the error in predicting the outcome at time ¢ + h given
information at time t against the prediction error given information at an earlier date, t — j, and
does not require covariance stationarity. This uses a so-called “fixed event” set-up, where the target
variable (Y;yp) is kept fixed, and the horizon of the forecast is allowed to vary (from ¢ — j to ).

When the forecast errors are stationary, it follows from equation (28) that
E(Yirhj — }/t:-h-i-j|t)2] > E[(Yepn — }/;:h|t)2] for j > 1. (29)

Equation (29) does not follow from equation (28) under non-stationarity. For example, suppose

there is a deterministic reduction in the variance of Y between periods t + h and ¢t + h 4+ j, such as:

p+oer forr<t+h
Y, = , (30)

p+ ger form>t+h

where e, is zero-mean white noise. This could be a stylized example of the “Great Moderation”.

A

Clearly equation (29) is now violated as Y:&—h—l-ﬂt =Y = # and so
O 2 _ 0 2 IRy’ ;
El(Yernts = Yinig)l = 7 <07 = El(Yern — Yiiy,)7] forj =1 (31)

For example, in the case of the Great Moderation, which is believed to have occurred around 1984,

a one-year-ahead forecast made in 1982 (i.e. for GDP growth in 1983, while volatility was still
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high) could well be associated with greater (unconditional expected squared) errors than, say, a
three-year-ahead forecast (i.e. for GDP growth in 1985, after volatility has come down).

One way to deal with non-stationarities such as the break in the variance in equation (30) is to
hold the date of the target variable fixed and to vary the forecast horizon. In this case the forecast
optimality test gets based on equation (28) rather than equation (29). Forecasts where the target
date is kept fixed while the forecast horizon varies are commonly called fixed-event forecasts, see

Clements (1997) and Nordhaus (1987). To see how this works, notice that, by forecast optimality,

Erngl(Ye = Yjion,)?] = Evong[(Yi = Viji_pg)?] for b > hs. (32)

and E[(Y; — AtthhL)z] > E[(Y: - AtthhS)2]

by the law of iterated expectations. For the example with a break in the variance in equation (30),

we have YT

e _
tit—hy = Yt|t—h5 = 1, and

R R o2 fort<t+h
EBl(Y, =Y}, ) = El(Yr =Y, ) =

T|T—h T|T—hg

o?/4 forT>t+h

Using a fixed-event setup, we next show that the natural extensions of the inequality results
established in Corollaries 1, 2, 3, and 4 also hold for a more general class of stochastic processes
that do not require covariance stationarity but, rather, allows for unconditional heteroskedasticity

such as in equation (30) and dependent, heterogeneously distributed data processes.

Proposition 2 Define the following variables

T
_ 1 ~ 2
MSEr(h) = 7Y MSE;(h), where MSE; (h):E[(Yt ;l‘t_h”
t=1

T

_ 1 ~

MSFr(h) = > MSFi(h), where MSF, (h)EE[}QTE_h],

t=1
_ 1 &

Cr(h) = T ZC’t (h), where Cy(h)=FE [ tthhY%:|
t=1
1 T

MSFRy (hs,hi) = > MSFRi(hs,h), where MSFR; (hs,hL)zE[dfth’hL]

t=1
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T

— 1

Br(h)= 7Y Bi(h), where By(hs,hi) = E [Yidyng,]
t=1

then, under the assumptions of Theorem 1, the following bounds hold for any hg < has < hy, :

(a) MSEr (hs) < MSEy (hr)

(b) MSFr (hs) > MSFr (hy)

(c) Cr (hs) > Cr (hy)

(d)  MSFRr (hs,hy) < MSFRr (hs, hr)

(e) MSFRy (hs,hr) < 2Bt (hs,hr)
Thus allowing for heterogeneity in the data does not affect the bounds obtained in Section
2 under the assumption of stationarity: rather than holding for the (unique) unconditional ex-
pectation, under data heterogeneity they hold for the unconditional expectation at each point in
time, and for the average of these across the sample. The bounds for averages of unconditional
moments presented in Proposition 2 can be tested by drawing on a central limit theorem for hetero-
geneous, serially dependent processes, see, e.g., Wooldridge and White (1988) and White (2001).

The following proposition provides conditions under which these quantities can be estimated.

Proposition 3 Define

R 2 . 2
5%SE = (}/;f - }/;Tt*hj> - (1/;5 - }/;Tt*hjfl) ) fOT] = 27 ey H
MSF _  r«2 ) .

5jt = }/;f‘t—h]' _}/ﬂt_hj—l’ fO'f’j == 2,...7H

5% = th/tTt—hj — YthTt—hj,l’ forj=2,...H
MSFR _ 32 2 .

6jt = dt|h1,hj — dt‘hhhj,l’ fO’I" ] = 3, ceey H
55 = Yidypyp, — Yidypy ;> forj=3,..,H
k k A R e 1 o o
oF = [5qt,...,5m} CAL=ZY 8 =y ﬁZ(st ,
t=1 t=1

where k € {MSE,MSF,C,MSFR,B) and q = 2 for k € {MSE,MSF,C} and q = 3 for k €
{MSFR,B}. Assume: (i) 6 = AFtelf, fort=1,2,..., A € R (ii) € is a uniform mizing

sequence with ¢ of size —r/2(r — 1), r > 2 or a strong mizing sequence with o of size —r/ (r — 2),
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r>2; (iii) E [ef] =0 fort =1,2,..T; (iv) E Heftm <C<oofori=1,2..,H—1; (v) VEFis
uniformly positive definite; (vi) There exists a f/jlf that is symmetric and positive definite such that

V{? — lef —P 0. Then:
N -1/2 ~
(Vqlf) \/T(A’%—Ak)iN(O,I) as T — 0.

Thus we can estimate the average of unconditional moments with the usual sample average, with
the estimator of the covariance matrix suitably adjusted, and then conduct the test of inequalities

using Wolak’s (1989) approach.

4.2 Bounds for forecasts with heterogeneous horizons

Some economic data sets contain forecasts that have a wide variety of horizons, which the researcher
may prefer to aggregate into a smaller set of forecasts. For example, the Greenbook forecasts we
study in our empirical application are recorded at irregular times within a given quarter, so that
the forecast labeled as a one-quarter horizon forecast, for example, may actually have a horizon of
one, two or three months. Given limited time series observations it may not be desirable to attempt
to study all possible horizons, ranging from zero to 15 months. Instead, we may wish to aggregate
these into forecasts of hg € {1,2,3}, hy € {4,5,6}, etc.

The proposition below shows that the inequality results established in the previous sections
also apply to forecasts with hetergeneous horizons. The key to this proposition is that any “short”
horizon forecast must have a corresponding “long” horizon forecast. With that satisfied, and ruling
out correlation between the forecast error and whether a particular horizon length was chosen, we
find that the bounds hold for heterogeneous forecast horizons. We state and prove the proposition

below only for MSE:; results for the other bounds follow using the same arguments.

A

T
R /
Proposition 4 Consider a data set of the form {(Yt, YtTt—ht? YtTt—ht—kt) }t_l, where ky > 0V .

Let the assumptions of Theorem 1 and S1 hold. (a) If (ht, kt) are realizations from some stationary
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random variable and e h and e

_y, are independent of 1{hy = h;} and 1{k = k;}, then:

tlt— tlt—h;

MSEs=E [(yt _ At*tht>2} <E I:(Y;f N AtTthth?] = MSE],

(b) If {hy, ki} is a sequence of pre-determined values, then:

T T

. 1 ., 2 1 L 2

MSEsz =79 B [(Yt ~Viin,) } <7 E [(Yt Vil bt ) } = MSELr
t=1 t=1

The only non-standard assumption here is in part (a), where we assume that process determining
the short and long forecast horizons is independent of the forecast errors at those horizons. This
rules out choosing particular (h¢, kt) combinations after having inspected their resulting forecast
errors, which could of course overturn the bounds. Notice that heterogeneity of the short and long
forecast horizon lengths in part (b) induces heterogeneity in the mean squared errors, even when
the data generating process is stationary. The assumption of stationarity of the data generating

process in both parts can be relaxed using similar arguments as in Proposition 2.

4.3 Bounds under Bregman loss

The bounds in our paper are predicated upon the optimal forecast being the conditional mean. It
is well-known that under MSE the optimal forecast is the conditional mean, but this result in fact

holds for a broader class of loss functions, known as “Bregman” loss, which take the form:

L (Yt+h, fftwt) =¢(Yirn) — ¢ (f’t+h|t) — ¢ (f/t+h|t) (Yt+h - }A/;H—hlt) ; (33)

where ¢ : R — R and ¢" (z) >0V z € R, i.e., ¢ is strictly convex.
It follows from the first order condition that any loss function in this class yields the conditional

mean as the optimal forecast

0= E[aa (Yoo Fie) 17 ]

E {_ﬁb, ( tj—h\t> —¢ (?:l—h“) (Yt*h t+h|t) +¢ ( t+h\t> |ft}
= —qﬁ" ( At:_h“) ( [Y{e-q-h|f't] t+h|t)
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so Y

e = E [Yi1n|Fi] since ¢” > 0. This class was proposed by Bregman (1967), re-derived in

Patton (2010) for strictly positive variables, and is discussed in Gneiting (2010). Figure 1 illustrates
some loss functions that are members of this class. These can be asymmetric, convex or concave,
yet all imply that the optimal forecast is the conditional mean, and thus all of the results in this

paper apply to loss functions in this class.

5 Monte Carlo Simulations

There is little existing evidence on the finite sample performance of forecast rationality tests, par-
ticularly when multiple forecast horizons are simultaneously involved. Moreover, our proposed set
of rationality tests which take the form of bounds on second moments of the data and require using
the Wolak (1989) test of inequality constraints, the performance of which in time series applications
such as ours is not well known. For these reasons it is important to shed light on the finite sample
performance of the various forecast optimality tests. Unfortunately, obtaining analytical results on
the size and power of these tests for realistic sample sizes and types of alternatives is not possible.
To overcome this, we use Monte Carlo simulations of a variety of scenarios. We next describe the

simulation design and then present the size and power results.

5.1 Simulation design

To capture persistence in the underlying data, we consider a simple AR(1) model for the data

generating process:
Y = py+ ¢ (Yie1 — ) e, & ~iid N (0,02) fort =1,...,T = 100. (34)

We calibrate the parameters to quarterly US CPI inflation data: ¢ = 0.5, O'Z = 0.5, p, = 0.75.

Optimal forecasts for this process are given by:
ththh =L [Y;f] = Hy + ¢h (Y;L*h - My) .
We consider all horizons between h =1 and h = H, andset H € { 4, 8 }.
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5.1.1 Measurement error

The performance of rationality tests that rely on the target variable versus tests that only use
forecasts is likely to be heavily influenced by measurement errors in the underlying target variable,

Y;. To study the effect of this, we assume that the target variable, Y;, is observed with error, Uy
ﬁ:n"i'wtv thZZdN(Oaa-?p)

Three values are considered for the magnitude of the measurement error, oy: (i) zero, oy = 0
(as for CPI); (ii) medium, o4 = +/0.70, (similar to GDP growth first release data as reported
by Faust, Rogers and Wright (2005)); and (iii) high, oy = V/1.40y, which is chosen as twice the

medium value.

5.1.2 Sub-optimal forecasts

To study the power of the optimality tests, we consider two simple ways in which the forecasts can

be suboptimal. First, forecasts may be contaminated by the same level of noise at all horizons:
YZ\t—h = YtTt—h + U{,h&t,tfhv gt,tfh ~1id N (07 1) )

where ¢, = v/0.70, for all h and thus has the same magnitude as the medium level measurement
error. Forecasts may alternatively be affected by noise whose standard deviation is increasing in
the horizon, ranging from zero for the short-horizon forecast to 2 x v/0.70, for the longest forecast

horizon (H = 8):
2(h—1)

- x Vv0.70y, for h=1,2,...,H <8.

U£7h =

This scenario is designed to mimic the situation where estimation error, or other sources of noise,

are greater at longer horizons.

5.2 Results from the simulation study

Table 1 reports the size of the various tests for a nominal size of 10%. Results are based on 1,000

Monte Carlo simulations and a sample of 100 observations. The variance bounds tests are clearly
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under-sized, particularly for H = 4, where none of the tests have a size above 4%. In contrast,
the MZ Bonferroni bound is over-sized. Conventionally, Bonferroni bounds tests are conservative
and tend to be undersized. Here, the individual MZ regression tests are severely oversized, and
the use of the Bonferroni bound partially mitigates this feature. The vector MZ test is also hugely
oversized, while the size of the univariate optimal revision regression is close to the nominal value
of 10%. Because of the clear size distortions to the MZ Bonferroni bound and the vector MZ
regression, we do not further consider those tests in the simulation study.

Turning to the power of the various forecast optimality tests, Table 2 reports the results of our
simulations across the two scenarios. In the first scenario with equal noise across different horizons
(Panel A), neither the MSE, MSF, MSR or decreasing covariance bounds have much power to
detect deviations from forecast optimality. This holds across all three levels of measurement error.
In contrast, the covariance bound on forecast revisions has very good power to detect this type
of deviation from optimality, around 70-99%, particularly when the short-horizon forecast, }Aﬁ‘t,l,
which is not affected by noise, is used as the dependent variable. The covariance bound in Corollary

4 works so well because noise in the forecast increases F[d without affecting E[Yidyng n, ],

?\h&hL]
thereby making it less likely that E[2Yidy g 5, —dfl hs. hL] > 0 holds. The univariate optimal revision
regression in equation (21) also has excellent power properties, notably when the dependent variable
is the short-horizon forecast.

The scenario with additive measurement noise that increases in the horizon, h, is ideal for the
decreasing MSF test since now the variance of the long-horizon forecast is artificially inflated in
contradiction of equation (7). Thus, as expected, Panel B of Table 2 shows that this test has very
good power under this scenario: 45% in the case with four forecast horizons, rising to 100% in the
case with eight forecast horizons. The MSE and MSFR bounds have essentially zero power for this
type of deviation from forecast optimality. The covariance bound based on the predicted variable

has power around 15% when H = 4, which increases to a power of around 90% when H = 8.

The covariance bound with the actual value replaced by the short-run forecast in equation (11),
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performs best among all tests, with power of 72% when H = 4 and power of 100% when H = 8.
This is substantially higher than the power of the univariate optimal revision regression test in
equation (21) which has power around 9-11% when conducted on the actual values and power of
53-66% when the short-run forecast is used as the dependent variable. For this case, }Afm_h 5 1s very
poor, but also very noisy, and so deviations from rationality can be relatively difficult to detect.

We also consider using a Bonferroni bound to combine various tests based on actual values,
forecasts only, or all tests. Results for these tests are shown at the bottom of Tables 1 and 2. In all
cases we find that the size of the tests falls below the nominal size, as expected for a Bonferroni-
based test. However the power of the Bonferroni tests is high, and is comparable to the best of the
individual tests. This suggests that it is possible and useful to combine the results of the various
bounds-based tests via a simple Bonferroni test.*

In conclusion, the covariance bound test performs best among all the second-moment bounds.
Interestingly, it generally performs much better than the MSE bound which is the most commonly
known variance bound. Among the regression tests, excellent performance is found for the uni-
variate optimal revision regression, particularly when the test uses the short-run forecast as the
dependent variable. This test has good size and power properties and performs well across both
deviations from forecast efficiency. Across all tests, the covariance bound and the univariate op-
timal revision regression tests are the best individual tests. Our study also finds that Bonferroni

bounds that combine the tests have good size and power properties.®

Tt is also possible to combine these tests into a single omnibus test by stacking the various inequalities into
a single large vector and testing whether the weak inequality holds for all elements of this vector. We leave this
approach aside for two reasons: The first relates to concerns about the finite-sample properties of a test with such a
large number of inequalities relative to the number of available time series observations. The second relates to the
interpretability of the omnibus test: by running each of the bounds tests separately we can gain valuable information
into the sources of forecast sub-optimality, if present. An omnibus bounds test would, at most, allow us to state that

a given sequence of forecasts is not optimal; it would not provide information on the direction of the sub-optimality.
"We also used the bootstrap approaches of White (2000) and Hansen (2005) to implement the tests of forecast

rationality based on multi-horizon bounds in our simulations. An online web appendix to this paper shows that the
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6 Empirical Application

As an empirical illustration of the forecast optimality tests, we next evaluate the Federal Reserve
“Greenbook” forecasts of GDP growth, the GDP deflator and CPI inflation. Data are from Faust
and Wright (2009), who extracted the Greenbook forecasts and actual values from real-time Fed
publications.® We use quarterly observations of the target variable over the period from 1981Q2
to 2000Q4, and the three series are plotted in Figure 2. The forecast series begin with the current
quarter and run up to eight quarters ahead in time. However, since the forecasts have many missing
observations at the longest horizons and we are interested in aligning the data in “event time”, we
only study horizons up to five quarters, i.e., h = 0,1,2,3,4,5. If more than one Greenbook forecast
is available within a given quarter, we use the earlier forecast. A few quarters have no forecasts at
all, leaving a total of 89 periods with at least one forecast available. If we start the sample when a
full set of six forecasts is available, and end it when the last full set of six forecasts is available, we
are left with 79 observations. This latter approach is particularly useful for comparing the impact
of the early part of our sample period, when inflation volatility was high.

The results of our tests of forecast rationality are reported in Table 3. Panel A presents the
results for the sample that uses 79 observations, and represents our main empirical results. We
find the following: For GDP growth we observe a strong rejection of internal consistency via the
univariate optimal revision regression using the short-run forecast as the target variable, equation
(24), and a milder violation of the increasing mean-squared forecast revision test in equation (3).
For the GDP deflator, several tests reject forecast optimality. In particular, the tests for decreasing
covariance between the forecast and the actual, the covariance bound on forecast revisions, a de-
creasing mean squared forecast, and the univariate optimal revision regression all lead to rejections.
Finally, for the CPI inflation rate we find a violation of the covariance bound, equation (3), and a

rejection through the univariate optimal revision regression. For all three variables, the Bonferroni

finite-sample size and power from those approaches are very similar to those presented in Tables 1 and 2, and so we

do not discuss them separately here.

SWe are grateful to Jonathan Wright for providing the data.
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combination test rejects multi-horizon forecast optimality at the 5% level.”

The source of some of the rejections of forecast optimality is illustrated in Figures 3 and 4. For
each of the series, Figure 3 plots the mean squared errors and variance of the forecasts. Under the
null of forecast optimality, the forecast and forecast error should be orthogonal and the sum of these
two components should be constant across horizons. Clearly, this does not hold here, particularly
for the GDP deflator and CPI inflation series. In fact, the variance of the forecast increases in the
horizon for the GDP deflator, and it follows an inverse U—shaped pattern for CPI inflation, both
in apparent contradiction of the decreasing forecast variance property established earlier.

Figure 4 plots mean squared forecast revisions and the covariance between the forecast and
the actual against the forecast horizon. Whereas the mean squared forecast revisions are mostly
increasing as a function of the forecast horizon for the two inflation series, for GDP growth we
observe the opposite pattern, namely a very high mean squared forecast revision at the one-quarter
horizon, followed by lower values at longer horizons. This is the opposite of what we would expect
and so explains the rejection of forecast optimality for this case. In the right panel we see that while
the covariance between the forecast and the actual is decreasing in the horizon for GDP growth
and CPI, for the GDP deflator it is mostly flat, a contradiction of forecast rationality.

The Monte Carlo simulations are closely in line with our empirical findings. Rejections of
forecast optimality come mostly from the covariance bound in equation (11) and the univariate
optimal revision regressions in equation (21) and equation (24). Moreover, for GDP growth, a
series with greater measurement errors and data revisions, rejections tend to be stronger when only
the forecasts are used.

In Panel B of Table 3 we present the results using the full sample of 89 observations, and ignore

"Faust and Wright (2008) point out that forecasts from central banks are often based on an assumed path for the
policy interest rate, and forecasts constructed using this assumption may differ from the central bank’s best forecast
of the target variable. In particular, they note that ignoring this conditioning can lead standard tests to over- or
under-reject the null of forecast rationality. We leave the extension of our bounds-based tests to conditional forecasts

for future work.
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the fact that this gives us more short-horizon forecasts from the beginning of the sample period
and more long-horizon forecasts from the end of the sample period. Changing the sample period
does not greatly affect the results for GDP growth, although the rejection of rationality arising
from the bound on mean-squared forecast revisions goes from being borderline significant to being
borderline insignificant. The strong rejection of internal consistency via the univariate optimal
revision regression using the short-run forecast as the target variable remains, as does the rejection
using the Bonferroni bound to combine all tests. The results for the GDP deflator forecasts change,
with three out of the five rejections using bounds tests vanishing, while the simple MZ test on the
shortest horizon goes from not significant to strongly significant. The results for CPI inflation
forecasts also change, with the bound on mean squared errors being significantly violated in this
different sample period. Overall, this change in sample period does change the results of some of
the individual tests, but the broader conclusions remain: for all three series, we find significant

evidence against forecast rationality.

7 Conclusion

This paper proposes several new tests of forecast optimality that exploit information from multi-
horizon forecasts. Our new tests are based on monotonicity properties of second moment bounds
that must hold across forecast horizons and so are joint tests of optimality across several hori-
zons. We show that monotonicity tests, whether conducted on the squared forecast errors, squared
forecasts, squared forecast revisions or the covariance between the target variable and the fore-
cast revision can be restated as inequality constraints on regression models and that econometric
methods proposed by Gourieroux et al. (1982) and Wolak (1987, 1989) can be adopted. Suitably
modified versions of these tests conducted on the sequence of forecasts or forecast revisions recorded
at different horizons can be used to test the internal consistency properties of an optimal forecast,
thereby side-stepping the issues that arise for conventional tests when the target variable is either

missing or observed with measurement error.
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Simulations suggest that the new tests are more powerful than extant ones and also have better
finite sample size. In particular, a new covariance bound test that constrains the variance of forecast
revisions by their covariance with the outcome variable and a univariate joint regression test that
includes the long-horizon forecast and all interim forecast revisions generally have good power to
detect deviations from forecast optimality. These results show the importance of testing the joint
implications of forecast rationality across multiple horizons when data is available. An empirical
analysis of the Fed’s Greenbook forecasts of inflation and output growth corroborates the ability
of the new tests to detect evidence of deviations from forecast optimality.

Our bounds can be extended from quadratic loss to so-called Bregman loss. Outside this class,
the MSE bound is readily generalized to a bound based on non-decreasing expected loss as the
horizon grows, see Patton and Timmermann (2007a). Similarly, the orthogonality regressions can
be extended to use the generalized forecast error, which is essentially the score associated with the
forecaster’s first order condition, see Granger (1999) and Patton and Timmermann (2010b). The
estimation of loss function parameters via moment (equality) conditions, as in Elliott, et al. (2005),
may be combined with the multi-horizon inequality conditions presented above using recent work
by Moon and Schorfheide (2009). Establishing results on multi-horizon forecasts when the loss
function is unknown, as in Patton and Timmermann (2007b) may also be possible. We leave these

extensions for future work.

8 Appendix A: Proofs

Proof of Corollary 1. (a) By the optimality of Y;;Tt—hy and since Yt’l"t_hL € Fi—ng for any hg <

hr,, we have Ey_j, [(Y} _ }A/;*ths>2] <E,_, {(YZ B }A/tTthL>2:| , which implies F |:(Y;€ _ }A/t*ths>2] -
E [(Y} —Yt*t_h)z] by the law of iterated expectations (LIE). (b) Let By, = AtTt—hs -
?tTt—hL = <YtTt—hS - YtTt—hM) + <YtTt—hM - )A/;%Tt—hL> = dZihS,hM + d:|hM,hL' Under the assumption
that hs < har < by, note that By-ny |diy o | = Fiona [V ny = iy, | = 0 by the LIE. Thus

Cov [dathhM’d:‘hM,hL} = 0 and so V [d:\hsﬁL} =V [dahs,hM] tV [dzkth,hJ 2V [dahsﬁM} )
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Further, since E;_j, [d:\h,k} =0 for any h < k we then have FE [d;:klis,hJ > F {d;"ﬁls’hM} . u

Proof of Corollary 2. Forecast optimality under MSE loss implies ?;eTt—h = Ey_p [Yy]. Thus
E,_, [efltih] =F_, [Y} — }A/tthh} =0, so F [ef‘tih} =0 and Cov [?;thm e;“‘tfh} =0,and VY] =
Vv [fft*‘}_h} + FE [efﬁ_h} ,or V [YtTt—h} =V[Y]-F [e;ﬁ_h} . Corollary 1 showed that E [e;ﬁ_h} is
weakly increasing in h, which implies that V' [Yt""t_ h} must be weakly decreasing in h. Finally, note

]2 =k [YtTE—h

that V [V, | = B [Vi2,] - B[V, | - EWi, since B[V, | = B[V Thus

if vV [Y{"‘F h} is weakly decreasing in h we also have that F [fft’l‘t{ A

} is weakly decreasing in h. ®m
Proof of Corollary 3. Asused in the above proofs, forecast optimality implies Cov [ﬁTt* B ea . h} =
0 and thus Cov Pft]‘t—h’n} = Cov [}AftTt—h?YtTt—h + ef‘t_h} =V {Yt’rt—h] . Corollary 2 showed that

|4 [Yt*“t_ h} is weakly decreasing in h, and thus we have that C'ov {Yt*l‘t_ o Y}} is also weakly decreasing

in . Further, since Cov Yy, , . Yi| = B [V, Yi| B [V, .| EM = E [y, vi| - B,

A~

we also have that F [Y;thhsyt] is weakly decreasing in h. The second result follows from

Cov [Yheat—lm} = Cov [Yt,y} - YtTt—hL} =V -V {AtTt—hJ .
Cov [Yis €] = Cov [V ¥ = Ve — o

= VY-V [Atthhs] -V [dt|h57hL] < Cov [Y;f: €:|t7hL] :

For the second part, let h < k, then Cov [V, ¥, | = Cov Vi, ¥+ dips] =

V [YtTt—k}’ since Cov [}/;Tt—k’dtlhzk} = 0. From Corollary 2 we have that V [YtTt—k} is decreas-

N

ing in k£ and thus C'ov [}A/:tthk’ ?;Ethh] is decreasing in k. Since F [Y;Tt—k} = E[Y}] for all k, this also

implies that F [f/t* Y } is decreasing in k. The last inequality follows from noting that

[t—k " t|t—h
Cov [eatfhsveatth} = V-V { tthhS] )
COU [e:‘t—hzw’ e:‘t—hLi| = V [}/t] - V |: tTt—hjwi| ?

and noting that V |:)A/;Tt7hs] >V [YtTt—hM] - ;

Proof of Corollary 4. For any hg < hr, Corollary 1 showed V' [Y} — Yt"*tth >V [Yt — Y/;‘/thhs] ,
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so VIV +V [y, | 2000 Vi, | 2 VIVl + v [V, | - 2000 [, ¥y, | and

4 [ tTt—hL] —2Cov [Y;WY;Tt—hL] >V | tTt—hs_ —2Cov [Yt»Y;tTt—hs}

=V ] AtthhL + dt\h&hL] —2Cov [Y;fv 1?;;rtth + dt\hSﬁL]

= V L AtTt—hL_ + V [dt|h57th| - 2CO/U |:}/t’ Yl;lkt—hLi| - 2COU [}/27 dtth:hL] '

Thus V [dt\hs7hL] < 2Cov [Y;fadt\hs,hL]'

For the second part, V(dihpy hr) < 2Cov [V, dt|hM,hL] =
2Cov {YtTt—hs + er\t—hs’dt‘hl\th} = 2Cov [Yith—hS’dt‘hM,hL} since Cov |:€:|t—h5’dt|hM7hLi| = 0. Fur-
ther, since & [dt|hM,hL] = 0 this also implies that F [dfthth} <2F [Y;"t_hsdﬂh%h] .

Proof of Corollary 5. (a) Note that Cov [ejlt_h,)/}} = Cov [e;“'t_h,)ﬁ‘t_h—i-e:‘t_h} =
Vv [e:‘ tih} , since C'ov [ea Y )A/;th h] = 0 by forecast optimality. Corollary 1 established that MSFE
is increasing in the forecast horizon, and thus we have that Cov [e;“‘ i p Yt} is increasing in the fore-
cast horizon. (b) Couv |d, Yy, . | = Covlds, Vi +di | =V ]d, ] sinee
Cov [d;hs,hL’YtTt—hL] = 0. Corollary 1 established that M SFR (hg,hr) is increasing in the long

forecast horizon, and thus we have that Cov [d ] is increasing in the long forecast hori-

* O %
tlhs,hr’ Y;\t—hs

O %
- )/;|t7hL

A~

zon. (c) Cov [e;"ltth, d:\hs,hJ =Cov [Y} - Y;Tt—hy Y,

tlt—hg ] = Cov [Yt’ YtthhS - Y

t|t7hL] )

since C'ov [Y{&f By df ] = 0. Corollary 3 showed that Cov [Yt, Ytthh} is decreasing in the fore-

tlhs,hL

cast horizon, thus, keeping hg fixed, we find that Cov [Yt’fftTt—hs — YtTt—hL} = Cov [Yt,fftTt_hs] _

Cov [Yt,Y

tTt— hL] is increasing in the long forecast horizon, as claimed. =

Proof of Corollary 6. The population value of 3, is Cov [?ﬂt,h, Y}} A% [f@‘t,h} , which under
optimality equals 3;, = Cov [}%&thh’yt} /V [)A/;Ttih} = Cov [)A/;thh,fﬁtfh + e’t"‘tih} /V [fftthh} =
14 [Y/;tthh} /V [Y/;\kt—h} = 1. The population value of «j under optimality equals ap = E[Y;] —

B [V, 1| = EIYi] - B [¥,_,] =0 by the LIE since ¥;

tlt—h EplYy]. m
Proof of Corollary 7. Let the parameters in the regression

H-1

}/;f =a+ ﬂH}A/ﬂt—hH + Z ﬁjdﬂhj,h]url + Ut ,
7j=1

be denoted 6 = [a, B, By B H—l], .The result follows from the fact that the probability limit of
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the OLS estimator of 6 is:

2 2 % 2 “ e \
YhH/UY/hH +1 _YhH/GY’hH 0 0 Yi,, .
-y 2 -2 e y 2 2
Yuu/o3, %G 0 0 Yiu T %, 1
-2 2
0 0 O s g 0 0 T, _ |
0 : 0
0
1
) 2
0 0 0 e O-nhH72,hH71 O-"7hH72,hH71

where Y}, = E[Ym,h}[], o = var(f@‘t,hH) and we used properties of the partitioned inverse. m

Vi

Proof of Corollary 8.  (a) Under optimality, B, = Cov[ by t|t . } /V[ i h} =
Cov [ ey T i g Vi, } /V[ tt—h, } =V [Y;Tt—h ] /v [ tt—h; } =1 and &, = E [Ytthhl} -
ﬁhE[ i h] = EY}] — E[Y] = 0. (b) Follows using the same steps as the proof of part
(b) of Corollary 7, noting that }A’t"kt_hz = Ein, Vi) = Ei_p, [YtTt—hl} by the LIE, and that

B | = Vo] = Boona [dipy ] = 0. m

Lt ns [(Yt Vi )2' V hg < hg, which implies E [(Yt _ ?tTt—hsﬂ <E [ (Yt - ?tTt—hLﬂ by

T
N 2 N 2
the LIE. Thus T~ § E [(Yt ~ Vi) ] <7y E {(Yt ~ Vi) } as claimed.
t=1 t=1

(b) By forecast optimality we have F;_j [eflt_h] =0= Ly [eat_h)i"‘t_h} =0=F [e;“t_hfﬁ‘t_h] =

. 2
Proof of Proposition 2. (a) By forecast optimality we have E;_ [(Y} — Y;thhs) ] <

0 by the LIE. This implies that E [V?] = E [(Y;ft_h +e;;|t_h)2] B[v;2,| +Ele?,] =
MSF; (h) + MSE; (h), so MSF;(h) = E[Y?] — MSE;(h). We established in part (a) that
MSE; (hg) < MSE; (hr) ¥V hg < hy, for each t, and since FE [Y?] is not a function of h, this im-
plies that MSF; (hg) > MSF; (h)V hs < hy. Averaging over t = 1,2,..,T leads to MSFr (hg) >
MSFr (hr).
(¢) Er—n [Yt tt— h} = Lin [(Y{\kt—h + e:\t—h) YtTt—h} = Lin [YtTE—h} = MSF; (h), since Ey_j, {eat—hﬁ;lkt—h} =
0 by optimality. We showed that M SF; (h) is decreasing in h in part (b), thus C; (k) = Ey_p, [Yt i h]
is also decreasing in h.

(d) By the fact that ?tTt—h = E;_p, [Y}] we have E;_p,, {Y/tthhs - f’t"“tth} =FEip, |:d;«k‘h57hL:| =
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0V hs < hp. Thus By [di | = By [(d;hs’w +d;|hM,hL)2] = By A pn] +
Biny |3, 5, | and B|di2 | = ElaZ , |+E|df | by the LIE. Thus MSFR, (hs, 1) >
MSFRy (hs,hy) VY hs < hyy < hy, for each t.Averaging over t = 1,2, .., T leads to MSFRy (hg, hy) <
MSFRr (hs,hr) as claimed.

(e) From (a) we have
I ~ 2
(Y= Vg ) } ¥ hs < hy, which implies

O %2 O %
Vit he] = 2Bins |[Yi¥iiipe]

N 2
Et—hs |:<Yt - tTt_hL) :| > Et—hs

Eihg [}AftTE—hL} — 2B pg [Yt AtTt—hL} > Eing

(%2 *2 O % *
= Et*hS _}/;,‘tth:| + Et*hS |:dt|h5,th| + 2Et*hS |:)/;|t7h[l t|h5,th|

—2Et7h5 [Y;%thh[,] - 2Et*hs [Y;f :|hs,hL:|

S0 Eyns |43 1, | < 2Bing [Yedgyg | = B a3 0, | <28 Vi, | by the LIE. Averaging
over t = 1,2,..,T leads to MSFRy (hs,hr) < 2Bt (hs,hr) as claimed. m

Proof of Proposition 3. Follows from Exercise 5.21 of White (2001). m

Proof of Proposition 4. (a) Let h:, k: be integer-valued random variables with support
H x K. Let Pr[h; = hj] = p; and let Pr[k; = k;|hy = h;] = ¢i;. First, note that e?&]t—ht =Y —

2
e _ Ok _ *2 _ O _ :
Vih = Z <y}/ — }/t\tfh]) -1{hy = h;} and €limhy = Z (Y; - Yt\tch) -1{hy = h;} since
h;eH h;eH
1{ht = hj} 1{hy = h;} = 0 for h; # h;. Then the “short horizon” MSE equals:

MSEs=E [(Yt - }Tt_ht)z] - h%E [(Yt - }’i}-hj)Z 1 {h = hj}} =Y »E [(Yt - }Tt-hj)Z}

hj eH

while the “long horizon” MSE equals:
- 2
MSE, = E [(Yt Vi) }

= > Y E [1 {ke = ki} 1{h: = h;} (Yt - At*fhj’“i>2]

thHkiG/C
~ 2
- Y Y [1 {he =k} 10 = i} (Vi = Vi, ) Ihe = hj] Pr [hy = hy]
h;eH kiek
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= Z pj Z E [1 {kt = k‘z} <Y;€ - }A/:\kt—hj—ki>2 |ht = hJ:|

h;€H kieK
N 2
= 0 X sk (1 Vi) |
hjE'H kel

The difference between these is

N 2 N 2
wsms - wsp = 3| B (- io,) | - 2 a8 | (Vi)
h;EM kiek

o 2 o 2
= S| S |(n-tio) |- E (i) )
hj€H kiek

~ 2 ~ 2
< 0 since E [(Yt i) } <E [(YthTt_hj_ki) ] Y hy, ki,

(b) Let the short horizon lengths, h;, and long horizon lengths, h; + k;, be given by some

o0

pre-determined sequence {hy, ki},o

. Note that this introduces heterogeneity into the problem,
even when the underlying data generating process is stationary. Nevertheless, the bounds estab-
. 2
lished in Section 2 continue to hold: By forecast optimality we have F;_j, [(Yt - YtTt—ht) <
., 2 R ., 2 . 2
Ei_p, [(Yt — Yt\t—ht—kt) } for each ¢, which implies E [(Yt — Yt\t—ht> ] < F [(Yt - Y;t|t7ht7kt) }
by the LIE. Averaging over t = 1,2,..,T leads to a bound on the average MSE over the sample
period MSEr (hg) < MSE7 (hy). Corresponding results can be obtain for the remaining bounds

using the same arguments. ®

9 Appendix B: Illustration of bounds for an AR(1) process
This Appendix illustrates the moment bounds for an AR(1) process. Let:
Vi=o¢Yi1+e, [¢ <1, (35)

where &, ~ WN(0,02), so 02 = 02 /(1 — $?). Rewriting this as
h—1

Vi =¢"Yin+ Y dle,

1=0
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we have YF

Hi—h = gth}_h, and so € = Z?;ol ¢'e;_;. From this it follows that, consistent with

tlt—h —

1 — 2h 1 — 2(h+1)
4 [e:\tfh:| = O-g ( 1 _¢¢2 ) < Ug <1f¢2> =V [e:\tfhfl} .

Moreover, consistent with Corollary 2 the variance of the forecast is increasing in h :

Corollary 1,

1% [AtTt—h} = ¢op > ¢?M o2 =V [A{'kt_h_l] '

The covariance between the outcome and the h—period forecast is

h—1
Cov [Vi, ¥y | = Cov |9"Yi + 7 dleri, 6"V | = 6202,

i=0
which is decreasing in h, consistent with Corollary 3. Also, noting that ?tTt—hS = AtTt—hL +
Z?:Lh_sl @'e;_i, the forecast revision can be written as dijhg by = Zf“:Lh_Sl ¢'ei_i, and so

1 — ¢p>(hr—hs)

2 /2h
14 [dtlhsﬁL] =097 ( 1—¢? ’

which is increasing in hy, —hg, consistent with Corollary 1. Consistent with Corollary 4, the variance
of the revision is bounded by twice the covariance of the actual value and the revision:

hr—1 hr—1
2000 [Yi,dyng ] =2V | Y dleri| >V [ Y dleri| = dyng -

i=hg i=hg
The implications of forecast rationality presented in Corollary 4 based on the predicted as opposed

to realized value for Y for this AR(1) example are:

Or sk Ok o Ok Or sk
Cov Yt|t—hM7 t\t—hs] = Cov [Y;t|t—hM7Yt|t—hM +dt|hs,hM]
hp—1
h h i

= Cov | ¢"Y iy, "M Yiny + Y Fer

i=hg
2h 2h a2 2h a2 % >
_ M — M € L g — * *
= "MV [Yipyl=¢ 1 2 > ¢ 1— ¢ = Cov Y;t|t7hL7 t|t7hs] )
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and

hy—1 hr—1 hr—1
Or % O 7 7 7
Cov [V opg iy | = Cov (Vi + D derit D d'eri Y. dsi
i=hg i=hpr i=hnr
hr—1 hr—1 , 1 ¢2(hL7h]u)
§ 7 2 § 21 2,2
= V ¢ Et—i| = Je ¢ = Us¢ M 1_ ¢2
_iZhM | i=hn
thl thl b 1 _ ¢2(hL7h1\4)
: j 2 21 2,2
while V [dt|hM,hL] =V g P'eri| =o; E ¢~ = o™ 2
. ) 1—¢
| i=har ] i=hp

IN

2CO'U [Y;Tt*hs’ dt|hM,hL:| .
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Table 1: Monte Carlo simulation of size of the inequality tests
and regression-based tests of forecast optimality

H=14 H=8
Meas. error variance: High Med Zero High Med Zero
Inc MSE 3.0 1.5 1.0 6.3 5.2 5.2
Dec COV 1.1 0.9 0.8 5.0 4.7 4.4
COV bound 1.8 14 1.2 0.0 0.0 0.0
Dec MSF 2.0 20 2.0 0.7 0.7 0.7
Inc MSFR 0.1 0.1 0.1 4.4 44 4.4
Dec COV, with proxy 1.2 1.2 1.2 6.0 6.0 6.0
COV bound, with proxy 3.8 3.8 3.8 0.0 0.0 0.0
MZ on short horizon 10.8 119 13.6 10.8 11.9 13.6
Univar opt. revision regr. 10.2 9.7 9.8 11.5 102 94
Univar opt. revision regr., with proxy 10.8 10.8 10.8 9.5 9.5 9.5
Univar MZ, Bonferroni 125 129 18.2 18.4 19.1 224
Univar MZ, Bonferroni, with proxy 178 17.8 178 20.8 20.8 20.8
Vector MZ 33.2 315 289 92.2 899 835
Vector MZ, with proxy 20.7 20.7 20.7 68.6 68.6 68.6
Bonf, using actuals 3.0 27 25 80 75 8.5
Bonf, using forecasts only 3.0 3.0 3.0 7.0 7.0 7.0
Bonf, all tests 3.7 32 2.3 8.1 7.2 6.1

Notes: This table presents the outcome of 1,000 Monte Carlo simulations of the size of various
forecast optimality tests. Data is generated by a first-order autoregressive process with parameters
calibrated to quarterly US CPI inflation data, i.e. ¢ = 0.5, ag = 0.5 and p, = 0.75. We consider
three levels of error in the measured value of the target variable (high, median and zero). Optimal
forecasts are generated under the assumption that this process (and its parameter values) are known
to forecasters. The simulations assume a sample of 100 observations and a nominal size of 10%.
The inequality tests are based on the Wolak (1989) test and use simulated critical values based on
a mixture of chi-squared variables. Tests labeled “with proxy” refer to cases where the one-period
forecast is used in place of the predicted variable.
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Table 3: Forecast rationality tests for Greenbook forecasts

Observations lined up All available

in event time (T=79) observations (T=89)
Series: Growth  Deflator ~ CPI Growth  Deflator ~ CPI
Inc MSE 0.591 0.966 0.639 0.423 0.922 0.000*
Dec COV 0.879 0.057* 0.991 0.838 0.670 0.896
COV bound 0.560 0.000* 0.009* 0.715 0.000* 0.036*
Dec MSF 0.916 0.026* 0.719 0.973 0.554 0.699
Inc MSFR 0.089*  0.938 0.620 0.123 0.938 0.340
Dec COV, with proxy 0.807 0.075* 0.772 0.811 0.375 0.632
COV bound, with proxy 0.206 0.010* 0.656 0.218 0.039* 0.671
MZ on short horizon 0.245 0.313 0.699 0.121 0.012* 0.037*
Opt. revision regr. 0.709 0.000* 0.001* 0.709 0.000* 0.001*
Opt. revision regr., with proxy 0.000*  0.009* 0.022* 0.000*  0.009* 0.022*
Bonf, using actuals 1.000 0.000* 0.004* 1.000 0.000* 0.000*
Bonf, using forecasts only 0.000*  0.047* 0.108 0.000*  0.047* 0.108
Bonf, all tests 0.000* 0.001* 0.010* 0.000* 0.000* 0.000*

Note: This table presents p-values from inequality- and regression tests of forecast rationality
applied to quarterly Greenbook forecasts of GDP growth, the GDP deflator and CPI Inflation. The
sample covers the period 1982Q1-2000Q4. Six forecast horizons are considered, h = 0, 1, 2, 3, 4,
5 and the forecasts are aligned in event time. The inequality tests are based on the Wolak (1989)
test and use critical values based on a mixture of chi-squared variables. Tests labeled “with proxy”
refer to cases where the shortest-horizon forecast forecast is used in place of the target variable in
the test. P-values less than 0.10 are marked with an asterisk.
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Figure 1: FEzamples of Bregman loss functions for y € [—3,3] when y = —1. The left panel
presents examples of “homogeneous Bregman” loss functions of the form L (y,35) = |y|* —

|9]* —sgn(9) a ]Q|a71 (y—19), for a > 1. The right panel presents examples of “exponential Breg-
man” loss functions of the form L (y,7) = 2a~2 (exp {ay} — exp {ag}) — 2a L exp {ag} (y — 9), for
a # 0. Both of these families nest MSE (k = 2 in the former case and a — 0 in the latter).
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Figure 2: Time series of annualized quarterly GDP growth, GDP deflator, and CPI inflation, over
the period 1981Q)2 to 2000Q4.
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Figure 3: Mean squared errors and forecast variances, for US GDP deflator, CPI inflation and
GDP growth.
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Figure 4: Mean squared forecast revisions (left panel) and the covariance between forecasts and
actuals, for US GDP deflator, CPI inflation and GDP growth.
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