
Limit Theory for Panel Data Models with Cross Sectional Dependence

and Sequential Exogeneity

Guido M. Kuersteiner1 and Ingmar R. Prucha2

October 1, 2010

1Department of Economics, Georgetown University, Washington, DC 20057, Tel.: 202-687-0956, e-mail:

gk232@georgetown.edu
2Department of Economics, University of Maryland, College Park, MD 20742, Tel.: 301-405-3499, e-mail:

prucha@econ.umd.edu



Abstract

The paper derives a general Central Limit Theorem and asymptotic distributions for moment conditions

related to panel data and spatial models with large n. The results allow for regressors to be only sequentially

rather than strictly exogenous, while at the same time allowing the data to be cross sectionally dependent.

The setup is suffi ciently general to accommodate situations where cross sectional dependence stems from

the presence of common factors, which leads to the need for random norming. The limit theorem for

sample moments is derived by showing that the moment conditions can be recast such that a martingale

difference array central limit theorem can be applied. We prove such a central limit theorem by first

extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant

for our applications. We illustrate our result by establishing a generalized estimation theory for GMM

estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions.

Keywords: Cross-sectional dependence, spatial martingale difference sequence, Central Limit Theorem,

spatial, panel, GMM.



1 Introduction1

In this paper we develop a central limit theory for data sets with cross-sectional dependence. Importantly,

the theory is suffi ciently general to cover panel data sets, allowing for regressors that are only sequentially

(rather than strictly) exogenous, while at the same time allowing the data to be cross sectionally dependent.

The paper considers cases where the time series dimension T is fixed. Our results also cover purely cross-

sectional data-sets.

At the center of our results lies a cross-sectional conditional moment restriction that avoids any as-

sumption of cross-sectional independence. The paper proves a central limit theorem for the corresponding

sample moment vector by extending results of Hall and Heyde (1980) for stable convergence of martingale

difference arrays to a situation of non-nested information sets. We then show that by judiciously con-

structing information sets in a way that preserves a martingale structure for the moment vector in the

cross-section our martingale array central limit theorem is applicable to cross-sectionally dependent panel

and spatial models.

The classical literature on dynamic panel data has generally assumed that the observations, including

observations on the exogenous variables, which were predominantly treated as sequentially exogenous,

are cross sectionally independent. The assumption of cross sectional independence will be satisfied in

many settings where the cross sectional units correspond to individuals, firms, etc., and decisions are not

interdependent or when dependent units are sampled at random as discussed in Andrews (2005). However

in many other settings the assumption of cross-sectional independence may be violated. Examples where

it seems appropriate to allow for cross sectional dependence in the exogenous variables may be situations

where regressors constitute weighted averages of data that include neighboring units (as is common in

spatial analysis), situations where the cross sectional units refer to counties, states, countries or industries,

and situations where random sampling from the population is not feasible.

A popular approach to model cross sectional dependence is through common factors; see, e.g., Phillips

and Sul (2007, 2003), Bai and Ng (2006a,b), Pesaran (2006), and Andrews (2005) for recent contributions.

This represents an important class of models, however they are not geared towards modeling cross sectional

interactions.2 Our approach allows for factor structures in addition to general, unmodelled cross-sectional
1Our thanks for very helpful comments are owed to David Drukker, Nazgul Jenish, Harry Kelejian, Benedikt Pötscher and

Peter Robinson. We also thank participants of conferences at the Advanced Institute in Vienna, at Cemmap in London, at

the Cowles Foundation, the Swiss Economists Abroad Conference and at seminars at Boston University, ETH Zurich, NYU

Stern School of Business and Rutgers University for their helpful comments. Ingmar Prucha gratefully acknowledges financial

support from the National Institute of Health through the SBIR grants R43 AG027622 and R44 AG027622.
2Bai and Ng (2006a,b) allow for cross sectional correlation in the idiosyncractic disturbances, but assume that the distur-

bance process is independent of the factors and loadings. The setups considered in the other papers imply that the observations

are independent in the cross sectional dimension conditional on the common factors.
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dependence. Using the GMM estimator for a linear panel model as an example, we illustrate that conven-

tional inference methods remain valid under the conditions of our central limit theory when samples are

not iid in the cross-section. These results extend findings in Andrews (2005) to situations where samples

are not iid even after conditioning on a common factor. Given that our assumptions allow for factor

structures, our limit theory involves and accommodates random norming. Technically this is achieved by

establishing stable convergence in distribution and not just convergence in distribution for the underlying

vector of sample moments. To this end we prove a martingale central limit theorem for stable convergence

by extending results of Hall and Heyde (1980) to allow for non-nested σ-fields that naturally arise in our

setting.

Another popular approach to model cross sectional dependence is to allow for spatial interactions

in terms of spatial lags as is done in Cliff-Ord type models. Dynamic panel data models with spatial

interactions have recently been considered by Mutl (2006), and Yu, de Jong and Lee (2007, 2008). All of

those papers assume that the exogenous variables are fixed constants and thus maintain strict exogeneity.

The methodology developed in this paper should be helpful in developing estimation theory for Cliff-Ord

type spatial dynamic panel data models with sequentially exogenous regressors.

While some of the classical literature on dynamic panel data models allowed for cross sectional cor-

relation in the exogenous variables, this was, to the best of our knowledge, always combined with the

assumption that the exogenous variables are strictly exogenous. This may stem from the fact that strict

exogeneity conveniently allows the use of limit theorems conditional on all of the exogenous variables.

There are many important cases where the strict exogeneity assumption does not hold, and regressors,

apart from time-lagged endogenous variables, or other potential instruments are only sequentially exoge-

nous. Examples given by Keane and Runkle (1992) include rational expectations models or models with

predetermined choice variables as regressors. Other example are the effects of children on the labor force

participation of women considered by Arellano and Honore (2001, p. 3237) or the relationship between

patents and R&D expenditure studied by Hausman, Hall and Griliches (1984); see, e.g., Wooldridge (1997)

for further commentary on strict vs. sequential exogeneity.

Motivated by the above, the main aim of our paper is to develop a general central limit theory for

sample moments of a panel data set, where we allow for cross sectional dependence in the explanatory

variables and disturbances (and thus in the dependent variable), while allowing for some of the explanatory

variables to be sequentially exogenous. The setup will be suffi ciently general to accommodate cross sectional

dependence due to common factors and/or spatial interactions.

The paper is organized as follows. In Section 2 we formulate the moment conditions, and give our basic

result concerning the limiting distribution of the normalized sample moments. The analysis establishes

not only convergence but stable convergence in distribution. In Section 3 we illustrate how the central
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limit theory can be applied to effi cient GMM estimators for linear panel models. We derive its limiting

distribution, and give a consistent estimator for the limiting variance covariance matrix. Concluding

remarks are given in Section 4. Basic results regarding stable convergence in distribution as well as all

proofs are relegated to the appendices.

2 Central Limit Theory

2.1 Moment Conditions

In the following we develop a central limit theory (CLT) for a vector of sample moments for panel data,

allowing for regressors that are only sequentially (rather than strictly) exogenous, while at the same time

allowing the data to be cross sectionally dependent. Towards motivating our setup consider the following

exemplary panel data model (i = 1, . . . , n; t = 1, . . . , T ):

yit = xitβ0 + zitγ0 + µi + uit (1)

where yit, xit and zit denote, respectively, the dependent variable, the sequentially exogenous and strictly

exogenous explanatory variables (conditional on the unobserved components), θ0 = (β′0, γ
′
0)′ is the vector

of unknown parameters, µi is an individual specific effect not observed by the econometrician and uit is an

unobserved error term. For the purpose of this section we assume that yit and uit are scalar valued, and xit

and zit respectively are 1× kx and 1× kz vectors, and the vectors of parameters are defined conformably.
Since xit may include lagged endogenous variables the specification covers dynamic models.

For the CLT developed in this section we assume that sample averages are taken over n, with n

tending to infinity and T fixed. We allow for purely cross-sectional data-sets by allowing T = 1 in the

CLT. However, this condition may need to be strengthened to T > T0 for some T0 > 1 for specific models

and data transformations.

The central limit theorem is stated for averages over the cross-section of random variables xi =

(xi1 . . . , xiT ), zi = (zi1, . . . , ziT ), and ui = (ui1, . . . , uiT ) for i = 1, ..., n. We assume that the random

variables (zi, xi, ui, µi) for i = 1, 2, ... are defined on a probability space (Ω,F , P ) . Although not explicitly

denoted, the random variables are allowed to depend on the sample size n, i.e., to form triangular arrays.

Our setup accommodates fairly general forms of cross-sectional dependence. In particular, analogous to

Andrews (2005), who considers static models, we allow in each period t for the possibility of regressors and

disturbances (and thus for the dependent variable) to be affected by common shocks that are captured

by a sigma field Ct ⊂ F . In particular, if λt denotes a vector of common shocks, then Ct = σ(λt). Alter-

natively or concurrently we allow for cross sectional dependence due to “spatial lags” in the sense that
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some of the variables may be weighted cross-sectional averages of some basic variables.3 In the following

let xoit = (xi1, . . . , xit), uoit = (ui1, . . . , uit) and Cot = C1 ∨ . . .∨Ct where ∨ denotes the sigma field generated
by the union of two sigma fields. For simplicity we will also write C for CoT in the following.

Our central limit theory is focused on providing general results concerning the limiting distribution of

a vector of sample moments of the form

m(n) = n−1/2
n∑
i=1

mi, (2)

mi =
(
hi1u

+
i1, ..., hT+iu

+
T+i

)′
,

with T+ ≤ T , where hit = (xoit, zi) denotes a vector of instruments corresponding to t, and u+
i =(

u+
i1, ..., u

+
iT+

)
denotes a vector of transformed disturbances with u+

it =
∑T

s=t πtsuis, where for the mo-

ment, for ease of presentation, we treat the πts as nonstochastic constants. The class of transforma-

tions considered includes first differences, u+
it = ui,t+1 − uit, as well as the Helmert transformation,

u+
it = αt [uit − (ui,t+1 + . . .+ uiT ) /(T − t)], α2

t = (T − t)/(T − t + 1), for t = 1, . . . , T . As a special

case we also have u+
it = uit, for t = 1, . . . , T . Given the fairly general formulation of the sample moments

our CLT should be helpful in establishing the limiting distribution of a broad class of estimators. Further

generalizations of the setup covering more general formulations of the instruments and transformations

are discussed in a remark at the end of this section.

For the subsequent discussion it proves convenient to express the transformed disturbances more com-

pactly as u+′
i = Πu′i where Π is a T+×T matrix with t, s-th element πts. Observe that the lower diagonal

elements of Π are zero. Furthermore, let Hi = diagT
+

t=1(hit), then we can express the moment vectors as

mi = H ′iu
+′
i = H ′iΠu

′
i =

T∑
t=1

H ′iπtuit, (3)

where πt denotes the t-th column ofΠ. Clearly, given the adopted setup, we haveH ′iπt = [π1thi1, . . . , πtthit, 0]′.

We next state a set of mild regularity conditions. The conditions accommodate sequentially exogenous

and strictly exogenous regressors, and allow those regressors to be cross-sectionally dependent. As one

potential source of cross-sectional dependence the conditions account for the possibility of common shocks.

Definition 1 Define the following sub-σ-fields of F :

Bn,i,t = σ
{(
xotj , zj , u

o
t−1j , µj

)n
j=1

, u−i,t
}
,

3We note that spatial lags will generally depend on the sample size, which motivates why the variables are allowed to form

triangular arrays.
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with u−i,t = (u1t, . . . , ui−1,t, ui+1,t, ...unt)and (i = 1, . . . , n)

Fn,0 = C,

Fn,i = σ

{(
xoj1, zj , µj

)n
j=1

, (uj1)i−1
j=1

}
∨ C,

Fn,n+i = σ

{(
xoj2, zj , u

o
j1, µj

)n
j=1

, (uj2)i−1
j=1

}
∨ C,

...

Fn,(T−1)n+i = σ

{(
xojT , zj , u

o
j,T−1, µj

)n
j=1

, (ujT )i−1
j=1

}
∨ C.

(4)

We maintain the following assumption.

Assumption 1 For some δ > 0 and some finite constant K (which is taken, w.l.o.g., to be greater then

one) the following conditions hold for all t = 1, . . . , T , i = 1, . . . , n, n ≥ 1:

(a) The 2 + δ absolute moments of the random variables xit, zit, uit, and µi exist, and the moments are

uniformly bounded by K. In addition,

E
[
|uit|2+δ | Bn,i,t ∨ C

]
≤ K. (5)

(b) The following conditional moment restrictions hold:

E [uit | Bn,i,t ∨ Cot ] = 0. (6)

(c) Let Ṽ(n) =
∑T

t=1 Ṽt,n with Ṽt,n = n−1
∑n

i=1E
[
u2
it | Fn,(t−1)n+i

]
H ′iπtπ

′
tHi. There exists a matrix

V =
∑T

t=1 Vt , where V has finite elements and is positive definite a.s., Vt is C measurable, and Ṽt,n−Vt
p→ 0

as n→∞.

Assumption 1(a) ensures the existence of various expectations considered subsequently. The condition

in Assumption 1(b) that the conditional mean of the disturbances is zero implies, of course, that E [uit] = 0

and that cov(uit, uj,s) = 0 for i 6= j and/or t 6= s. Most importantly, observing that πτthiτ for τ ≤ t and

thus H ′iπt are Bn,i,t ∨ Cot measurable, this cross-sectional conditional moment condition implies that

E [mi] = 0. (7)

Furthermore, in light of this condition we have E
[
mim

′
j

]
= 0 for i 6= j, and

E
[
mim

′
i

]
=

T∑
t=1

T∑
s=1

E
[
uituisH

′
iπtπ

′
sHi

]
=

T∑
t=1

E
[
u2
itH
′
iπtπ

′
tHi

]
, (8)
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since EuituisH ′iπtπ
′
sHi = E

{
E
[
uit | Fn,(t−1)n+i

]
uisH

′
iπtπ

′
sHi

}
= 0 for s < t. The requirement in As-

sumption 1(a) that the conditional 2 + δ moments are bounded could be replaced by an assumption that

bounds higher order moments of the unconditional distribution.

Towards interpreting Assumption 1(c) consider the matrix of second order sample moments

V(n) = n−1
n∑
i=1

mim
′
i. (9)

Then in light of (8) and since E
[
u2
itH
′
iπtπ

′
tHi

]
= E

{
E
[
u2
it | Fn,(t−1)n+i

]
H ′iπtπ

′
tHi

}
we have E

[
V(n)

]
=

E
[
Ṽ(n)

]
. Assumption 1(c) holds under a variety of low level conditions with

Vt = plimn−1
n∑
i=1

E
[
u2
itH
′
iπtπ

′
tHi | C

]
,

given that E
{
E
[
u2
it | Fn,(t−1)n+i

]
H ′iπtπ

′
tHi | C

}
= E

[
u2
itH
′
iπtπ

′
tHi | C

]
. An example of such a low level

condition is the conditional i.i.d. assumption of Andrews (2005), in which case Vt = E
[
u2
itH
′
iπtπ

′
tHi | C

]
.

Alternatively, one could postulate explicit factor structures for the elements of hit and allow for cross-

sectional mixing. A third possibility is to postulate cross-sectional stationarity and appeal to the ergodic

theorem. If in addition one assumes that E
[
u2
it | Fn,(t−1)n+i

]
= σ2, where σ2 is constant, we have Ṽt,n =

σ2n−1
∑n

i=1H
′
iπtπ

′
tHi and Ṽt,n − Vt

p→ 0 can then be implied solely from convergence assumptions on

the second order sample moments of the instruments hit. We allow for the possibility that there are no

common factors by allowing for Ct = {∅,Ω} . In that case, V is a matrix of fixed coeffi cients.

The moment condition (6) in Assumption 1(b) is formulated for a situation where the common factors

are only sequentially exogenous. The next condition strengthens (6) by requiring that the common factors

are orthogonal to all innovations.

Assumption 2 The following conditional moment restrictions hold:

E [uit | Bn,i,t ∨ C] = 0. (10)

Remark 1 Condition (10) implies (6) because Bn,i,t ∨ Cot ⊂ Bn,i,t ∨ C. The moment condition (10) is
satisfied in models where the common factors are strictly exogenous. As remarked, our analysis includes

the important case where no common factors are present by allowing Ct = {∅,Ω}, as is typical in the spatial
literature.4 In this case conditions (6) and (10) are identical, and Assumption 2 is automatically implied

by Assumption 1. An xample of a model for uit, where uit depends on common shocks λt and satisfies (10)

is uit = εitλt where (εjt) and (λt) are independent and E [εit | Bn,i,t] = 0.

4See, e.g., Baltagi at al. (2003, 2009), Kapoor et al. (2007), Lee and Yu (2010a), and Yu et al. (2007, 2008). For recent

reviews, see, e.g., Anselin (2010) and Lee and Yu (2010b).
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Remark 2 To further illustrate the relevance of the key conditional moment restrictions postulated above

Kuersteiner and Prucha (2009) consider a class of private information games recently analyzed by Rust

(1994), Aguirregabiria and Mira (2007) and Bajari, Benkard and Levin (2007). Estimators discussed by

these authors rely on independent samples from repeated play of the same game. Kuersteiner and Prucha

(2009) show how to formulate moment conditions that are suitable for our central limit theory and avoid

the need for independent sampling.

When (6) holds but not (10) several cases leading to different limiting distributions for the central limit

theorem below can be distinguished. To establish general results for a limit theory for the sample moment

vector we consider the following basic conditions.

Assumption 3 Let m̃i =
(
E
[
hi1u

+
i1 | Fn,i

]
, ..., E

[
hT+iu

+
T+i
| Fn,(T+−1)n+i

])′
and bn = n−1

∑n
i=1 m̃i.

One of the following statements holds:

(a) bn
p→ b where b is finite a.s. and C measurable.

(b)
√
nbn

p→ b where b is finite a.s. and C measurable.
(c)
√
nbn

p→ 0.

Remark 3 Assumption 2 implies that bn = 0, and thus Assumption 2 automatically implies Assumption

3(c). If no common shocks are present, Assumption 3(c) is also automatically implied by Assumption 1.

Remark 4 The specification of the instruments as hit = (xoit, zi) was chosen for expositional simplicity.

Clearly the above discussion also applies if the vectors of instruments hit are more generally allowed to be

σ
[
{xoit, zi}

n
i=1

]
measurable functions of the regressors. (The dimension of the vectors may depend on t,

but not on n.) The above discussion also applies if the πst, s ≤ t, depend on θ0 and are measurable w.r.t.

σ
[
{xoit, zi}

n
i=1

]
∨Cot . The crucial property, pertaining to the instruments and the data transformation, that

is used in establishing the moment condition (7) is that H ′iπt is Bn,i,t ∨ Cot measurable, which clearly is the
case even under the above generalized specifications. We note further that the sample moment vector (2)

is a function of the true disturbances uit, and thus the specific functional form of the model (1) does not

enter in the derivation of the limiting distribution of the sample moment vector. (Of course, it affects the

limiting distribution of a corresponding GMM estimator.) Thus the central limit theory developed below

should be a useful basic module for establishing the limiting distribution of GMM estimators for a fairly

general class of possibly nonlinear dynamic models with cross sectional dependencies, and a fairly general

class of data transformations, including forward transformations that allow for time-varying unit specific

effects.5

5Examples include forward looking variants of transformations considered by Ahn, Lee and Schmidt (2001,2006).
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2.2 Central Limit Theory

In this Section we establish the limiting distribution of the moment vector m(n) = n−1/2
∑n

i=1mi and

then give a discussion of the strategy by which the result is derived. In fact, we not only establish

convergence in distribution of m(n), but we establish C-stable convergence in distribution of m(n), which

allows us to establish the joint limiting distribution for
(
m(n), A

)
for any matrix valued random variable

A that is C measurable. Establishing joint limits is a requirement for the continuous mapping theorem

to apply.6 Applying the continuous mapping theorem allows us then to establish the limiting distribution

of transformations of m(n), e.g., of Am(n) or m′(n)Am(n), which is important for establishing the limiting

distribution of typical estimators and test statistics. In particular, the developed limit theory allows us

to accommodate random norming, where the need for random norming arises from the presence of the

common factors represented by C.
To prove stable convergence in distribution of m(n) we first establish a general central limit theorem

for zero mean, square integrable martingale arrays {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} with differences Xni, which

we expect to be useful in many other contexts. We next present a formal definition of stable convergence

in distribution, cp. Daley and Vere-Jones (1988, p. 644).

Definition 2 Let (Ω,F , P ) be a probability space and let B (Rp) denote the Borel σ-field on Rp. If

{Zn : n = 1, 2, . . .} and Z are Rp-valued random vectors on (Ω,F , P ), and F0 is a σ-field such that

F0 ⊂ F , then
Zn

d→ Z (F0-stably)

if for all U ∈ F0 and all A ∈ B (Rp) with P (Z ∈ ∂A) = 0,

P ({Zn ∈ A} ∩ U)→ P ({Z ∈ A} ∩ U)

as n→∞.

Remark 5 In the following we will apply Definition 2 to establish stable convergence for Zn = Snkn. The

definition generalizes the definition of Hall and Heyde (1980, p. 56) to allow for stable convergence on a

sub σ-field F0 rather than on F . Restricting stable convergence to F0 is important in our setting because

σ-fields Fni do not satisfy condition (3.21) maintained by the central limit theorem of Hall and Heyde

(1980, p. 58). We note that when F0= {0,Ω}, F0-stable convergence in distribution is convergence in

distribution. Thus the former always implies the latter.

We now present the central limit theorem for martingale arrays. The theorem extends results in Hall

and Heyde (1980) by establishing stable convergence without requiring that the σ-fields Fni are nested in
6See, e.g., Pötscher and Prucha (2001), pp. 207, for discussions and examples of this requirement.
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the sense of Hall and Heyde’s condition (3.21). This can be achieved by restricting stable convergence to

a ’small’sub-σ-field F0 ⊂ F . In our application, F0 can be taken to equal C. The central limit theorem
then provides exactly the type of stable and joint convergence we need.

Theorem 1 Let {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} be a zero mean, square integrable martingale array with dif-
ferences Xni. Let F0 = ∩∞n=1Fn0 with Fn0 ⊆ Fn1 for each n and E [Xn1|Fn0] = 0 and let η2 be an a.s.

finite random variable measurable w.r.t. F0. If

max
i
|Xni|

p→ 0, (11)

kn∑
i=1

X2
ni

p→ η2 (12)

and

E

(
max
i
X2
ni

)
is bounded in n (13)

then

Snkn =

kn∑
i=1

Xni
d→ Z (F0-stably)

where the random variable Z has characteristic function E
[
exp

(
−1

2η
2t2
)]
. In particular, Snkn

d→ ηξ

(F0-stably) where ξ ∼ N(0, 1) is independent of η (possibly after redefining all variables on an extended

probability space).

In the following let V(n) = n−1
∑n

i=1mim
′
i as defined above, and let p = T+ [(T+ + 1)kx/2 + Tkz]

denote the dimension of m(n). We now state the main result of the paper, a central limit theorem for the

moment vector m(n).

Theorem 2 (a) Suppose Assumptions 1 and 2 hold. Then

m(n)
d→ V 1/2ξ (C-stably), (14)

where ξ ∼ N (0, Ip), and ξ and C (and thus ξ and V ) are independent.
(b)Let A be some p∗ × p matrix that is C measurable with finite elements and rank p∗ a.s.. Suppose

Assumption 1 and either Assumption 2 or 3(c) hold, then

Am(n)
d→ (AV A′)1/2ξ∗, (15)

where ξ∗ ∼ N (0, Ip∗), and ξ∗ and C (and thus ξ∗ and AV A′) are independent. If Assumptions 1 and 3(a)
hold, then

A
(
m(n) −

√
nbn
) d→ (AV A′)1/2ξ∗ (16)
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and Am(n) diverges. If Assumptions 1 and 3(b) hold then

Am(n)
d→ (AV A′)1/2ξ∗ +Ab (17)

(c) Suppose Assumption 1 and either Assumption 2 or 3(c) hold. Suppose furthermore that

n−1
n∑
i=1

uituisH
′
iπtπ

′
sHi

p→ 0 for t 6= s, (18)

then V(n) − V
p→ 0 and V −1/2

(n) m(n)
d→ ξ ∼ N (0, Ip) .

The proof of Theorem 2 employs Theorem 1 for martingale difference arrays and employes Propositions

A.1 and A.2 in the Appendix in conjunction with the Cramer-Wold device. We illustrate the proof strategy

here and assume for the remainder of this section that Assumption 2 holds to simplify the argument. A

detailed proof is given in the appendix. Let λ = (λ′1, λ
′
2, . . . , λ

′
T+)′ be some nonstochastic vector, where λt

is of dimension (tkx + kz)× 1 and where λ′λ = 1. Then

λ′m(n) = n−1/2
n∑
i=1

c′iui (19)

where

c′i = (ci1, . . . , ciT ) = λ′H ′iΠ.

Given that the lower diagonal elements of the T+ × T matrix Π are zero it follows that cit = λ′H ′iπt =∑min(t,T+)
s=1 πstλ

′
sh
′
is, and thus cit is a function only of x

o
it, zi, and elements of λ and Π.7 Next, let Xn,1 = 0,

and for i = 1, . . . , n define
Xn,i+1 = n−1/2ci1ui1,

Xn,n+i+1 = n−1/2ci2ui2,
...

Xn,(T−1)n+i+1 = n−1/2ciTuiT ,

(20)

such that we can express λ′m(n) as

λ′m(n) =
Tn+1∑
v=1

Xn,v. (21)

Towards establishing the limiting distribution of
∑Tn+1

v=1 Xn,v through the martingale difference array CLT

we need to construct appropriate information sets. This is accomplished in Definition 1 where Fn,v is
defined.

7More generally the proof also holds if we allow for hit and the πst to be as discussed in the remark at the end of the last

sub-section.
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Clearly the construction of the information sets is such that Fn,v−1 ⊆ Fn,v, Xn,v is Fn,v-measurable,
and E [Xn,v | Fn,v−1] = 0 in light of Assumption 2 and observing that Fn,(t−1)n+i ⊆ Bn,i,t∨C. The proof of
the first part of Theorem 2 in the appendix proceeds by verifying that under the maintained assumptions

the martingale difference array {Xn,v,Fn,v, 1 ≤ v ≤ Tn + 1, n ≥ 1} satisfies all remaining conditions
postulated by Theorem 1. Given that this CLT delivers stable convergence in distribution (and not just

convergence in distribution) the claims in (14) and (15) then follow from Propositions A.1 and A.2.

The claim that V(n) − V
p→ 0 in the second part of the theorem follows in essence as a by-product of

the proof of the first part, observing that V(n) =
∑T

t=1 n
−1
∑n

i=1 u
2
itH
′
iπtπ

′
tHi + op(1) in light of (18). As

remarked above, under Assumption 1(b) we have E [uituisH
′
iπtπ

′
sHi] = 0 for t 6= s, condition (18) will hold

again under a variety of low level conditions.

Remark 6 The above construction of the information sets Fn,(t−1)n+i is crucial. At first glance it may

seem unusual to include (ujt,n)i−1
j=1 in the information set Fn,(t−1)n+i, and one may be tempted to use the

information sets Bn,t ∨ C where Bn,t = σ

{(
xojt, zj , u

o
j,t−1, µj

)n
j=1

}
instead. However, we emphasize that it

is precisely because of the inclusion of (ujt,n)i−1
j=1 that Xn,v is indeed Fn,v-measurable for all v, as required

by the CLT.8 Using Bn,t ∨ C for the sequence of information sets would have lead to a violation of this
measurability condition. Alternatively, one may have been tempted to use Bn,i,t ∨ C for the sequence of
information sets, i.e., to include u−i,t in place of (ujt,n)i−1

j=1. However this would have lead to a violation

of the assumption that the information sets are non-decreasing.

3 GMM Estimators

In this section we illustrate the use of the CLT for the GMM estimator of the commonly used panel data

model (1) with fixed effects. For the subsequent discussion it proves convenient to rewrite the model more

compactly as

yit = witθ0 + µi + uit, (22)

where wit = (xit, zit) and θ0 = (β′0, γ
′
0)′.

As discussed in the introduction, much of the dynamic panel data literature maintains that the data are

distributed i.i.d. in the cross sectional dimension. That is, let yi = (yi1, . . . , yiT ), xi = (xi1, . . . , xiT ), zi =

8Within the context of establishing the limiting distribution of linear quadratic forms composed of independent disturbances

Kelejian and Prucha (2001) employed somewhat related ideas; cp. also Yu et al. (2007, 2008). However their setups

differ substantially from ours, and these papers do not consider sequentially exogenous covariates, nor common factors and

corresponding stable convergence.
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(zi1, . . . , ziT ), and ui = (ui1, . . . , uiT ), then in this setting (xi, zi, µi, ui) or equivalently (yi, xi, zi, µi) would

be distributed independently and identically across i. As discussed, this assumption is appropriate for

many micro-econometric applications but problematic in many other situations, e.g., where i corresponds

to countries, states, regions, industries, etc. Also in many spatial settings it would not make sense to

assume that xi and/or zi are independent over i because elements of xi and /or zi may be weighted

averages of characteristics of neighboring units, i.e., be spatial lags in the sense of Cliff and Ord (1973,

1981).9

It is of interest to compare Assumption 1 with those typically maintained under the assumption that

(xi, zi, µi, ui) is i.i.d.. For this discussion we also assume the absence of common factors for simplicity.

Clearly, under cross sectional independence the conditions in Assumption 1(b) can be stated equivalently

by replacing the conditioning sets by xoit, zi, µi, u
o
it−1. In particular, Assumption 1(b) simplifies to

E
[
uit | xoit, zi, µi, uoit−1

]
= 0. (23)

This is in contrast to the assumption that

E [uit | xoit, zi, µi] = 0, (24)

which is typically maintained in the literature under cross sectional independence. Clearly condition (23)

rules out autocorrelation in the disturbances, even if xit does not contain a lagged endogenous variable,

while condition (24) does not.10 Of course, if the model is dynamic and linear also condition (24) rules

out autocorrelation in the disturbances. In this case conditions (23) and (24) are equivalent, since then

xoit already incorporates the information contained in u
o
it−1 through the lagged values of the dependent

variable. We note that the need to include uoit−1 in the conditioning information set stems from the use

of a martingale difference CLT, while the i.i.d. case can simply be handled by a CLT for i.i.d. random

vectors.

We consider moment estimators that are based on first differences of (22) such that

E
[
h′t−1i∆uit

]
= 0 for t = 2, . . . , T, (25)

where ∆ is the difference operator. Let Hi = diag (hi1, ..., hi,T−1) be the (T − 1) × (T − 1) [Tkx/2 + kz]

matrix containing the T − 1 instrument vectors, and let D be the (T − 1) × T matrix such that Du′i =

9As noted, to allow for situations where, e.g., a regressor variable corresponding to unit i is a cross sectional weighted

average of some basic variable, we allow all variables to be triangular arrays. For example, if the dependent variable is wages

and i corresponds to regions, then a regressor may be a weighted average of the unemployment rate of region i and the

unemployment rates of surrounding regions, with weights declining with distance. To save on notational cost, we do not

explicitly account for the dependence of the observations on n.
10Specific forms of autocorrelated disturbances such as AR(1) disturbances could be accommodated by reformulating the

moment conditions w.r.t. to the basic innovations entering the disturbance process.
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∆ui := (∆ui2, ...,∆uiT )′. The sample moment vector m(n) corresponding to the above moment conditions

is then given by (2), where mi is as in (3) with Π = D and T+ = T − 1. For the following discussion it

proves helpful to define ∆yi := (∆yi2, ...,∆yiT )′ and ∆wi := (∆w′i2, ...,∆w
′
iT )′.

The GMM estimator corresponding to the moment conditions (25) is defined as

θ̃n =
(
G′nΞ̃nGn

)−1
GnΞ̃ngn

where Gn = n−1
∑n

i=1H
′
i∆wi, gn = n−1

∑n
i=1H

′
i∆yi, and Ξ̃n is some weight matrix. The above expression

for the GMM estimator is consistent with expressions given in the dynamic panel data literature under the

assumption of cross sectional independence of the observations; compare, e.g., Arellano and Bond (1991).

The asymptotic distribution of the GMM estimator θ̃n is well established in case the observations

are i.i.d. In case all explanatory variables (outside of time lags of the dependent variable) are strictly

exogenous, cross sectional dependence between the explanatory variables across units can also be handled

readily by performing the analysis conditional on all strictly exogenous variables, i.e., by conditioning on

z1, . . . , zn. This is essentially the approach taken in the early literature on static panel data models. This

approach was also taken by Mutl (2006), and Yu, de Jong and Lee (2007, 2008) in analyzing Cliff-Ord type

spatial dynamic panel data models. However, as discussed, strict exogeneity rules out many important

cases where uit affects future values of the regressor.

In the following we utilize the theory developed in Section 2 to derive the asymptotic distribution

of θ̃n for situations where some or all regressors are allowed to be only sequentially rather than strictly

exogenous, while at the same time allowing the data to be cross sectionally dependent. Correspondingly

our analysis will postulate Assumption 1, which also accommodates cross sectional dependence due to

sequentially exogenous common factors.

For completeness we discuss the structure of the matrices in Assumption 1(c) as implied by the

moment conditions (25). The matrices Ṽt,n are readily seen to be block diagonal of the form Ṽt,n =

n−1
∑n

i=1 diag(0, . . . , 0, Sit, 0, . . . , 0) with Si1 = σ2
i1h
′
i1hi1,

Sit = σ2
it

[
h′i,t−1hi,t−1 −h′i,t−1hit

−h′ithi,t−1 h′ithit

]
, t = 2, . . . , T − 1,

and SiT = σ2
iTh
′
i,T−1hi,T−1,where σ2

it = E
[
u2
it | Fn,(t−1)n+i

]
. (Note that there is partial overlap between

the non-zero blocks of Ṽt,n and Ṽt−1,n.) If we assume additionally Assumption 2, the limiting matrices cor-

responding to Ṽt,n will typically be of the form Vt = plimn→∞ n
−1
∑n

i=1 diag(0, . . . , 0, E [Sit | C] , 0, . . . , 0),

where by a iterated expectations argument it is seen that E [Si1 | C] = E
[
u2
i1h
′
i1hi1 | C

]
,

E [Sit | C] = E

{
u2
it

[
h′i,t−1hi,t−1 −h′i,t−1hit

−h′ithi,t−1 h′ithit

]
| C
}
, t = 2, . . . , T − 1,
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and E [SiT | C] = E
[
u2
iTh
′
i,T−1hi,T−1 | C

]
.

The next theorem establishes the basic asymptotic properties of the GMM estimator θ̃n when common

factors are either strictly exogenous or have an asymptotically negligible effect on the estimator bias.

Under the same conditions we also give a result in Theorem 5 that can be utilized to establish the limiting

distribution of test statistics, allowing for random norming corresponding to the common factors captured

by C.

Theorem 3 Suppose Assumption 1, and either Assumption 2 or 3(c) hold, and that Gn
p→ G, Ξ̃n

p→ Ξ,

where G and Ξ are C-measurable, G and Ξ have finite elements and G has full column rank and Ξ is

positive definite a.s.

(a) Then

n1/2(θ̃n − θ0)
d→ Ψ1/2ξ, as n→∞,

where ξ is independent of C (and hence of Ψ), ξ ∼ N(0, Ikx+kz), and

Ψ = (G′ΞG)−1G′ΞV ΞG(G′ΞG)−1.

If in addition, E
[
u2
it | Fn,(t−1)n+i

]
= σ2 for a constant σ2 holds, then V = σ2 plimn→∞

(
n−1

∑n
i=1H

′
iDD

′Hi

)
.

(b) Suppose B is some q × kx + kz matrix that is C measurable with finite elements and rank q a.s.,
then

Bn1/2(θ̃n − θ0)
d→ (BΨB′)1/2ξ∗,

where ξ∗ ∼ N (0, Iq), and ξ∗ and C (and thus ξ∗ and BΨB′) are independent.

The next result considers cases where the common factors are only sequentially exogenous, i.e., only (6)

but not necessarily (10) holds, and where the resulting effect on the bias of the estimator is asymptotically

non-negligible. The first part of the theorem considers a case where the estimator is inconsistent and

converges to a random limit while the second part of the theorem covers a case where the estimator is

root-n consistent but not asymptotically mixed normal.

Theorem 4 Suppose Assumption 1 holds, and that Gn
p→ G, Ξ̃n

p→ Ξ, where G and Ξ are C-measurable,
G and Ξ have finite elements and G has full column rank and Ξ is positive definite a.s.

(a) If in addition Assumption 3(a) holds then

n1/2(θ̃n − θ0 − (G′ΞG)−1G′Ξbn)
d→ Ψ1/2ξ
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and θ̃n − θ0
p→ (G′ΞG)−1G′Ξb.

(b) If in addition Assumption 3(b) holds then

n1/2(θ̃n − θ0)
d→ Ψ1/2ξ + (G′ΞG)−1G′Ξb.

For effi ciency (conditional on C) we can select Ξ = V −1, in which case Ψ = (G′V −1G)−1. To construct

a feasible effi cient GMM estimator consider the following estimator for V

Ṽ∆(n) = n−1
n∑
i=1

H ′i∆̃ui∆̃u
′
iHi

where ∆̃ui = (∆̃ui2, . . . , ∆̃uiT ) with ∆̃uit = ∆yit − ∆witθ̃n, and θ̃n is the initial GMM estimator with

weight matrix Ξ̃n = I, or some other consistent estimator for θ0. The GMM estimator with weight matrix

Ξ̃n = Ṽ −1
∆(n) is then given by,

θ̂n =
(
G′nṼ

−1
∆(n)Gn

)−1
GnṼ

−1
∆(n)gn.

The above expression for the GMM estimator θ̂n is again consistent with expressions given in the dynamic

panel data literature under the assumption of cross sectional independence of the observations.

By Theorem 3 the limiting variance covariance matrix of θ̂n is then given by Ψ = (G′V −1G)−1, which

can be estimated consistently by Ψ̂n =
(
G′nṼ

−1
∆(n)Gn

)−1
, provided it is shown that Ṽ∆(n) is indeed a

consistent estimator for V . Next let R be a q × (kx + kz) full row rank matrix and r a q × 1 vector, and

consider the Wald statistic

Tn =

∥∥∥∥(RΨ̂R′
)−1/2√

n(Rθ̂n − r)
∥∥∥∥2

to test the null hypothesis H0 : Rθ0 = r against the alternative H1 : Rθ0 6= r. The next theorem establishes

the consistency of Ṽ∆(n), and shows that Tn is distributed asymptotically chi-square, even if Ψ is allowed

to be random due to the presence of common factors represented by C.

Theorem 5 Suppose the assumptions of Theorem 3 hold, that V(n) = n−1
∑n

i=1H
′
i∆ui∆u

′
iHi − V

p→ 0,

that θ̃n
p→ θ0, and that the fourth moments of uit, xit and zit are uniformly bounded by a finite constant.

Then Ṽ∆(n) − V
p→ 0, and

Ψ̂−1/2
n

√
n(θ̂n − θ0)

d→ ξ ∼ N(0, Ikx+kz).

Furthermore

P
(
Tn > χ2

q,1−α
)
→ α

where χ2
q,1−α is the 1− α quantile of the chi-square distribution with q degrees of freedom.
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A suffi cient condition for V(n) − V
p→ 0 is given in Theorem 2. Theorem 5 extends results of Andrews

(2005) to the case of generally dependent cross-sectional samples. It establishes that conventional statistical

tests remain valid under the postulated assumptions.

4 Conclusion

Most of the literature on dynamic panel data models either assumed independence in the cross sectional

dimension, or treats regressors as strictly exogenous when allowing for cross sectional correlation. While the

assumption that observations are independently distributed in the cross sectional dimension is appropriate

for many applications, there are many applications where this assumption will likely be violated. Also, as

discussed in the introduction, there are many important cases where the strict exogeneity assumption does

not hold, and regressors, apart from time-lagged endogenous variables, or other potential instruments are

only sequentially exogenous.

Against this background the paper develops a new CLT for martingale difference sequences, and applies

it to develop a general central limit theory for the sample moment vector (and transformation thereof) of a

dynamic panel data model, where the regressors may be cross sectionally correlated as well as sequentially

exogenous (but not necessarily strictly exogenous). The paper shows how the new CLT can be utilized in

establishing the limiting distribution of GMM estimators in the generalized setting.

The specification of cross sectional dependence is kept general. In particular, the methodology devel-

oped in this paper will have natural application within the context of spatial/cross sectional interaction

models. A widely used class of spatial models originates from Cliff and Ord (1973, 1981). In those models,

which are often referred to as Cliff-Ord type models, spatial/cross sectional interaction and dependencies

are modeled in terms of spatial lags, which represent weighted averages of observations from neighboring

units. The weights are typically modeled as inversely related to some distance. Since space does not have

to be geographic space, those models are fairly generally applicable and have been used in a wide range

of empirical research; for a collection of recent contributions including references to applied work see, e.g.,

Baltagi, Kelejian and Prucha (2007). The methodology developed in this paper also allows for common

factor as a potential source of cross sectional dependence.
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A Appendix A: Proofs for Section 2

A.1 Stable Convergence in Distribution

The following proposition is proven in Daley and Vere-Jones (1988), p. 645-646.

Proposition A.1 Let {Zn : n = 1, 2, . . .}, Z and F0 be as in Definition 2. Then the following conditions

are equivalent:

(i) Zn
d→ Z (F0-stably).

(ii) For all F0-measurable P -essentially bounded random variables ζ and all bounded continuous functions

h : Rp → R,
E [ζh(Zn)]→ E [ζh(Z)] as n→∞.

(iii) For all real valued F0-measurable random variables ϑ, the pair (Zn, ϑ) converges jointly in distribution

to the pair (Z, ϑ).

(iv) For all bounded continuous functions g : Rp × R → R, and all real valued F0-measurable random

variables ϑ,

g(Zn, ϑ)
d→ (Z, ϑ) (F0-stably).

(v) For all real vectors t ∈ Rp and all F0-measurable P -essentially bounded random variables ζ

E
[
ζ exp(it′Zn)

]
→ E

[
ζ exp(it′Z)

]
as n→∞.

The following proposition is helpful in establishing the limiting distribution of random vectors under

random norming.

Proposition A.2 Let {Zn : n = 1, 2, . . .}, and F0 be as in Definition 2, and let V be a F0-measurable,

a.s. finite and positive definite p× p matrix. Suppose for λ ∈ Rp with λ′λ = 1 we have

λ′Zn
d→ v

1/2
λ ξλ (F0-stably),

with vλ = λ′V λ, where ξλ is independent of F0 (and thus of V ) and ξλ ∼ N(0, 1), and consequently the

characteristic function of v1/2
λ ξλ is given by φλ(s) = E

[
exp{−1

2(λ′V λ)s2}
]
, s ∈ R.

(a) Then

Zn
d→ V 1/2ξ (F0-stably),

17



where ξ is independent of F0 (and thus of V ) and where ξ ∼ N(0, Ip). The characteristic function of V 1/2ξ

is given by φ(t) = E
[
exp{−1

2(t′V t)}
]
.

(b) Let A be some p∗ × p matrix that is F0-measurable, a.s. finite and has full row rank. Then

AZn
d→ AV 1/2ξ

where ξ is as defined in part (a), and hence also

AZn
d→ (AV A′)1/2ξ∗

where ξ∗ is independent of F0 (and thus of AV A′) and where ξ∗ ∼ N(0, Ip∗). The characteristic function

of AV 1/2ξ and (AV A′)1/2ξ∗ is given by φ∗(s) = E
[
exp{−1

2(s′AV A′s)}
]
, s ∈ Rp∗.

Proof of Proposition A.2. (a) In light of Proposition A.1(v), for all real vectors s ∈ R and all F0-

measurable P -essentially bounded random variables ζ we have E
[
ζ exp(isλ′Zn)

]
→ E

[
ζ exp(isv

1/2
λ ξλ)

]
as

n→∞. Since ζ and V are F0-measurable, and ξλ ∼ N(0, 1) we have

E
[
ζ exp(isv

1/2
λ ξλ)

]
= E

[
ζE
[
exp(isv

1/2
λ ξλ) | F0

]]
= E

[
ζ exp{−1

2
(s2λ′V λ)}

]
,

and thus

E
[
ζ exp(isλ′Zn)

]
→ E

[
ζ exp{−1

2
(s2λ′V λ)}

]
. (A.1)

Now consider some t ∈ Rp, then by analogous argumentation as above, E
[
ζ exp(it′V 1/2ξ)

]
= E

[
ζ exp{−1

2(t′V t)}
]
.

In light of Proposition A.1(v) it thus suffi ces to show that

E
[
ζ exp(it′Zn)

]
→ E

[
ζ exp{−1

2
(t′V t)}

]
. (A.2)

Choosing λ and s be such that t = sλ, this is seen to hold in light of (A.1).

(b) Since A is F0-measurable it follows from Proposition A.1(iii) that (Zn, A) converge jointly in distribu-

tion to (V 1/2ξ, A). Hence by the continuous mapping theorem AZn
d→ AV 1/2ξ. The characteristic function

of AV 1/2ξ is given by

φ∗(s) = E
[
exp

(
is′AV 1/2ξ

)]
= E

{
E
[
exp

(
is′AV 1/2ξ

)
| F0

]}
= E

[
exp

{
−1

2
s′AV A′s

}]
,

observing that AV 1/2ξ conditional on F0 is distributed multivariate normal (0, AV A′). Recognizing that

φ∗(s) is also the characteristic function of (AV A′)1/2ξ∗ completes the proof.
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A.2 Proof of Martingale Central Limit Theorem

Proof of Theorem 1. The proof follows, with appropriate modifications, the strategy used by Hall and

Heyde (1980, pp. 57-58 and pp. 60) in proving their Lemma 3.1 and Theorem 3.2. First suppose that η2

is a.s. bounded such that for some C > 1,

P
(
η2 < C

)
= 1. (A.3)

Define X ′ni = Xni1
{∑i−1

j=1X
2
nj ≤ 2C

}
with X ′n1 = Xn1, and S′ni =

∑i
j=1X

′
nj for 1 ≤ i ≤ kn.

By assumption {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} is a zero mean, square integrable martingale array with differ-
ences Xni, i.e., (i) Sni is measurable w.r.t. Fni, (ii) E [Sni] = 0 and E

[
S2
ni

]
<∞, (iii) E [Sni | Fnj ] = Snj

a.s. for all 1 ≤ j < i. The differences are defined as Xn1 = Sn1, and Xni = Sni − Sni−1 for 2 ≤ i ≤ kn.

Clearly for any j ≤ i the random variable Xnj is measurable w.r.t. to Fni, since Fnj ⊆ Fni. Furthermore
E [Xni | Fnj ] = 0 for 0 ≤ j < i and 1 ≤ i ≤ kn, since E [Xn1 | Fn0] = 0 by assumption, and for 2 ≤ j < i

E [Xni | Fnj ] = E [Sni − Sni−1 | Fnj ] = E [E [Sni − Sni−1 | Fni−1] | Fnj ]

= E [(Sni−1 − Sni−1) | Fnj ] = 0.

We now establish that {S′ni,Fni, 1 ≤ i ≤ kn, n ≥ 1} is also a zero mean, square integrable martingale array
with, by construction, differences X ′ni. Since the random variables Xn1, . . . , Xni are measurable w.r.t. Fni,
clearly S′ni =

∑i
j=1X

′
nj =

∑i
j=1Xnj1

{∑j−1
l=1 X

2
nl ≤ 2C

}
is measurable w.r.t. Fni. Also, since |S′ni| ≤

|Sni| clearly E
[
S′2ni
]
≤ E

[
S2
ni

]
<∞. Next observe that E [X ′n1 | Fn0] = E [Xn1 | Fn0] = 0 by assumption,

and for 2 ≤ j < i

E
[
X ′ni | Fnj

]
= E

[
E(X ′ni | Fni−1) | Fnj

]
= E

[E(Xni | Fni−1)]1


i−1∑
j=1

X2
nj ≤ 2C

 | Fnj
 = 0.

By iterated expectations E [X ′ni] = 0 and thus E [S′ni] = 0. Furthermore for 1 ≤ j < i

E
[
S′ni | Fnj

]
=

i∑
l=1

E
[
X ′nl | Fnj

]
=

j∑
l=1

X ′nl = S′nj .

This verifies that {S′ni,Fni, 1 ≤ i ≤ kn, n ≥ 1} is indeed a zero mean, square integrable martingale array.

Next let U2
nkn

=
∑kn

i=1X
2
ni, then clearly P (U2

nkn
> 2C)→ 0 in light of (12). Consequently

P (X ′ni 6= Xni for some i ≤ kn) ≤ P (U2
nkn > 2C)→ 0, (A.4)
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which in turn implies P (S′nkn 6= Snkn)→ 0, and furthermore

E
[∣∣ζ exp(itS′nkn)− ζ exp(itSnkn)

∣∣]→ 0

for any P -essentially bounded and F0-measurable random variable ζ. Consequently by Proposition A.1(v),

Snkn
d→Z (F0-stably) iff S′nkn

d→Z (F0-stably). Observe furthermore that in view of (A.4) the martingale

differences {X ′ni} satisfy that maxi |X ′ni|
p→ 0 and

∑kn
i=1X

′2
ni

p→ η2. Since |X ′ni| ≤ |Xni| condition (13)
implies furthermore that E

[
maxiX

′2
ni

]
is bounded in n.

We now show that S′nkn
d→Z (F0-stably). Let U2

ni =
∑i

j=1X
2
nj and T

′
n (t) =

∏kn
j=1

(
1 + itX ′nj

)
with

Jn =

{
min

{
i ≤ kn|U2

ni > 2C
}
if U2

nkn
> 2C

kn otherwise
.

Observing that X ′nj = 0 for j > Jn, and that for any real number a we have (1 + ia)2 = (1 + a2) and

exp(1 + a2) > 1 + a2, it follows that

E
[∣∣T ′n (t)

∣∣2] = E
[∏kn

j=1

(
1 + t2X ′2nj

)]
≤ E

exp

t2 Jn−1∑
j=1

X ′2nj

(1 + t2X ′2nJn
)


≤
{

exp(2Ct2)
} (

1 + t2E
[
X ′2nJn

])
.

Since E
[
X ′2nJn

]
≤ E

[
X2
nJn

]
is uniformly bounded it follows from the above inequality that E

[
|T ′n (t)|2

]
is

uniformly bounded in n.

Now define In = exp
(
itS′nkn

)
and Wn = exp

(
−1

2 t
2
∑kn

i=1X
′2
ni +

∑kn
i=1 r (tX ′ni)

)
where r (.) is as defined

in Hall and Heyde (1980), p. 57. Then

In = T ′n(t) exp
(
−η2t2/2

)
+ T ′n(t)(Wn − exp

(
−η2t2/2

)
). (A.5)

By Proposition A.1(v) for S′nkn
d→Z (F0 stably) it is enough to show that

E (Inζ)→ E
[
exp

(
−η2t2/2

)
ζ
]

(A.6)

for any any P -essentially bounded F0-measurable random variable ζ. Because F0 ⊂ Fni it follows that
exp

(
−η2t2/2

)
ζ is Fni-measurable for all n and i ≤ kn. Hence,

E
[
T ′n (t) exp

(
−η2t2/2

)
ζ
]

= E
[
exp

(
−η2t2/2

)
ζ
∏kn
j

(
1 + itX ′nj

)]
= E

{
E
[
exp

(
−η2t2/2

)
ζ
∏kn
j

(
1 + itX ′nj

)
|Fnkn−1

]}
= E

{
exp

(
−η2t2/2

)
ζ
∏kn−1
j

(
1 + itX ′nj

)
E
[(

1 + itX ′nkn
)
|Fnkn−1

]}
= E

{
exp

(
−η2t2/2

)
ζ
∏kn−1
j

(
1 + itX ′nj

)}
= . . .

= E
{

exp
(
−η2t2/2

)
ζE
[(

1 + itX ′n1

)
|Fn0

]}
= E

[
exp

(
−η2t2/2

)
ζ
]
.
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Thus, in light of (A.5), for (A.6) to hold it suffi ces to show that

E
[
T ′n(t)

(
Wn − exp

(
−η2t2/2

))
ζ
]
→ 0. (A.7)

Let K be some constant such that P (|ζ| ≤ K) = 1, then E
[∣∣T ′n (t) exp

(
−η2t2/2

)
ζ
∣∣2] ≤ K2E

[
|T ′n (t)|2

]
is

uniformly bounded in n, since E
[
|T ′n (t)|2

]
is uniformly bounded as shown above. Observing that |In| = 1

we also have E
[
|Inζ|2

]
≤ K2. In light of (A.5) it follows furthermore that

E
[∣∣T ′n(Wn − exp

(
−η2t2/2

)
)ζ
∣∣2] ≤ 2E

[
|Inζ|2

]
+ 2E

[∣∣T ′n (t) exp
(
−η2t2/2

)
ζ
∣∣2]

is uniformly bounded in n, it follows that T ′n (t) (Wn − exp
(
−η2t2/2

)
)ζ is uniformly integrable. Having

established uniform integrability, Condition (A.7) now follows since as shown by Hall and Heyde (1980,

p. 58), Wn − exp
(
−η2t2/2

) p→ 0 and thus T ′n
(
Wn − exp

(
−η2t2/2

))
ζ

p→ 0. This completes the proof that

S′nkn
d→ Z (F0-stably) when η2 is a.s. bounded.

The case where η2 is not a.s. bounded can be handled in the same way as in Hall and Heyde (1980,

p.62) after replacing their I (E) with ζ.

Let ξ ∼ N(0, 1) be some random variable independent of F0, and hence independent of η (possibly

after redefining all variables on an extended probability space), then for any P -essentially bounded F0-

measurable random variable ζ we have E [ζ exp(itηξ)] = E
[
ζ exp(−1

2η
2t2)

]
by iterated expectations, and

thus Snkn
d→ ηξ (F0-stably) in light of Proposition A.1(v).

A.3 Proof of Central Limit Theorem for Sample Moments

Proof of Theorem 2. To prove Part (a) of the Theorem we use Proposition A.2 and follow the

approach outlined after the theorem in the text to derive the limiting distribution of λ′m(n). In particular,

we consider the representation λ′m(n) =
∑kn

v=1Xn,v with kn = Tn + 1, defined by (20)-(21), and the

corresponding information sets defined in (4). We recall the definitions (t = 1, . . . , T, i = 1, . . . , n)

Xn,(t−1)n+i+1 = n−1/2cituit,

Fn,(t−1)n+i = σ
{(
xotj , zj , u

o
t−1j , µj

)n
j=1

, (ujt)
i−1
j=1

}
∨ C

with

cit = λ′H ′iπt =

min(t,T+)∑
s=1

πstλ
′
sh
′
is. (A.8)

and Xn,1 = 0. In the following, let v = (t− 1)n+ i+ 1. We also use Fn,0 = C, then clearly Fn,0 ⊂ Fn,1 and
F0 = ∩∞n=1Fn,0 = C. To prove part (a) of the theorem we verify that {Xn,v,Fn,v, 1 ≤ v ≤ Tn + 1, n ≥ 1}
is a square integrable martingale difference array that satisfies the assumptions maintained by Theorem
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1 with η2 = λ′V λ, observing that η2 be an a.s. finite random variable measurable w.r.t. F0 in light of

Assumption 1.

Observing that cit defined in (A.8) is a function of xoit, zi, λ and Π it is readily seen that Xn,v is

measurable w.r.t. to Fn,v. Observing further that Fn,(t−1)n+i ⊆ Bn,i,t ∨ C it follows from (10) that

E [Xn,v | Fn,v−1] = E
[
Xn,(t−1)n+i+1 | Fn,(t−1)n+i

]
(A.9)

= n−1/2citE
[
uit | Fn,(t−1)n+i

]
= 0.

Next consider some γ with 0 ≤ γ ≤ δ, then

E
[
|Xn,v|2+γ | Fn,v−1

]
= E

[∣∣Xn,(t−1)n+i+1

∣∣2+γ | Fn,(t−1)n+i

]
=

1

n1+γ/2
E
[
|cituit|2+γ | Fn,(t−1)n+i

]
=

1

n1+γ/2
|cit|2+γ E

[
|uit|2+γ | Fn,(t−1)n+i

]
.

For γ = 0 this implies that

E
[
|Xn,v|2 | Fn,v−1

]
=

1

n
|cit|2E

[
|uit|2 | Fn,(t−1)n+i

]
, (A.10)

and for γ = δ we have

E
[
|Xn,v|2+δ | Fn,v−1

]
(A.11)

=
1

n1+δ/2
|cit|2+δ E

[
|uit|2+δ | Fn,(t−1)n+i

]
≤ K

n1+δ/2
|cit|2+δ .

The last inequality follows from (5), observing again that Fn,(t−1)n+i ⊆ Bn,i,t ∨ C.

Let V 2
nkn

=
∑kn

v=1E
[
X2
n,v | Fn,v−1

]
and U2

nkn
=
∑kn

v=1X
2
n,v, and consider the following conditions:

kn∑
v=1

E
[
|Xn,v|2+δ

]
→ 0, (A.12)

V 2
nkn =

kn∑
v=1

E
[
X2
n,v | Fn,v−1

] p→ η2, (A.13)

sup
n
E
[
V 2+δ
nkn

]
= sup

n
E

[
kn∑
v=1

E
[
X2
n,v | Fn,v−1

]]1+δ/2

<∞. (A.14)

We next show that these conditions are suffi cient for Assumptions (11),(12), and (13) of Theorem 1. As

discussed by Hall and Heyde (1980, p. 53) Condition (11) is equivalent to:

for any ε > 0,

kn∑
v=1

X2
n,v1 (|Xn,v| > ε)

p→ 0.
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Condition (11) is now seen to hold since

kn∑
v=1

E
[
X2
n,v1 (|Xn,v| > ε)

]
=

kn∑
v=1

E
[
|Xn,v|2+δ 1 (|Xn,v| > ε) / |Xn,v|δ

]
≤ ε−δ

kn∑
v=1

E
[
|Xn,v|2+δ

]
→ 0

in light of condition (A.12). By an analogous argument we also have:

for any ε > 0,

kn∑
v=1

E
[
X2
n,v1 (|Xn,v| > ε) | Fn,v−1

] p→ 0.

Observing that Condition (A.14) implies that Vnkn is uniformly integrable it now follows from Hall and

Heyde (1980, Theorem 2.23) that

E
[∣∣V 2

nkn − U
2
nkn

∣∣]→ 0. (A.15)

Condition (12) is now seen to hold since for any ε > 0

P

(∣∣∣∣∣
kn∑
v=1

X2
n,v − η2

∣∣∣∣∣ ≥ ε
)
≤ P

(∣∣V 2
nkn − η

2
∣∣ ≥ ε/2)+ P

(∣∣V 2
nkn − U

2
nkn

∣∣ ≥ ε/2)→ 0

in light of (A.13) and (A.15). Condition (13) is seen to hold since E
[
U2
nkn

]
= E

[
V 2
nkn

]
is uniformly

bounded in light of Condition (A.14), using Lyapunov’s inequality.

We next verify Conditions (A.12), (A.13) and (A.14). Utilizing (A.10) we have

kn∑
v=1

E
[
X2
n,v|Fn,v−1

]
=

T∑
t=1

n−1
n∑
i=1

c2
itE
[
u2
it | Fn,(t−1)n+i

]
(A.16)

=
T∑
t=1

n−1
n∑
i=1

E
[
u2
it | Fn,(t−1)n+i

]
λ′H ′iπtπ

′
tHiλ

= λ′Ṽnλ
p→ λ′V λ = η2,

by Assumption 1(c). This verifies (A.13).

Next observe that for all t and i

|cit|2+δ ≤ (T+)1+δ
T+∑
s=1

∣∣πstλ′sh′is∣∣2+δ ≤ (T+)1+δK2+δ
π

T+∑
s=1

[
λ′sh

′
ishisλs

]1+δ/2 , (A.17)

using inequality (1.4.3) in Bierens (1994), and where Kπ is a bound for the absolute elements of Π.

Now let a = (ak) be some non-stochastic p × 1 vector with |ak| ≤ Ka, and let b = (bk) be some 1 × p
random vector with E

[
|bk|2+δ

]
≤ Kb, then

E
[∣∣a′b′ba∣∣1+δ/2

]
= pδ

p∑
l=1

p∑
k=1

|ak|1+δ/2 |al|1+δ/2E
[
|bk|1+δ/2 |bl|1+δ/2

]
(A.18)

≤ p2+δK2+δ
a Kb
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using inequality (1.4.3) in Bierens (1994), and observing that

E
[
|bk|1+δ/2 |bl|1+δ/2

]
≤
[
E |bk|2+δ E |bl|2+δ

]1/2
≤ Kb

by the Schwartz inequality.

Since λ′λ = 1 all elements of λ are bounded by one. Furthermore, by Assumption 1(a) the 2 + δ

absolute moments of the element of his are uniformly bounded by some finite constant K. Observing

further that the dimensions of λs and his are bounded by Tkx + kz it follows from applying inequality

(A.18) that E
[
λ′sh

′
ishisλs

]1+δ/2 ≤ [Tkx + kz]
2+δK, and thus in light of (A.17):

E
[
|cit|2+δ

]
≤ (T+)2+δK2+δ

π [Tkx + kz]
2+δK. (A.19)

Utilizing (A.11) it follows that

kn∑
v=1

E |Xn,v|2+δ =

kn∑
v=1

E
{
E
[
|Xn,v|2+δ | Fn,v−1

]}
(A.20)

≤ (T+)2+δK2+δ
π [Tkx + kz]

2+δK2

n1+δ/2
(Tn+ 1)→ 0

as n→∞. This establishes condition (A.12).
Next observe that in light of (A.10) and Assumption 1(a)

E
[
V 2+δ
nkn

]
= E

[
kn∑
v=1

E
[
X2
n,v | Fn,v−1

]]1+δ/2

= E

[
kn∑
v=1

1

n
|cit|2E

[
|uit|2 | Fn,(t−1)n+i

]]1+δ/2

≤ KE

[
kn∑
v=1

1

n
|cit|2

]1+δ/2

≤ K k
δ/2
n

n1+δ/2

kn∑
v=1

E
[
|cit|2+δ

]
using again inequality (1.4.3) in Bierens (1994). In light of (A.19) it follows further that

E
[
V 2+δ
nkn

]
≤ (T+)2+δK2+δ

π [Tkx + kz]
2+δK2

n1+δ/2
(Tn+ 1)1+δ/2

≤ (T + 1)1+δ/2(T+)2+δK2+δ
π [Tkx + kz]

2+δK2,

which establishes (A.14). Of course, in light of (A.10) and (A.19) the above discussion also establishes

that Xn,v is square integrable.

Having verified all conditions of Theorem 1 it follows from that theorem that λ′m(n)
d→ v

1/2
λ Zλ (C-

stably), where vλ = λ′V λ, Zλ is independent of C (and thus of V ) and Zλ ∼ N(0, 1), possibly after

redefining all variables on an extended probability space.
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To prove Part (b) of the theorem we note that for ũit = uit − E
[
uit | Fn,(t−1)n+i

]
it follows by

construction that ũit is Fn,(t−1)n+i+1 measurable, E
[
ũit | Fn,(t−1)n+i

]
= 0 and

E
[
|ũit|2+δ | Fn,v−1

]
≤ E

[(
|uit|+

∣∣E [uit | Fn,(t−1)n+i

]∣∣)2+δ | Fn,(t−1)n+i

]
≤ 21+δE

[
|uit|2+δ +

∣∣E [uit | Fn,(t−1)n+i

]∣∣2+δ | Fn,(t−1)n+i

]
≤ 22+δE

[
|uit|2+δ | Fn,(t−1)n+i

]
≤ 22+δK

such that the proof in Part (a) can be applied to X̃n,(t−1)n+i+1 = Xn,(t−1)n+i+1−E
[
Xn,(t−1)n+i+1 | Fn,(t−1)n+i

]
to show that, given Assumption 1 holds,

λ′
(
m(n) −

√
nbn
) d→ v

1/2
λ Zλ (C-stably). (A.21)

Note that when additionally Assumption 2 holds, E
[
Xn,(t−1)n+i+1 | Fn,(t−1)n+i

]
= 0 and thus bn = 0, the

result follows trivially from Part (a). Of course, (A.21) implies further that v1/2
λ Zλ has the characteristic

function φλ(s) = E exp{−1
2(λ′V λ)s2}, s ∈ R. By Proposition Proposition A.2 it follows from (A.21) that(

m(n) −
√
nbn
) d→ V 1/2ξ (C-stably), (A.22)

where ξ is independent of C (and thus of V ) and where ξ ∼ N(0, Ip), and that

A
(
m(n) −

√
nbn
) d→ (AV A′)1/2ξ∗. (A.23)

The claim in (15) holds observing that under Assumption 2
√
nbn = 0 and under Assumption 3(c) we have

Am(n) = A
(
m(n) −

√
nbn
)

+ op(1). Obviously (A.23) also established the claim in (16) under Assumption

3(a). The claim that under Assumption 3(a) Am(n) diverges is obvious since under this assumption bn
p→ b

and thus Am(n) = A
(
m(n) −

√
nbn
)

+
√
nAbn = Op(n

1/2), observing that the first term on the r.h.s. as

well as Abn are Op(1). To verify the claim in (17) under Assumption 3(b) observe that by Proposition

A.1(iii) (
m(n) −

√
nbn, b, A

) d→
(
V 1/2ξ, b, A

)
.

Since
√
nbn − b

p→ 0 it follows furthermore that(
m(n) −

√
nbn,
√
nbn − b, b, A

) d→
(
V 1/2ξ, 0, b, A

)
.

Having established joint convergence in distribution the claim in (17) now follows in light of the continuous

mapping theorem.

To prove Part (c) we next show that V(n)
p→ V . Since V(n) and V are symmetric it suffi ces to show

that λ′V(n)λ
p→ λ′V λ, where λ is defined as above. Observe that

λ′V(n)λ = n−1
n∑
i=1

T∑
t=1

T∑
s=1

uituisλ
′H ′iπtπ

′
sHiλ =

kn∑
v=1

X2
n,v + op(1),
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since n−1
∑n

i=1 uituisH
′
iπtπ

′
sHi

p→ 0 for t 6= s by assumption. As shown after (A.15),
∑kn

v=1X
2
n,v

p→
η2 = λ′V λ. Consequently, λ′V(n)λ

p→ λ′V λ, and thus V(n)
p→ V . In light of Assumption1(c) we have

V
−1/2

(n)

p→ V −1/2. Since by part (a) m(n) converges C-stably in distribution to a random vector, it follows

that (V
−1/2

(n) − V −1/2)m(n) = op(1) and hence V −1/2
(n) m(n) = V −1/2m(n) + op(1)

d→ (V −1/2V V −1/2)ξ = ξ.

B Appendix B: Proofs for Section 3

Proof of Theorem 3. From the definition of the GMM estimator and the model given in (22) we have

n1/2(θ̃n − θ0) =
(
G′nΞ̃nGn

)−1
G′nΞ̃nm(n),

Bn1/2(θ̃n − θ0) = B
(
G′nΞ̃nGn

)−1
G′nΞ̃nm(n),

m(n) = n1/2gn = n−1/2∑n
i=1H

′
i∆ui = n−1/2∑n

i=1H
′
iΠu

′
i,

with Π = D. It now follows directly from part (a) of Theorem 2 thatm(n) converges C-stably in distribution
to a random vector. Thus

n1/2(θ̃n − θ0) = (G′ΞG)−1G′Ξm(n) + op(1), (B.1)

Bn1/2(θ̃n − θ0) = B(G′ΞG)−1G′Ξm(n) + op(1).

First assume that Assumption 2 holds. Observing further that by assumption Ξ, G, B and V are C-
measurable and that under the maintained assumptions Ξ̃n

p→ Ξ and Gn
p→ G it follows from Part (a) of

Theorem 2 and Proposition A.1(iii) that, jointly,(
Ξ̃n − Ξ, Gn −G,B,Ξ, G,m(n)

)
d→
(

0, 0, B,Ξ, G, V 1/2ξ
)

(B.2)

where ξ ∼ N(0, Ikx+kz). Because G
′ΞG is positive definite a.s. and Ψ = (G′ΞG)−1G′ΞV ΞG(G′ΞG)−1 is

positive definite a.s., it follows furthermore from (B.2) and the continuous mapping theorem that

n1/2(θ̃n − θ0)
d→ Ψ1/2ξ,

Bn1/2(θ̃n − θ0)
d→ (BΨB)1/2ξ∗,

where ξ and ξ∗ ares independent of C, and ξ ∼ N(0, Ikx+kz) and ξ∗ ∼ N(0, Iq). If E
[
u2
it | Fn,(t−1)n+i

]
= σ2,

then V = p limn→∞ Ṽ(n) = σ2p limn→∞ n−1/2
∑n

i=1H
′
iDD

′Hi as claimed.

Now assume that Assumption 3(c) hold. Then it follows from (A.22) and Proposition A.1(iii) that(
Ξ̃n − Ξ, Gn −G,B,Ξ, G,m(n) −

√
nbn,
√
nbn

)
d→
(

0, 0, B,Ξ, G, V 1/2ξ, 0
)
.

The remainder of the argument follows in the same way as in the first part of the proof.
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Proof of Theorem 4. As in the proof of Theorem 3 we still have (B.1). For Part (a) we observe

that in light of (A.22) and Proposition A.1(iii)(
Ξ̃n − Ξ, Gn −G,B,Ξ, G,

(
m(n) −

√
nbn
)) d→

(
0, 0, B,Ξ, G, V 1/2ξ

)
.

The result then follows immediately from (B.1) and the continuous mapping theorem. For Part (b) we

observe that in light of (A.22) and Proposition A.1(iii)(
Ξ̃n − Ξ, Gn −G,Ξ, G,

(
m(n) −

√
nbn
)
, b
)

d→
(

0, 0, B,Ξ, G, V 1/2ξ, b
)

and the result again follows from (B.1) and the continuous mapping theorem.

Proof of Theorem 5. We first show that Ṽ∆(n)
p→ V . Since ∆̃uit = ∆uit −∆wit(θ̃n − θ0) we have

Ṽ∆(n) = n−1
n∑
i=1

H ′i∆̃ui∆̃u
′
iHi = V(n) − n−1

n∑
i=1

H ′i∆wi(θ̃n − θ0)∆u′iHi

−n−1
n∑
i=1

H ′i∆ui(θ̃n − θ0)′∆w′iHi + n−1
n∑
i=1

H ′i∆wi(θ̃n − θ0)(θ̃n − θ0)′∆w′iHi.

By assumption V(n)
p→ V . For the (T − 1)× (T − 1) matrix n−1

∑n
i=1H

′
i∆wi(θ̃n − θ0)∆u′iHi consider the

typical t, s-block given by

n−1
n∑
i=1

h′ithis∆uis∆wit(θ̃n − θ0) (B.3)

= n−1
n∑
i=1

h′ithisuiswit(θ̃n − θ0)− n−1
n∑
i=1

h′ithisuis−1wit(θ̃n − θ0)

−n−1
n∑
i=1

h′ithisuiswit−1(θ̃n − θ0) + n−1
n∑
i=1

h′ithisuis−1wit−1(θ̃n − θ0)

where ∥∥∥n−1∑n
i=1 h

′
ithisuiswit(θ̃n − θ0)

∥∥∥ ≤ ∥∥∥θ̃n − θ0

∥∥∥n−1∑n
i=1

∥∥h′ithis∥∥ |uis| ‖wit‖
and

E
[∥∥h′ithis∥∥ |uis| ‖wit‖] ≤ E

[∥∥h′ithis∥∥2
]1/2

E
[
|uis|2 ‖wit‖2

]1/2

≤ E
[
‖hit‖4

]1/4
E
[
‖his‖4

]1/4
E
[
|usi|4

]1/4
E
[
‖wti‖4

]1/4

by repeated application of the Cauchy-Schwarz inequality. By the boundedness of fourth moments all ex-

pectations are bounded and thus n−1
∑n

i=1 ‖h′ithis‖ |uis| ‖wit‖ = Op(1). Since by assumption
∥∥∥θ̃n − θ0

∥∥∥ =

op(1) it follows that n−1
∑n

i=1

∑n
i=1 h

′
ithisuiswit(θ̃n − θ0) = op (1) . The other terms appearing in B.3 can
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be treated in the same way. Therefore Ṽ∆(n)
p→ V as claimed, and furthermore Ψ̂n =

(
G′nṼ

−1
∆(n)Gn

)−1 p→
Ψ = (G′V −1G)−1.

By part (a) of Theorem 3 it now follows that

n1/2(θ̂n − θ0)
d→ Ψ1/2ξ, (B.4)

where ξ is independent of C (and hence of Ψ), ξ ∼ N(0, Ikx+kz). In light of (B.4), the consistency of Ψ̂n,

and given that R has full row rank q it follows furthermore that under H0(
RΨ̂R′

)−1/2
n1/2(Rθ̂n − r) =

(
RΨ̂R′

)−1/2
R
[
n1/2(θ̂n − θ0)

]
=

(
RΨR′

)−1/2
R
[
n1/2(θ̂n − θ0)

]
+ op(1).

Since B = (RΨR′)−1/2R is C-measurable and BΨB = I it then follows from part (b) of Theorem 3 that(
RΨ̂R′

)−1/2
n1/2(Rθ̂n − r)

d→ ξ∗ (B.5)

where ξ∗ ∼ N (0, Iq). Hence, in light of the continuous mapping theorem, Tn converges in distribution to

a chi-square random variable with q degrees of freedom. The claim that Ψ̂
−1/2
n
√
n(θ̂n − θ0)

d→ ξ is seen to

hold as a special case of (B.5) with R = I and r = θ0.
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