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1 Introduction

Likelihood evaluation and �ltering in applications involving state-space models requires

the calculation of integrals over unobservable state variables. When models are linear and

stochastic processes are Gaussian, required integrals can be calculated analytically via the

Kalman �lter. Departures entail integrals that must be approximated numerically. Here we

introduce an e¢ cient procedure for calculating such integrals: the EIS �lter.

The procedure takes as a building block the pioneering approach to likelihood evaluation

and �ltering developed by Gordon, Salmond and Smith (1993) and Kitagawa (1987). Their

approach employs discrete �xed-support approximations to unknown densities that appear

in the predictive and updating stages of the �ltering process. The discrete points that

collectively provide density approximations are known as particles; the approach is known

as the particle �lter. Examples of its use are becoming widespread; in economics, e.g., see

Kim, Shephard and Chib (1998) for an application involving stochastic volatility models; and

Fernandez-Villaverde and Rubio-Ramirez (2005, 2007) for applications involving dynamic

stochastic general equilibrium models.

While conceptually simple and easy to program, the particle �lter su¤ers two shortcom-

ings. First, because the density approximations it provides are discrete, associated likelihood

approximations can feature spurious discontinuities, rendering as problematic the applica-

tion of likelihood maximization procedures (e.g., see Pitt, 2002). Second, the supports upon

which approximations are based are not adapted: period-t approximations are based on sup-

ports that incorporate information conveyed by values of the observable variables available

in period t � 1, but not period t (e.g., see Pitt and Shephard, 1999). This gives rise to

numerical ine¢ ciencies that can be acute when observable variables are highly informative

with regard to state variables, particularly given the presence of outliers.

Numerous extensions of the particle �lter have been proposed in attempts to address

these problems. For examples, see Pitt and Shephard (1999); the collection of papers in

Doucet, de Freitas and Gordon (2001); Pitt (2002); and the collection housed at http://www-
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sigproc.eng.cam.ac.uk/smc/papers.html. Typically, e¢ ciency gains are sought through at-

tempts at adapting period-t densities via the use of information available through period t.

However, with the exception of the extension proposed by Pitt (2002), once period-t supports

are established they remain �xed over a discrete collection of points as the �lter advances

forward through the sample, thus failing to address the problem of spurious likelihood dis-

continuity. (Pitt employs a bootstrap-smoothing approximation designed to address this

problem for the specialized case in which the state space is unidimensional.) Moreover, as

far as we are aware, no existing extension pursues adaption in a manner that is designed to

achieve optimal e¢ ciency.

Here we propose an extension that constructs adapted period-t approximations, but that

features a unique combination of two characteristics. The approximations are continuous;

and period-t supports are adjusted using a method designed to produce approximations that

achieve near-optimal e¢ ciency at the adaption stage. The approximations are constructed

using the e¢ cient importance sampling (EIS) methodology developed by Richard and Zhang

(RZ, 2007). Construction is facilitated using an optimization procedure designed to minimize

numerical standard errors associated with the approximated integral.

2 Overview of the Filtering Problem

Let yt be a n � 1 vector of observable variables, and denote fyjgtj=1 as Yt: Likewise,

let st be a m � 1 vector of unobserved (�latent�) state variables, and denote fsjgtj=1 as St .

The objective of �ltering is to infer the behavior of st given Yt; and an assumed state-space

representation; likelihood evaluation obtains as a by-product of the �ltering process.

State-space representations consist of a state-transition equation

st = 
(st�1; Yt�1; �t); (1)

where �t is a vector of innovations with respect to (st�1; Yt�1), and an observation (or mea-
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surement) equation

yt = � (st; Yt�1; ut) ; (2)

where ut is a vector innovations with respect to (st; Yt�1). Hereafter, we refer to �t as

structural shocks, and ut as measurement errors.

Filtering is facilitated by interpreting (1) and (2) in terms of the densities f(stjst�1; Yt�1)

and f(ytjst; Yt�1), respectively. The process is initialized with a marginal density f(s0),

which can be degenerate as a special case. From these densities, the goal is to construct

f (stjYt) ; which can then be used to calculate, e.g., Et (stjYt) :

From Bayes�theorem, f (stjYt) is given by

f (stjYt) =
f (yt; stjYt�1)
f (ytjYt�1)

=
f (ytjst; Yt�1) f (stjYt�1)

f (ytjYt�1)
; (3)

where f (stjYt�1) is given by

f (stjYt�1) =
Z
f (stjst�1; Yt�1) f (st�1jYt�1) dst�1; (4)

and f (ytjYt�1) is given by

f (ytjYt�1) =
Z
f (ytjst; Yt�1) f (stjYt�1) dst: (5)

Note that the recursive structure of f (stjYt) evident in (3) and (4) indicates that �ltering can

be implemented via forward recursion, beginning with the known density f(s0) � f (s0jY0) :

Note also that since the likelihood function f(YT ) factors sequentially as

f (YT ) =

TY
t=1

f (ytjYt�1) ; (6)

where f (y1jY0) � f(y1), likelihood evaluation obtains as a by-product of the �ltering process.

In turn, �ltering entails the approximation of the conditional (upon Yt) expectation of
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some function h(st) (including st itself). In light of (3) and (5), this can be written as

Et (h(st)jYt) =

Z
h(st)f (ytjst; Yt�1) f (stjYt�1) dstZ
f (ytjst; Yt�1) f (stjYt�1) dst

: (7)

3 The Particle Filter and Leading Extensions

Since our procedure is an extension of the particle �lter, we provide a brief overview here.

The particle �lter is an algorithm that recursively generates random numbers approximately

distributed as f (stjYt). To characterize its implementation, let sr;it denote the ith draw of

st obtained from the conditional density f (stjYt�r) for r = 0; 1. A single draw sr;it is a

particle, and a set of draws fsr;it gNi=1 is a swarm of particles. The object of �ltration is that

of transforming a swarm fs0;it�1gNi=1 to fs
0;i
t gNi=1. The �lter is initialized by a swarm fs0;i0 gNi=1

drawn from f(s0jY0) � f(s0).

Period-t �ltration takes as input a swarm fs0;it�1gNi=1. The predictive step consists of

transforming this swarm into a second swarm fs1;it gNi=1 according to (4). This is done by

drawing s1;it from the conditional density f
�
stjs0;it�1; Yt�1

�
, i = 1; :::; N . Note that fs1;it gNi=1

can be used to produce an MC estimate of f (ytjYt�1), which according to (5) is given by

bfN(ytjYt�1) = 1

N

NX
i=1

f(ytjs1;it ; Yt�1): (8)

Next, f (stjYt) is approximated by re-weighting fs1;it gNi=1 in accordance with (3) (the

updating step): a particle s1;it with prior weight 1
N
is assigned the posterior weight

w0;it =
f(ytjs1;it ; Yt�1)
NX
j=1

f(ytjs1;jt ; Yt�1)

: (9)

The �ltered swarm fs0;it gNi=1 is then obtained by drawing with replacement from the swarm
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fs1;it gNi=1 with probabilities fw
0;i
t gNi=1 (i.e., bootstrapping).

Having characterized the particle �lter, its weaknesses (well documented in previous

studies) can be pinpointed. First, it provides discrete approximations of f(stjYt�1) and

f(stjYt), which moreover are discontinuous functions of the model parameters. The associ-

ated likelihood approximation is therefore also discontinuous, rendering the application of

maximization routines problematic (a point raised previously, e.g., by Pitt, 2002).

Second, as the �lter enters period t, the discrete approximation of f(st�1jYt�1) is set.

Hence the swarm fs1;it gNi=1 produced in the augmentation stage ignores information provided

by yt. (Pitt and Shephard, 1999, refer to these augmenting draws as �blind�.) It follows

that if f (ytjst; Yt�1) - treated as a function of st given Yt - is sharply peaked in the tails of

f(stjYt�1), fs1;it gNi=1 will contain few elements in the relevant range of f (ytjst; Yt�1). Thus

fs1;it gNi=1 represents draws from an ine¢ cient sampler: relatively few of its elements will be

assigned appreciable weight in the updating stage in the following period. This is known as

�sample impoverishment�: it entails a reduction in the e¤ective size of the particle swarm.

Extensions of the particle �lter employ adaption techniques to generate gains in e¢ ciency.

An extension proposed by Gordon et al. (1993) and Kitagawa (1987) consists simply of

making N 0 >> N blind proposals fs1;jt gN
0

j=1 as with the particle �lter, and then obtaining

the swarm
�
s0;it
	N
i=1

by sampling with replacement, using weights computed from the N 0

blind proposals. This is the sampling-importance resampling �lter; it seeks to overcome the

problem of sample impoverishment by brute force, and can be computationally expensive.

Carpenter, Cli¤ord and Fearnhead (1999) sought to overcome sample impoverishment

using a strati�ed sampling approach to approximate the prediction density. This is accom-

plished by de�ning a partition consisting of K subintervals in the state space, and construct-

ing the prediction density approximation by sampling (with replacement) Nk particles from

among the particles in each subinterval. Here Nk is proportional to a weight de�ned for the

entire kth interval; also,
PK

k=1Nk = N . This produces wider variation in re-sampled parti-

cles, but if the swarm of proposals fs1;it gNi=1 are tightly clustered in the tails of f(stjYt�1), so
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too will be the re-sampled particles.

Pitt and Shephard (1999) developed an extension that ours perhaps most closely re-

sembles. They tackle adaption using an Importance Sampling (IS) procedure. Consider

as an example the marginalization step. Faced with the problem of calculating f (ytjYt�1)

in (5), but with f (stjYt�1) unknown, importance sampling achieves approximation via the

introduction into the integral of an importance density g(stjYt):

f (ytjYt�1) =
Z
f (ytjst; Yt�1) f (stjYt�1)

g(stjYt)
g(stjYt)dst: (10)

Obtaining drawings s0;it from g(stjYt); this integral is approximated as

bf (ytjYt�1) � 1

N

NX
i=1

f
�
ytjs0;it ; Yt�1

�
f
�
s0;it jYt�1

�
g(s0;it jYt)

: (11)

Pitt and Shephard referred to the introduction of g(stjYt) as adaption. Full adaption is

achieved when g(stjYt) is constructed as being proportional to f (ytjst; Yt�1) f (stjYt�1) ; ren-

dering the ratios in (11) as constants. Pitt and Shephard viewed adaption as computationally

infeasible, due to the requirement of computing f
�
s0;it jYt�1

�
for every value of s0;it produced

by the sampler. Instead they developed samplers designed to yield partial adaption.

The samplers result from Taylor series approximations of f (ytjst; Yt�1) around st = �kt =

E
�
stjs0;kt�1; Yt�1

�
: A zero-order expansion yields their auxiliary particle �lter; a �rst-order

expansion yields their adapted particle �lter. (Smith and Santos, 2006, study examples

under which it is possible to construct samplers using second-order expansions.)

These samplers help alleviate blind sampling by reweighting
�
s0;it�1

	
to account for in-

formation conveyed by yt: However, sample impoverishment can remain an issue, since the

algorithm does not allow adjustment of the support of
�
s0;it�1

	
. Moreover, the samplers

are suboptimal, since �kt is incapable of fully capturing the characteristics of f (ytjst; Yt�1).

Finally, these samplers remain prone to the discontinuity problem.

Pitt (2002) addressed the discontinuity problem for the special case in which the state
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space is unidimensional by replacing the weights in (9) associated with the particle �lter

(or comparable weights associated with the auxiliary particle �lter) with smoothed versions

constructed via a piecewise linear approximation of the empirical c.d.f. associated with

the swarm
�
s0;it
	N
i=1

: This enables the use of common random numbers (CRNs) to produce

likelihood estimates that are continuous functions of model parameters (Hendry, 1994).

4 The EIS Filter

EIS is an automated procedure for constructing continuous importance samplers fully

adapted as global approximations to targeted integrands. Section 4.1 outlines the general

principle behind EIS, in the context of evaluating (5). Section 4.2 introduces a class of

piecewise-continuous samplers for dealing with pathological cases. Section 4.3 then discusses

a key contribution of this paper: the computation of f(stjYt�1) in (5) at auxiliary values of st

generated under period-t EIS optimization. Section 4.4 discusses two special cases that often

characterize state-space representations: partial measurement of the state space; and degen-

erate transition densities. Pseudo-code is available at www.pitt.edu/�dejong/wp.htm.

4.1 EIS integration

Let 't(st) = f(ytjst; Yt�1)f(stjYt�1) in (5), where the subscript t in 't replaces (yt; Yt�1).

Implementation of EIS begins with the preselection of a parametric class K = fk(st; at); at 2

Ag of auxiliary density kernels. Corresponding density functions g are

g(st; at) =
k(st; at)

�(at)
; �(at) =

Z
k(st; at)dst: (12)

The selection of K is problem-speci�c; below we discuss Gaussian and piecewise-continuous

alternatives. The objective of EIS is to select the parameter value bat 2 A that minimizes

the variance of the ratio 't(st)
g(stjat) over the range of integration. A (near) optimal value bat is
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obtained as the solution to

(bat;bct) = argmin
at;ct

Z
[ln't(st)� ct � ln k(st; at)]2 g(st; at)dst; (13)

where ct is an intercept meant to calibrate ln('t=k). Equation (13) is a standard least squares

problem, except that the auxiliary sampling density itself depends upon at. This is resolved

by reinterpreting (13) as the search for a �xed-point solution. An operational MC version

implemented (typically) using R << N draws, is as follows:

Step l + 1: Given balt, draw intermediate values fsit;lgRi=1 from the step-l EIS sampler

g(st;balt), and solve
(bal+1t ;bcl+1t ) = argmin

at;ct

RX
i=1

�
ln't(s

i
t;l)� ct � ln k(sit;l; at)

�2
: (14)

The initial value ba1t can be chosen in a variety of ways, with minimal impact on convergence.
To avoid potential problems involving sample impoverishment, we employ a crude grid search

to locate the mode of 't(st): If K belongs to the exponential family of distributions, there

exists a parameterization at such that the auxiliary problems in (14) are linear. Convergence

to a �xed point is typically achieved within �ve to ten iterations.

To guarantee fast �xed-point convergence, and to ensure continuity of corresponding

likelihood estimates, fsit;jg must be obtained by a transformation of a set of common random

numbers (CRNs) fuitg drawn from a canonical distribution (i.e., one that does not depend

on at). Examples are standardized Normal draws when g is Gaussian, or uniform draws

transformed into draws from g by the inverse c.d.f technique (e.g., see Devroye, 1986).

At convergence, the EIS �lter approximation of f(ytjYt�1) in (5) is given by

bfN(ytjYt�1) = 1

N

NX
i=1

f (ytjsit; Yt�1) f (sitjYt�1)
g(sit; bat) ; (15)

where fsitg
N
i=1 are drawn from the (�nal) EIS sampler g(st; bat). This estimate converges
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almost surely towards f(ytjYt�1) under weak regularity conditions (outlined, e.g., by Geweke,

1989). Violations of these conditions typically result from the use of samplers with thinner

tails than those of 't. RZ o¤er a diagnostic measure that is adept at detecting this problem.

The measure compares the MC sampling variances of the ratio 't
g
under two values of at:

the optimal bat, and one that in�ates the variance of the st draws by a factor of 3 to 5.
4.2 A piecewise-continuous class of samplers

While kernels within the exponential family of distributions yield EIS regressions that

are linear in at, there exist potential pathologies of the integrand in (5) that they cannot

replicate e¢ ciently (e.g., skewness, thick tails, and bimodality). Here we propose an approach

that provides high �exibility along one or two pathological dimensions, and as illustrated in

Example 4 below, can be combined with (conditional) Gaussian samplers along additional

better-behaved dimensions. It entails the use of samplers that provide piecewise log-linear

approximations to the integrand 't; their parameters are the grid points a
0 = (a0; :::; aR),

with a0 < a1 < ::: < aR (the index t is suppressed for ease of notation). As we shall

see, ln k (:; a) then depends non-linearly on a: Furthermore, R must be su¢ ciently large for

good approximation. This prevents application of the least-squares optimization step (14).

Instead we implement near equal probability division of the domain of integration.

We �rst describe k(s; a) for a preassigned grid a, where the interval [a0; aR] covers the

support of '(s). Note that while R + 1 represents the number of grid-points here, and R

the number of auxiliary draws used to construct g(st;balt) in (14), this does not represent an
abuse of notation: for the piecewise-continuous sampler, use of R + 1 grid-points translates

precisely into the use of R auxiliary draws.

The kernel k(s; a) is given by

ln kj(s; a) = �j + �js 8s 2 [aj�1; aj]; (16)

�j =
ln'(aj)� ln'(aj�1)

aj � aj�1
; �j = ln'(aj)� �jaj: (17)
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Since k is piecewise integrable, its distribution function can be written as

Kj(s; a) =
�j(s; a)

�n(a)
; 8s 2 [aj�1; aj]; (18)

�j(s; a) = �j�1(a) +
1

�j
[kj(s; a)� kj(aj�1; a)] ; (19)

�0(a) = 0; �j(a) = �j(aj; a): (20)

Its inverse c.d.f. is given by

s =
1

�j

�
ln
�
kj(aj�1; a) + �j

�
u � �R(a)� �j�1(a)

��
� �j

	
; (21)

u 2 ]0; 1[ and �j�1(a) < u � �R(a) < �j(a): (22)

The recursive construction of an equal-probability-division kernel k(s;ba) is based upon
the non-random equal division of ["; 1� "] with ui = "+ (2� ") i

R
for i = 1; :::; R� 1, with "

su¢ ciently small (typically " = 10�4) to avoid tail intervals of excessive length. It proceeds

as follows.

Step l + 1: Given the step-l grid bal, construct the density kernel k and its c.d.f K as

described above. The step-l + 1 grid is then computed as

bal+1i = K�1(ui); i = 1; :::; R� 1: (23)

The algorithm iterates until (approximate) convergence.

The resulting approximation is highly adapted and computationally inexpensive. Given a

su¢ ciently large number of division points, it will outperform lower-dimensional parametric

classes of samplers. Piecewise-continuous samplers can be generalized to higher-dimensional

state spaces, though the curse of dimensionality can rapidly become acute. Thus in working

with multi-dimensional state spaces, it is advisable to begin with parametric families of

distributions, and reserve the use of log-linear piecewise continuous approximations for those

dimensions along which the integrand is ill-behaved.
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4.3 Continuous approximations of f(stjYt�1)

As noted, the EIS �lter requires the evaluation of f(stjYt�1) at any value of st needed for

EIS iterations. Here we discuss three operational alternatives for overcoming this hurdle (a

fourth, involving non-parametric approximations, is also possible but omitted here). Below,

S denotes the number of points used for each individual evaluation of f(stjYt�1).

Weighted-sum approximations

Combining (4) and (3), we can rewrite f(stjYt�1) as a ratio of integrals:

f(stjYt�1) =
R
f(stjst�1; Yt�1)f(yt�1jst�1; Yt�2)f(st�1jYt�2)dst�1R

f(yt�1jst�1; Yt�2)f(st�1jYt�2)dst�1
; (24)

where the denominator represents the likelihood integral for which an EIS sampler has been

constructed in period t� 1. A direct MC estimate of f(stjYt�1) is given by

bfS(stjYt�1) =
SX
i=1

f(stjs0;it�1; Yt�1) � !(s
0;i
t�1;bat�1)

SX
i=1

!(s0;it�1;bat�1)
; (25)

where fs0;it�1gSi=1 denotes EIS draws from g(st�1jbat�1), and �!(s0;it�1;bat�1)	Si=1 denotes associ-
ated weights (both of which are carried over from period-t� 1), with

!(st�1;bat�1) = f(yt�1jst�1; Yt�2)f(st�1jYt�2)
g(st�1jbat�1) : (26)

Obviously g(st�1jbat�1) is not an EIS sampler for the numerator in (24). This can impart a
potential loss of numerical accuracy if the MC variance of f(stjst�1; Yt�1) is large over the

support of g(st�1jbat�1). This would be the case if the conditional variance of stjst�1; Yt�1
were signi�cantly smaller than that of st�1jYt�1. But the fact that we are using the same

set of draws for the numerator and the denominator typically creates positive correlation

between their respective MC estimators, thus reducing the variance of their ratio.

11



A constant weight approximation

When EIS delivers a close global approximation to f(st�1jYt�1), the weights !(st�1;bat�1)
will be near constants over the range of integration. Replacing these weights by their arith-

metic means ! (bat�1) in (24) and (25), we obtain the following simpli�cation:
f(stjYt�1) '

Z
f(stjst�1; Yt�1) � g(st�1;bat�1)dst�1: (27)

This substitution yields rapid implementation if additionally the integral in (27) has an

analytical solution. This will be the case if, e.g., f(stjst�1; Yt�1) is a conditional normal

density for stjst�1, and g is either normal or piecewise continuous as described in Section

4.2. Examples are provided in Section 5. In cases for which we lack an analytical solution,

we can use the standard MC approximation

bfS(stjYt�1) ' 1

S

SX
i=1

f(stjs0;it�1; Yt�1): (28)

EIS evaluation

Evaluation of f(stjYt�1) can sometimes be delicate, including situations prone to sample

impoverishment (such as when working with degenerate transitions, discussed below). Under

such circumstances, one might consider applying EIS not only to the likelihood integral

(�outer EIS�), but also to the evaluation of f(stjYt�1) itself (�inner EIS�).

While outer EIS is applied only once per period, inner EIS must be applied for every

value of st generated by the former. Also, application of EIS to (4) requires the construction

of a continuous approximation to f(st�1jYt�1): Two obvious candidates are as follows. The

�rst is a non-parametric approximation based upon a swarm fs0;it�1gSi=1:

bfS(st�1jYt�1) = 1

Sh

SX
i=1

�

 
st�1 � s0;it�1

h

!
:

The second is the period-(t� 1) EIS sampler g(st�1;bat�1); under the implicit assumption
12



that the corresponding weights !(st�1;bat�1) are near-constant, at least over the range of
integration. It is expected that in pathological cases, signi�cant gains in accuracy resulting

from inner EIS will far outweigh approximation errors in f(st�1jYt�1):

4.4 Special cases

Partial measurement

Partial measurement refers to cases (e.g., see Examples 2 and 4) in which st can be

partitioned (possibly after transformation) into st = (pt; qt), so that

f (ytjst; Yt�1) � f (ytjpt; Yt�1) : (29)

In this case, likelihood evaluation requires integration only with respect to pt:

f (ytjYt�1) =
Z
f (ytjpt; Yt�1) f (ptjYt�1) dpt; (30)

and the updating equation (3) factorizes into the product of the following two densities:

f (ptjYt) =
f (ytjpt; Yt�1) f (ptjYt�1)

f (ytjYt�1)
; (31)

f (qtjpt; Yt) = f (qtjpt; Yt�1) : (32)

Stronger conditional independence assumptions are required in order to produce factor-

izations in (4). In particular, if pt is independent of qt given (pt�1; Yt�1), so that

f (ptjst�1; Yt�1) � f (ptjpt�1; Yt�1) ; (33)

then

f (ptjYt�1) =
Z
f (ptjpt�1; Yt�1) f (pt�1jYt�1) dpt�1: (34)
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Note that under conditions (29) and (33), likelihood evaluation does not require processing

sample information on fqtg : The latter is required only if inference on fqtg is itself of interest.

Degenerate transitions

When state transition equations include identities, corresponding transition densities are

degenerate (or Dirac) in some of their components. This situation requires an adjustment to

EIS implementation. Again, let st partition into st = (pt; qt) ; and assume that the transition

equations consist of two parts: a proper transition density f (ptjst�1; Yt�1) for pt; and an

identity for qtjpt; st�1 (which could also depend on Yt�1, omitted here for ease of notation):

qt � � (pt; pt�1; qt�1) = � (pt; st�1) : (35)

The evaluation of f (stjYt�1) in (4) now requires special attention, since its evaluation

at a given st (as selected by the EIS algorithm) requires integration in the strict subspace

associated with identity (35). Note in particular that the presence of identities raises a

conditioning issue known as the Borel-Kolmogorov paradox (e.g., see DeGroot, 1975, Section

3.10). We resolve this issue here by reinterpreting (35) as the limit of a uniform density for

qtjpt; st�1 on the interval [� (pt; st�1)� "; � (pt; st�1) + "] :

Assuming that � (pt; st�1) is di¤erentiable and strictly monotone in qt�1; with inverse

qt�1 =  (pt; qt; pt�1) =  (st; pt�1) (36)

and Jacobian

J (st; pt�1) =
@

@qt
 (st; pt�1) ; (37)

we can take the limit of the integral in (35) as " tends to zero, producing

f (stjYt�1) =
Z
J (st; pt�1) f (ptjst�1; Yt�1) f (pt�1; qt�1jYt�1) jqt�1= (st;pt�1)dpt�1: (38)

Note that (38) requires that for any st; f (st�1jYt�1) must be evaluated along the zero-
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measure subspace qt�1 =  (st; pt�1). This rules out use of the weighted-sum approxima-

tion introduced above, since the probability that any of the particles s0;it�1 lies in that sub-

space is zero. We can also approximate the integral in (38) by replacing f (st�1jYt�1) by

! (bat�1) g (st�1jbat�1):
bf (stjYt�1) = Z J (st; pt�1) f (ptjqt�1; Yt�1) g (pt�1; qt�1jbat�1) jqt�1= (st;pt�1)dpt�1: (39)

In this case, since g (:jbat�1) is not a sampler for pt�1jst, we must evaluate (39) either by
quadrature or its own EIS sampler.

One might infer from this discussion that the EIS �lter is tedious to implement under

degenerate transitions, while the particle �lter handles such degeneracy trivially in the tran-

sition from
�
s0;it�1

	
to
�
s1;it
	
. While this is true, it is also true that these situations are prone

to signi�cant sample impoverishment problems, as illustrated in Example 2.

5 Examples

Here we present four examples that illustrate the relative performance of the particle,

auxiliary, adapted, and EIS �lters. The �rst two focus on likelihood evaluation; the last

two on �ltering. We begin with some lessons gleaned through these examples regarding the

selection of the three auxiliary sample sizes employed under the EIS �lter: N , the number of

draws used for likelihood evaluation (e.g., see (15)); R, the number of draws used to construct

EIS samplers (e.g., see (14)); and S, the number of draws used to evaluate f(stjYt�1).

First, the e¢ ciency of the EIS �lter typically translates into substantial reductions (rela-

tive to the particle �lter) in the number of draws N needed to reach given levels of numerical

accuracy: often by two to three orders of magnitude. In all but the most well-behaved

cases, this translates into e¢ ciency gains that more than compensate for the additional

calculations required to implement the EIS �lter. More importantly, the EIS �lter is far

more reliable in generating numerically stable and accurate results when confronted with
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ill-behaved problems (e.g., involving outliers).

Second, in every case we have considered, EIS samplers can be constructed reliably using

small values for R (e.g., 100 has su¢ ced for the applications we have considered).

Third, as with any �lter, the range stjYt�1 must be su¢ ciently wide to accommodate

period-t surprises (outliers in st and/or yt). At the same time, the approximation grid must

be su¢ ciently �ne to accommodate the realization of highly informative realizations of yt,

which generate signi�cant tightening of the distribution of stjYt relative to that of stjYt�1.

Both considerations push towards relatively large values for S: The particle �lter implicitly

sets N = S. However, repeated evaluations of f(stjYt�1) constitute a substantial portion of

EIS computing time, thus setting S << N can yield signi�cant gains in overall e¢ ciency.

Indeed, we typically we set S = 100. Note that it is trivial to rerun an EIS algorithm under

di¤erent values for S, thus it is advisable to experiment with alternative values of S in trial

runs before launching full-scale analyses in complex applications.

5.1 Example 1: Univariate model with frequent outliers

This example is from Fernandez-Villaverde and Rubio-Ramirez (2004). Let

st+1 = �+ �
st

1 + s2t
+ �t+1 (40)

yt = st + ut; (41)

where �t+1 � N (0; �2�) and ut is t-distributed with � degrees of freedom:

f(ut) �
�
� + u2t

��0:5(�+1)
; V ar(ut) =

�

� � 2 for � > 2:

In all cases, the parameters � and � are both set to 0:5; adjustments to these settings have

minimal impact on our results. Note that the expectation of st+1jst is highly non-linear

around st = 0; and becomes virtually constant for jstj > 10.
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We consider two values for �: 2 and 50. For � = 2, the variance of ut is in�nite and the

model generates frequent outliers: e.g., Pr(jutj > 4:303) = 0:05: For � = 50; ut is virtually

Gaussian: its variance is 1.042, and Pr(jutj > 2:010) = 0:05: We consider four values for

��: (1=3; 1; 3; 10). Thus the parameterizations we consider cover a wide range of scenarios,

ranging from well-behaved (� = 50; �� = 1=3) to ill-behaved (� = 2; �� = 10).

We compare the relative numerical e¢ ciency of �ve algorithms. The �rst three are the

particle, auxiliary, and adapted �lters. These are implemented using N = 20; 000 and

N = 200; 000. The remaining algorithms are the Gaussian and piecewise-linear EIS �lters.

These are implemented using N = 100 and N = 1; 000: Evaluation of f (stjYt�1) is based on

the weighted-sum approximation introduced in Section 4.3.1 �see (25).

Results obtained using arti�cial data sets of size T = 100 are presented in Tables 1 (� = 2)

and 2 (� = 50). Numerical accuracy is assessed by running 100 i.i.d. likelihood evaluations

obtained under di¤erent seeds. Means of these likelihood evaluations are interpreted as ��nal�

likelihood estimates; MC standard deviations of these means provide a direct measure of the

stochastic numerical accuracy of the �nal likelihood estimates.

Table 1 reports relationships between MC standard deviations and computing time, along

with MC means of likelihood evaluations. The tables report a convenient measure of the

relative time e¢ ciency of �lters i and j:

RTEi;j =
TiVi
TjVj

;

where Ti represents computing time per function evaluation, and Vi the MC variance asso-

ciated with �lter i. In the tables, i represents the particle �lter; for ratios less than one, the

particle �lter is the relatively e¢ cient estimator. Reported ratios are based on N = 200; 000

for the particle, auxiliary and adapted �lters, and N = 1; 000 for the EIS �lters.

Note �rst that RTEs obtained for the auxiliary particle �lter range from 0.7 to 1.1 across

all cases considered. Thus roughly speaking, regardless of whether the model is well- or
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ill-behaved, the e¢ ciency gains it generates are o¤set by associated increases in required

computing time, which are on the order of 40%.

Next, for well-behaved cases, RTEs of the adapted particle �lter are good; e.g., for

�� = 1=3; e¢ ciency ratios are 8.2 for � = 2 and 11.6 for � = 50: However, its per-

formance deteriorates dramatically as �� increases. Indeed, results are not reported for

(� = 2; �� = 10; � = 50; �� = 3; � = 50; �� = 10) ; since in these cases estimated likelihood

values diverge pathologically. This re�ects the general inability of local approximations to

provide reliable global approximations of f (ytjst; Yt�1) when relevant ranges for st become

too large. In the present case, problems become critical for Taylor expansions around in�ec-

tion points of the non-log-concave Student-t density (yt = �kt �
p
�). Note that these are

precisely points where second derivatives with respect to st are zero, which implies that the

use of second-order approximations (e.g., as advocated by Smith and Santos, 2006) would

fail to provide an e¤ective remedy in this application.

As expected, RTEs of the Gaussian EIS �lter are also poor given � = 2; especially when

�� is large. For � = 50, the Gaussian EIS �lter performs well, with impressive RTEs for

large values of �� (reaching 284 for �� = 10).

The piecewise-linear EIS �lter outperforms the particle �lter in all cases, with the payo¤

to adoption increasing with ��. For � = 2; its RTE ranges from 1:6 to 2; 001 as �� increases

from 1/3 to 10; for � = 50; its RTE ranges from 2:3 to 1; 401. An RTE of 1,400 implies

that the particle �lter requires approximately 1 hour and 15 minutes (the time required

to process approximately 38.4 million particles) to match the numerical accuracy of the

piecewise-linear �lter with N = 1; 000 (which requires 3.18 seconds). These results re�ect

the payo¤s associated with the �exibility, in addition to the global nature, of approximations

provided by the piecewise-linear �lter.

In sum, the particle, auxiliary, and adapted �lters perform well under well-behaved sce-

narios. In these cases, their relative numerical inaccuracy is often o¤set by their relative

speed. However, expansions in the range of st, along with the presence of outliers, can lead
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to dramatic reductions in RTEs, and in the case of the auxiliary and adapted �lters, can also

lead to unreliable likelihood estimates. The EIS �lters provide insurance against these prob-

lems and exhibit superior RTEs in all but the most well-behaved cases. But while numerical

e¢ ciency is an important feature of likelihood approximation procedures, it is not the only

important feature. In pursuing ML estimates, continuity with respect to parameters is also

critical. The next example highlights this feature.

5.2 Example 2: A dynamic stochastic general equilibrium model

Following Sargent (1989), likelihood-based analyses of dynamic stochastic general equi-

librium (DSGE) models have long involved the application of the Kalman �lter to log-linear

model approximations (e.g., see DeJong, Ingram and Whiteman, 2000; Otrok, 2001; Ireland,

2004; and the survey by An and Schorfheide, 2007). However, Fernandez-Villaverde, Rubio-

Ramirez and Santos (2006) have shown that second-order approximation errors in model

solutions map into �rst-order e¤ects on the corresponding likelihood function, due to the

accumulation over time of approximation errors. Fernandez-Villaverde and Rubio-Ramirez

(2005) document the quantitative relevance of this phenomenon in an empirical analysis

involving estimates of a neoclassical growth model obtained using the particle �lter.

Here we demonstrate the performance of the EIS �lter by estimating the structural para-

meters of a simple growth model via maximum likelihood. Regarding the model, let qt, kt, ct,

it, and at represent output, capital, consumption, investment, and total factor productivity

(TFP). Labor is supplied inelastically and �xed at unity. The model is of a representative

agent who seeks to maximize the expected value of lifetime utility

U = E0

1X
t=0

�t ln(ct);
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subject to

qt = atk
�
t (42)

qt = ct + it (43)

kt+1 = it + (1� �)kt (44)

ln(at+1) = � ln(at) + �t+1: (45)

Regarding parameters, � is capital�s share of output, � is capital depreciation, � determines

the persistence of innovations to TFP, and the innovations �t � N(0; �2). The state variables

(at; kt) are unobserved, and the distribution of (a0; k0) is known. The solution of this problem

can be represented as a policy function for consumption of the form c (at; kt) : For the special

case in which � = 1; c (at; kt) = (1� ��) atk
�
t . This is the case studied here.

We take qt and it as observable, subject to measurement error. Combining equations, the

measurement equations are

qt = atk
�
t + uqt ; (46)

it = atk
�
t � c(at; kt) + uit (47)

= ��atk
�
t + uit ;

and the state-transition equations are (45) and

kt+1 = atk
�
t � c(at; kt) (48)

= ��atk
�
t :

Examination of (45) to (48) suggests reparameterizing the state variables as zt = ln(at)

and lt = eztk�t ; where lt denotes (unobserved) output, and st = [lt zt]
0 denotes the state

vector. The transition process (45) then takes the form of a Gaussian AR(1) in zt, and the
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identity (48) can be rewritten as

lt = ezt (��lt�1)
� : (49)

Note that this example combines the two special cases discussed in Section 4.4. First,

there is partial measurement, in that yt is independent of zt conditionally on lt (and Yt�1):

ytjst; Yt�1 � ytjlt; Yt�1 � N2

0B@
0B@ 1

��

1CA lt;

264 �2q 0

0 �2i

375
1CA : (50)

Second, (49) represents a degenerate Dirac transition, with inverse

lt�1 =  (st) =
1

��

�
lte

�zt
� 1
� (51)

and Jacobian

J(st) =
@ (st)

@lt
=

1

�2�

�
l1��t e�zt

� 1
� : (52)

In view of (50), the likelihood integral simpli�es into a univariate integral in lt whose

evaluation requires only an EIS sampler for ltjYt: Nevertheless, in period t+1 we still need to

approximate f (ztjlt; Yt) in order to compute bf(ytjYt�1): To capture the dependence between
zt and lt given Yt; it proves convenient to construct a single bivariate EIS sampler for zt; ltjYt:

Whence the likelihood integral

f(ytjYt�1) =
Z
f(ytjlt; Yt�1)f(stjYt�1)dst (53)

is evaluated under a Gaussian EIS sampler g(stjât). Next, f(stjYt�1) is approximated ac-

cording to (39), where we exploit the fact that the Jacobian J(st) does not depend on zt�1:

bf(stjYt�1) = J(st)

Z
f(ztjzt�1)g( (st); zt�1jât�1)dzt�1: (54)
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Note that the integrand is quadratic in zt�1jst; so standard algebraic operations amount-

ing to the completion of a quadratic form in zt�1 yield an analytical solution for bf(stjYt�1).
Thus under the implicit assumption that the EIS weights !(st; ât) are near constant (to

be veri�ed empirically), we have derived a particularly fast and e¢ cient EIS implementa-

tion based on a bivariate Gaussian outer EIS, and an inner analytical approximation for

f(stjYt�1).

Model estimates are based on arti�cial data simulated from the model. Parameter values

used to simulate the data are as follows: � = 0:33; � = 0:96; � = 0:8; � = 0:05; �q = 0:014;

�i = 0:02: The �rst four values are typical of this model calibrated to annual data; and given

�, the latter two values represent approximately 5% and 20% of the unconditional standard

deviations of qt and it: The unconditional mean and standard deviation of at implied by �

and � equal 1.0035 and 0.08378.

To begin, we compute likelihood values at the true parameter values using 20,000 and

100,000 particles for the particle �lter, and 100 and 1,000 auxiliary draws for the EIS �lter

(with R held �xed at 100). We do so for 100 MC replications, applied to a single data set of

sample size T = 100. Results are reported in Table 3.

RTEs computed using as a numeraire the particle �lter with N = 20; 000 are 55.44 (for

N = 100 under the EIS �lter) and 217.728 (forN = 1; 000). That is, the time required for the

particle �lter to attain the same standard of numerical accuracy exceeds the time required

by the EIS �lter with N = 1; 000 by a factor of approximately 217 (the time required to

process approximately 8.7 million particles). This di¤erence in e¢ ciency is due to the fact

that the bivariate Gaussian EIS samplers g (stjbat) provide close (global) approximations of
the densities f(stjYt�1). Indeed, on a period-by-period basis, ratios of standard deviations to

the means of the weights
�
!
�
s0;it ;bat�	Ni=1 range from 1.14e-8 to 3.38e-3. Such small variations

validate our reliance on (54) to approximate f(stjYt�1):

Next, we apply both the particle and EIS �lters to compute maximum likelihood estimates

(MLEs) for � = (�; �; �; �; �q; �i), under simulated samples of size T=40, 100 and 500. Using
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(47), the stepwise MLE of � given � is given by b� = i=�l; where i and l denote sample

means of it and lt: MLEs for the remaining parameters are obtained via maximization of the

concentrated log-likelihood function. Results for the particle �lter are based on N = 20; 000;

results for the EIS �lter are based on N = 200 and R = 100. Note from Table 3 that

computing times for a single likelihood evaluation are approximately the same under both

methods (on the order of 5.5 seconds for T = 100), while MC estimates of the log-likelihood

function are much more accurate under the EIS �lter (which has an RTE of approximately

55 given these settings for N and R).

Figure 1 plots estimated log-likelihoods for a representative data set along the � dimen-

sion for T = 100 for both the particle and EIS �lters; all other parameters are set at their

ML values. Note that the surface associated with the particle �lter is particularly rough

relative to that associated with EIS.

We employ the Nelder-Meade simplex optimization routine for all MLE computations.

Following RZ, we use i.i.d replications (30 in the present set-up) of the complete ML algorithm

in order to produce two sets of means and standard deviations for MLEs. The �rst are

statistical means and standard deviations, obtained from 30 di¤erent samples fytgTt=1 under

a single set of auxiliary draws fuigNi=1. These characterize the �nite sample distribution of the

MLEs. Under the EIS �lter, we also compute the asymptotic standard deviations obtained

by inversion of a numerical Hessian. As in Fernandez-Villaverde and Rubio-Ramirez (2007),

we �nd that Hessians computed under the particle �lter are unreliable and often fail to be

positive de�nite. The second are numerical means and standard deviations, obtained under

30 di¤erent sets of CRNs for a �xed sample fytgTt=1. These constitute our most accurate

MC estimates of the MLEs and accordingly, the numerical standard deviations we report

are those for the means.

Results are given in Table 4. Highlights are as follows. (1) Log-likelihood functions

are tightly peaked, as statistical standard deviations attest. (2) For T = 40, MLEs of

� are upward biased (by about 4 standard deviations), thus we also report root mean-
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squared errors. (3) Under the EIS �lter, there is close agreement between �nite sample

(MC) and asymptotic (Hessian) statistical standard deviations, especially as T increases.

This highlights the numerical accuracy and reliability of EIS �lter computations (including

Hessians). (4) As T increases, numerical standard deviations (which are
p
30 larger than

those reported for the mean MLEs) approach corresponding statistical standard deviations.

This does not create a problem for the EIS �lter (which employs CRNs), but contaminates

the computation of statistical standard deviations under the particle �lter. For this example,

N would need to be increased dramatically in order for the particle �lter to provide reliable

estimates of statistical standard deviations.

In sum, MLEs derived using the EIS �lter (N = 200, R = 100) are numerically and

statistically signi�cantly more reliable than those derived under the particle �lter (N =

20; 000). They are also obtained relatively more rapidly (by a factor of 25% to 50%).

5.3 Example 3: Stochastic Volatility

The stochastic volatility (SV) model is given by

yt = ut� exp(st=2) (55)

st+1 = �st + �t; (56)

where ut and �t are independent Gaussian random variables with variances 1 and �2; �

represents modal volatility; and � and �2 determine the persistence and variance of volatility

shocks. This model was introduced by Taylor (1982, 1986) in attempts to account for the

time-varying and persistent volatility exhibited by �nancial returns data, in addition to fat-

tailed behavior. Many alternative procedures have been proposed to estimate this model

e¢ ciently, and to infer the behavior of (scaled) volatility (e.g., see Jacquier, Polson and

Rossi, 1994; Ghysels et al., 1996; Pitt and Shephard, 1999; Kim, Shephard and Chib, 1998;

and Liesenfeld and Richard, 2003). Thus it provides a natural testing ground for us as well.
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Filtered values for volatility are obtained by replacing h(st) by exp(st=2) in (7). These

are obtained using Gaussian EIS samplers. Due to ease of implementation in the present

context, we construct separate samplers for the numerator and denominator of (7).

Consider the approximation of the denominator: the period-t likelihood f(ytjYt�1). Let

gt(st; ad;t) denote the EIS sampling density used to approximate the integrand 't(st) =

f(ytjst; Yt�1)f(stjYt�1). The associated log kernel is parameterized as

�2 ln k(st; ad;t) = �d;ts
2
t � 2�d;tst; (57)

where ad;t =
�
�d;t; �d;t

�
. The corresponding Gaussian sampler has mean �d;t = �d;t=�d;t and

variance �2d;t = ��1d;t : Thus the auxiliary regression for the computation of âd;t consists of a

bivariate OLS regression of simulated values of ln't(st) on simulated values of s
2
t , st and a

constant.

We use a constant-weight approximation to approximate the prediction density f(stjYt�1);

the approximation obtains as

f(stjYt�1) �
Z
f(stjst�1; Yt�1)g(st�1; âd;t�1)dst�1: (58)

Since f(stjst�1; Yt�1) is a conditional normal density for stjst�1; Yt�1, and g(st�1; âd;t�1) is a

normal density for st�1, the integral in (58) has an analytical solution given by a Gaussian

density for st with mean ��̂d;t�1 and variance �
2�̂2d;t�1+ �

2
�. Assuming f(s1jY0) = f(s1), the

initial values are �̂d;0 = 0 and �̂
2
d;0 = �2�=(1� �2).

Given an EIS sampler for the denominator, the Gaussian EIS kernel for the numerator in

(7), denoted by k(st; ân;t) and designed to approximate h(st) �'t(st), is obtained analytically,

since in the present context lnh(st) is a linear function in st. In particular, optimal values for

the mean and variance of the sampler for the numerator (�̂n;t; �̂
2
n;t) are given by �̂

2
n;t = �̂2d;t

and �̂n;t = �̂2n;t(�̂d;t=�̂
2
d;t + 1=2). Hence the construction of the optimal sampler for the

numerator is obtained without incurring additional computing costs.
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Based on these EIS samplers, a consistent MC estimate of the �ltered values obtains as

bE (exp(st=2)jYt) =
NP
i=1

wn;t
�es0;in;t�

NP
i=1

wd;t
�es0;id;t� ; (59)

where wn;t(st) = exp(st=2) �'t(st)=g(st; ân;t) and wd;t(st) = 't(st)=g(st; âd;t). The sets fes0;in;tg
and fes0;id;tg denote swarms of iid draws from g(st; ân;t) and g(st; âd;t), generated under a single

set of CRNs.

We demonstrate the performance of the EIS �lter for the SV model in an application

to sets of arti�cial data simulated from the model. Performance is characterized relative to

that of the particle �lter, using the exact experimental design used by Pitt and Shephard

(1999) to characterize the performance of their auxiliary and adapted �lters.

The model is parameterized as � = 0:9702, �� = 0:178, and � = 0:5992; the sample size

is T = 50. We draw R = 40 di¤erent data sets fY i
Tg40i=1, all based on one simulated trajectory

of the latent variable fstg50t=1. In the measurement-error series, we arti�cially insert a single

outlier: u21 = 2:5. For each data set we produce 100 i.i.d. MC estimates of the �ltered

values for volatility using EIS-1K and PF-20K, where the numbers following the acronyms

indicate the number of particles (computing times are similar given these settings). For each

procedure, the 100 MC estimates are obtained using 100 di¤erent CRNs. Comparing MC

estimates generated by these procedures with �true�values of the �ltered means yields Mean

Squared Error (MSE) comparisons identical to those used by Pitt and Shephard (1999).

Let ~̀it, (i : 1 ! 40; t : 1 ! 50) denote �true� �ltered means for volatility. These

must be computed with high numerical accuracy in order to validate the MSE comparisons

that follow. Exploiting the relatively high numerical accuracy of EIS (highlighted below),

we estimate �true��ltered means as the arithmetic means of 100 i.i.d. EIS-10K estimates.

Corresponding standard deviations are several orders of magnitude lower than those of the

estimates we propose to compare. In order to reach similar precision using the particle
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�lter, we must use the arithmetic means of 100 i.i.d. PF-4 million estimates. We ran

this experiment to verify that �true�values produced by both EIS and PF estimators are

numerically identical. The latter number far exceeds the PF-120K value employed by Pitt

and Shephard (1999), but turns out to be needed in order to eliminate signi�cant and

persistent biases characterizing PF estimates of �ltered means (illustrated below).

MSE comparisons are constructed as follows. Let �̀i;jt;k denote the MC estimate of the

�ltered mean, for data set i, for replication j, at time t, for procedure k = fEIS-1K;PF-20Kg.

The log mean squared error (LMSE) for procedure k, at time t is obtained as

LMSEt;k = ln

(
1

40

40X
i=1

"
1

100

100X
j=1

�
�̀i;j
t;k � ~̀it

�2#)
: (60)

Figure 2 (bottom panel) depicts LMSEs for the �ve procedures against time. As expected,

the move from estimates obtained using the particle �lter to those obtained using the EIS

�lter leads to a large reduction in LMSEs: the average di¤erence between PF-20K and

EIS-1K is 1.9 on log scale. These di¤erences are far larger than those reported by Pitt

and Shephard (1999, Figure 4) in their comparison of the particle �lter with their adapted

particle �lter, both implemented using the same number of particles. In particular, their

adapted �lter yields a maximal reduction of 1.0 (0.8) on log scale relative to the particle

�lter using 2K (4K) particles. Note also that the EIS �lter is considerably less susceptible

to the injected outlier in the measurement error process than is the particle �lter.

To identify the source of the large di¤erences in LMSEs, we computed separately MC vari-

ances and squared biases for EIS-1K and PF-20K. Logged variances and loggedMSE/variance

ratios are plotted for both procedures in Figure 2 (top panels). The logged MSE/variance

ratio can be interpreted as a �bias multiplier�, indicating the extent to which biases amplify

di¤erences in logged variances in yielding corresponding LMSEs. Figure 2 indicates that in

nearly all periods the logged MC variance for the EIS �lter is substantially smaller than for

the particle �lter. Further, EIS-1K exhibits logged MSE/variance ratios close to zero for all
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time periods, indicating near-complete absence of bias. In contrast, for PF-20K this ratio

is signi�cantly larger than zero in approximately half of the time periods. Note in partic-

ular the comparably large value of the ratio for PF-20K in the time period infected by the

outlier (t = 21). These results indicate that, in addition to MC variance, bias represents a

signi�cant component of the large di¤erences in LMSEs generated by the adoption of EIS.

5.4 Example 4: Bearings-Only Tracking

The bearings-only tracking problem has received much attention in the literature on

particle �lters, and raises challenging numerical issues. References include Gordon et al.

(1993), Carpenter et al. (1999), and Pitt and Shephard (1999); we consider here the scenario

described by Gordon et al. (1993).

A ship moves in the (x; z) plane with speed following a bivariate random walk process.

Let �t =
�
xt; zt;

�
xt;

�
zt

�0
denote the quadrivariate latent state variable (shortly we

shall re-parameterize, and revert to the use of st to denote the state). The discrete version

of the model we consider �rst is characterized by the transition

�t+1 =

0B@ I2 I2

0 I2

1CA�t + �

0B@ 1
2
I2

I2

1CAut; (61)

with ut � iidN (0; I2) : The initial state vector is distributed as

�1 � N (�1;�1) ; (62)

with (�1;�1) known and �1 diagonal.

An observer located at the origin of the (x; z) plane measures with error the angle �t =

arctan (zt=xt). The measured angle yt is assumed to be wrapped Cauchy with density

f (ytj�t) =
1

2�

1� r2

1 + r2 � 2r cos(yt � �t)
; (63)
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with 0 � (yt; �t) � 2� and 0 � r � 1: Accordingly, we shall introduce a (partial) reparame-

terization in polar coordinates. Let

�t = (�t; �t)
0 �t = (xt; zt)

0 �t =
�
�
xt;

�
zt

�0
;

�t = �te (�t) ; �t 2 [0; 2�] ;

with e (�t) = (cos �t; sin �t)
0 and �t = (x

2
t + z2t )

1=2 � 0: The following notation will be used

for the transformed state vector:

st = h(�t) = (�t; �t; �0t) = (�t; �0t) : (64)

Note that (61) is based on a discretization over a time interval that coincides with the

interval between successive measurements. It implies that the transition from �t to �t+1 is

degenerate. We reinterpret this transition as the combination of a proper bivariate transition

�t+1j�t � N (A�t;
) (65)

and a Dirac transition

�t+1 � � (�t+1; �t) = 2 (�t+1 � �t)� �t; (66)

with A = (I2; I2) and 
 = 1
4
�2I2: Below we shall consider an alternative version of the

model discretized on a �ner grid than that de�ned by observation times. This produces a

non-degenerate transition, and allows for observations that are spaced unequally over time.

The degenerate version just described is numerically challenging on three counts. First,

measurement is non-informative on three out of the four state components. Second, under

parameter values typically used in the literature, the density of �tjYt is much tighter (though

with fat tails) than that of �tjYt�1. This situation yields "sample impoverishment", and thus
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(very) high numerical ine¢ ciency for the particle �lter. Finally, the degenerate transition

creates additional numerical problems since it implies a zero-measure support in R4 for the

density f (�t+1j�t).

Despite these challenges, we can implement an EIS version of the particle �lter that can

accommodate these pathologies. While conceptually simple, the algebra of our implemen-

tation is somewhat tedious. The text presents the broad lines of our implementation; full

technical details are regrouped in the Appendix.

EIS computation of f (ytjYt�1)

We momentarily take as given that f (stjYt�1) can be computed for any st (as described

below). The period-t likelihood function is then given by

`t � f (ytjYt�1) =
Z
f (ytj�t) f (stjYt�1) dst: (67)

Note that while f (stjst�1) is degenerate, f (stjYt�1) is not. In the absence of observations,

f (st) would be quadrivariate Normal. The observation yt only measures �t, thus we shall

implement a (sequential) EIS sampler g (st; at) as the product of a trivariate Gaussian density

for �tj�t and a univariate piecewise loglinear density for �t. For ease of notation, the auxiliary

EIS parameter at is deleted from all subsequent equations.

The conditional EIS sampler g (�t; �t) is constructed as follows (accounting for the trans-

formation from �t to st): (i) We draw a swarm
ne�1;it oN

i=1
. Speci�cally, the period-(t�1) EIS

swarm
�es0;it�1	Ni=1 is transformed into a swarm ne�0;it�1oNi=1 by means of the inverse transforma-

tion �t = h�1 (st). Then e�1;it is drawn from the (degenerate) transition density f
�
�tje�0;it�1�

associated with (61).

(ii) We construct an auxiliary quadrivariate EIS Gaussian kernel k�;t (�t) approximating

f (�tjYt�1). To do so, we use the swarm
ne�1;it oN

i=1
to construct an auxiliary OLS regression ofn

ln f
�e�1;it jYt�1�oN

i=1
on
ne�1;it oN

i=1
and the lower triangle of

��e�1;it ��e�1;it �0�N
i=1

, for a total of

14 regressors plus one intercept. Let �t denote the unconditional mean of this quadrivariate
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kernel and Pt its precision matrix. The kernel is then written as

k�;t (�t) = exp

�
�1
2
(�0tPt�t � 2�0tqt)

�
; (68)

with qt = P�1t �t:

(iii) We introduce the transformation from �t to st = h (�t), with Jacobian �t > 0: Let

ks;t (st) = �tk�;t
�
h�1t (st)

�
: (69)

The conditional EIS sampler for �tj�t is then given by

gt (�tj�t) =
ks;t (st)

�t (�t)
; (70)

with

�t (�t) =

Z
�

ks;t (st) d�td�t; (71)

where � = R2 � R+:

(iv) The likelihood integral in (67) is rewritten as

`t =

Z
[f (ytj�t)�t (�t)]

f (stjYt�1)
ks;t (st)

gt (�tj�t) d�td�t: (72)

The next EIS step consists of approximating the product f (ytj�t)�t (�t) on [0; 2�] by a

piecewise loglinear EIS sampler gt (�t). Equation (72) is rewritten as

`t =

Z
ws;t (st) gt (�tj�t) gt (�t) dst; (73)

with

ws;t (st) =

�
f (ytj�t)�t (�t)

gt (�t)

�
f (stjYt�1)
ks;t (st)

: (74)
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Its EIS-MC estimate obtains as

b̀
t =

1

N

NX
i=1

ws;t
�es0;it � ; (75)

where
�es0;it 	Ni=1 denotes a swarm of i.i.d.N. draws (under CRNs) from the EIS sampler

g (�tj�t) gt (�t).

In view of the structure of the problem (non-observability of 3 out of 4 Gaussian state

variables, and �exibility of the piecewise loglinear sampler along the fourth), we anticipate

close �t between the numerator and denominator of ws;t (st) as given in (74). Relatedly, we

anticipate dramatic reduction in the MC sampling variance of �ltered values relative to that

of estimates obtained under the particle �lter and commonly used extensions.

EIS computation of f (�t+1jYt)

Having just discussed EIS for period t, it is notationally more convenient to discuss

the computation of f (�t+1jYt) rather than that of f (�tjYt�1). The reason for initially dis-

cussing f (�t+1jYt) rather than f (st+1jYt) is simply that Gaussian algebraic manipulations

are more transparent under the � parametrization. Moreover, f (st+1jYt) obtains directly

from f (�t+1jYt) via the transformation st+1 = h(�t+1) with Jacobian �t > 0. Relatedly, the

weights ws;t (st) in (74) can trivially be transformed into weights for �t. Let

w�;t (�t) = ws;t
�
h�1 (st)

�
=
f (�tjYt�1)
k�;t (�t)

�
f (ytj�t)�t (�t)

gt (�t)

�
�t=�t(�t)

; (76)

with �t (�t) = arctan (zt=xt). Whence the density f (�tjYt) ; given by

f (�tjYt) =
f (�tjYt�1) f (ytj�t (�t))

`t
; (77)

can be rewritten as

f (�tjYt) =
w�;t (�t)

`t
k�;t (�t)

gt (�t)

�t (�t)
j�t=�t(�t): (78)
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Under a non degenerate transition from �t to �t+1; f (�t+1jYt) obtains as

f (�t+1jYt) =
Z
R4

f (�tjYt) f (�t+1j�t) d�t: (79)

In the present case, however, we have to properly account for the fact that the transition

from �t to �t+1 is degenerate. As discussed above, degeneracy is addressed by replacing �t

in (78) by the inverse of the Dirac transition in (66):

��1 (�t+1; �t) = �t = 2 (�t+1 � �t)� �t+1; (80)

and integrating only with respect to �t. Furthermore, since w�;t (�t) is expected to be near

constant over the support of �t, we can safely rely upon a "constant weight" approximation

whereby the ratio w�;t (�t) =`t in (78) is set equal to 1. Whence f (�t+1jYt) can be accurately

evaluated by the following bivariate integral:

f (�t+1jYt) =
Z

gt (�t)

�t (�t)
k�;t (�t) f (�t+1j�t) j�t=�t(�t);�t=��1(�t+1;�t)d�t: (81)

Numerically e¢ cient evaluation of this integral requires the following additional steps:

(i) Combine analytically k�;t (�t) and f (�t+1j�t) into a Gaussian kernel in (�t+1; �t);

(ii) Introduce the transformation from �t into (�t; �t) with Jacobian �t > 0;

(iii) Given (�t+1; �t), integrate analytically in �t > 0;

(iv) Given �t+1; use gt (�t) as a natural sampler and compute the integral using the draws

of �t obtained in the previous round.

Note that the sequence of operations just described must be repeated for any value of �t+1

for which f (�t+1jYt) is to be evaluated for period-(t+ 1) EIS evaluation of `t+1. However,

as illustrated below, the numerical e¢ ciency of the EIS procedures we have just described

results in dramatic reductions in the number of MC draws required to reach a preassigned

level of numerical accuracy, and thus in signi�cant reductions in overall computing time
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relative to the particle �lter.

Filtered Values

Filtered values for f�tgNi=1 are de�ned as

E (�tjYt) =
Z
�tf (�tjYt) d�t: (82)

Substituting (78) for f (�tjYt) and introducing the transformation from �t to st produces the

following operational expression for the �ltered values of �t:

E (�tjYt) =
1

`t

Z
h(st)ws;t (st) gt(�tj�t)gt(�t)dst: (83)

EIS estimates of these �ltered values obtain as

\E (�tjYt) =

NX
i=1

h(es0;it )ws;t �es0;it �
NX
i=1

ws;t
�es0;it �

: (84)

Filtered values of st are obtained by replacing h(st) by st in (83) and (84). Note that,

in contrast with the evaluation of f (�t+1jYt) ; we do not implement here the "constant

weight" approximation under which w�;t (�t) =`t is be set to 1 in (83) and �ltered values

simplify into the arithmetic mean of
�
h
�es0;it �	Ni=1. As discussed, e.g., by Geweke (1989), the

reason for preferring the ratio form in (84) is that the use of CRNs in the evaluation of the

numerator and denominator typically induces positive correlation between their respective

MC estimates, thereby reducing further the MC variance of the ratio.

A non-degenerate version of the problem

The singularity of the transition in (61) is a (spurious) consequence of a model speci�ca-

tion that assumes measurements at each division point of the grid used for discretization of

the random walk for speed. We now consider the case in which a �ner grid for discretization
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is used relative to that used for measurement, while also allowing for measurements made

at varying time intervals.

For ease of notation, we focus on two successive measurements separated by D discretiza-

tion intervals. Equation (61) then must be transformed into a transition density for �t+Dj�t

by implicit marginalization with respect to the state sequence f�t+jgD�1j=1 . The random walk

process for speed is given by

�t+1 = �t + "t+1; "t � N
�
0; �2I2

�
; (85)

and position is discretized as

�t+1 = �t +
1

2

�
�t + �t+1

�
: (86)

It follows that

�t+D = �t + ut+D; (87)

�t+D = �t +D�t + �t+D; (88)

with

ut+D =
DX
j=1

"t+j; �t+D =
1

2

DX
j=1

[2 (D � j) + 1] "t+j: (89)

The covariance matrix of (ut+D; �t+D) obtains by application of standard formulae for

the sums and sums of squares of natural numbers - see e.g. Gradshteyn and Ryzhik (1979,

0.122, 1 and 2). It follows that the transition density from �t to �t+D is given by

�t+Dj�t � N
�
AD�t; �

2VD
�
; (90)
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with

AD =

0B@ I2 DI2

0 I2

1CA ; VD = D �

0B@ 4D2�1
12

I2
D
2
I2

D
2
I2 I2

1CA : (91)

The case D = 1 obviously coincides with the degenerate transition in (61). The general-

ization from (61) to (90) does not a¤ect EIS evaluation of the likelihood function. However,

the evaluation of f (�t+DjYt) now requires four-dimensional integration, and is given by

f (�t+DjYt) =
Z

gt (�t)

�t (�t)
k�;t (�t) f (�t+Dj�t) d�t: (92)

The numerical evaluation of equation (92) parallels that of equation (81) with the additional

(analytical) integration with respect to �t.

Application

We demonstrate our methodology in an application designed essentially along the lines

of that constructed by Gordon et al. (1993), and modi�ed by Pitt and Shephard (1999).

For the singular and non-singular cases, � in (61) and (90) is set to 0:001; and r in (63)

is set to 1 � (0:005)2: The initial latent vector �1 is normally distributed with mean vector

(�0:05; 0:2; 0:001;�0:055) and diagonal covariance matrix with standard deviations

(0:05; 0:03; 0:0005; 0:001) : In the non-singular case, the number Dt of discretization inter-

vals between measurements t and t+D is drawn from a multinomial f2; 3; :::; 11g with equal

probabilities pi = 0:1; i = 2; :::; 11: (Actually, the non-singular case need not be restricted to

integer values of Dt; and we have veri�ed that solutions for the non-singular case converge

to those for the singular case as Dt tends towards 1.)

We set T = 10; and draw two sets of latent vectors f�stg
10
t=1 ; one for the singular case

(s = 1) and one for the non-singular case (s = 2). Both sets are linear transformations of a

single set of N(0; 1) draws.

As in Pitt and Shephard (1999), we draw R = 40 di¤erent data sets
�
Y s;i
T

	40
i=1

based on

the latent vectors f�stg
10
t=1 for s = 1; 2: For each data set, we produce 100 i.i.d. estimates of
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the �ltered means (di¤ering by the seeds initializing the MC draws) using EIS-1K and PF-

40K (computing times associated with these procedures are similar). As in the SV example,

comparing estimates generated by these procedures with �true��ltered means for the latent

variables yields LMSE comparisons analogous to those employed by Pitt and Shephard (1999)

to demonstrate the gains in precision and e¢ ciency yielded by their extensions of the particle

�lter. (Details regarding the construction of LMSEs in this case correspond precisely with

those described for the SV application.)

Graphs of MC variances and squared biases are presented in Figure 3, and LMSEs in

Figure 4, both for the singular case (similar results were obtained for the non-singular case,

and thus are not reported). Note the large reductions in LMSEs yielded by the move from

PF to EIS estimates: di¤erences average between 4 and 6 on the log scale. These di¤erences

are once again much larger than those reported by Pitt and Shephard (1999): their auxiliary

particle �lter yielded reductions averaging between 0.5 and 1 relative to the particle �lter.

Regarding the source of the large di¤erences in LMSEs we obtain, di¤erences in logged

variances are typically of the order of 2 to 2.5 in favor of EIS (corresponding roughly to a 10-

fold reduction in variance), except for t = 1: Logged bias ratios are virtually all close to zero

for EIS �lter, while they typically lie between 1 and 4 (and as high as 10 for t = 1) for the

particle �lter. Thus biases remain signi�cant for the particle �lter even using 40K draws, and

are the dominant component of the large di¤erences in LMSEs generated by the adoption of

EIS. This is a manifestation of the �sample impoverishment�problem that results from the

very tight distribution of �tjYt relative to that of �tjYt�1 along the �t dimension.

6 Conclusion

We have proposed an e¢ cient means of facilitating likelihood evaluation and �ltering in

applications involving non-linear and/or non-Gaussian state space representations: the EIS

�lter. The �lter is adapted using an optimization procedure designed to minimize numerical
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standard errors associated with targeted integrals. Resulting likelihood approximations are

continuous in underlying likelihood parameters, greatly facilitating the implementation of

ML estimation procedures. Implementation of the �lter is straightforward, and the payo¤ of

adoption can be substantial.

7 Appendix

7.1 Bearings-Only Tracking, Singular Case

Derivation of �t(�t)

For ease of notation we suppress t subscripts. The kernel gs (s) de�ned in (69) depends

upon the quadratic form


 (s) =

0B@ �e�

�

1CA
0

P

0B@ �e�

�

1CA� 2
0B@ �e�

�

1CA q: (93)

We partition P and q conformably with (�e0� �0) into

P =

0B@ P11 P12

P21 P22

1CA ; q =

0B@ q1

q2

1CA : (94)

Standard Gaussian algebra operations (square completion in � and � successively) produce

the following expressions for 
 (s) :


 (s) = (� � b�)
0 P22 (� � b�) + a� (�� r�)

2 � s2�; (95)

b� = P�122 (q2 � �P21e�) ; a� = e0�P11:2e�; (96)

P11:2 = P11 � P12P
�1
22 P21; (97)

r� =
1

a�

�
q1 � P12P

�1
22 q2

�0
e�; s2� = a�r

2
� + q02P

�1
22 q2: (98)
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It follows that � (�) ; as de�ned in (71), is given by

� (�) = 2�jP22j�1d� exp
�
1

2
s2�

�
; (99)

d� =

Z 1

0

� exp

�
�1
2
a� (�� r�)

2

�
d�: (100)

Introducing the transformation of variables

� =
p
a� (�� r�) ; (101)

d� can be written as

d� =
1

a�

Z 1

�c�
(�+ c�) exp

�
�1
2
�2
�
d� (102)

=
1

a�

�
exp

�
�1
2
c2�

�
+ c�

r
�

2

�
1 + erf(

c�p
2
)

��
; (103)

with c� = r�
p
a� > 0; and erf() denoting the error function

erf(z) =
2p
�

Z z

0

exp(��2)d�: (104)

(The properties of erf() are discussed, e.g., in Abramowitz and Segun, 1968, Ch. 7.) In

deriving (103), we have exploited the fact that r� > 0:

CRN-EIS draws of (�; �; �)

An EIS draw of (�; �; �) obtains from a CRN draw (u1; u2; u3; u4), where (u1; u2) denotes

two U(0; 1) draws and (u3; u4) two i.i.d.N(0,1) draws, through the following sequence of

transformations: (i) � obtains from u1 by inversion of the cdf associated with the piecewise

loglinear EIS sampler m(�): (ii) �j� obtains from u2 by inversion of the cdf associated with

m (�j�) = 1

d�
� exp

�
�1
2
a� (�� r�)

2

�
; � > 0: (105)
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Details of this transformation are provided below. (iii) �j�; � obtains from the transformation

� = b� + L

0B@ u3

u4

1CA ; (106)

where L denotes the Cholesky decomposition of P�122 :

Regarding step (ii), �j� obtains from the transformation of (101), rewritten as

� =
1
p
a�
(�+ c�) ; (107)

where the density of �j� is given by

f� (�j�) =
1

d�a�
(�+ c�) exp

�
�1
2
�2
�
; � > �c�; (108)

with cdf

F� (�j�) = 1
d�a�

f
�
exp

�
�1
2
c2�
�
� exp

�
�1
2
�2
��

+c�
p

�
2

h
erf
�

�p
2

�
+ erf

�
c�p
2

�i
g

; (109)

accounting for the fact that erf(�z) = � erf(z): For the application described in Section 5.4,

c� turns out to be signi�cantly larger than zero, so that � is nearly N(0; 1). Thus for the

inversion of the CRN u2 � U(0; 1); we take as a starting value the corresponding (inverse)

Gaussian draw �(0) � N(0; 1) and iterate once or twice by Newton

�(k+1) = �(k) �
F
�
�(k)j�

�
� u2

F
�
�(k)j�

� : (110)

Derivation of f (�t+1jYt)

We again suppress t subscripts for ease of notation; accordingly, the index t+1 is replaced
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by +1: The product g� (�) f (�+1j�) in (81) depends on the quadratic form

� (�+1; �) = (�
0P�� 2�0q) + (�+1 � A�)0
�1 (�+1 � A�) : (111)

It is transformed into a quadratic form in (�; �+1) via the inverse Dirac transformation (80)

�1 (�; �+1) = � (�+1; �) j�= (�+1;�): (112)

This implies the following two transformations:

�j�= (�+1;�) = C

0B@ �

�+1

1CA ; (�+1 � A�) j�= (�+1;�) = D

0B@ �

�+1

1CA ; (113)

(114)

with C and D respectively being 4� 6 and 2� 6 matrices partitioned in 2� 2 blocks:

C =

0B@ I2 0 0

�2I2 2I2 �I2

1CA ; D = (I2 � I2 I2) :

Thus

�1 (�; �+1) =

0B@ �

�+1

1CA
0

M

0B@ �

�+1

1CA� 2
0B@ �

�+1

1CA
0

m; (115)

M = C 0PC +D0
�1D; m = C 0q: (116)

Note that �1 (�; �+1) is functionally similar to 
 (s) in (93), with � replaced by �+1:

Therefore, the subsequent transformations of �1 (�; �+1) are similar to those of 
 (s) outlined

above, except that integration in (�; �) is conditional on �+1, since it is f (�+1jY ) that is
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now being evaluated. M and m are partitioned conformably with
�
�0 �0+1

�
as

M =

0B@ M11 M12

M21 M22

1CA ; m =

0B@ m1

m2

1CA :

After transformation from � to (�; �), �1 (�; �+1) becomes

�� (�; �+1; �+1) = �0+1M22�+1 � 2�0+1m2 + a�� (�� r���)
2 � c���; (117)

with

a�� = e0�M11e�; r��� =
1

a��
(m1 �M12�+1)

0 e�; c��� = r���
p
a��:

Regrouping (114) and integrating with respect to �; we obtain

f (�+1jY ) =
j
j� 1

2

2�
exp

�
�1
2

�
�0+1M22�+1 � 2�0+1m2

��
(118)

�
Z �

1

� (�)
d��� exp

�
1

2
c�2��

��
m (�) d�;

where d��� obtains from (103) by substituting (a��; c
�
��) for (a�; c�) : Since m (�) is typically a

tight density in our application, the variance of the terms between brackets under the integral

sign is expected to be minimal, and the integral in (118) can be estimated accurately by MC

using the same EIS draws from m (�) used for the evaluation of `t:

7.2 Bearings-Only Tracking, Non-Singular Case

The computation of � (�) and CRN-EIS draws of (�; �; �) are the same as for the singular

case. The derivation of f (�t+DjYt) under the non-singular transition de�ned in (90) is

straightforward. As above, we suppress the index t; and replace t+D by +D: The product

g� (�) f (�+Dj�) in (92) depends on the quadratic form

� (�+D; �) = (�
0P�� 2�0q) + (�+D � AD�)V

�1
D (�+D � AD�) ; (119)
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which is rewritten as

� (�+D; �) = (�
0P0�� 2�0q0) + �0+DV

�1
D �+D; (120)

with

P0 = P + A0DV
�1
D AD; q0 = q + A0DV

�1
D �+D:

The integration with respect to � in (118) proceeds exactly as described in the singular case,

except that (P; q) are replaced by (P0; q0). Thus f (�+DjY ) is given by

f (�+DjY ) =
jVDj�

1
2

2�
exp

�
�1
2

�
�0+DV

�1
D �+D

��
(121)

�
Z �

1

� (�)
d0�� exp

�
1

2

�
s0��
�2��

m (�) d�;

where s0�� and d
0
�� are de�ned by (98) and (100), with (P; q) replaced by (P0; q0) : The EIS

evaluation of (121) parallels that of f (�+jY ) in (118).
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8 Tables and Figures

Figure 1. Conditional Log Likelihood Function for �.
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Figure 2. MSE decompositions, Stochastic Volatility Model.
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Table 3. DSGE Model

STANDARD PARTICLE FILTER

N Mean Stdev Time Rel. Time E¢ ciency

20000 438.561 0.206 5.7651 1.000

100000 438.545 0.0774 29.036 1.417

GAUSSIAN-EIS PARTICLE FILTER (R = 100)

200 438.621 0.0278 5.731 55.440

1000 438.633 0.0083 16.414 217.728

Note: Means and standard deviations are based on 100 Monte Carlo replications; Relative Time E¢ ciency is based on

N=20,000 for the SPF.
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Table 4. MLE Comparisons
.

STANDARD PARTICLE FILTER (N=20000)

True Stat. Moments Num. Moments

T=40 True Mean S:D:a S:D:b RMSE Mean S:D:c S:D:d

� 0.33 0.34559 5.888E-03 1.667E-02 0.34826 3.158E-03 5.765E-04

� 0.96 0.91989 1.843E-02 4.414E-02 0.93891 8.490E-03 1.550E-03

� 0.8 0.82840 2.899E-02 4.058E-02 0.81292 1.735E-02 3.168E-03

� 0.05 0.04802 4.363E-03 n/a 4.792E-03 0.05184 1.384E-03 2.527E-04

�l 0.014 0.01462 4.118E-03 4.165E-03 0.01588 6.831E-04 1.247E-04

�i 0.02 0.01955 2.030E-03 2.080E-03 0.02149 4.275E-04 7.804E-05

T=100

� 0.33 0.33404 5.701E-03 6.987E-03 0.33922 3.027E-03 5.527E-04

� 0.96 0.91995 1.568E-02 4.301E-02 0.94024 9.035E-03 1.650E-03

� 0.8 0.79697 1.961E-02 1.984E-02 0.82860 1.698E-02 3.100E-03

� 0.05 0.05413 3.348E-03 n/a 5.316E-03 0.05085 1.246E-03 2.275E-04

�l 0.014 0.01350 2.958E-03 3.001E-03 0.01416 6.052E-04 1.105E-04

�i 0.02 0.01991 1.259E-03 1.262E-03 0.02030 3.544E-04 6.470E-05

T=500

� 0.33 0.33162 5.440E-03 5.739E-03 0.33399 3.498E-03 6.386E-04

� 0.96 0.95501 1.523E-02 1.611E-02 0.95049 9.930E-03 1.813E-03

� 0.8 0.81776 1.599E-02 2.459E-02 0.80170 1.759E-02 3.212E-03

� 0.05 0.05238 2.579E-03 n/a 3.717E-03 0.05365 1.899E-03 3.468E-04

�l 0.014 0.01361 1.717E-03 1.849E-03 0.01400 4.898E-04 8.942E-05

�i 0.02 0.01971 5.413E-04 6.368E-04 0.01922 2.604E-04 4.754E-05

GAUSSIAN-EIS PARTICLE FILTER (N=200)

T=40 True Mean S:D:a S:D:b RMSE Mean S:D:c S:D:d

� 0.33 0.34071 2.389E-03 1.974E-03 1.097E-02 0.34868 1.652E-03 3.016E-04

� 0.96 0.93364 1.085E-02 n/a 2.851E-02 0.94006 4.442E-03 8.110E-04

� 0.8 0.81669 1.562E-02 1.145E-02 2.286E-02 0.81811 9.791E-03 1.788E-03

� 0.05 0.04879 3.193E-03 3.009E-03 3.416E-03 0.05425 9.340E-03 1.705E-03

�l 0.014 0.01535 2.276E-03 2.107E-03 2.646E-03 0.01594 2.415E-04 4.410E-05

�i 0.02 0.01984 1.586E-03 1.544E-03 1.594E-03 0.02155 2.349E-04 4.289E-05

T=100

� 0.33 0.33380 4.635E-03 3.977E-03 5.996E-03 0.33601 1.577E-03 2.880E-04

� 0.96 0.92038 1.557E-02 n/a 4.337E-02 0.93960 4.441E-03 8.109E-04

� 0.8 0.79867 1.764E-02 1.432E-02 1.769E-02 0.82182 9.667E-03 1.765E-03

� 0.05 0.05083 3.284E-03 3.312E-03 3.388E-03 0.05041 9.492E-03 1.733E-03

�l 0.014 0.01407 2.998E-03 2.919E-03 2.999E-03 0.01448 2.471E-04 4.512E-05

�i 0.02 0.01990 1.163E-03 1.214E-03 1.167E-03 0.02183 2.144E-04 3.914E-05

T=500

� 0.33 0.33032 2.235E-03 2.243E-03 2.385E-03 0.33095 1.395E-03 2.547E-04

� 0.96 0.95610 7.478E-03 n/a 8.830E-03 0.95744 7.988E-03 1.458E-03

� 0.8 0.81082 6.408E-03 6.199E-03 1.275E-02 0.80102 7.142E-03 1.304E-03

� 0.05 0.05108 1.064E-03 1.088E-03 1.559E-03 0.05031 4.068E-03 7.428E-04

�l 0.014 0.01400 7.206E-04 6.825E-04 7.623E-04 0.01400 2.193E-04 4.003E-05

�i 0.02 0.01997 2.295E-04 2.262E-04 2.444E-04 0.01998 1.891E-04 3.453E-05

a. Finite Sample S.D., b. Asymptotic S.D., c. S.D. of a single Draw, d. S.D. of the mean.
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