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Abstract

In the linear instrumental variables model with possibly weak instruments we
derive the asymptotic size of testing procedures when instruments locally violate
the exogeneity assumption. We study the tests by Anderson and Rubin (1949),
Moreira (2003), and Kleibergen (2005) and their generalized empirical likelihood
versions. These tests have asymptotic size equal to nominal size when the instru-
ments are exogenous but are size distorted otherwise. While in just-identi�ed
models all the tests that we consider are equally size distorted asymptotically,
the Anderson and Rubin (1949) type tests are less size distorted than the tests of
Moreira (2003) and Kleibergen (2005) in over-identi�ed situations. On the other
hand, we also show that there are parameter sequences under which the former
test asymptotically overrejects more frequently.
Given that strict exogeneity of instruments is often a questionable assumption,

our �ndings should be important to applied researchers who are concerned about
the degree of size distortion of their inference procedure. We suggest robustness
of asymptotic size under local model violations as a new alternative measure to
choose among competing testing procedures.
We also investigate the subsampling and hybrid tests introduced in Andrews

and Guggenberger (2010b) and show that they do not o¤er any improvement in
terms of size-distortion reduction over the Anderson and Rubin (1949) type tests.

Keywords: asymptotic size, invalid instruments, locally non-exogenous instru-
ments, size distortion, weak instruments

JEL Classi�cation Numbers: C01, C12, C20



1 Introduction

The last decade witnessed a growing literature on testing procedures for the
structural parameter vector in the linear instrumental variables (IVs) model that
are robust to potentially weak IVs, see Andrews and Stock (2007) for a survey.
The testing procedures have correct asymptotic size for a parameter space that
allows for weak IVs but under the maintained assumption that the IVs are ex-
ogenous, that is, uncorrelated with the structural error term. In an in�uential
paper, Bound, Jaeger, and Baker (1995) provide evidence on how slight violations
of the exogeneity assumption can cause severe bias in IV estimates especially in
situations when IVs are weak. Based on new evidence from medical and labor re-
search, they challenge the exogeneity of the IV �quarter of birth�in Angrist and
Krueger (1991) for educational attainment. As discussed below, the exogeneity
assumption of many other IVs in applied work remains questionable.
If that is the case, then based on which testing procedure should an applied

researcher conduct inference? Typically, competing tests are ranked according to
their relative power properties, see e.g. Andrews, Moreira, and Stock (2006). But,
given the not unlikely scenario of slight violations of the assumption of instrument
exogeneity, a reasonable concern is the degree at which the asymptotic size of tests
is distorted. Given a set of competing tests that all have correct asymptotic size
under instrument exogeneity and are consistent against �xed alternatives under
strong identi�cation, shouldn�t an applied researcher choose a test whose size is
the least a¤ected by instrument nonexogeneity?
The goal of this paper then is to rank various tests, that are robust to weak

IVs and consistent under strong IVs, with respect to the robustness of their
asymptotic size to slight violations of the exogeneity of the IVs. To the best of my
knowledge, this is the �rst paper to provide a ranking of tests according to their
robustness to non-exogenous IVs. More precisely, as the main contribution of the
paper, we determine the asymptotic size of the tests allowing for potentially weak
IVs, conditional heteroskedasticity, and locally non-exogenous IVs, i.e. IVs whose
correlation with the structural error term is of the order O(n�1=2); where n is the
sample size. The proposed ranking of the tests with respect to their robustness
to the exogeneity assumption of the IVs o¤ers an important alternative criterion
(besides the ranking with respect to power properties) to applied researchers who
have to make a choice about the inference procedure they rely on.
As expected, all the tests considered are asymptotically size distorted under

local instrument non-exogeneity but the tests vary in their degree of size dis-
tortion. In particular, we compare the asymptotic sizes of the Anderson and
Rubin (1949, AR), Moreira�s (2003, 2009) conditional likelihood ratio (CLR),
and Kleibergen�s (2005, K) Lagrange multiplier test, and their generalized em-
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pirical likelihood (GEL) counterparts, GELR�; CLR�; and LM�; respectively,
introduced in Guggenberger and Smith (2005), Otsu (2006), and Guggenberger,
Ramalho, and Smith (2008). The GEL tests have the same asymptotic sizes as
their AR, CLR, and K counterparts and we will mostly focus on the GEL tests
in the subsequent presentation.
We show that in the just identi�ed case, all three tests, GELR�; CLR�; and

LM� have the same asymptotic size. The latter two tests also have the same
asymptotic size in overidenti�ed models. However, in the overidenti�ed case, the
GELR� test has smaller asymptotic size than the CLR� and LM� tests with the
size advantage increasing as the degree of overidenti�cation increases. The size
advantage can be enormous when the degree of overidenti�cation is large. On the
other hand, a ranking of the testing procedures from a power perspective would
favor the CLR� and LM� tests over the GELR� test. The choice of a testing
procedure can therefore be viewed as a trade-o¤between improved average power
properties and size robustness to instrument non-exogeneity.
We also state a result that provides the limiting null rejection probabilities of

the various tests under certain parameter sequences. One main �nding is that the
limiting overrejection of the GELR� test is not always smaller than the one of
the CLR� and LM� tests. But, as proven in the asymptotic size result, the worst
asymptotic overrejection of the GELR� test is smaller than the worst asymptotic
overrejection of the CLR� and LM� tests in overidenti�ed models.
As an additional result, we show in the Appendix that asymptotically the

size-corrected subsampling and hybrid tests discussed in Andrews and Guggen-
berger (2010a,b), are not less size-distorted than the GELR� test under local
instrument non-exogeneity either.1 Given the relatively poor power properties of
the subsampling tests and the lack of guidance of how to choose the blocksize, it
would then seem hard to justify their use over the GELR� test.
Staiger and Stock (1997) also consider local violations of the exogeneity of

the IVs. They do so to calculate local power of tests of overidenti�cation. Fang
(2006) and Doko and Dufour (2008) derive the asymptotic distribution of the
Anderson and Rubin (1949) and Kleibergen (2005) test statistics under such local
violations. However, they do not derive the asymptotic size of the tests under
local instrument non-exogeneity. For related results see Berkowitz, Caner, and
Fang (2008). Conley, Hansen, and Rossi (2006) introduce sensitivity analysis of

1�Size-correction�here refers to the setup with possibly weak but exogenous IVs. The �size-
corrected� subsampling tests are size-distorted under locally non-exogenous IVs. All results
concerning subsampling tests are derived under the assumption of conditional homoskedastic-
ity. One step in the derivation of the lower bound of the asymptotic size of size-corrected
subsampling tests is based on simulations. We verify the claim for k = 1; :::; 25 instruments
and nominal sizes � = :01; :05; and :1.
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instrument non-exogeneity and provide methods of how to use �less-than-perfect
IVs�.
The paper is organized as follows. Section 2 describes the model and the

objective and gives a brief account of several applied papers that use questionable
IVs. Subsection 2.2 describes the various testing procedures that we investigate.
Section 3 states the main results of the paper about the asymptotic null rejection
probability and asymptotic size distortion of the tests under local instrument non-
exogeneity. The Appendix contains all the proofs and a discussion of subsampling
and hybrid tests.
We use the following notation. Denote by �2k(c

2) a noncentral chi-square
distribution with k degrees of freedom and noncentrality parameter equal to c2:
Denote by �2k;1��(c

2) the (1��)-quantile of the �2k(c2) distribution. When c2 = 0;
we also write �2k;1��: Denote by �k;c and �k;a random variables with distribution
�2k(c

2) and N(a; Ik); respectively, where Ik denotes the k-dimensional identity
matrix and a 2 Rk. When a = 0k; a k-vector of zeros, we also write �k for
�k;a: Denote by e

k
j the j-th unit vector in R

k: If A = (a1; :::; ap) 2 Rk�p then
vec(A) = (a01; :::; a

0
p)
0. By �min(A) we denote the smallest eigenvalue of A in

absolute value. For a 2 Rk denote by jjajj = (
Pk

j=1 jajj2)1=2 the Euclidean norm
of a and by aj the j-th component of a; j = 1; :::; k: For a full column rank matrix
A with k rows, de�ne PA = A(A

0
A)�1A0 andMA = Ik�PA. Let R1 = R[f�1g;

R+ = fx 2 R : x � 0g; and R+;1 = R+ [ f+1g:

2 The Model and Objective

Consider the linear IV model

y1 = y2� + u;

y2 = Z� + v; (2.1)

where y1; y2 2 Rn are vectors of endogenous variables, Z 2 Rn�k for k � 1 is a
matrix of IVs, and (�; �0)0 2 R1+k are unknown parameters. Denote by ui; vi; and
Zi the i-th rows of u; v; and Z; respectively, written as column vectors (or scalars)
and similarly for other random variables. Assume that f(ui; vi; Zi) : 1 � i � ng
are i.i.d. with distribution Fn:2 The goal is to test the hypothesis

H0 : � = �0 (2.2)

2Weaker assumptions as in Staiger and Stock (1997) or Guggenberger and Smith (2005)
would su¢ ce but substantially complicate the presentation. For example, errors that are mar-
tingale di¤erence sequences could be allowed for.
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against a two-sided alternative H1 : � 6= �0: To test (2.2), Dufour (1997) advo-
cates the Anderson and Rubin (1949) test. Kleibergen (2005) suggests the K
test, a modi�cation of the AR test aimed at improving the power properties in
overidenti�ed models. Moreira�s (2003) CLR test is shown to have near optimal
power properties, see Andrews, Moreira, and Stock (2006). Guggenberger and
Smith (2005), Otsu (2006), and Guggenberger, Ramalho, and Smith (2008) sug-
gest GEL analogues to the AR, K, and CLR tests. Andrews and Guggenberger
(2010b) show that a t-test using subsampling critical values has �almost�correct
asymptotic size and provide size-corrected and hybrid critical values based on
the theory developed in Andrews and Guggenberger (2009a). Stock and Wright
(2000) provide robust tests in a GMM context.
Denote by Tn(�0) a (generic) test statistic and by cn(1� �) the critical value

of the test at nominal size � for 0 < � < 1: The critical value may be non-random
or random, for example, it could be obtained from a subsampling procedure. The
�asymptotic size�for a test of (2.2) is de�ned as

AsySz(�0) = lim sup
n!1

sup

2�n

P�0;
(Tn(�0) > cn(1� �)); (2.3)

where 
 2 �n denotes the nuisance parameter vector and �n is the parameter
space that is allowed to depend on n: By P�0;
(�) we denote probability of an
event when the true values of � and the nuisance parameter vector equal �0 and

; respectively. The nuisance parameter vector is in�nite dimensional and is
composed of the reduced form coe¢ cient vector �n and the distribution Fn both
of which are allowed to depend on n (to simplify notation we sometimes suppress
a subindex n). Note that in (2.3) the sup
2�n is taken before the lim supn!1 :
This de�nition re�ects the fact that our interest is in the exact �nite-sample size
of the test sup
2�n P�0;
(Tn(�0) > cn(1��)). We use asymptotics to approximate
the �nite-sample size.
The identifying assumption in (2.1) is the exclusion restriction EFnZiui = 0;

where EFn denotes expectation when the distribution of (ui; vi; Zi) is Fn: This
leads to the moment restrictions

EFngi(�0) = 0; where gi(�) = Zi(y1i � y2i�): (2.4)

Assuming EFnZiui = 0, it can be shown that the tests of (2.2) mentioned above
satisfy AsySz(�0) = �: Also, they are consistent under the assumption that
jj�njj > " > 0: However, the assumption EFnZiui = 0 is often hard to justify. It
is therefore important to investigate the asymptotic size distortion of the various
tests under local failures of EFnZiui = 0: In this paper, we therefore calculate
AsySz(�0) for various tests, that are robust to weak IVs and consistent under
strong IVs, for a parameter space �n that includes IVs whose correlation with
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ui is of the order O(n�1=2): This allows us to rank the tests according to their
relative robustness to local failures of EFnZiui = 0: More precisely, for some
k � 1; c � 0; � > 0; and M < 1 (that do not depend on n) we consider the
following parameter space

�n = �n(k; c) = �n(k; c; �;M) = f(F; �) : � 2 Rk;
EFu

2
iZiZ

0
i = 
; EFZiZ

0
i = Q; EFv

2
iZiZ

0
i = S;EFuiviZiZ

0
i = V

for some 
; Q; S; V 2 Rk�k; such that jj
�1=2EFuiZijj � n�1=2c;EFZivi = 0;
�min(
) � �; �min(Q) � �; �min(S) � �; �min(S � V 
�1V ) � �;
EF jj(Z 0iui; Z 0ivi)0jj2+� �M ;

EF �jjZijZiljj1+�; jjZijZilZimuijj1+�; jjZijZiluivijj1+��

 �Mg (2.5)

for j; l;m = 1; :::; k: As made explicit in the notation, the parameter space de-
pends on n: It also depends on the number of IVs k and the upper bound on their
�non-exogeneity�c: The latter two quantities have an impact on the asymptotic
size of the tests. On the other hand, the constants � > 0 and M < 1 do
not have an impact on the asymptotic size of the tests considered. Importantly,
the parameter space allows for local violations jj
�1=2EFnuiZijj � n�1=2c of the
exogeneity assumption EFnZiui = 0: A similar setup is considered in Berkowitz,
Caner, and Fang (2008) who derive the asymptotic distribution of several test sta-
tistics under the assumption that EFnuiZi = n

�1=2c: The parameter space allows
for weak IVs by not bounding jj�njj away from zero. It also allows for conditional
heteroskedasticity by not imposing EFnu

2
iEFnZiZ

0
i = 
 and EFnv

2
iEFnZiZ

0
i = S.

Consistent with the reduced from interpretation of y2 = Z�+ v; we maintain the
assumption EFnviZi = 0:

2.1 Empirical examples

We now discuss several empirical examples where the assumption of exogenous
IVs remains questionable. Given this evidence, it is important to rank competing
testing procedures according to their robustness to instrument non-exogeneity.
Angrist and Krueger (1991) use �quarter of birth� and �quarter of birth�

interacted with other covariates as IVs for education in an earnings equation.
Depending on the speci�cation, the number of IVs varies between 3 and 180,
where in the �rst case three �quarter of birth dummies�are used as IVs and in
other cases these dummy variables are interacted with �year of birth�and �state
of birth�. The model is therefore moderately to highly overidenti�ed. Bound,
Jaeger, and Baker (1995) provide evidence from medical and labor research that
challenges the exogeneity of the IVs. Angrist (1990) studies the e¤ect of veteran
status on civilian earnings for men. Because veteran status may be endogenous,
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Angrist (1990) uses an IV approach using the draft lottery number for induction
during the Vietnam war as an IV. However, the exogeneity of this IV is question-
able because men with low lottery numbers may choose to obtain more education
in order to further defer the draft. Card (1995) studies the e¤ect of education
on earnings and uses proximity to a four-year college as a source of variation in
education outcomes in a wage regression. It seems plausible that proximity to a
college has an e¤ect on school attainment, but it does not seem implausible either
that it a¤ects wages through other channels than through increased educational
attainment alone. For instance, the academic environment could positively in-
�uence the ability of a person. Or, families that value education are more likely
to live close to a college and children of such families may be more motivated to
succeed in the labor market. Kane and Rouse (1995) is concerned with the same
problem as Card (1995) and uses distance of one�s high school from the closest
two-year and four-year college as well as public tuition levels in the state as IVs.
Acemoglu, Johnson, and Robinson (2001) are interested in the e¤ect of insti-
tutions on economic development and consider a regression of per capita GDP
on a measure of protection of property rights. They use data on the mortality
rates of soldiers, bishops, and sailors stationed in the colonies as an IV for insti-
tutional quality. However, mortality rates might impact economic development
not just through institutional quality, see Glaeser, La Porta, Lopez-de-Silanes,
and Shleifer (2004) and Kraay (2009) for alternative reasons. Miguel, Satyanath,
and Sergenti (2004) study the impact of economic conditions on the likelihood
of civil con�ict in agricultural African countries using rainfall variation as an IV
for economic growth. However, as discussed in their paper, rainfall may impact
the likelihood of war through other channels than economic conditions alone.
For example, severe rainfall may negatively a¤ect the infrastructure and make it
harder for government troops to contain rebels. For additional references, Kraay
(2009) argues that the exogeneity of the IVs used in Rajan and Zingales (1998)
and Frankel and Romer (1999) is questionable.
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2.2 Test statistics and critical values

We now introduce several test statistics Tn(�0) and corresponding critical values
cn(1� �) to test (2.2). The following notation will be helpful. Let

bg(�) = n�1 nP
i=1

gi(�);

bG(�) = n�1 nP
i=1

Gi(�); where Gi(�) = (@gi=@�)(�) 2 Rk;

b
(�) = n�1 nP
i=1

gi(�)gi(�)
0: (2.6)

For notational convenience, a subscript n has been omitted. Note that in the
linear model considered here Gi(�) = Gi = �Ziy2i = �ZiZ 0i� � Zivi: To de�ne
the GEL based tests introduced in Guggenberger and Smith (2005), let � be a
concave, twice-continuously di¤erentiable function V ! R, where V is an open
interval of the real line that contains 0. For j = 1; 2; let �j(v) = (@

j�=@vj)(v) and
�j = �j(0) and assume �1 = �2 = �1. The GEL, Smith (1997), criterion function
is given by bP�(�; �) = (2 nP

i=1

�(�0gi(�))=n)� 2�0: (2.7)

We usually write bP (�; �) for bP�(�; �).3 If it exists, let
�(�) be such that bP (�; �(�)) = max

�2b�n(�) bP (�; �); (2.8)

where b�n(�) = f� 2 Rk : �0gi(�) 2 V for i = 1; :::; ng:
2.2.1 Anderson-Rubin type tests

De�ne a test statistic as the renormalized GEL criterion function

GELR�(�0) = n bP�(�0; �(�0)): (2.9)

The GELR� test rejects the null if GELR�(�0) > �2k;1��: It has a nonparametric
likelihood ratio interpretation when �(v) = ln(1 � v), see Guggenberger and

3The most popular choices for � are �(v) = �(1+v)2=2, �(v) = ln(1�v); and �(v) = � exp v,
corresponding to the continuous updating estimator (CUE), empirical likelihood (EL), and
exponential tilting (ET), respectively. The CUE was introduced by Hansen, Heaton, and Yaron
(1996), EL by Owen (1988), Qin and Lawless (1994), Imbens (1997), and Kitamura (2001), and
ET by Kitamura and Stutzer (1997) and Imbens, Spady, and Johnson (1998).
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Smith (2005, p.678). See also Otsu (2006). For this test, Tn(�0) = GELR�(�0)
and cn(1� �) = �2k;1�� does not depend on n or the data.
Straightforward calculations show that GELR�(�0) = nbg(�0)0b
(�0)�1bg(�0)

when �(v) = �(1 + v)2=2: The latter statistic has been considered in Stock and
Wright (2000) and can be interpreted as a generalization of the Anderson and
Rubin (1949) statistic to a GMM context.

2.2.2 Lagrange multiplier tests

Breusch and Pagan (1980) were the �rst to introduce score-type tests in a general
framework. A Lagrange multiplier (LM) test statistic, designed for the weak IV
context, given as a quadratic form in the �rst order condition (FOC) of the GMM
CUE has been suggested in Kleibergen (2005) and Moreira (2009). Guggenberger
and Smith (2005) consider a modi�cation of this statistic based on the FOC of
the GEL estimator. Additional GEL variations of LM tests are discussed in Otsu
(2006). The test statistic in Guggenberger and Smith (2005) equals

LM�(�0) = nbg(�0)0b
(�0)�1=2Pb
(�0)�1=2D�(�0)b
(�0)�1=2bg(�0) (2.10)

for the random k-vector

D�(�) = n
�1

nP
i=1

�1(�(�)
0gi(�))Gi(�): (2.11)

The LM� test rejects the null if LM�(�0) > �
2
1;1��: For the LM� test, Tn(�0) =

LM�(�0) and cn(1� �) = �21;1�� does not depend on n or the data.
Under our assumptions, the test has the same �rst order properties as the

K test in Kleibergen (2005). Kleibergen�s (2005, eq.(21)) K test is based on the
statistic in (2.10) with D�(�0) replaced by

bD(�0) = � bG(�0) + n�1 nP
i=1

(Gi(�0)� bG(�0))gi(�0)0b
(�0)�1bg(�0): (2.12)

We changed the sign of bD(�0) to make it comparable to D�(�0) Also, in (2.12),b
(�0) could be replaced by the demeaned estimator n�1Pn
i=1 gi(�0)gi(�0)

0 �bg(�0)bg(�0)0 and gi(�0)0 by gi(�0)0 � bg(�0)0: These changes do not a¤ect the �rst
order properties of the test.

2.2.3 Conditional likelihood ratio test

Kleibergen (2005) and Kleibergen and Mavroeidis (2009) introduce an adapta-
tion of the conditional likelihood ratio test of Moreira (2003) to a GMM setup.
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Guggenberger, Ramalho, and Smith (2008) consider GEL versions of this test
with identical �rst order properties. The latter test statistic is de�ned as

CLR�(�0) =
1

2
fGELR�(�0)�rk�(�0)+

q
(GELR�(�0)� rk�(�0))2 + 4LM�(�0)rk�(�0)g;

(2.13)
where rk�(�) denotes a statistic appropriate for testing rank[limn!1E bG(�)] = 0
against rank[limn!1E bG(�)] = 1 based on D�(�), e.g. we consider

rk�(�) = nD�(�)
0 b�(�)�1D�(�); where

u(�) = y1 � y2�; bv = y2 � Zb�; b� = (Z 0Z)�1Z 0y2; andb�(�) = n�1 nP
i=1

bv2iZiZ 0i � (n�1 nP
i=1

u(�)ibviZiZ 0i)b
(�)�1(n�1 nP
i=1

u(�)ibviZiZ 0i)
(2.14)

is an estimator of the matrix de�ned in (4.37) that is consistent under the true null
� = �0. Upon observing rk�(�0); the critical value cn(1��) = c(1��; rk�(�0)) of
the test is given as the (1��)-quantile of the distribution of the random variable

clr(rk�(�0)) =
1

2
f�21 + �2k�1 � rk�(�0) +

q
(�21 + �

2
k�1 � rk�(�0))2 + 4�21rk�(�0)g;

(2.15)
where the chi-square distributions �21 and �

2
k�1 are independent. The critical

value, that can easily be obtained through simulation, is decreasing in rk�(�0)
and equals �2k;1�� and �

2
1;1�� when rk�(�0) = 0 and 1; respectively, see Moreira

(2003). We call the test with test statistic Tn(�0) = CLR�(�0) and critical value
cn(1� �) = c(1� �; rk�(�0)) the CLR� test.
Using GELR�(�0) with �(v) = �(1+v)2=2, replacing LM�(�0) by the statistic

K(�0) in Kleibergen (2005, eq. (21)) and D�(�0) by bD(�0) in (2.13) and (2.14),
one obtains the test statistic suggested in Kleibergen (2005, eq. (31)). The latter
test statistic has the same �rst order properties as the one in (2.13).

3 Asymptotic Results

In this section we �rst derive the asymptotic null rejection probability of the
tests along certain parameter sequences with local instrument non-exogeneity.
Using this result, we then derive the asymptotic size of the tests. Similar to
Andrews and Guggenberger (2009b, 2010a), to calculate the asymptotic size,
�worst case nuisance parameter sequences�f
!ng = f(F!n ; �!n)g � �!n ; n � 1;
for a subsequence !n of n have to be determined, such that the asymptotic null
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rejection probability lim supn!1 P�0;
!n (T!n(�0) > c!n(1 � �)) of the test along
f
!ng equals the asymptotic size of the test. In the Appendix it is shown that
f
!n;hg for a particular choice of h is such a sequence:
De�nition: For a subsequence !n of n 2 N we denote by

f
!n;h = (F!n;h; �!n;h)gn�1; (3.16)

for h = (h011; h
0
12; vec(h21)

0; :::; vec(h24)
0; h025)

0 2 R2k+4k2+k1 a sequence that satis�es
(i) 
!n;h 2 �!n for all n 2 N; (ii) !

1=2
n (EF!n;hu

2
iZiZ

0
i)
�1=2 (EF!n;huiZi) ! h11;

!
1=2
n �!n;h ! h12; and if jjh12jj = 1 then �!n;h=jj�!n;hjj ! h25, and (iii) EF!n;h
u2iZiZ

0
i ! h21; EF!n;hZiZ

0
i ! h22; EF!n;huiviZiZ

0
i ! h23; EF!n;hv

2
iZiZ

0
i ! h24; for

h11; h12; h25 2 Rk and h21; :::; h24 2 Rk�k as n!1; if such a sequence exists.4

By de�nition of �n in (2.5), one restriction for f
!n;h = (F!n;h; �!n;h)gn�1 to
exist for a given h, is that jjh11jj � c: Also, by the uniform moment restrictions
in (2.5), all components of h, except potentially those of h12; need to be �nite.
Then there are additional restrictions, e.g. h21; h22; and h24 are positive de�nite
matrices.5

We next derive the asymptotic null rejection probability of the tests under se-
quences f
n;h = (Fn;h; �n;h)gn�1: Recall that by �k;c we denote a random variable
with distribution �2k(c

2):

Lemma 1 The asymptotic null rejection probability of the tests of nominal size
� under sequences f
n;h = (Fn;h; �n;h)gn�1 is given by

P (�k;jjh11jj > �
2
k;1��)

for the GELR� test for any value of jjh12jj, by

P (�1;mh;D(h)
> �21;1��)

4If jjh12jj < 1 then h25 does not in�uence the limiting rejection probabilities of the tests
considered here, and can be de�ned arbitrarily.

5Because of these restrictions and interactions between the nuisance parameters, Assump-
tion A in Andrews and Guggenberger (2010a) that speci�es a product space for the nuisance
parameters, is violated and we cannot simply appeal to Theorem 1(i) in this paper to derive the
asymptotic size of the tests in Theorem 2 below. Also, we allow the nuisance parameter space
�n to depend on the sample size n. Andrews and Guggenberger (2009b, Assumptions A0, B0)
allow for a weakening of Assumption A in Andrews and Guggenberger (2010a) by requiring
instead that the test statistic converges to a limiting distribution Jh along subsequences of the
type 
!n;h: We don�t need to make Assumption B0 by using an alternative proof technique in
the proof of Theorem 2. For alternative conditions to calculate the asymptotic size of tests, see
Andrews, Cheng, and Guggenberger (2009).
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for the LM� and CLR� tests when jjh12jj =1, by

P ((�1 +mh;D(h))
2 > �21;1��)

for the LM� test when jjh12jj < 1, where �1 � N(0; 1) is independently distrib-
uted of mh;D(h), and by

P (CLR(h) > c(1� �; rh;D(h)))

for the CLR� test when jjh12jj <1. The random variables D(h); mh;d; CLR(h);
and rh;d for d 2 Rk are de�ned in (4.68), (4.70), (4.36), (4.76), and (4.38),
respectively. Note that mh;D(h) is nonrandom when jjh12jj =1:

Comment. The asymptotic null rejection probability of the GELR� test
depends on h only through jjh11jj while the other tests are also a¤ected by jjh12jj
and the other components of h: In the case jjh12jj = 1; the asymptotic rejec-
tion probability of the LM� and CLR� tests coincide but typically di¤ers when
jjh12jj <1:
To evaluate the relative distortion of the various tests, Table I lists the as-

ymptotic null rejection probability for various choices of the vector h; for various
number of IVs k; and degree of instrument �non-exogeneity�c2: More precisely,
Table I tabulates results for the GELR�, LM�; and CLR� tests for h11 = cek1;
h21 = h22 = h24 = Ik; h23 = 0 2 Rk�k; when jjh12jj =1 we consider three choices
for h25; namely h25 = ek1; e

k
2; and (e

k
1 + e

k
2)=2

1=2 and we consider three choices
for h12 with jjh12jj < 1; namely h12 = ek1; e

k
2; and (e

k
1 + e

k
2)=2

1=2. We consider
k = 5; 25 and c2 = 8 and 18:

Include Table I here

Table I provides a mixed message about the relative advantage in terms of
asymptotic overrejection of the null hypothesis of the three tests. While in Case
I, the GELR� test is always less distorted than the LM� and CLR� tests, the
opposite is always true in Case II. In fact, despite the use of non-exogenous
instruments, the latter two tests have asymptotic null rejection probability equal
to the nominal size in this case. In Case III, the GELR� test is less distorted
than the LM� and CLR� tests for k = 25 but slightly more distorted when k = 5:
In Cases IV-VI, the cases with weak instruments, the GELR� and CLR� tests
are roughly su¤ering from the same degree of distortion with a slight advantage
to the latter test. In these cases, the LM� test is the least distorted. The
di¤erences in asymptotic null rejection probability among the di¤erent tests can
be substantial. For example, when k = 25 and c2 = 8 this probability equals 27.9,
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80.7, and 80.7%, respectively, for the GELR�, LM�; and CLR� tests in Case I.
On the other hand, when k = 25 and c2 = 18 this probability equals 66.2, 4.9,
and 4.9% (up to simulation error), respectively, for the GELR�, LM�; and CLR�
tests in Case II.

In the proof of Theorem 2 it is shown that sequences of the type f
n;h� =
(Fn;h� ; �n;h�)gn�1 described now are �worst case sequences�when c > 0, in the
sense that along such sequences the asymptotic size of the GELR�, LM�; and
CLR� tests is realized. Let f
n;h� = (Fn;h� ; �n;h�)gn�1 denote a sequence as in
de�nition (3.16) with !n = n such that

C � n1=2(EFn;h�u
2
iZiZ

0
i)
�1=2(EFn;h�uiZi) = (EFn;h�u

2
iZiZ

0
i)
�1=2(EFn;h�ZiZ

0
i)�n;h�
(3.17)

for a k-vector C with jjCjj = c: Such sequences do indeed exist, as shown in the
proof of Theorem 2. Note that under f
n;h�g with c > 0; we have jjh�12jj = 1
and strong instrument asymptotics apply. Under such a sequence the GELR�
test has lower asymptotic overrejection of the null hypothesis than the LM� and
CLR� tests when k > 1 with the relative advantage growing as k increases. Case
I in Table I considers a sequence of that type.
On the other hand, under sequences f
n;h = (Fn;h; �n;h)gn2N with jjh12jj =1

and
�0n;hEFn;hZiZ

0
i(EFn;hu

2
iZiZ

0
i)
�1n1=2EFn;huiZi

(�0n;hEFn;hZiZ
0
i(EFn;hu

2
iZiZ

0
i)
�1EFn;hZiZ

0
i�n;h)

1=2
! 0 (3.18)

the LM� and CLR� tests have asymptotic null rejection probability equal to
the nominal size of the test, despite the fact that the instruments are locally
non-exogenous, whereas the GELR� test always asymptotically overrejects un-
less (EFn;hu

2
iZiZ

0
i)
�1=2n1=2EFn;huiZi ! 0: This follows from Lemma 7(ii) and the

de�nition of mh;D in (4.36). Therefore, under sequences as in (3.18), the GELR�
test has asymptotic overrejection of the null hypothesis as least as high as the
LM� and CLR� tests.6 Case II in Table I considers a sequence of that type.
The LM� and CLR� tests do not asymptotically overreject the null in this case
because mh;D(h) = 0 and (�1 +mh;D(h))

2 is distributed as �21:

6Sequences as in (3.18) do indeed exist and can be constructed just as f
n;h�g is constructed
on top of (4.46), with the only di¤erence being the choice of the vector �n;h as, for example,
cek2 for k � 2:
We performed an extensive Monte Carlo simulation (at sample size n = 200) of the null

rejection probabilities of the GELR�; LM�; and CLR� tests under instrument non-exogeneity.
Under parameter constellations that satisfy (3.17), we found that the �nite-sample results are
almost identical to the asymptotic results reported in Table II. For constellations as in (3.18),
the �nite-sample rejections of the LM� and CLR� tests are found to be close to the nominal
size. For brevity, we do not report these �nite-sample results.
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Given that the results of Lemma 1 and Table I imply that there is no uniform
ranking of the GELR�, LM�; and CLR� tests according to their asymptotic null
rejection probabilities under locally non-exogenous instruments, we now consider
the asymptotic size of the tests, introduced in Subsection 2.2. The asymptotic
size of the test is an important measure as it provides the �worst case�scenario.
The asymptotic size depends on the number of IVs k and the degree of their
�non-exogeneity� c as speci�ed in (2.5). The main result of the paper is the
following.

Theorem 2 Suppose in model (2.1) the parameter space is given by �n(k; c) in
(2.5) for some � > 0 and M <1. Then the following results hold true for tests
of nominal size �.
(i) For the GELR� test

AsySz(�0) = P (�k;c > �
2
k;1��):

(ii) For the LM� and CLR� tests

AsySz(�0) = P (�1;c > �
2
1;1��):

Comments. (1) When c = 0; that is when instruments are exogenous, the
theorem implies that all the tests considered have correct asymptotic size equal
to �: An analogous result for subsampled t tests in models with conditional ho-
moskedasticity was provided in Andrews and Guggenberger (2010b). Mikusheva
(2010) shows asymptotic validity of con�dence sets obtained from inverting the
CLR� test.
Not surprisingly, at the other extreme, as c!1; Theorem 2 implies that the

asymptotic size of all tests considered here goes to 1.

(2) The asymptotic size of the LM� and CLR� tests does not depend on the
number of IVs, whereas the one of the GELR� test decreases in k: For k = 1
all these tests have the same asymptotic size. However, for k > 1 and given
c2 > 0; the asymptotic size of the GELR� test is less distorted than the one
of the LM� and CLR� tests and considerably less distorted if k is large. This
relative robustness to instrument non-exogeneity is an important advantage of
the Anderson-Rubin type testing procedures and represents the key result of the
paper. Table II tabulates the asymptotic size results of the theorem for nominal
size � = 5%: For example, when c2 = 2 the GELR� test has asymptotic size
equal to 12.1% and 8.9% when k = 10 and 25; respectively, while the LM� and
CLR� tests have asymptotic size equal to 28.8%. Not surprisingly, for �xed k,
the asymptotic size of all tests considered converges to 1 as c2 !1. The slight
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di¤erences in Tables I and II under the �worst case sequences� are caused by
simulation error.

Include Table II here

Angrist and Krueger (1991) use �quarter of birth� and �quarter of birth�
interacted with other covariates as IVs for education in an earnings equation.
Depending on the speci�cation, the number of IVs varies between 3 and 180,
where in the �rst case three �quarter of birth dummies�are used as IVs and in
other cases these dummy variables are interacted with �year of birth�and �state
of birth�. The model is therefore moderately to extremely highly overidenti�ed.
In the latter scenario with 180 IVs, the GELR� test is substantially more robust
to instrument non-exogeneity than the LM� and CLR� tests. E.g. when c2 = 8
the former test has asymptotic size of 11.3% while the one of the latter tests
equals 80.5%.

(3) An important question concerns the robustness of the results in Theo-
rem 2, in particular the dominance in terms of asymptotic size distortion of the
GELR� test over the LM� and CLR� tests in overidenti�ed models, with respect
to the choice of norm in the condition jj
�1=2EFuiZijj � n�1=2c in �n(k; c) in
(2.5). Does the dominance continue to hold if �n(k; c) is de�ned exactly as in
(2.5) but with jj
�1=2EFuiZijj � n�1=2c replaced by jj
�1=2EFuiZijjp � n�1=2c;

where jjxjjp � (
Pk

j=1 jxjjp)1=p for x 2 Rk and p � 1 is picked di¤erent from
2? Denote the so modi�ed parameter space by �pn(k; c): The dominance result
obtained in Theorem 2 is robust to other norms. We provide the argument for
the two extreme cases �1n(k; c) and �

1
n (k; c): First, regarding �

1
n(k; c), because

jj
�1=2EFuiZijj2 � jj
�1=2EFuiZijj1 we have �1n(k; c) � �2n(k; c): The �worst case
sequence� f
n;h� = (Fn;h� ; �n;h�)gn�1 constructed on top of (4.46) for �2n(k; c)
has n1=2(EFn;h�u

2
iZiZ

0
i)
�1=2(EFn;h�uiZi) = cek1. The norm of this vector equals

c both for jj � jj1 and for jj � jj2: This implies that the �worst case sequence�
f
n;h�g in �2n(k; c) is also in �1n(k; c) and that therefore the results of Theo-
rem 2 are unaltered when �2n(k; c) is replaced by �

1
n(k; c) in the formulation of

the theorem. Second, the same proof idea, of �nding a �worst case sequence�
f
n;h�g in �2n(k; c) that is also in the smaller set �1n(k; c); can be adjusted to the
case when the parameter space is given by �1n (k; c): Because jjxjj2 � k1=2jjxjj1
for x 2 Rk (with equality when all components of x are equal), it follows that
�1n (k; k

�1=2c) � �2n(k; c): Take a �worst case sequence�f
n;h� = (Fn;h� ; �n;h�)gn�1
in �2n(k; c) that satis�es (3.17) and is such that n

1=2(EFn;h�u
2
iZiZ

0
i)
�1=2(EFn;h�uiZi)

has all components equal. This is possible, and for the case k = 2 we give an
explicit example in (4.47) of the Appendix. The �worst case sequence�f
n;h�g for
�2n(k; c) is therefore also in �

1
n (k; k

�1=2c) and thus a �worst case sequence�for that
parameter space. It follows that with parameter space given by �1n (k; k

�1=2c);

14



the asymptotic size of the GELR� test equals P (�k;c > �
2
k;1��) and for the LM�

and CLR� tests it equals P (�1;c > �
2
1;1��):

(4) Note that the asymptotic size results in Theorem 2 of the various tests do
not depend on the choice of the function � as long as � satis�es the restrictions
given on top of (2.7).

(5) In the proof of Theorem 2 it is shown that under sequences f
n;h�g as
in (3.17), the asymptotic null rejection probability of the GELR� test equals
P (�k;c > �2k;1��) and equals P (�1;c > �21;1��) for the LM� and CLR� tests.
By Theorem 2 this then proves that f
n;h�g is a �worst case sequence�. The
asymptotic size is a measure for the highest asymptotic null rejection probability.
Therefore, even though the asymptotic size of the LM� and CLR� tests is higher
than the asymptotic size of the GELR� test in overidenti�ed models, the results
in Table I show that under certain sequences f
n;hgn2N ; the asymptotic null
rejection probability of the LM� and CLR� tests is lower than the one of the
GELR� test.

(6) The above analysis shows that there is a trade-o¤ between local power
and asymptotic size distortion when instruments may be locally non-exogenous
when using the LM� and CLR� tests versus the GELR� test. For given c; k;
and �; we can design randomized versions of the LM� and CLR� tests that have
the same asymptotic size as the GELR� test and an interesting question then
concerns the relative local power properties of these tests and the GELR� test.
More precisely, consider for example the randomized test statistic

LMR
� = B � LM� + (1�B) � �1;0; (3.19)

whereB = B(c; k; �) is a Bernoulli random variable that equals 1 with probability
� and 0 with probability 1� �; where

� = �(c; k; �) =
P (�k;c > �

2
k;1��)� �

P (�1;c > �
2
1;1��)� �

(3.20)

and the central chi-square distribution �1;0; LM�; and B are independent. The
randomized version of the LM� test rejects if LMR

� > �21;1��: Given the choice
of �(c; k; �); Theorem 2 immediately implies that the asymptotic size of this test
equals P (�k;c > �

2
k;1��), that is, it equals the asymptotic size of the GELR� test.

Consider now local power against Pitman drifts when instruments are strong and
exogenous. Assume the true parameter is given by � = �0 + n

�1=2q for some
q 2 R and the data generating process is otherwise �xed. Under weak moment
restrictions on (ui; vi; Zi); Theorems 2.2 and 2.3 in Guggenberger (2003) imply
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that the asymptotic rejection probability of the GELR� and LM� tests is given
by P (�k;d > �

2
k;1��) and P (�1;d > �

2
1;1��); respectively, where

d = jjh�1=221 h22�qjj: (3.21)

This immediately implies that the asymptotic rejection probability of the gLM�

test is given by �P (�1;d > �
2
1;1��) + (1 � �)�: We simulate these expressions for

c; d = 1; 2; :::; 10; k = 2; 5; 10; and � = 5% and Table III provides a subset of the
simulation results when c = 3 and k = 5.

Include Table III here

The simulation results show that when c < d the GELR� test has higher local
power than the gLM� test and vice versa.

(7) The limit distributions of the test statistics under locally non-exogenous
IVs derived in Lemma 7 resemble the limit distributions of the test statistics under
local alternatives (of the strongly identi�ed parameter �) or �xed alternatives (of
the weakly identi�ed parameter �) and exogenous IVs, see Guggenberger (2003,
Chapter 2) and Guggenberger and Smith (2005, Theorems 3 and 4). The results
in Theorem 2 suggest that tests with higher local power are less robust to local
instrument non-exogeneity. However, this relationship is not as simple as it might
seem. For example, Guggenberger (2003) shows that the LM� test has higher local
power than theGELR� test against Pitman drifts � = �0+n�1=2q for any direction
q (in a model that allows for vector-valued �). However, as shown above, it is not
the case that the GELR� test has smaller asymptotic null rejection probability
than the LM� test under every sequence of correlations between ui and Zi that
is of order n�1=2: An example is given in (3.18).
The asymptotically highest null rejection probability of all tests considered

is achieved under strong instrument asymptotics, see the parameter sequence in
(3.17). Most papers dealing with locally non-exogenous IVs work out the limit
distribution of the test statistics under weak instrument asymptotics. However,
as shown in Theorem 2 and (3.17), weak instrument asymptotics do not deter-
mine the asymptotic size of the test. A major technical challenge in the proof
of Theorem 2, particularly for the CLR� test, is to demonstrate that the size
distortion under any weak instrument sequence does not exceed the size distor-
tion under the strong instrument sequence in (3.17). This seems intuitive but
is by no means obvious. In Monte Carlo simulations, Guggenberger and Smith
(2005, p. 695, line 19) �nd power of almost 100% of the GELR�, LM�; and
CLR� tests against a certain alternative for a certain parameter constellation
with �very small� jj�jj.
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(8) Related to the previous comment, assume a test of (2.2) of nominal size
� has limiting local power exceed � against a Pitman drift � = �0 + n

�1=2q
for some �nite q 2 R when instruments are exogenous and (for simplicity) �
and the distribution F of (ui; vi; Zi) do not depend on n; and F has (4 + �)
moments �nite. Then the asymptotic size of the test must exceed � under the
parameter space �n(k; c) in (2.5) for c = (1 + ")jjq(EFu2iZiZ 0i)�1=2(EFZiZ 0i)�jj
for any " > 0: To see this, note that if instead of from y1 = y2(�0 + n

�1=2q) + u;
y2 = Z�+v; the data are generated from y1 = y2�0+eu with eu = u+n�1=2qy2 and
y2 = Z� + v, then the observed data (y1; y2; Z) are identical in both cases. But
in the latter case, the data are in �n(k; c) because n1=2(EF eu2iZiZ 0i)�1=2(EF euiZi)
! q(EFu

2
iZiZ

0
i)
�1=2(EFZiZ

0
i)�.

(9) An interesting question concerns the existence of tests that are (i) con-
sistent under strong instrument asymptotics, (ii) have correct asymptotic size
under exogenous but potentially weak IVs, and (iii) are more robust to locally
non-exogenous IVs than the GELR� test. In the Appendix we show that size-
corrected subsampling and hybrid t-tests, as examined in Andrews and Guggen-
berger (2010b), do not improve over the GELR� test in terms of asymptotic size
distortion. One step in the proof is based on simulations: We verify the claim
for k = 1; :::; 25 IVs and nominal sizes � = 1; 5; and 10%. Because the size-
correction constants, needed for the size-corrected subsampling test, are hard to
calculate under conditional heteroskedasticity, for simplicity, we assume condi-
tional homoskedasticity when investigating the asymptotic size of subsampling
and hybrid tests, i.e. we assume that in �n(k; c) in (2.5)

EF (u
2
i ; v

2
i ; uivi)ZiZ

0
i = EF (u

2
i ; v

2
i ; uivi)EFZiZ

0
i (3.22)

and EF (jjuijj2+�; jjvijj2+�) � M: Note that the �worst case sequence� f
n;h� =
(Fn;h� ; �n;h�)gn�1 discussed in the proof of Theorem 2 in the Appendix satis�es
(3.22) and therefore the results in Theorem 2 continue to hold under (3.22).
We also experimented with size-corrected subsampling and hybrid tests in �nite-
sample simulations (not reported here) that con�rm that subsampling tests do
not improve over the size-distortion of the GELR� test.

(10) A routinely used approach in applied work is to �rst test overidentifying
restrictions if the model is overidenti�ed, see e.g. Hansen (1982). However, as
shown in Guggenberger and Kumar (2009) if a test of overidenti�cation is used as
a pretest, conditional on not rejecting the pretest null hypothesis of exogeneity,
a hypothesis test conducted in the second stage has asymptotic size equal to one
- even if weak instrument asymptotics are ruled out.

(11) The methods of the paper could also be applied to derive the asymp-
totic size of testing procedures in a model that allows for many weak IVs that
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are locally non-exogenous, see Chao and Swansson (2005) and Han and Phillips
(2006) as important references to the many weak IVs literature. While all tests
considered in the current paper are size-distorted under local instrument non-
exogeneity, Caner (2007) �nds that in a many weak IV setting the pointwise
asymptotic null rejection probability of the AR test equals the nominal size when
only �nitely many IVs are locally non-exogenous. Such a result seems consistent
with the �ndings in Table II. Bugni, Canay, and Guggenberger (2009) apply sim-
ilar methods as in the current paper to compare the robustness of the various
inference methods for models de�ned by moment inequality restrictions, see e.g.
Chernozhukov, Hong, and Tamer (2007), Andrews and Guggenberger (2009b),
and Andrews and Soares (2010), and references therein, when the inequality re-
strictions may be locally violated.

4 Appendix

The Appendix shows that size-corrected subsampling and hybrid t-tests do not
have smaller asymptotic size than the GELR� test under local instrument non-
exogeneity. It also contains the proof of Theorem 2. The proof hinges on several
preliminary lemmas stated in Subsection 4.2.

4.1 Subsampling tests

As in Andrews and Guggenberger (2010b), AG from now on, de�ne the partially-
and fully-studentized t-test statistics as follows:

T Pn (�0) = j
n1=2(b�n � �0)b�n j for b�n = y02PZy1

y02PZy2
; b�n = (n�1y02PZy2)�1=2;

T Fn (�0) =
T Pn (�0)b�u for b�2u = (n� 1)�1(y1 � y2b�n)0(y1 � y2b�n): (4.23)

Note that T Pn (�0) does not employ an estimator of �u = (EFu
2
i )
1=2:

To describe the subsampling critical value cn(1��) = ctn;b(1��) for t = F; P ,
let fbn : n � 1g be a sequence of subsample sizes that satis�es bn ! 1 and
bn=n! 0 as n!1, see Politis and Romano (1994): For brevity, we write bn as
b: The number of data subsamples of length b is qn = n!=((n� b)!b!): Let Ltn;b(x)
and ctn;b(1 � �) denote the empirical distribution function and (1 � �)-quantile,
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respectively, of subsample statistics fT tn;b;j(�0) : j = 1; :::; qng; t = F; P;

Ltn;b(x) = q
�1
n

qnX
j=1

1(T tn;b;j(�0) � x) for x 2 R and

ctn;b(1� �) = inffx 2 R : Ltn;b(x) � 1� �g; (4.24)

where in the partially-studentized case T Pn;b;j(�0) = jb1=2(b�n;b;j � �0)=b�n;b;jj andb�n;b;j and b�n;b;j are analogues of b�n and b�n; respectively, based on the data in the
j-th subsample of length b rather than the entire data set. In the fully-studentized
case, T Fn;b;j(�0) = jb1=2(b�n;b;j � �0)=(b�n;b;jb�u;b;j)j; where b�u;b;j is the analogue to b�u
based on the data in the j-th subsample of length b:
The nominal level � symmetric two-sided size-corrected partially- or fully-

studentized subsampling t-test rejects H0 if

T tn(�0) > c
t
n;b(1� �) + �t(�; k); (4.25)

where �t(�; k) is a size-correction adjustment introduced in AG that is such that
the resulting test has correct asymptotic size when c = 0 in (2.5) under (3.22).
Finally, the two-sided hybrid t-test in AG rejects when

T Pn (�0) > maxfcPn;b(1� �); b�uz1�(�=2)g; (4.26)

where z� denotes the � quantile of a standard normal distribution. AG establish
that the test has correct asymptotic size when c = 0 and (3.22) holds.
The subsampling and hybrid tests discussed above are equivalent to analogous

tests de�ned with T tn(�0); T
t
n;b;j(�0); and b�u replaced by

T tn(�0)=�u; T
t
n;b;j(�0)=�u; and b�u=�u; (4.27)

respectively. (They are �equivalent� in the sense that they generate the same
critical regions.) The reason is that for all of the tests above 1=�u scales both the
test statistic and the critical value equally. We determine the asymptotic size of
the tests written as in (4.27) because this simpli�es certain expressions.
We now describe the size-correction adjustments �t(�; k): AG consider the

model when c = 0 in (2.5) and (3.22) holds. AG de�ne the nuisance parameter
vector 
 = (
1; 
2; 
3)


1= jj(EFZiZ 0i)1=2�=�vjj; 
2 = �; and 
3 = (F; �); where
�2v=EFv

2
i ; � = CorrF (ui; vi) (4.28)

with parameter spaces for 
1 and 
2 equal to �1 = R+ and �2 = [�1; 1]: For
given (
1; 
2) 2 �1��2; the parameter space �3(
1; 
2) for 
3 is restricted by the
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conditions in �n(k; 0) and the further restrictions in (3.22), jj(EFZiZ 0i)1=2�=�vjj =

1; and � = 
2. De�ne the localization parameter h = (h1; h2)

0 2 H with
parameter space H = R+;1 � [�1; 1]:7 For h 2 H; let f
n;h : n � 1g denote a
sequence of parameters with subvectors 
n;h;j for j = 1; 2; 3 de�ned by


n;h;1 = jj(EFnZiZ 0i)1=2�n=(EFnv2i )1=2jj; 
n;h;2 = CorrFn(ui; vi);
n1=2
n;h;1 ! h1; 
n;h;2 ! h2; and 
n;h;3 = (Fn; �n) 2 �3(
n;h;1; 
n;h;2):(4.29)

AG (Sections 3.3 and 3.6) show that the asymptotic distributions J th (de�ned in
AG (3.16) and (3.17)) of the statistic T tn(�0) under f
n;hg depend only on h 2 H
and that the size-correction adjustments equal

�t(�; k) = sup
(g;h)2GH

(cth(1� �)� ctg(1� �)); (4.30)

where cth(1� �) denotes the (1� �)-quantile of J th and

GH = f(g; h) 2 H �H : g = (g1; g2); h = (h1; h2); g2 = h2; and

(i) g1 = 0 if jh1j <1; (ii) g1 2 R+;1 if h1 = +1g: (4.31)

We now show that the size-corrected subsampling and hybrid tests have as-
ymptotic size at least as large as the asymptotic size of the GELR� test under
(3.22) when c > 0 in (2.5). As explained below, one step in the proof is based on
simulations.

Theorem 3 Suppose in model (2.1) the parameter space is given by �n(k; c) in
(2.5) for some � > 0 and M < 1 with the additional restrictions stated in
(3.22). Then, for given nominal size �; the size-corrected subsampling and hybrid
tests de�ned in (4.25) and (4.26) have asymptotic size at least as large as the
asymptotic size of the GELR� test.

Proof. Simulations reveal that �t(�; k) = supg2H(c
t
1(1 � �) � ctg(1 � �)):8

For given " > 0; let g" 2 H be such that

�t(�; k)� " < ct1(1� �)� ctg"(1� �): (4.32)

7Note that we use the same notation h and 
n;h for a di¤erent localization parameter and
nuisance parameter sequence in (3.16) in Section 3 for the model with conditional heteroskedas-
ticity and local instrument non-exogeneity.

8We checked this claim for k = 1; :::; 25; � = 1%; 5%; and 10% using 100,000 draws from the
distribution of J th searching over h = (h1; h2)

0 with h1 2 [0; 20] and stepsize .05 and h2 2 [�1; 1]
with stepsize :05:

20



For given g" = (g"1; g"2)0 2 H choose a parameter sequence f
n = (Fn; �n) 2 �n :
n � 1g satisfying (3.22), EFnZiZ 0i = Ik; EFnu2i = EFnv2i = 1; CorrFn(ui; vi)! g"2;
and such that for all n; n1=2(EFnuiZi) = c�n=jj�njj; where

�n = b
�1=2g"1e

k
1; if g"1 > 0 and �n = (bn)

�1=4ek1; if g"1 = 0: (4.33)

This can be easily achieved with a construction similar to the one used for f
n;h�g
in the proof of Theorem 2. It follows that under 
n we have n

1=2jj�njj ! 1;b�2u=�2u !p 1 (see AG, eq. (5.5) and (5.15)), and by a slight modi�cation of AG eq.
(5.10) and (5.13) using the central limit theorem (CLT) (n�1Z 0Z)�1=2n�1=2Z 0u=�u
!d N(ce

k
1; Ik) we have

T tn(�0)!d jN(c; 1)j (4.34)

for t = P; F:On the other hand, because b1=2(EFnuiZi)! 0k; b
1=2jj(EFnZiZ 0i)1=2�n=

(EFnv
2
i )
1=2jj = b1=2jj�njj ! g"1; and CorrFn(ui; vi)! g"2 by construction, the sub-

sampling critical value converges in probability to ctg"(1 � �), see Andrews and
Guggenberger (2010a), Lemma 6. Therefore, by (4.32), the limit of the size-
corrected subsampling value is bounded by

ctg"(1� �) + sup
g2H
(ct1(1� �)� ctg(1� �))

� ctg"(1� �) + c
t
1(1� �)� ctg"(1� �) + "

= ct1(1� �) + "
= z1��=2 + ": (4.35)

Because " > 0 was arbitrary, it follows that the asymptotic size of the (partially-
and fully-studentized) size-corrected subsampling test is at least as large as
the probability that j�1;cj > z1��=2; where �1;c � N(c; 1): But by Theorem
2(i), this probability equals the asymptotic size of the GELR� test. Under
the same sequence described in (4.33), the hybrid critical value maxfcn;b(1 �
�); (b�u=�u)z1��=2g converges in probability to z1��=2 and therefore the asymp-
totic size of the hybrid test is at least as large as the one of the GELR� test.
�

4.2 Auxiliary lemmas

We �rst provide several preliminary lemmas that are helpful in deriving the
limit distributions of the GEL test statistics in Lemma 7. For �with proba-
bility approaching 1�we write �w.p.a.1�. Let en � n�1=2max1�i�n jjgi(�0)jj. Let
�n = f� 2 Rk : jj�jj � n�1=2e�1=2n g if en > 0 and �n = Rk otherwise.
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Lemma 4 Assume max1�i�n jjgi(�0)jj = op(n1=2):
Then sup�2�n;1�i�n j�

0gi(�0)j !p 0 and �n � b�n(�0) w.p.a.1, where b�n(�) is
de�ned below (2.8).

Lemma 5 Suppose max1�i�n jjgi(�0)jj = op(n
1=2), �min(b
(�0)) � " w.p.a.1 for

some " > 0, and bg(�0) = Op(n�1=2).
Then �(�0) 2 b�n(�0) satisfying bP (�0; �(�0)) = sup�2b�n(�0) bP (�0; �) exists

w.p.a.1, �(�0) = Op(n�1=2); and sup�2b�n(�0) bP (�0; �) = Op(n�1).
Lemma 6 In model (2.1) with parameter space given in (2.5), the following hold
under the null: (i) max1�i�n jjgi(�0)jj = op(n

1=2), (ii) �min(b
(�0)) � " w.p.a.1
for some " > 0, and (iii) bg(�0) = Op(n�1=2).
Lemma 7 Assume the parameter space for model (2.1) is given by (2.5) and the
null is true. For a vector D 2 Rk de�ne

mh;D = (D
0h�121D)

�1=2D0h
�1=2
21 h11 2 R (4.36)

and
�(h) = h24 � h23h�121 h23: (4.37)

Denote by D(h) 2 Rk the limit random variable, de�ned in (4.68) and (4.70),
of the appropriately renormalized vector D�(�0). Note that D(h) and mh;D(h) are
nonrandom when jjh12jj =1. Under f
n;hgn�1 the following holds.

(i) GELR�(�0)!d �
2
k(jjh11jj2);

(ii) LM�(�0)!d (�1 +mh;D(h))
2;

where �1 � N(0; 1) is independently distributed of mh;D(h). If jjh12jj < 1; the
limit distributions of the test statistics conditional on D(h) = d 2 Rk; are (i)
again �2k(jjh11jj2) and (ii) (�1 +mh;d)

2 � �21(m2
h;d):

(iii) If jjh12jj = 1 then CLR�(�0) !d (�1 + mh;D(h))
2 which is the same

�21(m
2
h;D(h)) limit distribution as for LM�(�0) in (ii). De�ne

rh;d = d
0�(h)�1d: (4.38)

If jjh12jj <1; the limit distribution of CLR�(�0) conditional on D(h) = d is
1

2
f�21(m2

h;d) + �
2
k�1(jjh11jj2 �m2

h;d)� rh;d +q
(�21(m

2
h;d) + �

2
k�1(jjh11jj2 �m2

h;d)� rh;d)2 + 4�21(m2
h;d)rh;dg (4.39)

for independent chi-square random variables �21(m
2
h;d) and �

2
k�1(jjh11jj2 �m2

h;d):
Note that mh;d and rh;d are non-random.

We use Jh;d as the generic notation for the asymptotic distribution of the three
test statistics conditional on D(h) = d.
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4.3 Proofs

Proof of Lemma 1. In the case jjh12jj =1; Lemma 7 gives the continuous lim-
iting distributions, �2k(jjh11jj2) and �21(m2

h;D(h)); of the test statistics GELR�(�0);
LM�(�0); and CLR�(�0) under the sequence of nuisance parameters f
n;hg: By
an argument as in the proof of Lemma 7(iii) it follows that for the CLR� test,
the critical value converges in probability to �21;1�� when jjh12jj =1: The result
then follows by the de�nition of �convergence in distribution�.
Consider now the case jjh12jj < 1: The proof for the GELR�(�0) test is the

same as for the case jjh12jj =1: For the CLR� test, recall that c(1� �; r) is the
(1� �)-quantile of the distribution of clr(r) for �xed r and the random variable
clr(r) is de�ned in (2.15) when rk(�0) is replaced by the constant r: We �rst
show that c(1 � �; r) is a continuous function in r 2 R+: To do so, consider
a sequence rn 2 R+ such that rn ! r 2 R+: Clearly clr(rn) !d clr(r): By the
de�nition of �convergence in distribution�it then follows that for every continuity
point y of GL(x) � P (clr(r) � x) we have Ln(y) � P (clr(rn) � y) ! GL(y).
The distribution function GL(x) is increasing at its (1� �)-quantile c(1� �; r).
Therefore, by Andrews and Guggenberger (2010a, Lemma 5), it follows that
c(1��; rn)!p c(1��; r) and because these quantities are actually nonrandom,
we get c(1� �; rn)! c(1� �; r): This establishes continuity.
Using the continuous mapping theorem (CMT), as done to obtain (4.76), it

follows that CLR�(�0) � c(1 � �; rk�(�0)) !d CLR(h) � c(1 � �; rh;D(h)) and
therefore by the de�nition of convergence in distribution, we have

P�0;
!n;h(CLR�(�0) > c(1��; rk�(�0)))! P (CLR(h) > c(1��; rh;D(h))); (4.40)

which we had to show. The proof for the LM�(�0) test follows by an analogous
but easier argument because its critical value �21;1�� is nonrandom. �
Proof of Theorem 2. Use generic notation Tn(�0) and cn(1��) for the various
test statistics and critical values considered here. By the de�nition of asymptotic
size, for each test there is f
n = (Fn; �n)gn�1 with 
n 2 �n such thatAsySz(�0) =
lim supn!1 P�0;
n(Tn(�0) > cn(1 � �)): We can then �nd a subsequence f!ng
of fng such that lim supn!1 P�0;
!n (T!n(�0) > c!n(1 � �)) = AsySz(�0) and
besides (i), also (ii) and (iii) below (3.16) hold for f
!ngn�1: That is, for a certain
h = (h011; h

0
12; vec(h21)

0; :::; vec(h24)
0; h025)

0 2 R2k+4k2+k1

AsySz(�0) = lim sup
n!1

P�0;
!n;h(T!n(�0) > c!n(1� �)): (4.41)

As the next step, we complete this �worst case�sequence f
!n;h = (F!n ; �!n)gn�1g;
where we leave out a subindex h in F!n and �!n to simplify notation, to a sequence
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f
n;h = (Fn;h; �n;h)gn�1 that satis�es (ii) and (iii) below (3.16) with !n = n. We
are left to de�ne 
p;h for p 6= !n. To do so, �nd the n for which !n < p < !n+1:
Let (ui; vi; Z 0i)F!n and (ui; vi; Z

0
i)F!n+1 be random (k+2)-vectors with distributions

F!n and F!n+1, respectively. De�ne a random vector

(ui; vi; Z
0
i) = Bp(ui; vi; Z

0
i)F!n + (1�Bp)(ui; vi; Z

0
i)F!n+1 ; (4.42)

where Bp is a Bernoulli random variable (independent of F!n and F!n+1) that
equals 1 with probability �p and 0 with probability 1� �p; where

�p = (p
�1=2 � !�1=2n+1 )=(!

�1=2
n � !�1=2n+1 ): (4.43)

Note that �p 2 (0; 1): De�ne Fp;h as the distribution of the random vector
(ui; vi; Z

0
i) de�ned in (4.42). Complete the de�nition of 
p;h by setting �p;hj =

p�1=2h12j if h12j < 1 and let �p;hj = �!n;hj if jh12jj = 1. Clearly �p;h=jj�p;hjj
converges to h25 in case jjh12jj =1:
Note that the completed sequence f
p;hg = f(Fp;h; �p;h)g thus de�ned is not

necessarily an element of �p = �p(k; c; �;M) and therefore, strictly speaking, the
notation f
p;hg is not fully appropriate. The reason is that some of the minimum
eigenvalue conditions �min(EFp;hu

2
iZiZ

0
i) � �; �min(EFp;hZiZ 0i) � �::: and the con-

dition jj(EFp;hu2iZiZ 0i)�1=2 EFp;huiZijj � p�1=2c in (2.5) may be violated. We show
next that for large enough p; we have 
p;h = (Fp;h; �p;h) 2 �p(k; 2c; �=2;M): Note
that

EFp;hu
2
iZiZ

0
i = �pEF!nu

2
iZiZ

0
i + (1� �p)EF!n+1u

2
iZiZ

0
i

= h21 + o(1) as p!1; (4.44)

where the second equality holds because EF!nu
2
iZiZ

0
i ! h21 as n ! 1: Analo-

gously, EFp;hZiZ
0
i ! h22; EFp;huiviZiZ

0
i ! h23; EFp;hv

2
iZiZ

0
i ! h24 as p!1: Fur-

thermore, under f
p;hgp�1; p1=2�p;h ! h12 and p1=2(EFp;hu
2
iZiZ

0
i)
�1=2EFp;huiZi !

h11: The latter holds because

p1=2(EFp;hu
2
iZiZ

0
i)
�1=2EFp;huiZi

= �p(
p

!n
)1=2!1=2n (EF!nu

2
iZiZ

0
i + o(1))

�1=2EF!nuiZi +

(1� �p)(
p

!n+1
)1=2!

1=2
n+1(EF!n+1u

2
iZiZ

0
i + o(1))

�1=2EF!n+1uiZi

= (�p(
p

!n
)1=2 + (1� �p)(

p

!n+1
)1=2)(h11 + o(1))

! h11 as p!1 (4.45)

by the de�nition of �p: The convergence results in (4.44) and (4.45) imply that
for large enough p; we have 
p;h = (Fp;h; �p;h) 2 �p(k; 2c; �=2;M):
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Construction of a �worst case sequence�: We now show that sequences satis-
fying (3.17) can indeed be generated. For example, de�ne the joint distribution
Fn;h� of (ui; vi; Zi) as follows: De�ne the joint distribution of the discrete ran-
dom variable (ui; Zi1) by letting (ui; Zi1) = (1; 1); (1;�1); (�1; 1); (�1;�1) with
probability (1 + cn�1=2)=4; (1 � cn�1=2)=4; (1 � cn�1=2)=4; and (1 + cn�1=2)=4;
respectively. Let the remaining components of Zi be independent of (ui; Zi1) and
(EFn;h�ZiZ

0
i) = Ik: Let vi 2 f�1; 1g be independent of (ui; Zi) with zero mean and

variance 1. Then, EFn;h�u
2
i = 1; EFn;h�u

2
iZiZ

0
i = EFn;h�v

2
iZiZ

0
i = EFn;h�ZiZ

0
i = Ik;

EFn;h�uiviZiZ
0
i = 0; and EFn;h�uiZi = n�1=2cek1: Set �n;h� = C = cek1. Then

n1=2jj�n;h�jj ! 1 (if c > 0); �n;h�=jj�n;h�jj = ek1; and

n1=2(EFn;h�u
2
iZiZ

0
i)
�1=2(EFn;h�uiZi) = ce

k
1 (4.46)

for all n. Then 
n;h� satis�es (3.17) and (i)-(iii) in de�nition (3.16) with !n = n,
h� = (h�011; h

�0
12; vec(h

�
21)

0; :::; vec(h�24)
0; h�025)

0; h�11 = C; h�12 = (1; 0; :::; 0)0; h�21 =
h�22 = h

�
24 = Ik; h

�
23 = 0; and h

�
25 = e

k
1 (assuming � � 1 in the de�nition of �n in

(2.5)). The sequence f
n;h�gn�1 thus de�ned is indeed in �n(k; c; �;M): We have
thus shown that sequences f
n;h�gn�1 as in (3.17) do exist.9 When c = 0; take
any sequence f
n;h�gn�1 that has jjh�12jj =1 as a �worst case sequence�.
By Lemma 1, under f
n;h�gn�1; the limiting rejection probability of theGELR�

test equals P (�k;c > �
2
k;1��) and equals P (�1;c > �

2
1;1��) for the LM� and CLR�

tests. The latter result follows because m2
h�;D(h�) = c

2 is non-random under se-
quences f
n;h�gn�1 as in (3.17) by (4.36) and (4.68).
By (4.41), the completion argument above, and the limiting rejection prob-

abilities underf
n;h�gn�1 as in (3.17) derived above, to prove Theorem 2, it is
clearly enough to show that under every sequence f
n;hgn�1 in �n(k; 2c; �=2;M);
the limit superior of the rejection probability of the GELR�; LM�; and CLR�

9There are many other possibilities to create �worst case sequences�. For ex-
ample, there are sequences f
n;h� = (Fn;h� ; �n;h�)gn�1 that satisfy (3.17) such that
n1=2(EFn;h�u

2
iZiZ

0
i)
�1=2(EFn;h�uiZi) 2 Rk has all components equal. We now create such

a sequence for the case k = 2: De�ne the joint distribution Fn;h� of (ui; vi; Zi1; Zi2) as fol-
lows: De�ne the joint distribution of the discrete random variable (ui; Zi1; Zi2) by letting
(ui; Zi1; Zi2) = (1; 1; 1); (1; 1;�1); (1;�1; 1); (1;�1;�1); (�1; 1; 1); (�1; 1;�1); (�1;�1; 1);
(�1;�1;�1) with probability a+dn�1=2=4;�a+1=4;�a+1=4; a�dn�1=2=4;�a+(1�dn�1=2)=4;
a; a; and �a+(1+dn�1=2)=4; respectively. Choose d = 2�1=2c and e.g. a = :2: Let vi 2 f�1; 1g
be independent of (ui; Zi) with zero mean and variance 1. Then, EFn;h�u

2
i = 1; EFn;h�u

2
iZiZ

0
i =

EFn;h� v
2
iZiZ

0
i = EFn;h�ZiZ

0
i = I2; EFn;h�uiviZiZ

0
i = 0; and

n1=2EFn;h�u
2
iZiZ

0
iEFn;h�uiZi = d(1; 1)

0: (4.47)

Set �n;h� = d(1; 1)0. Then (3.17) holds, n1=2jj�n;h� jj ! 1 (if c > 0) and �n;h�=jj�n;h� jj =
(1; 1)0=21=2 converges. Finally jj�n;h� jj = jjd(1; 1)0jj = c:

25



test is bounded by P (�k;c > �
2
k;1��) and P (�1;c > �

2
1;1��); respectively. We will

do so next.
First consider a sequence f
n;hgn�1 in �n(k; 2c; �=2;M) with jjh12jj =1: By

Lemma 1, lim supn!1 P�0;
!n;h(T!n(�0) > c!n(1 � �)); for the various tests con-
sidered, is actually a limit, and the limiting rejection probability for the GELR�
test equals P (�k;jjh11jj > �

2
k;1��) and equals P (�1;mh;D(h)

> �21;1��) for the LM� and
CLR� tests. Because mh;D(h) � jjh11jj � c by the Cauchy-Schwarz inequality, the
case jjh12jj is proven.
Next, consider a sequence f
n;hgn�1 in �n(k; 2c; �=2;M) with jjh12jj < 1:

By Lemma 1, lim supn!1 P�0;
!n;h(T!n(�0) > c!n(1 � �)); for the various tests
considered, is actually a limit, and the limiting null rejection probabilities of
the tests under f
n;hgn�1 are given in the lemma, P (T > c(1 � �)) say, using
generic notation for all the tests. Conditioning on D(h) = d; we can write
P (T > c(1� �)) = EPd; where

Pd = P (T > c(1� �)jD(h) = d) (4.48)

and the expectation is taken with respect to the distribution of D(h): By Lemma
7, Pd equals P (Jh;d > cd(1 � �)); where Jh;d is de�ned in Lemma 7 and the
critical value cd(1� �) equals �2k;1�� and �21;1�� for the GELR� and LM� tests,
respectively, and for the CLR� test equals the (1��)-quantile of the distribution

1

2
f�21 + �2k�1 � rh;d +

q
(�21 + �

2
k�1 � rh;d)2 + 4�21rh;dg; (4.49)

where the chi-square distributions �21 and �
2
k�1 are independent. Let H denote

the set of all those vectors h = (h011; h
0
12; vec(h21)

0; :::; vec(h24)
0; h025)

0 2 R2k+4k2+k1
for which there exists a sequence f
n;h = (Fn;h; �n;h)gn�1 with parameter space
in (2.5) given by �n(k; 2c; �=2;M): It is therefore enough to show that for any
h 2 H with jjh12jj < 1 and any d 2 Rk; P (Jh;d > cd(1 � �)) does not exceed
P (�k;c > �2k;1��) for the GELR� test and does not exceed P (�1;c > �21;1��) for
the LM� and CLR� tests. We will show this next.

Proof of Theorem 2(i). For any h 2 H with jjh12jj < 1 and any d 2 Rk;
Lemma 7(i) implies, Jh;d = �2k(jjh11jj2) and by (2.5) we have jjh11jj2 � c2:
Proof of Theorem 2(ii). For the LM� test, by Lemma 7(ii), Jh;d = �21(m

2
h;d) for

h 2 H: Because by Cauchy-Schwarz jmh;dj � c; it follows that P (�1;jmh;dj > �
2
1;1��)

is smaller than or equal to P (�1;c > �
2
1;1��). The exact same proof can be used

for Kleibergen�s (2005) K test.

Next, we prove the asymptotic size result for the CLR� test. By the proof
of Lemma 7(iii), the limit distributions under f
n;hgn�1 of rk�(�0); LM�(�0);
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and J�(�0) (de�ned in (4.73)) conditional on D(h) = d; are rh;d; �21(m
2
h;d); and

�2k�1(jjh11jj2 �m2
h;d); respectively, for independent chi-square limit distributions

with m2
h;d � jjh11jj2 � c2. It is therefore enough to show that for all positive

integers k; all nominal levels � 2 (0; 1); all c2 � 0; r � 0; and tuplets (a2; b2) such
that 0 � a2 � b2 � c2 we have

P (
1

2
f�1;a + �k�1;(b2�a2)1=2 � r

+
q
(�1;a + �k�1;(b2�a2)1=2 � r)2 + 4�1;arg � c(1� �; r))

� P (�1;c � �21;1��); (4.50)

where �1;a and �k�1;(b2�a2)1=2 are independent noncentral chi-square random vari-
ables and c(1��; r) denotes the critical value of the test upon observing rk�(�0) =
r, as de�ned on top of (2.15). Note that the critical value c(1 � �; r) does not
depend on (a2; b2). As r ! 1; the minimum of the left hand side in (4.50)
converges to P (�1;c � �21;1��): This can be easily seen by doing a mean value ex-
pansion of the square root expression about (�1;a��k�1;(b2�a2)1=2+r)2 noting that
the argument of the square root can be rewritten as (�1;a � �k�1;(b2�a2)1=2 + r)2+
4�1;a�k�1;(b2�a2)1=2 :
For r < 1; isolating the square root and squaring both sides, the left hand

side in (4.50) equals

P ([�1;a + �k�1;(b2�a2)1=2 � r]2 + 4�1;ar
� (2c(1� �; r)� [�1;a + �k�1;(b2�a2)1=2 � r])2

and 2c(1� �; r)� [�1;a + �k�1;(b2�a2)1=2 � r] > 0): (4.51)

After simpli�cation, this probability equals

P (
�1;a

c(1� �; r) +
�k�1;(b2�a2)1=2

c(1� �; r) + r � 1) (4.52)

or

P (
(n1 + a)

2

c(1� �; r) +
(n2 +

p
b2 � a2)2 +

Pk
i=3 n

2
i

c(1� �; r) + r � 1); (4.53)

where ni; for i = 1; :::; k; are i.i.d. random variables distributed as standard
normal.
The probability in (4.53) equals the k-dimensional integral of a multivari-

ate normal density f with zero mean and identity covariance matrix (with re-
spect to Lebesgue measure) over the interior of an ellipsoid Er;a;b with center
(�a;�

p
b2 � a2; 00k�2)0 and with the �rst axis equal to

p
c(1� �; r) and the re-

maining k � 2 axes equal to
p
(c(1� �; r) + r) and with the j-th axis parallel
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to the j-th coordinate vector xj. Clearly then, for given r; the minimum of the
left hand side over (a2; b2) in (4.50) is taken on when b2 = c2 for some value
0 � a2 � c2: By rotation invariance of the normal density, for each a; the integral
over the interior of Er;a;c corresponds to the integral over the interior of an ellip-
soid, eEr;a;c say, with center (�c; 00k�1)0, with the �rst axis equal to pc(1� �; r)
and the remaining k � 2 axes equal to

p
(c(1� �; r) + r), where the j-th axis is

still parallel to xj for j � 3; the �rst and second axis are still in the hyperplane
spanned by x1 and x2; but the �rst axis and x1 form an angle between 0 and 90
degrees that depends on a. For example, when a = 0 or a = c the corresponding
angle is 90 degrees or 0 degrees, respectively.
The probability P (�1;c � �21;1��) for the case when r = 1; can be viewed

as the k-dimensional integral of the density f over an unbounded k-dimensional
rectangular Rc � Rk bounded by the two hyperplanes x1 = �c� (�21;1��)1=2. By
construction, both the integrals over the interiors of eEr;a;c and Rc equal 1 � �
when c = 0 (which implies a = b = 0):
To prove the statement in (4.50), it is enough to show that the integral of f

over the interior of Rc minus the integral over the interior of eEr;a;c is nonpositive.
Using the change of variable x1 7�! x1 � c; (2�)k=2 times the di¤erence between
the integrals over Rc and eEr;a;c is given by

(
R
R0

�
R
eEr;a;0) exp(�(x1 � c)

2=2)
Qk
j=2 exp(�x2j=2)dx1:::dxk

= exp(�c2=2)(
R

R0n eEr;a;0�
R

eEr;a;0\fjx1j>p�21;1��g
) exp(x1c)

Qk
j=1 exp(�x2j=2)dx1:::dxk;

(4.54)

where for the equality exp(�(x1 � c)2=2) has been multiplied out and R0n eEr;a;0
denotes those points in Rk that are in R0 but not in eEr;a;0. Note that R0n eEr;a;0 �
fjx1j � (�21;1��)1=2g and that by integrating out in x2; :::; xkR

R0n eEr;a;0 exp(x1c)
Qk
j=1 exp(�x2j=2)dx1:::dxk =

R
fx1;jx1j�

p
�21;1��g

exp(x1c)g(x1)dx1

=

p
�21;1��R
0

(exp(x1c) + exp(�x1c))g(x1)dx1 (4.55)

for a certain function g that is symmetric, i.e. g(x1) = g(�x1); where the second
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equality uses the change of variables x1 7�! �x1. Likewise we haveR
eEr;a;0\fjx1j>p�21;1��g

exp(x1c)
Qk
j=1 exp(�x2j=2)dx1:::dxk

=
1R

p
�21;1��

(exp(x1c) + exp(�x1c))h(x1)dx1; (4.56)

for a certain symmetric function h: We have to show that the di¤erence between
(4.55) and (4.56) is nonpositive, i.e.
p
�21;1��R
0

(exp(x1c)+exp(�x1c))g(x1)dx1 �
1R

p
�21;1��

(exp(x1c)+exp(�x1c))h(x1)dx1:

(4.57)
Recall that by construction this di¤erence equals 0 when c = 0: Therefore, because
g(x1) and h(x1) are positive, it is enough to show that the function exp(x1c) +
exp(�x1c) is an increasing function in x1 � 0 for any c > 0: This can be easily
veri�ed by taking the �rst derivative. �
Proof of Lemma 4. The case en = 0 is trivial and thus wlog en > 0 can be
assumed. By assumption en = op(1) and the �rst part of the statement follows
from

sup
�2�n;1�i�n

j�0gi(�0)j � n�1=2e�1=2n max
1�i�n

jjgi(�0)jj = n�1=2e�1=2n n1=2en = e
1=2
n = op(1);

(4.58)
which also immediately implies the second part. �
Proof of Lemma 5. Denote by C l(U) the vector space of l times continuously
di¤erentiable functions on a set U: Wlog en > 0 and thus �n can be assumed
compact for every n. Let ��0 2 �n be such that bP (�0; ��0) = max�2�n bP (�0; �).
Such a ��0 2 �n exists w.p.a.1 because a continuous function takes on its maxi-
mum on a compact set and by (a slight variation of) Lemma 4 and � 2 C2(U),bP (�0; �) (as a function of � for �xed �0) is C2(U) w.p.a.1, where U is some open
neighborhood of �n.
We now show that actually bP (�0; ��0) = sup�2b�n(�0) bP (�0; �) w.p.a.1 which

then proves the �rst part of the lemma. By a second order Taylor expansion
around � = 0, there is a �� on the line segment joining 0 and ��0 such that for
some positive constants C1 and C2

0 = bP (�0; 0) � bP (�0; ��0) = �2�0�0bg(�0) + �0�0 [ nP
i=1

�2(�
�0gi(�0))gi(�0)gi(�0)

0=n]��0

��2�0�0bg(�0)� C1�0�0b
(�0)��0 � 2jj��0jj jjbg(�0)jj � C2jj��0jj2 (4.59)

29



w.p.a.1, where the second inequality follows as max1�i�n �2(�
�0gi(�0)) < �1=2

w.p.a.1 from Lemma 4, continuity of �2(�) at zero, and �2 = �1. The last in-
equality follows from �min(b
(�0)) � " > 0 w.p.a.1. Now, (4.59) implies that
(C2=2)jj��0 jj � jjbg(�0)jj w.p.a.1, the latter being Op(n�1=2) by assumption. It fol-
lows that ��0 2 int(�n) w.p.a.1. To prove this, let � > 0. Because ��0 = Op(n�1=2)
and en = op(1), there existsM� <1 and n� 2 N such that P (jjn1=2��0jj �M�) >

1 � �=2 and P (e�1=2n > M�) > 1 � �=2 for all n � n�. Then P (��0 2 int(�n)) =
P (jjn1=2��0jj < e

�1=2
n ) � P ((jjn1=2��0jj �M�) ^ (e�1=2n > M�)) > 1� � for n � n�.

Hence, the FOC for an interior maximum (@ bP=@�)(�0; �) = 0 holds at � = ��0
w.p.a.1. By Lemma 4, ��0 2 b�n(�0) w.p.a.1 and thus by concavity of bP (�0; �) (as
a function in � for �xed �0) and convexity of b�n(�0) it follows that bP (�0; ��0) =
sup�2b�n(�0) bP (�0; �) w.p.a.1 which implies the �rst part of the lemma. From above
��0 = Op(n

�1=2): Thus the second part and by (4.59) the third part of the lemma
follow. �
To simplify the notation, in the following we leave out subscripts on the

expectation E and probability P:

Proof of Lemma 6. For (i) let K = supi�1Ejjgi(�0)jj� for � = 2 + � with � as
in (2.5). By (2.5), K <1. Let " > 0: Choose a C > 0 such that K=C < ". Then

Pf(max
1�i�n

jjgi(�0)jj)n�1=� > C1=�g �
nP
i=1

Pfjjgi(�0)jj� > nCg �
nP
i=1

1

nC
E(jjgi(�0)jj�)

(4.60)
which is bounded by K=C < ": The �rst inequality follows from P (A [ B) �
P (A) + P (B) for any two measurable events A and B; and the second one
uses Markov�s inequality. It follows that (max1�i�n jjgi(�0)jj)n�1=� = Op(1) and
thus max1�i�n jjgi(�0)jj = op(n

1=2) by � > 2. To prove (ii), note that b
(�0) =
n�1

Pn
i=1 u

2
iZiZ

0
i. Then n

�1Pn
i=1 u

2
iZiZ

0
i � 
n = n�1

Pn
i=1(u

2
iZiZ

0
i � Eu2iZiZ 0i)

!p 0 by the weak law of large numbers: Because by assumption �min(
n) �
� > 0 the desired result follows. Finally, (iii) follows because n1=2bg(�0) =
n�1=2

Pn
i=1(uiZi � EuiZi) + n1=2EuiZi which is in Op(1) because the Liapunov

CLT (with covariance matrix in O(1)) applies to the �rst term using the assump-
tions in (2.5). Also, n1=2EuiZi = Op(1) because �min(
n) � �; 
n has uniformly
bounded components, and n1=2jj
�1=2n EuiZijj � c: �

For notational convenience, in the proof of the next lemma we often omit the
argument �0, e.g., we may write gi for gi(�0).

Proof of Lemma 7. We �rst prove several preliminary statements. By Lemma
6, the assumptions of Lemma 5 hold and therefore the result of Lemma 5 holds. It
follows that �0 = �(�0) 2 b�n(�0) exists w.p.a.1, such that bP (�0; �0) = sup�2b�n(�0)
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bP (�0; �). Thus, the FOC
n�1

nP
i=1

�1(�
0
0gi)gi = 0 (4.61)

holds w.p.a.1, where �0 = Op(n�1=2). Expanding the FOC in � around 0, there
exists a mean value e� between 0 and �0 (that may be di¤erent for each row) such
that

0 = �bg + [ nP
i=1

�2(e�0gi)gigi0=n]�0 = �bg � b
e��0�0; (4.62)

where the matrix b
e��0 has been implicitly de�ned. Because �0 = Op(n
�1=2),

Lemma 4 and Assumption � imply that supi=1;:::;n j�2(e�0gi) +1j !p 0. It thus
follows that b
e��0 !p h21 and thus b
e��0 is invertible w.p.a.1 and (b
e��0)�1 !p h

�1
21 .

Therefore
�0 = �(b
e��0)�1bg (4.63)

w.p.a.1. Inserting this into a second order Taylor expansion for bP (�; �) (with
mean value �� as in (4.59) above) it follows that

bP (�0; �0) = 2bg0b
�1e��0bg � bg0b
�1e��0b
���0b
�1e��0bg (4.64)

w.p.a.1. The same argument as for b
e��0 proves b
���0 !p h21: Note that,

n1=2h
�1=2
21 bg !d g(h) � �k;h11 � N(h11; Ik); (4.65)

where g(h) has been de�ned here.

We next show that the random vector D� =
Pn

i=1 �1(�
0
0gi)Gi=n 2 Rk (ap-

propriately renormalized) is asymptotically independent of h�1=221 n1=2bg under se-
quences f
n;hg. The result in (4.63) implies that

n1=2�0 = �h�121 n1=2bg + op(1): (4.66)

By a mean value expansion about 0 we have �1(�
0
0gi) = �1 + �2(�i)g0i�0 for a

mean value �i between 0 and �
0gi: Thus, by (4.66) we have

D� =
nP
i=1

(�1 + �2(�i)g0i�0)Gi=n

=�n�1
nP
i=1

Gi � n�3=2
nP
i=1

�2(�i)Gig
0
i(h

�1
21 n

1=2bg + op(1)): (4.67)
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First, consider the case jjh12jj = 1. Wlog we can assume that jj�njj > 0 in this
case. Then

jj�njj�1D� = jj�njj�1(�n�1
nP
i=1

Gi � n�3=2
nP
i=1

�2(�i)Gig
0
i(h

�1
21 n

1=2bg + op(1)))
= jj�njj�1n�1

nP
i=1

(ZiZ
0
i� + Zivi) + op(1)

= h22�njj�njj�1 + op(1)!p h22h25 � D(h); (4.68)

where the second equality holds because Gi = �ZiZ 0i��Zivi; jj�njj�1n�3=2
Pn

i=1

�2(�i)Gig
0
i = (n1=2jj�njj)�1Op(n�1

Pn
i=1 jjGig0ijj) = op(1); �min(h21) � �; and be-

cause h�1=221 n1=2bg = Op(1) by (2.5). The third equality holds because EjjZijZiljj1+�
< M and n�1=2

Pn
i=1 Zivi = Op(1): Because asymptotically jj�njj�1D� is nonran-

dom, the limit distribution of h�1=221 n1=2bg is independent of the (probability) limit
of jj�njj�1D�. Next, consider the case jjh12jj < 1. Using similar steps as in
(4.68), it then follows that

n1=2D� =�n�1=2
nP
i=1

Gi + n
�1

nP
i=1

Gig
0
i(h

�1
21 n

1=2bg) + op(1)
= h22h12 + n

�1=2
nP
i=1

Zivi � h23h�121 n1=2bg + op(1): (4.69)

Applying CLTs to n�1=2
Pn

i=1 Zivi and n
�1=2Pn

i=1 Ziui; it follows that the two
random vectors �(h)�1=2n1=2D� and h

�1=2
21 n1=2bg are jointly normal with asymp-

totic variance matrices equal to the identity matrix and covariance matrix equal
to the zero matrix. We have

n1=2D� !d D(h) � N(h22h12 � h23h�1=221 h11;�(h)): (4.70)

It follows that the limit distributions of n1=2D� and h
�1=2
21 n1=2bg; denoted by D(h)

and g(h) � �k;h11 ; are independent when jjh12jj <1.
Proof of Lemma 7(i). The desired result follows from (4.64) and (4.65). By
independence of D(h) and g(h) we also obtain the conditional result. �
Proof of Lemma 7(ii). As de�ned above, D(h) denotes the limit distribution
of the renormalized vector jj�njj�1D� or n1=2D�; where the normalization depends
on whether jjh12jj is �nite or not. By (2.5), we have �min(�(h)) > � and therefore
with probability 1, D(h) 6= 0: By joint convergence of D� and h

�1=2
21 n1=2bg and the

CMT we obtain

(D0
�
b
�1D�)

�1=2D0
�n
1=2b
�1bg! d(D(h)

0h�121D(h))
�1=2D(h)0h

�1=2
21 g(h)

� �1 +mh;D(h); (4.71)
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where �1 � N(0; 1) and mh;D(h); de�ned in (4.36), are independent. Again by the
CMT it then follows that

LM�(�0)! dLM(h) � (D(h)0h�121D(h))�1(D(h)0h
�1=2
21 g(h))2

� (�1 +mh;D(h))
2: (4.72)

The conditional statement of the lemma then follows too.
The result for Kleibergen�s (2005) K test statistic follows along exactly the

same lines as the proof above. In fact, it is enough to show that the appropriately
renormalized vector bD(�0) = � bG(�0)+n�1Pn

i=1(Gi(�0)� bG(�0))g0i(�0)b
(�0)�1bg(�0)
in (2.12) has the same limiting distribution D(h) as the renormalized vector D�:
But this is clear by inspection of the proof above and the restrictions in (2.5). �
Proof of Lemma 7(iii). By part (i), GELR�(�0) = nbg(�0)0b
(�0)�1bg(�0)+op(1):
De�ning

J�(�0) = nbg(�0)0b
(�0)�1=2Mb
(�0)�1=2D�(�0)b
(�0)�1=2bg(�0) (4.73)

it then follows that

GELR�(�0) = LM�(�0) + J�(�0) + op(1): (4.74)

Consider the case jjh12jj < 1: Using again the joint convergence of n1=2D� and
h
�1=2
21 n1=2bg and the CMT, we have

rk�(�0)! drh;D(h);

J�(�0)! dJ(h) � g(h)0Mh
�1=2
21 D(h)

g(h): (4.75)

Using the substitution (4.74) in (2.13), the convergence results in (4.72) and
(4.75), that hold jointly, the CMT implies that

CLR�(�0)!d CLR(h) �
1

2
fLM(h) + J(h)� rh;D(h) +

q
(LM(h) + J(h)� rh;D(h))2 + 4LM(h)rh;D(h)g:

(4.76)

Conditional on D(h) = d; LM(h) and J(h) in (4.76) are independent and
distributed as �21(m

2
h;d) and �

2
k�1(jjh11jj2 �m2

h;d), respectively. This implies the
desired limit result on CLR�(�0) conditional on D(h) = d.
In the case jjh12jj = 1, note that under f
n;h = (Fn;h; �n;h)gn�1 (4.68)

implies that for every M > 0; P�0;
n;h(jjn1=2D�(�0)jj > M) ! 1 and thus
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P�0;
n;h(rk�(�0) > M)! 1. By (4.73), (4.74), and some calculations, we have

CLR�(�0) =
1

2
fLM�(�0) + J�(�0) + o� rk�(�0) +q

(LM�(�0)� J�(�0) + o+ rk�(�0))2 + 4LM�(�0)J�(�0) + 4o(J�(�0)� rk�(�0))g
(4.77)

for a random variable o that is op(1). Using a �rst order expansion of the square
root expression about (LM�(�0)�J�(�0)+o+rk�(�0))2, it follows that CLR�(�0) =
LM�(�0) + op(1). �
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Table I
Asymptotic null rejection probabilities along sequences f
n;hgn�1 at nominal
size � = 5% for various number of IVs k; degree of instrument �non-exogeneity�
c2; h11 = ce

k
1; h21 = h22 = h24 = Ik; h23 = 0: Case I-III has jjh12jj =1 and

h25 = e
k
1; e

k
2; and (e

k
1 + e

k
2)=2

1=2; respectively, Case IV-VI has h12 = ek1; e
k
2;

and (ek1 + e
k
2)=2

1=2; respectively.
Results are based on simulations using 100; 000 repetitions (with 10; 000

repetitions to simulate the critical value of the CLR� test).

TestnCase I II III IV V VI I II III IV V VI
c2 = 8 k = 5 k = 25
GELR� 56.4 56.4 56.4 56.4 56.4 56.4 27.9 27.9 27.9 27.9 27.9 27.9
LM� 80.6 4.9 51.3 32.2 21.1 26.7 80.7 4.9 51.4 12.0 8.6 10.3
CLR� 80.6 4.9 51.3 55.5 51.2 53.3 80.7 4.9 51.4 26.6 24.8 25.6
c2 = 18 k = 5 k = 25
GELR� 92.6 92.6 92.6 92.6 92.6 92.6 66.2 66.2 66.2 66.2 66.2 66.2
LM� 98.8 4.9 84.8 52.7 35.7 44.4 98.8 4.9 84.9 20.6 13.1 16.9
CLR� 98.8 4.9 84.8 91.7 89.6 90.7 98.8 4.9 84.9 63.2 60.3 61.7

Table II
Asymptotic size in % for nominal size � = 5% for various number

of IVs k and degree of instrument �non-exogeneity�c2

Results are based on simulations using 100; 000 repetitions.
c2nTest GELR� LM�; CLR�

k = 1 2 5 10 25 180 k = 1; :::; 25; 180
0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
1 16.7 13.1 9.8 8.3 6.8 5.6 16.7
2 28.8 22.1 15.8 12.1 8.9 6.3 28.8
5 60.6 49.9 36.1 26.9 17.2 8.6 60.6
8 80.5 71.3 56.2 43.6 27.9 11.3 80.5
18 98.8 97.4 92.7 84.8 66.2 23.9 98.8
32 100 100 99.7 98.8 94.0 48.0 100

Table III
Simulated asymptotic rejection probabilities based on 100; 000 draws when
c = 3; k = 5; � = 5% for various choices of d with � de�ned in (3.20).

d 0 1 2 3 4 5 6 7 10
P (�k;d > �

2
k;1��) 5:0 9:8 29:2 62:2 89:0 98:5 99:9 100 100

�P (�1;d > �
2
1;1��) + (1� �)� 5:0 13:4 38:1 62:2 71:5 72:9 73:0 73:0 73:0
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