
Instrumental Variable Estimation with
Discrete Endogenous Regressors∗

Tiemen Woutersen†

October 25, 2007

Abstract

This paper develops a new objective function that can be used to
estimate models with discrete endogenous regressors. The basis for the
objective function is the objective function that one would have used
if all covariates were assigned randomly. The paper than proposes a
weighting function that uses instruments and ‘removes’ the endogene-
ity. Methods that assume that the endogenous regressor or the instru-
ment are continuously distributed already exist and this paper deals
with endogenous variables that are discrete.
Very preliminary.

1 Introduction

Recently the scope for using instrumental variables or exclusion restrictions
to reduce the bias in the estimated effects of endogenous covariates on an
outcome has been greatly expanded. Older methods like Two-Stage Least
Squares (2SLS) required that the endogenous regressor entered linearly and
that the relation had an additive error. Later methods based on the Gen-
eralized Method of Moments (GMM) (Hansen, 1982) allowed that the en-
dogenous regressors enter nonlinearly, but retained the assumption of an
additive random error. Recent contributions (Blundell and Powell, 2003a,
Imbens and Newey, 2003; see also Blundell and Powell, 2003b, for a sur-
vey of the various approaches), consider the estimation of models in which
the model is nonlinear in the endogenous covariates and has a random er-
ror that is correlated with the endogenous covariates that is nonseparable.

∗I have received helpful comments from Geert Ridder, Robert Moffitt, Daniel Scharf-
stein and Constantine Frangakis.

†Comments are welcome, woutersen@jhu.edu.
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An important example of such a model is the binary response model with
endogenous covariates. It should be noted that most popular models with
limited dependent variables have a nonseparable error.

The estimators proposed by Blundell and Powell (2003a) and Imbens and
Newey (2003) make assumptions that ensure that given the (possibly non-
separable) random error in the first-stage relation between the endogenous
covariate and the exogenous covariates (including some that do not enter
in the structural relation of interest), the (nonseparable) random error in
the structural equation is independent of the endogenous covariate. Solving
for the error of the first-stage relation one obtains a control function that
upon inclusion in the structural relation transforms the model in one with
exogenous covariates. This approach only works if the endogenous variables
are continuous. Other recent papers include Chesher (2005), Chesher (2007),
Vytlacil and Yildiz (2007) and Horowitz and Lee (2007).

In this paper we consider the case that the endogenous variable is dis-
crete and the random error is not separable. Instead of a control function we
consider the use of weights that re-weight a sample statistic that depends
on the endogenous (discrete) covariate to a (not observed) population of
compliers in which that covariate is randomly assigned (given the other ex-
ogenous covariates). Abadie (2000) and Abadie, Angrist, and Imbens (2002)
also use weights and their weights are a special case of ours. Our contribu-
tion is that we explore the application of weighting estimators in models that
currently are outside the scope of IV estimation. In particular, we consider
estimation of the effect of a 0-1 intervention, i.e. a dummy endogenous co-
variate, on a limited-dependent or transformed outcome or on a (censored)
duration. These outcomes may be observed once, or we may have a sequence
of outcomes, i.e. the estimation is on a panel or, more generally, longitudi-
nal data set. We are particularly interested in longitudinal outcomes, i.e. a
time-series of dummy dependent variables or a possibly censored duration.
As we shall see, an important advantage of the Weighted Objective Function
Instrumental Variable (WOF-IV) estimator is that we need to assume very
little on the selection equation, or in the context of treatment effects, the
treatment assignment mechanism.

Examples of estimators that we consider are the maximum score estima-
tor, maximum rank correlation estimator, maximum likelihood estimator,
some random effects estimators and several fixed effect estimators. We dis-
tinguish between estimators that estimate the heterogeneity distribution,
such as random effects estimators, and those that do not, such as the fixed
effects estimators we consider and the estimator of the transformation model.
Examples that do not estimate the heterogeneity distribution are the esti-
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mator of Horowitz (1996) of the transformation model and Han’s (1987)
Maximum Rank Correlation estimator for transformation models.

There is an important difference between these two cases. Insofar as the
endogeneity is due to dependence of the dichotomous variable on the indi-
vidual effect, the estimators that do not depend on the individual effect are
consistent. Hence the WOF-IV estimator in this case allows for dependence
of the dichotomous variable on the idiosyncratic error. For the case that
the estimator depends on the distribution of the individual effect, we show
that the distribution of that effect in the population defined by the weights,
depends on the selection model, be it is a specific way. We also show that
given the estimates of the parameters of the model, we can recover the pop-
ulation distribution of the individual effect, so that we can estimate the full
counterfactual outcome distributions. Note that for instance in a duration
model with unobserved heterogeneity, the effect of the treatment on the av-
erage duration or the hazard is not the same for all individuals1. Hence, the
usual problem that estimates of the counterfactual outcome distributions if
treatments have an effect that differs between members of the population
does not apply to models that have non-separable individual effects. As far
as we know the WOF-IV is the only estimator for mixture models with a
discrete endogenous variable and a non-separable individual effect.

The plan of the paper is as follows. In section 2 we explain the role of
the weights and we introduce the WOF-IV estimator. Section 3 discusses the
case that the estimation criterion and hence the estimator, does not depend
on the individual effect. In section 4 we consider the case that the estimator
does depend on the individual effect. Section 5 gives an application for the
second case and section 6 concludes.

2 Endogenous binary variable

Consider the following model

Yi = G(Xi, vi,Wi, εi) (1)

where Yi is a vector of outcomes, Xi is an observed binary variable, vi is a
scalar error term, Wi is a vector of observed regressors, and εi is a vector

1 In a (Mixed) Proportional Hazard model the relative effect is the same for all indi-
viduals, but there is no reason to restrict attention to such models, for instance by having
a different individual effect for treatments and controls that are independent of other
exogenous covariates.
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of unobserved error terms. For example, Yi could denote a duration and
the censoring indicator or a number of realizations in a panel data model.
Let the regressor Xi be endogenous in the sense that it depends on vi. In
particular, the dichotomous variable X is a function of R, v,W, η, and we
express this by writing X(R, v,W, η). In the case that X is an indicator of an
intervention this specifies the treatment assignment mechanism. We make
the following assumption on this function.

Assumption 1 X(R, v,W, η) is non-decreasing and not constant in v on
the support V where η is a random variable. Moreover,

X(1, v,W, η) ≥ X(0, v,W, η)

for all v ∈ V with a strict inequality on a interval in V.

This assumption implies that there are v(W,η) and v(W,η) as in figure 1.
Note that this implies that

X(R, v,W, η) ≡ 0 if v < v(W,η) (2)

≡ R if v(W,η) ≤ v ≤ v(W,η) (3)

≡ 1 if v > v(W,η) (4)

i.e. we can identify ‘never takers’2, ‘compliers’ and ‘always takers’ by in-
tervals of values of the individual effect. Note that this assumption holds
if X(R, v,W, η) = I(δ0 + δ1R + v − η ≥ 0 with δ1 > 0. It also holds if δ1
is a random variable provide that it is a positive random variable3. We do
not need to specify a model for X beyond the qualitative assumptions made
here. This is a major advantage of our procedure.

Consider the hypothetical case in which v(Wi, ηi) ≤ vi ≤ v(Wi, ηi) for all
individuals. That is, all individuals are ‘compliers’. In this case, we do not
have an endogeneity problem. Suppose that we have an objective function
for this case. Define Si = {Yi,Xi,Wi} and

Q∗N (θ) = f{ 1
N

X
i:vi∈[v(Wi,ηi),v(Wi,ηi)]

q(Si; θ)}.

That is, the objective function Q∗N(θ) is a function of an average of the data
and let f(.) be a known continuous function. Maximum likelihood, general

2See Angrist, Imbens and Rubin (1996) for this terminology.
3We can also have that δ1 < 0 or that it is a negative random variable

4



method of moments, maximum score and other objective function satisfy
this. We assume that maximizing Q∗N (θ) yields a consistent estimate of θ.
In particular,

Assumption 2 Suppose that we have a random sample of size N. Let θ ∈
Θ, which is compact. Let Q∗N(θ) =

1
N

P
i:vi∈[v(Wi,ηi),v(Wi,ηi)]

q(Si; θ) or Q∗N(θ) =
{ 1N

P
i:vi∈[v(Wi,ηi),v(Wi,ηi)]

q(Si; θ)}0M · 1N
P

i:vi∈[v(Wi,ηi),v(Wi,ηi)]
q(Si; θ) where

the matrix M can be consistently estimated. Let Q∗N(θ) converge uniformly
in probability to Q0(θ) and let Q0(θ) be continuous and uniquely maximized
at θ = θ0.

Assumption 2 is quite general. However, we usually cannot observe whether
i : vi ∈ [v(Wi, ηi), v(Wi, ηi)]. Suppose, however, that we have an instrument
R that is correlated with X and independent of vi and εi. For now, we
assume that R is binary. We base our inference on the following objective
function

QN (θ) =
1

N

X
i

[{1(Ri = Xi)− 1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Ri}q(Si; θ)] (5)

or, in case Q∗N (θ) is a method of moment estimator,

QN(θ) = {
1

N

X
i

[{1(Ri = Xi)− 1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Ri}q(Si; θ)]}0M̂ ·

·{ 1
N

X
i

[{1(Ri = Xi)− 1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Ri}

where p̂(w) is a consistent estimator for the probability P (R = 1|w) and
Ri ∈ {0, 1}. If W is a discrete random variable, then p̂(w) =

P
i{Ri ·1(Wi =

w)}/
P

i{1(Wi = w)}. If R is assumed to be independent of W then p̂(w) =
p̂ =

P
iRi/N is used. The matrix M̂ is a consistent estimator of M.

Note that we use the data on all individuals in equation (5), therefore, we
also need assumptions on the individuals for which vi /∈ [v(Wi, ηi), v(Wi, ηi)].

Assumption 3 Let (i) q(Si, θ) be continuous at each θ ∈ Θ with prob-
ability one, and there is d(Si) with |q(Si, θ)| ≤ d(S) for all θ ∈ Θ and
E{d(S)} <∞ or (ii) q(Si, θ) be stochastically equicontinuous at each θ ∈ Θ
and E|q(Si, θ)| <∞ at each θ ∈ Θ.
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Assumption 4 Let one of the following three conditions hold, (i) R ⊥
v, ε,W and X ⊥ W, ε|v or (ii) R ⊥ v, ε|W and W is discrete or (iii)
[R ⊥ v, ε|W, dp(w) = p(w) + op(1), and p(w) > δ for all w for some δ > 0.
to be completed if we want it]

Assumption 4 is satisfied if either (i) R is randomly assigned and X is a
function of Z and v or (ii) R is randomly assigned conditional on W and X
is a function of R, v, η, and W.

Assumption 5 Let Cov(R,X) > 0.

Theorem 1
Let assumption 1-5 hold. Then θ̂ = argmaxQN(θ) converges in probability
to θ0.

Theorem 1 covers many objective functions but not those with double
summations, such as the maximum rank correlation estimator or Chen’s
(2002) estimator of the transformation model. Let Q2,N denote such an ob-
jective function with a double summation. Consider the following objective
function that is a function of the observed data,

Q2,N(θ) =
1

N2

X
i

[{1(Ri = Xi)− 1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Ri}∗

∗
X
j

{1(Rj = Xj)− 1(Rj 6= Xj)(
p̂(w)

1− p̂(w)
)1−2Ri}q(Si, Sj ; θ)].

where p̂(w) is a consistent estimator for the probability P (R = 1|w) and
Ri ∈ {0, 1}. The maximum rank correlation estimator by Han (1987), the
estimator of the transformation model by Chen (2002) and estimator of the
duration model by Hausman and Woutersen (2005) have this form.

Assumption 6 Suppose that we have a random sample of size N. Let θ ∈
Θ, which is compact. Let

Q∗N (θ) =
1

N2

X
i:vi∈[v(Wi,ηi),v(Wi,ηi)]

X
j:vj∈[v(Wj ,ηj),v(Wj ,ηj)]

q(Si, Sj ; θ)

converge uniformly in probability to Q2,0(θ) and let Q2,0(θ) be continuous
and uniquely maximized at θ = θ0.
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Assumption 7 Let q(Si, Sj , θ) be stochastically equicontinuous at each θ ∈
Θ and E|q(Si, Sj , θ)| <∞ at each θ ∈ Θ..

Theorem 2
Let assumption 1, 4—7 hold. Then θ̂ = argmaxQ2,N (θ) converges in proba-
bility to θ0.

Derivative depend on of QN or an approximate derivative. influence func-
tion.

Proof of theorem 1
Define

rN(θ) =
1

N

X
i

[{1(Ri = Xi)− 1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Ri}q(Si; θ)]

and
rinfeasible,N (θ) =

1

N

X
i:vi∈[v(Wi,ηi,v(Wi,ηi)]

q(Si; θ)

Wewill show that rN(θ) converges uniformly in probability to rinfeasible,N (θ).
Let v and v denote v(Wi, ηi) and v(Wi, ηi).Define

∆rN (θ) = rN(θ)− rinfeasible,N (θ)

=
1

N

X
i

[{1(Ri = Xi)− 1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Ri}q(Si; θ)]

− 1

N

X
i:vi∈[v,v]

q(Si; θ)

=
1

N

X
i:vi /∈[v,v]

1(Ri = Xi) · q(Si; θ)−
1

N

X
i

1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Riq(Si; θ).

1(Ri = Xi) = Ri · 1(vi ≥ v) + (1−Ri) · 1(vi ≤ v)

= Ri · 1(vi ∈ [v,v̄]) +Ri · 1(vi > v) + (1−Ri) · 1(vi < v)

1(Ri 6= Xi) = (1−Ri) · 1(vi > v) +Ri · 1(vi < v)
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This yields

∆rN(θ) = {
1

N

X
i

{Ri · 1(vi > v) + (1−Ri) · 1(vi < v)} · q(Si; θ)

− 1
N

X
i

{(1−Ri) · 1(vi > v) +Ri · 1(vi < v)}( p̂(w)

1− p̂(w)
)1−2Ri} · q(Si; θ).

Note that {Ri · 1(vi > v) · q(Si; θ)} is either (i) continuous in θ for all
θ ∈ Θ with probability one and bounded by the function d(S) of assump-
tion 3 or (ii) stochastically equicontinuous in θ for all θ ∈ Θ with finite
expectation. Note that Ri and 1(vi > v) are bounded and do not de-
pend on θ. Therefore, 1N

P
i{Ri · 1(vi > v) · q(Si; θ)} converges uniformly to

EW [E{q(Si; θ)|vi > v,Wi}p(vi > v|Wi)] by Newey McFadden (1994) lemma
2.4 and lemma 2.8 respectively. Similar reasoning4 yields that 1

N

P
i{(1 −

Ri)·1(vi > v)( p̂(w)
1−p̂(w))

1−2Ri}·q(Si; θ)} converges uniformly to the same func-
tion of θ so that the difference between these two terms converges uniformly
to zero. The same reasoning holds for the other two terms so that rN(θ)
converges uniformly to rinfeasible,N (θ) and QN(θ) to Q∗N (θ). Theorem 2.1 of
Newey and McFadden (1994) applies and the result follows.
Proof of theorem 2: The proof is very similar to the proof of theorem 1 but
now

1

N

X
j

{1(Rj = Xj)− 1(Rj 6= Xj)(
p̂(w)

1− p̂(w)
)1−2Ri}q(Si, Sj ; θ)]

converges uniformly to E[E{q(Si, Sj)|Si, vj ∈ [v, v]},Wj)p(vj ∈ [v, v]|Wj)]
so that Q2,N (θ) converges uniformly to Q2,0(θ).

Proof of theorem 1: The conditions ensure that θ̂ is a consistent estimator
of θ.

3 Compliers

In this section, we use a different notation. In particular, we use the notation
of compliers, always takers, and never takers that was introduced by Angrist,
Imbens and Rubin (1996). In particular, Angrist, Imbens and Rubin (1996)

4Note that p̂(w)
1−p̂(w) converges in probability to

p(w)
1−p(w) and that this term does not

depend on θ. Moreover, W is discrete so that sup
w
(|[p(w)− p(w)| = op(1).
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define four types of individuals. The type of the individual, together with
R determines the value of X. Consider the following types of individuals,
ti ∈ {complier, always taker, never taker, defier}. Moreover,

Ri ∈ {0, 1} is randomly assigned, Ri ⊥ ti, |Wi

Xi can depend on Wi, ti, εi.
ti = Complier ⇔ Xi ≡ Ri

ti = Always taker ⇔ Xi ≡ 1
ti = Never taker ⇔ Xi ≡ 0
ti = Defier ⇔ Xi ≡ (1−Ri).
Consider the following objective function

Q∗N (θ) =
1

N

X
i∈Compliers

q(Si; θ).

where Si = {Yi,Xi,Wi}. Let

θ̂ = argmax
θ

Q∗N (θ)→p θ0.

Latent variable model

Q∗N (θ) =
1

N

X
i:vi∈[v(Wi,ηi),v(Wi,ηi)]

q(Si; θ).

θ̂ = argmax
θ

Q∗N (θ)→p θ0.

Examples: GMM, Likelihood, maximum score, quantile regression.

Consider
p(W ) = P (R = 1|W ); estimator p̂(w).

QN (θ) =
1

N

X
i

wiq(Si; θ)

where wi = {1(Ri = Xi)− 1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Ri}.

QN(θ) =
1

N

X
i

wiq(Si; θ)

=
1

N

X
i∈Com

wiq(Si; θ) +
1

N

X
i∈Alw

wiq(Si; θ) +
1

N

X
i∈Nev

wiq(Si; θ)

where wi = {1(Ri = Xi)− 1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Ri}.
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Thus,

QN(θ) =
1

N

X
i∈Com

q(Si; θ)

+
1

N

X
i∈Alw

{Ri + (1−Ri)
p̂(w)

1− p̂(w)
}q(Si; θ)

+
1

N

X
i∈Nev

{(1−Ri)−Ri
1− p̂(w)

p̂(w)
}q(Si; θ).

and

QN (θ) =
1

N

X
i

wiq(Si; θ)

=
1

N

X
i∈Com

q(Si; θ)

+
1

N

X
i∈Alw

{ Ri

1− p̂(w)
− p̂(w)

1− p̂(w)
}q(Si; θ)

+
1

N

X
i∈Nev

{(1−Ri)

p̂(w)
− 1− p̂(w)

p̂(w)
}q(Si; θ).

Assumption A1: Cov(Ri, q(Si; θ)|i ∈ Alw) = Cov(Ri, q(Si; θ)|i ∈ Nev) =
0 for all i.
Assumption A2: Let one of the following hold: (i) P (R = 1|W, type) = p
and Cov(Ri,Xi) 6= 0; or (ii) P (R = 1|W, type) = P (R = 1|W ) = p(Wk)
where k = 1, ...,K for some finite K, and Cov(R,X|W ) > 0 for all k =
1, ...,K.

Assumption A3: θ̂ = argmaxθQ∗N (θ)→p θ0.

Assumption A4: Let one of the following hold
(i) q(Si; θ) is continuous with probability one; or
(ii) 1

N

P
i∈C q(Si; θ),

1
N

P
i∈A q(Si; θ),

1
N

P
i∈N q(Si; θ),

1
N

P
i∈D q(Si; θ)

are stochastically equicontinuous
.

Assumption A5: θ ∈ Θ, which is compact.

Theorem 1
Let assumption A1-A5 hold. Then θ̂ = argmaxQN(θ) converges in proba-
bility to θ0.
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Theorem 1 covers many objective functions but not those with double
summations. Let Q2,N denote such an objective function with a double sum-
mation. Consider the following function of the observed data,

Q2,N(θ) =
1

N2

X
i

[{1(Ri = Xi)− 1(Ri 6= Xi)(
p̂(w)

1− p̂(w)
)1−2Ri}∗

∗
X
j

{1(Rj = Xj)− 1(Rj 6= Xj)(
p̂(w)

1− p̂(w)
)1−2Ri}q(Si, Sj ; θ)].

where p̂(w) is a consistent estimator for the probability P (R = 1|w) and
Ri ∈ {0, 1}. The maximum rank correlation estimator by Han (1987); the
transformation model by Chen (2002); and duration model by Hausman and
Woutersen (2005).

Transformation model

H(Y ) = Xβ + ε

ε ⊥ X

Single index model

Y = G(Xβ) + ε

ε ⊥ X

Some duration models

θ(y|v, x(y)) = v · exp(x(y)β) · λ(y).

Theorem 2
Let assumption 6-11 hold. Then θ̂ = argmaxQ2,N(θ) converges in probabil-
ity to θ0.

Derivatives or approximate derivatives (influence functions)

Q∗N (θ) =
1

N

X
i∈Com

q(Si; θ)

QN (θ) =
1

N

X
i∈Com

q(Si; θ)

+
1

N

X
i∈Alw

{ Ri

1− p̂(w)
− p̂(w)

1− p̂(w)
}q(Si; θ)

+
1

N

X
i∈Nev

{(1−Ri)

p̂(w)
− 1− p̂(w)

p̂(w)
}q(Si; θ).
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Q∗N,θ(θ) =
1

N

X
i∈Com

qθ(Si; θ)

QN,θ(θ) =
1

N

X
i∈Com

qθ(Si; θ)

+
1

N

X
i∈Alw

{ Ri

1− p̂(w)
− p̂(w)

1− p̂(w)
}qθ(Si; θ)

+
1

N

X
i∈Nev

{(1−Ri)

p̂(w)
− 1− p̂(w)

p̂(w)
}qθ(Si; θ).

√
N{QN,θ(θ)−Q∗N,θ(θ)} = +

1√
N

X
i∈Alw

{ Ri

1− p̂(w)
− p̂(w)

1− p̂(w)
}qθ(Si; θ)

+
1√
N

X
i∈Nev

{(1−Ri)

p̂(w)
− 1− p̂(w)

p̂(w)
}qθ(Si; θ).

Second derivatives or approximate second derivatives

{QN,θθ(θ)−Q∗N,θθ(θ)} =
1

N

X
i∈Alw

{ Ri

1− p̂(w)
− p̂(w)

1− p̂(w)
}qθθ(Si; θ)

+
1

N

X
i∈Nev

{(1−Ri)

p̂(w)
− 1− p̂(w)

p̂(w)
}qθθ(Si; θ)

→
p
0.

4 The Pennsylvania Reemployment Bonus Demon-
stration

4.1 Data

The Pennsylvania bonus experiment was conducted by the U.S. Department
of Labor between July 1988 and October 1989. During the enrollment period,
claimants who became unemployed and registered for unemployment bene-
fits in one of the selected local offices throughout the state were randomly
assigned either to a control group or one of the six experimental treatment
groups. In the control group the existing rules of the unemployment insur-
ance system applied. Individuals in the treatment groups were offered a cash
bonus if they became reemployed in a full-time job, working more than 32
hours per week, within a qualification period. In addition, to qualify for the
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bonus, claimants were required to work in the new job continuously for at
least 16 weeks, or they were allowed to change jobs as long as the transition
took place within a period of 5 days. The latter requirements were imposed
to discourage cases of fraudulent hiring for purposes of obtaining the bonus,
and to avoid the possibility of bonus payments to seasonal workers. Two
bonus levels were tested. The lower bonus was three times the weekly ben-
efit amount, and the higher bonus was six times the weekly benefit. The
low bonus averaged 500 dollars and the high bonus averaged 997 dollars.
The two levels were chosen on the basis of both the Illinois and New Jersey
experiences. Two qualification periods were considered: a short period of 6
weeks and a longer one of 12 weeks. The long qualification period was close
to that studied in Illinois and New Jersey. The choice of the shorter period
was intended to test the sensitivity of the treatment effect to alternative
specifications of the qualification periods. All of the treatments, except the
last one, involved a voluntary option of attending a workshop designed to
aid job search. However, less than three percent of eligible participants at-
tended the workshop so we follow the practice established by prior analysts
of ignoring the workshop option. Four of the treatments were created by the
combination of a bonus amount and a qualification period plus the offer of
the workshop. The fifth treatment included an initially high, but declining
bonus over the period of 12 weeks plus the optional workshop. The sixth
treatment combined the high bonus with the long qualification period with-
out the workshop. The 6 treatment groups are:

• Treatment 1: Low bonus, short fixed qualification period of 6 weeks
for all individuals and workshop.

• Treatment 2: Low bonus, long fixed qualification period of 12 weeks
for all individuals and workshop

• Treatment 3: High bonus, short fixed qualification period of 6 weeks
for all individuals and workshop.

• Treatment 4: High bonus, long fixed qualification period of 12 weeks
for all individuals and workshop.

• Treatment 5: Initially high but declining bonus, long fixed qualification
period of 12 weeks for all individuals and workshop.

• Treatment 6: High bonus, long fixed qualification period of 12 weeks
for all individuals, no workshop.
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The design consisted of 3,000 control and 10,120 treatment members,
allocated to the specific treatments. The sample was drawn randomly from
claimants at twelve Job Services (JS) offices located throughout the state
of Pennsylvania. The limited selection of sites constituted a compromise be-
tween the need to obtain a fairly large sample that could accurately reflect
the demographic and occupational characteristics of the state, and the need
for an easy monitoring and low operational cost of the study. Twelve local
offices were selected which were representative of the insured unemployed
population of Pennsylvania. More specifically, the state was divided in eight
UI/JS regions. One or more clusters of local offices were formed within each
region according to average duration of UI receipt. This process produced
twelve clusters of approximately equal size UI caseloads. Finally, one office
was selected randomly from each cluster to participate in the demonstra-
tion and a random sample of UI claimants from each of the selected offices
was selected in a manner which ensured that each eligible claimant in the
state had an equal probability of selection into the demonstration sample.
Eligibility criteria were imposed to increase the homogeneity of the sample
and thus ensure that possible differences in the response could be attributed
primarily to variation in treatment. Claimants who filed for a transitional
claim were excluded because of the likelihood of a previous job offer. For
the same reason there was exclusion from the experiment of individuals who
indicated that it was possible they could find a new job through a union
channel rather than the market, or if they were waiting for some definite
recall within 60 days from their former employer.

The collected sample was the result of fifty-two weekly sub-samples se-
lected in all twelve offices beginning on October 26, 1988. Prior to that date,
fifteen weekly sub-samples were drawn from one site for a pilot test of all
operations, which are also included in the final collected-sample. Thus, the
enrollment period for the experiment started July 1988 and ended October
1989. The design target was to identify and select 13,120 claimants with
each site contributing roughly 1,100 individuals in total and a weekly tar-
get of 21 claimants per site. However, since some claimants who initially
apply for benefits do not return to a local office to file further (they need
to wait for one week and return to the local office and file again) , a larger
sample was selected to achieve the desired sample size for analysis. Thus,
a sample ranging from 22 to 40 claimants was selected at each office per
week, depending on the historical experience. Overall, 15,005 individuals
were initially selected to participate in the demonstration. A total of 14,086
individuals filed for a week of UI and were included in the study. The atten-
dance in workshop was less than 3 percent, which made the fourth and the
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sixth treatments indistinguishable. Therefore, as of July 1989, four months
before the end of the experiment, individuals who would have been assigned
to treatment 6 were assigned to the other treatments. A second change was
made because preliminary demonstration results showed that treatment 1
had a larger than expected effect. Initially only a small proportion of the
total sample was assigned to this treatment due to its perceived low policy
significance. Beginning October 1989, experimenters increased its sample.
This change is reflected in the relatively high percentage, 18.3 percent of
entries during the last quarter.

The duration of the of UI benefits is measured in weeks. This measure of
duration is called "inuidur" in the final report of the experiment. It is worth
noting that a large portion of spells end in the first and the twenty seventh
week. It should be stressed that the definition of the first spell of UI in the
Pennsylvania study includes a waiting week and that the maximum number
of uninterruptedly received full weekly benefits is 26. This implies that a
total 2491 subjects did not receive any weekly benefit and that most of the
claimants received continuously their full, entitled unemployment benefit. A
properly made randomization implies that any difference between the length
of unemployment insurance of claimants receiving the treatment and those
that do not can be attributed exclusively to the treatment effect. Despite the
intermediate changes in the rate of entry in the various groups, it is generally
considered that the randomization process was effective; see Corson et al.
(1992, p 45) and Meyer (1995, p 98).

4.2 Model

Consider the following hazard model θ (t|v, x) = vφxλ (t) , where λ (t) is
baseline hazard and is non-parametric, the integrated baseline hazard is
defined as Λ (t) and v is the unobserved heterogeneity.
Now, consider the unobserved heterogeneity has 3 discrete points (v =
{v1, v2, v3}), with associated probabilities p = {p1, p2, p3 = 1− p1 − p2}.
Given the hazard rate θ (t|v, x) = f(t|v,x)

1−F (t|v,x) , the conditional density function,
f (t|v) , is derived as:

f (t|v, x) = θ (t|v, x) (1− F (t|v, x)) ,

where 1− F (t|v, x) = e−ve
xβΛ(t).

The unconditional likelihood for a given λ (t) and for density function of a
type "k" individual, fk (t|vk, x) = vke

xβλ (t) e−vke
xβΛ(t), with k = {1, 2, 3},
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is given by

f (t|x) =
3X

k=1

pkfk (t|vk, x) = exβ
3X

k=1

pkvkλ (t) e
−vkexβΛ(t),

where pk is the probability of a type k individual.
Define θ as the vector of parameters that need to be estimated (i.e. θ =
{p1, p2, v1, v2, v3, β}).
Define now the log-likelihood function

L(θ|data) = ln(l(θ|data)) =
NX
i=1

ln(exβ
3X

k=1

pkvkλ(t)e
−vkexβΛ(t))

=
NX
i=1

xiβ +
NX
i=1

ln(
3X

k=1

pkvkλ(t)e
−vkexβΛ(t)).

Suppose that there was not endogeneity. We would then optimize the fol-
lowing objective function,

\θMLE = argmaxθL(θ|data)

4.3 Likelihood for a piecewise constant λ (t) and 5 types het-
erogeneity

Now, let λ(t) be a piecewise constant function. In this case the hazard rate
is defined as

θ (t|v, x) = { ηexβ, if t ≤ 1
ηexβλj , if j − 1<t ≤ j, j = 2, . . . , T

Define the indicator dj , such that

d1 = {
1 if t ≤ 1
0 otherwise

, dj = {
1 if j − 1 < t ≤ j, j = 2, . . . , T
0 otherwise

.

Then, the integrated baseline hazard is

Λ (t) =

Z t

0
λ (t) dt =

µZ t

0
dt

¶
d1 +

T−1X
j=1

Ã
1 +

jX
s=2

Z s

s−1
λs−1dt+

Z t

j
λjdt

!
dj+1

= td1 +
T−1X
j=1

Ã
1 +

jX
s=2

λs−1 + (t− j)λj

!
dj+1,
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with
P1

s=2

R s
s−1 λs−1dt = 0.

In this case the unconditional likelihood is given by

f (t|x) =
5X

k=1

pkfk (t|vk, x) =
5X

k=1

pkvke
xβλ(t)e−vke

xβ(td1+
T−1
j=1 (1+

j
s=2 λs−1+(t−j)λj)dj+1),

where pk is the probability of a type k = {1, .., 5}.
Considering again θ as the vector of parameters.
If we use the indicators dj ,with j = 1, 2, ..., T , to estimate θ, we need to
maximize the following log-likelihood

L(θ|data) = ln(l(θ|data)) =
NX
i=1

xiβ

+
NX
i=1

(
TX
j=1

djln(
5X

k=1

pkvkλje
−vkexβ(td1+ T−1

j=1 (1+
j
s=2 λs−1+(t−j)λj)dj+1)).

4.4 Results

For the available data we use a model with three points heterogeneity,
(v = {v1, v2, v3}). To test for the time-varying treatment effect, we con-
ducted several experiments. In the first experiment we generated two dummy
variables, the first one has a value of one if individual’s duration of unem-
ployment is within the bonus eligibility period and the second dummy has
a value of one if individual’s duration of unemployment is greater than the
bonus eligibility period. We also allow the baseline hazard to change its value
at half period of the bonus eligibility (after 6 weeks), at the end of the bonus
eligibility period (after 12 weeks), and at the end of the UI eligibility period
(after 26 weeks).

θ (t|v, x) =

ηeβ1 , if t ≤ 6
ηeβ1λ2, if 6<t ≤ 12
ηeβ2λ3, if 12<t ≤ 18
ηeβ2λ4, if 18 < t ≤ 26.

The results of this experiment are presented in Table 1.

In the second experiment we generated three dummy variables, the first
one has a value of one if individual’s duration of unemployment is within
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half the bonus eligibility period, the second dummy has a value of one if
individual’s duration of unemployment is within the bonus eligibility period
and the third dummy has a value of one if individual’s duration of unem-
ployment is greater than the bonus eligibility period. Again, we allow the
baseline hazard to change its value at half period of the bonus eligibility, at
the end of the bonus eligibility period , and at the end of the UI eligibility
period.

θ (t|v, x) =

ηeβ1 , if t ≤ 6
ηeβ1λ2, if 6<t ≤ 12
ηeβ2λ3, if 12<t ≤ 18
ηeβ3λ4, if 18 < t ≤ 26.

The results of this experiment are presented in Table 2.

The results show that bonus is more effective during the first 6 weeks of
unemployment.

5 Appendix: The 2SLS and WOF-IV estimator

In this appendix, we show that the 2SLS and WOF-IV estimator are equiv-
alent if one has only one instrument and one an endogenous dummy as
explanatory variable.
Model: Let {Ri,Xi, εi} be a random sample of size N. For all i, let Ri ∈
{0, 1}, Xi ∈ {0, 1}, Yi = α+ βXi + εi where E{εi|Ri} = 0.
The two stage least squares estimator has the following form,

β̂2SLS =

P
iXi(Ri − p̂)YiP
iXi(Ri − p̂)Xi

where p̂ = iRi

N .
The weighting estimator uses the following objective function,

Q(α, β) =
1

N

X
i

hi(Yi − α−Xiβ)
2

where

hi = 1(Ri = Xi)− 1(Ri 6= Xi)(
p̂

1− p̂
)1−2Ri .
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Minimizing Q(α, β) yields the following two first order conditions,

1

N

X
i

hi(Yi − α−Xiβ) = 0

1

N

X
i

hiXi(Yi − α−Xiβ) = 0

This yields

1

N

X
i

hiXi{(Yi −
P

i hiYiP
i hi

)− (Xiβ −
P

i hiXiβP
i hi

)} = 0

and

β̂W =

P
i{hiXiYi − hiXi

i hiYi

i hi
}P

i{hiXi − hiXi
iXi·hi
i hi

}
.

Note that

hiXi =
Xi(Ri − p̂)

1− p̂
.

Our algebra simplifies if we write hi as follows.

hi = 1(Ri = Xi)− 1(Ri 6= Xi){Ri(
1− p̂

p̂
) + (1−Ri)(

p̂

1− p̂
)}

= RiXi + (1−Ri)(1−Xi)−Ri(1−Xi)(
1− p̂

p̂
)− (1−Ri)Xi(

p̂

1− p̂
)

= RiXi{2 +
1− p̂

p̂
+

p̂

1− p̂
}−Ri −Ri(

1− p̂

p̂
)−Xi −Xi(

p̂

1− p̂
) + 1

= RiXi{
1

p̂(1− p̂)
}− Ri

p̂
− Xi

1− p̂
+ 1

=
Xi

p̂(1− p̂)
{Ri − p̂}− Ri − p̂

p̂

=
hiXi

p̂
− Ri − p̂

p̂
.

Note that X
i

hi =
1

p̂

X
i

hiXi

The denominator of β̂W can be written as follows,X
i

{hiXi − hiXi

P
iXihiP
i hi

} =
X
i

hiXi − p̂
X
i

hiXi

=
X
i

Xi(Ri − p̂).
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Thus, β̂W has the same denominator as β̂2SLS. Similarly, the numerator of
β̂W equalsX

i

{hiXiYi − hiXi

P
i hiYiP
i hi

} =
X
i

hiXiYi − p̂
X
i

hiYi.

Using hi = hiXi
p̂ −

Ri−p̂
p̂ yields

X
i

{hiXi · Yi − hiXi

P
i hiYiP
i hi

} =
X
i

hiXiYi −
X
i

hiXiYi +
X
i

(Ri − p̂)Yi

=
X
i

(Ri − p̂)Yi.

Thus, β̂W has the same numerator as β̂2SLS and the two estimators are
equivalent.
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