
Hessian Based MCMC for Linear DSGE Models

JOB MARKET PAPER (DRAFT)

Ed Herbst∗

October 22, 2010

Abstract

We propose a block Metropolis-Hastings algorithm for DSGE models wherein

directed proposals are generated via a single-step of Newton’s method. Addition-

ally, we suggest a way to select blocks of parameters based on the local curvature

of the posterior. First, despite the additional computational burden, the block

Metropolis-Hastings algorithm can be more efficient; it can more quickly (in a wall

time sense) produce effectively independent samples. Second, I also show that

the block Metropolis-Hastings algorithm is less likely to get stuck on local modes

or difficult points. That is, the block Metropolis-Hastings algorithm can succeed

where the Random Walk Metropolis is known to fail. Specifically, I show that this

is the case for a basic RBC model. Third, I find that constructing blocks based

on the curvature of the posterior tends to produce uncorrelated blocks, which is

the most statistically efficient way to construct a block sampler. Fourth, I derive

an analytic expression for the exact Hessian of the log-likelihood of a linear DSGE

model. This improves both numeric accuracy and computational speed in estimat-

ing DSGE models.This improves both numeric accuracy and computational speed

in estimating DSGE models.

∗Department of Economics, University of Pennsylvania; 160 McNeil Building, 3718 Locust Walk,

Philadelphia, PA 19104; herbstep@sas.upenn.edu

1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models are an increasingly im-

portant tool for academic economists and policymakers. These optimization-based

models have an internal coherence that allows one to evaluate policy changes and

propagation mechanisms and, more recently, have served as the basis for fore-

casting models. Bayesian techniques, in which the likelihood function implied by

the model is combined with a prior distribution for model parameters to yield a

posterior distribution for the model parameters, are often used to estimate these

models. A survey of eight top journals in economics from 2005 to 2010 indicates

that about 70% of all DSGE model estimation is done using Bayesian methods.1

While the technical details of the estimation of DSGE models are left to a

later section, the key problem in Bayesian inference is accessing the posterior dis-

tribution. For DSGE models, the posterior is a highly nonlinear and analytically

intractable distribution. Markov Chain Monte Carlo (MCMC) techniques allow

one to simulate a sequence of draws whose distribution closely resembles the pos-

terior distribution. The approximation becomes better as the sequence becomes

longer. A simulation technique known as the Metropolis-Hastings algorithm can

be used to construct this sequence. A known “proposal” distribution is specified;

candidates are draws from the proposal and accepted into the sequence with a

probability chosen to ensure convergence. Different proposal distributions yield

different varieties of Metropolis-Hastings.

For DSGE models, the Metropolis-Hastings method used in roughly 95% of

papers1 using Bayesian estimation is the Random Walk Metropolis-Hastings algo-

rithm, first used by Schorfheide (2000). The proposal for next draw in the sequence

is a random perturbation about the current state in the sequence. The RWMH is

simple to implement, but there are two related problems associated with using the

RWMH for large and complex distributions. First, the RWMH can be quite slow to

converge to the posterior distribution; the draws are very highly correlated. This

means that estimates constructed using the draws have high variance and that

many draws are needed for effectively independent samples. Second, the RWMH

can get stuck in local modes and fail to explore the entire posterior distribution.

In this case the output from the simulator can completely fail at replicating true

features of the distribution. In this case, inference (e.g., variance decompositions,

impulse responses, forecasts, et cetera) based on the output from the RWMH is

incorrect.

To alleviate these problems, I propose a block Metropolis-Hastings algorithm

1Authors calculations.

1

for DSGE models wherein directed proposals are generated via a single-step of

Newton’s method. I use Newton’s method to push the proposal into regions with

higher posterior density. Additionally, I suggest a way to select blocks of pa-

rameters based on the local curvature of the posterior. In this way, information

about the local slope and curvature of posterior is embedded into the proposal,

thus allowing for a proposal distribution that more closely resembles the posterior

locally. I compare this algorithm to existing algorithms using a several statistical

models, a basic RBC model, and the Smets-Wouters model. I find that: First,

despite the additional computational burden, the block Metropolis-Hastings algo-

rithm can be more efficient; it can more quickly (in a wall time sense) produce

effectively independent samples. Second, I also show that the block Metropolis-

Hastings algorithm is less likely to get stuck on local modes or difficult points.

That is, the block Metropolis-Hastings algorithm can succeed where the Random

Walk Metropolis is known to fail. Specifically, I show that this is the case for

a basic RBC model and a “news” shock model. Third, I find that construct-

ing blocks based on the curvature of the posterior tends to produce uncorrelated

blocks, which is the most statistically efficient way to construct a block sampler.

Fourth, I derive an analytic expression for the exact Hessian of the log-likelihood

of a linear DSGE model. This improves both numeric accuracy and computational

speed in estimating DSGE models.

2 Background on Bayesian Estimation of Lin-

ear DSGE Models

A linearized DSGE model can be written as linear rational expectations system,

Γ0(θ)xt = Γ1(θ)Et[xt+1] + Γ2(θ)xt−1 + Γ3(θ)εt (1)

where xt are the model variables, εt the exogenous shocks, θ the structural param-

eters of interest, and {Γi} matrix functions that map the equilibrium conditions

of the model. The solution to the system (under some bounds on the growth rate

of xt) takes the form of an AR(1),

xt = T (θ)xt−1 +R(θ)εt.

2

The mappings from θ to T and R must be solved numerically for all models of

interest. The model variables xt are linked to observed yt via a state space system:2

xt = T (θ)xt−1 +R(θ)εt, (2)

yt = D(θ) + Z(θ)xt. (3)

DSGE models are typically estimated using Bayesian methods.3 Bayesian methods

combine prior beliefs about a vector of parameters, θ, with data, Y T = {yt}Tt=1,

whose relationship with θ is embodied in a likelihood function, p(Y T |θ). In DSGE

models, the likelihood can be constructed using the state space system in (2-3). If

the exogenous shocks are assumed to be independently and identically normally

distributed, then the Kalman filter can be used to integrate XT out of the likeli-

hood induced by (2-3), delivering p(Y T |θ). The prior and likelihood are combined

using Bayes’ rule to obtain the posterior distribution of θ,

p(θ|Y T) =
p(Y T |θ)p(θ)
p(Y T)

.

The posterior of the parameters is then used to construct the posterior distribution

(or moments thereof) of objects of interest to the economist, such as impulse

response functions, variance decompositions, and predictive distributions.

The key problem for the econometrician is constructing p(θ|Y T). Since the

mapping from θ to T and R cannot be known in closed form, there is no hope of

deriving an analytic expression for p(θ|Y T). However, since we are often interested

in expectations of the form,

Eθ|Y [h(θ)] =

∫
h(θ)p(θ|Y)dθ,

random draws from the posterior are sufficient for approximating this integral via

Monte Carlo integration. If {θi}Ni=1 are independent and identically distributed

draws from the posterior distribution, then

Êθ|Y =
1

N

N∑
1

h(θi) −→ Eθ|Y [h(θ)]

as N −→ ∞ by the Strong Law of Large Numbers. Unfortunately, generating

independent draws from the posterior, as in necessary in Monte Carlo integration,

is very difficult when the size of θ is large and little is known a priori about the

posterior. To overcome this problem, the posterior is simulated using Markov

Chain Monte Carlo (MCMC) techniques. MCMC methods construct Markovian

sequences {θi}Ni=1 that converge in distribution to the posterior distribution as N

2We have omitted measurement errors for simplicity.
3For a spirited defense of the Bayesian approach to macroeconometrics, see Fernández-Villaverde

(2009).

3

becomes large. The convergence of the above approximation is justified not by the

SLLN but by the ergodic theorem. MCMC turns the standard problem in Markov

Chain theory on its head: the invariant distribution is known; what is needed is the

transition kernel for a Markov chain to get to the invariant distribution. MCMC

methods construct this kernel.

The most popular MCMC technique is known as the Metropolis-Hastings al-

gorithm, which works as follows:

Metropolis-Hastings Algorithm

1. Given θi, simulate θ∗ from q(·|θi).

2. With probability α = max{ p(θ
∗|Y)q(θi|θ∗)

q(θ∗|θi)p(θi|Y)
, 1} set θi+1 = θ∗, else θi+1 =

θi.

q is the density of some distribution that is easy to simulate from. It is known

as the proposal or instrument. Under some weak conditions on q and the sup-

port of θ, draws generated by the Metropolis-Hastings will converge to draws

from the posterior distribution (see Tierney (1994)). Of course, the exact form

of Metropolis-Hastings depends on the exact specification of q(·|θi). It is advan-

tageous to have a q which approximates the posterior well, at least locally. The

desired q is the one for which the chain converges quickest. Unfortunately, for the

class of simulators used with DSGE models, there are few results concerning the

convergence speed (geometric or uniform ergodicity), and those results that exist

often depend crucially on unknown constants. Therefore, to assess convergence,

statisticians often resort to looking at empirical measures of convergence, such as

the autocorrelation of the chain, cross behavior of multiple chains, or differences

in statistics based on multiple blocks of a single chain. By these measures, there is

reason to be cautious about the standard implementations of Metropolis-Hastings.

The random walk Metropolis-Hastings (RWMH) algorithm for DSGE models

was first proposed by Schorfheide (2000) and reviewed by An and Schorfheide

(2007). The proposal here is given by,

q(θ∗|θi) ∼ θi + ε, ε ∼ N (0,−cH−1),

where H is Hessian of the log posterior evaluated at the mode and c is a scaling

factor. This is due to the fact that under regularity conditions, asymptotically

(for the number of observations) the posterior will be normally distributed about

the posterior mode with a variance given by −H−1. The random walk Metropolis-

Hastings is ideally suited for posteriors about which there is little information.

Since q(θ∗|θi) = q(θ∗|θi), only the posteriors enter the Metropolis-Hastings proba-

bility, so q influences moves only through generating the proposals. In this way, it

4

represents a “hill climbing” algorithm or simulated annealing. Indeed, the RWMH

has served economists well in estimating early, small-scale DSGE models. How-

ever, as the complexity of DSGE models has increased, the RWMH is straining

under the task of simulating from large-dimensional parameter vectors. The scal-

ing factor c is crucial. If c is too large, the algorithm will tend to reject too much,

while if c is too small, exploration of the posterior will take too long. Figure 1

illustrates this phenomenon. As the dimensionality of the parameter vector in-

creases, the chance that any random perturbation of the current value of the chain

moves into a higher-density region necessarily falls. A small scale is needed and the

chain moves slowly. Figure 2 shows the sample autocorrelations of draws from four

parameters of the Smets and Wouters (2005) model. The autocorrelation of h, the

habit persistence parameter, is about 0.8 for a displacement of 100 draws. This in-

dicates extremely high dependence of the chain; movement around the parameter

space is quite slow. The RWMH simply takes too long to explore large-dimensional

parameter spaces, as pointed out formally in Neal (2003). Moreover, slow conver-

gence associated with small scaling factors also makes chains more likely to get

trapped near a mode, as in An and Schorfheide (2007).

It is clear that the simulator have trouble converging as the dimensionality

of the parameter vector increases. One solution to this problem is to break the

parameter vectors and iterate them over the conditional densities, the so-called

“Block Metropolis” algorithm. Breaking the parameter vector up makes it easier

to construct good proposals q, so that the simulators other than the random walk

become feasible. The question that naturally arises is how the blocks of parameters

should be constructed.

There are no theoretical results on the optimal blocking structure in MCMC,

except for in a few special cases detailed in Roberts and Sahu (1997). The upshot,

though, is that the blocks should be “as independent as possible,” according to

Robert and Casella (2004). The intuition for this rule is clear: if A and B are

independent, then sampling p(A|B) and p(B|A) iteratively will produce draws

from p(A,B), since p(A|B) = p(A) and p(B|A) = p(B). On the other hand, if

A and B are perfectly correlated, then sampling p(A|B) amounts to solving a

deterministic function for a in b. The subsequent draw from P (B|A) will amount

to solving for b in a via the inverse of the original, that is, b will be the same value

as before and the chain will not move throughout the parameter space.

Unfortunately, given the complexity of DSGE models, particularly in the so-

lution of linear rational expectations system, it is not possible to know the cor-

relation structure of the parameters a priori. Indeed, with an irregular distri-

bution the relationship among parameters may vary throughout the parameter

5

space, so that a fixed block structure is not optimal. This paper uses information

contained in the curvature of the likelihood to select blocks in estimation. Specif-

ically, we look at the second derivatives collected in the Hessian of the posterior

as a measure of the relatedness of the parameters. If an element of the hessian

Hij(θ) = ∂2p(θ|Y)/∂θi∂θj is “large” – in a sense to be formalized later in the paper

– then we conclude that θi and θj are related and should be blocked together. We

repeat this blocking procedure frequently throughout the simulation to account for

the fact that the correlation structure may be changing throughout the parameter

space, due to the irregular nature of the posterior.

This paper’s contribution is construct a block Metropolis-Hastings algorithm

that improves upon standard simulation practices in two ways. First, we provide

a heuristic for blocking the parameters depending on the local curvature of the

posterior as discussed above. Second, we develop proposal distributions based on

Newton’s method, increasing significantly the likelihood that a proposal is gen-

erated from a high-density region of the posterior. The resulting algorithm is

intuitive and easy to implement, and it explores the posterior efficiently.

The final contribution of this paper is an expression exact Hessian for the

posterior of a DSGE model. The derivation is an extension of Iskrev (2008), who

shows how to construct an implicit function between the reduced-form matrices

of the state transition equation and the structural matrices of the canonical linear

rational expectations system. The exact Hessian is a faster and more accurate

estimation than the numerical Hessian economists typically use, and it may be of

independent interest in non-MCMC settings.

3 Literature Review

Recently, econometricians have paid more attention to posterior simulation of

DSGE models. Curdia and Reis (2009) and Chib and Ramamurthy (2010) have ad-

vocated block estimation. Curdia and Reis (2009) groups the parameters by type:

economic vs. exogeneous. Chib and Ramamurthy (2010), to which this work is

most similar, propose grouping parameters randomly. We provide evidence that

the Hessian-based blocking procedure advocated here outperforms both of these

procedures in terms of statistical efficiency. Chib and Ramamurthy (2010) advo-

cates generating proposals by estimating the conditional medium for each block

using simulated annealing, which is very costly in terms of computational time.

A novel and unrelated approach to posterior simulation comes from Kohn et al.

(2010). Their procedure is an adaptive Metropolis-Hastings in which the proposal

is a mixture of an random walk proposal, an independence proposal, and a t-copula

6

estimated from previous draws of the chain. This is a promising approach to esti-

mation, but it requires one to set many tuning parameters, which may be daunting

to the applied macroeconomist. Additionally, since the initial proposal is heavily

weighted towards a random walk, the algorithm can suffer from the same problem

of getting trapped in local modes like the regular random walk Metropolis-Hastings

experiences. The details of Chib and Ramamurthy (2010) and Kohn et al. (2010)

are discussed briefly in the Appendix.

Using Metropolis-Hastings to simulate the posterior distribution of a statistical

model goes back to Tierney (1994) and the references therein. Chib and Greenberg

(2005) provide an excellent overview the Algorithm. Block Metropolis-Hastings is

not a new technique in posterior simulation. Besag et al. (1995) use the procedure

to successfully simulate from several complex conditionals in a “Metropolis-within-

Gibbs” procedure. Roberts and Sahu (1997) examine optimal block structure for

simulating from a multivariate normal random variable via Gibbs sampling. Their

work contains some of the few available theorems regarding blocking. Recently,

a strand of literature in adaptive MCMC has pursued blocking based on princi-

pal components of estimates of the variance matrix (see, for example, Andrieu

and Thoms (2008)). We do not pursue that approach here because it has little

applicability to large-parameter vectors.

The idea of using information contained in the slope and curvature of the

likelihood is not new. Metropolis-Hastings algorithms based on Langevin diffusions

use the gradient of the likelihood to inform proposals (Roberts and Rosenthal

(1998)). MCMC inspired by Hamilton dynamics (see, for example, Neal (2010))

also use the gradient to generate proposals.

The proposals considered in this paper are most closely related to Qi and

Minka (2002), Geweke (1999), and Geweke and Tanizaki (2003). Qi and Minka

(2002) advocate using Newton’s method to generate proposal densities, but not

in a block setting, while Geweke and Tanizaki (2003) construct proposals based

on Taylor approximations for a univariate simulation. Tjelmeland and Eidsvik

(2004) and Liu et al. (2000) stress how local optimization steps in proposals can

ameliorate difficulties in estimating multimodal distributions. Using “tailored”

proposals generally dates to Chib and Greenberg (1994).

7

4 Exact Hessian

For large DSGE models, evaluating the Hessian for the log posterior of a DSGE

model numerically is costly in terms of computational time.4 Indeed, this is

one reason that the single-block random walk algorithm proposed by Schorfheide

(2000) has remained so popular among economists. In that algorithm, the Hessian

need only be computed once before the chain can be simulated. In an MH algo-

rithm with multiple blocks, however, it becomes necessary to compute the Hessian

for each conditional density (i.e., at every step). Furthermore, when one constructs

blocks based on the Hessian, one must calculate it again.

To avoid some of the computation costs of repeatedly evaluating the likelihood

while computing the Hessian, we construct the exact Hessian of the log likelihood

of the DSGE model by extending the results of Iskrev (2008, 2010), who shows

how to compute the derivatives,

∂vec(T (θ))

∂θ′
and

∂vec(R(θ))

∂θ′

by establishing an implicit function between {vec(T), vec(R)} and {vec(Γ0), vec(Γ1), vec(Γ2), vec(Γ3)}.

This function is constructed by substituting (2) in (1) and taking expectations.

We extend his result to calculate the Hessians,

∂

∂θ′
vec

(
∂vec(T (θ))

∂θ′

)
and

∂

∂θ′
vec

(
∂vec(R(θ))

∂θ′

)
. (4)

A detailed derivation is given in the Appendix. The end user must supply the

hessians of {vec(Γ0), vec(Γ1), vec(Γ2), vec(Γ3)}., but these are easy to compute

via symbolic differentiation. Most software packages economists use can perform

the task. Combining (4) with the Hessians of Q(θ), D(θ), and, Z(θ), which are

simple to calculate for DSGE models, one can use standard techniques to calculate

the Hessian of the log likelihood based on the state space representation of the

DSGE model. To reduce the number of matrix operations, we show how to derive

the gradient and hessian of the likelihood based on the Chandrasekhar recursions

(Morf (1974)). A detailed derivation is left to the Appendix.

This approach has advantages in speed and accuracy. For example, for a 12

parameter DSGE with 2 observables for 80 periods, numeric evaluation using a two-

sided, finite difference method takes about 4 seconds, while the analytic evaluation

takes about 0.3 second. In a model in which the analytic derivatives and Hessian

are available (i.e., a simple RBC with full depreciation of capital), the error from

the exact Hessian is of the order 1E-15, or close to machine zero, while the error

from the numeric Hessian is of the order 1E-2.

4For an alternative approach to differentiating of the likelihood function, see Bastani and Guerrieri

(2008).

8

It should be noted that the implementation of the exact Hessian involves a num-

ber of calculations involving kronecker products of potentially large matrices. For

very large systems, these calculations can take some time, particularly because the

kronecker product is not implemented efficiently in most programming languages.

To overcome this, I have implemented my own interface for the kronecker prod-

uct. While, I achieve substantial gains in speed through this implementation, for

very large systems the calculations can still be cumbersome; in this case it may be

preferable to use a numeric hessian either through the exact derivative or through

standard numeric techniques.

5 The Algorithm

Here we present the block Metropolis-Hastings algorithm. There are two depar-

tures from the standard algorithms: the construction of proposals and the blocking

of the parameters. First we will explain the proposals for generic blocks of param-

eters, then we will discuss how to select the blocks.

Proposal Distributions. Suppose that the parameters are grouped into b =

1, . . . , B blocks, and let θi,b be the bth block at the ith draw in the chain. Let

θi,−b be the most up-to-date draws of θ for all the other parameters. The task

is to generate a proposal for θi+1,b conditional on θi,−b. Let g(θi,b|θi,−b) be the

gradient of the log posterior and H(θi,b|θi,−b) be the Hessian of the log posterior.5

The idea is to center the proposal distribution in a region with high density, but

not necessarily close to the posterior. We do that by picking the center using a

single-step Newton search. Let q(·|θi,b, θi,−b) = t(µ∗b ,Σ
∗
b , ν) where

µ∗b = θi,b + ξ − sg(θi,b + ξ|θi,−b)H(θi,b + ξ|θi,b)−1 (5)

Σ∗b = −H(µ∗b)
−1 (6)

ξ is the displacement factor, a hyperparameter which controls how much opti-

mization depends on the initial conditional. In a problem with many modes with

strong basins of attraction, it might be advantageous to set this higher to ensure

escaped local modes. Finally, s, the step size, is a random number independent of

θi,b which is distributed uniformly on [0, s̄]. 6 We generate a proposal from this

5The quadratic approximation to the posterior may be poor; we use a model trust region to control

for the quality of the approximation. This means is the posterior in not locally quadratic, (i.e., the

difference between a actual change and expected change in the posterior as a result of a step increment

is large), we add a large λ to the diagonals of the Hessian. Also general, −H−1 will not be positive

definite, we compute the modified Cholesky in this case.
6Qi and Minka (2002) call this a “learning rate.” For this kernel to preserve the invariant distribution

9

distribution; call it θ?.

θ∗ ∼ t(µ∗b ,Σ∗b , ν)

Note that to preserve the (local) reversibility of the chain, we must find the sym-

metric parameters associated with a same step θ?.

µ∼b = θ? + ξ − sg(θ? + ξ|θi,−b)H(θ? + ξ|θi,b)−1, (7)

Σ∼b = −H(µ∼b)−1. (8)

The updating of block b is made via a Metropolis-Hastings step, with probability,

α = min

{
p(θ?|Y T , θi,−b)q(θi,b|µ∼b ,Σ∼b , ν)

p(θi,b|Y T , θi,−b)q(θ∗|µ∗b ,Σ∗b , ν)
, 1

}
, (9)

set θi+1,b = θ∗, otherwise set θi+1,b = θi,b. The Newton search pushes the mean

of the proposal distribution to a high density relative to the current state of the

chain. That is, this algorithm produces chains much more likely to “jump” to

other modes and avoid overly attracting basins. This produces a chain that is less

autocorrelated and does a more thorough job of exploring the parameter space.

It is worth mentioning a key difference between this algorithm and the algo-

rithm proposed by Chib and Ramamurthy (2010). That algorithm also relies on

a optimization step. There, simulated annealing is used to find µ∗b . Under cer-

tain conditions, simulated annealing is guaranteed to find the global mode, so the

algorithm forces µ∼b = µ∗b . Since this optimum is global, the proposal is inde-

pendent of the current state of the chain. However, in practice, the current state

of the chain, which is the initial condition in the SA algorithm, does affect µ∗b .

Given this correlation, to preserve balance of the chain, µfdb should be found, via

SA, starting from θ∗ to have a valid Metropolis-Hastings algorithm. Computa-

tional experience with the RBC model used in this paper indicates that this is not

merely a technical point. Using 1000 draws from random blocks around the pos-

terior mode, θi,b was “farther” from µfdb then µ∗b so that roughly 90% of the time,

q(θi,b|µfdb ,Σ
fd
b , ν) < q(θi,b|µ∗b ,Σ∗b , ν). The difference was large enough so that ac-

cept/reject decisions based on the two proposal parameterizations were different

over 50% of the time. With a single-step Newton-based proposals, we don’t have

any hope of finding the global mode, but solving for the symmetric distribution

parameterization ensures the balance of chain.

Selecting Blocks. The technique for selecting blocks also uses information from

the curvature of the posterior. Given the general principle of grouping parameters

that are correlated, we say that the parameters θj and θk are related if the Hessian,

Hjk(θ) =
∂2 ln p(θ|Y)

∂θj∂k
,

(the posterior), s must be independent of θi,b. We can think of a continuum of kernels, indexed by s.

For details, see Geyer (2003).

10

is large. Intuitively, we are saying that if the slope of the log posterior with respect

to θj , that is, the change in probability density, is affected by movements in θk,

then they should be grouped together. We also scale the matrix by the square

root of the diagonals.

The exact algorithm used in this version of the paper is listed below.

Selecting Blocks Based on Hessians

• Given θ, compute H(θ) and create H̃(θ) so that

H̃(θ)[jk] =
H(θ)[jk]√

∂2 ln p(θ)

∂θj∂θj
∂2 ln p(θ)

∂θk∂θk

.

• Compute all possible sets blocks of size m, where m < npara. (If

the parameter size is small enough, compute all possible blocking sizes).

• For each block scheme W with blocks w, computer

score(W) =

blocks(W)∑
w=1

npara∑
j=1

npara∑
k=j+1

H̃(θ)2
[jk]1j and k in block w

(# of elements in block w)

• Assign probabilities αw(θ) to each scheme based on its score. We use

a simple guide which assigns probability 50% to the top schema, 25%

to the next scheme, and so on. This should be adjusted based on the

number of schemes available.

One thing to note about this blocking rule is that we do not consider blocks of

size one. The reason for this allowing for blocks of size one could make the cycles

through the blocks take too long. However, it is possible that the last parameter

chosen can be in a block alone.

The reason that we must adjust the Metropolis-Hastings proposal is because

of state dependent mixing. It is no longer true that this mixture of the transi-

tion kernels induced by the different blocking schemes preserves the log posterior.

Preservation means that the distribution of interest (here the log posterior) is a

fixed point of the operator defined by the transition kernel which maps probability

distributions to probability distributions. To ensure this property, we must ac-

count for the transition from blocking scheme to blocking scheme. The Appendix

contains details on validity of the block sampler.

An alternative weighting scheme αw can be constructed by running a burn in

phase of the simulator. At each stage in the burn in phase, a blocking scheme

is selected by the above algorithm. After the burn in phase, block schemes are

selected randomly against the empirical distribution of blocking schemes chosen

during the burn-in phase. This is the approach we take with large models, in which

calculating the block score is costly.

11

Collecting the blocking scheme and proposal distributions, we have the Hessian

Block Metropolis-Hastings.

Hessian Block Metropolis-Hastings

1. At the i+1th step in the chain, for θi calculate H̃(θi)
−1 and select

blocking schema w with probability αw(θi) where the probability corresponds

to likelihood assigned by the blocking scheme.

2. Partition θi based on the scheme w selected.

3. For each block b = 1, . . . , B, perform the Newton-based Metropolis-Hastings

step explained above. The Metropolis-Hastings probability must be

adjusted to

α = min

{
αw(θ∗, θi,−b)p(θ

?|Y T , θi,−b)q(θi,b|µfdb ,Σ
fd
b , ν)

αw(θi)p(θi,b|Y T , θi,−b)q(θ∗|µ∗b ,Σ∗b , ν)
, 1

}
(10)

4. Move on to the next block, go back to (3). Once all blocks have been

iterated over, go back to (1). Repeat for N simulations.

Theorem. Add theorem.

6 Toy Example: Multivariate Normal

To understand how the Hessian Block Metropolis-Hastings algorithm works, con-

sider using the simulator on the following multivariate normal. In this section we

set s to be deterministcally 1, ξ = 0, and ν =∞.

X1

X2

X3

X4

 ∼ N (µ,Σ)

where µ =

0

0

0

0

 ,Σ =

1.00 0.80 0.10 0.15

0.80 1.0 0.05 0.00

0.10 0.05 1.00 0.90

0.15 0.00 0.90 1.00

The gradient and hessian of the log pdf is given by:

∂ ln(x|µ,Σ)

∂x′
= −(x− µ)′Σ−1 and

∂2 ln(x|µ,Σ)

∂x∂x′
= −Σ−1

Since the log density is quadratic, the Hessian is constant throughout the param-

eter space. For a moment.

12

For a single block model, the law of motion for the Markov chain is

xt+1 = xt − ∂ ln(xt|µ,Σ)

∂x′

[
∂2 ln(xt|µ,Σ)

∂x∂x′

]−1

+
∂2 ln(xt|µ,Σ)

∂x∂x′

−1/2

N (0, I4)

= xt − (xt − µ)′Σ−1Σ +
√

ΣN (0, I4)

= µ+
√

ΣN (0, I4)

= N (µ,Σ).

When X is normally distributed, the simulator samples from the correct distri-

bution. It is worth contrasting this with the proposal under the Random Walk

Metropolis-Hastings, which is N (xt,Σ). The proposals differ only in the location.

The use of the Newton step has recentered the Hessian-based proposal towards

the true center of the distribution.

Consider now sampling in two blocks [[X1, X2], [X3, X4]]. The proposal for

xt+1
1,2 is

xt+1
1,2 = xt1,2 − s

∂ ln(xt|µ,Σ)

∂x′1,2

[
∂2 ln(xt|µ,Σ)

∂x1,2∂x′1,2

]−1

+

√
∂2 ln(xt|µ,Σ)

∂x1,2∂x′1,2
N (0, I2).

Applying the partitioned inverse formula, we have:

∂ ln(xt|µ,Σ)

∂x′1,2
= (x1,2 − µ1,2)′(Σ1,2 − Σ1,2|3,4Σ−1

3,4Σ3,4|1,2)−1

− (x3,4 − µ3,4)′(Σ3,4 − Σ3,4|1,2Σ−1
1,2Σ1,2|3,4)−1Σ3,4|1,2Σ−1

1,2

∂2 ln(xt|µ,Σ)

∂x1,2∂x′1,2
= (Σ1,2 − Σ1,2|3,4Σ−1

3,4Σ3,4|1,2)−1.

This means that,

xt+1
1,2 = µ1,2 + Σ−1

1,2Σ3,4|1,2(x3,4 − µ3,4)

+ (Σ1,2 − Σ1,2|3,4Σ−1
3,4Σ3,4|1,2)−1/2N (0, 1).

The simulater is drawing from the correct conditional distribution.

Blocking. Consider now the blocking strategies, by direct calculation we have:

Blocks Score

[X1, X2, X3, X4] 0.65

[X1, X2, X3], [X4] 0.48

[X1, X3, X4], [X2] 0.52

[X1, X2, X4], [X3] 0.43

[X2, X3, X4], [X1] 1.05

[X1, X2], [X3, X4] 1.50

[X1, X3], [X2, X4] 0.22

[X1, X4], [X2, X3] 0.52

The block scheme with the highest score is {[X1, X2], [X3, X4]}.

13

6.1 A Large State Space Model

To assess the convergence properties and general behavior of the algorithm, we

introduce a generic state space model from Chib and Ramamurthy (2010) as an

example.

st = Tst−1 + εt, ε ∼ N (0, Q) (11)

yt = D + Zst + ut, ut ∼ N (0, H) (12)

st a 5× 1 vector of unobserved states and yt a 10 vector of observables at time t.

The system matrices are parametrized as follows. T is a diagonal matrix with

diag(T) = [T1, T2, T3, T4, T5]′

and Q = I5. Z has the following structure imposed for identification purposes:

Zii = 1, For i = 1, . . . , 5

Zij = 0, For i = 1, . . . , 5, j > i

These parameters are fixed throughout the experiment. The rest of the parameters

are free, with the simulation values given below.

Z =

1.00 0.00 0.00 0.00 0.00

Z21, 1.00 0.00 0.00 0.00

Z31, Z32 1.00 0.00 0.00

Z41, Z42 Z43 1.00 0.00

Z51, Z52 Z53 Z54 1.00

Z51, Z52 Z53 Z54 Z55

Z61, Z62 Z63 Z64 Z65

Z71, Z72 Z73 Z74 Z75

Z81, Z82 Z83 Z84 Z85

Z91, Z92 Z93 Z94 Z95

Z101, Z102 Z103 Z104 Z105

H is a diagonal matrix with:

diag(H) = [H11, H22, H33, H44, H55, H66, H77, H88, H99, H1010]′

.

Let θ1 = diag(T), θ2 = D, θ3 = vec(lowtr(Z1:5,1:5)), θ4 = vec(Z6:10,6:10), and

θ5 = log(diag(H)). The overall parameter vector θ = [θ′1, θ
′
2, θ
′
3, θ
′
4, θ
′
5]
′
.

We parameterize θ at the same values as Chib and Ramamurthy (2010). The

value are listed in Tables 1 and 2. We estimate the model using the Hessian

14

block Metropolis-Hastings algorithm and the Random Walk Metropolis-Hastings

algorithm.

The priors for the parameters are given as follows. Let the prior for θ1 is

N (µθ1 , Vθ1) where, µθ1 = 0.515×1 and Vθ1 = 5×I5. The prior for θ2 is N (µθ2 , Vθ2)

where µθ2 = 0.5 × 110,1 and Vθ2 = 5 × I10. The prior for θ3 is N (µθ3 , Vθ3) where

µθ3 = 0 and Vθ3 = 5 × I10. The prior for θ4 is N (µθ4 , Vθ4) where µθ4 = 0 and

Vθ4 = 5 × I25. Finally, The prior for θ5 is N (µθ5 , Vθ5) µθ5 = −1 × 110,1 and

Vθ5 = I10. We combine these priors with the likelihood implied by state space

representation of the system

We simulate 10,000 draws from the Hessian Block Metropolis-Hastings algo-

rithm and 300,000 from the random walk Metropolis-Hastings. For the Hessian-

based algorithm, we set s̄ = 0.7 and ξ = 0. For the random walk Metropolis-

Hastings we scale the covariance matrix to ensure an acceptance rate of 35%.

On the other hand, the average acceptance rate of the Hessian-based simulator is

about 52%. On the whole, it appears that both simulators have converged to the

same ergodic distribution. However, the draws from the RWMH are extremely

correlated, whereas the draws from the HBMH are much less correlated.

Rather than show plots of the autocorrelation functions of the sixty chains we

present of numeric summary of the total inefficiency of the chain sometimes known

as Geweke’s K. Geweke’s K is a measure of the inefficiency of the Markov chain

relative to iid draws. It is the theoretical variance of the chain relative to chain

which is independently distributed.

κi ≈ 1 + 2

∞∑
l=1

corr(θi,t, θi,t−l)

We approximate it by

κ̂i = 1 + 2

L∑
l=1

(
1− l

L

)
ˆcorr(θi,t, θi,t−l)

for some suitably chosen L. Here, we chooes L = 5000. Table B shows the

inefficiency factor for each the the 60 parameters. It is obvious that the Hessian-

based algorithm produces is much more efficient. Of course, to end-users, statistical

efficiency may not be the most important consideration, given that cheapness of

the RWMH in terms of computer cost. In Table B we compute the effective

sample size implied by the max and the mean inefficiency factors. The RWMH

produces a much smaller effictive sample despite the chain being 30 times longer.

More importantly, the number of seconds per draw is longer for the random walk

Metropolis-Hastings! This is despite the fact that HBMH took about 16 hours

compared to the 3 of the RWMH. There is evidence, then, that the Hessian-based

algorithm can be more efficient than the RWMH. Finally, the algorithm of Chib

15

and Ramamurthy (2010) will produces draws very little correlation also, but it

takes about 5 times longer.

7 A Simple RBC Model

We use the Hessian-based MH to estimate a simple RBC from Curdia and Reis

(2009). It is a standard RBC model with non-separable preferences over consump-

tion and leisure. The model to driven by a technology shock and a government

spending shock, which enters the utility function directly, separable from consump-

tion and leisure.

The consumer solves

max
{Ct,Nt}∞t=0

E0

[
∞∑
t=0

βt
{

[Ct(1−Nt)θ]1−γ − 1

1− γ + V (Gt)

}]
(13)

subject to (14)

Ct +Kt − (1− δ)Kt−1 +Gt = WtNt +RtKt−1.

The production technology is Cobb-Douglas. Firms solve the following problem,

max(AtNt)
1−αKα

t−1 −WtNt −RtKt−1. (15)

The exogenous processes for “technology” (At) and (Gt) “government” spending

are constructed so that,

ât = ρAât−1 + ρAGgt−1 + σAεA,t, (16)

ĝt = ρGĝt−1 + ρGAat−1 + σGεG,t. (17)

The VAR parameterization can be thought of as a way of estimated, say, auto-

matic stabilizers (as in Smets & Wouters) The rest of the model solution and log

linearized are given in the Appendix.

7.1 Priors & Data

[Table 6 about here.]

The priors are given in Table 6. All parameters are assumed a priori to be inde-

pendent. The priors on α, β, and δ are tightly centered around values to match

the steady state real interest rate and the Great Ratios. The priors on γ and θ are

assumed to be more diffuse, reflecting greater uncertainty about reasonable values

for these parameters. These parameters are crucial for the economic implications

of the model. γ controls the how agents savings/investment decision is affected

16

by shocks, while θ controls the response of hours. The priors for the exogenous

processes are elicited by estimated VAR on Solow’s residuals and the appropriate

counterpart for Gt in the data using presample observations.

The model is estimated on quarterly observations of {ŷt, n̂t}2007Q4
t=1983Q3. ŷt de-

trended real US GDP, while n̂t is detrended hours. Both series are detrended

(individually) via the HP filter with a smoothing parameter of λ = 1600. The

series are plotted (in percentages) in Figure 3.

We estimate the model using 4 different posterior simulators: the random walk

Metropolis-Hastings, and three varieties of the Hessian-Based MH discussed above.

In the first version we select blocks based on the Hessian, in the second we select

blocks randomly (a la Chib and Ramamurthy) and in the third we fix the blocks

based on parameter type (a la Curdia and Reis).

7.2 Results

The posterior means and credible sets are listed in Table 8. The first thing that

should be apparent is that simulators do not agree on the central features of the

distribution. In general, the credible sets for the Hessian MH are much wider than

other sets. To investigate why this occurred, we plot the draws of the Hessian

MH vs. the draws from the RWMH. It is clear that the Hessian MH algorithm

has found a second mode. The Random Block MH likewise finds the second

mode, but doesn’t remix back to the first after an initial period. Table 7 lists

the modes. It seems as though each of these regions explain the data in the same

way. Posterior predictive checks in Figure 8 appear identical between the Hessian

Metropolis-Hastings and the RW Metropolis. Likewise, the predictive densities

implied for future values of output and hours are very similar. Still, though, there

are important distinctions between the two modes. Mode 1 features a slightly

more persistent exogenous process and a slightly higher variance for the shocks.

This is a small but real example of how difficult it is to distinguish exogenous from

endogenous persistence. As DSGE models increase in size this kind of “weak”

identification will increase, requiring better simulators.

It appears that the Hessian Metropolis Hastings did the best job at finding both

modes (although the Random Block did as well, it just didn’t mix as well). It would

be interesting to see how the chains compare in terms of autocorrelation. Table

9 list Geweke’s K, a measure of the variance of the chain relative to theoretically

iid draws. See the Appendix for the precise formula and interpretation. The

Hessian-based Metropolis-Hastings performs the worst according to Geweke’s K.

This is because mode-hopping chains are necessarily more persistence than chains

17

which stay on a single mode. For a posterior with a unimodal posterior (or at

least, what seems like a unimodal posterior) the Hessian-based MH will perform

well on Geweke’s K, as we will demonstrate in the next section. Furthermore, the

RWMH chain, which demonstrably does not converge, passes the split sample test

and multiple chains collectively had a Gelman’s R-stat of less 1.001. This lends

caution to relying to heavily on convergence diagnostics as stopping rules.

The blocking method also seems to work. About 85% of the time, the block

selecting mechanism choses γ and ρAG in the same block. The correlation between

these parameters is about −0.70. Meanwhile, the parameters θ and ρAG are almost

never blocked together, reflecting a posterior correlation of 0.02.

8 Smets and Wouters

The Smets and Wouters (2007) model is a medium-scale DSGE model which serves

a benchmark for the current generation. It features 7 observables,and 41 param-

eters. The complete linearized model is given in the Appendix. For the Smets

and Wouters model we simulate the posterior via three techniques: the Hessian

block-based Newton method, a random block-based Newton methods, and simple

random walk Metropolis-Hastings.

We adjust the Hessian blocking technique slightly, since calculating the full

Hessian every step is computationally exhaustive, even with the exact expression

of the Hessian. For the first nburn = 500 we run the Hessian blocking method,

recording the blocks at each simulation step. After this step, we construct an

empirical distribution of the top k = 10 most selected blocks. Thereafter, at each

step we randomly select the block based on this distribution, not the current state

of the chain.

The priors are listed in the Tables 10 and ??. The posteriors look very similar

for all the parameters, as in Chib and Ramamurthy (2010).

To examine the speed of convergence, we rely on a empirical measure of the

autocorrelation of the chain. We the inefficiency factors for each parameter in

Table 12. The Hessian block and random block MH chains are significantly less

correlated than the chain constructed from RWMH. On average, however, the

parameters from the random block chain are slightly less autocorrelated than the

Hessian blocks. However, the maximum K value is much less for the Hessian block

MH (48.29) than it is for the random block MH (81.04). This might be explained

by the fact that the Hessian block scheme won’t ever choose a bad blocking scheme,

while the random blocking scheme makes all blocks equally likely.

It’s worth looking some of the groupings chosen by the Hessian blocking system.

18

Table ?? lists some of the more popular blocks. Parameters governing price-

stickiness and mark-ups tend to blocked together,

[ξp, ρp, µp],

where ξp is the Calvo parameter associated with prices, ρp is persistence parameter

associated with price mark-up and µp is the parameter governing on the MA(1)

component. However, the corresponding block associated with wage parameters,

[ξw, ρw, µw],

is hardly ever chosen, because the correlation of ρw and µw is close to 0, while

the correlation ρp and µp is nearly 0.8. Meanwhile, the block of [π̄, l̄] is chosen

100% of the time, reflecting that the fact that the posterior correlation of these two

parameters is roughly −0.60. The habit parameter and persistence to preference

shocked are blocked together often, reflecting there positive correlation. The Taylor

Rule coefficients ρπ and ρy are always blocked together, but the coefficient on

output growth ρ∆y is only included in this block about 5% of the time, reflecting

the weak correlation of these parameters.

9 News Shock Model

to be added

10 Conclusion

This paper presented a new MCMC algorithm for linear DSGE models. The simu-

lator is based on constructed tailored proposals based on a single-step application

of Newton’s method. We constructed blocks by examining the curvature of the

posterior in order to group parameters that are related to one another. We have

shown that the algorithm can be a considerable improvement over the random

walk Metropolis-Hastings for linear DSGE models.

Paths for future work include refining the computational of the Hessian and

gradient to take into account multithreading capabilities of many modern comput-

ing systems, better exploiting the geometry of the posterior to eliminate tuning

parameters, and applying the method to new models.

19

References

An, Sungbae and Frank Schorfheide, “Bayesian Analysis of DSGE Models,”

Econometric Reviews, 2007, 26 (2-4), 113–172.

Andrieu, Christophe and Johannes Thoms, “A Tutorial on Adaptive

MCMC,” Statistical Computing, 2008, 18, 343–373.

Bastani, Houtan and Luca Guerrieri, “On the Application of Automatic

Differentiation to the Likelihood Function for Dynamic General Equilibrium

Models,” International Finance Discussion Papers 920, Board of Governors of

the Federal Reserve System 2008.

Besag, Julian, Peter Green, David Higdon, and Kerrie Mengersen,

“Bayesian Computation and Stochastic Systems,” Statistical Science, Feb 1995,

10 (1), 3–41.

Chib, Siddhartha and Edward Greenberg, “Bayes Inference for Regression

Models with ARMA(p,q) Errors,” Journal of Econometrics, 1994, 64, 183–206.

and Ivan Jeliazkov, “Marginal Likelihood From the Metropolis-Hastings

Algorithm,” Journal of the American Statistical Association, 2001, 96, 270–281.

and Srikanth Ramamurthy, “Tailored Randomized Block MCMC Methods

with Application to DSGE Models,” Journal of Econometrics, 2010, 155 (1),

19–38.

Curdia, Vasco and Ricardo Reis, “Correlated Disturbances and U.S. Business

Cycles,” Working Paper, 2009.

Fernández-Villaverde, Jesús, “The Econometrics of DSGE Models,” Working

Paper 14677, NBER 2009.

Geweke, John, “Using Simulation Methods for Bayesian Econometric Models:

Inference, Development, and Communication,” Econometric Reviews, 1999, 18

(1), 1–126.

and Hisashi Tanizaki, “Note on the Sampling Distribution for the

Metropolis-Hastings Algorithm,” Communications in Statisics: Theory and

Methods, 2003, 32 (4), 775–789.

Geyer, Charles J, “The Metropolis-Hastings-Green Algorithm,” mimeo, 2003.

Green, Peter J., “Reversible Jump Markov Chain Monte Carlo and Bayesian

Model Determination,” Biometrika, 1995, 82, 711–732.

20

Iskrev, Nikolay, “Evaluating the Information Matrix in Linearized DSGE Mod-

els,” Economics Letters, 2008, 99, 607–610.

, “Local Identification of DSGE Models,” Journal of Monetary Economics, 2010,

2, 189–202.

Kohn, Robert, Paolo Giordani, and Ingvar Strid, “Adaptive Hybrid

Metropolis-Hastings Samplers for DSGE Models,” Working Paper, 2010.

Liu, Jun S., Faming Liang, and Wing Hung Wong, “The Multiple Try

Method and Local Optimization in Metropolis Sampling,” Journal of the Amer-

ican Statistical Association, 2000, 95, 121–134.

Magnus, Jan R. and Heinz Neudecker, Matrix Differential Calculus with

Applications in Statistics and Econometrics, 2nd ed., Wiley, New York., 1999.

Morf, M., “Fast Algorithms for Multivariate Systems.” PhD dissertation, Stan-

ford University 1974.

Neal, Radford, “Slice Sampling (with discussion),” The Annals of Statistics,

2003, 31, 705–767.

Qi, Yuan and Thomas P. Minka, “Hessian-based Markov Chain Monte-Carlo

Algorithms,” Unpublished Manuscript, 2002.

Robert, Christian P. and George Casella, Monte Carlo Statistical Methods,

Springer, 2004.

Roberts, G. O. and S.K. Sahu, “Updating Schemes, Correlation Structure,

Blocking and Parameterization for the Gibbs Sampler,” Journal of the Royal

Statistical Society. Series B (Methodological), 1997, 59 (2), 291–317.

Roberts, Gareth O. and Jeffrey S. Rosenthal, “Harris Recurrence of

Metropolis-within-Gibbs and Trans-dimensional Markov Chains,” The Annals

of Applied Probability, 2006, 16, 2123–2139.

Roberts, G.O. and Jeffrey S. Rosenthal, “Markov-Chain Monte Carlo: Some

Practical Implications of Theoretical Results,” The Canadian Journal of Statis-

tics, 1998, 25 (1), 5–20.

Schorfheide, Frank, “Loss Function-based Evaluation of DSGE Models,” Jour-

nal of Applied Econometrics, 2000, 15, 645–670.

21

Smets, Frank and Raf Wouters, “Comparing Shocks and Frictions in US and

Euro Area Business Cycles: A Bayesian DSGE Approach,” Journal of Applied

Econometrics, 2005, 20, 161 – 183.

Tierney, Luke, “Markov Chains for Exploring Posterior Distributions,” The An-

nals of Statistics, 1994, 22 (4), 1701–1728.

Tjelmeland, Hakon and Jo Eidsvik, “On the Use of Local Optimizations with

Metropolis-Hastings Updates,” Journal of the Royal Statistical Society (Series

B), 2004, 66, 411–427.

22

A Appendix

A.1 Derivation of ∂
∂θ′

vec
(
∂vec(T)
∂θ′

)
The derivation relies on differential forms. For background see Magnus and Neudecker

(1999).

Some Important Matrices and Matrix Facts.

Kmnvec(A) = vec(A′),where A is an m× n matrix. (18)

Dnvech(A) = vec(A),where A is a symmetric n× n matrix (19)

D+
n vec(A) = vech(A),where A is a symmetric n× n matrix (20)

vec(A⊗B) = (In ⊗Kmn ⊗ Ip)(vecA⊗ vecB), (21)

Kpm(A⊗B) = (B ⊗A)Kqnwhere A is an m× n and B a p× q matrix(22)

Derivation of ∂
∂θ′ vec

(
∂vec(T)
∂θ′

)
. Consider the function derived by Iskrev (2010).

(T ′⊗Ins)
∂vec(Γ0)

∂θ′
+(Ins⊗Γ0)

∂vec(T)

∂θ′
−(T ′2⊗Ins)

∂vec(Γ1)

∂θ′
−(T ′⊗Γ1)

∂vec(T)

∂θ′
−(Ins⊗Γ1T)

∂vec(T)

∂θ′
−∂vec(Γ2)

∂θ′
= 0

(23)

The differential is this function is:

(dT ′⊗Ins)
∂vec(Γ0)

∂θ′
+(T ′⊗Ins)

d∂vec(Γ0)

∂θ′
+(Ins⊗dΓ0)

∂vec(T)

∂θ′
+(Ins⊗Γ0)

d∂vec(T)

∂θ′

−(d(T ′2)⊗Ins)
∂vec(Γ1)

∂θ′
−(T ′2⊗Ins)

∂vec(dΓ1)

∂θ′
−(dT ′⊗Γ1)

∂vec(T)

∂θ′
−(T ′⊗dΓ1)

∂vec(T)

∂θ′
−(T ′⊗Γ1)

d∂vec(T)

∂θ′

−(Ins⊗dΓ1T)
∂vec(T)

∂θ′
−(Ins⊗Γ1dT)

∂vec(T)

∂θ′
−(Ins⊗Γ1T)

d∂vec(T)

∂θ′
−d∂vec(Γ2)

∂θ′
= 0

(24)

So the partial derivative is given by:((
∂vec(Γ0)

∂θ′

)′
⊗ In2

s

)
(Ins⊗Knsns⊗Ins)

(
Knsns

∂vec(T)

∂θ′

)
⊗vec(Ins))+(Inp⊗(T ′⊗Ins))

∂

∂θ′
vec

(
∂vec(Γ0)

∂θ′

)
+

((
∂vec(T)

∂θ′

)′
⊗ In2

s

)
(Ins⊗Knsns⊗Ins)

(
vec(Ins)⊗

∂vec(Γ0)

∂θ′

)
+(Inp⊗(Ins⊗Γ0))

∂

∂θ′
vec

(
∂vec(T)

∂θ′

)
−((

∂vec(Γ1)

∂θ′

)′
⊗ In2

s

)
(Ins⊗Knsns⊗Ins)

([
(T ⊗ Ins)Knsns

∂vec(T)

∂θ′
+ (Ins ⊗ T

′)Knsns

∂vec(T)

∂θ′

]
⊗ vec(Ins)

)
− (Inp ⊗ (T ′2 ⊗ Ins)

∂

∂θ′
vec

(
∂vec(Γ1)

∂θ′

)
−((

∂vec(T)

∂θ′

)′
⊗ In2

s

)
(Ins⊗Knsns⊗Ins)

([
Knsns

∂vec(T)

∂θ′
⊗ vec(Γ1)

]
+

[
Knsnsvec(T)⊗ ∂vec(Γ1)

∂θ′

])
−
(
Inp ⊗ (T ′ ⊗ Γ1)

) ∂

∂θ′
vec

(
∂vec(T)

∂θ′

)
− ∂

∂θ′
vec

(
∂vec(Γ2)

∂θ′

)
= 0 (25)

23

With this equation and the derivatives and hessians of {Γ0,Γ1,Γ2,Γ3}, one can

solve for ∂
∂θ′ vec

(
∂vec(T)
∂θ′

)
.

Derivation of ∂
∂θ′ vec

(
∂vec(R)
∂θ′

)
. Consider the function derived by Iskrev:

∂vec(R)

∂θ′
= −

(
Γ′3 ⊗ Ins

) (
W ′−1 ⊗W−1) ∂vec(W)

∂θ′
+
(
Ine ⊗W

−1) ∂vec(Γ3)

∂θ′
(26)

where W = Γ0 − Γ1T . Consider first the differential of W ,

dW = dΓ0 − dΓ1T − Γ1dT. (27)

So the derivative is given by,

∂vec(W)

∂θ′
=
∂vec(Γ0)

∂θ′
−
(
T ′ ⊗ Ins

) ∂vec(Γ1)

∂θ′
− (Ins ⊗ Γ1)

∂vec(T)

∂θ′
. (28)

And the Hessian of W is,

∂vec()

∂θ′
vec

(
∂vec(W)

∂θ′

)
=

∂vec()

∂θ′
vec

(
∂vec(Γ0)

∂θ′

)
(29)

−
(
∂vec(Γ1)

∂θ′
⊗ In2

s

)
(Ins ⊗Knsns ⊗ Ins)

(
Knsns

∂vec(T)

∂θ′
⊗ vec(Ins)

)
−
(
Inp ⊗ T

′ ⊗ Ins
) ∂vec()

∂θ′
vec

(
∂vec(Γ1)

∂θ′

)
−
(
∂vec(T)

∂θ′
⊗ Inens

)(
Ine ⊗Knsny ⊗ Ins

)(
vec(Ine)⊗ ∂vec(Γ1)

∂θ′

)
−
(
Inp ⊗ Ins ⊗ Γ1

) ∂vec()
∂θ′

vec

(
∂vec(T)

∂θ′

)
.

Finally,

∂vec(W−1)

∂θ′
= −

(
W−1′ ⊗W−1

) ∂vec(W)

∂θ′
. (30)

and

∂
(
W−1′ ⊗W−1

)
∂θ

= (Ins ⊗Knsns ⊗ Ins)
(
Knsns

∂vec(W−1)

∂θ′
⊗ vec(W−1) + vec(W−1′)⊗ ∂vec(W−1)

∂θ′

)
(31)

We deduce that,

∂vec(R)

∂θ′
= −

(
∂vec(W)

∂θ′

′
⊗ Γ′3 ⊗ Ins

) ∂
(
W−1′ ⊗W−1

)
∂θ

(32)

−
(
∂vec(W)

∂θ′

′
⊗W−1′ ⊗W−1

)
(Ins ⊗Knsne ⊗ Ins)

(
Knsne

∂vec(Γ3)

∂θ′
⊗ vec(Ins)

)
−

(
Inp ⊗

(
Γ′3 ⊗ Ins

) (
W ′−1 ⊗W−1)) ∂vec()

∂θ′
vec

(
∂vec(W)

∂θ′

)
+

(
∂vec(Γ3)

∂θ′
⊗ Inens

)
(Ine ⊗Knsne ⊗ Ins)

(
vec(Ine)⊗ ∂vec(W−1)

∂θ′

)
+

(
Inpne ⊗W

−1) ∂vec()
∂θ′

vec

(
∂vec(Γ3)

∂θ′

)

24

A.2 Derivation of Exact Gradient and Hessian of the

Log Posterior

7

A.2.1 Analytic Gradient

Note: Rewrite using Chandrasekar Equations.

Initialization. Let at|t and Pt|t be the “updated” mean and variance of the state

vector. We assume that the system stationary, so that it is at the unconditional

mean and variance at t = 0.

a0|0 = 0 (33)

P0|0 = TP0|0T
′ +RQR′ (34)

Clearly ∂a0|0/∂θ
′ = 0. For P0|0, the differential is

dP0|0 = dTP0|0T
′ + TdP0|0T

′ + TP0|0dT
′ + dRQR′ +RdQR′ +RQdR′. (35)

So the derivative is

∂vec(P0|0)

∂θ′
= (TP0|0⊗Ins)

∂vec(T)

∂θ′
+(T⊗T)

∂vec(P0|0)

∂θ′
+(Ins⊗TP0|0)

∂vec(T ′)

∂θ′

+ (RQ⊗ Ins)
∂vec(R)

∂θ′
+ (R⊗R)

∂vec(Q)

∂θ′
+ (Ins ⊗RQ)

∂vec(R′)

∂θ′
(36)

Using the matrix facts from above, we can write this derivative as,

∂vec(P0|0)

∂θ′
=
(
In2
s
− (T ⊗ T)

)−1

(
(
In2
s

+Knsns

)[
(TP0|0 ⊗ Ins)

∂vec(T)

∂θ′
+ (RQ⊗ Ins)

∂vec(R)

∂θ′

]
+ (R⊗R)

∂vec(Q)

∂θ′
). (37)

Forecasting. The Kalman filter forecasting equations are

at+1|t = Tat|t (38)

Pt+1|t = TPt|tT
′ +RQR′ (39)

The differential of the state forecasting equation is

dat+1|t = dTat|t + Tdat|t (40)

Hence the derivative with respect to θ is,

∂at+1|t

∂θ′
= (a′t|t ⊗ Ins)

∂vec(T)

∂θ′
+ T

∂at|t
∂θ′

. (41)

The differential of the variance is

dPt+1|t = dTPt|tT
′ + TdPt|tT

′ + TPt|tdT
′ + dRQR′ +RdQR′ +RQdR′. (42)

7We omit the dependence of the system matrices on θ for simplicity.

25

Hence the derivative with respect to θ is,

∂vec(Pt+1|t)

∂θ′
=
(
In2
s

+Knsns

)
(TPt|t ⊗ Ins)

∂vec(T)

∂θ′
+ (T ⊗ T)

∂vec(Pt|t)

∂θ′

+
(
In2
s

+Knsns

)
(RQ⊗ Ins)

∂vec(R)

∂θ′
+ (R⊗R)

∂vec(Q)

∂θ′
(43)

The forecast error and variance are defined as:

ηt+1 = yt+1 − (D + Zat+1|t) (44)

Ft+1 = ZPt+1|tZ
′ +H (45)

The derivatives for these objects are

∂η

∂θ′
= −∂vec(D)

∂θ′
− (a′t|t ⊗ Iny)

∂vec(Z)

∂θ′
− Z

∂at+1|t

∂θ′
(46)

∂Ft+1

∂θ′
=

(
In2
y

+Knyny

)
(ZPt+1|t ⊗ Iny)

∂vec(Z)

∂θ′
+ (Z ⊗ Z)

∂vec(Pt+1|t)

∂θ′
+
∂vec(H)

∂θ′
(47)

Log Likelihood. The log likelihood is given by

L(Y |θ) = −1

2

T∑
t=1

(
ny ln(2π) + ln(det(Ft)) + η′F−1

t η
)

(48)

It is useful to first construct the derivative of F−1
t . The differential form for matrix

inversion is given by d(X−1) = −X−1dXX−1. So the derivative of F−1
t is

∂vec
(
F−1
t

)
∂θ′

= −
(
F−1
t ⊗ F−1

t

) ∂vec (Ft)

∂θ′
. (49)

Using d ln(det(X)) = tr(X−1dX) and the differential is

dL(Y |θ) = −1

2

T∑
t=1

(
tr(F−1

t dFt) + η′d
(
F−1
t

)
η + 2η′F−1

t dη
)
. (50)

So the gradient is given by,

∂L(Y |θ)
∂θ′

= −1

2

T∑
t=1

(
vec(F−1

t)′
∂vec(Ft)

∂θ′
+
(
η′ ⊗ η′

) ∂vec (F−1
t

)
∂θ′

+ 2η′F−1
t

∂η

∂θ′

)
(51)

Updating.

at+1|t+1 = at+1|t + Pt+1|tZ
′F−1
t+1ηt (52)

Pt+1|t+1 = Pt+1|t − Pt+1|tZ
′F−1
t+1ZPt+1|t (53)

It is useful to consider Pt+1|tZ
′ as group. The differential of this matrix is given

by

d(Pt+1|tZ
′) = dPt+1|tZ

′ + Pt+1|td(Z′) (54)

So the derivative is given by

∂vec(Pt+1|tZ
′)

∂θ′
= (Z ⊗ Ins)

∂vec(Pt+1|t)

∂θ′
+
(
Iny ⊗ Pt+1|t

)
Knyns

∂vec(Z)

∂θ′
(55)

26

The differential for at+1|t+1 is

dat+1|t+1 = dat+1|t + d(Pt+1|tZ
′)F−1

t+1ηt + Pt+1|tZ
′d(F−1

t+1)ηt + Pt+1|tZ
′F−1
t+1dηt (56)

Hence the derivative is:

∂at+1|t+1

∂θ′
=
∂at+1|t

∂θ′
+(η′t+1F

−1
t+1⊗Ins)

∂vec(Pt+1|tZ
′)

∂θ′
+(η′t+1⊗Pt+1|tZ

′)
∂vec(F−1

t+1)

∂θ′
+Pt+1|tZ

′F−1
t+1

∂ηt+1

∂θ′

(57)

The differential for Pt+1|t+1 is

dPt+1|t+1 = dPt+1|t − d(Pt+1|tZ
′)F−1

t+1ZPt+1|t − Pt+1|tZ
′dF−1

t+1ZPt+1|t − Pt+1|tZ
′F−1
t+1d(ZPt+1|t). (58)

Hence the derivative is

∂vec(Pt+1|t+1)

∂θ′
=
∂vec(Pt+1|t)

∂θ′
−
(
In2
s

+Knsns

)(
Pt+1|tZ

′F−1
t+1|t ⊗ Ins

) ∂vec(Pt+1|tZ
′)

∂θ′

−
(
Pt+1|tZ

′ ⊗ Pt+1|tZ
′) ∂vec(F−1

t)

∂θ′
(59)

A.2.2 Hessian

A few important derivatives. For an m× n matrix function X,

∂vec(X ⊗X)

∂θ′
= (In ⊗Knm ⊗ Im)

[(
∂vec(X)

∂θ′
⊗ vec(X)

)
+

(
vec(X)⊗ ∂vec(X)

∂θ′

)]
(60)

= (In ⊗Knm ⊗ Im)
(
I(mn)2 +K(mn)(mn)

)(∂vec(X)

∂θ′
⊗ vec(X)

)
(61)

Forecasting. Begin by taking the differential of 57.

d
∂at+1|t

∂θ′
= (da′t|t ⊗ Ins)

∂vec(T)

∂θ′
+ (a′t|t ⊗ Ins)d

∂vec(T)

∂θ′
+ dT

∂at|t
∂θ′

+ Td
∂at|t
∂θ′

(62)

Recognizing that (Ins ⊗Kns1 ⊗ Ins) = In3
p
, we can write the Hessian of at+1|t as,

∂

∂θ′
vec

(
∂at+1|t

∂θ′

)
=

(
∂vec(T)

∂θ′

′
⊗ Ins

)(
∂at|t
∂θ′

⊗ vec(Ins)
)

+
(
Inp ⊗ a

′
t|t ⊗ Ins

) ∂

∂θ′
vec

(
∂vec(T)

∂θ′

)
+

(
∂at|t
∂θ′

′

⊗ Ins
)
∂vec(T)

∂θ′
+
(
Inp ⊗ T

) ∂

∂θ′
vec

(
∂at|t
∂θ′

)
. (63)

For the state forecast variance, begin by taking the differential of 43.

d
∂vec(Pt+1|t)

∂θ′
=
(
In2
s

+Knsns

)
(d(TPt|t)⊗Ins)

∂vec(T)

∂θ′
+
(
In2
s

+Knsns

)
(d(TPt|t)⊗Ins)d

∂vec(T)

∂θ′

+ (dT ⊗ T)
∂vec(Pt|t)

∂θ′
+ (T ⊗ dT)

∂vec(Pt|t)

∂θ′
+ T ⊗ T)d

∂vec(Pt|t)

∂θ′

+
(
In2
s

+Knsns

)
(d(RQ)⊗ Ins)

∂vec(R)

∂θ′
+ (R⊗R)

∂vec(Q)

∂θ′
(64)

Here we have used,

∂vec(TPt|t)

∂θ′
=

(
Pt|t ⊗ Ins

) ∂vec(T)

∂θ′
+ (Ins ⊗ T)

∂vec(Pt|t)

∂θ′
(65)

∂vec(RQ)

∂θ′
= (Q⊗ Ins)

∂vec(R)

∂θ′
+ (Ine ⊗R)

∂vec(Q)

∂θ′
(66)

27

Using65, 66, and 60, the Hessian of Pt+1|t can be expressed as

∂

∂θ′
vec

(
∂vec(Pt+1|t)

∂θ′

)
=

(
∂vec(T)

∂θ′

′
⊗ (In2

s
+Knsns)

)
(Ins ⊗Knsns ⊗ Ins)

(
∂vec(TPt|t)

∂θ′
⊗ vec(Ins)

)
+

(
∂vec(Pt|t)

∂θ′

′

⊗ In2
s

)
(Ins ⊗Knsns ⊗ Ins)

(
In2
s

+Kn2
sn

2
s

)(∂vec(T)

∂θ′
⊗ vec(T)

)
+
(
Inp ⊗ T ⊗ T

) ∂

∂θ′
vec

(
∂vec(Pt|t)

∂θ′

)
+

(
∂vec(R)

∂θ′

′
⊗
(
In2
s

+Knsns

))
(Ine ⊗Knsns ⊗ Ins)

(
∂vec(RQ)

∂θ′
⊗ vec(Ins)

)
+
(
Inp ⊗

(
In4
s

+Kn2
sn

2
s

)
(RQ⊗ Ins)

) ∂

∂θ′
vec

(
∂vec(R)

∂θ′

)
+

(
∂vec(Q)

∂θ′

′
⊗ In2

s

)
(Ine ⊗Knens ⊗ Ins)

(
I(nsne)2 +K(nsne)(nsne)

)(∂vec(R)

∂θ′
⊗ vec(R)

)
+
(
Inp ⊗R⊗R

) ∂

∂θ′
vec

(
∂vec(Q)

∂θ′

)
+
(
Inp ⊗ (In2

s
+Kn2

sn
2
s
)
(
TPt|t ⊗ Ins

)) ∂

∂θ′
vec

(
∂vec(T)

∂θ′

)
. (67)

To find the Hessian of P0|0 set Pt+1|t = Pt|t and solve in the previous equation.

Log Likelihood. Begin by taking the Hessian of ηt+1,

∂

∂θ′
vec

(
∂η

∂θ′

)
= − ∂

∂θ′
vec

(
∂vec(D)

∂θ′

)
−
(
∂vec(Z)

∂θ′

′
⊗ Iny

)(
∂at+1|t

∂θ′
⊗ vec(Iny)

)
−
(
Inp ⊗ a

′
t|t ⊗ Iny

) ∂

∂θ′
vec

(
∂vec(Z)

∂θ′

)
−
(
Inp ⊗ Z

) ∂

∂θ′
vec

(
∂at+1|t

∂θ′

)
−
(
∂at+1|t

∂θ′

′

⊗ Iny
)
∂vec(Z)

∂θ′
.

(68)

We have used the fact that ∂2yt+1/∂θ∂θ
′ = 0. The Hessian of Ft+1|t is given by:

∂

∂θ′
vec

(
∂vec(Ft)

∂θ′

)
=

(
∂vec(Z)

∂θ′

′
⊗
(
In2
y

+Knyny

))(
Ins ⊗Knyny ⊗ Iny

)(
Knsny

∂vec(Pt|tZ
′)

∂θ′
⊗ vec(Iny)

)
+(

Inp ⊗
(
In2
y

+Knyny

)
(ZPt+1|t ⊗ Ins)

) ∂

∂θ′
vec

(
∂vec(Z)

∂θ′

)
+

(
∂vec(Pt+1|t)

∂θ′

′

⊗ In2
y

)(
Ins ⊗Knsny ⊗ Iny

) (
I(nyns)2 +K(nyns)(nyns)

)(∂vec(vec(Z))

∂θ′
⊗ vec(Z)

)
+
(
Inp ⊗ Z ⊗ Z

) ∂

∂θ′
vec

(
∂vec(Pt+1|t)

∂θ′

)
. (69)

∂2L(θ|yt+1)

∂θ∂θ′
=

∂2L(θ|yt)
∂θ∂θ′

− 1

2

(
Inp ⊗ vec(F

−1
t+1|t)

′
) ∂

∂θ′
vec

(
∂vec(F−1

t+1|t)

∂θ′

)
− 1

2

∂vec(Ft+1|t)

∂θ′

′ ∂vec(F−1
t+1|t)

∂θ′

− 1

2

(
Inp ⊗ η

′
t+1 ⊗ ηt+1

) ∂

∂θ′
vec

(
∂vec(F−1

t+1|t)

∂θ′

)

− 1

2

∂vec(F−1
t+1|t)

∂θ′

′ (
In2
y

+Knyny

)(∂vec(ηt+1)

∂θ′
⊗ η′t+1

)
−

(
∂vec(ηt+1)

∂θ′

′
⊗ ηt+1

)
∂vec(F−1

t+1|t)

∂θ′
− ∂vec(ηt+1)

∂θ′

′
F−1
t+1|t

∂vec(ηt+1)

∂θ′

−
(
Inp ⊗ η

′
t+1F

−1
t+1|t

) ∂

∂θ′
vec

(
∂vec(ηt+1)

∂θ′

)

28

Updating.

∂

∂θ′
vec

(
∂vec(Pt+1|tZ

′)

∂θ′

)
=

(
∂vec(Pt+1|t)

∂θ′

′

⊗ Inyns
)(

Ins ⊗Knsny ⊗ Ins
)(∂vec(Z)

∂θ′
⊗ vec(Ins)

)
(70)

+
(
Inp ⊗ Z ⊗ Ins

) ∂

∂θ′
vec

(
∂vec(Pt+1|t)

∂θ′

)
+

(
∂vec(Z)

∂θ′

′
Knsny ⊗ Inyns)

)(
Iny ⊗Knsny ⊗ Ins

)(
vec(Iny)⊗

∂vec(Pt+1|t)

∂θ′

)
+

(
Inp ⊗

(
Iny ⊗ Pt+1|t

)
Knyns

) ∂

∂θ′
vec

(
∂vec(Z)

∂θ′

)

∂

∂θ′
vec

(
∂vec(at+1|t+1)

∂θ′

)
=

∂

∂θ′
vec

(
∂vec(at+1|t)

∂θ′

)
(71)

+

(
∂vec(Pt+1|tZ

′)

∂θ′

′

⊗ Ins

)((
F−1
t+1|t

∂vec(ηt+1)

∂θ′
+
(
Iny ⊗ η

′
t+1

) ∂vec(F−1
t+1|t)

∂θ′

)
⊗ vec(Ins)

)

+
(
Inp ⊗ η

′
t+1F

−1
t+1|t ⊗ Ins

) ∂

∂θ′
vec

(
∂vec(Pt+1|tZ

′)

∂θ′

)
+

(
∂vec(F−1

t+1|t)

∂θ′
⊗ Ins

)(
∂vec(ηt+1)

∂θ′
⊗ vec(Pt+1|tZ

′) + ηt+1 ⊗
∂vec(Pt+1|tZ

′)

∂θ′

)

+
(
Inp ⊗ η

′
t+1 ⊗ Pt+1|tZ

′) ∂

∂θ′
vec

(
∂vec(F−1

t+1)

∂θ′

)
+

(
∂vec(ηt+1)

∂θ′

′
F−1
t+1 ⊗ Ins

)
∂vec(Pt+1|tZ

′)

∂θ′

+

(
∂vec(ηt+1)

∂θ′

′
⊗ Pt+1|tZ

′
)
∂vec(F−1

t+1|t)

∂θ′
+
(
Inp ⊗ Pt+1|tZ

′F−1
t+1|t

) ∂

∂θ′
vec

(
∂vec(ηt+1)

∂θ′

)

∂

∂θ′
vec

(
∂vec(Pt+1|t+1)

∂θ′

)
=

∂

∂θ′
vec

(
∂vec(Pt+1|t)

∂θ′

)
(72)

−

(
∂vec(Pt+1|tZ

′)

∂θ′

′

⊗
(
In2
s

+Knsns

))(
Iny ⊗Knsns ⊗ Ins

)
×

([(
F−1
t+1|t ⊗ Ins

) ∂vec(Pt+1|tZ
′)

∂θ′
+
(
Iny ⊗ Pt+1|tZ

′) ∂vec(F−1
t+1|t)

∂θ′

]
⊗ vec(Ins)

)

−
(
Inp ⊗

(
In2
s

+Knsns

)(
Pt+1|tZ

′F−1
t+1|t ⊗ Ins

)) ∂

∂θ′
vec

(
∂vec(Pt+1|tZ

′)

∂θ′

)
−

(
∂vec(F−1

t+1|t)

∂θ′

′

⊗ In2
s

)(
Iny ⊗Knyns ⊗ Ins

) (
I(nyns)2 +K(nyns)(nyns)

)
×

(
∂vec(Pt+1|tZ

′)

∂θ′
⊗ vec(Pt+1|tZ

′)

)
−

(
Inp ⊗ Pt+1|tZ

′ ⊗ Pt+1|tZ
′) ∂

∂θ′
vec

(
∂vec(F−1

t+1|t)

∂θ′

)

29

A.3 Invariance

Let f(x) be the distribution of interest, where x is a k × 1 vector from the state

space X. Let J be the total number of block schema. For each i = 1 . . . J , define

the Ki(x, ·) to be the transition kernel of Block Metropolis Hastings algorithm

corresponding to the ith blocking schema.

As shown in Chib and Jeliazkov (2001), Ki(x, ·) satisfies local reversibility; i.e.,

detailed balance. See Roberts and Rosenthal (2006) for conditions under which

the Block Metropolis-Hastings is Harris-recurrent.

Start with kernel Ki(x, ·) which is which preserves the stationary distribution

π. Define the state-dependent mixture as,

K̃(x, ·) =

n∑
i=1

αi(x)Ki(x, ·).

State-dependent mixtures were introduced by Green (1995) and are used exten-

sively in reversible jump MCMC for simulating over distributions of models. Un-

fortunately, once the probabilities αi depend on x it is not trivial to show that

combined kernel K̃(x, ·) preserves f . Reversible jump algorithms are typically used

with kernels that are reversible (hence the name). However, Geyer (2003) shows

that if each αi(x)Ki(x, ·) is sub-Markovian,

αi(x)Ki(x,A) ≤ 1,

then the Markov chain,

K∗(x,A) = I(x,A)[1−K(x,X)] +K(x,A)

is reversible (with respect to the dominating measure for the model) for

I(x,A) =

1, x ∈ A,

0, otherwise.

So K∗ is Markovian and preserves f , and the Block Metropolis Hastings algorithm

is valid.

30

A.4 RBC Model

The optimality conditions for the model imply that for all t

Ct : βt
[
Ct(1−Nt)θ

]−γ
(1−Nt)θ + λt = 0 (73)

Nt : −θβt
[
Ct(1−Nt)θ

]−γ
Ct(1−Nt)θ−1 + λtWt = 0 (74)

Kt : λt − βλt+1((1− δ) +Rt+1) = 0 (75)

λt : WtNt +RtKt−1 − Ct −Kt + (1− δ)Kt−1 −Gt = 0 (76)

So that the intertemporal Euler condition is,[
Ct(1−Nt)θ

]−γ
(1−Nt)θ = βEt

[[
Ct+1(1−Nt+1)θ

]−γ
(1−Nt+1)θ(1− δ +Rt+1)

]
. (77)

The intratemporal Euler condition is,

θ
Ct

1−Nt
= Wt. (78)

The firm operates in a competitive market and maximizes 1-period profits,

max(AtNt)
1−αKα

t−1 −WtNt −RtKt−1 (79)

Which of courses implies

Wt = (1− α)Yt/Nt (80)

Rt = αYt/Kt−1 (81)

A.4.1 Steady State

Rss = 1/β − (1− δ) (82)

Kss = αYss/Rss (83)

Iss = (1− (1− δ))Kss (84)

Css = Yss − (1− (1− δ))Kss −Gss (85)

Nss =

(
(1− α)Yss
θCss

)
/

(
1 +

(1− α)Yss
θCss

)

)
(86)

(87)

31

A.4.2 Log Linearization

λ̂t = Et[λ̂t+1 +
RSS

RSS + 1− δ r̂t+1] (88)

λ̂t = −γĉt − (1− γ)θ
Nss

1−Nss
n̂t (89)

ŵt = ĉt +
Nss

1−Nss
n̂t (90)

ŵt = ŷt − n̂t (91)

r̂t = ŷt − k̂t−1 (92)

ît =
Kss

Iss
(k̂t − (1− δ)k̂t−1) (93)

ŷt = (1− α)ât + (1− α)n̂t + αk̂t−1 (94)

ŷt =
Css
Yss

ĉt +
Iss
Yss

ît +
Gss
Yss

ĝt (95)

ât = ρAât−1 + ρAGgt−1 + σAεA,t (96)

ĝt = ρGĝt−1 + ρGAat−1 + σGεG,t (97)

We group the parameters into θ = [α, β, δ, θ, γ, ρA, ρG, σA, σG, ρAG, ρGA]. We cal-

ibrate Gss = 0.2Yss.

32

A.5 Smets and Wouters Model

The Loglinearized Model:

ŷt = cy ĉt + iy ît + rkssky ẑt + εgt (98)

ĉt =
h/γ

1 + h/γ
ĉt−1 +

1

1 + h/γ
Etĉt+1 +

wlss(σc − 1)

cssσc(1 + h/γ)
(l̂t − Et l̂t+1) (99)

− 1− h/γ
(1 + h/γ)σc

(r̂t − Etπ̂t+1)− 1− h/γ
(1 + h/γ)σc

εbt

ît =
1

1 + βγ(1−σc)
ît−1 +

βγ(1−σc)

1 + βγ(1−σc)
Et ît+1 +

1

φγ2(1 + βγ(1−σc))
q̂t + εit (100)

q̂t = β(1− δ)γ−σcEtq̂t+1 − r̂t + Etπ̂t+1 + (1− β(1− δ)γ−σc)Etr̂kt+1 − εbt (101)

ŷt = φp(αk̂
s
t + (1− α)l̂t + εat) (102)

k̂st = k̂t−1 + ẑt (103)

ẑt =
1− ψ
ψ

r̂kt (104)

k̂t =
(1− δ)
γ

k̂t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit(105)

µ̂pt = α(k̂st − l̂t)− ŵt + εat (106)

π̂t =
βγ(1−σc)

1 + ιpβγ(1−σc)
Etπ̂t+1 +

ip
1 + βγ(1−σc)

π̂t−1 (107)

− (1− βγ(1−σc)ξp)(1− ξp)
(1 + ιpβγ(1−σc))(1 + (φp − 1)εp)ξp

µ̂pt + εpt

r̂kt = l̂t + ŵt − k̂t (108)

µ̂wt = ŵt − σl l̂t −
1

1− h/γ (ĉt − h/γĉt−1) (109)

ŵt =
βγ(1−σc)

1 + βγ(1−σc)
(Etŵt+1 + Etπ̂t+1) +

1

1 + βγ(1−σc)
(ŵt−1 − ιwπ̂t−1) (110)

−1 + βγ(1−σc)ιw
1 + βγ(1−σc)

π̂t +
(1− βγ(1−σc)ξw)(1− ξw)

(1 + βγ(1−σc))(1 + (ϕw − 1)εw)ξw
µ̂wt + εwt (111)

r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ry(ŷt − ŷ∗t)) + r∆y((ŷt − ŷ∗t)− (ŷt−1 − ŷ∗t−1)) + εrt(112)

εat = ρaε
a
t−1 + ηat (113)

εbt = ρbε
b
t−1 + ηbt (114)

εgt = ρgε
a
t−1 + ρgaη

a
t + ηgt (115)

εit = ρiε
i
t−1 + ηit (116)

εrt = ρrε
r
t−1 + ηrt (117)

εpt = ρrε
p
t−1 + ηpt − µpη

p
t−1 (118)

εwt = ρwε
w
t−1 + ηwt − µwηwt−1 (119)

(120)

33

ŷ∗t = cy ĉ
∗
t + iy î

∗
t + rkssky ẑ

∗
t + εgt (121)

ĉ∗t =
λ/γ

1 + λ/γ
ĉ∗t−1 +

1

1 + λ/γ
Etĉ
∗
t+1 +

wlss(σc − 1)

cssσc(1 + λ/γ)
(l̂∗t − Et l̂∗t+1) (122)

− 1− λ/γ
(1 + λ/γ)σc

r∗t −
1− λ/γ

(1 + λ/γ)σc
εbt

î∗t =
1

1 + βγ(1−σc)
î∗t−1 +

βγ(1−σc)

1 + βγ(1−σc)
Et î
∗
t+1 +

1

φγ2(1 + βγ(1−σc))
q̂∗t + εit(123)

q̂∗t = β(1− δ)γ−σcEtq̂∗t+1 − r∗t + (1− β(1− δ)γ−σc)Etrk∗t+1 − εbt (124)

ŷ∗t = φp(αk
s∗
t + (1− α)l̂∗t + εat) (125)

k̂s∗t = k∗t−1 + z∗t (126)

ẑ∗t =
1− ψ
ψ

r̂k∗t (127)

k̂t =
(1− δ)
γ

k̂∗t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit(128)

µ̂p∗t = α(k̂s∗t − l̂∗t)− ŵ∗t + εat (129)

µ̂p∗t = 1 (130)

r̂k∗t = l̂∗t + ŵ∗t − k̂∗t (131)

µ̂w∗t = −σl l̂∗t −
1

1− λ/γ (ĉ∗t + λ/γĉ∗t−1) (132)

ŵ∗t = µw∗t (133)

With,

γ = γ̄/100 + 1 (134)

π∗ = π̄/100 + 1 (135)

r̄ = 100(β−1γσcπ∗ − 1) (136)

rkss = γσc/β − (1− δ) (137)

wss =

(
αα(1− α)(1−α)

(φrkss)
α

) 1
1−α

(138)

ik = (1− (1− δ)/γ)γ (139)

lk =
1− α
α

rkss
wss

(140)

ky = φl
(α−1)
k (141)

iy = (γ − 1 + δ)ky (142)

cy = 1− gy − iy (143)

zy = rkssky (144)

(145)

A.6 News Shock Model

B Graphs and Tables

34

Random Walk Metropolis Hessian Based Metropolis

Parameter True Mean 90 % CI Mean 90 % CI

T11 0.80 0.810 [0.664, 0.871] 0.806 [0.661, 0.875]

T22 0.20 0.146 [-0.177, 0.261] 0.136 [-0.173, 0.260]

T33 0.75 0.703 [0.501, 0.775] 0.704 [0.502, 0.775]

T44 0.60 0.675 [0.466, 0.751] 0.674 [0.466, 0.751]

T55 0.10 0.035 [-0.379, 0.186] 0.029 [-0.352, 0.179]

D1 0.20 0.408 [-0.491, 0.815] 0.401 [-0.492, 0.816]

D2 1.40 1.396 [0.906, 1.609] 1.407 [0.907, 1.609]

D3 1.80 2.176 [1.096, 2.586] 2.150 [1.077, 2.577]

D4 0.10 0.187 [-0.416, 0.421] 0.182 [-0.408, 0.417]

D5 0.90 0.634 [0.038, 0.882] 0.630 [0.042, 0.860]

D6 1.00 0.805 [0.364, 0.981] 0.814 [0.367, 0.983]

D7 2.00 2.043 [1.663, 2.182] 2.045 [1.673, 2.183]

D8 0.10 0.157 [-0.500, 0.401] 0.152 [-0.506, 0.397]

D9 2.20 2.304 [1.913, 2.444] 2.316 [2.190, 2.399]

D10 1.50 1.456 [1.187, 1.558] 1.469 [1.182, 1.535]

Z21 0.50 0.409 [0.166, 0.484] 0.410 [0.164, 0.487]

Z31 0.60 0.706 [0.316, 0.847] 0.693 [0.303, 0.840]

Z32 0.00 -0.046 [-0.461, 0.109] -0.039 [-0.436, 0.104]

Z41 0.00 -0.001 [-0.322, 0.115] 0.004 [-0.297, 0.115]

Z42 0.20 0.101 [-0.131, 0.224] 0.090 [-0.131, 0.225]

Z43 -0.10 -0.029 [-0.422, 0.106] -0.021 [-0.428, 0.104]

Z51 -0.20 -0.261 [-0.570,-0.150] -0.267 [-0.575,-0.156]

Z52 0.00 0.043 [-0.224, 0.164] 0.043 [-0.227, 0.164]

Z53 -0.70 -0.529 [-0.701,-0.432] -0.526 [-0.716,-0.444]

Z54 0.00 0.024 [-0.178, 0.136] 0.024 [-0.188, 0.111]

Table 1: Posterior Results for the Generic State Space System, Part 1

35

Random Walk Metropolis Hessian Based Metropolis

Parameter True Mean 90 % CI Mean 90 % CI

Z61 0.00 -0.031 [-0.295, 0.056] -0.035 [-0.302, 0.053]

Z71 0.30 0.219 [0.044, 0.286] 0.219 [0.047, 0.279]

Z81 -0.50 -0.437 [-0.697,-0.340] -0.425 [-0.698,-0.347]

Z91 0.00 0.100 [-0.086, 0.166] 0.097 [-0.010, 0.159]

Z101 0.00 0.006 [-0.174, 0.063] 0.004 [-0.187, 0.059]

Z62 0.00 -0.052 [-0.357, 0.049] -0.045 [-0.342, 0.050]

Z72 0.20 0.348 [-0.019, 0.471] 0.345 [-0.015, 0.475]

Z72 0.00 -0.001 [-0.371, 0.131] -0.015 [-0.384, 0.149]

Z92 -0.50 -0.338 [-0.641,-0.235] -0.333 [-0.500,-0.250]

Z102 0.00 0.046 [-0.240, 0.143] 0.049 [-0.110, 0.126]

Z63 -0.40 -0.373 [-0.618,-0.284] -0.364 [-0.494,-0.295]

Z73 0.00 0.014 [-0.204, 0.090] 0.013 [-0.101, 0.070]

Z83 0.00 0.019 [-0.299, 0.135] 0.020 [-0.149, 0.112]

Z93 0.30 0.313 [0.125, 0.381] 0.308 [0.125, 0.362]

Z103 0.20 0.161 [-0.048, 0.227] 0.153 [0.052, 0.235]

Z64 -0.50 -0.545 [-0.732,-0.477] -0.541 [-0.646,-0.489]

Z74 0.00 -0.015 [-0.253, 0.062] -0.014 [-0.248, 0.064]

Z84 0.60 0.647 [0.391, 0.737] 0.648 [0.401, 0.739]

Z94 -0.10 0.025 [-0.185, 0.095] 0.023 [-0.188, 0.097]

Z104 0.00 -0.068 [-0.262, 0.001] -0.068 [-0.267,-0.001]

Z65 0.00 0.099 [-0.200, 0.194] 0.108 [-0.204, 0.192]

Z75 -0.30 -0.186 [-0.480,-0.068] -0.194 [-0.485,-0.067]

Z85 0.00 -0.004 [-0.335, 0.135] -0.005 [-0.332, 0.136]

Z95 0.00 0.061 [-0.244, 0.167] 0.046 [-0.115, 0.130]

Z105 -0.40 -0.347 [-0.621,-0.233] -0.349 [-0.501,-0.260]

log(H11) -0.60 -0.529 [-1.065,-0.283] -0.568 [-0.966,-0.365]

log(H22) -1.40 -1.467 [-2.655,-1.093] -1.492 [-2.647,-1.035]

log(H33) -0.20 -0.289 [-0.989, 0.023] -0.291 [-0.985,-0.024]

log(H44) -1.10 -1.164 [-1.902,-0.823] -1.176 [-1.902,-0.819]

log(H55) -0.50 -0.451 [-1.395,-0.023] -0.461 [-1.395,-0.041]

log(H66) -0.85 -0.867 [-1.309,-0.683] -0.869 [-1.312,-0.690]

log(H77) 0.00 -0.050 [-0.374, 0.080] -0.052 [-0.382, 0.083]

log(H88) 0.00 0.021 [-0.358, 0.168] -0.015 [-0.357, 0.168]

log(H99) -0.35 -0.352 [-0.761,-0.203] -0.354 [-0.761,-0.206]

log(H1010) -0.50 -0.52 [-0.911,-0.309] -0.462 [-0.918,-0.301]

Table 2: Postior Results for the Generic State Space System, Part 2

36

RWMH HMH RWMH HMH

T11 1770.504 068.070 Z62 469.062 7.764

T22 497.635 26.081 Z72 1180.399 4.009

T33 1080.512 25.018 Z72 658.940 1.898

T44 1245.188 35.984 Z92 852.893 1.204

T55 957.894 4.513 Z102 673.523 1.777

Z21 646.790 0.991 Z63 650.033 9.426

Z31 1054.846 10.445 Z73 489.433 1.791

Z32 500.266 1.245 Z83 634.595 13.276

Z41 652.728 4.936 Z93 516.957 2.947

Z42 380.393 4.937 Z103 428.844 4.177

Z43 570.691 16.374 Z64 808.732 4.178

Z51 943.256 1.683 Z74 273.838 1.527

Z52 813.701 10.193 Z84 597.955 2.551

Z53 1165.414 3.605 Z94 328.814 1.022

Z54 565.163 3.979 Z104 357.225 2.063

D1 4289.261 45.873 Z65 945.645 1.901

D2 3255.506 33.838 Z75 1041.226 3.961

D3 3646.995 52.297 Z85 1102.199 1.130

D4 2713.929 3.166 Z95 836.050 12.589

D5 2942.756 23.538 Z105 1574.284 5.181

D6 2394.646 3.817 H11 2336.803 3.764

D7 2194.708 26.471 H22 4172.562 1.863

D8 3411.031 21.437 H33 3058.559 4.094

D9 2055.815 26.974 H44 2960.845 12.767

D10 1594.918 4.680 H55 4023.465 8.907

Z61 930.084 2.627 H66 1870.005 12.351

Z71 631.925 3.578 H77 1223.108 2.173

Z81 637.414 6.175 H88 1094.616 0.998

Z91 729.320 6.356 H99 1436.564 1.178

Z101 575.784 3.501 H1010 1686.031 1.102

Table 3: Inefficiency factors for the Generic State Space Model

Table 4: Geweke’s K

37

Based on Mean Geweke‘s K

Random Walk Metropolis Hessian Based Metropolis

Effective Sample Size 216.58 974.11

Seconds per “independent draw 83.11 81.11

Based on Max Geweke‘s K

Random Walk Metropolis Hessian Based Metropolis

Effective Sample Size 46.297 200.11

Seconds per “independent” draw 388 327

Table 5: Wall Time per Indepedent Draw

C Other Algorithms

C.1 Chib and Ramamurthy (2010)

• At step i, split θ in j blocks randomly.

• For each block b = 1 . . . j.

– Find the mode θ̂b conditional on θi,−b which is the all the parameters

not in b at their most recent values. To do this optimization,

use a simulated annealing algorithm proposed by Chib and Greenberg.

Compute the Hessian at the mode H(θ̂b).

– Generate a proposal θ∗b from q(·|θ̂b, θi,−b) = t(θ̂b,−H(θb)
−1, ν).

– Accept this proposal with probability,

α = min

{
1,
f(θ∗b , θi,−b|Y)q(θi,b|θ̂b, θi,−b)
f(θi,b, θi,−b|Y)q(θ∗b |θ̂b, θi,−b)

}
– Move on to next block

• Move on to next block

C.2 Kohn et al. (2010)

The core of the algorithm is the proposal distribution which is a mixture of three

components:

• A random walk component q1,i+1(θ|Θi) which a mixture of three normals:

q1,i+1 = αβN(θi, κΣi+1) + (1− α)βN(θi, κ2Σi+1) + (1− β)N(θi, κ3I)

Σi+1 is a recursively estimated measure of empirical variance of the

chain.

38

• An independence chain component based on the empirical mean and variance

of chain, q2,i+1(θ) = N(θ̄i,Σi+1).

• T copula with mixutre of normal marginal distributions.

q3,i+1 = β̃q31,i+1(θ|Θi) + (1− β̃)q32,i+1(θ|θi)

where q31 is t copula based on the mixture of normal distributions

with parameters {λj}, j = 1 . . . , d = npara, estimating via ML by way

of clustering algorithm:

q31 =
td,v(x|µ,Σ)

Πd
i=1t1,ν(xj |0, 1)

Πd
i=1fj(θ

j |λj)

where xj and θj are related by

T1,ν(xj |0, 1) = Fj(θ
j |λj)

$q32 is a fat-tailed version of q31 obtained by inflating the mixture

of normal variances by a factor of 9.

The weights on the three components change over time. More weight is grad-

ually placed on the copula until it dominates the proposal.

The full proposal is a hybrid of the proposals:

qt = α1tq1,t + α2tq2,t + (1− α1t − α2t)q3,t

The weights {α1t, α2t} evolve according to a deterministic hybrid schedule. The

idea is start out with a heavy weight on the random walk component, occasionally

taking independence steps, as a estimate of the covariance matrix and mean of

the distribution is built up, the independence sampler is used more often with

occasional random walk moves to avoid getting stuck at difficult points.

Finally, at prespecifed intervals, the parameters {λj} of the mixture of normals

used in the t-copula are re-estimated using the entire history of draws.

39

Parameter Distribution Support Para(1) Para(2)

α Beta [0, 1] 0.340 0.020

β Beta [0, 1] 0.990 0.004

δ Beta [0, 1] 0.050 0.005

γ − 1 Normal [0,∞) 1.000 0.307

θ Normal [0,∞) 2.400 0.707

ρA Beta [0, 1] 0.600 0.150

ρG Beta [0, 1] 0.500 0.150

σA Inv. Gamma [0,∞) 0.050 4.000

σG Inv. Gamma [0,∞) 0.580 4.000

ρAG Normal (−∞,∞) 0.000 0.010

ρGA Normal (−∞,∞) 0.000 6.000

Table 6: Prior

Parameter Mode 1 Mode 2

α 3.93 3.92

β 0.99 0.99

δ 0.05 0.05

γ − 1 0.53 1.16

θ 2.05 2.33

ρA 0.93 0.97

ρG 0.85 0.82

σA 0.04 0.04

σG 0.77 0.65

ρAG 0.01 0.02

ρGA -3.21 - 3.83

Posterior 663.1 663.3

Table 7: Prior

40

P
ri

or
R

an
d

om
W

a
lk

M
H

H
es

si
a
n

B
lo

ck
M

H
R

a
n

d
o
m

B
lo

ck
M

H
F

ix
ed

B
lo

ck
M

H

P
ar

am
et

er
M

ea
n

90
%

C
I

M
ea

n
9
0

%
C

I
M

ea
n

9
0

%
C

I
M

ea
n

9
0

%
C

I
M

ea
n

9
0

%
C

I

α
0.

34
0

[
0.

26
9,

0.
36

6]
0.

39
6

[
0
.3

3
4
,

0
.4

2
4
]

0
.3

9
5

[
0
.3

0
0
,

0
.4

2
4
]

0
.3

9
3

[
0
.3

2
7
,

0
.4

1
6
]

0
.3

8
8

[
0
.3

2
8
,

0
.4

1
5
]

β
0.

99
0

[
0.

98
1,

0.
99

5]
0.

99
1

[
0
.9

8
3
,

0
.9

9
5
]

0
.9

9
3

[
0
.9

8
6
,

0
.9

9
9
]

0
.9

9
3

[
0
.9

8
7
,

0
.9

9
6
]

0
.9

9
1

[
0
.9

8
4
,

0
.9

9
6
]

δ
0.

05
0

[
0.

03
1,

0.
05

7]
0.

04
7

[
0
.0

3
3
,

0
.0

5
2
]

0
.0

4
6

[
0
.0

2
6
,

0
.0

5
3
]

0
.0

4
8

[
0
.0

3
6
,

0
.0

5
3
]

0
.0

4
4

[
0
.0

3
1
,

0
.0

4
9
]

γ
−

1
0.

99
8

[0
.0

97
,

1.
38

4]
0.

61
6

[
0
.0

0
2
,

0
.9

7
8
]

0
.7

4
3

[
0
.0

0
0
,

1
.4

0
5
]

1
.1

8
3

[
0
.3

7
2
,

1
.5

2
1
]

0
.5

3
9

[
0
.0

0
3
,

0
.9

7
9
]

θ
2.

40
8

[
0.

01
7,

3.
32

1]
2.

10
0

[
0
.2

4
8
,

3
.0

3
2
]

2
.0

9
5

[
0
.0

0
1
,

3
.2

1
7
]

2
.5

8
8

[
0
.2

2
0
,

3
.6

3
7
]

2
.0

2
6

[
0
.2

6
9
,

2
.9

3
7
]

ρ
A

0.
59

9
[

0.
23

3,
0.

79
8]

0.
92

7
[

0
.8

7
5
,

0
.9

5
5
]

0
.9

4
5

[
0
.8

9
5
,

0
.9

9
3
]

0
.9

6
9

[
0
.9

4
5
,

0
.9

8
8
]

0
.9

1
6

[
0
.8

5
5
,

0
.9

5
8
]

ρ
G

0.
50

1
[

0.
07

0,
0.

70
1]

0.
80

3
[

0
.6

5
0
,

0
.8

9
5
]

0
.8

0
3

[
0
.6

7
5
,

0
.9

4
8
]

0
.8

1
8

[
0
.7

0
1
,

0
.8

8
1
]

0
.8

0
2

[
0
.6

6
0
,

0
.8

8
9
]

σ
A

0.
25

0
[

0.
08

0,
0.

38
7]

0.
04

1
[

0
.0

3
3
,

0
.0

4
5
]

0
.0

4
1

[
0
.0

3
2
,

0
.0

4
4
]

0
.0

4
1

[
0
.0

3
5
,

0
.0

4
4
]

0
.0

4
1

[
0
.0

3
4
,

0
.0

4
4
]

σ
G

1.
10

1
[

0.
34

6,
1.

70
4]

0.
87

6
[

0
.3

6
1
,

1
.1

8
8
]

1
.2

9
4

[
0
.3

3
8
,

1
.4

8
4
]

0
.6

6
6

[
0
.3

3
1
,

0
.8

2
9
]

0
.8

4
3

[
0
.3

7
3
,

1
.1

3
4
]

ρ
A
G

-0
.0

00
[-

0.
03

3,
0.

01
3]

0.
02

3
[

0
.0

1
6
,

0
.0

2
6
]

0
.0

1
9

[
0
.0

0
1
,

0
.0

2
5
]

0
.0

1
0

[
0
.0

0
4
,

0
.0

1
4
]

0
.0

2
2

[
0
.0

1
4
,

0
.0

2
5
]

ρ
G
A

0.
04

7
[-

19
.7

43
,

7.
66

2]
-3

.3
09

[-
5
.1

4
1
,-

2
.2

5
7
]

-3
.5

4
9

[-
7
.4

9
7
,-

1
.8

4
8
]

-3
.7

2
1

[-
5
.8

5
3
,-

2
.6

2
4
]

-4
.2

7
1

[-
6
.6

6
8
,-

1
.5

3
0
]

σ
A
G

0.
00

0
[

0.
00

0,
0.

00
0]

0.
03

4
[

0
.0

3
4
,

0
.0

3
4
]

0
.0

0
0

[
0
.0

0
0
,

0
.0

0
0
]

0
.0

0
0

[
0
.0

0
0
,

0
.0

0
0
]

0
.0

0
0

[
0
.0

0
0
,

0
.0

0
0
]

T
a
b

le
8
:

P
o
st

er
io

r
E

st
im

a
te

s

41

Parameter Prior RWMH Hessian Block MH Random Block MH Fixed Block MH Adaptive MH

α 1.019 42.346 7.205 7.344 69.313 43.957

β 0.871 38.476 31.770 16.453 42.539 39.810

γ 1.056 33.117 157.344 80.556 55.239 45.284

θ 0.894 29.068 20.311 19.968 12.851 34.355

ρA 0.813 32.476 115.093 138.397 56.629 46.826

ρG 0.872 77.440 37.951 12.993 45.465 35.918

σA 0.890 38.666 8.122 5.971 2.095 44.249

σG 1.016 91.009 67.138 32.205 46.578 31.505

ρAG 0.931 42.504 251.163 164.934 33.580 54.145

ρGA 1.087 88.185 20.510 34.535 113.815 71.407

σAG 1.000 1.000 1.000 1.000 1.000 318.060

Table 9: Geweke’s K

Figure 1: The effect of c on the proposals in the random walk Metropolis-Hastings

42

Parameter Distribution Support Para(1) Para(2)

ϕ Normal (−∞,∞) 4.000 1.500

σc Normal (−∞,∞) 1.500 0.370

h Beta [0, 1] 0.700 0.100

ξw Beta [0, 1] 0.500 0.100

σl Normal (−∞,∞) 2.000 0.750

ξp Beta [0, 1] 0.500 0.100

ιw Beta [0, 1] 0.500 0.150

ιp Beta [0, 1] 0.500 0.150

ψ Beta [0, 1] 0.500 0.150

λp Normal (−∞,∞) 1.250 0.120

rπ Normal (−∞,∞) 1.500 0.250

ρ Beta [0, 1] 0.750 0.100

ry Normal (−∞,∞) 0.120 0.050

r∆y Normal (−∞,∞) 0.120 0.050

π̄ Gamma [0,∞) 0.620 0.100

β−1 − 1 Gamma [0,∞) 0.250 0.100

l̄ Normal (−∞,∞) 0.000 2.000

γ̄ Normal (−∞,∞) 0.400 0.100

α Normal (−∞,∞) 0.300 0.050

ρa Beta [0, 1] 0.500 0.200

ρb Beta [0, 1] 0.500 0.200

ρg Beta [0, 1] 0.500 0.200

ρi Beta [0, 1] 0.500 0.200

ρr Beta [0, 1] 0.500 0.200

ρp Beta [0, 1] 0.500 0.200

ρw Beta [0, 1] 0.500 0.200

µp Beta [0, 1] 0.500 0.200

µw Beta [0, 1] 0.500 0.200

ρga Beta [0, 1] 0.500 0.200

σa Inv. Gamma [0,∞) 0.100 2.000

σb Inv. Gamma [0,∞) 0.100 2.000

σg Inv. Gamma [0,∞) 0.100 2.000

σi Inv. Gamma [0,∞) 0.100 2.000

σr Inv. Gamma [0,∞) 0.100 2.000

σp Inv. Gamma [0,∞) 0.100 2.000

σw Inv. Gamma [0,∞) 0.100 2.000

Table 10: Priors for the Smets & Wouters model

43

B
lo

ck
F

re
q
u

en
cy

D
es

cr
ip

ti
on

P
o
st

er
io

r
C

o
rr

el
a
ti

o
n

s

[r
π
,r
y
]

10
0%

T
ay

lo
r

R
u

le
co

effi
ci

en
ts

fo
r

In
fl

a
ti

o
n

a
n

d
O

u
tp

u
t

co
rr

(r
π
,r
y
)

=
0.

7
2

[σ
c
,h
,ρ
b
]

90
%

R
is

k
av

er
si

on
,

h
ab

it
fo

rm
a
ti

o
n

,
a
n
d

p
er

si
st

en
ce

o
f

p
re

fe
re

n
ce

sh
o
ck

co
rr

(σ
c
,h

)
=
−

0.
4
0

[ξ
p
,ρ
p
,µ
p
]

95
%

C
al

vo
p

ar
am

et
er

fo
r

p
ri

ce
s,

p
er

si
st

en
ce

o
f

p
ri

ce
m

a
rk

u
p

,
M

A
co

effi
ci

en
t

o
f

p
ri

ce
m

a
rk

-u
p

co
rr

(ρ
p
,µ
p
)

=
0
.7

2

co
rr

(ξ
p
,µ
p
)

=
0.

0
8,
co
rr

(ξ
p
,ρ
p
)

=
−

0.
4
9

[π̄
,l̄

]
10

0%
S

te
ad

y
st

at
e

w
ag

es
an

d
st

ea
d

y
st

a
te

h
o
u

rs
co
rr

(π̄
,l̄

)
=
−

0
.6

0

[ξ
w
,µ
w

]
35

%
C

al
vo

p
ar

am
et

er
fo

r
w

ag
es

a
n
d

M
A

co
effi

ci
en

t
o
n

w
a
g
e

m
a
rk

u
p

co
rr

(ξ
w
,µ
w

)
=

0.
0
8

[ι
w
,ι
p
]

30
%

W
ag

e
an

d
P

ri
ce

In
d

ex
at

io
n

co
rr

(ι
w
,ι
p
)

=
−

0
.2

3

T
ab

le
11

:
S

om
e

B
lo

ck
in

g
S

ta
ti

st
ic

s
fr

o
m

S
m

et
s

a
n

d
W

o
u

te
rs

M
o
d

el
?
?

44

Parameter Hessian Block MH Random Block MH Random Walk MH

ϕ 19.17 6.35 126.42

σc 18.26 10.94 310.38

h 16.73 29.06 203.93

ξw 11.18 7.32 208.02

σl 10.57 27.44 156.26

ξp 5.39 81.04 205.45

ιw 9.32 2.69 111.23

ιp 48.29 1.31 115.46

ψ 9.13 34.41 85.17

λp 7.14 12.38 143.63

rπ 2.43 4.50 72.143

ρ 8.55 20.29 97.20

ry 6.57 4.72 135.85

r∆y 6.50 3.85 97.19

π̄ 3.55 4.90 135.86

β−1 − 1 1.38 4.68 138.79

l̄ 1.52 6.36 116.83

γ̄ 35.52 12.47 289.02

α 8.81 20.26 103.96

ρa 8.64 3.52 216.38

ρb 45.58 8.22 462.00

ρg 20.91 7.84 273.64

ρi 11.16 4.36 73.85

ρr 9.39 15.26 151.77

ρp 21.67 5.34 269.69

ρw 17.58 5.48 472.46

µp 40.30 23.38 215.70

µw 2.15 19.61 413.06

ρga 3.20 1.55 413.06

σa 13.23 8.32 136.56

σb 38.06 6.00 313.87

σg 8.77 4.08 207.99

σi 12.86 5.97 178.92

σr 3.75 2.64 276.11

σp 21.10 2.88 83.15

σw 14.46 3.87 199.59

Mean 14.51 11.78 193.74

Max 48.29 81.04 472.46

Table 12: Geweke’s K for the Smets & Wouters model

45

Figure 2: Autocorrelations of draws of four parameters from Smets and Wouters Model

46

-6

-4

-2

0

2

4

1980 1985 1990 1995 2000 2005 2010

P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n
 f

ro
m

 T
re

n
d

Year

Hours and Output

hours
output

Figure 3: Data for the RBC Model

47

0

0.01

0.02

0.03

0.04

0.05

300040005000600070008000900010000

corrAG

-20

-15

-10

-5

0

5

300040005000600070008000900010000

rhoGA

0

0.02

0.04

0.06

0.08

0.1

300040005000600070008000900010000

rhoAG

0

5

10

15

20

25

30

35

40

300040005000600070008000900010000

sigG

0

0.02

0.04

0.06

0.08

0.1

300040005000600070008000900010000

sigA

0

0.2

0.4

0.6

0.8

1

300040005000600070008000900010000

rhoG

0.7

0.75

0.8

0.85

0.9

0.95

1

300040005000600070008000900010000

rhoA

0

1

2

3

4

5

6

300040005000600070008000900010000

theta

0

0.5

1

1.5

2

2.5

3

300040005000600070008000900010000

gam

0.02

0.03

0.04

0.05

0.06

0.07

0.08

300040005000600070008000900010000

del

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

300040005000600070008000900010000

bet

0.25

0.3

0.35

0.4

0.45

0.5

0.55

300040005000600070008000900010000

alp

Figure 4: Draws from RWMH (Blue) vs. Hessian-based MH (Black)

48

-0.1

-0.05

0

0.05

0.1

300040005000600070008000900010000

corrAG

-8

-7

-6

-5

-4

-3

-2

-1

0

300040005000600070008000900010000

rhoGA

0

0.01

0.02

0.03

0.04

0.05

300040005000600070008000900010000

rhoAG

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

300040005000600070008000900010000

sigG

0.03

0.035

0.04

0.045

0.05

0.055

300040005000600070008000900010000

sigA

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300040005000600070008000900010000

rhoG

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

300040005000600070008000900010000

rhoA

0

1

2

3

4

5

300040005000600070008000900010000

theta

0

0.5

1

1.5

2

2.5

300040005000600070008000900010000

gam

0

0.02

0.04

0.06

0.08

0.1

300040005000600070008000900010000

del

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

300040005000600070008000900010000

bet

0

0.1

0.2

0.3

0.4

0.5

300040005000600070008000900010000

alp

Figure 5: Draws from Random Block MH (Blue) vs. Adaptive Hybrid MH (Black)

49

0

0.02

0.04

0.06

0.08

0.1

0.75 0.8 0.85 0.9 0.95 1

s
ig

A

rhoA

0.75

0.8

0.85

0.9

0.95

1

0 0.5 1 1.5 2 2.5

rh
o
A

gam

0

0.01

0.02

0.03

0.04

0.05

0.75 0.8 0.85 0.9 0.95 1

rh
o
A

G

rhoA

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

th
e
ta

gam

Figure 6: Draws from RWMH (Blue) vs. Hessian-based MH (Red)

50

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

2008 2009 2010 2011 2012 2013 2014

Hours

-0.2

-0.1

0

0.1

0.2

0.3

0.4

2008 2009 2010 2011 2012 2013 2014

Output

Figure 7: Predictive Density Mean and Credible Set for Hessian-based MH (Blue) and

RWMH (Red)

51

-1

-0.5

0

0.5

1

0 0.01 0.02 0.03 0.04 0.05 0.06

C
o
rr

e
la

ti
o
n
 o

fO
u
tp

u
t
a
n
d
H

o
u
rs

Std. Deviation ofHours

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05 0.06

4
 A

u
to

c
o
rr

e
la

ti
o
n
 o

fH
o
u
rs

Std. Deviation ofHours

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

2
 A

u
to

c
o
rr

e
la

ti
o
n
 o

fO
u
tp

u
t

Std. Deviation ofOutput

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1

S
td

.
D

e
v
ia

ti
o
n
 o

fH
o
u
rs

Std. Deviation ofOutput

Figure 8: Posterior Predictive Checks for Hessian-based MH (Red) and RWMH (Red)

52

