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Abstract

This paper develops a class of models for the analysis of financial

durations. We first establish a mixture of exponentials representation

for general point processes. Based on the representation, we pro-

pose a new model, called the Markov switching multifractal duration

(MSMD) model. We show the MSMD can explain most stylized facts

of financial durations, especially the long memory feature. Extensive

empirical study shows MSMD can predict long horizon durations bet-

ter than the ACD model, which confirms that MSMD can explain long

range dependence in financial durations.
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1 Introduction

The last two decades have witnessed a growing interest in theoretically and

empirically modeling of the ultimate high-frequency financial data. A salient

feature of these intra-day tick-by-tick data is that transactions are irregularly

spaced in time.

Many empirical studies take these irregular durations as exogenous sam-

pling scheme and aggregate the data to some fixed interval in accordance with

the usual low-frequency data such as daily or weekly data. Such temporal

aggregation facilitates empirical analysis, but also brings two issues. First,

the aggregation will lose information and introduce unknown bias from a

statistic view. Aı̈t-Sahalia and Mykland (2003) discuss the effects of sam-

pling randomness and sampling discreteness when estimating continuous time

processes. Second, there is no theory guidance on how to choose length of the

fixed interval. Bandi and Russell (2008) discuss how to choose the optimal

sampling intervals when estimating realized volatilities.

More importantly, the duration is an endogenous economic variable with

information content. It reflects the speed of the information flow on the

financial market, see Hasbrouck (1999). Easley and O’Hara (1992) give an

economic interpretation of the durations from a market microstructure view.

In this paper, we suggest a different, behavior-based interpretation and

offer a new approach to model these irregular durations. We start with gen-

eral point processes, and establish a mixture of exponentials representation

for the durations from the martingale theory. Based on this representation,

we develop a new duration model, the Markov switching multifractal dura-
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tion (MSMD) model, which can be used for designing trading strategies and

intra-day risk management.

The first econometric model to explore the information content of trading

durations is the Autoregressive Conditional Duration (ACD) model proposed

by Engle and Russell (1998). The ACD model assumes a multiplicative error

form, where the duration is the product of the conditional mean and the

error1. Such a specification has two components: the dynamics of the mean

and the distribution of the error. Engle and Russell assume a GARCH-type

dynamics with iid exponential or iid Weibull errors.

While GARCH-type dynamics explains the clustering effect in durations,

i.e., short (long) durations tending to be followed by short (long) durations;

the basic ACD model can not fully capture other stylized facts found in em-

pirical studies. These include: overdispersion2, the standard deviation being

greater than the mean; long memory, autocorrelations decreasing hyperboli-

cally; strong nonlinearities in the dynamics; heavy tail. See Gagliardini and

Gourièroux (2008) for a summary.

Numerous extensions of the basic ACD models have been developed in the

literature3. Various extensions have used different functional forms for the

error distribution: generalized gamma distribution by Zhang et al. (2001),

1See Engle (2002) and Engle and Gallo (2006) for more details of multiplicative error
model.

2Giot (2000) reports that some volume duration series (durations for volume to reach
some threshhold) can exhibit underdispersion. This case will not be considered in this pa-
per. All durations between transactions and price changes (quote changes) show overdis-
persion.

3For a partial list, see Lunde (1999), Jasiak (1999), Grammig and Maurer (2000),
Bauwens and Giot (2000), Zhang et al. (2001), De Luca and Zuccolotto (2003), De Luca
and Gallo (2004), Bauwens and Veredas (2004), Ghysels et al. (2004), Drost and Werker
(2004), Fernandes and Grammig (2006), Meitz and Teräsvirta (2006), Hujer and Vuletic
(2007), Sun et al. (2008), Deo et al. (2010).
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Burr distribution by Fernandes and Grammig (2006), Weibull distribution

by Deo et al. (2010), etc. Moreover, Drost and Werker (2004) even challenge

the assumption of iid errors and use semiparametric alternatives.

On the one hand, these distributions are very flexible. On the other

hand, the choice of a particular distribution is arbitrary, and is mostly based

on convenience, familiarity and analytical tractability. Heckman and Singer

(1984) give an example that two duration models with different error dis-

tributions can have the same statistical property. Though the example is

for the single spell duration model, similar problem could exist for dynamic

duration models. The arbitrarily chosen error distribution function is in fact

very important. It not only has direct impacts on trading strategies and

intra-day risk management, but also has serious implications on models that

try to link durations and volatilities, e.g., Ghysels and Jasiak (1998), Engle

(2000), Grammig and Wellner (2002).

This paper adopts a different approach. The trading process is a marked

point process (PP) on the time line4. A PP can be represented by a series of

durations, but the driving force underlying the durations is the continuous-

time intensity process. Intensity-based modeling has already been applied

to multivariate financial PPs, e.g., Russell (1999), Bauwens and Hautsch

(2006), Bowsher (2007). We begin with the intensity process and use a

time deformation method to build the link between intensities and durations.

Our contribution is to establish a mixture of exponentials representation for

durations. In this representation, durations can be written as iid exponential

errors divided by mean intensities.

4See section 2 for the definition.
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The MSMD model is built on the mixture of exponentials representa-

tion. The backbone of the MSMD model is the MSM intensity. We interpret

trading intensity as a measure of the aggregate attention level from hetero-

geneous investors5. Different information events on the financial market will

draw attention shocks that will last for different time scales. At any time,

the total attention level is the aggregation of all the shocks from different

time scales. The mathematical structure of MSM is particularly suitable to

model such a situation.

We show that the MSMD model can explain most existing stylized fea-

tures, especially the long memory feature. The long memory feature is an

important property of financial time series. A lot of research interest is at-

tracted to long memory in volatilities6. Recently, there is a view that long

memory in volatilities is from long memory in durations, see Deo et al. (2009),

Deo et al. (2010).

To validate the MSMD model, we implement extensive empirical study.

Twenty stocks are randomly selected from the S&P 100 index. We estimate

the MSMD model for all the twenty stocks and find that when the number

of intensity components is seven, the MSMD model can describe the data

well. We then compare the MSMD model with the ACD model. We do both

in sample fitting and out of sample forecasting comparison. Both results are

in favor of the MSMD model. A striking finding is that the long horizon

prediction performance of the MSMD is much better than the ACD, which

5See section 3 for detail.
6See, among many others, Ding et al. (1993), Bollerslev and Mikkelsen (1996), Baillie

et al. (1996), Comte and Renault (1996), Breidt et al. (1998), Andersen et al. (2001), Deo
et al. (2006), Corsi (2009).
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suggests the MSMD can be used to measure liquidity risk.

The rest parts of this paper is organized as follow. In section 2, we intro-

duce notions of PPs and derive the mixture of exponentials representation.

In section 3, we discuss economic interpretation of trading intensities. In

section 4, we explain specifications of the MSMD model. In section 5, we

show properties of the MSMD model. Section 6 is empirical work. Section 7

concludes.

2 Point Processes and Mixture of Exponen-

tials Representation

The purpose of this section is to derive the mixture of exponentials repre-

sentation of PPs. To this end, we introduce basic concepts and tools of PPs.

There are two fundamental approaches to characterize PPs, random measure

and conditional intensity7. We only introduce the conditional intensity. The

conditional intensity is a powerful tool for evolutionary PPs on the time line,

because it introduces martingale-based methods to PPs.

2.1 Notation and Definition

A simple PP on (0,∞) is a sequence of nonnegative random variables {ti}i∈1,2,...

defined on some probability space (Ω, F, P ), satisfying 0 < t1 < t2 < · · · ,

where ti is the instant of the i-th occurrence of an event. Associated with

each ti, there could be some exogenous random variables. These variables are

7Textbook treatments of these two approaches can be found in Brémaud (1981), Karr
(1991), Daley and Vere-Jones (2003), and Daley and Vere-Jones (2007).
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called marks of the PP. In a trading process, the events are financial trans-

actions. The marks could be volume, price, bid-ask quotes or other variables

coming with each transaction8.

A PP may also be represented via its associated counting process N(t),

where N(t) =
∑

i≥1 1(ti ≤ t) is the number of events happened till time t.

The internal history {FN
t }t≥0 of a PP is given by the σ-algebra generated

by the observed past of the process, namely FN
t = σ(N(s) : 0 ≤ s ≤ t).

A history Ft is a more general σ-algebra which could contain information

about some exogenous variables, e.g., the marks. The internal history is the

smallest history, FN
t ⊆ Ft. Obviously N(t) is Ft-adapted.

Let λ(t) be a scalar, positive Ft-predictable process9, then λ(t) is called

the Ft-conditional intensity of N(t), if

E[N(s)−N(t)|Ft] = E[

∫ s

t

λ(u)du|Ft] (1)

holds almost surely for all t, s with 0 ≤ t ≤ s10. The definition of conditional

intensity given by (1) is abstract. A more intuitive understanding of the

8By the definition, the trading process is usually not a simple PP. Multiple transactions
at the same second are observed in TAQ database. It is believed that the simultaneous
trades executed at the same second come from the same trader who has split a big order
block in small blocks. We only keep one trade for each second. The thinned trading
process is a simple PP

9See appendix A3 of Daley and Vere-Jones (2003) for definition of Ft-predictable. Suf-
ficient conditions for λ(t) to be Ft-predictable are λ(t) is adapted to Ft, and the sample
paths of λ(t) are left continuous with right hand limits.

10For existence of λ(t), see chapter 7 of Daley and Vere-Jones (2003) and chapter 14 of
Daley and Vere-Jones (2007)

7



intensity can be got by letting s ↓ t in (1).

λ(t) = lim
∆t↓0

1

∆t
E(N(t+∆t)−N(t)|Ft−)

= lim
∆t↓0

1

∆t
P (N(t+∆t)−N(t) = 1|Ft−) (2)

The above equation is not strict, but it shows the similarity between condi-

tional intensity and hazard function.

The compensator of a PP is defined as Λ(t) =
∫ t

0
λ(s)ds. Let M(t) =

N(t)−Λ(t), then the process M(t) is a martingale. One important result of

the martingale-based PP theory is the random change of time theorem.

2.2 Random Change of Time

The random change of time theorem gives a method to transform non-Poisson

processes to a homogeneous Poisson process. Though it is introduced as a

pure mathematical method, it has an intuitive economic interpretation. In

an ideal world without information flow, the trading process is a homoge-

neous Poisson process, i.e. the trading intensity is constant. In reality, the

randomly arriving information flow distorts the trading intensity, and the

trading process evolves on some operational or economic time scale that dif-

fers from the calendar or clock time. The random change of time method

gives a functional mapping between the clock time and the economic time,

which is so called time deformation.

Time deformation has been widely used in economic research, see, e.g.

Clark (1973), Stock (1988), Carr and Wu (2004). The random change of

time theorem gives a subordinator of a Poisson process.
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Theorem 1 Let N(t) be a simple point process on (0,∞), adapted to filtra-

tion Ft. Suppose that N(t) has the Ft-conditional intensity λ(t) that satisfies:

∫ ∞

0

λ(t)dt = ∞.

For any t ≥ 0, define the Ft-stopping time τt as the solution to:

∫ τt

0

λ(s)ds = t

then the point process Ñ(t) = N(τt) is a homogenous Poisson process with

intensity λ = 1.

Proof See Theorem T16, p.41, Brémaud (1981).

The only condition for the theorem to hold is
∫∞
0

λ(t)dt = ∞. That is to

say one can always expect more occurrences of the events in the future. This

condition is satisfied by any trading process.

The theorem is well known in PP literature. But previous research has

emphasis on using the theorem to construct goodness-of-fit test for the inten-

sity process, e.g., chaper 7 of Daley and Vere-Jones (2003), Bowsher (2007).

We first use it to establish the mixture of exponentials representation of PPs.

2.3 Mixture of Exponentials Representation

We will derive the mixture of exponentials representation by using the time

deformation function, i.e. τt.

Let t̃i and ti denote the time of ith event in the operational and clock

time respectively. ϵi = t̃i − t̃i−1 and di = ti − ti−1 are ith duration in

9



different time scale. In the operational time scale, the trading process is

a homogeneous Poisson process, so the distribution of the durations is iid

exponential. That means ϵi ∼ i.i.d.Exp(1). By the definition of τt, we have

ϵi = t̃i − t̃i−1 = Λ(ti−1, ti) =
∫ ti
ti−1

λ(s)ds. Let λi = Λ(ti−1, ti)/di be the mean

intensity, then we can write

di =
ϵi
λi

(3)

This is the mixture of exponentials representation, which is different from

the multiplicative error form of the ACD models. Instead of modeling the

conditional mean, we need to model the mean intensity λi.

3 Economic Interpretation of Trading Inten-

sity

In last section, we establish the mixture of exponentials representation for

durations. For a complete duration model, we need to specify the mean

intensity λi. Before introducing the specification, we discuss some economic

interpretation of trading intensity to motivate our specification.

The timing of certain type of trades and orders is a signal that can reveal

the state of the market and plays an important role in the market microstruc-

ture theory, see, among others, Admati and Pfleiderer (1988), Easley and

O’Hara (1992). Engle and Russell (1998) use the ACD model to test these

microstructure models. Here we discuss a question in the other direction.

What implications can these models offer on the trading intensities?

These structural models of the price discovery process usually assume
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there are two types of traders, informed and uninformed. The informed

trader will arrive only when an information event happens. In other words,

information flow affects intensities. But information doesn’t trigger trading

automatically. Investors have limited attention11. A investor has to allocate

her attention to process all kinds of information then make trading decision.

Both theoretical and empirical studies show that attention plays a significant

role in investors’ behavior, see, for example, Huberman (2001), Peng and

Xiong (2006), Huang and Liu (2007), Barber and Odean (2008).

At the aggregate level, the more attention is paid to a stock, the more

likely a trade will happen. According to equation (2), this probability is the

trading intensity. Thus the intensity is a measure for the aggregate attention

level. This interpretation is very intuitive and is used by some researchers,

e.g., Corwin and Coughenour (2008) use the number of transactions to ap-

proximate individual NYSE specialist’s attention level.

Different information events can draw attention shocks with different per-

sistence. For example, under current financial crisis, interest rate is low, so

more risk-averse investors will withdraw their money from bank accounts and

pay their attention to the stock market. This attention shock will last for

months. During the crisis, there happens the oil spill in Mexico Gulf, which

will attract investors’ attention to oil industry. This shock will last for weeks.

If there is some local news coverage about a gasoline company during the oil

spill period, that is another attention shock which can last for days.

The above is just a simple example to illustrate that the attention or

11A large body of psychological literature shows that humans have limited attention.
Limited attention is also related to the concept of ”bounded rationality”.

11



intensity shocks have a cascade structure. Numerous intensity shocks exist

on the financial market. Some are observable, like public news. Some are

unobservable, like private information. The shocks are spread through differ-

ent social network, e.g., Hong et al. (2005) find that mutual fund managers

in the same city are likely to trade the same stocks. At any time, the total

intensity is the aggregation effect of all shocks. We use the MSM structure

proposed by Calvet and Fisher (2004) to model such cascade shocks.

4 Markov Switching Multifractal Duration

One basic specification of the MSMD model is given in (3), where ϵi is spec-

ified as iid exponential distribution. We now give the specification of the

intensity λi.

We assume the intensity has k̄ components. Each component represents

a shock at a particular frequency. All components contribute to the intensity

through a multiplicative effect12. More precisely, we model λi as

λi = λ

k̄∏
k=1

Mk,i (4)

where λ is a positive constant. M1,i, M2,i, . . . , Mk̄,i are positive intensity

components. The components are statistically independent with each other

at any time. It is convenient to define the trading intensity state vector at

time i as Mi = (M1,i,M2,i, . . .Mk̄,i).

12This multiplicative effect could become additive effect by taking logarithm. Then
we can take the total intensity as a superposition of the k̄ components with different
frequencies. This is similar to the fourier series expansion, but we don’t have the usual
orthogonal condition here.
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For each k ∈ {1, 2, 3, ..., k̄}, the dynamics of the component Mk,i is a

Markov renew process. At time i, Mk,i is either renewed, namely drawn from

a fixed distribution M with probability γk, or remains its previous value

Mk,i−1 with probability 1− γk.

The fixed distribution of M is the same for different components. A draw

from M is the magnitude of a shock. Only positive shock is allowed, so M

has a positive support M > 0. To prevent the shocks from exploding, we set

E(M) = 1.

The renew probability γk is specified as

γk = 1− (1− γ1)
b(k−1)

(5)

where γk ∈ (0, 1) and b ∈ (1,∞). This specification is introduced in Calvet

and Fisher (2001) in connection with the discretization of a Poisson arrival

process. The value of γk will determine the average lifetime or persistence

of a Mk,i shock. The larger the γk is, the shorter average lifetime the Mk,i

shock will have. Large k component stands for high frequency shock. Small

k component stands for low frequency shock. An important feature of this

specification is that all shocks, low frequency or high frequency, have stochas-

tic lifetime.

Equations (3), (4) and (5) plus specification for M define a stochastic

duration model, thus the MSM duration model.

13



5 Model Properties

We will establish some properties of the MSMD model, and show the model

can explain most stylized features of financial durations.

5.1 Geometric Ergodicity

For duration models, the important properties are stationarity, ergodicity and

finite higher-order moments. The strict stationarity of the MSM duration is

obvious since each intensity component is independent and stationary. The

existence of finite higher-order moments depends on the moment properties

of M . For example, if we take M as binomial distribution, which we will do

in our empirical study, then every finite moment of di exists. Here we give

the ergodic property.

Proposition 2 The MSM duration {di} is geometrically ergodic.

Proof From the definition, di is a hidden Markov model with the intensity

vector Mi as the Markov chain. By Proposition 4 of Carrasco and Chen

(2002), It is enough to show Mi is geometrically ergodic.

Let the support of M be S. Mi is a Markov chain on S k̄. Since each com-

ponent Mk,i is independent, we need to show Mk,i is geometrically ergodic.

First we show Mk,i is φ-irreducible T-chain. Take φ as Lebesgue mea-

sure µLeb on S. The µLeb-irreducibility is immediate from the assumption

of positive densities for M . The transition kernel of Mk,i is P (x,A) =

γk
∫
A
dF+(1−γk)1x(A). Let T (x,A) = γk

∫
A
dF , then T (x,A) is a nontrivial

continuous component of P (x,A), by Proposition 6.2.4 of Meyn and Tweedie

(1993), Mk,i is a T-chain.
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This implies that all compact sets in S are petite. We can choose any

compact set C in S with positive probability measure as a test set. It is easy

to check that Mk,i satisfies conditional (ii) of Proposition 15.0.1 of Meyn and

Tweedie (1993), then Mk,i is geometrically ergodic.

5.2 Clustering Effect

The clustering effect is implied by some market microstructure models, e.g.

Easley and O’Hara (1992). Those models suggest when information events

happen, trades will cluster together. And the clustering effect is found in

empirical studies.

The MSMDmodel can not only explain the clustering effect, i.e., when the

highest frequency intensity component draws a large value, short durations

will happen together. But also it predicts there is clustering effects at all

time scales.

In Figure 1, we draw the counts or the number of transactions in 2 min-

utes, 5 minutes, 10 minutes and 30 minutes. We find clustering in all the

time scales. This confirms the prediction of the MSMD model.

5.3 Nonlinearity

There is strong nonlinearity in the duration dynamics. Zhang et al. (2001) use

their threshold ACD model to identify multiple structural breaks in the trans-

action duration data considered, and they find those break points matched

nicely with real economic events. This is in agreement with our discussion

in last section. Different events will draw different shocks, therefore cause
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regime switches. The MSMD is a Markov switching model. It has the non-

linearity built in.

5.4 Overdispersion

The overdispersion property can be observed in all the samples we used for

empirical study. Let µd = E(di), σ
2
d = Var(di). We will have

Proposition 3

σd > µd

Proof By definition, we have µd = E(di) = E( 1
λi
)E(ϵi) = E( 1

λi
) and σ2

d =

Var(di) = E(d2i ) − [E(di)]
2 = E(ϵ2i )E( 1

λ2
i
) − [E( 1

λi
)]2. it is easy to check

E(ϵ2i ) = 2, so

σ2
d = 2E(

1

λ2
i

)− [E(
1

λi

)]2

by Jensen’s inequality [E( 1
λi
)]2 < E( 1

λ2
i
), we get σd > µd

5.5 Long Memory Feature

The duration autocorrelations decrease slowly with horizon. In Figure 2, we

show four duration autocorrelations. A visual check will confirm the slowly

decaying of autocorrelations.

Previous research doesn’t pay much attention to the long memory fea-

ture. One reason is that the sum of parameters estimated in ACD models is

nearly 1. This can explain some persistence of the durations. But the ACD

models only have short memory. Recently, the long memory feature is in

deed confirmed by the semiparametric analysis of Deo et al. (2010).
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The autocorrelation function of durations is ρ(n) = Corr(di, di+n). Let

α1 < α2 denote two arbitrary numbers in the open interval (0, 1). The set

of integers Ik̄ = {n : α1 logb(b
k̄) ≤ logb n ≤ α2 logb(b

k̄)} contains a broad

collection of lags.

Proposition 4 The autocorrelation of durations satisfies

sup
n∈Ik̄

∣∣∣∣ ln ρ(n)lnn−δ
− 1

∣∣∣∣ → 0 as k̄ → +∞

where δ = logb E(M)− logb{[E(M1/2)]2}

Proof By definition Corr(di, di+n) = E(didi+n)− E(di)E(di+n).

We calculate the first term:

E(didi+n) = E(
ϵiϵi+n

λiλi+n

) = E(λ−1
i λ−1

i+n) =
k̄∏

k=1

E(M−1
k,i M

−1
k,i+n).

The last equality is valid by the independence of each component. We use

iterated expectation to calculate the last term,

E(M−1
k,i M

−1
k,i+n) = E[M−1

k,i E(M−1
k,i+n|M

−1
k,i )],

where

E(M−1
k,i+n|M

−1
k,i+n−1) = M−1

k,i+n−1(1− γk) + E(M−1)γk,

and

E(M−1
k,i+n|M

−1
k,i+n−2) = M−1

k,i+n−2(1− γk)
2 + E(M−1)γk(1− γk) + E(M−1)γk.
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So we can get

E(M−1
k,i+n|M

−1
k,i ) = M−1

k,i (1− γk)
n + E(M−1)[1− (1− γk)

n],

and

E(M−1
k,i M

−1
k,i+n) = E(M−2)(1− γk)

n + [E(M−1)]2[1− (1− γk)
n]

= [E(M−1)]2[1 + a(1− γk)
n]

where a = E(M−2)[E(M−1)]−2 − 1.

Now we calculate the second term E(di)E(di+n) = [E(di)]
2 = [E( 1

λi
)]2 =∏k̄

k=1[E(M−1
k,i )]

2 =
∏k̄

k=1[E(M−1)]2 = [E(M−1)]2k̄. We already have σ2
d =

2E( 1
λ2
i
)− [E( 1

λi
)]2 = 2

∏k̄
k=1 E(M−2) −

∏k̄
k=1[E(M−1)]2 = [E(M−1)]2k̄[2(1 +

a)k̄ − 1], thus we get

ρn = Corr(di, di+n) =

∏k̄
k=1[1 + a(1− γk)

n]− 1

2(1 + a)k̄ − 1

The rest of the proof just follows Proposition 1 of Calvet and Fisher (2004).

5.6 Discussion

The traditional method to generate long memory is the fractional integration

(FI) or I(d) model, i.e., fractional difference operator acting on iid shocks. It

is introduced to the econometrics literature by Granger and Joyeux (1980) as

a parsimonious empirical method. In FI models, every shock has a long-lived
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effect. This is in contrast with I(0) and I(1) cases. In a stationary ARMA

model, i.e., I(0), every shock is transitory. In a non-stationary random walk

model, i.e., I(1), every shock is permanent. The FI process seems to provide

a natural way to fill the gap between I(0) and I(1) processes. But in FI

models, every shock still decay at the same rate. It introduces artificial

mixing between long- and short-term dependence, which is illustrated by

Comte and Renault (1998). It also blur the distinction between stationary

and nonstationary processes.

Jasiak (1999) proposes the fractional integrated ACD model to capture

long memory in durations. But this model suffers from the non-existence of

moments problem. The second moment of the FIACD model doesn’t exist.

It is not a long memory model in the usual sense, autocorrelations decaying

hyperbolically.

In the MSMD model, different shocks have different persistence, which

is closer to our intuition. Another well-known mechanism to generate long

memory is by occasional regime switches, see Diebold and Inoue (2001). This

is why some researchers think the long memory in duration is spurious. It

comes from some regime switches and parameter instabilities. The MSM

structure can accommodate this occasional regime switches case. For exam-

ple, suppose in our sample period, the lowest frequency intensity component

M1,i gets renewed for only 2 times, i.e., M1,i take only three values x1, x2, x3.

Then the sample period can be split into 3 regimes according to the value of

M1,i. If we set

N = λx

k̄∏
k=2

Mk,i
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where x is the value of M1,i, we see in different regimes, N have different

mean13. This is the occasional regime switches case discussed in Diebold

and Inoue (2001). The MSMD model naturally combines long memory and

nonlinearity.

6 Empirical Studies

We explain the MSMD model in previous sections. Now we do empirical

studies to show the MSMD is not some statistical artifact. To this purpose,

we have to specify M . As is discussed in section 4, M should satisfy M > 0

and E(M) = 1. Following Calvet and Fisher (2004), we specify M as a

binomial variable taking value m0 and 2 − m0 with equal probability. The

binomial MSMD model has four parameters

ϕ = (m0, λ, b, γk̄) ∈ R4
+.

Twenty stocks from the S&P 100 index are randomly selected and equally

divided into two groups, high trading group and low trading group, according

to the number of transactions in the sample period. We estimate the binomial

MSMD model for all the twenty stocks. We find the MSMD mode with seven

components thus MSMD(7) can give a good description of the data.

We then run a horse race between the binomial MSMD(7) model and

the ACD(1,1) model. We compare both in sample fitting and out of sample

forecasting of the two competing models. For in sample fitting, we compare

the likelihoods. For out of sample forecasting, we compare the mean square

13In regime 1, E[N ] = λx1. In regime 2, E[N ] = λx2. In regime 3, E[N ] = λx3.
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prediction errors. Forecasting at three horizons, 1-step, 5-step, and 20-step

is implemented. A fixed scheme is chosen to compare forecasting, see Pagan

and Schwert (1990) and West and McCracken (1998). We choose this scheme

mainly because the estimation process involves computationally intensive nu-

merical maximizations. We take 11000 observations as the maximum sample

size for forecasting comparison and split the sample into two sets, a fitting

set and a testing set. The fitting set has 10000 observations, and the later

has 1000 observations. If the total observations are less than 11000 for some

low trading stocks, we take roughly the last 1000 observation as testing set,

previous observations as fitting set. Competing models are estimated only

once on the fitting set and then the estimated parameters are used in forming

predictions for observations in the testing set.

6.1 Data Description

The data for empirical study are the consolidated trades data extracted from

TAQ database. The time period is from February 1, 1993 to February 26,

1993, which has 20 trading days. We only keep transactions during the open

time, from 9:30 a.m. EST to 4:00 p.m. EST. All over night durations are

omitted. Following Zhang et al. (2001), transactions in the opening period

from 9:30 am to 10:00 a.m. are also deleted to remove the opening auction

effect. There are still simultaneous trades and zero durations. Following

Engle and Russell (1998), we delete the zero durations. Table 1 gives the

symbol and company name of the twenty stocks.
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6.2 Daily Seasonality

The raw durations have strong diurnal daily pattern, i.e. the average duration

is short at morning opening time and afternoon close time, and long at noon

time. This daily seasonality is documented by many empirical studies. There

are several methods to remove the seasonality. We adopt the method used

by Ghysels et al. (2004). The main step is to regress the logarithm of the

raw duration on the indicator variables that indicate the time of day. A day

is divided into 12 subperiods. Each subperiod is 30 minutes. We consider

the regression

log di =
12∑
k=1

akxki + ϵt = a′xi + ϵi

where xki = 1, if time i belongs to the intraday subperiod k, and 0 otherwise.

Then the seasonally adjusted series is defined by

d̂i = di exp(−â′xi)

where â denotes the OLS estimator of a. The data from now on are all

seasonally adjusted data.

6.3 Data Statistics

Table 2 and Table 3 show the summary statistics for both low and high

trading groups. The stock of Merck & Co has the most, 54242 durations

during the sampling period. While the stock of ALCOA has the least, 2989

durations. The longest duration is 76.83. The shortest duration is 0.02.

All twenty stocks show overdispersion even after the seasonality adjusting.
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For all stocks, duration mean is greater than duration median. Each stock’s

kurtosis is much bigger than 3, implying heavy tail distributions.

6.4 Estimation Method

Each intensity component can take only two values in the binomial MSMD

model. For k̄ components, there are 2k̄ states of the intensity state vector

Mi. For the finite number of states, we can easily get the likelihood of the

model by standard filtering procedures.

We initiate the distribution of Mi with the ergodic distribution, then use

Bayes’ law to update the distribution of Mi, and compute the likelihood for

each observation. MLE is used to estimate the parameters. Like other hidden

Markov models, local maximums exist. Multiple initial conditions are tried

to find the MLE estimation.

6.5 Model diagnostics

Several types of diagnostic tests have been proposed to evaluate the fast grow-

ing ACD models, see Li and Yu (2003), Fernandes and Grammig (2005),

Meitz and Teräsvirta (2006), Chen and Hsieh (2010). Unfortunately, the

MSMD model is a latent variable model. These tests can not be used. In-

stead, we use the information matrix test developed by White (1982). The

test is based upon the asymptotic equivalence of the Hessian and outer prod-

uct forms of Fisher’s information matrix, when the model is correctly spec-

ified. The up-right elements of the information matrix (total 10 elements)

are selected to form the test statistic SIM . Note SIM ∼ χ2
10
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6.6 Estimation Results

We present 5 estimation results: table 4 for Bank of America Corp., table 5

for Ford Motor, table 6 for IBM, table 7 for Coca-Cola, table 8 for Microsoft.

From these tables, a clear trend is that when the number of intensity com-

ponents increases, the likelihood increases too. High components MSMDs

usually have higher likelihood. When the number of components increases

to seven, the MSMD can give a good description to the data. This can be

seen from the p-value of the information matrix test.

6.7 Comparison with ACD

From last section, we see that MSMD model with seven intensity components

usually can give a good description of the data. From now on, we fix the

number of components at seven and use the MSMD(7) model to compare

with the ACD(1,1) model. We choose the ACD(1,1) model because it is the

leading example.

In sample fitting results for the low trading group are in table 9. Out of

sample forecasting results for low trading group are in table 10. In sample

fitting results for the high trading group are in table 11. Out of sample

forecasting results for high trading group are in table 12.

It is obvious that the MSMD model can fit the data better. The log

likelihoods of MSMD(7) are higher than ACD(1,1) for all twenty stocks.

For 1-step forecasting, the results of both MSMD and ACD model are

comparable. MSMD(7) does better forecasting for the high trading group,

while ACD(1,1) can give more precise forecasting for the low trading group.
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For 5-step and 20-step forecasting, the MSMD model dominates the ACD

model for all 20 stocks.

This is clear evidence that the ACD model can only capture short run

dynamics, while the MSMD can capture longer horizon dynamics. An in-

teresting observation is that the mean square prediction error of the MSMD

model doesn’t change much when the forecasting horizon changes.

Maybe it is more fare to compare the MSMD models with a long memory

ACD model. But as we explain in last section, the fractional integrated ACD

model doesn’t have second order moment. It is not a long memory model

in the common sense. So we ignore it. Another possible candidate is the

long memory stochastic duration (LMSD) model of Deo et al. (2010). One

problem with LMSD is that it does not allow iid exponential errors14. For

now, we don’t consider the LMSD model.

7 Concluding Remarks

In this paper, we propose a new model, the MSMD model to analyze financial

durations. Compared to the conditional mean modeling of ACD models, our

method focus on intensity modeling.

We first establish a mixture of exponentials representation for general

point processes, then model the intensity process as a MSM process. We

show the MSMD model has good properties. It can explain most of the

stylized facts of durations.

Extensive empirical study shows the MSMD model can do good long

14As Deo et al. (2010) reports the LMSD model doesn’t converge when using iid expo-
nential errors.
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horizon forecasting. The intertrade duration is a natural measure of market

liquidity and their variability is related to liquidity risk. Our model could be

used for the analysis of liquidity on financial markets. For example, we can

use bayesian method to update the probabilities of different intensity com-

ponents. The high frequency component shocks can be regarded as liquidity

shocks.

Another interesting direction for future work is to link durations, or inten-

sities to volatilities. The MSM volatility model of Calvet and Fisher (2004)

has a lot of similarities with the MSM duration model. The driving force of

the MSM volatility and the MSM intensity could be the same.
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Figure 1: Clustering Effect at Different Time Scale
Panel A B C D are counting data for the same period. The data is IBM
transaction data from February 1 1993 to December 31 1993. Vertical axis
is number of counts. Horizontal axis is time index.
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Figure 2: Sample Autocorrelation Functions for 4 Stocks
The sampling period is from February 1 1993 to February 26 1993.

36



Symbol Company Name

AA ALCOA
ABT Abbott Laboratories
AXP American Express Inc
BAC Bank of America Corp
CSCO Cisco Systems
DELL Dell
DOW Dow Chemical
F Ford Motor
GE General Electric Co.
IBM International Business Machines
INTC Intel Corporation
JNJ Johnson & Johnson Inc
KO The Coca-Cola Company
MCD McDonald’s Corp
MRK Merck & Co.
MSFT Microsoft
TXN Texas Instruments
WFC Wells Fargo
WMT Wal-Mart
XRX Xerox Corp

Table 1: Twenty Stocks: symbol and company name
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Stock Mean Median Max Min STD Skew Kurt OD n

AA 2.66 1.28 39.58 0.01 3.77 3.07 17.09 1.42 2989

AXP 2.22 1.17 42.33 0.05 2.93 3.13 19.35 1.32 10531

BAC 1.97 1.12 27.14 0.03 2.44 2.9 15.69 1.24 7939

DOW 1.96 1.11 37.59 0.02 2.49 3.6 28.03 1.27 6902

GE 2.03 1.1 27.13 0.06 2.56 2.72 13.85 1.26 14798

KO 1.82 1.14 26.31 0.05 2.06 2.49 12.47 1.13 15542

MCD 1.93 1.15 22.17 0.03 2.26 2.58 12.77 1.17 7441

TXN 2.56 1.15 55.41 0.02 3.7 3.39 23.54 1.44 4235

WFC 2.47 1.08 78.65 0.02 4.05 5.18 54.37 1.64 4047

XRX 2.56 1.15 55.41 0.02 3.7 3.39 23.54 1.44 4235

Table 2: Basic Statistics: Low Trading Group
Skew is Skewness. Kurt is Kurtosis. OD is overdispersion which is equal to
std/mean. n is the number of observations in the sampling period.
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Stock Mean Median Max Min STD Skew Kurt OD n

ABT 1.86 1.11 26.3 0.06 2.21 2.84 15.89 1.19 16929

CSCO 2.22 1.01 56.3 0.07 3.52 4.53 36.29 1.59 17963

DELL 2.13 1.02 76.83 0.09 3.4 5.15 48.3 1.6 24160

F 2.18 0.99 49.25 0.07 3.13 3.5 22.48 1.44 15562

IBM 1.75 1.06 35.87 0.12 2.03 3.01 19.16 1.16 31895

INTC 1.81 1.0 50.38 0.15 2.41 4.17 34.57 1.33 41957

JNJ 1.72 1.03 29.56 0.08 2.01 3.1 19.1 1.17 24208

MRK 1.61 0.98 24.66 0.18 1.78 2.95 17.31 1.11 54242

MSFT 2.01 1.01 53.68 0.11 2.94 4.43 37.43 1.46 29191

WMT 1.77 0.99 31.92 0.12 2.11 2.88 16.23 1.19 33899

Table 3: Basic Statistics: High Trading Group
Skew is Skewness. Kurt is Kurtosis. OD is overdispersion which is equal to
std/mean. n is the number of observations.
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k̄ 3 4 5 6 7

m0 1.3278 1.2857 1.3104 1.311 1.3108
(0.0) (0.01) (0.01) (0.01) (0.01)

λ 0.8494 0.8518 0.836 1.2135 0.9256
(0.02) (0.06) (0.03) (0.07) (0.05)

γk̄ 0.7052 0.9194 0.8595 0.8696 0.8663
(0.01) (0.13) (0.01) (0.14) (0.14)

b 11.37 7.14 11.58 11.93 11.81
(0.48) (1.8) (0.28) (3.2) (3.3)

− lnL 12917 12916 12912 12919 12912

SIM 13.8137 11.5906 2.803 3.1441 1.7233

p 0.1817 0.3134 0.9857 0.9778 0.9981

Table 4: MSMD Estimation: BAC
SIM is the statistic for White’s Information Matrix Test, SIM ∼ χ2

10. p is the
p-value of SIM
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k̄ 3 4 5 6 7

m0 1.431 1.4145 1.3367 1.3191 1.2982
(0.0) (0.01) (0.01) (0.01) (0)

λ 1.0045 0.7475 1.0393 1.2841 1.1107
(0.04) (0.02) (0.06) (0.13) (0.04)

γk̄ 0.7584 0.8052 0.999 0.999 0.999
(0.05) (0.06) (0) (0) (0)

b 19.6802 18.2764 9.9257 8.0253 6.1077
(2.5) (2.4) (1.8) (1.4) (1.8)

− lnL 25684 25674 25649 25647 25639

SIM 34.7749 24.7862 24.9896 19.1013 3.6787

p 0.0001 0.0058 0.0054 0.039 0.9607

Table 5: MSMD Estimation: F
SIM is the statistic for White’s Information Matrix Test, SIM ∼ χ2

10. p is the
p-value of SIM
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k̄ 3 4 5 6 7

m0 1.2739 1.2361 1.2098 1.2098 1.1791
(0.0) (0.0) (0.0) (0.0) (0.0)

λ 0.8173 0.8725 0.8361 0.6925 0.7686
(0.02) (0.03) (0.02) (0.02) (0.03)

γk̄ 0.0448 0.0471 0.0533 0.0538 0.0643
(0.0) (0.0) (0.01) (0.01) (0.01)

b 10.12 5.93 3.90 3.97 2.85
(1.7) (0.91) (0.45) (0.47) (0.31)

− lnL 47745 47711 47696 47697 47695

SIM 39.6988 20.3271 9.0755 7.3585 3.5432

p 0 0.0263 0.5250 0.6912 0.9656

Table 6: MSMD Estimation: IBM
SIM is the statistic for White’s Information Matrix Test, SIM ∼ χ2

10. p is the
p-value of SIM
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k̄ 3 4 5 6 7

m0 1.3214 1.2449 1.2049 1.2409 1.2449
(0.01) (0.01) (0.01) (0.01) (0.01)

λ 1.271 1.0381 0.6612 0.6811 2.4128
(0.06) (0.04) (0.02) (0.02) (0.17)

γk̄ 0.1378 0.3459 0.7213 0.3597 0.3481
(0.02) (0.08) (0.15) (0.08) (0.21)

b 74.08 13.26 6.78 12.03 13.41
(27.02) (2.43) (1.38) (2.41) (4.17)

− lnL 24441 24429 24423 24427 24421

SIM 25.0972 9.7062 12.8718 16.8928 5.0148

p 0.0052 0.4666 0.2309 0.0768 0.8902

Table 7: MSMD Estimation: KO
SIM is the statistic for White’s Information Matrix Test, SIM ∼ χ2

10. p is the
p-value of SIM
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k̄ 3 4 5 6 7

m0 1.379 1.339 1.3199 1.2935 1.2984
(0.0) (0.0) (0.01) (0.01) (0.01)

λ 0.7844 0.852 0.7173 0.8548 1.2205
(0.02) (0.03) (0.03) (0.05) (0.1)

γk̄ 0.0931 0.102 0.1115 0.1184 0.1229
(0.01) (0.01) (0.01) (0.01) (0.01)

b 4.2922 3.1773 3.0434 2.5351 2.7579
(0.48) (0.28) (0.28) (0.21) (0.22)

− lnL 44696 44642 44635 44631 44632

SIM 86.0721 12.3657 16.7955 10.8251 10.6235

p 0 0.2613 0.079 0.3713 0.3876

Table 8: MSMD Estimation: MSFT
SIM is the statistic for White’s Information Matrix Test, SIM ∼ χ2

10. p is the
p-value of SIM
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In Sample Fitting
Stock − lnL

MSMD(7) ACD(1,1)
AA 5598.4 5791.3
AXP 17828 18010
BAC 12919 13078
DOW 11148 11246
GE 24403 24783
KO 24441 24547
MCD 12106 12207
TXN 7690.3 7978.9
WFC 7050.7 7315.3
XRX 7690.3 7978.9

Table 9: Model Comparison: in Sample Fit
This is low trading group.

Out of Sample Forecasting
Stock 1-step MSPE 5-step MSPE 20-step MSPE

MSMD(7) ACD(1,1) MSMD(7) ACD(1,1) MSMD(7) ACD(1,1)
AA 18.1833 16.4306 18.7463 41.3716 19.8247 25.3063
AXP 17.4886 16.5861 17.8916 64.0274 18.61 61.2588
BAC 8.0538 7.9268 8.1647 24.6852 8.2475 16.329
DOW 10.1717 9.9576 10.4884 31.0425 10.7088 24.3516
GE 5.7333 5.6145 5.898 20.4824 6.1323 15.2521
KO 3.0342 3.0314 3.044 11.3846 3.1105 6.6252
MCD 6.16 6.0905 6.3188 20.5726 6.2952 12.8945
TXN 12.2909 11.1517 12.7247 28.581 13.4088 15.351
WFC 3.1323 8.5206 3.1509 23.8728 3.1785 13.2856
XRX 12.2909 11.1517 12.7247 28.581 13.4088 15.351

Table 10: Model Comparison: out of Sample Forecast
This is low trading group. MSPE is mean square prediction error.
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In Sample Fitting
Stock − lnL

MSMD(7) ACD(1,1)
ABT 26324 26460
CSCO 28610 29110
DEll 37903 38254
F 25652 26253

IBM 47695 47810
INTC 61895 62032
JNJ 35893 36011
MRK 77378 77486
MSFT 44635 44984
WMT 50644 50841

Table 11: Model Comparison: in Sample Fit
This is high trading group.

Out of Sample Forecasting
Stock 1-step MSPE 5-step MSPE 20-step MSPE

MSMD(7) ACD(1,1) MSMD(7) ACD(1,1) MSMD(7) ACD(1,1)
ABT 2.1301 2.132 2.1416 9.6389 2.203 2.8122
CSCO 3.1284 3.2781 3.2912 10.4741 3.4586 3.7093
DEll 6.678 7.0334 7.0476 22.2225 7.3236 15.0193
F 6.9681 6.6235 7.2714 25.4917 7.5698 21.5794

IBM 2.819 2.8114 2.8035 12.7333 2.8708 8.0736
INTC 7.4043 7.5486 7.7788 25.825 8.5547 14.7445
JNJ 3.2169 3.315 3.2208 14.035 3.183 9.0553
MRK 0.9111 0.915 0.9153 4.5424 0.9008 2.8697
MSFT 9.7861 10.2364 10.3726 36.8851 10.8266 30.3269
WMT 8.9516 9.0933 9.0395 28.4147 9.1606 17.329

Table 12: Model Comparison: out of Sample Forecast
This is high trading group. MSPE is mean square prediction error.
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