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Abstract

In this paper we explore time-varying parameter extensions of the dynamic Nelson-

Siegel yield curve model for forecasting multiple sets of interest rates with different

maturities. The Nelson-Siegel model is recently reformulated as a dynamic factor model

where the latent factors level, slope and curvature are modelled simultaneously by a

vector autoregressive process. We propose to extend this framework in two directions.

First, the factor loadings are made time-varying through a simple single step function

and we show that the model fit increases significantly as a result. The step function can

be replaced by a spline function to allow for more smoothness and flexibility. Second,

we investigate empirically whether the volatility in interest rates across different time

periods is constant. For this purpose, we introduce a common volatility component

that is specified as a spline function of time and scaled appropriately for each series.

Based on a data-set that is analysed by others, we present empirical evidence where

time-varying loadings and volatilities in the dynamic Nelson-Siegel framework lead to

a significantly increase of the model fit. Finally, we provide an illustration where the

model is applied to an unbalanced dataset. It shows that missing data entries can be

estimated accurately.
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1 Introduction

Fitting and predicting the time-series of a cross-section of yields has proven to be a challeng-

ing task. As with many topics in empricial economic analysis there is the trade-off between

the goodness of fit that is obtained by employing statistical models without a reference to

economic theory, and the lack of fit by economic models that do provide a basis for the

underlying economic theory.

For many decades work on the term structure of interest rates has mainly been theoretical

in nature. In the early years work focused on the class of affine term structure models.

The classical models are Vasicek (1977) and Cox, Ingersoll, and Ross (1985). Duffie and

Kan (1996) generalized the literature and Dai and Singleton (2000) characterized the set of

admissable and identifiable models. Later a class of models was introduced that focused on

fitting the term structure at a given point in time to ensure no arbitrage opportunities exist

(Hull and White (1990) and Heath, Jarrow, and Morton (1992)). It has been shown that the

forecasts obtained using the first class of models do not outperform the random walk, see for

example Duffee (2002). The second class of models focuses on the cross-section dimension

of yields but not on the time series dimension. Time series models aim to describe the

dynamical properties and are therefore more suited for forecasting. This may partly explain

the renewed interest in statistical time series models for yields.

The papers of Diebold and Li (2006, DL) and Diebold, Rudebusch, and Aruoba (2006,

DRA) have shifted attention back to the Nelson and Siegel (1987, NS) model. This model

does not rely on theoretical frameworks such as the concept of no-arbitrage. DL and DRA

consider a statistical three factor model to describe the yield curve over time. It can be

argued that the three factors represent the level, slope and curvature of the yield curve

and thus carry some economical interpretation. Moreover, they show that the model-based

forecasts outperform many other models including standard time series models such as vec-

tor autoregressive models and dynamic error-correction models. In DRA the Nelson-Siegel

framework is extended to include non-latent factors such as inflation. Further they frame

the Nelson-Siegel model into a state space model where the three factors are treated as

unobserved processes and modelled by vector autoregressive processes. A wide range of

statistical methods associated with the state space model can be exploited for maximum
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likelihood estimation and signal extraction, see Durbin and Koopman (2001). We will follow

this approach in which the state space representation of the Nelson and Siegel (1987) model

plays the central role.

Parameter estimation in Diebold and Li (2006) and Diebold, Rudebusch, and Aruoba

(2006) relies on two simplifying assumptions. First, to allow the time-varying factors to be

estimated by OLS the factor loadings are kept constant over time for each maturity. In

the original Nelson and Siegel (1987) model the factor loadings depend on a parameter that

is also time-varying, which in DL is restricted to be constant to keep the factor loadings

constant. Second, volatility is kept constant over the full sample period.

We contribute to the literature introducing time-varying factor loadings and time-varying

volatility. First, we look at the estimate of the parameter that defines the factor loadings

in various subsamples and find strong evidence that it is not constant over time. Moreover,

when we introduce a simple step function for this parameter we already find a highly signif-

icant improvement of model fit. Therefore, to allow the factor loadings to change gradually

over time we estimate a cubic spline for their parameter.

Second, graphs of the data provide some evidence that the volatility in interest rate

series is not constant over time. Interestingly, in high volatility periods the yields at all

maturities are very volatile. However, some maturities are more volatile than others. To

incorporate both of these observations in the model we also introduce a flexible cubic spline

function for the volatility. This spline scales all volatilities over time, and is interacted with

a constant level of volatility for each maturity. Similar to the introduction of time-varying

factor loadings, time-varying volatility also significantly increases the fit of the model.

A third contribution to the literature is that we show how easily the Nelson and Siegel

(1987) model in state space form treats missing observations. This is a general property of

state space models, but has not yet been illustrated in this context. Besides the standard

unsmoothed Fama-Bliss monthly yields dataset for the period 1972-2000 (as also used by

DRA), we also estimate the time-varying model for U.S. Treasury yields over the period Jan-

uary 1972 up to June 2007 obtained from the Federal Reserve Economic Database (FRED).

The latter dataset is interesting as it has more recent data, but can not easily be used in the

OLS framework due to its many missing values. We show that in the state space framework

unbalanced datasets can be treated in a straightforward manner. In particular, by combining
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the two datasets we show how well the smoothed values for the missing data approximates

the true value. Using the SSF framework thus allows to include the longest maturity bond

(maturing in 30 years), which was not issued during the period February 2002 until January

2006.

There are a number of papers that extend the work of DL and DRA for the NS model.

Bianchi, Mumtaz, and Surico (2006) allow for time-varying variance for the factors, while

we model the volatility for each of the yields individually in the measurement equation.

Moreover, they only look at UK data and their approach is numerically intensive as it is

estimated in a Bayesian framework. Yu and Zivot (2007) extend the NS model to include

corporate bonds. More statistical in nature, Bowsher and Meeks (2006) introduce a 5-factor

model that uses splines to model the yield curve and has the knots of these splines as factors.

While this allows for a more flexible yield curve some economic intuition of the factors is

lost. Moreover, volatility is kept fixed over time.

The rest of the paper is build up as follows. Section 2 describes the baseline Nelson-

Siegel latent factor model, Section 3 the extensions we propose. In Section 4 we describe our

dataset and provide estimates of the various models. Section 5 provides an illustration with

missing values, Section 6 concludes.

2 The Nelson-Siegel Latent Factor Yield Curve Model

In this section we introduce the latent factor model that Nelson and Siegel (1987) develop

for the yield curve. We will focus on the model as slightly adjusted in terms of factorization

by Diebold and Li (2006). First we will introduce this model, after which we will go into the

model in state space form as proposed by Diebold, Rudebusch, and Aruoba (2006).

2.1 The Nelson-Siegel Model

Interest rates are denoted by yt(τ) at time t and maturity τ . For a given time t, the yield

curve θt(τ) is some smooth function representing the interest rates (yields) as a function of

maturity τ . A parsimonious functional description of the yield curve is proposed by Nelson

and Siegel (1987). The Nelson-Siegel formulation of the yield is modified by Diebold and Li

(2006, henceforth DL) to lower the coherence between the components of the yield curve.
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The DL formulation is given by

θt(τ) = θ(τ ; λ, βt) = β1t + β2t

(

1 − e−λτ

λτ

)

+ β3t

(

1 − e−λτ

λτ
− e−λτ

)

, (1)

where βt = (β1t, β2t, β3t)
′, for given time t, maturity τ and fixed coefficient λ that determines

the exponentially decay of the second and third component in (1).

The shape and form of the yield curve is determined by the three components and their

associated weights in βt. The first component takes the value 1 (constant) and can therefore

be interpreted as the overall level that influences equally the short and long term interest

rates. The second component converges to one as τ ↓ 0 and converges to zero as τ → ∞

for a given t. Hence this component mostly influences short-term interest rates. The third

component converges to zero as τ ↓ 0 and as τ → ∞ but is concave in τ , for a given t. This

component is therefore associated with medium-term interest rates.

Since the first component is the only one that equals one as τ → ∞, its corresponding

β1t coefficient is usually linked with the long-term interest rate. By defining the slope of the

yield curve as θt(∞) − θt(0), it is easy to verify that the slope converges to −β2t for a given

t. Finally, the shape of the yield can be defined by [θt(τ
∗) − θt(0)] − [θt(∞) − θt(τ

∗)] for a

medium maturation τ ∗, say, two years, and for a given t. It can be shown that the shape

approximately equals β3t.

In case we observe a series of interest rates yt(τi) for a set of N different maturities

τ1 < . . . < τN available at a given time t, we can estimate the yield curve by the simple

regression model

yt(τi) = θt(τi) + εit

= β1t + β2t

(

1 − e−λτ

λτ

)

+ β3t

(

1 − e−λτ

λτ
− e−λτ

)

+ εit, (2)

for i = 1, . . . , N . The disturbances ε1t, . . . , εNt are assumed to be independent with mean

zero and constant variance σ2
i for a given t. The least squares method provides estimates for

the βjt coefficients j = 1, 2, 3. These cross-section estimates can be obtained for every t as

long as sufficient interest rates for different maturities are available at time t.

Plotting the three series of regression estimates for βt shows that these series are corre-
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lated over time. In other words, the coefficients are forecastable and hence the Nelson-Siegel

framework can be used for forecasting in this way. This has been recognized by DL who

implemented the following two-step procedure: first, estimate the βt by cross-section least

squares for each t; second, treat these estimates as three time series and apply time series

methods for forecasting βt and hence the yield curve θ(τ ; λ, βt).

DL compare forecasts obtained using this method with other methods, such as forecasts

based on the random walk model, the univariate autoregressive models and the trivariate

vector autoregressive models. These different methods produce rather similar results. Never-

theless, the two-step forecasting approach does better than forecasting the different interest

rates series directly, especially for the longer maturities.

2.2 The Dynamics of the Latent Factors

Diebold, Rudebusch, and Aruoba (2006, henceforth DRA) go a step further by recognizing

that the Nelson-Siegel framework can be represented as a state space model when treating

βt as a latent vector. For this purpose, the regression equation (2) is rewritten by

yt = Γ(λ)βt + εt, yt = [yt(τ1), . . . , yt(τN )]′ (3)

with N × 3 factor loading matrix Γ(λ) where its (i, j) element is given by

Γij(λ) =



















1, j = 1,
(

1 − e−λ·τi

)

/ λ · τi, j = 2,
(

1 − e−λ·τi − λ · τie
−λ·τi

)

/ λ · τi, j = 3.

The observation disturbance vector is given by

εt ∼ NID(0, Σε), εt = (ε1t, . . . , εNt)
′, t = 1, . . . , n.

The time series process for the 3 × 1 vector βt can be modeled by the vector autoregressive

process

βt+1 = (I − Φ)µ + Φβt + ηt, ηt ∼ NID(0, Ση), (4)
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for t = 1, . . . , n, with mean vector µ and initial condition β1 ∼ N(µ, Σβ) where variance

matrix Σβ is chosen such that Σβ − ΦΣβΦ′ = Ση.
1 Equations (3) and (4) with the initial

condition for β1 constitute a special case of the general state space model. The 3 × 1 mean

vector µ, the 3× 3 autoregressive coefficient matrix Φ, the 3× 3 variance matrix Ση and the

N × N variance matrix Σε are unknown and need to be estimated.

To estimate the model we maximize the likelihood function from the above set of equa-

tions. For models in state space this can be done using the output from the Kalman Filter,

our initializations are the same as DRA. Our estimations are done in Ox (see Doornik

(2001)), we use the functions of the SsfPack (see Koopman, Shephard, and Doornik (1999)).

For more on state space models see a.o. Durbin and Koopman (2001).

The general state space framework allows for other, more general, dynamic processes

for βt. Diebold, Rudebusch, and Aruoba (2006) assume that Σε is diagonal, which implies

that the disturbances for yields of different maturities are uncorrelated for a given time t.

This assumption is often used but is also convenient for computational tractability during

estimation given the potentially large number of yields available. The variance matrix Ση is

assumed non-diagonal.

The Nelson-Siegel model with βt modeled as the vector autoregressive process (4) has

been developed for the forecasting of yield curves, see Diebold, Rudebusch, and Aruoba

(2006). They conclude that forecasting results have not improved considerably compared to

the two-step approach of Diebold and Li (2006). This is confirmed by Yu and Zivot (2007)

although they distinguish different forecasting performances for short-term and long-term

maturities.

3 Time-Varying Factor Loadings and Volatility

In the above section we have introduced the latent factor model for the yield curve as put

forward by Nelson and Siegel (1987) and proposed to be estimated in state space form by

Diebold, Rudebusch, and Aruoba (2006). Now we are ready to state the two extensions to

this model that we propose. The first is the introduction of time-varying factor loadings,

1This enforces stationarity of the vector autoregressive process, and follows from Ansley and Kohn (1986).
By doing so we slightly deviate from DRA. However, our results do not depend on this.
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the second is introducing time-varying volatility.

3.1 Extension 1: Time-Varying Factor Loadings

In the latent factor yield curve model the parameter λ decides the shape of the factor

loadings. In the earlier studies, the default is to pre-fix a value for λ and not necessarily

estimate it. For example, Diebold and Li (2006) fix λ at 0.0609, Diebold, Rudebusch, and

Aruoba (2006) estimate λ to be 0.077 and following this Yu and Zivot (2007) fix it at 0.077.

They argue that the loadings Γij(λ) are not very sensitive to different values of λ as can

be illustrated graphically. Hence there is no need to estimate λ and they fix λ so that it

maximizes the loading on the curvature component at some medium term (that is, 30 months

for λ = 0.0609 and 23.3 months for λ = 0.077).

As is clear from the previous paragraph, the value at which λ is typically fixed is not

the same across studies, and differs from values estimated from the data. With the model

in state space form it is straightforward to estimate λ in addition to the other parameters.

However, fixing λ over the full sample period restricts the factor loadings to be constant over

time. Though this does not mean the shape of the yield curve can not change (as it also

depends on the factors themselves) it does fix the maturity at which the curvature factor is

maximized and the speed of decay of the slope parameter. Therefore the λ is informative

about the shape of the yield curve. Given these arguments, we study the role of λ further

and we also consider possible changes in λ over time.

The time-varying λ is formalized as follows. We let λ depend on some function of time

t, that is

λt = f(t; λ∗),

where f() is a function with time-index t as argument and λ∗ is a k×1 vector of coefficients.

Two examples of specifications for f() are (i) a step function as represented by λt = ℓtλ
∗

where ℓt is a particular row of the k × k identity matrix and (ii) a cubic spline function

as in Poirier (1976) that can be represented by λt = w′

tλ
∗ where wt is the k × 1 vector of

interpolating weights (determined by certain smoothing conditions). In our empirical results

we will try both of these forms and test whether there is a significant improvement in model

fit.
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3.2 Extension 2: Time-Varying Volatility

Another aspect of the analysis of the term structure is the recognition that the data is the

result of trading, where the clustering of large shocks over time is often found. Therefore it

is assumed that the volatility in the time series is not constant over time, see the seminal

works of Engle (1982) and Bollerslev (1986). We also observe volatility changes in interest

rate series of different maturities but they are more longer-term and are changing slowly. We

therefore will account for this by implementing a model, in which the volatilities of the yields

at different maturities are each driven by two components. The first component vt is the

time-varying component. This component is equal for all the maturities, because the yields

at all maturities show high volatilities in the same periods. It is interacted with an individual

constant scaling parameter per maturity α2
i . The second component σ2

i is a constant, which

measures the constant overall individual volatility of yield with maturity i, for i = 1, . . . , N .

Each of the diagonal elements of Σε, that is, hi,i represents the variance of the series of

yields at one of the N maturities. The diagonal elements are modeled by

hi,i = σ2
i + vtα

2
i , (5)

where the values of vt are determined by a smoothing spline function.

4 Data and Empirical Findings

For our main analyses we use the exact same dataset as used in Diebold, Rudebusch, and

Aruoba (2006). We will first give a short description of the data, with some summary

statistics. Then we will outline our empirical results.

4.1 Standard Fama-Bliss dataset

The dataset we use is the unsmoothed Fama-Bliss zero-coupon yields dataset, obtained from

the CRSP unsmoothed Fama and Bliss (1987) forward rates. We study U.S. Treasury yields

with maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months.
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This dataset is the exact same as used by Diebold, Rudebusch, and Aruoba (2006)2, Diebold

and Li (2006) provide more details on how it is obtained.

[insert Table 1]

Table 1 provides summary statistics for our dataset. For each maturity we show the

mean, standard deviation, minimum, maximum and some autocorrelation coefficients. In

addition we show these statistics for proxies for the level, slope and curvature coefficients.

These proxies are chosen conform the construction of the factors from the Nelson and Siegel

(1987) model, see the discussion in Section 2.1, and have previously been used a.o. by

Diebold and Li (2006).

From the table we see that the average yield curve is upward sloping. Volatility decreases

by maturity, with the exception of the 6 month being more volatile than the 3 month. Impor-

tant for econometric analyses, yields for all maturities are very persistent. The persistence

is most notable for long term bonds, but with a first-order autocorrelation of 0.970 the 3

month bill is still highly persistent. Also the level, slope and curvature proxies are persistent.

The curvature and slope are least persistent, with twelfth-order autocorrelation coefficients

of 0.259 and 0.410 respectively.

[insert Figure 1]

Figure 1 shows the cross-section of yields we study over time. In addition to the findings

of Table 1 we see a few interesting characteristics. The first thing to note is that the yields

vary significantly over time, with a large common component across all yields. Especially in

the years 1978-1987 interest rates are remarkable high and volatile. Secondly, the shape of

the yield curve is not constant over time. Though on average it is upward sloping there are

periods when it is downward sloping, or humped.

4.2 Results

In Sections 4.2.2 and 4.2.3 we analyze how our extensions affect the performance of the

Nelson-Siegel latent factor model. Section 4.2.4 discusses the results from the Nelson-Siegel

2We thank Francis X. Diebold for making the dataset available on his website:
www.ssc.upenn.edu/ fdiebold/.
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with both of our model extensions jointly included. Before we do this we will first provide

results for the baseline Nelson-Siegel latent factor model in Section 4.2.1.

4.2.1 The Baseline Nelson-Siegel Latent Factor Yield Curve Model

[insert Table 2]

Table 2 shows the estimates of the vector autoregression (VAR) model for the latent factors.

The high persistence from the proxies for the level, slope and curvature that we report in

Table 1 are confirmed by the high diagonal elements of the VAR coefficient matrix. The

estimates in this table are almost identical to those in Diebold, Rudebusch, and Aruoba

(2006, Table 1, p.316). The slight difference stems from our use of the Ansley and Kohn

(1986) method to ensure stationarity, see Section 2.2.

The factor loadings parameter λ is estimated as 0.0778, with a standard error of 0.00209.

The high significance of this estimate confirms that interest rates can be informative about

λ and that small changes in the loadings can have a significant effect on the likelihood value.

[insert Table 3]

Table 3 shows the measurement error. Panel A of this table focuses on the prediction

errors, while Panel B looks at the measurement errors. The measurement errors are defined

as the actual yields minus the yields that are obtained using the estimated parameters and

smoothed level, slope and curvature. We find that in particular the 3 month rate is difficult

to fit: it has the highest mean prediction and measurement error. Looking at the standard

deviation we see that for prediction the long bonds are best predicted. The standard errors

of the measurement errors however indicate that especially the shortest and longest bonds

are difficult to be fit. Overall, the medium term notes of around 24 months are best fit by

the model.

4.2.2 Time-Varying Factor Loadings

We are now ready to look at the first extension we propose: time-varying factor loadings. Be-

fore we discuss the results of estimating the model of Section 3.1 we will take an intermediate

step, and estimate the baseline model for three subperiods.
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[insert Table 4]

Table 4 shows the estimated factor loadings parameter λ for various models, together

with LR-tests to compare them. If we divide the full sample period in four equally spaces

subsamples we see the full sample λ estimate of 0.778 breaks down into 0.0397, 0.126, 0.0602

and 0.0695. With their small standard errors they again confirm our earlier observation

that interest rates can be informative about λ. Moreover, these estimates confirm how the

assumption of constant factor loadings is contradicted by the data.

The next step is to estimate the factor loadings parameter λ with a step function, as

defined in Section 3.1. As all other parameters are assumed to be constant over the sample

period the estimates differ from the estimates obtained for each subsample. However, again

we find low standard errors and high variation for λ over time. The LR-test shows significant

improvement in model fit over the baseline model with constant λ, even at a 1% level.

[insert Figure 2]

Finally, we estimate the factor loadings parameter λ in its most flexible form, with the

spline function as defined in Section 3.1. For the knots we choose to divide the interval in

four equally spaced intervals. Besides knots at the begin- and end-point of the sample we

put them at April 1979, July 1986 and October 1993.3 Figure 2 shows the estimated λ over

time. From this figure it is clear that even within each subperiod λ is not constant over time.

In Table 4 we show the mean λ for each of the periods. Though on average the mean λ for

these periods varies less than the models with subsamples and the step function there still is

considerable variation for λ. The LR test shows that the model with a spline for the factor

loadings parameter improves the fit significantly compared to both the constant λ model

and the model with step function.

Table 3 compares the prediction and measurement error of this model with the baseline

constant λ model. For 10 (9) out of the 17 maturities the mean prediction (measurement)

3We have tried various different number of knots, see Figure ?? in the Appendix (available from the
authors on request). Adding more knots will improve the model looking at both the likelihood and Akaike
Information Criterion (AIC). However, to keep the number of parameters tractable while allowing the load-
ings parameter to vary over time we choose a number of knots which provides a shape that represented a
wide range of values for the number of knots. The main change in shape of the spline when using a large
number of knots is in the end of the sample period. Adding more knots shows the high value of the spline
there is mainly caused by the inverted shape of the yield curve around 1999.
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error is lower. This is particularly true for short maturities. The standard deviation of the

prediction (measurement) error is lower for 13 (9) out of the 17 maturities.

4.2.3 Time-Varying Volatility

The second extension we propose in Section 3 is to make volatility time-varying. Similar to

our approach to make the factor loadings time-varying we introduce a spline to this end, see

Section 3.2 for details. The knots are set to equal those of Section 4.2.2.4

[insert Figure 3]

Figure 3A shows the spline that represents the time-varying common volatility compo-

nent. On itself its values represent how the average overall volatility varies over time. When

combined with the factor loadings for each individual maturity, it will provide an estimate

of volatility for each maturity and each period. Figure 3B shows the resulting volatility for

some maturities. Interestingly we find that volatility is especially high in the period 1980

until 1987, but thereafter is almost completely constant for all maturities.

Table 3 compares the measurement and prediction error of this model with the baseline

constant volatility model and the time-varying λ model. For 9 (10) out of the 17 maturities

the mean prediction (measurement) error is lower. Interestingly, where the improvement with

a time-varying λ was mainly in short maturities for the model with time-varying volatility

this is mostly pronounced for long bonds. The standard deviation of the prediction (mea-

surement) error is lower than the baseline case for only 2 (8) out of the 17 maturities.

[insert Table 5]

In Table 5 we report the performance of the various models. We report the loglikelihood

and the Akaike Information Criterion (AIC) value, together with an LR-test for model

improvement. We find a highly significant improvement of the model over the baseline

model without time-varying volatility. The increase in likelihood value and decrease in AIC

is higher than was the case when comparing the baseline model with the time-varying factor

loadings model. This indicates that most gain in describing the yield curve can be gained

by introducing time-varying volatility.

4See Footnote 3 for more details. The shape of the spline for volatility depends less on the number of
knots chosen than was the case for the factor loadings parameter, as can be seen from Figure ?? in the
Appendix (available from the authors on request).
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4.2.4 Both Factor Loadings and Volatility Time-Varying

We are now ready to estimate the Nelson-Siegel latent factor model with both factor loadings

and volatility time-varying. As the parameters of the vector autoregression are similar to

those in Table 2 and the splines similar to Figures 2 and 3 we do not repeat these here.

In Table 3 the measurement and prediction error of this model are given. Compared to

the baseline Nelson-Siegel model we see the prediction (measurement) error is lower for 11

(11) out of the 17 maturities. Looking at the standard deviation we see the improvement is

for 13 out of the 17 maturities for the prediction errors, but for only 6 for the measurement

errors.

Looking at the loglikelihood and Akaike Information Criterion (AIC), reported in Table 5,

we see a highly significant improvement compared to the baseline model. Also when bench-

marked against the model with only time-varying factor loadings or time-varying volatility

we see the improvement is significant. We can therefore conclude that, though adding

time-varying volatility is most significant, both model extensions significantly contribute to

improving the Nelson-Siegel latent factor model.

[insert Figure 4]

In Figure 4 we compare the latent factors obtained from the model with their data-based

proxies. Each of the factors agrees with their data-based proxy: the level factor is close to

the 120 month yield, the slope is close to spread of 3 month over 120 month yields and the

curvature is close to the 24 month yield minus the 3 and 120 month yield.

[insert Figure 5]

Finally, in Figure 5 we re-visit the four selected fitted yield curves as earlier reported

in Diebold and Li (2006, Figure 5). We report the yield curve obtained from the DL OLS

model, DRA SSF model and our extended SSF model with both the factor loadings and

volatility time-varying. Especially in the August 1998 it is clear our model extensions allow

for more flexibility and improve the model’s fit.
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5 An Illustration with Missing Values

An attractive feature of models in state space form is that they allow for missing values. For

OLS estimation of the Nelson-Siegel model (as put forward by Diebold and Li (2006)) data

must be available for all periods to avoid ad-hoc measures. However, this is not the case for

models in state space form.

With the Kalman Smoother5 the smoothed latent factors can be obtained for all periods

based on all available data. The estimation procedure does not change depending on data

availability. Moreover, with these smoothed factors a smoothed value for all maturities can

be obtained. Thus, for periods when data is missing for a certain maturity data from other

maturities can be used to obtain an estimate.

To illustrate this we use a publicly available dataset of fixed maturity U.S. Treasury

yields. The dataset is obtained from the Federal Reserve Economic Data (FRED) online

database, maintained by the Federal Reserve Bank of St. Louis. We look at the fixed

maturity interest rates, over the period January 1972 up to June 2007, with maturities of

1, 3, 6, 12, 24, 36, 60, 84, 120, 240 and 360 months. With the big advantage of being freely

available and covering a long time horizon comes the disadvantage that there are many

missing values. For example, the dataset for the 3 month bill starts only in January 1982,

for the 24 month this is June 1976 and the 360 month starts February 1977 with missings

in the period March 2002 until January 2006 (the period when it was not issued).

[insert Figure 6]

We have estimated the Nelson-Siegel latent factor model with both time-varying factor

loadings and time-varying volatility for this dataset. Figure 6 shows the time series of the

maturities with missings that are mentioned above. We see that using the smoothed latent

factors, based on data available not only in that period but also during other periods, an

estimate of the missing yield can be obtained.

To get a feeling for how reliable this estimate is we compare it to the value we have from

our dataset of Section 4.1. As that dataset does not contain the 30 year bond we can only

do this for the 3 month and 24 month yields. We see that in both cases the smoothed yield

5See Section 2.1 for our discussion of state space models, and Durbin and Koopman (2001) for more on
state space models in general.
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obtained provides a reliable estimate of the missing data.

6 Conclusion

We propose two extensions to the Nelson and Siegel (1987, NS) latent factor yield curve

model as suggested to be estimated in State Space Form (SSF) by Diebold, Rudebusch, and

Aruoba (2006). We first look at the factor loadings parameter of the latent factors, which in

the literature is either fixed at some value or estimated constant over time. Our empirical

results show that this parameter is estimated with low standard error, consistent with the

data being highly informative about the parameter that decides the shape of the factor

loadings. We propose this parameter to be time-varying in two ways. We first introduce

a simple step function for the parameter that governs the factor loadings. Secondly, we

introduce a spline function to model the factor loading parameter. We show that these

extensions provide a highly significant improvement in model fit.

Next we turn our attention to the volatility for each of the maturities. Like many fi-

nancial data, there are signs of volatility clustering and commonality for the yields. We

propose to take this into account by introducing a common volatility component, modeled

by a spline function. This common volatility component is then loaded onto each of the ma-

turities by a constant individual loading parameter. Also this extension provides a significant

improvement in model fit.

In addition we illustrate how easily the NS model in SSF deals with missing values,

such as the four years in which the 30 year bond was not issued. For a dataset with many

missing values we show how data both from other periods of the same maturity and data

from other maturities is used to obtain an estimate of the missing value. Comparing the

obtained estimate to the value in our main dataset we see the estimate is very accurate.
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Table 1: Summary Statistics
The table reports summary statistics for U.S. Treasury yields over the period 1972-2000. We examine
monthly data, constructed using the unsmoothed Fama-Bliss method. Maturity is measured in months. For
each maturity we show mean, standard deviation (Std.dev.), minimum, maximum and three autocorrelation
coefficients, 1 month (ρ̂(1)), 1 year (ρ̂(12)) and 30 months (ρ̂(30)).

Summary Statistics for each Maturity
Maturity Mean Std.dev. Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)
3 6.851 2.695 2.732 16.020 0.970 0.700 0.319
6 7.079 2.702 2.891 16.481 0.972 0.719 0.355
9 7.201 2.679 2.984 16.394 0.972 0.726 0.378
12 7.302 2.602 3.107 15.822 0.971 0.729 0.394
15 7.408 2.548 3.288 16.043 0.973 0.737 0.415
18 7.481 2.532 3.482 16.229 0.974 0.743 0.431
21 7.544 2.520 3.638 16.177 0.975 0.747 0.442
24 7.558 2.474 3.777 15.650 0.975 0.745 0.450
30 7.647 2.397 4.043 15.397 0.975 0.755 0.470
36 7.724 2.375 4.204 15.765 0.977 0.761 0.480
48 7.861 2.316 4.308 15.821 0.977 0.765 0.499
60 7.933 2.282 4.347 15.005 0.980 0.779 0.514
72 8.047 2.259 4.384 14.979 0.980 0.786 0.524
84 8.079 2.215 4.352 14.975 0.980 0.768 0.526
96 8.142 2.201 4.433 14.936 0.982 0.793 0.535
108 8.176 2.209 4.429 15.018 0.982 0.794 0.540
120(level) 8.143 2.164 4.443 14.925 0.982 0.771 0.532
slope 1.292 1.461 -3.505 4.060 0.929 0.410 -0.099
curvature 0.121 0.720 -1.837 3.169 0.788 0.259 0.076
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Table 2: Baseline Model - Estimates of VAR Model for Latent Factors
The table reports the estimates of the vector autoregressive (VAR) model for the latent factors. The results
shown correspond to the latent factors of the baseline Nelson-Siegel latent factor model. Panel A shows
the estimates for the constant vector µ and autoregressive coefficient matrix Φ, Panel B shows the variance
matrix Σε.

Panel A: Baseline Model - Constant and Autoregressive Coefficients of VAR
Levelt−1 (β1,t−1) Slopet−1 (β2,t−1) Curvaturet−1 (β3,t−1) Constant (µ)

Levelt (β1,t) 0.997∗∗
0.00811

0.0271∗∗
0.00889

−0.0216∗
0.0105

8.03∗∗
1.27

Slopet (β2,t) −0.0236
0.0167

0.942∗∗
0.0176

0.0392
0.0212

−1.46∗∗
0.527

Curvaturet (β3,t) 0.0255
0.023

0.0241
0.0257

0.847∗∗
0.0312

−0.425
0.537

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote significance at the 1% level or less.

The standard errors are reported below the estimates.

Panel B: Baseline Model - Variance Matrix of VAR
Levelt (β1,t) Slopet (β2,t) Curvaturet (β3,t)

Levelt (β1,t) 0.0949∗∗
0.00841

−0.014
0.0113

0.0439∗
0.0186

Slopet (β2,t) 0.384∗∗
0.0306

0.00927
0.0344

Curvaturet (β3,t) 0.801∗∗
0.0812

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote

significance at the 1% level or less. The standard errors are reported below the estimates.
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Table 3: Prediction and Measurement Errors
The table reports the prediction and measurement errors from the four Nelson-Siegel latent factor models we
estimate. The Baseline Model corresponds to the baseline Nelson-Siegel latent factor model with constant
factor loadings and volatility. The Time-Varying Factor Loading model corresponds to the model with a
spline for λ. The Time-Varying Volatility model corresponds to the model with a spline for the volatility.
The Both Time-Varying model corresponds to the model with a spline for both the factor loadings parameter
and the volatility. For each maturity we show mean and standard deviation (Std.dev.). We summarize these
per model with three statistics: the mean, median and number of maturities for which the absolute value
is lower than that of the baseline model (#Lower). In Panel A we report prediction errors, in Panel B
measurement errors.

Panel A: Prediction Errors (in basis points)
Baseline Time-Varying Time-Varying Both
Model Factor Loading Volatility Time-Varying

Maturity Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.
3 -11.91 64.84 -9.32 63.63 -13.80 66.71 -11.38 64.17
6 -0.69 60.52 0.05 60.07 -1.86 61.18 -0.55 60.16
9 1.09 59.05 0.73 58.80 0.53 59.17 1.09 58.69
12 1.82 59.25 0.84 58.94 1.74 59.41 1.81 59.00
15 4.15 56.39 2.87 56.05 4.44 56.57 4.22 56.22
18 3.98 54.17 2.61 53.74 4.56 54.30 4.16 53.95
21 3.55 52.43 2.21 51.94 4.33 52.52 3.85 52.13
24 -1.16 52.28 -2.40 51.63 -0.25 52.33 -0.75 51.85
30 -2.57 48.73 -3.51 47.86 -1.56 48.76 -1.99 48.12
36 -3.29 46.83 -3.93 45.92 -2.35 46.87 -2.65 46.14
48 -2.01 44.29 -2.21 43.38 -1.47 44.43 -1.48 43.58
60 -3.60 40.85 -3.61 40.10 -3.60 41.09 -3.41 40.36
72 1.53 39.20 1.55 38.81 0.99 39.53 1.33 39.04
84 0.21 39.40 0.17 39.52 -0.83 39.49 -0.41 39.43
96 2.98 37.79 2.86 38.12 1.53 37.92 2.00 38.03
108 3.66 36.72 3.44 37.40 1.86 36.35 2.36 37.01
120 -1.95 37.91 -2.27 38.64 -4.05 37.40 -3.53 38.12
Mean -0.25 48.86 -0.58 48.50 -0.58 49.06 -0.31 48.59
Median 0.21 48.73 0.17 47.86 -0.25 48.76 -0.41 48.12
#Lower 10 13 9 2 11 13
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Panel B: Measurement Errors after Smoothing (in basis points)
Baseline Time-Varying Time-Varying Both
Model Factor Loading Volatility Time-Varying

Maturity Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.
3 -12.66 22.42 -9.89 19.91 -14.80 28.43 -12.38 22.90
6 -1.37 5.08 -0.31 2.80 -2.63 10.50 -1.37 7.18
9 0.50 8.11 0.55 8.83 -0.04 7.97 0.44 8.25
12 1.31 9.86 0.82 10.21 1.33 9.58 1.31 9.96
15 3.71 8.72 3.00 8.49 4.18 8.91 3.85 8.69
18 3.63 7.28 2.86 6.71 4.42 7.82 3.92 7.35
21 3.27 6.51 2.57 6.08 4.28 7.31 3.71 6.72
24 -1.38 6.40 -1.95 6.54 -0.21 6.89 -0.80 6.64
30 -2.67 6.06 -2.92 6.42 -1.39 5.74 -1.89 6.08
36 -3.28 6.57 -3.24 6.84 -2.08 5.98 -2.43 6.42
48 -1.82 9.71 -1.41 9.66 -1.07 9.64 -1.12 9.69
60 -3.29 8.04 -2.77 7.48 -3.14 8.14 -2.95 7.78
72 1.94 9.14 2.41 9.04 1.50 10.03 1.83 9.77
84 0.68 10.38 1.03 10.38 -0.29 10.52 0.13 10.52
96 3.50 9.05 3.72 9.88 2.09 8.73 2.56 9.44
108 4.23 13.64 4.30 13.83 2.44 12.59 2.93 13.33
120 -1.35 16.44 -1.41 16.38 -3.46 14.94 -2.95 15.68
Mean -0.30 9.61 -0.16 9.38 -0.52 10.22 -0.31 9.79
Median 0.50 8.72 0.55 8.83 -0.21 8.91 0.13 8.69
#Lower 9 9 10 8 11 6
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Table 4: Estimates of Time-Varying Factor Loadings Parameter
The table reports various estimates of the time-varying factor loadings parameter λ. The Baseline model
corresponds to the baseline Nelson-Siegel latent factor model (with constant factor loadings) as estimated
for the full sample. The Subsamples model corresponds to the baseline Nelson-Siegel latent factor model as
estimated for each of the four subsamples individually. The Step function model corresponds to the Nelson-
Siegel latent factor model with a step function for λ. The Spline model corresponds to the Nelson-Siegel
latent factor model with a spline for the λ.

Estimates of Time-Varying Factor Loadings Parameter
(a) Baseline (b) Subsamples (c) Step Function (d) Splines#

Full Sample 0.0778∗∗
0.00209

01/72 - 03/79 0.0397∗∗
0.00257

0.0932∗∗
0.00533

0.0938

04/79 - 06/86 0.126∗∗
0.00603

0.116∗∗
0.00393

0.116

07/86 - 09/93 0.0602∗∗
0.00202

0.0638∗∗
0.00240

0.0698

10/93 - 12/00 0.0695∗∗
0.00238

0.0717∗∗
0.00419

0.0861

Loglikelihood 3185.4 4524.2 3259.0 3289.0
AIC -6304.8 -8784.4 -6446.1 -6503.9
LR-test (a) vs. (c) 147.2∗∗

0.000

LR-test (a) vs. (d) 207.2∗∗
0.000

LR-test (c) vs. (d) 60.0∗∗
0.000

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote significance at the 1% level

or less. The standard errors are reported below the estimates, for the tests this is the probability H0 is accepted.

The # indicates that the λ’s from the model with a spline are the average over the period, see Figure 2.
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Table 5: Loglikelihood and AIC of Model Extensions
The table reports the loglikelihood and Akaike Information Criterion (AIC) for the various model extensions
proposed. The Baseline model corresponds to the baseline Nelson-Siegel latent factor model (with constant
factor loadings) as estimated for the full sample. The TV Factor Loadings model corresponds to the baseline
Nelson-Siegel latent factor model with a spline for the factor loadings parameter. The TV Volatility model
corresponds to the Nelson-Siegel latent factor model with a common time-varying volatility component.
The TV Loadings & Volatility model corresponds to the Nelson-Siegel latent factor model with both λ and
volatility time-varying.

Performance of Model Extensions
Loglikelihood AIC LR-test vs. Baseline

Baseline 3185.4 -6304.8
TV Factor Loadings 3289.0 -6503.9 207.2∗∗

0.000

TV Volatility 4144.2 -8180.5 1917.6∗∗
0.000

TV Loadings & Volatility 4187.3 -8258.5 2003.8∗∗
0.000

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote significance

at the 1% level or less. The probability H0 is accepted is reported below the test-statistic.
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Figure 1: Yield Curves from January 1972 up to December 2000
In this figure the U.S. Treasury yields over the period 1972-2000 are shown. We examine monthly data,
constructed using the unsmoothed Fama-Bliss method. The maturities we show are 3, 6, 9, 12, 15, 18, 21,
24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months.
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Figure 2: Time-Varying Factor Loadings Parameter
In this figure we show the time-varying factor loadings parameter. It is estimated with a spline, with knots
at both the beginning and end of the sample, and at April 1979, July 1986 and October 1993.
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Figure 3: Time-Varying Volatility
In this figure we show the time-varying volatility. The volatility is estimated with a spline, with knots both
at the beginning and end of the sample, and at April 1979, July 1986 and October 1993. The spline is loaded
onto each maturity by a scalar and added to a constant volatility level per maturity. Panel (A) shows the
estimated spline, Panel (B) depicts for a few maturities (3 months, 12 months, 36 months and 120 months)
the volatility that is obtained using the spline and the loadings of each maturity.
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(B) Estimated Volatility for Some Maturities
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Figure 4: Time-Varying Model - Level, Slope and Curvature
This figure reports the level, slope and curvature as obtained from the Nelson-Siegel latent factor model
with both time-varying factor loadings and volatility. Panel (A) shows these together in one plot. Panels
(B), (C) and (D) report them with their proxies from the data. For the level this is the 120 month treasury
yield, for slope this is the spread of 3 month over 120 month yields and for curvature this is twice the 24
month yield minus the 3 and 120 month yield.
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Figure 5: Fitted Yield Curves for Four Months
This figure shows the fitted yield curve obtained from the Nelson-Siegel latent factor model with both time-
varying factor loadings and volatility. The dots represent the actual yield curve, the solid line the fitted yield
curve obtained from the Nelson-Siegel latent factor with both our extensions, the dashed line the model as
put in state space form by Diebold, Rudebusch, and Aruoba (2006) and the dotted line the OLS model as
in Diebold and Li (2006). We show these for four different months: March 1989, July 1989, May 1997 and
August 1998.
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Figure 6: An Illustration with Missing Values
This figure illustrates how the Nelson-Siegel latent factor model deals with missing values. The data is the
FRED fixed maturity U.S. Treasury Yields dataset from January 1972 up to June 2007 (note that all other
tables and figures in this paper are based on the unsmoothed Fama-Bliss data). We show the yield from the
data, the smoothed yield using the Nelson-Siegel latent factor model with time-varying factor loadings and
volatility and, if available, the yield from the unsmoothed Fama-Bliss dataset.
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