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Abstract

This paper extends Imbens and Manski’s (2004) analysis of confidence intervals for interval

identified parameters. For their final result, Imbens and Manski implicitly assume supere cient

estimation of a nuisance parameter. This appears to have gone unnoticed before, and it limits the

result’s applicability.

I re-analyze the problem both with assumptions that merely weaken the supere ciency con-

dition and with assumptions that remove it altogether. Imbens and Manski’s confidence region

is found to be valid under weaker assumptions than theirs, yet supere ciency is required. I also

provide a di erent confidence interval that is valid under supere ciency but can be adapted to

the general case, in which case it embeds a specification test for nonemptiness of the identified set.

A methodological contribution is to notice that the di culty of inference comes from a bound-

ary problem regarding a nuisance parameter, clarifying the connection to other work on partial

identification.
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1 Introduction

Analysis of partial identification, that is, of models where only bounds on parameters are identified,

has become an active field of econometrics.1 Within this field, attention has only recently turned to

general treatments of estimation and inference. An important contribution in this direction is due to

Imbens and Manski (2004, IM henceforth). Their major innovation is to point out that in constructing

confidence regions for partially identified parameters, one might be interested in coverage probabilities

for the parameter rather than its “identified set.” The intuitively most obvious, and previously used,

confidence regions have nominal coverage probabilities defined for the latter, which means that they

are conservative with respect to the former. IM go on to propose a number of confidence regions

designed to cover real-valued parameters that can be asymptotically concluded to lie in an interval.

This paper refines and extends IM’s technical analysis, specifically their last result, a confidence

interval that exhibits uniform coverage of partially identified parameters if the length of the identified

interval is a nuisance parameter. IM’s proof of coverage for that confidence set relies on a high-level

assumption that turns out to imply supere cient estimation of this nuisance parameter and that will

fail in many applications. I take this discovery as point of departure for a new analysis of the problem,

providing di erent confidence intervals that are valid with respectively without supere ciency.

A brief summary and overview of results goes as follows. In section 2, I describe a simplified,

and somewhat generalized, version of IM’s model, briefly summarize the relevant aspects of their

contribution, and explain the aforementioned issue. Section 3 provides a re-analysis of the problem.

To begin, I show how to construct a confidence region if the length of the identified interval is known.

This case is a simple but instructive benchmark; subsequent complications stem from the fact that the

interval’s length is generally a nuisance parameter. Section 3.2 analyses inference given supere cient

estimation of this nuisance parameter. It reconstructs IM’s result from weaker assumptions, but also

proposes a di erent confidence region. In section 3.3, supere ciency is dropped altogether. This

case requires a quite di erent analysis, and I propose a confidence region that adapts the last of the

previous ones and embeds a specification test for emptiness of the identified set. Section 4 concludes

and highlights connections to current research on partially identified models. The appendix contains

all proofs.

1See Manski (2003) for a survey and Haile and Tamer (2003) as well as Honoré and Tamer (2006) for recent contri-

butions.
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2 Background

Following Woutersen (2006), I consider a simplification and generalization of IM’s setup that removes

some nuisance parameters. The object of interest is the real-valued parameter 0( ) of a probability

distribution ( ); must lie in a set P that is characterized by ex ante constraints (maintained

assumptions). The random variable is not completely observable, so that 0 may not be identified.

Assume, however, that the observable aspects of ( ) identify bounds ( ) and ( ) s.t. 0 [ ]

a.s. See the aforecited references for examples. The interval 0 [ ] will also be called identified

set. Let ( ) denote its length; obviously, is identified as well. Assume that estimatorsb , b , and b exist and are connected by the identity b b b .
Confidence regions for identified sets of this type are conventionally formed as

= b b b +
b ¸

where b respectively b are standard errors for b respectively b , and where is chosen s.t.

( ) ( ) = 1 (1)

For example, = 1(0 975) 1 96 for a 95%-confidence interval. Under regularity conditions,

Pr( 0 ) 1 ; see Horowitz and Manski (2000). IM’s contribution is motivated by the

observations that (i) one might be interested in coverage of 0 rather than 0, (ii) whenever 0,

then Pr( 0 ) 1 2. In words, a 90% C.I. for 0 is a 95% C.I. for 0. The reason is that

asymptotically, is large relative to sampling error, so that noncoverage risk is e ectively one-sided

at { } and vanishes otherwise. One would, therefore, be tempted to construct a level C.I. for

as 2 .2

Unfortunately, this intuition works pointwise but not uniformly over interesting specifications of

P. Specifically, Pr( 0 ) = 1 if = 0 and also Pr( 0 ) 1 along any local

parameter sequence where = ( 1 2), i.e. if becomes small relative to the sampling error.

While uniformity failures are standard in econometrics, this one is unpalatable because it concerns a

very salient region of the parameter space; were it neglected, one would be led to construct confidence

intervals that shrink as a parameter moves from point identification to slight underidentification.3

2To avoid uninstructive complications, I presume 5 throughout.
3The problem would be avoided if P were restricted s.t. is bounded away from 0. But such a restriction will

frequently be inappropriate. For example, one cannot a priori bound from below the degree of item nonresponse in a

survey or of attrition in a panel.

Even in cases where is known a priori, e.g. interval data, the problem arguably disappears only in a superficial sense.

Were it ignored, one would construct confidence intervals that work uniformly given any model but whose performance

deteriorates across models as point identification is approached.

3



IM therefore conclude by proposing an intermediate confidence region that takes the uniformity

problem into account. It is defined as

1 b 1 b b +
1 b ¸

(2)

where solves Ã
1 +

b
max {b b }

! ¡
1
¢
= 1 (3)

Comparison with (1) reveals that calibration of 1 takes into account the estimated length of the

identified set. For a 95% confidence set, 1 will be 1(0 975) 1 96 if b = 0, that is if point

identification must be presumed, and will approach 1(0 95) 1 64 as b grows large relative to

sampling error. IM show uniform validity of 1 under the following assumption.

Assumption 1 (i) There exist estimators b and b that satisfy:

bb 0

0

2

2

uniformly in P, and there are estimators
³b2 b2 b´ that converge to their population values

uniformly in P.
(ii) For all P, 2 2 2 2 for some positive and finite 2 and 2, and .

(iii) For all 0, there are 0, , and 0 s.t. 0 implies
³ ¯̄̄b ¯̄̄ ´

uniformly in P.

While it is clear that uniformity can obtain only under restrictions on P, it is important to note that
is not bounded from below, thus the specific uniformity problem that arises near point identification

is not assumed away. Having said that, conditions (i) and (ii) are fairly standard, but (iii) deserves

some explanation. It implies that b approaches its population counterpart in a specific way. If

= 0, then b = 0 with probability approaching 1 in finite samples, i.e. if point identification obtains,
then this will be learned exactly, and the limiting distribution of b must be degenerate. What’s more,
degenerate limiting distributions occur along any local parameter sequence that converges to zero, as

is formally stated in the following lemma.4

Lemma 1 Assumption 1(iii) implies that
¯̄̄ b ¯̄̄

0 for any sequence of distributions { }
P s.t. ( ) 0.

4This paper makes heavy use of local parameters, and to minimize confusion, I reserve the subscript (·) for deter-

ministic functions of , including local parameters; hence the use of where IM used . Estimators are denoted by

(·) throughout.
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In words, assumption 1(iii) requires b to be supere cient at = 0. This feature appears to not

have been previously recognized; it is certainly nonstandard and might even seem undesirable.5 This

judgment is moderated by the fact that, as will be shown below, the feature is fulfilled and useful in

a leading application, namely estimation of a mean with missing data. Nonetheless, some di culties

remain. First, supere ciency of b is not given in other leading applications, notably when b and b
come from moment conditions. Second, assumptions 1(i)-(ii) and (iii) are mutually consistent only if

additional restrictions hold. To see this, note that by assumption 1(i)-(ii),³b ´
=

³b ´ ³b ´
¡
0 2 + 2 2

¢
uniformly in . In view of lemma 1, this is consistent with condition (iii) for sequences of distributions

s.t. 0 only if 2 2 0 and 1 for all those sequences. These restrictions are again violated

in important applications, and it also turns out that if they hold, then an interesting alternative to
1 can be formulated. All in all, there is ample reason to take a second look at the inference problem.

3 Re-analysis of the Inference Problem

3.1 Inference with Known

I will now re-analyze the problem and provide several results that circumvent the aforementioned

issues. To begin, move one step back and assume that is known. More specifically, impose:

Assumption 2 (i) There exists an estimator b that satisfies:hb i ¡
0 2

¢
uniformly in P, and there is an estimator b2 that converges to 2 uniformly in P.
(ii) 0 is known.

(iii) For all P, 2 2 2 2 for some positive and finite 2 and 2.

By symmetry, it could of course be that can be estimated. A natural application for this

scenario would be inference about the mean from interval data, where the length of intervals (e.g.,

income brackets) does not vary on the support of . Define

f = b e b b +
e b ¸

5When Hodges originally defined a supere cient estimator, his intent was not, of course, to propose its use. For

cautionary tales regarding the implicit, and sometimes inadvertent, use of supere cient estimators, see Leeb and Pötscher

(2005).
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where Ãe + b
!

( e ) = 1 (4)

Lemma 2 establishes that this confidence interval is uniformly valid.

Lemma 2 Let assumption 2 hold. Then

lim inf inf
: 0( )=

Pr
³

0
f ´

= 1

Lemma 2 generalizes IM’s lemma 3. It is technically new but easy to prove: The normal approx-

imation to Pr
³

0
f ´

is concave in 0 and equals (1 ) if 0 { }. The main purpose of
lemma 2 is as a backdrop for the case with unknown , when f is not feasible. As will be seen, the

impossibility of estimating , and by implication e , is the root cause of most complications.
3.2 Inference with Supere ciency

In this section, I assume that is unknown but maintain supere ciency. I begin by showcasing the

weakest (to my knowledge) assumption under which 1 is valid.

Assumption 3 (i) There exists an estimator b that satisfies:hb i ¡
0 2

¢
uniformly in P, and there is an estimator b2 that converges to 2 uniformly in P.
(ii) There exists an estimator b that satisfies:h³b + b´ ( + )

i ¡
0 2

¢
uniformly in P, and there is an estimator b2 that converges to 2 uniformly in P.
(iii) There exists a sequence { } s.t. 0, , and

¯̄̄ b ¯̄̄
0 for any

sequence of distributions { } P with .

(iv) For all P, 2 2 2 2 for some positive and finite 2 and 2.

Assumption 3 models a situation where is estimated only indirectly by b b + b . (By

symmetry, the case of directly estimating ( ) is covered as well.) Importantly, uniform joint

asymptotic normality of
³b b + b´ is not imposed. Furthermore, condition (iii) has been replaced

with a requirement that is strictly weaker and arguably more transparent about what is really being

required.

Of course, assumption 3(iii) is again a supere ciency condition, but it faithfully models a leading

application and IM’s motivation, namely estimation of a mean with missing data. To see this, let
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= E , where [0 1], and assume that one observes realizations of ( · ), where {0 1}
indicates whether a data point is present ( = 1) or missing ( = 0). Then the identified set for 0 is

[ ] = [(1 )E( | = 1) (1 )E( | = 1) + ]

where Pr( = 0) = 1 E (the definition as “one minus propensity score” insures consistency

with previous use). The obvious estimator for 0 is its sample analog

b
0

1 X
=1| {z }

1 X
=1| {z }+ 1

1 X
=1| {z } (5)

In this application, indirect estimation of b as b +b is, therefore, natural. Under regularity conditions,
uniform convergence of

³b b + b´ to individually normal distributions follows from a uniform central
limit theorem. Finally, it is interesting to note that b fulfils part (iii) of both assumptions 1 and 3,
making it a natural example of a supere cient estimator.

This section’s first result is as follows.

Proposition 1 Let assumption 3 hold. Then

lim inf inf
: 0( )=

Pr
¡
0

1
¢
= 1

In words, assumption 3 su ces for validity of IM’s interval. To understand the use of supere ciency,

it is helpful to think of 1 as feasible version of f , with 1 being an estimator of e . Validity of
1 would easily follow from consistency of 1 , but unfortunately, such consistency does not obtain

under standard assumptions:
³b ´

is usually of order ( 1 2), so that
³ b ´

does

not vanish.

This is where supere ciency comes into play. Think in terms of sequences of distributions that

give rise to local parameters , and distinguish between sequences where vanishes fast enough

for condition (iii) to apply and sequences where this fails. In the former case,
³ b ´

does

vanish, and consistency of 1 for e is recovered. In the latter case, grows uniformly large relative

to sampling error, so that the uniformity problem does not arise to begin with. The “naive” 2 is

then a valid construction, and 1 (as well as f ) is asymptotically equivalent to it.

Proposition 1 shows that 1 is valid under conditions that weaken assumption 1 and remove

some hidden restrictions. However, further investigation reveals that the interval has a nonstandard

property. Its simplicity stems in part from the fact that expression (3) simultaneously calibrates

Pr
¡

1
¢
and Pr

¡
1
¢
. This is possible becausemax {b b } is substituted where one would
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otherwise have to di erentiate between b and b . In e ect, 1 is calibrated under the presumption

that max {b b } will be used as standard error at both ends of the confidence interval. Of course,
this presumption is not correct — b is used near b and b near b . As a result, the nominal size
of 1 is not 1 in finite samples.6 If b b , the interval will be nominally conservative at ,

nominally invalid at , and therefore nominally invalid for 0. It also follows that 1 is the inversion

of a hypothesis test for 0 : 0 0 that is nominally biased, that is, its nominal power is larger for

some points inside of 0 than for some points outside of it.

To be sure, this feature is a finite sample phenomenon. Under assumption 3, nominal size of 1

will approach 1 at both and as . (For future reference, note the reason for this when

is small: Supere ciency then implies that .) Nonetheless, it is of interest to notice that

it can be avoided at the price of a mild strengthening of assumptions. Specifically, impose:

Assumption 4 (i) There exist estimators b and b that satisfy:

bb 0

0

2

2

uniformly in P, and there are estimators
³b2 b2 b´ that converge to their population values

uniformly in P.
(ii) For all P, 2 2 2 2 for some positive and finite 2 and 2, and .

(iii) There exists a sequence { } s.t. 0, 1 2 , and
¯̄̄ b ¯̄̄

0 for any

sequence of distributions { } P with .

Assumption 4 re-introduces joint normality and di ers from assumption 1 merely by the modifica-

tion of part (iii). It is fulfilled in estimation of the mean with missing data: Let 1 E( | = 1),
2 ( | = 1), 1 , and b and b as in (5), then assumption 4(i) holds with 2 = 2 ,
2 = 2 + (1 )(1 2 1), and = 2 (1 ) 1.

Given assumption 4, one can construct a confidence region that reflects the bivariate nature of the

estimation problem by taking into account the correlation between b and b . Specifically, let ( 2 2 )

minimize ( ) subject to the constraint that

Pr

Ã
b 1 b 1

+ bb +

q
1 b2 2

!
1 (6)

Pr

Ã
+ bb

q
1 b2 2 b 1 1 b

!
1 (7)

6By the nominal size of 1 at , say, I mean 1
2 , i.e. its size at as predicted from sample

data. Confidence regions are typically constructed by setting nominal size equal to 1 .
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where 1 and 2 are independent standard normal random variables.7 In typical cases, ( 2 2 ) will be

uniquely characterized by the fact that both of (6,7) hold with equality, but it is conceivable that one

of the conditions is slack at the solution. Let

2 b 2 b +
2
¸

Then:

Proposition 2 Let assumption 4 hold. Then

lim inf inf
: 0( )=

Pr
¡
0

2
¢
= 1

Observe that if were known, 2 would simplify to f : Knowledge of would imply that

= 1, b = 1, and b = b , which can be substituted into (6,7) to get
Pr

Ã
b +b

!
1

Pr

Ã
+b b

!
1

where is standard normal. The program is then solved by setting 3 = 3 = b e , yielding f .

By the same token, 2 is asymptotically equivalent to 1 along any parameter sequence where

supere ciency applies. For parameter sequences where does not vanish, all of these intervals are

asymptotically equivalent anyway because they converge to 2 .

In the regular case where both of (6,7) bind, 3 has nominal size of exactly 1 at both endpoints

of 0, and accordingly corresponds to a nominally unbiased hypothesis test, under sample information

that is available for the mean with missing data. This might be considered a refinement, although (i)

given asymptotic equivalence, it will only matter in small samples, and (ii) nominal size must be taken

with a large grain of salt due to nonvanishing estimation error in . Perhaps the more important

di erence is that 2 , unlike 1 , is readily adapted to the more general case.8

3.3 Inference with Joint Normality

While the supere ciency assumption was seen to have a natural application, it is of obvious interest

to consider inference about 0 without it. For a potential application, imagine that b and b derive
7Appendix B exhibits closed-from expressions for (6,7), illustrating that they can be evaluated without simulation.
8As an aside, this section’s findings resolve questions posed to me by Adam Rosen and other readers of IM, namely,

(i) why 1 is valid even though is not estimated and (ii) whether estimating can lead to a refinement. The brief

answers are: (i) Supere ciency implies = 1 in the critical case, eliminating the need to estimate it; indeed, it is now

seen that mention of can be removed from the assumptions. (ii) Estimating allows for inference that is di erent in

finite samples but not under first-order asymptotics.
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from separate inequality moment conditions (as in Pakes et al. 2006 and Rosen 2006). I therefore now

turn to the following assumption:

Assumption 5 (i) There are estimators b and b that satisfy:

bb 0

0

2

2

uniformly in P, and there are estimators (b b b) that converge to their population values
uniformly in P.
(ii) For all P, 2 2 2 2 for some positive and finite 2 and 2, and .

Relative to previous assumptions, assumption 5 simply removes supere ciency. This leads to

numerous di culties. At the core of these lies the fact that sample variation in b need not vanish
as 0. This leads to boundary problems in the implicit estimation of . In fact, is the

exact example for inconsistency of the bootstrap given by Andrews (2000), and it is not possible to

consistently estimate a local parameter = ( 1 2).

To circumvent this issue, I use a shrinkage estimator

b b
0 otherwise

where is some pre-assigned sequence s.t. 0 and . will replace b in the
calibration of but not in the subsequent construction of a confidence region. This will insure

uniform validity, intuitively because supere ciency at = 0 is artificially restored. Of course, there

is some price to be paid: The confidence region presented below will be uniformly valid and pointwise

exact, but conservative along local parameter sequences.

A second modification relative to IM is that I propose to generalize not 1 but 2 . The reason

is that without supere ciency, the distortion of nominal size of 1 will persist for large as

vanishes, and the interval is accordingly expected to be invalid. (Going back to the discussion that

motivated 2 , the problem is that 0 does not any more imply .) Hence, let ( 3 3 )

minimize ( + ) subject to the constraint that

Pr

Ã
b 1 b 1

+b +

q
1 b2 2

!
1 (8)

Pr

Ã
+ b +

q
1 b2 2 b 1 1 b

!
1 (9)
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where 1 and 2 are independent standard normal random variables. As before, it will typically but

not necessarily be the case that both of (8,9) bind at the solution. Finally, define

3

hb 3 b +
3
i b 3 b +

3

otherwise
(10)

The definition reveals a third modification: If b is too far below b , then 3 is empty, which can

be interpreted as rejection of the maintained assumption that . In other words, 3 embeds a

specification test. IM do not consider such a test, presumably for two reasons: It does not arise in their

leading application, i.e. estimation of means with missing data, and it is trivial in their framework

because supere ciency implies fast learning about in the critical region where 0. But the issue

is substantively interesting in other applications, and is nontrivial when b 0 is a generic possibility.

Of course, one could construct a version of 3 that is never empty; one example would be the convex

hull of
nb 3 b + 3

o
. But realistically, samples where b is much below b would lead

one to question whether holds. This motivates the specification test, which does not a ect the

interval’s asymptotic validity. For this section’s intended applications, e.g. moment inequalities, such

a test seems attractive.

This section’s result is the following.

Proposition 3 Let assumption 5 hold. Then

lim inf inf
: 0( )=

Pr
¡
0

3
¢
= 1

An intriguing aspect of 3 is that it is analogous to 2 , except that it uses and accommodates

the resulting possibility that b 3 b +
3

. Together, 2 and 3 therefore provide a unified

approach to inference for interval identified parameters — one can switch between the setting with and

without supere ciency essentially by substituting for b .
Some further remarks on 3 are in order.

• The construction of can be refined in two ways. First, I defined a soft thresholding estimator

for simplicity, but making a smooth function of b would also insure validity and presumably
improve performance for close to . Second, the sequence is left to adjustment by

the user. This adjustment is subject to the following trade-o : The slower vanishes, the less

conservative 3 is along local parameter sequences, but the quality of the uniform approximation

to lim inf inf : 0( )= Pr
¡
0

3
¢
deteriorates, and uniformity breaks down for =

( 1 2). Fine-tuning this trade-o is a possible subject of further research.

• The event that = 0 can be interpreted as failure of a pre-test to reject 0 : = , where the

size of the pre-test approaches 1 as . In this sense, the present approach is similar to the
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“conservative pre-test” solution to the parameter-on-the-boundary problem given by Andrews

(2000, section 4). However, one should not interpret 3 as being based on model selection. If

= , then it is e cient to estimate both from the same variance-weighted average of b andb and to construct an according Wald confidence region, and a post-model selection confidence

region would do just that. Unfortunately, it would be invalid if = ( 1 2). In contrast,
3 employs a shrinkage estimator of to calibrate cuto values for implicit hypothesis tests,

but not in the subsequent construction of the interval. What’s more, even this first step is not

easily interpreted as model selection once is smoothed.

Having said that, there is a tight connection between the parameter-on-the-boundary issues

encountered here and issues with post-model selection estimators (Leeb and Pötscher 2005),

the underlying problem being discontinuity of pointwise limit distributions. See Andrews and

Guggenberger (2007) for a more elaborate discussion.

• 3 could be simplified by letting 3 = b 1 (1 2 ) and 3 = b 1 (1 2 ), implying that
3 = 2 , whenever = b . This would render the interval shorter without a ecting its first-

order asymptotics, because the transformation of b su ces to insure uniformity. But it would

imply that whenever = b , the confidence region ignores the two-sided nature of noncoverage
risk and hence has nominal size below (although approaching as grows large). The

improvement in interval length is due to this failure of nominal size and therefore spurious.

4 Conclusion

This paper extended Imbens and Manski’s (2004) analysis of confidence regions for partially identified

parameters. A brief summary of its findings goes as follows. First, I establish that one assumption

used for IM’s final result boils down to supere cient estimation of a nuisance parameter . This

nature of their assumption appears to have gone unnoticed before. The inference problem is then re-

analyzed with and without supere ciency. IM’s confidence region is found to be valid under conditions

that are substantially weaker than theirs. Furthermore, valid inference can be achieved by a di erent

confidence region that is easily adapted to the case without supere ciency, in which case it also embeds

a specification test.

A conceptual contribution beyond these findings is to recognize that the gist of the inference

problem lies in estimation of , specifically when it is small. This insight allows for rather brief and

transparent proofs. More importantly, it connects the present, very specific setting to more general

models of partial identification. For example, once the boundary problem has been recognized, analogy

to Andrews (2000) suggests that a straightforward normal approximation, as well as a bootstrap, will
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fail, whereas subsampling might work. Indeed, carefully specified subsampling techniques are known

to yield valid inference for parameters identified by moment inequalities, of which the present scenario

is a special case (Chernozhukov, Hong, and Tamer 2007; Romano and Shaikh 2006; Andrews and

Guggenberger 2007). The bootstrap, on the other hand, does not work in the same setting, unless it

is modified in several ways, one of which resembles the trick employed here (Bugni 2007). Against the

backdrop of these (subsequent) results, validity of simple normal approximations in IM appears as a

puzzle that is now resolved. At the same time, the updated version of these normal approximations

has practical value because it provides closed-form inference for many important, if relatively simple,

applications.

A Proofs

Lemma 1 The aim is to show that if 0, then

0 : = Pr
³ ¯̄̄b ¯̄̄ ´

Fix and . By assumption 1(iii), there exist , 0, and s.t.

= Pr
³ ¯̄̄b ¯̄̄ ´

uniformly over P. Specifically, the preceding inequality will obtain if is chosen in (0 1 1 ],

in which case . Because 0, can be chosen s.t. 1 1 .

Hence, the conclusion obtains by choosing = max{ }.

Lemma 2 Parameterize 0 as 0 = + for some [0 1]. Then

Pr
³

0
f ´

= Pr

μb e b
+ b + +

e b ¶

= Pr e b ³ b ´
(1 ) + e b

Ãe + (1 )

! Ã e !

uniformly over P. Besides uniform asymptotic normality of b , this convergence statement uses that
by uniform consistency of b in conjunction with the lower bound on , b 1 uniformly, and also

that the derivative of the standard normal c.d.f. is uniformly bounded.

Evaluation of derivatives straightforwardly establishes that the last expression in the preceding

display is strictly concave in , hence it is minimized at {0 1} 0 { }. But in those cases,
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the preceding algebra simplifies to

Pr
³ f ´ Ã

+ e ! ( e ) = 1
and similarly for .

Preliminaries to Propositions The following proofs mostly consider sequences { } that will be
identified with the implied sequences { } { ( ) 0( )}. For ease of notation, I will gener-
ally suppress the subscript on ( ) and on estimators. Some algebraic steps treat ( )

as constant; this is w.l.o.g. because by compactness implied in part (ii) of every assumption, any

sequence { } induces a sequence of values ( ) with finitely many accumulation points, and

the argument can be conducted separately for the according subsequences.

I will show that inf{ } inf{ }: 0( ) lim Pr
¡ ¢

1 = 1 2 3. These

are pointwise limits, but because they are taken over sequences of distributions, the propositions are

implied. In particular, the limits apply to sequences s.t. ( ) is least favorable given . Proofs

present two arguments, one for the case that { } is small enough and one for the case that { } is
large. “Small” and “large” is delimited by in propositions 1 and 2 and by , to be defined later,

in proposition 3. In either case, any sequence { } can be decomposed into two subsequences such
that either subsequence is covered by one of the cases.

Proposition 1 Let , then
¯̄̄ b ¯̄̄

0 by condition (iii). This furthermore implies

that ³b ´
=

³b + b ´ ³b ´
+

which in conjunction with conditions (i)-(ii) implies that = , hence by (iv) that b b 0. It

follows that Ã
1 +

b
max {b b }

! μ
1 + b

¶
but then the argument can be completed as in lemma 2.

Let , then , hence lim sup ( ) = or lim sup ( ) =

or both. Write

Pr
¡

1
¢

= Pr

μb 1 b b + b + 1 b ¶
= Pr

³
1 b ( ) +

³ b ´ b + 1 b ´
= Pr

³
1 b ( ) +

³ b ´´
Pr
³

( ) +
³ b ´ b + 1 b ´
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Assume lim sup ( ) . By consistency of b , divergence of implies diver-

gence in probability of b . Thus
Pr
³

( ) +
³ b ´ b + 1 b ´

Pr
³ ³ b ´ b ( )

´
0

where the convergence statement uses that 1 b 0 by construction and that
³ b ´ converges

to a random variable by assumption. It follows that

lim Pr
¡

1
¢

= lim Pr
³

1 b ( ) +
³ b ´´

lim Pr
³

1 b ³ b ´´
= 1 ( 1 )

1

where the first inequality uses that ( ) 0, and the second inequality uses the definition of
1 , as well as convergence of b and

³ b ´ .

For any subsequence of { } s.t. ( ) fails to diverge, the argument is entirely symmetric.

If both diverge, coverage probability trivially converges to 1. To see that a coverage probability of

1 can be attained, consider the case of = 0.

Proposition 2 A short proof uses asymptotic equivalence to 1 , which was essentially shown in

the text. The longer argument below shows why 2 will generally have exact nominal size and will

also be needed for proposition 3. To begin, let (e e ) fulfil
Pr

Ã e
1 1

e +
+
p
1 2

2

!
1

Pr

Ã e +
+
p
1 2

2 1 1
e !

1

15



and write

Pr

μ b e b +
e ¸¶

= Pr

μb e b +
e ¶

= Pr

Ã e ³ b ´ ³b ´
+
e !

= Pr

Ã e ³ b ´ ³b + + b ´+ e !

Pr

Ã e ³ b ´ +

μ
1

¶³ b ´+ p
1 2

2 +
e !

= Pr

Ã e ³ b ´ ³ b ´ e
+ +

p
1 2

2

!

Pr

Ã e
1 1

e
+ +

p
1 2

2

!
(11)

1 (12)

Here, the first convergence statement uses that by assumption,³ ³b ´
|

³ b ´´ μ ³ b ´ 2 (1 2)

¶
uniformly; the algebra also uses that , so that neither can vanish.

As before, for any sequence { } s.t. , supere ciency implies that ( 2 2 ) is consistent

for (e e ), so that validity of 2 at { } follows. Convexity of the power function over [ ]

follows as before. For , the argument entirely resembles proposition 1. Notice finally that (12)

will bind if (6) binds, implying that 2 will then have exact nominal size at . A similar argument

applies for . But ( 2 2 ) can minimize ( + ) subject to (6,7) only if at least one of (6,7) binds,

implying that 2 is nominally exact.

Proposition 3 Let
¡

1 2
¢1 2

, thus 1 2 =
¡

1 2
¢1 2

, and for parameter

sequences s.t. , the proof is again as before. For the other case, consider (e e ) as defined
in the previous proof. Convergence of ( 3 3 ) to (e e ) cannot be claimed. However, by uniform
convergence of estimators and uniform bounds on ( ), Pr(b ) is uniformly asymptotically

bounded below by
³

( ) 2
´
=

³³
1 2

¡
1 2

¢1 2
´
2
´

1. Hence, =

0 with probability approaching 1. Expression (11) is easily seen to increase in for every (e e ),
hence 3 is valid (if potentially conservative) at . The argument for is similar. (Regarding

pointwise exactness of the interval, notice that 0, so the conservative distortion vanishes under

pointwise asymptotics.)
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Now consider 0 + (1 ) , some [0 1]. By assumption,³ b + (1 )b 0

´
(0 )

where 2 2 2 + (1 )2 2 2 (1 ) . Let 0, then

Pr

μ
0

b 3 b +
3
¸¶

= Pr

μb 3

0
b +

3
¶

= Pr

Ã
(1 )

³b b ´ 3

( 0
b (1 )b ) ³b b ´+ 3

!

= Pr

Ã
(1 )

³b ´
+ (1 )

3

( 0
b (1 )b ) ³b ´

+ +
3
!

Consider varying , holding ( ) constant. The cuto values and depend on only

through , but recall that Pr( = 0) 1. Also,
³b ´

is asymptotically pivotal. Hence,

the preceding probability’s limit depends on only through (1 ) and . As 0,

the probability is minimized by setting = 0. In this case, however, 0 = , for which coverage has

already been established. Finally, = 0 only if = and = 1, in which case b = for large

enough , and the conclusion follows from lemma 2.

B Closed-Form Expressions for ( )

This appendix provides a closed-form equivalent of (6,7). Specifically, these expressions can be written

as Z bq
1 b2 +

+ b
b q1 b2 ( ) 1

Z bq
1 b2 +

+ b
b q1 b2 ( ) 1

if b 1 and μ
b
¶ Ã

+ bb
!

1

μ
b
¶ Ã

+ bb
!

1

if b = 1. There is no discontinuity at the limit because μ
1 2

+ +

1 2

¶
I

n
+

o
=

, as b 1. It follows that (6,7), and similarly (8,9), can be evaluated without simulation.
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