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Abstract

We consider nonlinear models with an independent variable that is measured with error. The
measurement error can be correlated with the true value, i.e. the measurement error is allowed to
be nonclassical. We show that we can use a control variate estimator to estimate the parameters
of interest. If we are prepared to make an assumption of the joint distribution of the first-stage
and measurement errors the estimator is parametric. If we are only willing to specify the marginal
distribution of the measurement error (up to a finite dimensional parameter vector), the estimator
is semi-parametric. In the semi-parametric case the instrument must be sufficiently powerful, it
must have a sufficiently large support. We derive the influence function of the semi-parametric
estimator that properly account for the estimation of the control variates in the first stage.

1 Introduction

We study the estimation of models in which an independent variable is measured with error. Until
recently, the literature focused on linear regression models and on what is usually called classical
measurement error, i.e. measurement error that is independent of the true value of the variable and of
other covariates in the model. However, many models that are used in empirical research are nonlinear
in the covariates, for instance discrete choice and duration models, and most structural models that are
derived from economic theory. Also replication studies in which both the mismeasured and true value
of the covariate (and therefore the measurement error) are observed, have shown that the classical
measurement error assumptions do not hold in practice. In this paper we assume that we have an
instrumental variable that is independent of the measurement error. Recently, Hu and Schennach
(2006) have obtained general results on the identification of models with non-classical measurement
error by instrumental variables. Their results show that the parameters of nonlinear models can often
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be identified using instrumental variablesﬂ We suggest relatively simple estimators that are consistent
with a parametric rate of convergence and that are asymptotically normal.

We use the control function/variate approach. Recently instrumental variable estimation under
weak conditions has been studied as an inverse problem. However, Hahn and Ridder (2007) argue
that in many cases formal inverses can be replaced by averages over control variates and that the
latter procedure has advantages over the former. This paper is a further illustration of that point in
the context of the IV estimation of models with measurement error in the covariates. The key idea
behind the use of control variates is that if we condition on them the ’endogenous’ independent variable
and the model error are independent. Control variate estimators add the first-stage residual to the
set of covariates and estimate the resulting model. There are two complications in this procedure.
First, we have to recover the model parameters from the relation between the dependent variable, the
(endogenous) covariates and the control variate. If we average this relation over the control variate we
obtain the average structural function that can be related to the model parameters. Second, identifying
the average structural function on (a subset of) the support of the covariates requires assumptions on
the strength of the instrument. These issues were first discussed by Imbens and Newey (2003) in the
context of nonparametric IV estimation.

It should be noted that the identification of parameters in a model with mismeasured covariates
by instrumental variables involves two inversions. The first deals with the correlation between the
observed (mismeasured) covariate and the model random error. Conditioning on and averaging over a
control variate yields the average structural function instead of a formal inverse. The second inversion
deals with the attenuationlﬂ bias due to the measurement error. In the case of a (nonlinear) regression
model the control function is the convolution of the regression function and the measurement error
distribution. The control variate is not helpful in performing this inversion. In this paper we resolve
this by assuming that the marginal distribution of the measurement error is in a parametric family.
With this assumption we do not need to perform a deconvolution to recover the model parameters.
Instead of this assumption we can e.g. assume that the distribution of the measurement error is
symmetric, but that may be less attractive in practice.

The control variate estimator can be implemented in different ways depending on the assumptions
that one is willing to make. These assumptions concern: (i) the relation between the mismeasured
covariate and other covariates that are correlated with the measurement error and the instrument,
and (ii) the relation between the measurement error and the first stage error. In this paper we assume
that the first stage is a parametric (nonlinear) regression model with an independent error. This
assumption implies that the first stage regression function is correctly specified which ensures that the
first stage error is mean independent of the the instrument. We strengthen this to full independence.
Hahn and Ridder (2007) note that full independence will hold by construction if the first stage is
nonparametric. This complicates the asymptotic analysis of the estimator and we do not consider this
possibility here. The estimator is fully parametric if we assume that the conditional distribution of
the measurement error given the first stage error is in some parametric family. This assumption is
in the spirit of the control function/variate literature. However in applications such an assumption
is hard to justify and for that reason we also consider a semi-parametric version of the estimator
that does nor require an assumption on the joint distribution of the measurement and first stage
errors. In this case the relation between the dependent variable on the one hand and the mismeasured
regressor and the control variate on the other is estimated nonparametrically. This nonparametric
regression estimator is an approximation of the infeasible nonparametric regression of the dependent
variable on the covariate and the first stage error. Because we average over both argument of the

!Our assumptions neither imply or are implied by theirs.
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nonparametric regression, be it independently as in a V statistic, the control variate estimator has
the parametric rate of convergence. Because the control variate is a residual from the first stage
regression we must deal with two problems in the derivation of the influence function. First, the
support of the residual does not coincide with the support of the first stage error. We solve this
by an extension of the population conditional mean function given the covariate and the first stage
error that is sufficiently often continuously differentiable and has the same uniform approximation
as the population conditional mean. Second, we must account for the effect of the estimation of the
first stage residuals. The estimated residuals have an asymptotically non-negligible effect on both
the control variate and the nonparametric regression and we derive the contribution of both to the
influence function.

In section [2| we present the model and the assumptions. Section [3| proposes a fully parametric con-
trol function estimator that requires the specification (up to a vector of parameters) of the conditional
distribution of the measurement error given the first-stage regression error. In section [4 we propose a
semiparametric estimator that only requires that the marginal distribution of the measurement error is
in a parametric family. The distribution theory of the parametric and semiparametric control function
estimators is developed in section 5] Section [f] contains a small simulation study and finally section
discusses the control function estimator for nonlinear models with nonseparable errors and for models
in which the measurement error is correlated with other covariates that are observed without error.

2 The model and assumptions

We develop the estimator for the nonlinear regression model
Y =m(X%0)+n (1)

with m a known function, 6 a parameter vector and 7 an error term. In section [7] we show that our
results can be generalized to the nonlinear model with implicit random error

Y =m (X" n;0) (2)

that has as special cases most nonlinear econometric models, for instance limited-dependent variable
and duration models.
The latent X* that is assumed to be a continuous variable, is not observed, but instead we observe

X=X te¢ (3)

Hence ¢ is the measurement error in the true value of the covariate. To keep the exposition simple
we initially assume that X* is the only covariate in the relation. It is easy to allow for additional
covariates W that are measured without error and that are not correlated with the measurement error.
The measurement error need not have mean 0, nor does it have to be independent of X*. In other
words, we deviate from the classical measurement error assumptions. The second deviation from the
classical assumptions, correlation between the measurement error and other covariates, is considered
in section [ We also do not assume that the equation error n and the measurement error ¢ are
independent. They can be correlated if they depend on common unobserved variables.
The relation between Y and the observed X is

Y=m(X—-¢0)+n

where X is correlated with ¢ and possibly with n as well. If X were independent of &, we could
estimate 6 by nonlinear least squares. This requires the specification of the marginal distribution of



the measurement error €. The estimator proposed below essentially deals with the correlation between
X and e,7n, but requires the specification of the marginal distribution of €. However, any semi-
parametric estimator of # in the model with exogenous X and weaker assumptions on the marginal
distribution of the measurement error, can be adapted to the presence of nonclassical measurement
error by using a control variate in much the same way as we adapt the nonlinear least squares estimator
with parametric marginal measurement error distribution. In section [7] we sketch such a procedure
under the weaker assumption that the measurement error has a symmetric distribution.

We observe a third variable Z that is assumed to be independent of the measurement error and
the equation error

Assumption 1 (Instrumental Variable)
Z 1len (4)

This variable is the instrument that we use to estimate 6. The mismeasured covariate X is related to
the instrument Z. To be specific we assume that the relation between X and Z is a possibly nonlinear
parametric regression model

Assumption 2 (Parametric First Stage with Independent Error)
X=h(Z;a)+V V1iz (5)

To see how restrictive this assumption is we note that if the conditional distribution of X given
Z = z has cdf F(z|z), we have V* = F'(X|Z), where V* has a uniform distribution on [0, 1] that by
construction is independent of Z. This gives the ‘first-stage model’

X=F Y (V*2Z2)=h"(2,V"). (6)

This ‘model” does not impose any restrictions on the relation between X and Z. By projection we
obtain
X=h(Z)+V, (7)

with h(z) = E[h*(Z,V*)|Z = z]. By construction E[V|Z] = 0. Again (7)) does not impose any
restriction on the relation between X and Z. Therefore assumption [2| strengthens mean independence
to full independence and restricts h(z) to be in a parametric family. We do not need these assumptions
if we are willing to have a nonparametric first-stage model. Because this complicates the asymptotic
analysis of our estimators, we leave this to future research.

Assumption [2] implies that, given V, X is a function of Z only and hence by assumption [I] inde-
pendent of €, 7, i.e.

5,77J_Xgh(Z;oz)+v]V:v
Therefore, if we condition on V' the correlation between the mismeasured covariate X and the mea-
surement error which results in measurement error bias disappears. This is the basic idea behind the
use of a control variate.

We can compare our assumptions [If and [2| to those in the small literature on IV estimation of
nonlinear models with measurement error. Schennach (2007) assumes that

Y = m(X")+n

X = X*+¢
X* = Z4+U



with
X*1le Z1U,e
Hence X = Z 4+ V with V = U + €1 Z which is the same as our assumption [2. The main difference

is that she assumes that the measurement error is classical. She also is more ambitious, because she
estimates m nonparametrically. Hu and Schennach (2006) make assumptions on conditional densities

fylz® z,2) = f(ylz")
flala®,2z) = fz]a”)
EX|X*=2"] = 2"
In our setup the final assumption is that the mean of the measurement error is 0 (they actually make

an assumption on the mode). The main difference with our assumptions is the second one. To see the
difference assume joint normality of €,V so that € = pV 4+ v and

C o o (1—p)o} ] ,
E[X|X*, Z] = h(Z;a) + e i p (X* — h(Z;a))

which does not depend on Z if and only if p(1—p)oi = o2 which in general will not holdﬂ We conclude
that our assumptions are not implied by, nor do they imply the assumptions in the literature.

3 A parametric control variate estimator

Following the traditional approach to estimation with control variates/functions (see e.g. Rivers and
Vuong (1988)) we first propose a fully parametric procedure that requires the specification of the
conditional distribution of the measurement error given the first-stage regression error.

Assumption 3 (Conditional distribution of ¢ given V and mean independence of n and V' )
The equation error n is mean independent of V. The conditional distribution of € given V = v is in a
parametric family with c.d.f. G(e|v; B). If the model is a linear regression, only the conditional mean
E [e|V = v] = k(v; ) has to be in a parametric family.

If the measurement error ¢ is assumed to have a (marginal) normal distribution, a natural assumption
is that ¢ given V = v is also normal with conditional mean u (v; £1) and conditional variance o2 (v; 32).
The next theorem gives an expression for the conditional mean E (Y | X = z,V = v).

Theorem 1 Suppose that assumptions[1} [4, and[3 are satisfied. We have
EY|X=2V=v)=E(m(z—¢60)|V=uv) (8)

Proof. We have

EY|X=2,V=v)=EmX"0)+n|X=2,V=0v)=EmMX"0)| X=z,V=0)+E(n| X =2,V =)

By assumptions [I| and [2| ZL1n,V so that from f(z,n,v) = f(2)f(n,v) follows that f(z,nlv) =

f(2)f(nlv) = f(z|v)f(n|v) and therefore Z1n|V. By the same assumptions X 4 hZ;a) + v given
V' =v. This implies that X Ln|V so that

E(|X=a,V=0v)=E@n|V=0v)=0

3A special case in which this holds is p = 1,00? = 0 so that € = V, i.e. the first-stage error and the measurement
error coincide. If we were to specify the first stage as X* = h(Z; a) + V the conditional expectation is independent of Z
if and only if p = 0 so that the measurement error is classical.



where the last equality follows from assumption By assumptions [1] and [2| Z e,V so that by the
same argument as above X Le|V and therefore

Em(X%0)| X=z,V=v)=Em(X —c0) | X =2,V=0v)=E(mz—¢c0) | X =2,V =0)=

E(m(x—¢e;6) |V =0)

In the special case of a linear regression
EY|X=2,V=v=00+0z—60E[|V =1

so that in case of a linear conditional mean
EY|X=2V=0v=00+0ix—0pu —615v

Note that the regression coefficient on X* is identified. The intercept is identified if we assume that
the measurement error has mean 0.
Define

R(z,v;7) = /gm(:p —e;0)g(glv; B)de
with 7 = (0" §'). We identify 7 from the conditional moment restriction
m(ylz,v;7) =y — R(w,v;7)
This suggests following strategy of estimating 7:

1. Obtain the first-stage residuals ‘7@ =X, — h(Z;a).

2. Do a (nonlinear) regression with dependent variable Y and with regression function R(z,v;6, (3),
i.e. solve the minimization problem

n

55 (5 (5, 7i)’

=1

This estimator is consistent and its asymptotic variance matrix can be derived from general results
for nonlinear models with covariates that depend on preliminary estimates.

4 The semi-parametric control variate estimator

By adding the control variate to the relation between the dependent variable and the mismeasured
covariate we remove the correlation between the mismeasured covariate and the random error of that
relation. In a nonlinear model this does not remove all bias since we end up with the convolution of
the regression function and the measurement error distribution. For this approach to work we need
an assumption on the joint support of X and V that is essentially an assumption on the ’strength’ of
the instrument Z.

Assumption 4 (Joint support of X and V' ) If we denote the support of the joint distribution of
X,V by A and the supports of the marginal distributions of X and V by X and V, then there is a
subset Xy of X such that Xy x V C A.



To see that this is an assumption on the strength of the instrument consider the first-stage model in
(5). The set of values taken by the regression function is H = {h(z;a)|z € Z} with « the population
value of the parameter and Z the support of the distribution of the instrument. In the sequel we
assume that H = [z1, zp], i.e. that it is a closed interval. The support of the distribution of V' is V
which again is assumed to be an interval V = [vr,vy| with without loss of generality vy, < 0 < vy.
Because Z and V are independent the support of the joint distribution of A(Z;«a),V is H x V. The
implied support of the joint distribution of V, X is in Figure 1. The set of values of X for which the

Figure 1: The support of the joint distribution of V, X
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conditional distribution of V' given X = x has full support is Xy = [vy + hr,vr + hy]. This set is
not empty if hy — hy > vy — v, i.e. the instrument must induce induce sufficient variation in the
first-stage regression function. Hence assumption resembles the rank condition in the linear IV
case.

Inspection of the proof of Theorem [I| shows that we have

Theorem 2 If assumptions (1], [3 and [T]] are satisfied, then for all z € Xy
/E(Y | X =2,V = ) g(v)dv = Ejm(z — &:0)] )
v

with g the marginal density of V' and the expectation over the marginal distribution of the measurement
error.

Proof. In the proof of Theorem 1| we established that
EY|X=z,V=v)=EmX%50)+n|X=z,V=v)=E(m(x—¢e0)|V=0v)+E(nV=1)

7



Averaging over V for values x € Xj gives the result by the law of iterated expectations (note E(n) = 0).
[
Define for z € &)

L(x):/VE(YX:x,V:v)g(v)dv

This function is identified from the data, if we add the first stage error to the data. If we define

Riir) = [ mia-ci0)g (i) de (10)

— 00

then we identify 7 = (6’ 7/)’ from the conditional moment restriction
m(x;7) = L(x) — R(x;7) =0 x € X

In general, L(z) does not identify the regression function m(x) and the measurement error distribution
nonparametrically. In this paper do not consider the question what additional restrictions on m(x)
and g(e) suffice to establish identification. Instead we assume that both the regression function and
the distribution of € are in a parametric family and that the conditional moment restriction uniquely
point identifies § and . It is clear that the assumption that the measurement error distribution is
in a parametric family is not necessary for identification of # and in section [7] we briefly discuss an
alternative assumption on the measurement error distribution.
In the sequel we assume

Assumption 5 (Marginal distribution of ) The marginal distribution of the measurement error
€ is in a parametric family g(e;7).

In the case of a linear regression the conditional moment restriction has the same L(z) (which now
is a linear function of x which is a remarkable implication of the model) and

R(x;0, ) = 0g + 012 — O

with p. the average measurement error. In this case we do not need the assumption that the measure-
ment error distribution is in a parametric family. The slope coefficient of the linear regression model
is identified. The intercept is identified if p. = 0.

The moment condition suggests the following strategy of estimating 6,y with ~ the parameters of
the marginal distribution of the measurement error:

1. Estimate p(z,v) = E[Y | X = 2,V = v] nonparametrically using the sample Y;, X;, Vi=X, —
h(Zj;@),i=1,...,n. Call the estimator fi(z,v).

2. Estimate the left hand side of @ by

n

. 1 o
L) = e V) (11)
j=1
for x € Ap.
3. Solve the minimization problem

0L 3™ 1 () (E(X) - R (X))’ (12)

mun — i i)~ T

T A



5 Distribution theory

The first assumption is on the first stage
Assumption 6 (First-stage) X and Z are related by
X=WZ;a0)+V V1Z EV? <o
With h(Z;«) twice continuously differentiable with respect to « in an open neighborhood of «g for

almost all Z. We assume ag € A with A a compact set and Sup,e 4 \%(Z;a)\ < Mp(Z) with My, a

bounded function of Z for k =0,1,2. For all 6 > 0, there is an { > 0 such that
sup E[(h(Z;0) — h(Z;00))*] > ¢ (13)

a€A |a—ap|>d
Finally, the matriz

o2 0) 5= h(Z; )

oh oh
E L‘?a oa/

s nonsingular.

This ensures that the first stage estimator defined by
I WOh,
- Zj:(Xj —h(Zj38))5-(24;6) =0 (14)

has the usual asymptotically linear representation
Lemma 1 If assumption [f] holds, then & defined in s weakly consistent for ag and

1 n
VA6 — an) = (E BZW; ao>§§h<z;ao>D > g h(Zssan) + 0, (1)
j=1

All proofs are in the appendix.
Next we make assumptions on the nonlinear regression model m(z; ) and the marginal distribution
of the measurement error. We express these as assumptions on R(x;T)

Assumption 7 (Regression function and marginal distribution of the measurement error)
The nonlinear regression model for'Y is

Y =m(X*:600) +1  E(@X") =0

with 6y € © and X* the latent true value of the regressor. For R(x;T) defined in (@) we assume that
for all 6 > 0, there is a ¢ > 0 such that

sup E [(R(X;T) — R(X;TU))Q] > (

TET,|T—70]
Also ford=0,1,2
'R
—(X; < Ng(X
w5 06| < )
with E[Ny4(X)?] < oo ford = 0,1, E[No(X)] < 0o and the matrix
OR OR
B[R (i) 98 (Xim)

is nonsingular. R(x;T) is r times continuously differentiable in x.

9



Under some additional assumptions we have that the control variate estimator is weakly consistent
and is asymptotically linear in the nonparametric estimator L.

Lemma 2 If assumptionlj holds ag > 5/ﬂ and k =n" with 0 < k < 1/7, then 7 defined in is
weakly consistent for 19 and

Vit —m) = <E [?(X;To)gi (X; To)] > h \/lﬁ i (ﬁ(Xz‘) - L(Xi)> %(Xi% 70) +0p(1)  (15)
=1

The next step is to study the nonparametric estimator j)(x) that is a partial average over the
nonparametric regression estimator fi(x,v). The analysis would be relatively simple if we could do a
nonparametric regression of Y on X,V instead of on X, V. The nonparametric regression estimator
is the series estimator. Define W = (X V) and W = (X V). As the basis functions we take a power
series and k is the number of basis function in the series. To include all powers of z and v up to
order n, we need to include k = 1(n + 1)(n + 2) terms. The resulting k basis functions are denoted
by the k vector Py(w) = (xM w2, \; + Xy < n). We order the basis function by A\; + Aa. We make an
assumption on the support of the joint distribution of X, V.

Assumption 8 (Support) The support of X,V is W = X xV = [xp,2y] X [vp,vy]. The joint
density of X,V 1is bounded from 0 on W and is v times continuously differentiable on its support.

By Newey (1995) this implies that we can take the basis functions as orthonormal polynomials with
respect to the distribution of W.The fact that we estimate the nonparametric regression estimator with
first-stage residuals creates two problems. First, the support of W need not be that of W. To analyze
the nonparametric regression on W we must extend the definition of p(w) to the support of hatW.
This extension must be sufficiently often (two times in this application) continuously differentiable on
the support of W and the following assumption on the uniform approximation of p(w) must hold on
the support of w.

Assumption 9 (Regression function) There is a vector vy such that for some constants Cy, aq,d =
0,1,...,D

sup |28 () — 9D (1,
wew | Ovd ov

< Cgk™ %

It is essential that the result holds on the support of W with the same coefficients vx. We define
the following extension

(X, V) = u(X, V) v, SV <wy
L
. 1 /o o . N
= Qu(X, V) + (X, v0) — Qu(X, 00) 1+ Y il <&5(X7 ) — ﬁQlk(X, UU)"Yk) (V—w) V>wy
=1 "
. S WE 9'Qs N
= QU VY (Xon) — Qe ot D (GG = G ) (7 ) ¥ <
=1 "

The second problem is that the influence function of the control variate estimator has terms that
account for the first stage estimation of the residuals. It turns out that the first stage estimation enters

4To be defined in assumption @
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in two ways: we average over VJ instead of over V; and we regress on polynomials in V instead of in
V. The contribution to the influence function is

(i [LSDIIR e 0 2

fX, V) or (X;TO)%(W)%(Z; ao)] —Ex [%f(X;TO)EV,Z [8“ e

LV o (Zsaw) || ) Vita—ao)

The matrix is 0, so that there is no contribution, if X and Z are independent.
We also need an assumption on the conditional variance of the dependent variable.

Assumption 10 (Variance)

sup Var(Y|W = w) < 7% < o0
weWw

The main result is the asymptotically linear representation of the control variate estimator.

Theorem 3 (Asymptotically linear representation) If assumptions @ [71, @ @ and|1(] hold, then

it - = (B Wixim Bxim)] )

{( [f}‘;()g‘%)gf(X;m)%(W)gZ(Z ao)] - Ex [g]j(X;To)Ev,z [ZM (X, V)gh(z 040)”) V(& — ag)+

Z Ll - (V) G i)+

\}EZEX [mx,vj)gﬁx;m] By [Ex [u0x V) (i) || £+

Op(k,g/Qn—l/2) +Op(k'7/2_a0) +Op(n1/2k_a°) _I_Op(nl/Qk,—’r‘/Q) +Op(k(4—r)/2) +Op(n1/2k(5—7’)/2—a0)

Now take k = Cn”. The remainders are negligible if the following inequalities are satisfied simul-
taneously

< L > 7 > L > 1 >5 > L
K< = a — K> — K> — r K> ————
9 072 2a r = r— 5+ 2ag
Therefore 9
> — > 10
ao 5 r
and

11



6 A simulation study

We study the finite sample performance of the parametric and semi-parametric control function esti-
mators in a simulation experiment. The model is

Y =0+6X"+n
The true and observed value of the covariate are related by
X=X"+¢
and the instrument Z is independent of n,e. The parametric first stage model is
X=ap+a1Z+V V1z

We take
V ~U[-1,1] Z ~UI0,1]

This implies that the joint distribution of X,V has bounded support. If 0 < z < 1 the conditional
support of V' is full, i.e. [—1,1]. In the second stage only observations with 0 < X; <1 are used. The
variance of V' is 1/12. The measurement error is related to the first stage error V' by

e=krV+v v~ N(0,02)

Therefore
elV ~ N(kV,07})
and the marginal distribution of € is not normal but
12
E(e) =0 Var(e) = 3 + 02

The assumption that the mean of the measurement error is 0 ensures that the intercept 6 is identified.
The covariance of the mismeasured covariate and the measurement error is

K
E(Xe) = —
and its variance is )
af +1
Var(X) = —
ar(X) B
The latent true value is obtained from
X*=X—¢

This implies that the covariance of X* and the measurement error is

1—
EWWZKSZQ—ﬁ

and ) )
af +(k—1
AL
12
We choose 0y = 0,01 = 1,09 = 0,7 = 1,0,2] = 1,k = 5,02 = 1. This implies that the correlation
between X* and the measurement error is —.25. The correlation between the mismeasured covariate
X and the error in a regression of Y on X is -.72.

Var(X*) =

12



Table 1: Results simulation, N = 500, no. of replications is 100

Par, V Par, V Semi-par, V' Semi-par, 1%
Oy Ave. -0.00976097 -0.00936532 -0.03467247 -0.02563894
Std. Ave. 0.00514093  0.01163065  0.02478237  0.02720358
01 Ave. 0.99986276  0.99052771  1.00767846  1.00168646
Std. Ave. 0.00304464 0.00730770  0.01594379  0.01783003
Kk Ave. 4.98317958  4.97384453
Std. Ave. 0.00546665 0.00872587

We estimate pu(z,v) = E(Y|X = 2,V = v) by a nonparametric series estimator. As basis functions
we use tensor products of the polynomials ¢ (v) and ¥y (x) that are orthonormal with respect to the
weight functions on [—1,1] and [1,2] respectively. Initially we choose the order of the polynomial
K = 3. The coefficients of the polynomials are estimated by least squares. Note that in the setup
chosen here the population p(z,v) is linear in = and v. Therefore the parametric control variate esti-
mator is just the linear regression of Y on the mismeasured covariate and the control variate. We also
compare the estimator with the first stage residuals V and the first errors V. The results are in Table 1.

7 Implicit error models and additional covariates

We developed the control variate estimator for the nonlinear regression model. Here we show how we
can use this estimator in models with an implicit error as in (2). As before we first consider a fully
parametric approach that requires the specification of a parametric joint distribution of the implicit
error and the measurement error.

Assumption 11 (Conditional Distribution of (e,7) given V') The equation and measurement er-
rors are independent given V , the equation error is independent of V' and the conditional distribution
of € given V = v is in a parametric family. Therefore

eV =02 G (elv; 8) H (n;7) (16)

Theorem 4 Suppose that Conditions|1],[5, and[11] are satisfied. Letting A (y,z*;0) = {n | m(z*,n;0) < y},
we have for the model with implicit error

Fly|lX=2z,V=v)=EPr(necA(y,z—;0)|V=uv,e) |[V=0v]=E[P,(n€A(y,xz—¢;0)) | V =1]

Proof. By equations and we have
Fly|X=z,V=v)=Pr(m(X",n;0)<y| X =2,V =0)
Prim(X —e,n0)<y|X=xV=0)
r(m(z—enb) <yl X=xV=0)

Because Z and V' are independent, we have that conditional on V' = v, X = h(Z;«) + v is a function
of Z and hence by assumption

m
m

FlylX=z,V=v)=Pr(m(x—¢e,1n,0)<y|V =v)

13



Finally by assumption 11| we have
Fy|X=xzV=v)=E[Pr(neA(y,z —&;0)|V =v,e) [V=0v]=E[P(neA(y,z—¢&0))| V=01
where the expectation is over the conditional distribution of the measurement error € given V. =

The set A (y,z*;0) = {n | m(z*,n;0) < y} takes different forms depending on m. For a probability
model with m (z*,7;0) = 1{z*0 +n > 0}, we have e.g. A(0,2*;0) = {n|n < —x*0}. Hence for a
probit for y = 0, we have

Pr(ne A(y,x —¢;0)|V =v,e) =Pr(n< —(x—¢) 0|V =v,¢)

and hence,
[ee]

F(0|X:x,V:v):/ 1-—®((x—¢€)0)]|dG (e |V =)
—00

This can be simplified further if e.g. the conditional distribution of € given V' = v is normal with mean
pe + p (v —E[V]) and variance 72 so that

F(O|X:x,V:v):1—¢<ew_9(%E[V])))

so that in this case 6 is identified up to scale.

Theorem 5 Suppose that assumptions [ and [ are satisfied and € and 7 are independent. With
Al(y,z*;0) as in Theorem we have for the model with implicit error

|1 X =0V = 0ge)d = EIR (€ Ay.z - =:0))] (15)
with g is the marginal density of V.
Proof. In the proof of Theorem [4 we established that
Fly|X=zV=v)=E[P0necAlyr—¢c0)| V=01
The result follows if we average over V. In the case of a regression model
E(m(X*0)| X =z, V=v)=E(m(zx—e0) | V=0v)+E(n|V =)

Again averaging over V' gives the result if E(n) = 0.
|
For the probit example, if the measurement error has a marginal distribution that is normal with

mean /. and variance 72

E[Pn(neA(y,x_g;g))]:@< Ox — Oy, )

N

14
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Appendix

A The estimator

Let 7 = (0'’)’ be the parameter vector and define

Rmnwaému—amMamk (19)

Further define

fulz, Vy) (20)
=1

J
with fi(z,v) the nonparametric series estimator of u(x,v) = E(Y|X = z,V = v) defined below. The
first stage residual Vj is X
V= X; - h(Z;;)

where the Nonlinear Least Squares (NLS) estimator & satisfies

1 ¢ WOho
- Zj:(Xj — h(Z;; O‘))%(Zjv &) =0 (21)
The estimator of 7 satisfies
IR ) OR, .
- ; (L<Xi) - R(Xy; T)) 5, Ki7) =0 (22)
B The first stage estimator
For a matrix D we define the matrix norm |D| = /tr(D’D). We assume

Assumption 12 (First-stage) X and Z are related by
X =hZ;a0)+V V1Z E(V?) <oo

With h(Z;«) twice continuously differentiable with respect to « in an open neighborhood of ag for
almost all Z. We assume ag € A with A a compact set and Sup,e 4 \%(Z; a)| < My(Z) with My, a
bounded function of Z for k =0,1,2. For all 6 > 0, there is an { > 0 such that

sup B [(h(Z;) = h(Z;0))?] > ¢ (23)

a€A |a—ap|>d

Finally, the matriz

Oh Oh

18 nonsingular.

We have

16



Lemma 3 If assumption holds, then & defined in is weakly consistent for ag and
oh Oh

—1 n
A 1 Ooh
V(& —ag) = <E [8h(Z a0) 5 (Z;OCO)D 7n ;Vjaah(ZﬁaO) +0p(1)
Proof. Because sup,c 4 |h(Z;a)| < My(Z) with E[My(Z)] < oo, we have that

- Z —h(Zj; ) B EWV?) +E[(M(Z;a) — h(Z; a0)?]

uniformly on A. Hence by the usual argument for M-estimators (see e.g. Van der Vaart ()),
implies that & TN ag. A first-order Taylor expansion of around ag gives

1~ Oh Oh N anLh 5
\/H;Vjaah(zj;ao)— . aa(ZJ,a)a (2558) = 5 2K = 25 ) 5 (235 | Vila—oo) =0
(24)
Because
L~0h, Oh oy [Oh, , Oh
uniformly in A,
1<~0dh,  _ Oh  _ oh oh
n2 a()[(Zjaa)aw(Zj’“)ﬁE[ah(Z ) 5ol (Z’O‘“)}
Further 5
1< _.. O0h -
- : (Xj_h(ij(X))W Z Jaaa 1(Zj; )
+1 Y (h(Zj;00) — W(Zj; @) =——=— 82 (Zj; @)
e 70 7Y Badar I
Because
sup [V (700 < IVInta(2)
oeh | Fagar )| = VI

where E[|V|M2(Z)] < oo, the first term on the right hand side converges to E Vaaaa (Z;a0)| = 0.
Because

(h(Z5: a0) — h(Zgs a))] |20
ap W o R e,

and by Cauchy-Schwartz E[My(Z)M2(Z)] < oo, the second term on the right hand side converges in
probability to 0. Equation can be solved for /n(& — ap) if the matrix between parentheses H
is nonsingular for which event we use the indicator Iyg. If the matrix is singular we set \/n(& — ag)
arbitrarily equal to 0, so that

Z], Oé) S QMQ(Z)MQ(Z)

R L1 &, on
\/ﬁ(a—ao) =IysH 1 %Z‘/]a—ah(zj,ao)
j=1

Because Ins - 1 and the inverse is continuous at a nonsingular matrix, the result follows by the
continuous mapping and Slutsky theorems. m
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C The asymptotic distribution of the control variate estimator

C.1 Linearization

Because L(X) = R(X; 1) can be rewritten as
1 - R R N
= ; (LX) = LX) G- (X 7) = —= D7 (RO 7) = R(Xiim0)) 5~ (Xis ) = 0

We assume

Assumption 13 (Regression function and marginal distribution of the measurement error)
The nonlinear regression model for Y is

Y =m(X%00) +n  E(nX*) =0

with 6y € © and X* the latent true value of the regressor. For R(xz;7) defined in (19) we assume that
for all 6 > 0, there is a { > 0 such that

sup  E [(R(X;7) = R(X370))%] > ¢
T€T,|T—70|
Also for d =0,1,2
R
sup | =— (X7
TE%:)“ aTd( )

with E[Ng4(X)?] < oo ford = 0,1, E[No(X)] < 0o and the matrix

< Ng(X)

OR OR
[ O (Xim) S (Xim)

is nonsingular. R(x;T) is r times continuously differentiable in x.
The next lemma gives conditions for weak consistency and an intermediate linearization result

Lemma 4 If assumption holds ag > 5/2, and k = n" with 0 < k < 1/7, then 7 defined in (@ 18
weakly consistent for 19 and

Vit — 1) = <E [aaf(X;To)gi(X; To)]>1 \}ﬁ z": (ﬁ(Xi) - L(Xi)> @af(Xﬁ m0) +0op(1)  (25)
=1

Proof. We have

The final term is uniformly in 7 bounded by

sup | L) — L) = 3 No(X:)
xeX n i—1

18



with X the support of the distribution of X and

n

1

iggli(w) - L(w)| = sup n;(ﬂ(fc,f/j) — (2, V5)) +sup |- ; pu(z, Vi) = p(z, V)| +
sup |~ > (u(a, V;) — Elp(z, V)
rxEX nj:l

with py defined below (as is the other undefined notation). By lemma m below

e~ ., - . . _ w
sup =~ (e, Vi) = i, V3)) | < sup |fa(w) = pr(w)] = Op(K7*n™12) + Op (k7/270)
z j=1 weW

and by a first-order Taylor expansion and assumption [12]

1 & .
sup [ 23 (usle, V5) — (e, V)| < sup\
vex | M wew

) ZM1 )1a — aol = Oy (n~112)

and finally because %(m, v) is continuous and hence bounded on W

sup | - 3" (ule, V;) — Elue, V)])| = op(1)

n
zeX =1

We conclude that because by assumption [13|sup,cp |[R(X;7)| < No(X) with E[No(X)?] < oo

fz( ~R(Xi)) D E[(R(X:7) - R(Xim))

uniformly in 7. Because the limit has a well-separated minimum in 7y weak consistency of 7 follows.
We have

U 22 (£06) - 2060 i) - WZ ~ R(Xi70)) 2 (Xi57) = 0
i=1

so that by first-order Taylor series expansions with 7 and 7 intermediate points

(15 2o 2o - L35 (00 - 10x0) 228 e ) v -

1 /- OR
i (LX) - (X)) G- (Xiim0)
By assumption (13| and Newey (1991), corollary 3.1
1 < 0R OR » [OR OR
EZE(XZ,T)@(X“T) LE [a (X; T)a (X T)]

uniformly for 7 € T and

n

1 . O*R
n Z (L(Xi) - L& )> oror’ Bror i)

=1

sup

TeT zeX

so that the conclusion follows. m
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C.2 Asymptotic linear representation
C.2.1 Decomposition and assumptions

For the rest of the proof we take, without loss of generality, o and 7 as scalar. We consider for 7 € T’

%ZJH&%MZD?MMM
nf ZZ ([‘ X, Vi) = (X, V}')> gR(Xz,To) (26)

nfzz (X, V;) (&%))Zf(xi;mﬂ (27)

=1 j=1

IZZ“X“V XHTO) ;ZL(Xi)%(Xi§TO) (28)

i=1 j=1 i=1

with i the infeasible nonparametric regression estimator defined below. We write the three expressions
, and as normalized sample averages. The three expressions each have a contribution to
the influence function of our estimator. The contribution of accounts for the estimation of the
residuals in the first stage, the contribution of accounts for the variability of the nonparametric
regression estimator, and the contribution of is the pure variance term. By assumption the
representation will hold uniformly in 7 € T and hence we can substitute 7 for 7.

Equation involves the feasible nonparametric regression estimator g of Y on X and V and
the infeasible nonparametric regression estimator i of Y on X and V. To simplify the discussion we
define W = (X V) and W = (X V). We use a series estimator. As the basis functions we take a
power series and k is the number of basis function in the series. To include all powers of x and v up
to order n, we need to include k = %(n +1)(n+ 2) terms. The resulting k basis functions are denoted
by the k vector Py(w) = (z A2 )\1 + A2 < n). We order the basis function by A; + Aa. We make an
assumption on the support of the joint distribution of X, V.

Assumption 14 (Support) The support of X,V is W = X x V = [xp,zy] X [vp,vy]. The joint
density of X,V is bounded from 0 on W and is r times continuously differentiable on its support.

By lemma A.15 in Newey (1995) this assumption implies that for all k£ there is a nonsingular matrix
Ay, such that if we define Qp(w) = Ay Py (w), the smallest eigenvalue of €, = E[Qk(W)Qk(W)’] satisfies
Amin(Q) > C > 0 for all k. To simplify some of the argument we choose Qx(w) = Q;l/QQk(w) S0
that E[Qr(W)Qr(W)'] = Ix. The same lemma in Newey (1995) gives the following bounds on the
vector of basis functions for d = 0,1, ...

2Qy,

0'Qx 0'Qx
owd

owd

sup
weWw

(w)] = 0tk E%’ (w)| = otk

with W the support of W that by assumption |12]is also bounded so that Newey’s lemma applies.
In the nonparametric regression estimator i(X;, V;) estimates (X5, V;) with p(z,v) = E[Y|X =
x,V = v]. However the target is not well-defined if V' is not in the support of V. If u(z,v) = Qr(x, v) v
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for some k, then we can extend the definition from the support of V' to that of V. In general we define
(X, V) = p(X,V) v <V <oy

A l l A A
= QU VY i+ (X, w) — Qu(X, v HZZ, (G0 - G ) (7 =)t 7> 00

'Qx

. 1 /0
= Qu(X, V)i + (X, vr) — Qu(X,vr) v + Z il <8;;(X’ vL) — ol
=1 "

(X, UL)’%> V—uv) V<o

This extension L times continuously differentiable on the support of V and in particular in vy, and
vy. In the sequel we take L = 2 so that we can do second-order Taylor expansions. The vector ~; is
given in the next assumption.

Assumption 15 (Regression function) There is a vector vy such that for some constants Cyq, aq,d =
0,1,...,D

adu 0Qk /
W(w) - W(U}) Tk

sup < Cgk™%

weWw

If the population regression function p(w) is s times continuously differentiable on W we have by
Lorentz (1986), chapter 6, theorem 8 that ap = s/2. In the sequel we use D = 2, so that we assume
the existence of uniform approximations of x and its first and second derivative.

We have that if we denote the support of W by W

’ 0%y 0Qy

v (w) = W(w)’% < Ok

sup
weW

Therefore py(x,v) and its derivatives with respect to v can be approximated on W with a polynomial
that has the same coefficients v as in assumption i.e. as in the approximation of u(x,v) (and its
derivatives with respect to v) on W.

C.2.2 Basic properties of the series estimator

The first step in our proof is to derive some basic properties of the feasible and infeasible nonparametric
regression estimators. For that purpose define the £ x k& matrices

1 < ~ %
= ZQk(Xj7 Vi) Qr(Xj, VJ)/

Jj=1
and

1 n
B= o D Qu(X5, Vi) Qr(X;, Vy)
j=1

Lemma 5 If assumption [14 holds then
|Qk — Ik| = Op (/{3/271_1/2)

and

Q% — I = O, (k?’n*l/?)
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Proof. By a first order Taylor expansion and the triangle inequality

0 o .
90— 0l < [ 230 29 (3, V)Qu (3, (7 = V) + |- 30 @, V) 2 (7 - 1) | +
7j=1 7j=1
1= 0Qk, . —  0Qy . ) 1 e=0Qk, . — 0Qs o, _\?|,. )
DI AL CASIARALE n;v<Xm>8@(Xj,v»'(w(@,a)) (a-a0)+
1 ,Oh 1 — oQ oh _ _ .
(n“ (X5 V)Qu(X;, V3 5 (233 0) | + H;Qk X5 V) 2 x,, V) S (Zj,oz)> & — ao

By assumptions [I2] and [I4] this expression is bounded by

1 & d 2
(n;MﬂZﬂZ) s

weWw

weEW

sup ‘66?]{ ‘ ( ZMl )| Qr(W. )) & —ag

By Cauchy-Schwartz and assumptions [12] and [14]

szl QR J ZM1 J S 1Qu(X,, V)2 = Oy(k)

7j=1
so that the expression above is
Op(K*'n™Y) + O, (K*n~Y2) = 0, (K*n~1/?)

Next, as in Newey (1997), because E[Qr(W;)Qr(W;)'] = I

E (|9~ 1] = E[or (%~ 1)) =t ( [(i;@“ j)mﬂ)

3

%tr(E[(Qk(Wj)Qk(Wj)/_Ik)QD:%tr(E[Qk( QW) QW) Qe (WY — Ty) <

CE [Qu(W;)Qu(W))r( QW) Qu(W;))] < - sup [Qu(w)Ptr(Ti) = O(k%n ™)

n wew

so that by E {|Qk - Ik|} <,/E {|Qk — Ik|2} and the Markov inequality

|, — I| = Op (K320~ 1%

The conclusion now follows from the triangle inequality. m
We make the following assumption on the conditional variance of Y given W = w
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Assumption 16 (Variance)

sup Var(Y|W = w) < 3% < o0
weW

Define
Uy = Y; = (X, )
By assumption
sup Var(U|W = w) <72 < o0
wew

Lemma 6 If assumptions |1 and[16 hold then
=Y QuW)U;| = Op(k 0172

and
1
— 1=0 k’2 —-1/2
n §1 p( n )

Proof. We have by first-order Taylor series expansions

n

1<~ d _ 0h
ZQk X;,V;)U ZQk X, Vi)Uj| + n;%(ﬁfj,w)%%;awj
Now
n 2
E [ %ZQk(WJ)UJ } = %E [U?Qe (W) Qu(W)] =
j=1
L [Var( W) QW) Qu(W)] < ~2tr (B [Qu(W) Qu(W)]) =722
so that
1 n
- Z; Qu(X;, V)Uj| = Op(k*n=1/2)
=
Further
" 9
%ZLQJ 8a(ZJ7Oz)U < su%’ Q’“ ’ ZMl US| = 0, (k?)
j=1 we

because by Cauchy-Schwartz E[M;(Z;)|U;|] < \/E[U?]\/E[M:(Z;)?] < oo, so that

1 -0 — . Oh . _
L5 0%, V) 2 25300 1o~ ol = Op7n %)
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Define 1,, =1 </\mm (Qk) > 1/2) with 1(.) the indicator of the event between parentheses. The
coefficients in the series estimator are

-1
Ak = 1n (Z Qk(Wj)Qk(Wj)/) > (W)Y,
j=1

=1

We also consider the infeasible OLS estimator of the coefficients in the regression of Y on Qx(X,V)

-1
Y = 1n (Z Qk(Wj)Qk(WJ’)/) > Q(Wy)Y;
j=1

with 1, = 1 ()\mm (Qk> > 1/2)
Lemma 7 If assumptions , and [15 hold, then
Lo 3k = 3| = Op(kn™'/2) + Oy (K*?~)

and
1”"3% - 7k| = Op(k‘5/2n_1/2) + Op(k?)/?—ao)

If in addition k*n=1% — 0, then
N oh 9/2, —1 3/2—a
i — i — (& — o) — ZQk (Wj) 5, (Zssao)| = Op(K7"n™7) + O(R7=7%)

For () = Qu(w)'3n and (w) = %2 (w)'4y

sup |ji(w) — pr(w)| = Op(k*n™12) + O, (K7/?7)
weW
and i 9
1% Mk - —a
sup [ (w) = T (w)] = Op (K20 ~12) + O, (7/2-0)

weW
and 9 9
H Hi 3, —1/2 7/2—ao
sup |~ (w) — ——(w)[ = Op(k°n™77) + Op(k )
welV ov ov
Proof. We have
1 N
Lo (e — ) = 1nSy ! ZQk = n(W;)) + 1an1; D QrWy) ((Wy) = Qu(W;) )
] 1 j=1
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so that because for any square, symmetric and positive definite matrix of order k D we have \/E)\mm(D) <

|D| < \/E)\max(D)
I ZQk VU |+1a12,.7 sup |Qr(w)] sugv!u(w)—Qk(w)’wl = Op(kn™/%)+0,(K*>~%)
we

Note that if kn=Y/2 — 0 we can omit 1,,.
Next

LBk — ) = 1nQ,§1% > Qu(W)U; + 1nQ;§1% D QW) (W) — Qu(W;) ) =
j=1

j=1
N . L1 - . R . . .
LnSy '~ > Qr(W;) U180 > QW) (1(W5) = k(W) + 12— > QW) (px (W) = Qi (W) k)
j=1 j=1 j=1

(29)
We use ) to derive two results: the rate of convergence of Ax — v and the rate of convergence of
the dlﬂ'erence A — Y- By lemma |§| and assumption |14} the first term in is O (k5/ 2p~1Y 2). By a

first-order Taylor series expansion the second term can be expressed as

41 8 oh
(& — ao) 12 = ZQ DB (W) 5 (25:@)

which is bounded by

. 0 _
2|& — ap|Vk sup |Qr(w)) sup Hk ' ZMl O, (K**n=1/2)
weW weEW

because i (w) is continuously differentiable. The third term in is bounded by

Wk sup |Qx(w)| sup ‘,Uk( — Qu(w %‘ _ k‘3/2_“0)
’LUGW U)EW

Therefore
Luli = | = Op(K*n~1/%) 4 O(k/>~)

Next we consider 4 — . If k3n=1/2 — 0 then we can omit 1, and 1,, in the expressions. A
second-order Taylor expansion gives for the first term of

6 ~
uZQk 0y - ZQk Uy + 0512 Y S W) (7 - Vi)
j=1
1~ 41 0 — ?
QlenZ ng( aVJ))UJ(VJ_VJ)2:
e
O 3 QWU + O 0 (O — ) S QuW U+
i=1 =t
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n = ov 2 n & ov?
~ 1 ~ 1
Q=D QuWHU; + Q= 7 Qk(Wy) (W) = Qe(Wj)'m)
j=1 Jj=1

Jj=1 j=1
T 0Qw Oh ) (& — a0)2 A 0Qk 0%h _
(O[ - aO)Qk E e v (W])%(Zjv OtQ)Uj - fgk jz; v (W]))U] D2 (ZJ7 O[)"‘
(@—ap)?a 11 e=02Qy . — oh 2
T > 5p2 K VilUi | 5, Zssa) ) =

(B — ) + O(R*27%) + O (K01 + Oy (K720~ 1) + Op(K**n ") + O, (K07 )
by lemmas [5], [6] and assumptions [I2] and [I4] and the fact that

0Qu . 0Qy, oh 2 dQy, > 4
< =
[aﬂ V2w (2 z00)) 12| < (sup [ 22| ) w10 = o
The second term in 1) is, if k*n=1/2 =0
. Ll < Ou oh, (G —ap)? A 11 < Ou 0h
(6 — o)y, n;Qk<wj>m<wj)M<Zj,ao>+29k n;Qk(W»%(W)aaQ(Z],a)
(G—ag)? A |1 < 0% g Oh ~\?
%ﬂklﬁ QW) 05 (X V) ( 5o (Zgsa) ) =
j=1
(6 — ) Z Qr(W )‘% (Zj;a0) + O, (0™ + O, (K3 ?n™h)
aa VAl p p
and
_ oh oh
(6 — )" ZQk )@(Zj;&o (& —ao)— ZQk )%(Zj;ao)*
R Al 1< I oh
(O‘O‘U)le(gk—rk)n;@k( j)%(Wj)%(ZJaao)
(& — )" n;av(Xg; g)%( J)%(Zmaﬁ)a (Zj;@) =
. 1 & o oh _ _
(& — ao)n;Qk(Wj)m(Wj)w(Zﬁao) + Op(KPn71) + Op(K*?n )
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Finally, the third term in is, if k*n=1/2 =0

A1
1,01 =
n

] wew weW

ZQk(W])( ( ) Qk( )’Yk) < 2\/% Sup |Qk( )| SuP\‘:uk(w)_Qk(w)/’Yk” _ O(k3/2—a0)
7j=1

Collecting results we conclude that, if if k3n=1/2 — 0
. N 1 ¢ oh 9/2. —1 3/2—ao
e — = (Y — ) + (& — o EZ J)aa(zj’a0)+0p(k n)+O0(k )

1

Note that the remainder terms are of order n™" (or a pure bias term) while the main terms are of

order n~1/2.
Next
sup |fi(w) — p(w)| < sup [Qr(w) (k= )| + sup [Qr(w) vk — pr(w)| <
weW weWw wew
sup |Qk(w)|[k — vl + sup [Qr(w) vk — pu(w)| =
weW weW
Op(K2n712) 4+ O, (KP/2790) + 0, (k™) = Op(k™*n %) + 0, (k>/27%)
and . 3
i Lk
sup | 22 ) - <w>] <
weW ov ov
oQr, .. k, o\ Opuig
sup \<w> (G — )| + sup \<w> L
welV ov welV ov ov
Op(K2n712) 4+ O, (K7/2790) + O, (k™) = Op(k**n= %) + O, (k7/27)
Finally
sup |f(w) — p(w)] < sup [Qr(w) (Tx — )| + sup [Qr(w) i, — pr(w)| <
weW weW weW
sup |Qr(w)1x — vl + sup |Qp(w) e — pr(w)] =
weW weW
Op(K*n /%) + Op (kP27 + Oy (k%) = Op(k*n~'1?) + Oy (K7/*~0)
and 55 3
fi 0
sup [ ) - Pk(w)] <
wEW
0Qr, - koo Ok
sup \<w> G — )| + sup \<w) Ok
weW dv weW v dv
Op(K*n=12) + Oy (KT/27%) + O, (k™) = Op(k*n /%) + O, (K7/>~)
| |

The next step is to consider , ) and .
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C.3 Expressing (26) as a sample average
We express as

S (0 ) — 0 ) S i) =

=1 j=1

MZZ“ Xi; 70) 4k (Qn(Xi, Vi) — Qu(Xi, V)))+ (30)

—1 =1
OR
nf ZZ XuTO)(% — %) Qi (Xi, Vj) (31)
=1 j=1

For . ) by a second order Taylor expansion with respect to V followed by a second order Taylor
series eXpansmn of the term in V V; and substitution of the first order Taylor series expansion
V Vj= aa<ZJan) in (V V)

OR 3R 0 oh .
nfzz (X33 70) 3k (Qk (X3, Vi) —Qi(Xi, V) nfzz (Xi570) %%(vaj)%(zjsao)(a—ao)—

=1 j=1 i=1 j—1

anZaR i:70) (% — W)’ aan(XuV)ah(ZgaOéo)(a—ao)

=1 j=1

_1 OR |, 0Q 0%h )
Qnﬁgg or (X33 70) % v <X17VJ)8 Q(Zjva)( — o)+

2 2
Qn\fzz 6R (X3 70) (9 — )’ aan (Xi,V;) <ah(Z a)) (& — ag)?

i=1 j=1

OR , 02 — 92 oh 2
Qn\fzz (Xi;70) <’)’k8UQQk(X¢,Vj) 852’€(X V)>< (Z],a)> (a—a0)2+

=1 j=1

2
2n\FZZ aR X;:70) 8 /ik(X“V ) (gZ(Zj;a)> (55_050)2

<

OR ,0 oh
nfzz (X 70) G — ) O (X2, V3) 90 25100) (@ — o)
=1 j=1

Vnld — ag Sup'an )’(iZNl( )( ZM1 )’Yk’yk Op(E*2n=Y2) 4 O(kT/2~0)
=1

and
1 n n

R aQ 32 )

1=

<

n

1 O 8R ,0Qy d%h )
QWHZ 5 Xism0) (e =)' 5= (X, Vi) 55 Q(Zj,a)( — ap)

i=1 j=1

_l’_
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"<~ OR 0 ou 0h
e >3 S e (A G2 0w - ) SRz mia - e
i=1 j=1

|+

QHIZZ 8R (Xi;70) g (Xz,V)g Z<ZJ’O‘)( — ap)

=1 j=1

0Qy 1 <
J— 2 J— J—
2fn]a ap Slelgv‘ oy (w)‘ (n ;:1 N (X ) ( E Msy(Z ) [k — Y|+

7’%(10) - gi(W)‘ (iZNl(Xi)> (:L M2(Zj)) +
i=1 =1

J:
2
——n|& — ap|” sup

Q\f o ‘( ZNl ) (njzn;Mz(Zj)) =

Op(kg/Qn_l) —|—O(k7/2_a°n_1/2) +Op(n—1/2k—a1) —I—Op(n_1/2)

2l <

—nl|d& — ap]? sup

2\/> weW

and

2
zanZ O Xismo) (3 — ) gL 5 (Xi, V) (gZ(Zj;a)> (6 — ap)?
=1 j=1

ov?
——n|a—ap|? Sup ‘8 Qk (w ' ( ZNI ( Z ) ik—k| = Op(k1/ 20~ 1) +O(K%/2 -0 ~1/2)

2f
and
1 ~0R, Qo — . P, = \ (O, _\° . )
M;;&'(X“m) <’Ykavg(XwVJ)— 002 (Xi, V) %(Z],a) (& —ag)”| <
aQQk 52,% 1 X 13 - -
— / — _ . _ ,2 — 1/2 a2
snla = aol? sup |5 20 () Wwﬁn;mw>ngm%> O (n~124=2)
and
1 =< 0R P2y, — [ Oh 2 )
- .. . . _ en _ <
QHﬁZ;]; 87— (XZ7T0) 8’1}2 (X’MV]) (8a (ZJ7O[)) (Oé O[O) S
F=nla—aof sup Ptk () lzn:zvl(X) lzn:Ml(zy —0,(n1/?)
2f ov? n ! n = J p
Finally
OR , 0Qk oh . _
n[;z; X’MTO ’Yk‘ 6 (X“V)a (Z]’OZO)(O[ ao)_
OR 0 oh
—Ex [8 (X;70)Ey,z [aM(X V)a (Z; ozo)” Vnléd — ag)—
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%ZZ (g.z(Xi?TO)Vl/caacik (XZ,V)gh(ZJ,aO) Ex BR(X 70)Ev,z [ZM(X V)gh(z Oéo)”) Vn(é—ag)
i=1 j=1

with

nZ ZZ <6R Xi; o) Vkaan (Xiij)gZ(Zj;ao) - Ex [gR(X 70)Ev,z [gM(X V)gh(Z ozo)”) =

ngzzgf(xi;m)< an(XZ,V) g’;(xi,vjogh(z o)+

i=1 j=1

L Zl ; (aR X)) 2 25500) — B [g]j(X;To)Ev,z [fj‘(x V)oh(z; o«ﬁ”)

and these terms are O, (k=) and O,(n~1/?) respectively.
Combining the results we have for

fzzaR Xi570) 7% (Qr(Xi, Vi) — Qu(Xi, V) =

=1 j=1

OR ou Oh
—Ex [87‘ 9 (X, V)a

where we only show the order of the largest remainders.
For we find after substitution from lemma

(X570)Ev, 2 [ (Z; ao)” V(@ — ag) + Op(K2n~1/2) + 0, (k7/2~)

nf ZZ R X@,TU)QI@(X“V) (B — ) =

=1 j=1

(9R oh . _ —a
n2 ZZ X“TO )Q(Xi, Vj)' ZQk )8a(Zj;ao)\/ﬁ(a—aoHOp(k“/Qn D40, (K*/?70) =

i=1 j=1

(iZf( AR <Xi;fo>@k<xi,vz->’) (iZ@k<wj>§‘<wj>$(zj;ao>) (G —ao)t

X0 V) 2
L OaNmOR v L= F(X) (Vi) OR
(ng;;&(}ﬁﬁo)@c@(uvg) n;f(Xz,Vl)ﬁ (XuTo)Qk(Xz,Vz))
1 <& oh . 1172, —1 5/2—ao
n Qk )8a(Zj7a0) \/ﬁ(a_ao)‘FOp(k n )+Op(k )
7j=1
Now
1 - 1 & f(X)f(Vi) OR
Ei:1 Pt 87’ XlaTO Qk Xz,V _n;(,,vz)ﬁ (XmTO)Qk(XuVL)
1 & d oh
=3 QW) 5 (W) 5= (Zgs 0)| Vil — o < (32)
j=1
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or

% Z Z %(Xz, TO)Qk(XZ', ‘/J) —Ex |:8R(X’ TO)EV[Qk(X, V)]:|

i=1 j=1
1~ f(X0)f(V;) OR FXOFV) R
Tl & vy or (i 70) Qi (X V) [ FXV) o X)X, v>] >
ZQk gh(ZJ,aO) VAl — agl

By the V-statistic projection theorem

%ZZ%(XMTO)QMX%V})—EX @(XSTO)EV[Qk(XaV)] =

s £ or
=1 j=1 -

TILZ (Z'%(X“ TO)EV [Qk(Xu V)] —Ex -(?;(X; TQ)Ev[Qk(X, V)]_ ) =+

*Z (Bx [SE timi@ux. 1] - Bx [ SRt mBrl@uCx V)] ) + o)

The remainder may grow with k but at a slower rate than the projection itself. We have

2
Ex < (sup |Qk<w>|) E [N(X)?] = O(R?)

2
@R(X To>> Ev [Qu(Xi, V)] Ev [Qu(Xi, V)]
weW

and
g [k [2ximauon )] Bx [ ximuee ]| < (s @) @7 = ou)
Together with

8h
ZQk 1) 50 (Zise0)| < sup [Qi(w)| sup

wew wew

o] i -oun

this implies that is Op(k?*n=1/2).

Therefore is
nf ZZ OR — (X5 m0)Qu(X, Vi) (G — ) =
i=1 j=1
1 o~ f(X)f(Vi) OR . |
<n m o (XZ’TO)Qk XZ’ ‘/Z ) ( ZQk )aOé (Z]7a0)) \/ﬁ(a — Oé0)+
i=1 is Vi

Op(k,Qn—l/Q) + Op(k,5/2—a0)
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Because by assumptions |15(and (14| the function ! gfgiqu;’) %—f(w; 7o) is r times continuously differentiable
we have that for some vector dy,

wp | £ () OF

< —7"/2
o F ) o7 < Ck (33)

——(z570) — 6,Qx(,v)

7
S|
™=

A

S1Qu(Xi, Vi) Qu( X1, Vi) ) (i > Qumy) 2wy 2z ao>) V(6 — ag)+

(iz (W?ﬁ”ﬁm) - %Qk(Xz»Vi)) Qu(Xi, Vi) ) ( ZQk )§Z(zj;ao>) Vi(6—ap)
i=1 v

where the final term is O, (k(~")/2). The final step is to transfer d; from the first to the second sum

( Zészk Xi, Vi) Qr(Xi, Vi) ) ( ZQk )gh(z )) V(& — ag) =

i=1
1<, 0 oh X - oh X
(njZléka<Wj>aﬁf<Wj>aa<stao>> Vi(a—ao)+er, (O — 1)) ( ZQk W) aa<zj,ao>) V(a—a)
with because |AB| = |BA| < |A||B| if both AB and BA are well-defined
1 (& oh .
0y, (Qk - Ik) ( ZQk )8a(ZJ,ao)> Vn(a —ap)| <
)Qk—lk‘ Z5ka )gh(z 0)| Vnlé — ag| <
. LS FFWV)OR o Oh :
90 8| 30T ) 3 090 (| Vil —
X;)f(V;)OR , 0 oh .
‘Qk - (W&(Xj;m) - 5ka(Wj)> ({TZ(WJ‘)%(ZJ‘;O&O) Vn|éd —ag| <
5, OR , 1 &
‘ka — Ik’ uSJIEl)I/)V 85 ’ ( Z f(X X], {(/’]))NI(Xj)Ml(Zj) + usjlel]r/)\; ’W%(:ﬂ;m) - 5ka(w)‘ - ;Ml(Zj)) .

Vnla — ag| = Op(n*1/2k3/2) + Op(n’1/2k(3*7")/2)
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because E [f;( )f‘(/‘)/)Nl(X)Ml(Z)} = E[M1(Z)]E[N1(X)] < o0, so that for

n\f ZZ 8R —(Xi;70)Qk (X, Vi)' (e — k) =

=1 j=1

ov
7j=1

(ﬁlﬁf QW >6“<w/>§Zczﬁaw) V(@ — ao) + Op(n™/K2) + O (/=) + 0y (K1)

Finally we obtain

n 4
Jj=1

(1 > <f}€()](if‘(/i/;) ?E(st T0) = 52Qk(WJ‘)> ?:(Wj)gZ(Zj; ao)) V(& — ag)

where the final term is O,(k~"/2) by .
Therefore the final result is that

OR F(X)f(V)OR, .
n\/»;; Xz;TO)Qk(XuV) ('Yk ’Yk) E [f(X,V)&'(X7TO)8(W)

Op(n™12k%) + Oy (K7/27%) + O, (k=712
Combining this with the result on (31)) we have

Lemma 8 If assumptions and[16 hold, then

IZZ( (X, V) (Xi,vj)) aaR(XZ,T)

=1 j=1

Ou ., Oh OR

0 oh
%(Z; 040)] —Ex [OT(X;TO)EV,Z [ a

xS Zian)| | ) vita-an+

Op(k9/2n71/2) _‘_Op(k7/27a0) _‘_Op(k(4fr)/2)

QEa

C.4 Expressing (27)) as a sample average
We decompose as

I OR
(X0, Vi) = (X5, V5)) 5= (Xis70) =
7j=1

nvn — or
R OR
n‘/ﬁz Uz:l Qr( X, Vi) vk — (X3, V) E(Xiﬂ'o)"‘ (34)
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FX)FV)N - OR
- W;;<Qk Xi,Vj) - Qk(Xl,vnm) (T = )5 (Xis 7o)+ (35)
1~ f(X) (VD) OR
\/ﬁ; FX0 V) (Vi — (X, Vi) 5~ (X 7o) + (36)
1 & f(X)f(V; , OR
—= f}()(),f‘(/)>( (X, Vi) = Qu(Xa, Vi) ) 5~ (X5 70) = (37)
i=1 1y ¥V
1 & f(X)f(Vi OR
J= Y LI v - e vy G () (39)
i=1 1y ¥V
with the main term.
The bias remainder is bounded by
nf;; Qr(Xi, Vi) e — (X3, V) %(Xiﬁo) < nsggv\Qk(w)’vk— }*Zl\ﬁ = 0,(n'/?k~)
The remainder is bounded by
f;z; ok (Xi;70) (Qk(XuV) Qk(Xz,W)W) |V — Yi|

The first factor is the norm of a V-statistic that is equal to the projection and a term that is of smaller
order

=3 (B[S cxsmiaux )] - LRI o quxi ) +

\}EZ (EX {61% (X;70)Qr(X, V)] ~Ey {EX [gf(x;m)@k(x, V)”) + 0p(1)

We have

Ln Z <E [(Z]j(Xi;To)Qk(Xi, V)] - WaR(Xz,T())Qk(X“‘/Z>)

2
<

R .n <E [aR(X“TO)Qk(XZ,V)} (Xz,ro)Qk(Xz,Vz)>

X2 f(V)? (53

2 2
(X To)> Qu(X, V)2 SC\/ (55%1Qk<w>r) E[N/(X)?] = O(k)

|-

1y (Ex | Greamax )| ~By [2x | xmax ]| )
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T

2
¢<wp@M)OlMNmmﬂ=O%)

weWw

1 nl <EX [g]j(X;To)Qk(X>VJ’)] —Ey [IEX [(Z?(X;To)Qk(X, V)”)

j=

Hence by the Markov inequality the first factor is O, (k). Combining this with lemma (7| the term
is Op(k?n=1/2) + Op(k5/270).
By assumptions and is bounded by

OR 2

x|SRty || <

Cvn sup (w) — Vk\* ZNl (n'/2k) (39)
we

To bound we observe that the OLS residual Y; — Qg (X;, V;)'% is uncorrelated with Qx(X;, V;).
Therefore for the vector dj in the remainder is equal to

\/15 > (Vi — Qu(Xi, Vi)' 3k) (ngj(&; 70) — Qk(Xi, Vz‘)'fSk)
i=1 b

By we have that is bounded by

fla)f(v) OR

sup

o f(x U) or (337 7-0) - Qk(w)/(sk‘

<\}5 SO = p(Wi)| + \}ﬁ > (W) - N(Wi)|>
i=1 :

Because assumption
E[|Y — u(W)[] < vEw EF W] <7 < oo

we have by the Markov inequality that

By lemma [7]

WZ\M (X, Vi)l = Op(K?) + Op(n'2k/2710)

Therefore (38) is O, (n'/2k="/2) + O, (k“W=)/2) 4+ O, (n}/2kB—r)/2=a0),
We conclude

Lemma 9 If assumptions [75 and [16 hold, then

IZZ BXG, Vi) — (X Vi) O (X5 70) = Z%M%Yw%WWWmH

i1 j=1 Xi, Vi or

Op(n_l/QkQ) +Op(k5/2_a0) _I_Op(nl/Qk,—ao) +Op(n1/2k_r/2) +Op(k(4—r)/2) +Op(n1/2k,(5—7")/2—a0)
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C.5 Expressing (28] as a sample average
Upon substitution of R(X;;7y) for L(X;) we obtain for

n\fZZu XuV XM'O sz Xi;70) gR(XﬁTO)

i=1 j=1

Because

8£
or

OR

E [R(X;To) (X;To)] =Ey [Ex[ (X, V)(9 (X; To)”

we can express (28) as
(X, V)2 X Ev By |px, )28 (x:
anZM 3] (Xi3710) — Ev |Ex | p( )a (X;70) _
i=1 j=1
1 < OR OR
= X —(Xy; —E X; —(X;
(\/ﬁ;R( 70) 87( 7o) [R( 70) 87( TO)D
The first term is a V-statistic with projection
1< OR OR
N Xi;710) == (Xi370) — E | R(X;70) = (X;
\/’71 ;R( 7'0) or ( 7'0) [R( 7‘0) a7 ( 7‘0):| +
1 < OR OR
\/H;EX [“(X"/J’)aT(X?TO)] —Ey {Ex [ (X, V) 5~ (X 7'0)” +0p(1)
so that

Lemma 10 Under assumption

anZM X’MV XuTO) iZL(XZ)Zf(XHTO):

i=1 j=1 i=1
ZEX [ (X,V;) ZR(X;TO)] ~Ey {EX [M(X V)ZR(X 7'0)]] + 0p(1)

C.6 The asymptotic distribution

The results in the lemmas give

Theorem 6 (Asymptotically linear representation) If assumptions and |16 hold,

then Vn(F — 1) = (E [gR(X To)gpt(x TO)D—l.
{(a[ LI o) P 52 Zia)| — B [ G i [ L.V S 00| ) Vit a
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1 (X)) f(Vh) R,
\/E;M(E—M(Xia%))&()(mmﬂ

-+ éEX e v SR 06 )] -y [y [ux SR £+

Op(k9/2n_1/2) +Op(k7/2_a0) +Op(n1/2k_a°) +Op(n1/2k—r/2) —|—Op(/€(4_r)/2) +Op(n1/2k,(5—r)/2—ao)

Now take k = Cn”. The remainders are negligible if the following inequalities are satisfied simul-
taneously

< 1 > ’ > 1 > 1 >5 > 1
& 9 @0 2 " 2ay " r "= " r— 54 2ag
Therefore 9
ag > 5 r > 10
and
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